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The Sleeping Brain

From our first to our last day, sleep is a constant that marks the passing of time. 
Sleep is a naturally recurrent state of rest characterized by reduced physical activity, 
decreased responsiveness to external stimuli, and distinct neurophysiological 
patterns. There is probably no single activity we spend more time doing, but despite 
that, it has remained a puzzle throughout the history of humankind. The invention 
of electroencephalography (EEG) made it possible to monitor the brain's electrical 
activity non-invasively, leading to ground-breaking findings in early sleep research 
such as the discovery of rapid eye movements (REM), cyclic nocturnal sleep behavior 
(Figure 1 A), and the identification of neurophysiological events within sleep stages 
such as sleep spindles and slow waves as a marker of non-REM (NREM) sleep  
(Figure 1 B), or ponto-geniculo-occipital (PGO) waves, traceable in animal 
models, during REM sleep (Dresler et al., 2014). The human sleep cycle consists of 
regular progress through a series of global brain states characterized by specific 
neurophysiological changes. A typical sleep episode starts with light NREM sleep, 
progressing to deeper stages (N1, N2, and N3 sleep), and finally to REM sleep. Still, 
individuals do not remain in REM sleep, but cycle between NREM and REM stages 
an average of four to six times during the night. NREM sleep constitutes about  
75 percent of total time spent in sleep, whereas REM sleep constitutes the remaining 
25 percent. In healthy adults, NREM sleep accounts for the majority of sleep time 
in the first half of the night, as REM sleep increases as the night progresses and 
accounts for much of the sleep time in the second half (Carskadon & Dement, 2005). 
Although animal research has advanced sleep characterization across species, several 
pivotal questions about human sleep remain unanswered. One of the most intriguing 
is why we spend a significant portion of our sleep dreaming and how these often 
vivid conscious experiences arise from distinct neurophysiological states.
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Figure 1:  Hypnogram and Sleep Stage Characteristics. A) A full-night hypnogram showing approximately 
five sleep cycles, illustrating the progression through NREM stages 1, 2, and 3, followed by REM sleep.  
B) Close-up of the electrophysiological features characteristic of each sleep stage, including 
electrooculogram (EOG), electroencephalogram (EEG), and electromyogram (EMG) recordings, 
additionally, sleep stages’ EEG spectral activity, highlighting key frequency bands, with examples of 
sleep spindles and K-complexes, hallmarks of NREM stage 2 sleep.

The Dreaming Brain

Dreams have influenced human society for as long as we can remember, from ancient 
cave paintings that may have depicted dream experiences (The Cave of Forgotten 
Dreams) to their future-telling importance in Ancient Egypt. But what is a plausible 
scientific interpretation of dreams? Sigmund Freud's theory of dreaming (Freud, 
1983) was among the first to propose a psychological framework, suggesting that 



12 | Chapter 1

dreams act as a window into the unconscious mind, primarily serving as a form of 
wish fulfillment for repressed desires. Although Freud's ideas laid the foundation for 
modern psychoanalysis and the study of dreams, they received considerable criticism, 
especially from behaviorists, causing dream research to stagnate for many years.

NREM and REM sleep dreaming
After Eugene Aserinsky and Nathaniel Kleitman discovered REM sleep in 1953 
(Aserinsky & Kleitman, 1953), this paradoxical, wake-like cortical activation was 
initially believed to be the biomarker for the occurrence of dreaming, providing 
an efficient way to collect dream reports immediately after they occurred. In the 
following years, William Dement’s work dove deeper into the exploration of “REM = 
dreaming,” supported by electrophysiological findings, such as the cyclic variations 
during sleep and rapid eye movements (Dement & Kleitman, 1957; Dement & Wolpert, 
1958). This led to a new research field, offering answers to decades-long standing 
questions about sleep and dreams. However, this surge of interest did not last long. 
As Foulkes (Foulkes, 1996) noted, the disinterest in dream research reemerged as 
early studies (Kamiya, 1961; Foulkes, 1962; Foulkes & Vogel, 1965; Monroe et al., 1965) 
revealed that dreaming also occurs outside of REM sleep. For instance, investigations 
into the onset of REM dreams showed that dreams could occur during NREM sleep, 
concluding that dreaming may be a continuous process throughout sleep. This 
conclusion was especially evident when the question asked upon waking shifted 
from "Did you dream?" to "What was going through your mind?" (Foulkes, 1962). The 
percentage of NREM sleep reports containing mentation increased significantly 
from about 0-8% in the 1950s to over 70% in the 1990s, reflecting the impact of more 
inclusive criteria for cognitive activity introduced in the 1960s (Nielsen, 2000). It is 
now clear that dreams are not exclusive to any specific sleep stage.

Later studies demonstrated that REM sleep dreams are generally more elaborate 
than those at sleep onset and are more "dreamlike" than typical NREM dreams. While 
external raters could not reliably distinguish between stage-specific dream reports 
(Vogel et al., 1972), REM dreams tend to be qualitatively richer than those from sleep 
onset or NREM periods. It has been suggested that differences in dream reports 
between stages may depend more on the length of the report than the stage itself. 
Longer REM reports often exhibit more continuity in characters and settings, whereas 
shorter reports from any stage display less continuity. However, despite controlling for 
length, some qualitative differences persist between REM and NREM dreams, such as 
character density and self-representation. Foulkes (Foulkes, 1982) proposed that dream 
production might share common mechanisms across sleep stages, with the complexity 
of dreams varying based on the intensity and continuity of mnemonic activation. While 
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memory retrieval processes contribute to these differences, Foulkes pointed to distinct 
underlying differences in dream production itself, not just memory recall after waking.

Following a similar rationale to the association between REM sleep and dreaming, 
two pivotal findings from lesion studies in animals and humans have challenged 
this hypothesis. First, research by Jouvet (Jouvet, 1959, 1961) demonstrated that the 
forebrain is not essential for REM sleep. When the cortex is disconnected from the 
brainstem, REM cycles are abolished in the forebrain but preserved in the isolated 
brainstem. This led to the view that the visual and motor phenomena of REM sleep, 
such as eye movements and PGO waves, are driven by brainstem neurons. Indeed, 
pontine brainstem lesions in cats have been shown to eliminate REM sleep, with 
similar observations reported in human cases. However, despite losing REM sleep, 
only one of 26 patients with pontine brainstem lesions ceased to dream (Feldman, 
1971; Solms, 2011), leaving the relationship between REM sleep and dreaming 
ambiguous. Second, while the revised Activation-Input-output-gating-Modulation 
(AIM) model (Hobson et al., 2000) suggests that both REM and NREM components 
contribute to dreaming, the cessation of dreaming would require large lesions in the 
brainstem affecting both states. It is reasonable to conclude that such pontine lesions 
impair consciousness and are severe enough to have a significant effect on REM 
sleep, and thus, the evidence that dreaming persists regardless of REM sleep could 
not be confirmed (Solms, 2000, 2011). These pieces of evidence suggest that forebrain 
mechanisms, rather than brainstem structures, are crucial for dream generation, 
challenging the long-held assumption that REM sleep equals dreaming.

Beyond lesion studies, pharmacological research untangled this thread, showing that 
complex and bizarre dreams persist even when REM sleep is suppressed (Oudiette 
et al., 2012), supporting the “one-generator” model, which suggests that dreaming 
may depend more on overall brain activation levels than specific sleep stages. This 
perspective is reinforced by the persistence of vivid, bizarre dreams during NREM 
sleep and after REM suppression. Taken together, the results of both lesion and 
pharmacological studies suggest that, despite the distinctive characteristics of REM 
sleep dreams, dreaming is not synonymous with this sleep stage. Rather, it can be 
seen as a cognitive process intrinsic to the sleeping brain.

Clinical and electrophysiological neural correlates of dreaming
A contemporary view defines dreaming as a conscious experience during sleep that 
includes a spatially and temporally organized hallucinatory scene. This experience 
is marked by a first-person perspective, a sense of self-location within a defined 
space, and an awareness of temporal flow, giving the dreamer an experienced “now” 
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and a perception of duration (Windt, 2010). Thus, understanding the neural basis of 
dreaming is essential for unraveling how the brain generates subjective experiences 
during sleep and what these processes reveal about consciousness and brain 
function. Despite considerable developments, questions remain regarding the brain 
regions and mechanisms responsible for dream generation and the role of different 
sleep stages in shaping dream content. Clinical and electrophysiological studies have 
provided valuable insights into these processes, offering a framework to explore how 
structural and functional changes in the brain influence dreaming and its recall.

Early studies in clinical populations demonstrated that brainstem lesions can reduce or 
abolish REM sleep, but they are not the primary cause of dream loss. This led to a shift 
in focus toward other brain regions as potentially fundamental structures involved in 
dream generation. Subsequent clinical studies identified that damage to two major brain 
areas is directly linked to dream cessation. Firstly, posterior brain lesions, particularly 
those in or near the temporo-parieto-occipital (TPO) junction (Solms, 1997), are strongly 
associated with dream loss and visual imagery impairments (Kosslyn et al., 2001), which 
share neural substrates with dreaming. Secondly, lesions in regions such as the V4 or V5 
visual cortices affect the representation of color or motion in dreams, whereas damage 
to primary sensorimotor areas does not disrupt dreaming (Solms, 2000).

In addition to posterior lesions, anterior brain lesions, particularly in the ventromedial 
prefrontal cortex (vmPFC) and surrounding white matter, have been linked to dream 
cessation (Solms, 2000, 2011). The involvement of dopaminergic pathways and limbic 
structures in this region suggests a role for emotional and cognitive processes in 
dream generation. Interestingly, lesions to the dorsolateral prefrontal cortex (dlPFC) 
do not appear to affect dreaming (Solms, 1997, 2000), despite their impact on self-
monitoring and decision-making in waking life. Furthermore, bilateral damage to the 
basal ganglia can result in an "auto-activation deficit," where patients experience a 
lack of self-generated thoughts during wakefulness but report simple dreams during 
REM sleep (Leu-Semenescu et al., 2013). This suggests that basic dream imagery may 
originate from brainstem stimulation and are transmitted to the sensory cortex, 
while higher-order cortical areas are necessary for more complex dream content.

Studying altered dreaming and its associated brain areas also offers valuable 
insights. For example, patients with medial occipito-temporal lesions exhibited a 
selective loss of visual dream imagery while retaining non-visual dreams, such as 
those involving sensations or words (Solms, 1995). This mirrors their waking deficits 
in visual imagery and short-term memory, suggesting a close relationship between 
waking visual processing and the generation of visual dream content. In contrast, 
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patients with anterior limbic lesions experience an inability to distinguish dreams 
from reality, with many reporting an increased frequency of dreams and, in extreme 
cases, a blurring of boundaries between dreaming and wakefulness. These patients 
often exhibited broader neuropsychiatric disturbances, including hallucinations, 
delusions, and confabulatory amnesia, highlighting the critical role of anterior 
limbic structures in differentiating internal dream experiences from external reality 
(Solms, 1995). Meanwhile, patients with bilateral calcification of the basolateral 
amygdala reported a greater prevalence of pleasant dreams than controls (Blake et 
al., 2019). However, no significant results were found for levels of danger or fear. 
These findings suggest that the amygdala plays a role in the emotional experience of 
dreams, whereby patients with lesions in the area perceive dreams as less negative.

In summary, clinical lesion studies reveal that dreaming depends on a network of 
brain regions beyond the brainstem, with the posterior cortical areas, such as the TPO 
junction and visual association regions, supporting sensory and perceptual aspects 
of dreams. At the same time, the anterior system, including the vmPFC, contributes 
to emotional and cognitive processes. Additionally, findings on altered dreaming, 
such as increased dream frequency and difficulty distinguishing dreams from 
reality in patients with anterior limbic lesions, emphasize the role of these regions 
in regulating the boundary between dreaming and reality (Figure 2). Together, these 
insights highlight the intricate neural networks involved in creating rich, varied, and 
sometimes excessive dreaming experiences.

Figure 2: Brain regions involved in dream processes based on clinical studies. The ventromedial 
prefrontal cortex (vmPFC) contributes to emotional and cognitive aspects of dreams, while limbic 
regions regulate dream frequency and the boundary between dreams and reality. Superior parietal and 
visual association areas are critical for the sensory and perceptual features of dreams. These findings 
highlight the interplay between anterior and posterior networks in generating and modulating the 
dream experience.
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Many studies have explored the electrophysiological correlates of dreaming during 
NREM and REM sleep stages and their relationship with dream recall as a proxy to 
investigate dream experiences. However, no consensus with early studies exists on 
the specific neural oscillatory features characterizing dreams (Table 2) (P. M. Ruby, 
2020), which could be due to several methodological differences across studies:  
i) EEG recordings varied from a four-channel Grass-78 polygraph (Foulkes, 1962) to 
high-density EEG with 256 channels (Siclari et al., 2017); ii) participants ranged from 
mostly healthy young adults to unmedicated depressed patients (Rochlen et al., 1998); 
iii) studies differed in the design (between- and within-subjects), and in the number 
of participants, experimental nights, and awakenings; iv) the analyzed recording 
periods before awakenings also varied; v) a study included white dreams (Siclari 
et al., 2017) - the feeling of having had a dream experience without being able to 
remember the details of the experience - while others excluded or did not account for 
them, which is crucial for distinguishing dream recall from dream experience itself.

The incorporation of more awakenings throughout the night and high-density 
EEG recordings have improved the spatial and temporal resolution of neural correlates 
associated with dream experiences. These technical developments allow for a more 
precise mapping of electrical activity across the scalp, improving the accuracy of brain 
region localization while reducing errors in identifying the source of neural activity. 
Results show that dream experiences in REM and NREM sleep are associated with 
decreased low-frequency power (1–4 Hz) over parieto-occipital regions compared to non-
experiences. Additionally, dream experiences are linked to increased high-frequency 
activity (25–50 Hz). Specifically, during NREM sleep, dream experiences show greater 
high-frequency activity over the parieto-occipital region, while during REM sleep, this 
increased activity is observed in frontal and temporal regions (Siclari et al., 2017).

Moreover, the study also identified the EEG patterns associated with dream 
experiences without recall of specific content (Siclari et al., 2017). During NREM 
sleep, these experiences are characterized by similar low-frequency power as dream 
experiences with recall, with no significant differences in the 1–4 Hz range. In 
contrast, during REM sleep, dream experiences without content recall showed no 
significant differences from non-experiences. These findings suggest that dreaming 
in both REM and NREM sleep may involve similar neural mechanisms and regions, 
supporting the "one-generator" model of dreaming. This model proposes that dream 
recall is linked to cortical activation across all sleep stages. Studies on the qualitative 
differences between REM and NREM dreams diminish when reports are controlled 
for length, and the presence of complex and bizarre dreams without REM sleep 
supports this idea (Foulkes, 1982; Oudiette et al., 2012).
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Table 1: A review of studies investigating EEG spectral correlates during the pre-awakening phase and 
their association with the presence or absence of dream reports upon awakening (adapted from (P. M. 
Ruby, 2020)).

Study N δ (0.5-4Hz) θ (4-7Hz) α (8-12Hz) β (>13Hz)

REM sleep

Lehmann et al., 1981 6 ↓ ↓ ↓ ↓

Wollman and Antrobus, 1987 30 = = = =

Rochlen et al., 1998 19 = = = ↑

Germain et al., 1999 41 = = ↑ ↑

Takeuchi et al., 2003 8 = = ↓ =

Esposito et al., 2004 8 ↓ = ↓ =

Marzano et al., 2011 30 = ↑ = =

Chellappa et al., 2011 17 = = ↑↓* ↓

Scarpelli et al., 2015 6 = ↑ = =

Siclari et al., 2017 46 ↓ = = =

Non-REM sleep

Moffitt, 1982 8 ↓ = = =

Williamson et al., 1986 6 = = = =

Morel et al., 1991 40 = = = =

Takeuchi et al., 2003 8 = = ↑ =

Wittmann et al., 2004 6 = = = =

Esposito et al., 2004 11 ↓ = ↓ =

Marzano et al., 2011 35 = = ↓ =

Chellappa et al., 2011 17 ↓ = = ↓

Scarpelli et al., 2017 14 ↓ = = =

Siclari et al., 2017 46 ↓ = = =

Note: ↑, the EEG spectral power is increased in this frequency band when subjects recalled a dream 
compared to when they did not recall one. ↓, the EEG spectral power is decreased in this frequency band 
when subjects recalled a dream compared to when they did not recall one. =, no significant EEG spectral 
power difference in this frequency band were observed, between the two conditions. *, higher occipital 
alpha, decreased frontal alpha. N = number of participants.

Further studies replicated these findings, finding that frontal theta oscillations during 
the last REM sleep segment were associated with successful dream recall (Scarpelli et 
al., 2019). In contrast, during NREM sleep, dream recall in older adults was linked to 
reduced delta power in the temporo-parietal regions (Scarpelli et al., 2020). Similarly, 
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in clinical populations of narcolepsy type-1 patients and sleepwalkers, dream recall 
was associated with lower delta power and higher beta power over centro-parietal 
areas (D’Atri et al., 2019; Cataldi et al., 2022). However, Wong et al. (2020), using 
blinded analyses, did not identify any EEG spectral markers of dreaming experiences, 
highlighting the challenges in the field. In addition to electrophysiological findings, 
neuroimaging studies have examined brain structural and functional measures and 
their potential association with dreams. These methodologies will be discussed in 
depth in the following chapters. To date, no definitive consensus neural marker of 
dream experiences has been established.

Influence of trait and state factors on dream recall and 
nightmare frequency
Dream research has long sought to understand the variability in how frequently 
individuals recall their dreams or experience nightmares. Dream recall frequency 
(DRF) refers to the number of dreams remembered over a specific period, and it can be 
distinguished from nightmare frequency as the later narrows down to the occurrence 
of vivid, disturbing dreams often leading to awakenings. Decades of research have 
shown substantial individual differences in DRF, with estimates ranging from nearly 
zero to multiple dreams recalled per night. DRF tends to follow a typical profile: 
women report higher DRF than men, and recall frequency is highest in adolescence 
and early adulthood before declining in older age (Giambra, 1979; Nielsen, 2012; 
Schredl, 2008). Nightmare frequency exhibits a similar demographic pattern, with 
higher prevalence in women and a peak during adolescence and young adulthood 
(Levin & Nielsen, 2007). However, a recent large-scale study could not confirm these 
findings and has suggested that age and sex in DRF might be mediated by trait and 
state factors such as attitude towards dreams, more prevalent in female participants, 
and changes in sleep patterns, which may affect dream generation processes (Elce 
et al., 2025). This study also highlighted that previously reported demographic 
effects on DRF might be overstated if psychological traits are not considered. In 
their representative sample, Elce et al. (2025) found that trait factors such as positive 
attitude toward dreams, interest in dreams, and openness to experience were 
stronger predictors of DRF than demographic variables. Therefore, understanding 
the distinction between trait and state psychological factors is essential to investigate 
their impact on dream recall and nightmare frequency.

Trait factors are stable characteristics that remain relatively constant over time 
and across different life situations. In contrast, state factors refer to temporary 
conditions or emotional experiences that change over time. In the context of DRF, 
trait factors relate to consistent individual differences, such as individuals who 
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frequently remember their dreams across several nights. Conversely, state factors 
encompass transient influences, such as stress or fatigue, influencing an individual’s 
ability to recall dreams on a particular day. When investigating the relationship 
between DRF and state or trait factors, three primary methods are commonly 
used, and they can be categorized into retrospective and prospective approaches: 
i) retrospective methods, such as questionnaires, rely on participants reporting 
whether they experienced a dream the previous night or estimating their DRF over 
a specified time frame. While these questionnaires provide a straightforward, 
minimally intrusive, and less expensive way to collect data, they are susceptible to 
recall bias, as participants must rely on their memory, and different rating scales 
across studies may result in inconsistent findings; ii) prospective methods, like dream 
diaries and sleep laboratory awakenings, in which the former requires participants to 
record their dreams each morning, which minimizes retrospective recall errors and 
enhances accuracy by capturing reports upon awakening. However, it may artificially 
inflate DRF and require long-term participant commitment. The latter represents 
another prospective method where participants are woken up from sleep to report 
their dreams. This method achieves high DRF rates (60%) and allows for collecting 
combined physiological data in a controlled environment. However, it is logistically 
complex, expensive and may disrupt normal sleep patterns due to the artificial setting 
and frequent awakenings (Schredl & Montasser, 1996; Nemeth, 2023). In summary, 
each method has a unique trade-off between accuracy, naturalistic representation, 
and feasibility, thus making method selection a critical aspect of designing effective 
studies that capture the complexity of dream recall.

The relationship between DRF and several trait and state factors has been extensively 
studied, revealing a complex interplay that shapes individual differences in dream 
recall. Numerous trait factors influence DRF, including sex, age, cognitive abilities, 
sleep physiology, and personality features. For instance, studies indicate that 
women report higher dream recall than men (Giambra, 1979; Schredl, 2008, 2010), 
and DRF exhibits a U-shape trajectory across the lifespan, peaking during young 
adulthood and around age 60 (Nielsen, 2012; Schredl, 2008). Sleep-related traits, 
such as habitual sleep duration and quality, have yielded inconclusive findings 
(Nemeth, 2023). Conversely, personality traits, such as boundary thinness, fantasy 
proneness, and absorption, are associated with more vivid and bizarre dreams, 
which may enhance recall (Hartmann et al., 1991; Cipolli et al., 1993). Additionally, 
attitude toward dreams significantly influences DRF, emphasizing the importance 
of motivational and attitudinal factors in the retrieval process (Schredl & Göritz, 
2017; Elce et al., 2025). The findings of Elce et al. (2025) reinforce this point, showing 
that individuals with stronger positive attitudes and greater interest in dreams are 
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more likely to recall them. Their results emphasize the importance of motivational 
and attitudinal factors in shaping DRF, supporting the view that how people relate to 
dreaming significantly influences recall frequency.

In contrast, state factors are considered the primary basis of DRF, with significant 
intra-individual fluctuations influenced by the preceding sleep state, situational 
factors, and life events. Sleep duration (Schredl & Reinhard, 2008) and the sleep stage 
preceding awakening are key factors contributing to dream recall, possibly due to 
longer REM periods, with REM awakenings yielding a higher dream recall rate than 
NREM (Nemeth & Fazekas, 2018). However, as discussed in depth at the beginning 
of this chapter, sleep stage differences are better explained in terms of brain activity 
changes, particularly increased high-frequency oscillations in posterior parietal areas 
and pre-awakening frontal activity association with memory encoding. Emotional 
states, life events, and stressors also modulate dream features and recall, though the 
directionality of this influence remains uncertain, with inconsistent findings linking 
stress to DRF (Nemeth, 2023).

Emotional states, especially stress, are key players in nightmare frequency (Schredl, 
2003). While trait factors, such as personality traits and individual differences 
in anxiety sensitivity, may influence basic nightmare tendencies, state factors, 
particularly acute stressors, and emotional states, have a more immediate and 
profound impact on the nightmare experience. For example, elevated stress levels 
may increase the frequency and intensity of nightmares, as stressful life events 
may disrupt sleep architecture and promote negative emotional content in dreams 
(Loveland Cook et al., 1990; Berquier & Ashton, 1992; Zadra & Donderi, 2000; Levin 
& Fireman, 2002; Zadra et al., 2006). The interplay between current stress and 
neurophysiological changes during sleep, such as changes in REM sleep dynamics 
and increased autonomic arousal, may increase the vividness and emotional 
intensity of nightmares. This suggests a complex relationship where situational 
factors, emotional regulation, and underlying neurobiological mechanisms converge 
to shape the frequency and quality of nightmares, highlighting the need for a better 
understanding of how trait and state variables influence nightmare frequency.

One theory that largely influenced this thesis proposes that dreaming reflects an 
intensified form of spontaneous, internally oriented cognition, closely related to 
mind-wandering, and is supported by the brain’s default mode network (DMN) (Fox 
et al., 2013; William Domhoff, 2011; Domhoff & Fox, 2015). Within this framework, 
dream recall is thought to depend not only on transient sleep-related factors but also 
on stable neurocognitive traits. Neuroimaging studies have shown that individuals 
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with high DRF exhibit increased activity in DMN regions, particularly the medial 
prefrontal cortex (mPFC) and temporo-parietal junction, during both REM sleep 
and resting wakefulness (Eichenlaub et al., 2014). In addition, high dream recallers 
display heightened brain responsiveness to auditory stimuli during both sleep and 
wakefulness, as evidenced by larger EEG event-related potentials (Eichenlaub et al., 
2014). This elevated neural reactivity is thought to increase the likelihood of intra-
sleep awakenings, thereby facilitating the encoding and subsequent recall of dream 
content. Extending to functional Magnetic Resonance Imaging (MRI), Ruby (2022) 
demonstrates that high dream recallers also show increased bottom-up and top-
down attentional processing during wakefulness, further supporting that dream 
recall frequency reflects stable differences in attentional engagement with salient 
stimuli. Structural imaging findings further support the role of stable neural traits, 
with high dream recallers showing increased white matter density in the mPFC, a 
region involved in self-referential processing, emotional evaluation, and episodic 
simulation, suggesting its involvement in dream production (Vallat et al., 2018). 
More recently, functional connectivity analyses revealed that individuals with high 
dream recall display enhanced connectivity within and between the DMN hubs and 
memory-related regions, such as the angular gyrus and hippocampus, immediately 
upon awakening. These connectivity patterns may support the short-term 
maintenance and retrieval of dream content during the sleep-wake transition (Vallat 
et al., 2020). Together, these findings imply that dream recall frequency is influenced 
by the interaction between trait and state factors and stable structural and functional 
brain characteristics. This integrative framework, linking spontaneous sleep-
wake cognition, memory processing, and individual neurobiological differences, 
provides the conceptual and methodological foundation for the multimodal approach 
developed throughout this thesis.

Thesis Outline

This thesis investigated the relationship between retrospective trait dream recall 
and state-dependent factors in relation to structural and functional neuroimaging 
measures, aiming to advance the understanding of the neural correlates underlying 
dream experiences. In Chapter 2, I provide a comprehensive overview of the major 
findings in sleep research, focusing on two primary neuroimaging modalities: 
Positron Emission Tomography (PET) and MRI. This chapter covers both micro-
level processes, such as sleep spindles and slow-wave sleep, as well as macro-level 
phenomena like dreaming and subjective sleep characteristics. I also discuss the 
specific challenges faced in sleep neuroimaging studies, including maintaining 
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sleep in the scanner environment, managing physiological artifacts, and accurately 
interpreting neuroimaging data across sleep stages. In Chapter 3, I delved deeper 
into the neural correlates of retrospective nightmare frequency, aiming to replicate 
previous findings in two large, independent cohorts. Additionally, I explore whether 
connectivity between the prefrontal cortex and amygdala, regions critical for 
emotional regulation, can predict nightmare frequency. These findings highlight 
the need to reconsider prior results and suggest new directions for future research. 
Chapter 4 presents a multimodal fusion approach to examine dream recall frequency 
by integrating gray and white matter morphology with functional connectivity 
measures. This approach represents a novel contribution to dream research, as 
it moves beyond the traditional high versus low dream recall groups to consider a 
continuous spectrum of dream recall frequency across a large sample, providing 
more nuanced insights into the neural correlates of dream recall. In Chapter 5,  
I investigate the relationship between resting-state networks and dreaming using 
simultaneous EEG and functional MRI recordings collected during serial awakenings. 
Upon awakening, participants provided dream reports, and a global dreaming index 
was calculated based on both subjective metrics, such as emotionality, bizarreness, 
and visual vividness, and objective metrics, such as total word recall count. The thesis 
concludes with Chapter 6, where I discuss the findings within the broader context of 
sleep and dream research, discussing their implications and proposing directions for 
future studies.
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Abstract

Sleep research has evolved considerably since the first sleep electroencephalography 
(EEG) recordings in the 1930s and the discovery of well-distinguishable sleep stages 
in the 1950s. While electrophysiological recordings have been used to describe the 
sleeping brain in much detail, since the 1990s neuroimaging techniques are applied 
to uncover the brain organization and functional connectivity of human sleep with 
greater spatial resolution. The combination of EEG with different neuroimaging 
modalities such as Positron Emission Tomography (PET), structural MRI (sMRI) 
and functional Magnetic Resonance Imaging (fMRI) imposes several challenges 
for sleep studies. For instance, the need to  combine polysomnographic recordings 
to assess sleep stages accurately, difficulties maintaining and consolidating sleep 
in an unfamiliar and restricted environment, scanner-induced distortions with 
physiological artifacts may contaminate polysomnography recordings, and the 
necessity to account for all physiological changes throughout the sleep cycles to 
ensure better data interpretability. Here, we review the field of sleep neuroimaging 
in healthy non-sleep-deprived populations, from early findings to more recent 
developments. Additionally, we discuss the challenges of applying concurrent EEG 
and imaging techniques to sleep, which consequently have impacted the sample size 
and generalizability of studies, and possible future directions for the field.

Keywords: sleep, neuroimaging, fMRI, PET, functional connectivity, rCBF
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Introduction

From the first to our last day, sleep is a constant that marks the passing of time. 
There is probably no single activity we spend more time doing, but despite that 
it still remains a puzzle throughout the history of humankind. The invention of 
electroencephalography (EEG) made it possible to monitor the brain's electrical 
activity non-invasively, leading to ground-breaking findings in early sleep research 
such as the discovery of rapid eye movements (REM) and cyclic nocturnal sleep 
behavior. Later discoveries identified neurophysiological events within sleep stages 
such as sleep spindles and slow waves as a marker of non-REM (NREM) sleep, or 
ponto-geniculo-occipital waves, traceable in animal models, during REM sleep (for 
review see (Dresler et al., 2014)). The human sleep cycle consists of regular progress 
through a series of global brain states characterized by specific neurophysiological 
changes. NREM sleep is traditionally divided into three stages exhibiting distinct EEG 
patterns. Light NREM sleep, or stage N1, marks the transition from wakefulness to 
sleep, with low-amplitude theta waves (4-7 Hz), slow rolling eye movements, and lower 
muscle activity than wakefulness. Stage N2 features hallmark sleep spindles (brief 
bursts of 12-14 Hz activity) and K-complexes (large, isolated slow waves). Stage N3,  
or slow wave sleep (SWS), is characterized by high-amplitude, low-frequency delta 
waves (0.5-3 Hz), often associated with restorative processes. REM sleep, in contrast, 
is defined by low-amplitude mixed-frequency EEG activity featuring rapid eye 
movements and even lower muscle activity. Physiologically, eye movements, muscle 
tone, and autonomic activity further differentiate sleep stages, with muscle tone 
progressively decreasing through NREM stages and reaching near-complete atonia 
during REM sleep, alongside irregular heart rate and respiration. A typical sleep 
episode starts with light NREM sleep, progressing to deeper stages, and finally to 
REM sleep. Still, individuals do not remain in REM sleep but rather cycle between 
stages of NREM and REM throughout the night. NREM sleep constitutes about  
75 percent of total time spent in sleep, whereas REM sleep constitutes the remaining 
25 percent. In healthy adults, NREM sleep accounts for the majority of sleep time 
in the first half of the night as REM sleep increases as the night progresses and 
accounts for much of the sleep time in the second half of the night (Carskadon & 
Dement, 2005). Although animal research has advanced sleep characterization 
across species, several pivotal questions on why and how human beings sleep are still 
to be addressed. Brain imaging has played a role in understanding brain function 
and metabolism during sleep and associated sleep-specific features. Advances in 
neuroimaging may yield addressing remained unsolved questions, to name a few 
examples, the relationship between sleep and brain clearance, the causal relation 
with neurodegenerative diseases, and the possible functions of dreaming.
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Neuroimaging can be defined as any technique capable of imaging the anatomy, 
function, or physiology of the brain. In this review, we will focus on Positron 
Emission Tomography (PET), and structural and functional Magnetic Resonance 
Imaging (sMRI and fMRI), but also briefly mention other neuroimaging techniques. 
The concept of tomographic imaging (Phelps et al., 1975; Ter-Pogossian et al., 1975) 
and the development of positron-emitting radiopharmaceuticals (Ido et al., 1978) led 
to the development of the positron emission tomography technology. PET imaging 
makes use of radioactive tracers to measure and visualize physiological information, 
such as glucose consumption, dopamine release, and blood flow (tissue perfusion) 
in the body. By detecting radioactive decay as an accumulated component in specific 
brain regions, H2

15O PET imaging reveals the amount of blood flow across the whole 
brain, thus providing an indirect marker of neuronal activity. The increased 15oxygen 
labeled (H2

15O) concentration in a brain area reflects locally increased (regional) 
cerebral blood flow (rCBF) resulting from higher energetic demands due to increased 
neural activity. Similarly, locally increased glucose-labeled (fluorodeoxyglucose or 
FDG-18) consumption reflects the energetic neuronal needs in the corresponding 
area, glucose and oxygen being the two primary sources of energy for brain 
activity (note that only a single image is acquired reflecting the time-averaged 
energy consumption).

Structural MRI takes advantage of the abundance of hydrogen atoms in biological 
organisms, particularly in water and fat. This method aligns the spins of hydrogen 
atoms using a large magnetic field, typically 1.5 or 3 T in human studies. After 
the spins orientations are perturbed using a radiofrequency pulse at the nuclear 
magnetic resonance (NMR) Larmor frequency, they precess around their axis (which 
generates the measurable signal) and dephase and realign with the magnetic field 
at different time rates determined by the local tissue properties. The decay rates 
are exploited to distinguish different brain tissues in structural MRI. Contrast 
in diffusion-weighted MRI (DWI) relies on the microscopic movement of water 
molecules, as the brain’s various tissue types and geometries will affect the diffusive 
motion of water molecules in specific ways. A particular class of diffusion MRI is 
diffusion tensor imaging (DTI), which promises to characterize microstructural 
changes (Campbell & Pike, 2019). For instance, DTI is used to characterize the degree 
of anisotropy (fractional anisotropy), the orientation of directional diffusion (radial 
and axial diffusivity Dr/Da), or magnitude characterization (mean diffusivity). For 
more in-depth details on DTI measures estimation, please see (Assaf & Basser, 2005; 
Alexander et al., 2007; Zhang et al., 2012; Stee & Peigneux, 2021) for reviews.
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Functional MRI has become the most widely used technique for studying human 
cognitive processes since its development in the early 1990s (Kwong et al., 1992). 
BOLD fMRI measures changes in the total amount of deoxygenated hemoglobin in 
a voxel over time, and the quantity of deoxygenated hemoglobin depends not just on 
the extraction of oxygen by active neurons but also on blood flow and blood volume 
changes that together shape the BOLD hemodynamic response (Huettel et al., 2004). 
The BOLD signal primarily reflects the input and intracortical processing in a given 
region, rather than the output reflected in action potential firing. Compared to 
PET imaging, fMRI is non-invasive and can be repeatedly used in a broader range 
of individuals without the safety constraints of PET regarding radiation exposure. 
Finally, fMRI allows better spatial and temporal resolution (down to ~ 1 mm and a 
few seconds respectively, see Table 1) allowing the imaging of brain activity changes 
taking place over much shorter time spans closer to the dynamics of cognitive 
processes. Combined, these advantages explain fMRI’s rapidly expanding application 
in cognitive neuroscience.

For sleep neuroimaging studies, the various features of each image acquisition 
technique not only determine the quality of the image itself but the success of the 
study, since it is necessary to have an adequate environment for the participants to 
consolidate and maintain sleep including its deeper stages (Table 1). For instance, 
the different tracers used in PET imaging have different kinetics, resulting in H2

15O 
shorter half-life allowing repeated measurements at the same night, whereas  
FDG-18’s longer half-life allows only a single acquisition per night. However, the 
latter has the advantage that once the injection takes place during the night, imaging 
acquisition can be performed during awakening, thus enabling the subjects to sleep 
more comfortably in a bed. The complementary strengths of each method make 
simultaneous EEG and neuroimaging recordings crucial for sleep neuroimaging 
studies. EEG accurately identifies sleep stages and their characteristics using 
standard polysomnographic classification, while neuroimaging provides insight 
into brain activity and metabolism with superior spatial resolution. This combined 
approach allows novel interpretations of event-related activity or sleep stages time-
locked to brain dynamics. However, integrating the two methods, especially in the 
case of fMRI, requires careful attention, as all EEG equipment must be non-magnetic 
to ensure safety and signal quality. A few example challenges for sleep research 
include the technical aspects impacting the final generalizability of results and data 
quality. For example, the MRI environment is extremely loud and uncomfortable 
for participants, often leading to inflated drop-out rates and, consequently, smaller 
sample sizes compared to other neuroimaging studies. While the use of noise-
canceling headphones and custom-made earplugs are great mitigation strategies 
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(discussed further in the Discussion section), the smaller sample sizes limit the 
generalizability of findings, and larger studies are needed to confirm initial results 
while better representing the broader population. Additionally, technical factors 
such as MRI gradients switching and the cardio-ballistic artifacts affect EEG signal 
quality, further complicating data acquisition and interpretation.

Table 1. Comparison between neuroimaging methods for human sleep research.

Modality Principle Space 
Resolution

Acquisition 
time

Information Cost Environment & 
Requirements

SPECT Radiation level from 
gamma-emitting 
injected blood-injected 
tracers

6-8 mm Minutes rCBF 
(perfusion)

Medium Injection of 
radioactive tracer

PET Gamma radiation level 
secondary to positron 
emission from blood-
injected tracers

2-3 mm Seconds-
Minutes

rCBF 
(perfusion)

High Injection of 
radioactive tracer

fNIRS Blood oxygenation and 
blood volume dependent 
absorption of near-
infrared light

Centimeter Seconds CBV, Blood 
oxygenation

Low Required light 
avoidance

fMRI Blood deoxyhemoglobin 
concentration dependent 
NMR relaxation

1-3 mm* Seconds* Blood Flow 
(vascular)

High Required fixed head, 
in-scanner space 
limitation, acoustic 
noise. Disturbs EEG 
acquisition

sMRI Density and NMR 
relaxation properties of 
water protons

0.5-1 mm Seconds-
Minutes

Tissue 
composition

High Required fixed head, 
in-scanner space 
limitation, acoustic 
noise. Disturbs EEG 
acquisition

DWI/DTI Water diffusion based 
on tissue structural 
properties

1-3 mm Minutes Tissue 
structure

High Required fixed head, 
in-scanner space 
limitation, acoustic 
noise. Disturbs EEG 
acquisition

Note: CBV, cerebral blood volume; DWI/DTI, diffusion-weighted imaging/diffusion tensor imaging; 
EEG, electroencephalography; fMRI, functional Magnetic Resonance Imaging; fNIRS, functional Near-
infrared Spectroscopy; PET, Positron Emission Tomography; rCBF, regional cerebral blood flow; sMRI, 
structural Magnetic Resonance Imaging; SPECT, Single-Photon Emission Computed Tomography.  
* These values are based on typical sleep neuroimaging studies, however modern fMRI can achieve 
higher spatiotemporal resolution.
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The literature selection for this review was based on a systematic search of the online 
databases PubMed, Web of Science, and Google Scholar for English articles. The 
search terms included "sleep" and "neuroimaging" keywords present either in the title/
abstract or abstract fields. The initial search returned a total of 1894 articles, and after 
removing duplicates and screening for non-sleep deprived studies in healthy adults, 
the remaining articles were selected by researchers based on their relevance to the 
following research questions: "How has sleep neuroimaging been conducted?", "What 
are the general neuroimaging discoveries to sleep research?", and finally "What are the 
advances in the field?". We decided to focus the review on two imaging modalities – 
PET and MRI – and two main aspects of sleep neuroimaging. First, we will summarize 
the results of sleep neuroimaging studies carried out in healthy non-sleep-deprived 
subjects. Secondly, we will examine the challenges associated with brain imaging in 
sleep research and discuss the potential future directions for the field. We will highlight 
the limitations and confounds that affect the interpretation of neuroimaging data, and 
explore emerging technologies and their potential applications in sleep research.

Neuroimaging of sleep macrostructure

Neuroimaging techniques allow new insights sleep macrostructure, allowing 
researchers to explore the neural activity and metabolic demands of the brain during 
different stages of sleep. This section covers two important sub-sections related to 
neuroimaging of sleep. The first one focuses on local changes in brain blood flow, 
which have been primarily measured using PET imaging. The results of these 
studies have shown that there are significant regional differences in brain activity 
and metabolic rate during the sleep-wake cycle, with decreases in activity observed 
during NREM sleep, and more heterogeneous activity observed during REM sleep. 
The second sub-section discusses resting-state networks and thalamocortical 
connectivity during sleep, which have been largely studied using fMRI. Researchers 
have observed changes in the integrity of the default mode network during different 
stages of sleep, as well as alterations in thalamocortical functional connectivity. These 
findings provide valuable insights into the mechanisms underlying sleep stages.

Local changes in brain blood flow
Regional changes in blood flow by increases or accumulation of tracer components is 
a pivotal indirect means to measure brain neural activity and metabolic consumption. 
As a consequence, the assessment of changes in regional brain blood flow has 
advanced our understanding of neural activity and metabolic demands throughout 
the sleep-wake cycle. Early PET studies assessed cerebral glucose metabolic rates 
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during sleep, measured by FDG-18, in comparison to wakefulness. These studies 
showed a continuous reduction in metabolic rate from wakefulness to NREM sleep, 
being greater in frontal than temporal areas, and even more evident in the basal 
ganglia and thalamus compared to most of the cortex, whereas activity was at similar 
levels or even higher during REM sleep than in wakefulness, but more heterogeneous 
(Buchsbaum et al., 1989; Maquet et al., 1990). Activity further decreased from NREM 
light stage N2 to deep NREM sleep stage N3 (Maquet et al., 1992), suggesting a 
continuous process in the transition from wakefulness to deep NREM sleep. Using 
H2

15O PET imaging, Maquet et al. (1996) more precisely delineated the structures 
in which rCBF is diminished during NREM sleep. Negative correlations within the 
mesencephalon and the dorsal pons during NREM or SWS were thought to reflect 
the decreasing neuronal firing of brainstem systems leading to the hyperpolarization 
of thalamic nuclei (M. M. Steriade & McCarley, 2013), eventually resulting in 
synchronized discharge patterns over large neuronal populations that generate the 
slow wave sleep hallmark’s slow and high-amplitude oscillations measured by the 
EEG. These findings suggest that rCBF distribution is not homogeneous during slow 
wave sleep. With the exception of primary cortical areas, secondary and associative 
cortical areas (more specifically in prefrontal and parietal regions) presented larger 
decreases than others,  indicating that cellular processes occurring during slow 
wave sleep might be modulated differently in these regions. Likewise, Braun et al. 
(1997) and Andersson et al. (1998) observed decrease in regional cerebral blood flow 
in the brainstem, thalamus, and frontoparietal cortex, concluding that these areas 
play a role in the mediation of arousal. An increasingly widespread deactivation of 
cortical regions during the descent from light to deep NREM sleep was also observed 
(Kajimura et al., 1999). On the subcortical level, activity of the midbrain reticular 
formation was maintained during light but not deep NREM sleep, thus representing 
a key distinguishing correlate of sleep depth. Further, in agreement with previous 
PET studies (Maquet et al., 1990, 1992), a significant decrease in rCBF, as a function 
of delta activity was observed in the thalamus, the cerebellum and the frontal cortex, 
specifically at the anterior cingulate and orbitofrontal cortex (Hofle et al., 1997).

Resting-state networks and thalamocortical connectivity
Functionally connected regions share information observed in correlated time 
series, forming connectivity patterns known as resting-state functional networks. 
These networks have been broadly categorized into cognitive control, sensory 
systems (visual, auditory, and sensorimotor), and the default mode network (DMN), 
which characterizes brain activity in the absence of goal-directed tasks, with much 
speculation about its integrity (stability) during sleep. The thalamocortical network 
plays a central role in sensory information processing, especially during states 
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of arousal (Castro-Alamancos, 2004). Thus, while thalamocortical connectivity is 
distinct from the arousal network, it is significantly influenced by it. Understanding 
the interplay between these networks is crucial for elucidating the mechanisms 
underlying brain function and dynamic changes within networks during sleep.

Despite the physiological and behavioral differences between sleep and wakefulness, 
the same resting-state networks still support the falling asleep process. For instance, 
the DMN is preserved as during wakefulness (Horovitz et al., 2008; Larson-Prior et 
al., 2009; Deco, Hagmann, et al., 2014), with observed increased activity changes in 
cortical areas at early N1 (Picchioni et al., 2008; Larson-Prior et al., 2011). Similarly, 
an increase in BOLD signal fluctuation levels at the visual cortex was observed 
(Horovitz et al., 2008) with no evidence of reduced functional connectivity in sensory 
and association networks (Larson-Prior et al., 2009). The dorsal attention network 
demonstrated a modest yet statistically significant increase in functional connectivity 
during light sleep (Larson-Prior et al., 2009). Despite the maintenance of these 
networks during light sleep, as sleep deepens, functional connectivity transitions from 
a globally integrated state to smaller independent modules, exhibiting decreased long-
term temporal dependences (Boly et al., 2012; Spoormaker et al., 2012; Tagliazucchi et 
al., 2013). This is associated with the decreased conscious awareness and the brain's 
ability to integrate information. There is a gradual decrease in the connectivity of 
the frontoparietal regions, the posterior cingulate and retrosplenial cortices to the 
midposterior DMN node, and the contributions of the medial prefrontal cortex to 
the DMN (Sämann et al., 2011; Spoormaker et al., 2012). This occurs in a stepwise 
manner with increasing sleep depth, ultimately leading to the fragmentation of these 
connections, which sets the stage for subsequent sleep stages.

The transition to deep sleep is characterized by increased functional segregation 
(Madsen et al., 1991). This shift is consistent with changes in EEG delta power, 
suggesting a possible correlation between changes in brain network modularity and 
shifts in consciousness across sleep stages. Markers of reduced consciousness during 
deep sleep, such as preservation of posterior connectivity and decoupling of the 
medial prefrontal cortex, have been identified in studies (Horovitz et al., 2009; Koike 
et al., 2011; Sämann et al., 2011; Spoormaker et al., 2012). In addition, several studies 
have reported a decrease in DMN connectivity that correlates with the degree of 
consciousness impairment in minimally conscious, vegetative, and comatose patients 
(Vanhaudenhuyse et al., 2010). Other reports of DMN reductions are documented 
by (Boveroux et al., 2010; Blautzik et al., 2013). Reduced activity in frontal areas is 
consistent with previous PET studies reporting decreased metabolism in these regions 
during N3 sleep, suggesting the presence of local slow-wave activity (Stevner et al., 2019). 
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Brain connectivity during deep sleep reveals a nuanced landscape of consciousness 
modulation, as evidenced by the distinctive patterns of brain connectivity and 
activity identified during different sleep stages. The intriguing paradox of diminished 
consciousness coexisting with increased activity in specific cortical regions challenges 
our understanding of the complexities underlying the brain mechanisms during sleep.

There is a lack of consensus regarding REM sleep and resting-state networks 
connectivity. The connectivity of the DMN core regions appears to remain relatively 
stable across sleep stages, including REM sleep. Nevertheless, there is a notable 
reduction in the connectivity between the dorsomedial prefrontal cortex and the 
posterior cingulate cortex during REM sleep compared to NREM sleep. This reduction 
in frontoparietal connectivity is suggested to characterize REM sleep, with the ability 
to logically bind stored information significantly diminished due to dorsomedial 
prefrontal cortex dissociation, which may explain the prevalence of bizarreness 
in REM sleep dreams (Koike et al., 2011). Conversely, a reduction in DMN activity, 
occurring in synchrony with REMs, has been observed in the posterior cingulate 
and retrosplenial cortices (C. Hong et al., 2021), and fronto-parietal and sensory-
motor networks have shown increases during REM sleep compared with decreased 
activity during SWS (Watanabe et al., 2014). Additionally, DMN hyperconnectivity 
during REM sleep was observed in a small sample of only two participants (Wu et 
al., 2012). In conclusion, the results of the studies reviewed indicate a complex 
connectivity pattern during REM sleep, with findings that are not entirely consistent 
with one another. A recent high-density EEG study has demonstrated that both the 
breakdown and reconnection processes occurring during REM sleep are network- 
and frequency-specific (Titone et al., 2024). This complexity, when considered 
alongside the challenges of acquiring REM sleep data inside the scanner, has resulted 
in undersampled studies. This highlights the necessity for increased efforts to 
investigate the neurocharacterization of REM sleep with reasonable sample sizes.

The thalamus serves as a gateway that regulates the flow of sensory inputs to 
the neocortex. It is highly connected to the cortex during wakefulness (Castro-
Alamancos, 2004). However, the thalamus disconnects from higher functional brain 
networks in the process of falling asleep, excluding thalamic nodes and highlighting 
increased functional connectivity between cortical regions (Spoormaker et al., 
2010). This phenomenon was further supported by findings emphasizing altered 
thalamocortical functional connectivity during light sleep and its association with 
specific thalamic subdivisions and cortical projections (Shmueli et al., 2007; Andrade 
et al., 2011; Picchioni et al., 2014; Hale et al., 2016). These findings were also evidenced 
in fast-fMRI (Setzer et al., 2022) and support the hypothesis that the thalamus plays 
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a critical role in sleep-wake regulation (Jiang et al., 2021). The transition to deep sleep 
has been shown to result in a nuanced rearrangement of thalamic connectivity, this 
connectivity shift showed preserved propagation within the brainstem-thalamic axis 
and region-specific effects in the cortex (Mitra et al., 2015). In summary, thalamic 
connectivity undergoes distinct patterns during different NREM sleep stages. The 
sleep onset shows a disconnection from higher brain networks, increased cortical 
connectivity, and specific thalamic and cortical associations. In contrast, the process 
of deep sleep involves a more intricate rearrangement of thalamic connectivity.

Figure 1: Functional connectivity patterns across different sleep stages. Light Sleep: The default mode 
network (DMN), which is characterized by brain activity without goal-directed tasks, is preserved 
similarly to wakefulness, with increased connectivity in the dorsal attention network and heightened 
BOLD signal fluctuations within the visual network. Deep NREM Sleep: DMN connectivity is 
significantly reduced, especially between the parietal cingulate cortex (PCC) and the medial prefrontal 
cortex, with the medial prefrontal cortex becoming decoupled from the rest of the DMN. REM Sleep: 
DMN activity is further reduced compared to deep NREM sleep, with decreased connectivity between 
the dorsomedial prefrontal cortex and the PCC. REMs-locked DMN activity is reduced, while activity in 
the sensorimotor network is increased.

In summary, the study of neural activity during different stages of sleep reveals 
a complex and dynamic interplay between brain networks and consciousness. 
Resting-state functional networks, such as the default mode network, are crucial in 
shaping connectivity patterns during wakefulness and sleep stages. The DMN shows 
preserved connectivity during light sleep but changes during deep sleep, accompanied 
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by a breakdown of long-range functional connectivity. Thalamic connectivity also 
undergoes distinct patterns, with light sleep onset showing disconnection from higher 
brain networks and increased cortical connectivity, while deep sleep involves subtle 
rearrangements. The DMN is attenuated during REM sleep, suggesting deactivation 
during this phase. However, connectivity involving the inferior temporal gyrus to 
core DMN regions is more robust during REM sleep than during deep NREM sleep, 
suggesting higher or wake-like brain activity during REM sleep (Figure 1). A caveat 
to REM sleep findings is that published studies have relied on small sample sizes due 
to the challenges of obtaining REM sleep in the scanner. More studies with larger 
sample sizes are needed to support or refute the current literature. As we unravel 
the complexities underlying brain mechanisms during sleep, these findings open 
new avenues for research and contribute to a broader perspective on the intricate 
relationship between brain networks, consciousness, and sleep stages.

Neuroimaging signatures of sleep microstructure

This section will provide an overview of the findings in the neuroimaging studies 
of sleep microstructure. The term "event-related" will be used to describe the 
correlation patterns in brain activity data during EEG-defined sleep stages. This 
type of study involves simultaneous EEG and another neuroimaging modality such 
as fMRI. We will examine the relationship between specific sleep features such as 
vertex waves, spindles, K-complexes, and slow waves with brain activity data. Each 
sleep stage has its own unique features, and brain oscillations are crucial in defining 
each stage and may serve particular functions in the brain. In this section, we will 
summarize the findings in two areas: NREM sleep features (vertex waves, spindles, 
slow waves, and K-complexes), REM sleep features (ponto-geniculo-occipital waves 
and rapid-eye-movements).

Vertex waves
Vertex sharp transients have gained less attention despite their frequent occurrence 
and relevance for sleep onset. The specific EEG features of vertex waves comprise 
a large negative discharge with a particular waveform, narrower and more focal 
than K-complexes. Vertex waves are thought to be a direct response to an external 
stimulus or a mechanism to sustain sleep after a stimulus. The first imaging study of 
the anatomical correlates of vertex sharp transients found regions of maximal local 
signal changes located at the paracentral cortex, medial occipital cortex, right and 
left superior temporal cortex, and right and left pre-central cortex (Stern et al., 2011). 
The findings indicate that vertex waves, which are associated with brief multimodal 
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sensory experiences and may modulate awareness of the external world during NREM 
sleep, are mainly localized at the primary sensorimotor cortices, a distribution that 
differs from that of sleep spindles. Therefore, it is suggested that vertex waves are 
not a gating of sensory function at a central location, such as the limbic system or the 
thalamus, but rather a distributed phenomenon in neocortex that may be correlated 
to hypnagogic experiences taking place at the beginning of NREM sleep.

Spindles
Sleep spindles are a hallmark pattern of NREM sleep stage 2 and can be defined as a 
train of distinct waxing and waning waves with a frequency between 11-16 Hz (most 
commonly 12-14 Hz) with a duration of at least 0.5 seconds (Berry et al., 2012). Sleep 
spindles were observed in the first sleep recordings by Loomis et al. (1935), mostly 
occurring in N2 stage of the night and uncorrelated with heartbeat, respiration or 
muscle activity. Over the last decades, interest in understanding the function of sleep 
oscillations has increased considerably. Although the function of spindles is still 
unclear, several studies indicated its important role in memory consolidation and 
the relationship between certain features of spindles with age and intelligence (De 
Gennaro & Ferrara, 2003; Ujma, 2021). The latter might be explained by the fact that 
spindles to some extent highlight the efficiency of brain connectivity mechanisms 
needed to ensure efficient processing and integration of information, as shown by 
the relation between sleep spindles and white matter diffusion (Piantoni et al., 2013).

Based on the division criterion that slow spindles (<13Hz) predominate over frontal 
EEG derivations and fast spindles (>13Hz) over centroparietal derivations, Schabus 
et al. (2007) investigated the brain regions related to the two distinct types of 
sleep spindles, while Andrade et al. (2011) analyzed the hippocampal-neocortex 
connectivity of sleep spindle occurrence. These results showed a same origin in 
thalamus for both spindles but different activation pattern in the cortex. Both 
spindle types showed a common activation pattern in hemodynamic encompassing 
the anterior cingulate cortex, left anterior insula, and superior temporal gyrus. But 
fast spindles expanded more broadly across the cortex, showing strong activations 
in the supplementary motor area, sensorimotor, and mid-cingulate cortex, whereas 
slow spindles correlated predominantly with activity in the right superior frontal 
gyrus (Caporro et al., 2012) also reported correlations with the posterior cingulate 
and right paracentral cortex, however, they only stated that these were central 
spindles, without specifying the frequency. These findings support the existence of 
two spindle types during human NREM sleep, and it has been suggested that fast 
spindles participate in the processing of sensorimotor and mnemonic information. 
Additionally, functional connectivity between the hippocampus and the neocortex 
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exhibited a stable interaction with fast spindles, most pronounced in the subiculum, 
lateral temporal, insula, cingulate, and medial prefrontal cortices (Andrade et al., 
2011). However, no specific hippocampal activation was directly associated with 
slow or fast spindles. This suggests that spindle activity may increase functional 
connectivity between hippocampal and neocortical regions, but that it is not the 
only cause of connectivity. For more mechanisms and functions of spindles, see 
Fernandez’s review paper (Fernandez & Lüthi, 2020).

Slow waves and K-complexes
NREM sleep is dominated by spindles and slow waves. The slow waves characterized 
by a frequency range of 0.5-2 Hz and peak-to-peak amplitude greater than 75µV, 
was first described in intracellular recordings obtained from anesthetized cats. Slow 
waves can be observed in most cortical areas, especially in the: primary sensory, 
association, and motor cortices. However, the prevalence of slow waves in the 
primary visual cortex is lower (M. Steriade & McCarley, 2005). Tüshaus et al. (2017) 
further confirmed the prefrontal cortex’s role in slow wave generation. Frontal 
activation during slow-wave activity, although no association with the thalamus, 
was also reported using PET by Dang-Vu et al. (2005), in line with previous EEG 
studies (Finelli et al., 2001; Happe et al., 2002; Werth et al., 1997). Subsequent work 
has shown that the process of falling asleep can be characterized by large steep 
widespread slow waves, named type I slow waves, that are source-localized to the 
medial prefrontal cortex and sensory-motor areas and are thought to be generated in 
the brainstem. Once sleep deepens, type II slow waves are characteristically smaller 
and shallower and are not originated in any specific cortical area (Siclari et al., 2014; 
Bernardi et al., 2018). How does the amplitude of slow waves reflect in fMRI-assessed 
brain activity? Dang-Vu et al. (2008) studied medium (75-140 µV) and high (>140 µV) 
amplitude slow waves, and the results indicated an association between activity in 
mesial-temporal areas and slow-wave amplitude, with medium-amplitude waves 
preferentially activating frontal areas, and high-amplitude waves being related 
to brainstem and para-hippocampal activations. These findings suggested that 
different amplitudes are differently distributed across the scalp when compared 
with baseline activity. Specifically, higher neuronal synchronization results in larger 
amplitude of slow waves activating mesial-temporal areas and possibly facilitating 
memory consolidation during NREM sleep.

K-complexes are sparse occurrences of often large and isolated slow waves during 
N2 sleep and are characterized by a brief positive wave followed by a larger negative 
wave and then by a positive wave again (Loomis et al., 1935). They are generated by 
the widespread occurrence of outward dendritic currents in cortical areas from the 
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middle to upper layers of the cerebral cortex, usually accompanied by a decrease in 
EEG power, leading to reduced neural network activity (Cash et al., 2009). Caporro 
et al. (2012) investigated the functional MRI of K-complexes, finding the fMRI signal 
associated with K-complexes comprises regions involved with spindles and vertex 
sharp transients, being maximal at the right post-central gyrus, right pre-central 
gyrus, left pre-central gyrus, right thalamus, right insular cortex, and right superior 
temporal gyrus. These findings contrasted with previous results by Laufs et al. (2007) 
that identified widespread signal decreases involving the thalamus, frontal, central, 
temporal, and parts of the occipital cortices. However, both results are consistent 
with the cortical down-state theory of K-complexes (Cash et al., 2009). Jahnke et al. 
(2012) applied dynamic causal modeling (DCM) to fMRI data acquired during sleep to 
investigate the causal hierarchy associated with fMRI responses to K-complexes. This 
study revealed that K-complexes simultaneously inhibit arousals and allow passive 
processing of incoming sensory information.

Recently, Fultz et al. (2019) identified coupled electrophysiological, hemodynamic, 
and cerebrospinal fluid (CSF) dynamics during NREM sleep. By acquiring fMRI data 
at high temporal resolution, the fast acquisition can also detect fluid inflow arriving 
at the edges of the imaging volume, thus allowing the authors to measure CSF flow 
dynamics simultaneously with the BOLD signal. First, they reported that CSF signal 
shows large oscillations (~0.05 Hz) during NREM sleep, while CSF small-amplitude 
(~0.25 Hz) signal was observed during wakefulness. In addition, nearby non-CSF 
regions did not exhibit such an effect. Next, they observed increases in BOLD signal 
amplitude in cortical gray matter regions compared to wakefulness, consistent 
with previous studies showing low-frequency BOLD fluctuations during sleep. 
Additionally, the CSF signal was strongly temporally coupled to large fluctuations in 
the cortical gray-matter BOLD signal during sleep, showing a strong anticorrelation 
that may indicate an alternation of blood flow and CSF flow during NREM sleep. To 
understand the potential mechanism, the authors hypothesized that EEG slow-delta 
(0.2 to 4 Hz) oscillations might be coupled to blood volume oscillations, leading to 
changes in CSF flow. They found that neural oscillations preceded CSF oscillations 
with a peak in EEG slow-delta (0.2 to 4 Hz) oscillations occurring 6.4 s before the 
CSF peak. This work discovered that large waves of CSF flow appear during sleep, 
and identifies slow neural activity as a potential contributing mechanism to  
driving CSF flow.

Several researchers have found strong fMRI signal changes coinciding with 
K-complexes, including the above study (Caporro et al., 2012; Jahnke et al., 2012; Fultz 
et al., 2019; Özbay et al., 2019). These may reflect the temporary decrease in neuronal 
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activity during the cortical down state attributed to them (Cash et al., 2009). Fultz et al. 
(2019) found that these fMRI changes are associated with CSF pulsations and, therefore, 
that K-complexes may have relevance for brain waste clearance through the glymphatic 
system, which has been shown to be more active during sleep (Xie et al., 2013). However, 
it is important to consider that large slow waves during N1 and N2 sleep (called type I 
slow waves (Siclari et al., 2014; Bernardi et al., 2018)) are distinctly different than the 
type II slow waves that dominate N3. In fact, type I slow waves like K-complexes are 
often accompanied by autonomic arousal (Colrain, 2005) while the latter have little 
autonomic correlate. Importantly, autonomic variability, including changes in heart 
rate and respiration, have been recognized as strong contributors to BOLD fMRI global 
signal (GS) fluctuations (Birn et al., 2006; Shmueli et al., 2007; Chang et al., 2009). To 
investigate the possible contribution of sleep-specific autonomic contributions to CSF 
pulsations, recent work examined the lag between slow waves, GS reductions, and CSF 
pulsations (Özbay et al., 2019; Picchioni et al., 2022), and considered both electrocortical 
and autonomic contributors. In the neural pathway, vasoconstrictions lag reductions in 
electrocortical activity by the well-established 4-6 s delay dictated by the hemodynamic 
response. Autonomic pathway delays are longer and may reach 12-15 s, owing to the 
more sluggish effects of sympathetic and respiratory activity on vascular tone (Picchioni 
et al., 2022). Indeed, these researchers found the lag between SWA and BOLD to average 
13.7 s for the about 30 hours of N2 data considered. Thus, autonomic activity is an 
important contributor to CSF pulsations during N2 sleep. Data from this and future 
studies should be further analyzed to quantify the relative contribution of autonomic 
effects.. This does not take away the possibility that during N3, where SWA is prevalent 
but not associated with autonomic arousals, neurovascular responses are the driving 
factor of CSF pulsations. However, since BOLD GS fluctuations (and accompanying 
CSF pulsations) are typically relatively small during N3 (see e.g. Fig. 2 in (Picchioni 
et al., 2022)), simply the density of slow waves does not appear to be the determining 
factor in the generation of CSF pulsations. However, precisely how large-scale CSF 
flow relates to clearance remains poorly understood. Intriguingly, a recent MRI study 
used a contrast agent injected into the CSF to directly measure brain waste clearance in 
humans, and showed that sleep induces faster clearance (Eide et al., 2021), highlighting 
the importance of understanding fluid transport during sleep. More research is needed 
to explore the relationship between slow-wave activity and brain clearance (reviewed in 
(Lewis, 2021)). As will be discussed below, these conclusions point to the importance of 
accounting for autonomic effects when interpreting EEG-fMRI correlations, especially 
with arousal variations (Özbay et al., 2019; Duyn et al., 2020; Soon et al., 2021).

Much of this discussion does not consider the functional role of K-complexes/type 
I slow waves and the associated neuroimaging activity in terms of waking cognitive 
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outcomes. As Naji et al. (2019) showed, there is a positive correlation between 
overnight improvement in a declarative memory task and the extent that phasic 
increases in heart rate are time-locked to 0.4 to 3.3 Hz waves during N2 and N3 
sleep. This is aligned with prior work because, as reviewed by McGaugh et al. (2013), 
sympathetic nervous system activity occurring subsequent to memory encoding still 
improves recall. This or similar ideas must be considered when designing future 
neuroimaging studies of K-complexes/type I slow waves. wave sleep.

Ponto-geniculo-occipital waves and Rapid-eye-movements
Ponto-geniculo-occipital (PGO) waves are described as phasic bioelectrical potentials 
occurring either in isolation or in bursts during the transition from slow wave sleep 
to REM sleep or even during REM sleep itself. PGO waves that trigger the bursts of 
rapid eye movements observed in REM sleep are mostly recorded in the pons (Jouvet, 
1959), the lateral geniculate bodies (Mikiten, 1961), the occipital cortex (Mouret et 
al., 1963), but can also be observed in other parts of the animal brain (Hobson, 1964). 
Among other functions, PGO waves during REM sleep are hypothesized to promote 
brain development and to facilitate brain plasticity (Gott et al., 2017). REMs during 
REM sleep are likely generated by similar PGO mechanisms in man as in animals. 
In humans, during REM sleep but not wakefulness, ocular movements density 
significantly correlated with rCBF in the mesencephalon and the thalamus, including 
the lateral geniculate body, the right parahippocampal gyrus, the striate cortex, the 
precuneus, the right anterior cingulate cortex, and the supplementary motor area 
(Peigneux et al., 2001). Similar findings were reported using fMRI by Wehrle et al. 
(2005), who found activity in secondary cortical areas, basal ganglia, the cingulate 
midline attentional system, and the midbrain. In the same line, Ioannides et al. 
(2009) took opportunity of the high temporal resolution of magnetoencephalographic 
(MEG) recordings to evidence that PGO activity bursts precede the onset of the rapid 
eye movement. Investigations of the visual cortices and their projections during REM 
sleep suggest a mechanism underlying REM sleep, where paralimbic projections 
of the visual cortices dissociate from the hierarchy of visual regions mediating 
perception of the external environment. Such a dissociation may explain some 
features of dreaming and the absence of reflective awareness (Braun et al., 1998).

PET studies correlated the occurrence of REMs with cerebral blood flow in the visual 
cortex, thalamus, dorsolateral prefrontal cortex, anterior cingulate cortex, putamen, 
pons, and amygdala (C. C. Hong et al., 1997; Peigneux et al., 2001). Using simultaneous 
fMRI and polysomnography recordings during REM sleep, Wehrle et al. (2005) found 
BOLD signal increases in the geniculate body and occipital cortex in close temporal 
relationship to REMs during human REM sleep. In subsequent studies, Miyauchi et 
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al. (2009) not only confirmed that significant activation accompanying REMs in the 
lateral geniculate nucleus and the bilateral primary visual cortex, but also revealed that 
activation of the pontine tegmentum, ventroposterior thalamus, and primary visual 
cortex started before REM onset, whereas activation of the putamen, anterior cingulate, 
parahippocampal gyrus and amygdala accompanied REMs using an event-related 
analysis time-locked to the occurrence of REMs. Moreover, as a control group, subjects 
made self-paced saccades in total darkness showing no activation in the visual cortex. 
The above brain regions whose activity correlates with REMs were also confirmed by 
Hong’s (2009) research and those regions are similar to the brain structures involved in 
the generation of PGO waves, as previously reported in animal studies (Callaway et al., 
1987), thus suggesting the presence of similar processes occurring during human REM 
sleep. Unexpectedly, Hong et al. (2009) showed REMs-related activation also occurred 
in non-visual sensory cortices, motor cortex, language areas and the ascending reticular 
activating system. One possible reason for their distributed REM-locked activation is 
that instead of gold-standard EOG they used video monitoring of eye movements which 
detected approximately four times as many REMs. In brief, these studies indicate a 
sharing mechanism beyond the expected visual scanning mechanisms between waking 
and dreaming. Regarding the studies conducted in REM sleep, it should be taken into 
account that whereas NREM sleep oscillations and phasic events (e.g., slow waves, 
spindles, K-complexes) have been extensively studied and delineated, more studies are 
still needed to address with the same level of details the heterogeneous nature of REM 
sleep with its phasic and tonic constituents (Simor et al., 2020).

Neuroimaging correlates of sleep phenomenology

Neuroimaging techniques have provided valuable insights into the neural correlates 
of sleep stages and subjective sleep experiences such as dreaming and sensory 
processing. This section will review the neuroimaging findings on background 
activity during sleep and its relationship with sleep phenomenology. Specifically, we 
will explore the concurrent brain activity during dreaming and sensory processing 
during sleep, linking brain structural measures to sleep-related behavior outcomes, 
and the coupling between sleep-features and brain structural measures. These sub-
sections aim to provide a comprehensive overview of the neural underpinnings of 
sleep-related phenomena and the implications for sleep-related behavior outcomes.
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Background activity concurrently with dreaming and sensory processing 
during sleep
The investigation into brain activity during sleep has greatly advanced through 
the application of neuroimaging techniques. These methodologies have not only 
provided insights into the neural correlates of sleep stages but have also offered 
valuable information on event-related activity and subjective sleep experiences 
such as dreaming, lucid dreaming, and sensory processing. This comprehensive 
understanding of background activity during sleep serves as a window into the 
underlying mechanisms of sleep and its various phenomena. In this section, we 
will review the neuroimaging findings on background activity during sleep and 
its relationship with sleep phenomenology. To investigate the neural mechanisms 
underlying the content of dream experiences during REM sleep, Dresler et al. (2011) 
exploited the rare phenomenon of lucid dreaming, in which individuals become aware 
of their dream state and exhibit wake-like cognitive abilities while in physiological 
REM sleep (Baird et al., 2019). Lucid dream experts were instructed to perform a 
sequence of left and right-hand movements, alternating with left-right-left-right eye 
movements, during lucid dreaming or while engaged in both an imagined and actual 
waking hand-clenching task. The fMRI recordings during lucid REM dreams revealed 
increased BOLD signals in the sensorimotor cortex contralateral to the side of 
movement. In particular, activation during dreaming showed more localized patterns 
than during wakefulness, consisting of small clusters indicating either weaker or focal 
activation exclusively in hand areas. These findings marked the first demonstration 
of specific dream content during lucid dreaming, reinforcing that activation of motor 
imagery closely aligns with patterns associated with motor execution. Subsequently, 
Dresler et al. (2012) directly compared the neural correlates of lucid dreaming 
versus non-lucid REM sleep using fMRI recordings from two stable lucid dreaming 
episodes. The study revealed increased activity in the right dorsolateral prefrontal 
cortex, consistent with previous EEG studies of lucid dreaming (Voss et al., 2009). 
The most pronounced activation occurred in the precuneus during lucid dreams as 
opposed to non-lucid REM dreams. Interestingly, despite the usual impairment of 
working memory in ordinary dreams, the authors observed activation in the parietal 
lobules and activation in the dorsolateral prefrontal cortex, suggesting potential 
working memory demands. In addition, increased activation in bilateral frontopolar 
areas was noted, suggesting a possible link to the processing of internal states.

Is functional connectivity at the anterior prefrontal cortex associated with lucid 
dreaming frequency? Frequent lucid dreamers, compared with a control group, 
showed increased resting-state functional connectivity between the left anterior 
prefrontal cortex and the bilateral angular gyrus, right inferior frontal gyrus and 
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bilateral middle temporal gyrus (Baird et al., 2018). These findings, combined with 
the reported case study of lucid dreaming (Dresler et al., 2012), suggest that lucid 
dreaming frequency is associated with increased BOLD connectivity between the 
anterior prefrontal cortex and temporoparietal areas. The anterior prefrontal 
cortex and inferior parietal lobule/angular gyrus also exhibit reduced rCBF during 
REM sleep compared to wakefulness (Braun et al., 1997, 1998; Maquet et al., 1996). 
In addition, Eichenlaub et al. (2014) found that high dream recallers show higher 
rCBF in temporoparietal junction and the medial prefrontal cortex during REM sleep 
and wakefulness compared to low dream recallers. These results suggest that the 
temporoparietal junction and the medial prefrontal cortex are involved in the dream 
recall process and support the hypothesis of an association between lucid dreaming 
frequency and increased BOLD connectivity between the anterior prefrontal cortex 
and temporoparietal areas.

Another interesting topic of research is how the brain process external stimuli during 
sleep. Although sleep is typically viewed as a state of behavioral unresponsiveness, 
it does not mean the brain is not receptive to external sensory inputs (Blume et al., 
2018). In fact, a wide range of studies have shown that the primary sensory cortex 
can still be activated by external stimuli during sleep in adults (Portas et al., 2000; 
Wilf et al., 2016) and children (Wilke et al., 2003; Redcay et al., 2007). However, other 
studies have shown decreased activation of the sensory cortex when compared to 
wakefulness (Born et al., 2002; Czisch et al., 2002), with this decrease being linked to 
the presence of K-complexes, thought to be a sleep protection mechanism (Czisch et 
al., 2004). Event-related studies have also found that stimuli-related brain activation 
during NREM sleep is correlated with the presence of sleep spindles or the phase of 
K-complexes (Czisch et al., 2009; Dang-Vu et al., 2011; Schabus et al., 2012). Using 
an acoustic oddball paradigm, Czisch et al. (2009) reported a prominent negative 
BOLD response for (rare) tones, yet no wake-like activation of the auditory cortex. In 
their data, only rare tones, followed by an evoked K-complex, were associated with 
a wake-like activation of task-related areas in the temporal cortex. Additionally, the 
phase of the K-complex did not appear to alter brain responses in the thalamus and 
primary sensory cortex, it does modulate the responses at higher cortical levels as 
shown in the superior temporal gyrus (Schabus et al., 2012). Moreover, sound-related 
brain activations are constrained to the caudal part of the inferior colliculus when 
sounds are played during sleep spindles, whereas similar activations can occur in the 
auditory cortex when sounds are played in the absence of sleep spindles (Dang-Vu et 
al., 2011). These studies supported the 'Thalamic Gating Hypothesis', which proposes 
that the thalamus acts as a gatekeeper during sleep and is mediated by spindles 
and K-complexes that drive the activity of cortico-thalamic loops (McCormick & 
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Bal, 1994). These findings provide evidence that spindles and K-complexes serve as 
sleep protective mechanisms while partially supporting the role of the thalamus as a 
gatekeeper during sleep.

Sleep-features and brain structural coupling
Previous research has extensively investigated the correlation between brain activity 
and sleep characteristics. However, the relationship between brain structural 
measures and brain function during sleep remains under-investigated. Tagliazucchi 
et al. (2016) explored the influence of anatomical connectivity on changes in 
functional connectivity between wakefulness and deep sleep. Their findings revealed 
regional differences, with primary sensory, motor, auditory, and visual cortices 
showing increased structural-functional coupling during N2 and N3 sleep compared 
to wakefulness. In contrast, frontoparietal regions exhibited a disconnection between 
structure and function. Notably, coupling between structural and functional networks 
increased during deeper sleep NREM stages but not during light sleep (N1). These 
findings align with previous research indicating divergent cortical dynamics during 
NREM sleep and suggest a convergence of structural and functional connectivity 
near a critical point, facilitating efficient and controlled neural propagation(Deco, 
McIntosh, et al., 2014; Tagliazucchi et al., 2016).

Sleep spindles have been shown to have distinct features and can be characterized 
in terms of the frequency range, for instance slow (<13Hz) and fast (>13Hz) spindles 
(Schabus et al., 2007). Investigating the relationship between fast and slow spindles 
and structural measures can shed light on their precise functions. Saletin et al. (2013) 
combined EEG sleep recordings with high-resolution structural MRI to reveal that 
gray matter volume in interoceptive and exteroceptive cortical regions correlates with 
slow sleep spindles. Additionally, gray matter volume in the bilateral hippocampus 
was associated with fast sleep spindles, supporting their role in declarative memory 
processing. Individual differences in slow-wave oscillations, linked to gray matter 
volume in the basal forebrain and medial prefrontal cortex, further underscore the 
potential connection between sleep physiological phenomena and macroscopic 
brain structure. Another topic of interest is brain plasticity, i.e., the structural brain 
changes as a consequence of learning and post-training sleep, probing the links 
between MR structural measurement-related modifications and the underlying 
microstructural brain processes, and bidirectional influences between structural and 
functional brain changes (for a review, see (Stee & Peigneux, 2021)).

White matter tracts constitute the brain's neuronal structural foundation, and 
alterations in neural activation may alter sleep spindles and slow-wave oscillations. 
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Based on this association, Piantoni et al. (2013) observed that higher spindle power 
correlated with higher Da (axial diffusivity) in the forceps minor, anterior corpus 
callosum, temporal lobe areas, and the thalamus. Individuals with a steeper rising 
slow-wave slope showed higher Da in the temporal fascicle and frontal white-
matter tracts. Consistent with these findings connecting white matter integrity as 
a predictor of quantitative and qualitative features of sleep spindles in young adults, 
Mander et al. (2017) showed that age-related degeneration of white-matter tracts is 
associated with reduced sleep spindles in older adults. Consequently, human brain 
white matter integrity influences sleep spindle decline in older adults, and thus 
sleep-dependent motor memory consolidation in later life more than age per se.

Neuroanatomical correlates of sleep-related behavior outcomes
The influence of brain structure on behavior is a central challenge in scientific 
research, with various statistical and mathematical models helping to identify 
significant relationships between brain structural metrics (e.g., cortical thickness, 
volume, microstructural estimates) and behavioral outcomes (e.g., questionnaires, 
task-specific scores). A study associating dream recall frequency with cerebral blood 
flow at the medial prefrontal cortex and temporoparietal junction linked increased 
white-matter density in the medial prefrontal cortex to high dream recallers, offering 
an anatomical counterpart to functional changes observed in previous studies. Vallat 
et al. (2018) compared gray and white matter measures between high and low dream 
recallers and did not find significant differences in gray matter density between high 
and low recallers. However, increased white-matter density in the medial prefrontal 
cortex was observed. This result introduces an anatomical counterpart to multiple 
findings reporting functional changes between high and low dream recallers. It 
also supports lesion studies that showed a cessation of dream reports after damage 
localized to the lateral ventricles' frontal horns (Solms, 1997). For frequent recallers 
of lucid dreams, Filevich et al. (2015) reported a higher grey matter volume in the 
frontopolar cortex compared with individuals with low lucid dreaming frequency. 
While Baird et al. (2018) were not able to replicate these structural findings, both 
studies reported functional differences related to the frontopolar cortex during 
wakefulness in high vs. low lucid dream recallers.

In sleep research, DTI has been employed, for instance, to investigate brain 
microstructural properties associations with sleep quality and duration. Khalsa 
et al. (2017) investigated changes in fractional anisotropy and mean diffusivity 
concerning these sleep variables. Sleep patterns were measured during 14 days using 
actigraphy and sleep diaries. The authors reported positive correlations between 
sleep duration and fractional anisotropy in the left orbitofrontal region and the 
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right superior corona radiata. In contrast, sleep duration negatively correlated with 
mean diffusivity in right orbitofrontal white matter and the right inferior fasciculus. 
Moreover, sleep quality was associated with fractional anisotropy measures in the left 
caudate. Takeuchi et al. (2018) extended these findings in a cohort of over more than a 
thousand healthy young adults, revealing negative correlations between sleep quality 
and mean diffusivity in the prefrontal cortex and right hippocampus, while positive 
correlations between sleep duration and mean diffusivity were found in the prefrontal 
cortex and dopaminergic systems. These results suggest that total sleep time and 
subjective sleep quality are associated with subtle brain microstructural changes.

Figure 2: The most common challenges conducting sleep neuroimaging studies. Since polysomnography 
must be recorded to perform appropriate sleep scoring and identify electrophysiological microprocesses 
of interest such as sleep spindles or slow waves, hardware constraints might emerge, such as the 
limitation of adequate equipment, for instance, MRI-compatible EEG caps and electrodes. Additionally, 
auxiliary electrodes and channels might be needed, which accounts for electrode placement, 
standardization, and signal quality challenges. Sleep scoring online or offline becomes problematic, as 
data cleaning and artifact removal must be performed, particularly a concern for MRI studies. The lack 
of open-source software does not facilitate individual-based artifact removal algorithms, greatly 
benefiting sleep studies. Except for fNIRS, any other scanner environment is restrictive, accounting for 
difficulties maintaining and consolidating sleep. Movement restrictions are a significant issue for MRI 
studies and can deteriorate the data due to movement artifacts. Acoustic noise in MRI could be reduced 
by developments and usability of silent MRI sequences combined with MRI-compatible noise-canceling 
devices, such as headphones. Data quality and interpretability are crucial to advancing science. However, 
neuroimaging suffers from autonomic physiological confounds, especially during sleep. Current 
approaches usually model and regress physiological signals, however, it may account for signal loss. 
Developments in animal models and theoretical advances will help understand the complex relationship 
between metabolism, blood flow, and neural activity.
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Sleep Neuroimaging Challenges and Future Directions

Sleep neuroimaging comes with considerable challenges due to the unnatural 
environment that makes it difficult to consolidate and maintain sleep (Figure 2). The 
scanner setting requires movement restrictions, with the exception of NIRS, to avoid 
motion artifacts. The acoustic noise of MRI is not conducive to maintaining and 
consolidating sleep and may affect its brain activity patterns. A further complication 
of sleep neuroimaging is the need to include polysomnography recordings that 
includes recording brain activity (EEG), eye movements (EOG), and muscle activity 
(EMG). These needs lead to additional hardware constraints, like the availability of 
auxiliary electrodes and channels and the use of reference electrodes that may suffer 
from distortions and cardio ballistic artifacts (heart activity derived from electrodes 
placed near a pulsating vessel/artery) and are hard to correct. Furthermore, lengthy 
recordings cause discomfort to the subject, leading to difficulty maintaining sleep, 
EEG signal quality deterioration, and movement artifacts in the fMRI and EEG 
recordings, the latter through the induction of currents caused by the magnetic 
field. These limitations account for the high dropout rates in sleep studies compared 
to a standard task or resting-state imaging during wakefulness. Moreover, it also 
limits the research questions the field can address. For instance, the homeostatic 
changes over the course of sleep have yet to be investigated, which requires long 
recording times.

Currently, sleep neuroimaging studies must use simultaneous physiological EEG 
recordings to perform sleep scoring accurately. From this perspective, we see two 
major challenges that we will address in terms of software and hardware advances. 
The first is difficulties in removing irregular artifacts from the EEG data, which 
is particularly challenging for MRI studies. Artifact removal software is complex 
and mostly designed by private companies with closed-source code. Making 
such algorithms open-source or partially accessible to the public would enable 
improvements in the field (Levitt et al., 2022), potentially leading to advances such 
as an adapted individual-based artifact removal algorithm. Such a customized level 
would positively facilitate data pre-processing without compromising the EEG 
signal in special cases where artifact removal implies data loss. Another possible way 
to facilitate artifact removal is the use of newly developed hardware. For instance, 
Chowdhury et al. (2014) developed a new EEG cap that incorporates embedded 
electrodes in a reference layer with similar conductivity to tissue and is electrically 
isolated from the scalp. In this new setup, the standard electrode layer is placed 
under the reference layer, which is in direct contact with the scalp, allowing the 
acquisition of mixed signals containing artifacts and neurophysiological signals. 
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The reference layer electrodes are separated from the scalp, and only artifacts such 
as gradient artifacts, electrocardiogram, and motion artifacts can be acquired. 
Therefore, the EEG signal without artifacts can be separated by comparing signals 
obtained from the standard and reference electrodes. Another solution might be 
integrating a carbon-wired loop that has outperformed post-processing EEG/fMRI 
artifact corrections (van der Meer et al., 2016). This method makes use of carbon-
wired loops as additional sensors that track both helium-pump and cardio ballistic 
artifacts. Another promising direction is to develop sleep staging algorithms based 
on electrocardiogram or respiratory signals, as electrocardiogram presents a higher 
signal-to-noise ratio than EEG signal, and wearable  devices measuring respiratory 
signals are already available in the market (Sun et al., 2020). The development of 
MRI-based eye-tracking can assist in the detection of eye-movement positions during 
REM sleep, particularly interesting in lucid dreaming (Frey et al., 2021). Additionally, 
wearable and contactless devices could potentially help the field and decrease the 
experimental setup complexity.

To ensure optimal sleep stability in this unusual environment, the application of total 
or light sleep deprivation protocols is applied, thus ensuring increased sleep pressure 
leading to shorter sleep latency. However, sleep-deprived subjects may account for 
potential confounds in homeostatic sleep regulation and impaired coupling of the 
default mode network, among other physiological changes (Wang et al., 2020). In a 
recent study, Moehlman et al. (2019) confirmed a procedure to obtain all-night fMRI 
data in sleeping subjects without sleep deprivation. The key detail was to perform 
acquisitions in consecutive nights, hence the first night served as an adaptation 
night, eliminating the need for systematic sleep deprivation. Although the authors 
acknowledged that the subjects were slightly sleep-deprived after the first night 
(which may lead to sleep alterations on the second night), a washout period between 
the two nights might contribute overcoming changes in sleep architecture due to 
sleep deprivation, while preserving the stability of sleep in the scanner. Besides 
having a consecutive-nights experiment design, researchers should also consider 
using sleep hygiene protocols to enhance stable sleep under experimental conditions. 
For instance, maintaining a regular sleep routine, preferably overlapping with the 
experiment design, avoiding daytime naps, screen-light, and caffeinated beverages 
before bedtime can improve sleep quality and enhance the chances of falling asleep.

Movement restrictions during scanning are a critical restriction in sleep 
neuroimaging studies: both PET and MRI do not allow subjects to change positions, 
creating discomfort when measuring sleep, in particular during longer scanning 
periods. Additionally, PET imaging requires restricting one arm's movement as a 
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catheter must be placed during scanning. Ongoing developments in the field may lead 
to flexible MRI apparatus or even portable scanners (Corea et al., 2016; Cooley et al., 
2021). Recent developments in wearable magnetoencephalography based on optically 
pumped magnetometers (Boto et al., 2018) have granted this electrophysiological 
imaging method a considerable advantage in comparison to neuroimaging modalities 
relying on rigid scanners such as MRI or PET. However, sleeping in different 
positions seems to cause alteration in brain activity patterns. In supine posture, the 
brain activities in the left precuneus and anterior cingulate cortex were greater than 
those in lateral positions (Xu et al., 2021). Once a flexible apparatus becomes a reality, 
more research is needed to investigate posture influence in brain activity and how 
upcoming research can correlated its findings with current literature.

The acoustic noise produced by MRI is not conducive to sleep and may affect brain 
activity during sleep. Silent sequences have been developed and applied, especially 
in acoustic stimulation tasks, for many years (Schmitter et al., 2008; Lövblad et al., 
1999; Liebig et al., 2019). Since all-night sleep fMRI studies became feasible, silent 
sequences in combination with noise cancellation systems are welcome allies in noise 
reduction, thus diminishing subject discomfort and enhancing sleep maintenance 
mostly with the drawback of reduced spatial resolution. This is critical as studies 
have shown that REM sleep can be particularly suppressed by acoustic noise and 
drastic environmental changes, which accounted for fewer neuroimaging studies 
on REM than NREM sleep (Mulert & Lemieux, 2009). However, noise cancellation 
headphones can also cause EEG artifacts, and therefore should be used with care. 
Researchers should consider the limitations imposed by the scanner environment 
when planning their studies, especially the timeline required to acquire reasonable 
sample sizes and the methods to study the sleeping brain, for instance, seed-region, 
independent networks with component analysis, dynamic causal modeling, and 
graph theoretical analysis.

Among the most critical challenges for neuroimaging techniques are interpretability 
and signal quality. Since multiple neurophysiological and autonomic changes 
are correlated with neural activity, which fluctuates along the wake-sleep cycle, 
untangling these neural sources from their confounding consequences (e.g., 
changes in blood flow) is a complex challenge that cannot be overcome by recording 
and regressing physiological signals.  Hence, one significant gap that needs to be 
addressed is how changes in autonomic physiology during sleep affect blood flow 
signals. Current approaches for minimizing effects contributing to the overall signal 
involve regressing out from the fMRI time-series signals that reflect the effects 
one wishes to remove, for instance, global signal, signals reflecting fluctuations in 
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heart rate or respiration, or reference signal from regions as the white matter of 
cerebrospinal fluid. However, depending on the study's goal, systemic effects may 
covary with neuronal effects, which might be partially excluded with the removal 
approach. This is crucial, especially for sleep studies, as cortical activity changes 
and systemic physiology may be derived from arousal state changes. Conversely, 
physiological changes may be triggered by neuronal activity. A good example is a study 
by Özbay et al. (2019) that analyzed the temporal relationship between amplitude 
variations of vascular tone derived from photoplethysmography signal and EEG 
K-complexes' occurrence. They observed that fMRI signal showed clear covariations 
with EEG K-complexes and vascular tone. More importantly, arousal changes lead 
to joint changes in cortical and autonomic activity (Özbay et al., 2019). These signal 
changes are related to shifts in autonomic and central nervous systems, emphasizing 
the importance of such contributions often neglected as noise when interpreting 
fMRI data. The autonomic system is also regulated by the central nervous system 
via the brainstem, which is a primary control center of sleep and arousal regulation 
and ties the common changes in electrocortical and autonomic activity that are so 
pronounced across the sleep-wake cycle (Duyn et al., 2020). These findings, also 
showed by Soon et al. (2021), emphasize the importance of modeling autonomic 
and neuromodulatory effects since these effects vary with the sleep stage, thus 
making comparisons of functional connectivity patterns across sleep states difficult. 
Importantly, the altered amplitude of BOLD signal fluctuations during sleep could 
modulate connectivity estimates even in the absence of any true change in correlation 
strength, due to the large change in signal amplitude. It seems unlikely that these 
challenges can be overcome without extensive animal studies and new theoretical 
insights on the relationship between metabolism, blood oxygenation, and neural 
activity. Future experiments should go beyond temporal averages and try to find the 
time-resolved signatures of different patterns of electrophysiological activity. Which 
local field potential (LFP) frequency bands contribute most to the signal acquired 
by different neuroimaging techniques? Can these methods pick up information 
beyond the characteristics of LFP oscillations, such as complexity? Is it possible to 
find a one-to-one relationship between electrophysiological activity parameters 
and the data provided by neuroimaging methods? Without advancing answers to 
these questions, the interpretability of neuroimaging data is very problematic. The 
assessment of signal quality depends on disentangling the contribution of neural 
activity from recording physiological and movement artifacts and therefore relates 
to the challenges concerning interpretability. Computational models could be helpful 
to encode theoretical knowledge on the mapping between neuroimaging and LFP 
data, allowing to transcend what is directly available from empirical data. Still, it is 
possible that we are reaching a limit about the amount of neural information that 
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can be decoded from standard neuroimaging data. Moving towards high-resolution 
modalities (e.g., layer BOLD fMRI) could be necessary to push the borders of our 
knowledge. However, these advances alone will not solve the autonomic confound. 
Besides, higher field strength, such as 7T, allows better resolution and sensitivity, 
but it compromises EEG signal quality. Hence, further development of EEG systems 
that can be used in higher field strength and suppress cardioballistic and gradient 
artifacts should be explored.

BOLD contrast results from various physiological variables, including blood flow 
and volume, local vascular architecture, cerebral oxygenation metabolic rate, and 
autonomic processes. Unlike BOLD signal, perfusion fMRI provides noninvasive and 
absolute quantification of cerebral blood flow analogously to PET scanning, utilizing 
standard MRI hardware and not  requiring radioactive tracer administration (Detre 
et al., 2009). Perfusion techniques applied to fMRI are less sensitive to baseline shifts 
and do not rely on an imbalance between flow and oxygen consumption. Perfusion 
fMRI, such as  arterial spin labeling (ASL), provides  more of an absolute measure 
than BOLD, thus providing the opportunity to compare brain function without 
conventional task-correlated BOLD fMRI directly. For instance, a predictive model is 
needed to perform the analysis: hand clenching or eye signals during REM lucidity. 
ASL fMRI has been applied to sleep studies with promising results during sleep 
(Tüshaus et al., 2017). Although, some disadvantages must be considered in perfusion 
studies regarding brain coverage and signal-noise ratio. Perfusion fMRI has a low 
temporal and spatial resolution, and adding proper quantitation capability reduces 
its sensitivity and is cumbersome. Furthermore, as a hemodynamic signal, many of 
the same interpretation problems are still there, and more studies are needed to test 
its feasibility for sleep research.

In summary, advances in neuroimaging have significantly improved our 
understanding of brain activity during sleep beyond traditional polysomnography-
based approaches. For instance, in Sections 2 and 3 of this review, we discussed 
in detail how early PET studies identified regional activations and deactivations 
across sleep stages, while newer techniques such as EEG/fMRI allow detailed 
characterization of transient sleep oscillations and neural processes within these 
stages. Functional neuroimaging research has revealed that the brain retains 
its capacity to respond to external auditory stimuli during sleep, indicating that 
certain aspects of information processing remain active. Additionally, spontaneous 
reactivation of brain regions associated with learning has been observed during 
sleep and studies triggering reactivation using contextual cues during sleep 
further support the idea that neuronal replay and reactivation play a causal role in 
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memory consolidation (for a review, see (Farthouat & Peigneux, 2015)). Sleep and 
wakefulness are now widely recognized to occur and be regulated locally. Multimodal 
imaging techniques, which allow for the simultaneous tracking of global and local 
brain states, may contribute to our understanding of these local phenomena (Song 
& Tagliazucchi, 2020). In particular, spontaneous oscillations in fMRI BOLD 
activity, observed across both cortical and subcortical regions, have been proposed 
as potential markers of local sleep. These oscillations, which are detectable at the 
level of individual neuronal populations, may reflect the intensity of local sleep and 
offer valuable insights into monitoring local neuronal states and identifying the 
brain regions that first transition into or out of sleep during wake–sleep transitions 
(Song et al., 2022). Clinically, recent studies show that low-frequency oscillations 
during sleep promote CSF dynamics, which aids in metabolic waste clearance 
(Fultz et al., 2019). This process is critical for clearing accumulated protein, such as 
amyloid beta and tau, associated with Alzheimer's disease, and sleep disturbances 
may reduce cerebrospinal fluid flow and clearance efficiency, potentially worsening 
memory impairment and disease progression. These findings point to potential 
biomarkers for diagnosing and managing conditions related to impaired sleep or 
clearance mechanisms, linking neural activity, CSF dynamics, and cognitive health. 
Additionally, data-driven methods such as Hidden Markov Models (HMM) combined 
with EEG/fMRI recordings offer a more in-depth understanding of brain states 
during sleep. Unlike arbitrary polysomnography-based sleep staging, which segments 
sleep into fixed 30-second epochs, HMM identifies temporally precise brain states 
and their transitions, revealing previously unobservable dynamics. Modular analyses 
of HMM states have identified distinct sub-states within NREM and REM sleep that 
correspond to PSG-defined stages while revealing new patterns, such as the duality 
between phasic and tonic REM (Stevner et al., 2019; Yang et al., 2024). These methods 
emphasize sleep's dynamic nature, highlighting the importance of using advanced 
multimodal imaging techniques to enhance our understanding of the relationship 
between sleep physiological mechanisms and their contributions to restorative and 
memory processes.

Conclusions

This review summarized neuroimaging approaches to sleep research in healthy 
and non-sleep-deprived populations. Different neuroimaging modalities, when 
combined with electrophysiological recordings, have helped to bridge animal 
and human research by measuring in vivo functional and metabolic information 
with good spatial and temporal resolution. The advance of novel techniques has 
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increasingly facilitated consecutive all-night imaging recordings, perhaps the final 
technical challenge of sleep neuroimaging. The field has grown considerably from 
early findings contrasting wakefulness vs. sleep measurements towards the analysis 
of fine-grained sleep-related events and the study of whole-brain functional coupling 
across the human wake-sleep cycle. The combination of neuroimaging methods and 
new experimental protocols is further extending our current knowledge of poorly 
understood phenomena such as lucid dreaming and local sleep. Neuroimaging has 
also improved the interpretation of sleep disorders, has demonstrated the importance 
of sleep for different cognitive functions, particularly memory consolidation and 
learning, and has raised concerns regarding the severe consequences of sleep 
deprivation. Despite the significant advances brought by neuroimaging to the field 
of sleep research, much room for future investigation remains, especially concerning 
the replication of initial findings and the study of REM sleep, which is especially 
difficult to capture in the environment of an MRI scanner. Although many studies 
yielded valuable discoveries, small samples can lead to significant variability and 
potentially limit the reliability of conclusions drawn about sleep neuroimaging across 
different demographics or clinical populations. Future studies should prioritize 
larger, multisite studies and collaborations to improve statistical power and ensure 
findings are more broadly applicable. Other interesting open questions in the field are  
investigating the impact of wake intrusions during sleep and how inter-individual 
and inter-regional differences play a role in local sleep, as well as examining the 
influence of circadian rhythms on this phenomenon. Finally, the functions and 
mechanisms underlying dreaming remains unknown, thus future research should 
focus on investigating brain changes during lucid and non-lucid REM sleep dreams 
and, in collaboration with thoughtfully-designed dream interviews, uncover the 
differences that exist between NREM and REM dreams.
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Abstract

Nightmares are associated with daytime distress and are common across psychiatric 
and neurological disorders, yet the neural mechanisms underlying their frequency 
remain poorly understood. This study investigated whether nightmare frequency 
is related to resting-state functional connectivity between the amygdala and 
prefrontal cortex, key regions involved in emotion regulation and fear extinction. 
Additionally, we aimed to replicate previous findings on the neural correlates of 
nightmares using two large independent cohorts. A total of 424 healthy participants 
underwent structural and functional MRI during wakeful rest and completed 
retrospective questionnaires of nightmare and dream recall frequency. Voxelwise 
general linear models assessed the relationship between amygdala–prefrontal 
connectivity and nightmare frequency. We also computed regional homogeneity 
(ReHo) maps and examined both group-level contrasts (high vs. low nightmare 
frequency) and continuous associations, controlling for age, sex, population, and 
dream recall frequency. Contrary to our hypothesis, nightmare frequency was 
not significantly associated with amygdala–prefrontal connectivity, and previous 
ReHo group differences could not be replicated. However, a significant association 
emerged between nightmare frequency and ReHo in the cerebellum when modeled 
continuously. These findings challenge existing knowledge of the neural correlates 
of nightmares production and frequency and highlight the importance of rigorous 
statistical controls and large sample sizes in neuroimaging research. The null 
results also suggest that individual differences, such as emotion regulation capacity, 
personality traits, or trauma history, may moderate the neural correlates of 
nightmare frequency. Overall, our study highlights the complexity of mapping the 
neurobiological basis of nightmares and emphasizes the need for refined models that 
account for both state and trait variability.

Keywords: nightmares, nightmare frequency, fMRI, functional connectivity, ReHo
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Introduction

Nightmares are dreams characterized by strong negative emotions that can cause 
significant distress and affect daily functioning, with their frequency varying 
substantially within the population and the precise mechanisms underlying their 
formation remaining elusive. Nightmares have the potential to disrupt sleep by 
causing awakenings with vivid recollections of the unpleasant mentation (Nielsen & 
Levin, 2007; Zadra et al., 2006). Nightmares are common, however their frequency is 
substantially heterogeneous within the population (American Psychiatric Association, 
2013): 85% of adult respondents reported having had a nightmare at least once a 
year, and about 2-6% reported suffering from weekly nightmares (Levin & Fireman, 
2002; Zadra & Donderi, 2000). Some risk factors have been identified in people who 
experience nightmares frequently, including genetic predisposition (Hublin et al., 
1999), state or trait anxiety (Schredl, 2003), increased stress (Picchioni et al., 2002; 
Schredl & Goeritz, 2019), psychopathologies such as schizophrenia (Levin, 1998), 
major depressive disorder and bipolar disorder (Akkaoui et al., 2020), and post-
traumatic stress disorder (Campbell & Germain, 2016; Harvey et al., 2003; Ross et 
al., 1989). Despite the clinical relevance of diagnosing and treating nightmares, the 
exact mechanisms responsible for their formation remain unclear. Consequently, 
investigating the neurophysiological factors that contribute to nightmare frequency 
may significantly improve our comprehension of their underlying causes.

Theoretical models of nightmare production and emotion regulation highlight the 
functional interaction between the amygdala and prefrontal cortex, brain regions 
that play a central role in adaptive emotion processing across both sleep and 
wakefulness (Berboth & Morawetz, 2021; Nielsen & Levin, 2007). While theoretical 
debates persist regarding the extent of emotional regulation during sleep and its 
manifestation in dreams, accumulating evidence suggests that fear experiences 
in dreams can influence adaptive responses to threats in waking life (Sterpenich et 
al., 2020). However, the transition from adaptive dream mechanisms to impaired 
daily functioning, sleep disturbance, and vulnerability to psychological disorders 
remains unclear. The "Affect Network Dysfunction" model proposes that nightmares 
result from dysfunction within a brain network that oversees the adaptive function 
of fear extinction during dreaming (Nielsen & Levin, 2007). Neurobiologically, the 
basolateral amygdala is critical for fear encoding and extinction, whereas the medial 
prefrontal cortex mediates expression. In addition, the hippocampus and brainstem 
modulate contextual cues and suppress conditioned fear expression, respectively. 
This neural circuit involving the anterior hippocampus, amygdala, and prefrontal 
cortex is thus thought to influence the occurrence and severity of nightmares (Nielsen 
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& Levin, 2007). For emotion regulation, several prefrontal cortex regions consistently 
interact with the amygdala during emotional down-regulation via reappraisal 
(Berboth & Morawetz, 2021; Loos et al., 2020). In support of this, altered gray matter 
volume in the left inferior frontal gyrus is associated with depression in patients with 
idiopathic rapid eye movement sleep behavior disorder who have elevated negative 
emotional dreams (Bourgouin et al., 2019). Conversely, bilateral calcification of the 
basolateral amygdala correlates with more pleasant dreams, suggesting a role for the 
amygdala in shaping dream emotion, as patients with basolateral amygdala lesions 
perceive dreams as less negative (Blake et al., 2019).

Effective emotion regulation plays a key role in managing and responding to 
evolutionary relevant threats and stress experiences, thereby shaping emotional 
reactivity and overall well-being. The differential susceptibility framework (Carr & 
Nielsen, 2017) proposes sensory processing sensitivity as a trait relevant to the study 
of nightmares, with nightmare-prone individuals exhibiting heightened emotional 
reactivity to both positive and negative stimuli. Studies of nightmare frequency 
have shown an inverse relationship between nightmare severity scores and regional 
cerebral blood flow in the right medial frontal gyrus during negative image viewing 
(Marquis et al., 2019). This finding was partially replicated using functional near-
infrared spectroscopy (fNIRS), suggesting a negative association between dysphoric 
dream distress and frontal activation during negative image viewing (Carr, 2020). In 
the context of threat perception and emotion regulation circuits, abnormal resting 
amygdala-prefrontal cortex connectivity has been associated with repeated childhood 
stress, contributing to heightened threat perception (Ochsner & Gross, 2005). 
Disturbances in this connectivity may serve as a prelude to heightened emotional 
reactivity during dream states, and the abnormal connectivity observed in individuals 
with psychological disorders suggests that resting-state patterns may provide valuable 
insight into nightmares and serve as a potential predictor of their occurrence.

Building on this perspective, recent theoretical work has highlighted a reciprocal 
feedback loop between impaired sleep and emotion dysregulation, especially 
regarding borderline personality disorder (BPD), which is characterized by chronic 
emotional instability (Van Trigt et al., 2025). Although our sample consists of 
psychologically healthy individuals, the frequency and distress of nightmares vary 
substantially within the general population, suggesting dimensional variability in 
emotional regulation capacity. According to van Trigt et al., REM sleep fragmentation, 
which is closely tied to nightmare-related insomnia, can impair the brain’s ability 
to recalibrate limbic circuitry, resulting in sustained hyperarousal and heightened 
emotional reactivity. These emotional dysregulations can in turn perpetuate further 
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sleep fragmentation, reinforcing the cycle. Central to this mechanism is the integrity 
of amygdala-prefrontal cortex connectivity, which supports the downregulation 
of negative emotions during both wakefulness and sleep. Our investigation is thus 
motivated by the possibility that interindividual differences in the strength of 
prefrontal-limbic functional connectivity might modulate susceptibility to this 
feedback loop, making some individuals more vulnerable to recurrent nightmares 
even in the absence of clinical pathology. Understanding this relationship in healthy 
populations could help elucidate early neurophysiological markers of emotion 
regulation vulnerability and improve conceptual models of nightmare formation.

Few studies have investigated the neural correlates of nightmares from a whole-brain 
perspective. As a notable example, (Marquis et al., 2021) investigated the relationship 
between resting-state functional magnetic resonance imaging (fMRI) and nightmare 
frequency in a sample of 18 frequent nightmare recallers and 18 controls. They found 
altered regional homogeneity (ReHo, based on Kendall's concordance coefficient 
measures of BOLD time series for each and nearest voxels) in various brain regions, 
including frontal (medial prefrontal and inferior frontal), parietal, temporal, and 
occipital regions, as well as some subcortical regions such as the thalamus. Their 
findings partially support previous research by (Shen et al., 2016), who observed 
increased ReHo in the left anterior cingulate cortex and right inferior parietal 
lobule in 15 patients with nightmare disorder. However, when comparing nightmare 
disorder patients and matched controls, the latter study did not observe ReHo 
changes in the hippocampus and amygdala. These findings suggest that the severity 
and frequency of nightmares may be associated with altered neural activity in several 
brain regions, including those involved in emotion regulation. However, findings are 
inconsistent and limited by small sample sizes and heterogeneous populations.

To unravel the complex mechanisms underlying nightmare frequency, the present 
study had two primary goals. First, we aimed to elucidate the interaction between 
amygdala-prefrontal cortex connectivity and nightmare frequency in a large cohort of 
healthy volunteers. We hypothesized that robust functional connectivity between these 
regions may serve as a predictor of attenuated nightmare recurrence. We speculated 
that the strength of this connectivity promotes a more effective down-regulation 
process that not only contributes to effective emotional regulation during waking 
hours, but also positively influences nighttime processes. To strengthen the reliability 
of our results, we replicated our findings in another large independent cohort of 
subjects. Second, our research aimed to replicate and extend the existing literature 
on whole-brain correlates of nightmare frequency by employing ReHo analysis with 
a significantly larger sample size, while controlling for dream recall frequency. We 
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anticipated that the increased statistical power of a larger cohort would provide 
more robust insights into the neural correlates of nightmare formation. Consistent 
with our replication efforts, we anticipated a convergence of findings with previous 
work. To achieve this, we used voxel-wise correlations to assess amygdala-prefrontal 
connectivity and generate ReHo maps. We then examined the relationship between 
these measures and nightmare frequency in two independent analyses. Through these 
efforts, our study aimed to contribute significantly to understanding nightmares, 
elucidate the intricate neural mechanisms governing their recurrence, and potentially 
provide a pathway to more effective diagnostic and therapeutic interventions.

Materials and Methods

Study Population
The data were acquired in the context of a large multi-site cohort project as part of 
the EU COST Action CA18106 “The neural architecture of consciousness” (https://
neuralarchcon.org/), and is composed of MRI and behavioral data collected from 
healthy participants at two data collection sites. For Dataset 1, the study was 
approved by the regional local ethics committee, De Videnskabsetiske Komitéer for Region 
Midtjylland, Denmark. For Dataset 2, the study was approved by the Research Ethics 
Committee at the Institute of Psychology and the Komisja Bioetyczna of the Jagiellonian 
University, Krakow, Poland. For both datasets, participants were recruited through 
a local participant database and local advertisements on various websites of the 
Jagiellonian University and Facebook. They were financially compensated for 
participation. The following inclusion criteria were used at both sites: brain damage 
or surgery, age between 18 and 50 years (40 for Dataset 2), normal or corrected-
to-normal vision, and normal hearing. Exclusion criteria were standard MRI 
contraindications and the use of neuropharmacological or other medicine that may 
affect neural states, pregnancy, and skin diseases. Dataset 1: A total of 306 participants 
gave informed consent to participate in the study. From these 306 participants, fMRI 
data of 269 participants were available, and among those data, nine participants were 
excluded: five based on incomplete questionnaires and four based on incomplete 
fMRI data. Hence, data from a total of 260 participants (152 female, mean age of 24.78 
ranging from 18-48 years) was used in this work. Dataset 2: A total of 302 participants 
gave informed consent to participate in the study. From these 302 participants, 
preprocessed and quality-checked fMRI data of 164 participants were available 
at the time of the analysis. Hence, data from a total of 164 participants (99 female, 
mean age of 23.31 ranging from 18-40 years) was used in this work. All participants 
completed an online questionnaire session from home with a total duration of 
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around 70 minutes, including a seven-point rating scale assessing their dream recall 
frequency, ranging from 0 (never) to 6 (every morning) (Schredl & Erlacher, 2004). 
Nightmares were assessed using the eight-point nightmare frequency scale, which 
asks participants to rate their nightmare frequency on a scale ranging from 0 (never) 
to 7 (several times per week). This scale has been used in prior studies examining 
nightmare prevalence and phenomenology (Carr et al., 2021, 2022). To ensure clarity, 
nightmares were defined as: “Nightmares are dreams with strong negative emotions 
that result in awakening from the dreams. The dream plot can be recalled very vividly 
upon awakening” (Schredl et al., 2014), distinguishing them from sleep terrors, which 
typically involve intense fear, autonomic discharge, and limited recall (Fisher et al., 
1973). The questionnaires were administered in English for Dataset 1 and in Polish for 
Dataset 2. Participants were instructed to ensure it was completed in an undisturbed 
environment. The dream recall scale was recoded into units of mornings per week 
and the nightmare frequency scale into units per month (Stumbrys et al., 2015).

Data acquisition
As both sites were part of the same consortium, data collection was standardized 
for both datasets. Two resting-state fMRI runs (12 and 6 minutes) were recorded 
alongside quantitative multi-parameter mapping (MPM; (Weiskopf et al., 2013)) 
and diffusion-weighted imaging in one scanning session lasting approximately one 
hour. In this study, we restricted our analysis to resting-state fMRI and synthetically 
generated T1-weighted images (see “Structural data” section below for details). 
Dataset 1 was acquired at a Siemens Magnetom Prisma-fit 3T MR scanner. For each 
participant 1500 functional volumes were acquired using a echo planar T2*-weighted 
sequence sensitive to BOLD contrast with a multiband acceleration factor of 6 (TR/
TE = 700/33 ms, flip angle = 53°, field of view = 200 × 200 mm, number of slices = 60,  
slice thickness = 2.5 mm [no gap], in-plane resolution = 2.5 × 2.5 mm). Dataset 2 
was acquired at a Siemens Magnetom Skyra 3T MR scanner, with almost identical 
parameters, with the only differences being the number of functional volumes (1348) 
and the TR/TE (801/33 ms).

The MPM protocol was implemented based on the Siemens vendor sequence and was 
identical for both datasets. Three-dimensional (3D) data acquisition consisted of three 
multi-echo spoiled gradient echo scans (i.e., fast low angle shot [FLASH] sequences 
with magnetization transfer saturation (MT), T1, and effective proton density (PD) 
contrast weighting). Additional reference radio-frequency (RF) scans were acquired. 
The acquisition protocol had the following parameters: TR of PDw and T1w contrasts: 
18 ms; TR of MTw contrast: 37 ms; minimum/maximum TE of PDw, T1w and MTw 
contrasts: 2.46/14.76 ms; flip angles for MTw, PDw and T1w contrasts: 6°, 4°, 25°, 
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respectively; six equidistant echoes; 1 mm isotropic reconstruction voxel size; Field 
of view 224 ´ 256 ´ 176 mm;  AP phase encoding direction; GRAPPA parallel imaging 
speedup factor of 2; T1w, PDw and MTw acquisition times: 3:50, 3.50, 7.52. The 
acquisition of low-resolution 3D spoiled gradient echo volumes was executed using 
both the RF head coil and the body coil. This dual acquisition facilitated the generation 
of a relative net RF receive field sensitivity (B1−) map for the head coil 120–122.  
The approach obtained rapid acquisition by maintaining a low isotropic spatial 
resolution of 4^3 mm3, a short echo time (TE) of approximately 2 ms, and a reduced 
flip angle of 6°, avoiding parallel imaging acceleration or partial Fourier. This 
procedure of capturing volume pairs with the head and body coils was systematically 
repeated before acquiring each of the MT, PD, and T1 contrasts.

Preprocessing
Data preprocessing was performed using the fMRIprep toolbox version 21.0.2 
(Esteban et al., 2019). The toolbox pipeline utilizes a combination of several well-
known software packages for fMRI data pre-processing and constitutes a robust tool 
that also generates quality reports.

Structural data
The synthetic T1w images were generated using the longitudinal relaxation rate 
(R1) and effective proton density (PD) high-resolution maps (acquired during the 
MPM sequence protocol). First, both maps were thresholded to achieve the required 
FreeSurfer units. The R1 map was divided by itself two times, thresholded at zero, 
and multiplied by one thousand. The PD map was thresholded by zero and multiplied 
by one hundred. All manipulations were performed using FSL maths commands. 
Subsequently, the mri_synthesize FreeSurfer command was applied to create a 
synthetic FLASH image based on the previously calculated T1 (thresholded R1 map) 
and proton density map. The optional flagged argument for optimal gray and white 
matter contrast weighting was used with the following parameters 20, 30, and 2.5. 
Finally, the synthetic T1w image was divided by four according to the scale FreeSurfer 
expected. The pre-processing of the structural data using the fMRIprep toolbox was 
performed in the following steps: firstly, the synthetic T1w images were corrected 
for intensity non-uniformity (INU) with N4BiasFieldCorrection (Tustison et al., 2010), 
distributed with ANTs 2.3.3 (Avants et al., 2008, RRID:SCR_004757), and used as 
T1w-reference throughout the workflow. The T1w-reference was then skull-stripped 
with a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), 
using OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal 
fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-
extracted T1w using fast (FSL 6.0.5.1:57b01774, RRID:SCR 002823, Zhang, Brady, 
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and Smith 2001). Brain surfaces were reconstructed using recon-all (FreeSurfer 6.0.1, 
RRID:SCR 001847 (Dale et al., 1999)), and the brain mask estimated previously 
was refined with a custom variation of the method to reconcile ANTs-derived 
and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle 
(RRID:SCR_002438 (Klein et al., 2017)). Volume-based spatial normalization to two 
standard spaces (MNI152NLin2009cAsym, MNI152NLin6Asym) was performed 
through nonlinear registration with antsRegistration (ANTs 2.3.3), using brain-
extracted versions of both T1w reference and the T1w template. The following 
templates were selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical 
template version 2009c ((Fonov et al., 2009), RRID:SCR_008796; TemplateFlow ID: 
MNI152NLin2009cAsym), FSL's MNI ICBM 152 non-linear 6th Generation Asymmetric 
Average Brain Stereotaxic Registration Model ((Evans et al., 2012), RRID:SCR_002823; 
TemplateFlow ID: MNI152NLin6Asym0.)

Functional data
First, a reference volume and its skull-stripped version were generated by aligning 
and averaging 1 single-band reference (SBRef). Head-motion parameters with respect 
to the BOLD reference (transformation matrices, and six corresponding rotation and 
translation parameters) were estimated before any spatiotemporal filtering using mcflirt 
(FSL 6.0.5.1:57b01774, (Jenkinson et al., 2002)). The estimated fieldmap was then aligned 
with rigid-registration to the target EPI (echo-planar imaging) reference run. The 
field coefficients were mapped on to the reference EPI using the transform. The BOLD 
reference was then co-registered to the T1w reference using bbregister (FreeSurfer) which 
implements boundary-based registration (Greve & Fischl, 2009). Co-registration was 
configured with six degrees of freedom. First, a reference volume and its skull-stripped 
version were generated using a custom methodology of fMRIPrep. Several confounding 
time-series were calculated based on the preprocessed BOLD: framewise displacement (FD), 
DVARS and three region-wise global signals. FD was computed using two formulations 
following Power (absolute sum of relative motions, (Power et al., 2014)) and Jenkinson 
(relative root mean square displacement between affines, (Jenkinson et al., 2002)). FD 
and DVARS are calculated for each functional run, both using their implementations in 
Nipype (following the definitions by (Power et al., 2014)). The three global signals were 
extracted within the CSF, the WM, and the whole-brain masks. Additionally, a set of 
physiological regressors were extracted to allow for component-based noise correction 
(CompCor, (Behzadi et al., 2007)). Principal components were estimated after high-pass 
filtering the preprocessed BOLD time-series (using a discrete cosine filter with 128s cut-
off) for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). For 
aCompCor, three probabilistic masks (CSF, WM and combined CSF+WM) are generated 
in anatomical space. The implementation differs from that of (Behzadi et al., 2007) in 
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that instead of eroding the masks by 2 pixels on BOLD space, the aCompCor masks are 
subtracted a mask of pixels that likely contain a volume fraction of GM. This mask is 
obtained by dilating a GM mask extracted from the FreeSurfer's aseg segmentation, and 
it ensures components are not extracted from voxels containing a minimal fraction of 
GM. Finally, these masks are resampled into BOLD space and binarized by thresholding 
at 0.99 (as in the original implementation). Components are also calculated separately 
within the WM and CSF masks. For each CompCor decomposition, the k components 
with the largest singular values are retained, such that the retained components' 
time series are sufficient to explain 50 percent of variance across the nuisance mask 
(CSF, WM, combined, or temporal). The remaining components are dropped from 
consideration. The head-motion estimates calculated in the correction step were also 
placed within the corresponding confounds file. The confound time series derived 
from head motion estimates and global signals were expanded with the inclusion of 
temporal derivatives and quadratic terms for each (Satterthwaite et al., 2013). Frames 
that exceeded a threshold of 0.5 mm FD or 1.5 standardized DVARS were annotated as 
motion outliers. The BOLD time-series were resampled into standard space, generating 
a preprocessed BOLD run in MNI152NLin2009cAsym space. Many internal operations of 
fMRIPrep use Nilearn 0.8.1 ((Abraham et al., 2014), RRID:SCR_001362), mostly within 
the functional processing workflow. For more details of the pipeline, see the section 
corresponding to workflows in fMRIPrep's documentation.

For the streamlined application of additional noise components and data-cleaning 
strategies within a single framework, we utilized rs-Denoise ((Dubois et al., 2018), 
see https://github.com/adolphslab/rsDenoise), an open-source Python-based 
pipeline. This pipeline involved several steps: (1) z-score normalization of the signal 
at each voxel; (2) removal of linear and quadratic trends with polynomial regressors; 
(3) utilization of fMRIPrep’s aCompCor parameters, to regress out five components 
derived from whole-brain mean signals; (4) utilization of translational and rotational 
realignment parameters and their temporal derivatives as explanatory variables 
in motion regression; (5) temporal filtering was performed with a discrete cosine 
transform (DCT) filter with a cutoff frequency of 0.008 Hz. Lastly, the pre-processed 
runs were smoothed using a 4-mm full-width at half maximum (FWHM) Gaussian 
kernel and merged on the temporal domain.

Data analysis

Amygdala-prefrontal cortex functional connectivity
First, binary masks of the two regions of interest were generated. For this purpose, a 
parcellation atlas that combined cortical (400 Parcels and 7 Networks) and subcortical 
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(Scale 1) parcellations was employed to delineate the amygdala and prefrontal 
cortex masks (Tian et al., 2020). Following this, since the data were already cleaned 
by regressing out the confounds of interest, the BOLD eigenvariate specific to the 
amygdala region was extracted as region average signal using the "fslmeants" 
command. Afterward, the extracted amygdala average signal was used as a regressor 
in a general linear model to correlate, per subject, the average amygdala activity with 
each prefrontal cortex voxel. Spatial maps for every subject were generated from 
the last step and merged into a 4D volume that was subsequently used as input to 
FSLrandomise (FSL version 6.0.3). Randomization, with ten thousand permutations, 
was used to associate the nightmare frequency scores to its participant functional 
connectivity map. The GLM included nightmare frequency as the main regressor 
of interest, as well as weekly dream frequency scores, sex and age as confound 
regressors.. After permutations, FSL randomise outputs a Threshold-Free Cluster 
Enhancement (TFCE) map corrected for multiple comparisons. TFCE aims to preserve 
the sensitivity advantages of cluster-based inference while avoiding arbitrary 
cluster-forming threshold. This approach yields an output image at the voxel level, 
where each voxel's value represents the accumulative cluster-like local spatial support 
at a range of cluster-forming thresholds (Salimi-Khorshidi et al., 2011; Smith & 
Nichols, 2009).

ReHo analysis
Single ReHo maps were generated by calculating Kendall's coefficient of concordance 
(KCC). This metric assesses the regional homogeneity of the blood oxygen level 
dependent time series within each voxel and its 26 adjacent voxels. The generation 
process used the 3dReHo function in AFNI (versions 22.1.09 and 23.0.02 for Datasets 
1 and 2, respectively) (Zang et al., 2004). Subsequently, the individual ReHo maps 
were normalized by dividing the KCC in each voxel by the mean KCC of the whole 
gray matter. Finally, the ReHo maps were smoothed using a 4-mm full-width at half 
maximum (FWHM) Gaussian kernel.

We adopted a dual approach to the statistical analysis. First, we examined differences 
between two groups: high nightmare frequency (at least one nightmare per week) 
and matched controls (less than one per year), as a direct replication of the previous 
literature, by pooling the two extreme groups from the combination of Dataset 1+2. 
Second, we examined parametric differences across the spectrum of nightmare 
frequency in a large dataset derived by combining Dataset 1+2 (see Table 1). For both 
the group-comparison replication analysis and continuous nightmare frequency 
scores, we used a more stringent threshold of p<0.001 at the voxel level, contrary to 
the significance threshold from Marquis et al. and Shen et al. (Marquis et al., 2021; 
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Shen et al., 2016), set at p<0.01 at the voxel level. It is important to note that choosing 
a critical statistical threshold (CDT) of 0.01 has been shown to yield excessive 
false positives (see (Eklund et al., 2016) for a detailed discussion). Cluster-level 
threshold values were estimated in SPM. Because parametric statistical methods for 
group analysis, such as SPM, can produce erroneously low FWE-corrected cluster 
p-values, thereby inflating statistical significance, we also used FSL randomise as a 
nonparametric method to evaluate our results (Eklund et al., 2016). Dream recall 
frequency, age, sex, and site were controlled for in the ReHo analyses. Statistical 
analyses were performed using SPM12 (Statistical Parametric Mapping 12, Wellcome 
Trust Centre for Neuroimaging, Institute of Neurology, University College London, 
United Kingdom) with Matlab (R2022a, The Mathworks, Natick, MA, United States).

Results

Demographics and questionnaires
Participants in Dataset 1 reported an average dream recall frequency of 2.18 times per 
week (SD=2.05) and experienced nightmares 1.34 times per month (SD=3.31), with a 
frequency ranging from once to several times per week. For Dataset 2, participants 
reported an average dream recall frequency of 2.10 times per week (SD=2.16) and 
nightmares at an average frequency of 1.02 times per month (SD=2.83). In partial 
agreement with a higher incidence of nightmares in females suggested in previous 
literature (Nielsen & Levin, 2007), for Dataset 1 the data indicated significant 
differences in nightmare frequency between females (n=152, mean=1.61, SD=3.51) and 
males (n=108, mean=0.96, SD=2.97), W=5782, p<0.001 (two-tailed), but not in dataset 2  
(n=99 females: mean=1.28, SD=3.56; vs. n=65 males: mean =0.67, SD=0.99), W =2939, 
p=0.33 (two-tailed). There was no evidence of age-related differences in dream 
recall frequency (Dataset 1: rho=-0.052, p=0.40; Dataset 2: rho=-0.026, p=0.74) or 
nightmare frequency (Dataset 1: rho=-0.059, p=0.347; Dataset 2: rho=-0.037, p=0.638). 
As expected, dream recall and nightmare frequency were significantly correlated in 
both Dataset 1 (rho=0.338, p<0.001) and Dataset 2 (rho=0.216, p<0.005) (Figure 1). 
When comparing the HNF group to the CTL group, a higher dream recall frequency 
was observed in the HNF group but there were no significant age or sex differences 
between the two groups (p>0.66). To ensure that our results were not confounded 
by differences in dream recall frequency, sex, and age, factors previously associated 
with nightmare frequency (Gauchat et al., 2014; Sacher, 2013; Schredl, 2013; Schredl 
et al., 2014; Weber et al., 2022), we included them as covariates in our main analysis.



| 83Neural correlates of nightmares revisited: findings from large-scale fMRI cohorts

3
Figure 1: Overview of the behavioral data in the two Datasets. A: Density distributions of the dream recall 
frequency scores (recoded into units per week) for Dataset 1 and Dataset 2; B: Density distributions of 
the nightmare frequency scores (recoded into units per month) for Dataset 1 and Dataset 2; C: A heatmap 
for the combination of nightmare frequency and dream recall frequency scores across the two Datasets, 
and the correlation between the scores. Darker colors denote more frequent combinations; D: Average 
nightmare frequency scores for male and female participants, for both Dataset 1 and Dataset 2. The 
vertical bars denote standard errors.

Amygdala-prefrontal cortex functional connectivity relationship with 
nightmare frequency
In our investigation of functional connectivity between the amygdala and prefrontal 
cortex and its relationship to nightmare frequency, we first analyzed Dataset 1. This 
initial analysis revealed no significant voxels (pFWEc = 0.67). To validate these findings, 
we replicated the analysis using an independent Dataset 2, which also showed no 
significant results (pFWEc = 0.65). In other words, no functional connectivity between 
these regions were statistically significantly associated with nightmare frequency 
within the parameters of our study. Similar results were found when all analyses 
were repeated using raw nightmare frequency scores (Figure S1).

ReHo analysis
We performed a ReHo analysis to explore potential group differences between high 
and low nightmare frequency, as previously reported in the literature. The results 
showed no significant differences in ReHo scores between groups (Tables S1 and S2).  
However, when examining continuous nightmare frequency scores across the 
combined Dataset 1+2, we identified a significant cluster in the cerebellum (peak-
voxel t-value=5.87, MNI coor=24,-68,-60, Figure 2a).

To robustly test these findings, we used a nonparametric permutation test in addition 
to a threshold-free cluster enhancement approach. This rigorous analysis revealed no 
significant clusters in the group comparison (Figure S2). However, in the analysis of the 
continuous nightmare frequency score, we identified a single significant cluster in the 
cerebellum (cluster size=150 voxels; pFWEc<0.01; MNI coor=23.9,-67.5,-59.7) This finding 
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is shown in Figure 2b. In addition, we repeated all analyses using raw nightmare 
frequency scores (i.e. the eight-point rating scale instead of the recoded monthly scale), 
which did not yield significant results (for group comparison, see Tables S3 and S4, 
Figure S3; for continuous nightmare frequency scores see: Tables S5, Figure S4).

Figure 2: Regional homogeneity analysis results. A: Dataset 1+2 combined (N=424) SPM parametric 
analysis resulted in a significant cluster located in the cerebellum (peak-voxel t-value=5.87,  
MNI coor=24,-68,-60); B: Dataset 1+2 combined (N=424) non-parametric FSL Randomise resulted in a 
similar significant cluster located in the cerebellum (peak-voxel t-value=5.96, MNI coor=23.9,-67.5,-59.7).

Discussion

The present study had two main aims. First, to investigate the relationship between 
nightmare frequency and functional connectivity between two key regions, amygdala 
and prefrontal cortex, involved in emotional regulation and fear extinction processes, 
and second, to replicate the existing literature on the neural correlates of nightmares 
in two large study cohorts. Contrary to our initial hypothesis, our analysis did not 
reveal a significant relationship between nightmare frequency and functional resting 
connectivity between the prefrontal cortex and the amygdala. In addition, while we 
were able to partially replicate previous whole-brain ReHo findings on nightmare 
frequency, these findings did not withstand rigorous tests with appropriate statistical 
approaches. Despite our increased statistical power compared to previous studies, we 
could reliably identify only a single cluster located in the cerebellum and only when 
analyzing nightmare frequency scores continuously (as opposed to grouped scores as 
in previous studies).

Building on the sensory processing sensitivity framework for nightmares (Carr & 
Nielsen, 2017), we hypothesized that connectivity between the amygdala and prefrontal 
cortex might serve as a potential predictor of nightmare frequency. This hypothesis 
stemmed from previous studies linking such coupling to psychiatric conditions and 
disorders such as anxiety levels (Kim et al., 2011), anxiety disorders (Prater et al., 
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2013), major depressive disorder (Tang et al., 2013), post-traumatic stress disorder 
(Sripada et al., 2012), dream emotionality (Blake et al., 2019),  and threat perception 
(Ochsner & Gross, 2005). Our rationale was based on the expectation that heightened 
emotional reactivity will manifest in resting-state amygdala-prefrontal connectivity, 
especially given the known association between prefrontal cortex activation and 
nightmare severity/distress during negative emotional stimulation (Carr, 2020; 
Marquis et al., 2019; Sterpenich et al., 2020). Contrary to our predictions, our analysis 
of Dataset 1 and its independent replication in Dataset 2 did not yield statistically 
significant results. Although we did not expect nightmare formation to depend 
solely on amygdala-prefrontal cortex connectivity, we considered this to be the most 
prominent candidate for a trait correlate of nightmare frequency, considering the 
crucial role these regions play in relevant processes and existing models of nightmare 
formation. However, the lack of a significant relationship in our study despite a 
large sample size in two datasets may suggest that any potential association might 
be subtle if existent, potentially overshadowed by individual differences confounders 
such as personality traits including sensory processing sensitivity, or trauma history.

The absence of a detectable association between amygdala–prefrontal cortex 
connectivity and nightmare frequency in our sample may be consistent with recent 
theoretical accounts that frame nightmares within a broader cycle of emotional 
dysregulation and sleep disruption. Van Trigt et al. (2025) propose a reciprocal 
feedback model in which impaired REM sleep, such as through nightmares or 
fragmentation, prevents the recalibration of limbic circuits during sleep, resulting 
in elevated next-day emotional reactivity. This, in turn, promotes further sleep 
disruption, reinforcing the cycle. Although this model was developed in the context of 
BPD, a prototypical emotion dysregulation disorder, the underlying mechanism may 
extend dimensionally across the general population. Our study, which included only 
healthy young adults, may not have captured the threshold of dysfunction necessary 
for this cycle to become neurologically apparent. That is, functional alterations in 
the amygdala–prefrontal connectivity may only emerge when individuals cross a 
critical threshold of emotional dysregulation, chronic hyperarousal, or comorbid 
psychopathology, such as in BPD. In this context, our null findings may indicate a 
floor effect, where mild variations in trait emotionality or sleep disturbances are 
not enough to disrupt intrinsic connectivity at rest. In this light, our null findings 
may reflect a floor effect, whereby mild variations in trait emotionality or sleep 
disturbance are insufficient to disrupt intrinsic connectivity at rest. Alternatively, 
the amygdala–prefrontal interactions may fluctuate dynamically in response to 
emotional states or sleep history rather than manifesting as a stable trait detectable 
through resting-state measures in asymptomatic individuals.
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In investigating ReHo in the neural correlates of nightmares, we attempted to 
replicate previous group comparison methodology while addressing concerns 
related to the reproducibility of fMRI studies. Shen et al. (Shen et al., 2016) found 
elevated ReHo in the left anterior cingulate cortex and right inferior parietal lobule 
in patients with nightmare disorder, while Marquis et al. (Marquis et al., 2021) 
found altered ReHo in several brain regions. In contrast to Shen et al., Marquis et 
al. did not find group differences in ReHo in the anterior cingulate cortex or inferior 
parietal lobule, and the studies had different sample populations. Shen et al. focused 
on patients with nightmare disorder and a strict group of healthy controls with 
minimal lifetime nightmares. In contrast, Marquis et al. included a mix of high 
nightmare frequency individuals and bad dream recallers with no awakenings after 
disturbing dreams. Population differences may have contributed to the contrasting 
results. Our study aimed to replicate the group comparison by focusing on high 
nightmare frequency individuals and realistic healthy controls. We calculated the 
group comparison analysis in two ways to control false positive rates: 1) using a 
similar approach and CDT (p<0.001) but using SPM to estimate the cluster extension 
value, and 2) given the inflated statistical inference of parametric methods, we 
used a nonparametric permutation approach as implemented in FSL Randomise. No 
significant clusters survived these additional approaches. The fMRI community has 
faced a reproducibility problem in part because low CDT  can produce misleadingly 
low cluster P-values, raising concerns about the accuracy of many published fMRI 
studies (Eklund et al., 2016). Nevertheless, previous work has used a CDT=0.01, which 
is known to result in higher false-positive rates. We performed analyses analogous 
to those used for group comparisons to examine the neural correlates of nightmares 
across participants’ continuous severity levels. Using a parametric (alpha-level voxel 
thresholding followed by Gaussian random field theory) and non-parametric (TFCE 
followed by permutation testing) cluster inference approaches, only the cerebellum 
cluster survived corrections. Previous studies have reported decreased ReHo values 
in the cerebellum in individuals with nightmare experiences, which is consistent 
with our findings (Marquis et al., 2021).

The cerebellum, traditionally associated with motor functions and considered 
less functionally significant than the cerebral cortex, in recent years has attracted 
increased attention also with respect to cognitive and emotional processing 
(Adamaszek et al., 2022; Baillieux et al., 2008; Sacchetti et al., 2009). For example, 
the cerebellum has been implicated in the formation, consolidation, and extinction 
of fear memories and other emotion modulations (Rudolph et al., 2023). Although 
poorly characterized in sleep and largely unexplored in nightmares, the cerebellum 
is linked to anxiety disorders (Moreno-Rius, 2018), major depression disorder 
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(Fitzgerald et al., 2008), and bipolar disorder (Hoppenbrouwers et al., 2008), which 
are all associated with nightmare distress and frequency. Anatomically, cerebellar 
connections to the limbic system suggest its potential role in the brain's emotional 
network (Çavdar et al., 2018; Hilber et al., 2019; Novello et al., 2024), and a recent 
study has demonstrated direct monosynaptic projections from the cerebellum to the 
amygdala (Zhang et al., 2024). Further cerebellar projections target the thalamus 
and the brainstem, which are implicated in REM sleep regulation (Sathyanesan 
et al., 2019), and also parts of the cerebellum have been shown to be activated 
during REM sleep (Braun, 1997; Canto et al., 2017; Sokoloff et al., 2015). Of note, 
anxiolytic benefits of physical activity have been correlated with increased activity 
of the cerebellar projections to the amygdala (Zhang et al., 2024), which is highly 
activated during REM sleep (Corsi-Cabrera et al., 2016; Maquet, 1997; Nofzinger 
et al., 1997). Considering that REM sleep dream narratives are characterized by 
a high level of experienced motor activity (Porte & Hobson, 1996), it is tempting to 
speculate that cerebellum-amygdala projections play a role in emotionally arousing 
dream content such as nightmares. To test this possibility, we added an analysis 
to probe the association between nightmare frequency and cerebellar-amygdala 
functional connectivity, using the results of the ReHo analysis to define a relevant 
cerebellar region of interest (See Supplementary Material for details on methods). No 
significant functional relationship between the amygdala and our specific cerebellar 
region was find, yet the above-mentioned results indicate that the cerebellum 
remains an important structure for future exploration, considering also the recent 
discovery of an amygdala-independent pathway for fear processing (Wang et al., 
2024). Accordingly, the precise involvement of the cerebellum and interactions with 
other brain regions in the domains of emotion regulation processes and dream 
emotionality warrants further investigation.

Several limitations of our study have to be considered. First, the questionnaire 
assessing dreaming and nightmare frequency may have influenced the present 
results as they did not allow to check for levels of nightmare distress. Moreover, as 
our cohorts consisted of healthy young participants, generalizations to patients 
or the entire population are difficult. In addition, we carefully considered the 
methodological parameters for the ReHo analysis, guided by previous research 
(Maximo et al., 2013) and the literature we sought to replicate. Spatial smoothing was 
performed after ReHo computations to prevent inflation of correlation statistics by 
averaging signals over a larger area. Because ReHo measures local connectivity, the 
choice of neighborhood size for ReHo analysis is another important consideration, 
allowing researchers to specify the extent of the neighborhood to be tested for 
correlation with each voxel. This study chose a neighborhood size of 27 voxels to 
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replicate findings from previous literature (Marquis et al., 2021; Shen et al., 2016). 
In particular, choosing a neighborhood size of 27 voxels means that the analysis 
considers every voxel with an adjacent face, edge, or corner. This may explain why the 
significant cluster accounted for the edge of the cerebellum despite its proximity to 
the brain boundary. In spite of these shortcomings, it is clear that the large sample 
size and robust threshold correction methods are strong points to support the 
outcomes of our study.

The combination of dream research and neuroimaging comes with several challenges, 
as it is impossible to time-lock the exact time a dream experience occurred, and 
nightmares are rare in sleep laboratories and may imply major imaging motion 
artifacts. Future research should address these design limitations by combining 
dream diaries and retrospective questionnaires with all-night imaging recordings. 
A dream diary is an established method for evaluating dream content, however, it 
may overestimate dreaming and nightmare frequency as a continued dream diary 
enhances dream recollection (Stumbrys et al., 2013). In contrast, retrospective 
questionnaires have been shown to underestimate dreaming and nightmare 
frequency (Wood & Bootzin, 1990). Accordingly, a combination of the two approaches 
might give a more robust assessment of the occurrence of nightmares in the 
study population.

Conclusion

In summary, contrary to our initial expectations, we did not find a significant 
relationship between nightmare frequency and functional connectivity between the 
prefrontal cortex and the amygdala, key regions involved in emotional regulation and 
fear extinction processes. In contrast, probing the relationship between nightmare 
frequency and regional homogeneity in a whole-brain analysis, we did find a role of 
the cerebellum in nightmare frequency, supporting an increasingly discussed role of 
the cerebellum in emotional processing. Functional connectivity of this cerebellar 
region with the amygdala, however, was not associated with nightmare frequency.

While our study replicated the group comparison methodology used by Shen et al. 
and Marquis et al., the complexities surrounding the reproducibility of fMRI studies 
should be considered. Our efforts to control false-positive rates through various 
recalculations, including stringent cluster-defining thresholds and nonparametric 
permutation approaches, did not yield significant clusters except in the cerebellum, 
highlighting the intricacies involved in interpreting neuroimaging data in general 
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and our specific findings. The unexpected lack of robust significant results, 
especially given the larger sample size in the current study, prompts a reevaluation of 
existing models and emphasizes the need to account for individual differences, such 
as personality traits, trauma history, and cognitive processes. As we navigate the 
complexity of neural circuits and brain regions involved in nightmares, these findings 
contribute to the ongoing dialogue in the field, fostering a deeper understanding of 
the neurobiology behind nightmares and guiding future research efforts.
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Supplementary material

Functional connectivity relationship between amygdala-prefrontal cortex 
and nightmare frequency

Figure S1: Amygdala-prefrontal cortex functional connectivity. Dataset 1 (N=260) resulted in non-
significant clusters a) by using the recoded nightmare frequency scores to a monthly scale, according 
to Stumbrys et al., 2013 (pFWEc = 0.67), and b) by using the raw nightmare frequency scores (pFWEc = 0.59). 
Dataset 2 (N=164) also resulted in non-significant clusters c) by using the recoded nightmare frequency 
scores to a monthly scale (pFWEc = 0.48), and d) by using the raw nightmare frequency scores (pFWEc = 0.36). 
All t-maps are in MNI coor=-44,53,7). Please note that these results are not significant.
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Regional homogeneity (ReHo) analysis

A: Group comparison replication analyses with recoded nightmare frequency scores on 
a monthly scale

Parametric results (SPM):

Table S1: High nightmare frequency > healthy controls: p-values adjusted for search volume.

cluster-level peak-level

pFWEc qFDRc KE T x (mm) y (mm) z (mm)

0.999 0.859 8 4.39 66 -22 44

0.999 0.859 6 3.85 -38 -40 -50

0.995 0.859 13 3.68 -48 -44 42

0.999 0.859 7 3.67 38 -58 -62

1.000 0.859 5 3.62 -52 44 -14

1.000 0.859 4 3.58 50 -58 -52

1.000 0.859 4 3.55 10 -38 34

1.000 0.859 2 3.47 -26 -16 -36

1.000 0.859 4 3.44 54 -68 -18

1.000 0.859 1 3.34 10 -52 54

1.000 0.859 1 3.33 48 -50 -52

1.000 0.859 1 3.32 -42 -50 -58

1.000 0.859 1 3.32 34 -74 -58

Table S2: High nightmare frequency < healthy controls: p-values adjusted for search volume.

cluster-level peak-level

pFWEc qFDRc KE T x (mm) y (mm) z (mm)

0.467 0.339 86 6.17 -58 -22 10

0.284 0.339 115 4.40 -60 -30 -18

0.830 0.586 45 4.30 4 -88 18

0.981 0.709 20 4.21 -14 -40 78

0.886 0.586 38 3.75 14 44 10

0.999 0.834 7 3.71 -4 44 16

1.000 0.859 2 3.70 -44 8 58
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cluster-level peak-level

pFWEc qFDRc KE T x (mm) y (mm) z (mm)

0.971 0.709 23 3.63 -50 -44 -22

0.999 0.834 7 3.57 10 24 34

0.999 0.834 6 3.50 -18 -8 -18

1.000 0.834 5 3.49 -4 -60 0

1.000 0.859 1 3.34 -54 -16 54

1.000 0.859 1 3.32 4 56 12

Non-parametric results (FSL randomise):

Figure S2: Group comparison replication analysis, high vs. low nightmare frequency score using the 
recoded nightmare frequency scores to a monthly scale (pFWEc = 0.294) (Stumbrys et al., 2013). The t-map 
is in MNI coor=-6,-3.8,37). Please note that this result is not significant.

Table S2: Continued
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B: Group comparison replication analyses with raw nightmare frequency scores:

Parametric results (SPM):

Table S3: High nightmare frequency > healthy controls: p-values adjusted for search volume.

cluster-level peak-level

pFWEc qFDRc KE T x (mm) y (mm) z (mm)

1.000 0.860 4 3.87 66 -22 44

0.990 0.860 16 3.81 38 -58 -62

0.998 0.860 9 3.53 2 44 -18

1.000 0.860 3 3.46 52 -68 -18

1.000 0.860 2 3.43 46 14 -42

1.000 0.860 5 3.41 22 -40 -52

1.000 0.860 2 3.36 -40 -42 -50

1.000 0.860 1 3.32 48 46 -18

Table S4: High nightmare frequency < healthy controls: p-values adjusted for search volume.

cluster-level peak-level

pFWEc qFDRc KE T x (mm) y (mm) z (mm)

0.346 0.195 104 7.13 -58 -22 10

0.166 0.167 146 4.31 -60 -30 -16

0.939 0.843 30 4.11 12 24 34

0.990 0.843 16 3.90 -18 -36 76

0.983 0.843 19 3.90 4 -90 18

1.000 0.860 3 3.49 -56 -18 52

1.000 0.860 5 3.49 -44 -52 -46

1.000 0.860 5 3.47 -50 -40 24

1.000 0.860 3 3.43 -30 -60 58

1.000 0.860 2 3.40 -46 -16 48

1.000 0.860 1 3.32 -48 -18 50
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Non-parametric results (FSL randomise):

Figure S3: Group comparison replication analysis, high vs. low nightmare frequency score using the raw 
nightmare frequency scores (pFWEc = 0.844). The t-map is in MNI coor=-6,-3.8,37). Please note that this 
result is not significant.

C: Parametric results of combined Datasets 1+2 (N=464) using raw nightmare 
frequency scores:

Parametric results (SPM):

Table S5: Statistics: p-values adjusted for search volume.

cluster-level peak-level

pFWEc qFDRc KE T x (mm) y (mm) z (mm)

0.977 0.875 20 4.02 -50 46 12

0.948 0.875 28 3.53 -40 -14 24

0.997 0.875 9 3.31 -46 -6 6

1.000 0.875 2 3.27 62 -32 50

0.999 0.875 5 3.27 38 -22 -36

1.000 0.875 1 3.25 46 -52 58

0.999 0.875 4 3.25 -56 38 2

1.000 0.875 1 3.13 44 16 -34

0.999 0.875 5 3.13 -58 24 16

1.000 0.875 2 3.13 34 -62 -62

1.000 0.875 1 3.11 -40 40 2
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Non-parametric results (FSL randomise):

Figure S4: ReHo analysis combining Datasets 1+2 using the raw nightmare frequency scores  (pFWEc = 0.676). 
The t-map is in MNI coor=-6,-3.8,37). Please note that this result is not significant.

Functional connectivity relationship between amygdala-cerebellum and 
nightmare frequency
A 5mm sphere was created around the significant cluster’s peak voxel we identified in 
the non-parametric ReHo analysis. The BOLD eigenvariate specific to the amygdala 
region was extracted as region average signal used as a regressor in a general linear 
model to correlate, per subject, the average amygdala activity with each cerebellar 
voxel within the sphere. Spatial maps for every subject were generated from the 
last step and merged into a 4D volume that was subsequently used as input to FSL 
randomise. Randomization, with ten thousand permutations, was used to associate 
the nightmare frequency scores to its participant functional connectivity map. The 
GLM included nightmare frequency as the main regressor of interest, as well as 
weekly dream frequency scores, sex and age as confound regressors. We examined 
the cerebellar-amygdala functional connectivity independently in Dataset 1, which 
showed no significant voxels (pFWEc = 0.49), as well as in the separate Dataset 2  
(pFWEc = 0.65), with a comparable outcome.
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Abstract
Dreaming represents a complex and universal aspect of human sleep, yet it 
remains an intriguing phenomenon, with the neural mechanisms underlying 
dream experiences and their frequency not fully understood. This study employs 
a multimodal neuroimaging approach, integrating quantitative multi-parameter 
mapping, diffusion tensor imaging, and resting-state functional MRI, to investigate 
the neural correlates of dream recall frequency (DRF) in a large cohort of 258 healthy 
individuals. By employing Linked Independent Component Analysis (LICA), we were 
able to discern distinctive patterns of brain structure and function that correlated 
with variations in DRF. Our findings elucidate a complex relationship between dream 
recall and brain microstructure integrity, particularly in white matter regions of the 
orbitofrontal cortex, parahippocampal gyrus, superior parietal lobule, and occipital 
cortex. Higher DRF was related to increased white matter microstructure integrity in 
these regions and decreased gray matter volume in occipital and temporal areas. In 
terms of functional measures, higher DRF was associated with reduced connectivity 
across a range of resting-state networks, including the default mode, visual, and 
dorsal attention networks. This was particularly evident in the right precuneus 
and posterior cingulate cortex. These results suggest that enhanced dream recall 
may be related to the organization of higher-order visual and cognitive processing 
areas, supporting a top-down model of dreaming. This study contributes to a 
more comprehensive understanding of the neural substrates underlying individual 
differences in dream recall, offering a foundation for future investigations into the 
neurobiology and causal relationships of dreaming. 

Keywords: dream recall frequency, dream traits, dreaming, neuroimaging
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Introduction

Humans spend approximately one-third of their lives asleep, with a considerable 
proportion of this time dedicated to dreaming (Simor et al., 2022). Although it 
is a common experience for many, dreaming encompasses a number of complex 
processes that remain largely unknown to scientists. Firstly, regardless of specific 
brain physiology and connectivity during different stages of sleep, content-specific 
regions in posterior cortical areas are activated, thereby resulting in a dream 
experience (Siclari et al., 2017; Cataldi et al., 2024). Nevertheless, the occurrence of 
a dream does not necessarily guarantee its recall upon awakening. For a dream to 
be remembered, it must undergo successful encoding, whereby the experience is 
transformed into a lasting memory trace, and then retrieved upon waking (Nemeth, 
2023). Numerous hypotheses regarding the potential functions of dreams exist 
(Revonsuo, 2000). Yet, testing them empirically is challenging, particularly due 
to the lack of a physiological marker for dreaming and the reliance on subjective 
dream reports as the primary method for accessing oneiric experiences. Beyond 
exploring the neural correlates of dreaming while they are happening, investigating 
dream traits such as dream recall frequency (DRF) offers insight into the intricate 
processes that contribute to the phenomenon of dreams (Schredl & Montasser, 1996). 
Although retrospective dream recall has limitations, including the potential biases 
of self-report scales and the fragility of memory that can lead to false recollections 
(Beaulieu-Prévost & Zadra, 2015), it remains the most efficient and cost-effective 
method for studying trait dream recall. Furthermore, in contrast to the practice 
of clustering participants into predefined low- and high-dream recall groups, an 
analysis of the full distribution of recall frequency can elucidate the anatomical and 
functional variations in the brain that underlie normal inter-individual differences 
in DRF rather than just the extremes of the spectrum. Here, we employ a data-
driven approach integrating multiple neuroimaging modalities in light of existing 
knowledge on dream generation and recall mechanisms.

Lesion studies and electrophysiological research have identified specific brain regions 
and neural oscillations associated with dream experiences, yet the precise roles these 
brain areas play in the generation, encoding, and retrieval of dreams remain unclear. 
The global cessation of dreaming has been associated with lesions in or near the 
temporal-occipital-parietal junction, posterior cortical regions, and ventromedial 
prefrontal areas, either unilaterally or bilaterally (Solms, 2000). Conversely, lesions 
in the prefrontal and anterior cingulate cortices have been linked to an increase 
in the frequency of dreams, as well as an increase in dream vividness and dream 
reality confusion (Solms, 2000; Vallat et al., 2018). From an electrophysiological 
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perspective, dream experiences during both non-rapid eye movement (NREM) and 
REM sleep exhibit common features. Local high-frequency (20–50 Hz) activity 
over the “posterior hot zone” correlates with dream content, while increased high-
frequency activity over medial and lateral frontal areas is associated with memory 
formation and storage (Siclari et al., 2017). Among the various theories regarding 
the production and functions of dreams, certain aspects of this complex process 
may influence the extent to which a dream experience is successfully recalled. The 
occurrence and intensity of the dream, local brain activations, and post-awakening 
interferences may all be factors in determining whether a dream is recalled or not 
(for a detailed review of these factors, see (Nemeth, 2023)).

Considerable inter-individual variation in DRF is influenced by a range of behavior and 
cognitive factors that seem to be intricately linked to structural and functional brain 
differences. In the general healthy population, this variability has been associated 
with a number of individual factors, including age, gender, personality traits, sleep 
habits, visual imagery, and creativity (Schredl & Montasser, 1996). Furthermore, 
studies examining the relationship between DRF and neuroimaging have revealed 
a complex interplay of structural and functional brain differences contributing to 
individual variations. For instance, neuroanatomical measures of deep gray matter 
structures such as the amygdala and hippocampus are not associated with DRF per 
se. However, they relate to qualitative aspects of dreams, including length, emotional 
load, bizarreness, and vividness (De Gennaro et al., 2011). Individuals with high 
DRF demonstrate higher regional cerebral blood flow (rCBF) in the temporoparietal 
junction during REM sleep, NREM stage 3, and wakefulness, as well as in the medial 
prefrontal cortex during REM sleep and wakefulness. No significant differences 
were reported in the medial prefrontal cortex during NREM stages 2 and 3, and no 
behavioral or cognitive differences were identified between groups (Eichenlaub et al., 
2014). A negative correlation was observed between DRF and cortical volume in the 
medial fusiform and parahippocampal gyrus in the right hemisphere but not in the 
left. White matter integrity in fibers connected to these regions, particularly in the 
fusiform gyrus and inferior longitudinal fasciculus, negatively correlates with DRF 
(Zhou et al., 2019). Another MRI study found no significant differences in grey matter 
density between high and low recallers. However, an increase in white matter density 
in the medial prefrontal cortex of high recallers was observed, suggesting a potential 
role in dream production (Vallat et al., 2018). In terms of functional measures, DRF is 
negatively correlated with connectivity in a number of networks, including the visual, 
thalamic, basal ganglia, and auditory networks. Of particular note are the lateral 
visual network during the night and the posterior cingulate cortex in the morning 
(Zou et al., 2018). These findings highlight the complex and multifaceted relationship 



| 107The Neural Architecture of Dream Recall Frequency

4

between DRF and a range of neuroimaging measures. They also suggest that both 
structural and functional brain differences contribute to individual differences 
in dream recall. However, the shared relationship across different neuroimaging 
modalities remains to be explored.

Linked independent component analysis (LICA) is a refined multimodal data fusion 
technique that simultaneously analyses multiple neuroimaging modalities, such as 
structural Magnetic Resonance Imaging (MRI), functional MRI, and diffusion tensor 
imaging (DTI), with the objective of identifying independent patterns of shared 
variance across these modalities (Groves et al., 2011; Llera et al., 2019). This method 
integrates input data at an early stage of the analysis pipeline rather than combining 
unimodal results post hoc, resulting in a more holistic understanding of brain-
behavior relationships. LICA has been effectively utilized to elucidate the underlying 
neurobiology of several neurodevelopmental disorders, including autism spectrum 
disorder (Mei et al., 2023; Van Oort et al., 2023), obsessive-compulsive disorder (Xu 
et al., 2024), and attention deficit hyperactivity disorder (Itahashi et al., 2015), as 
well as demographic and behavioral characteristics (Llera et al., 2019; Kohn et al., 
2021). The main advantage of LICA is its ability to enhance robustness to noise and its 
sensitivity to detect subtle effects in high-dimensional data that may be overlooked 
by univariate approaches. This is achieved by leveraging the complementary aspects 
of each imaging modality and efficiently modelling the shared variance. Moreover, 
LICA enables the investigation of inter-individual differences in brain measures and 
their relationships to behavioral and clinical phenotypes, which can offer insights 
into conventional diagnostic procedures. Additionally, it is emerging as a powerful 
tool for advancing our understanding of the complex interactions between brain 
structure, function, and behavior in both specific and transdiagnostic contexts.

This study leverages the power of this novel method to investigate the relationship 
between brain structural and functional characteristics with individual variations in 
DRF in a large dataset. We employed quantitative multi-parameter mapping and DTI 
to examine gray and white matter volume and morphology, respectively, and resting-
state functional MRI to assess brain connectivity patterns associated with DRF. This 
comprehensive approach enabled the identification of potential anatomical and 
functional correlates of DRF, thereby providing a more nuanced understanding of the 
neural mechanisms underlying dream generation. By applying LICA to a large cohort 
of over 250 healthy individuals, we aimed to investigate the integrated structural and 
functional brain patterns that differentiate the full frequency spectrum of dream 
recall. This approach contributes to a broader understanding of how individual 
neurobiological variations influence DRF and the generation of dream experiences.
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Methods

The data utilized in this study is part of a large, multi-site study under the EU COST 
Action CA18106 (The Neural Architecture of Consciousness). The dataset encompasses 
MRI and behavioral data collected from healthy participants. The local ethics 
committee, De Videnskabsetiske Komitéer for Region Midtjylland, Denmark, approved 
the research protocol. The participants were recruited through the Center of 
Functionally Integrative Neuroscience (Aarhus University) participant database and 
local advertisement. Some data from the overall project has been published in other 
articles with different aims, and parts of the methods descriptions have been adapted 
from these articles as well as manuscripts in preparation. Specifically, dream recall 
data has previously been used in an article focusing purely on behavioral analyses 
(Tzioridou et al., 2022), and as a control variable in a manuscript investigating 
nightmare frequency in the context of emotional regulation (Pereira et al., 2024).

Participants
A total of 306 participants consented to participate in the study and were compensated 
financially for their time and contributions. Of the total number of participants, 
269 had MRI data available, of which eleven participants were excluded: five due to 
incomplete questionnaires, three due to incomplete functional MRI data, and three 
due to poor structural MRI quality and excessive movement artifacts. Hence, the final 
sample consisted of 258 participants (152 female, with a mean age of 24.89 ranging 
from 18 to 48 years). 

Behavioral materials and procedure
All participants completed an online questionnaire session from home with a total 
duration of around 70 minutes, including a seven-point rating scale assessing 
their DRF (Schredl & Erlacher, 2004), and general health. Typically within a few 
weeks of the scans, in an optional session, they completed the Wechsler Adult 
Intelligence Scale, Fourth Edition (WAIS-IV) (Lichtenberger & Kaufman, 2012). The 
participants were instructed to ensure the questionnaires were completed in an 
undisturbed environment. The DRF scale was recoded into units of mornings per 
week (Stumbrys et al., 2015). Although the evidence for a direct association between 
DRF and IQ is inconclusive, there is a body of literature indicating a link between 
IQ and REM sleep density (Busby & Pivik, 1983). Therefore, we sought to adjust for 
this potential confounding variable in our analysis. Because thirty-one participants 
did not complete the WAIS-IV questionnaire, missing data were handled using 
mean imputation, an approach that is appropriate for datasets where missing 
values are considered to be missing completely at random (Rubin, 2004). While 
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mean imputation is a simple method, it can reduce variability in the data and avoid 
decreasing the sample size. 

MRI data acquisition
The imaging procedures were performed using a Siemens Magnetom Prisma-
fit 3T MRI scanner. Two resting-state fMRI runs (12 and 6 minutes) were recorded 
alongside quantitative multi-parameter mapping (MPM; (Weiskopf et al., 2013)) 
and diffusion-weighted imaging in an approximately one-hour scanning session. 
For each participant, 1500 functional volumes were acquired using an echo planar  
T2*-weighted sequence sensitive to blood-oxygen-level-dependent (BOLD) contrast 
with a multiband acceleration factor of 6 (TR = 700 ms; TE = 33 ms; flip-angle = 53°, 
field of view = 200 × 200 mm, number of slices = 60; slice thickness = 2.5 mm [no gap];  
in-plane resolution = 2.5 × 2.5 mm). 

The MPM protocol was implemented based on the Siemens vendor sequence. 
Three-dimensional (3D) data acquisition consisted of three multi-echo spoiled 
gradient echo scans (i.e., fast low angle shot [FLASH] sequences with magnetization 
transfer saturation (MT), T1, and effective proton density (PD) contrast weighting). 
Additional reference radio-frequency (RF) scans were acquired. The acquisition 
protocol had the following parameters: TR = 18 ms (PDw/T1w) and 37 ms (MTw);  
TE = 2.46/4.92/7.38/9.84/12.30/14.76 ms (PDw/T1w/MTw); flip-angle = 6° (MTw), 4° (PDw), 
and 25° (T1w); voxel size = 1 mm3; field of view = 224 x 256 x 176 mm; phase encoding 
direction = AP; GRAPPA = 2; acquisition times = 3:50 (T1w/PDw) and 7:52 (MTw).

Diffusion-weighted imaging (dMRI) data were acquired using a High-angular 
resolution diffusion imaging (HARDI) protocol conducted within the same session, 
lasting approximately 10 minutes. The HARDI sequence encompassed multiple 
diffusion directions: 75 at b = 2500 s/mm2, 60 at b = 1500 s/mm2, 21 at b = 1200 s/mm2, 
30 at b = 1000 s/mm2, 15 at b = 700 s/mm2, and 10 at b = 5 s/mm2. These varying b-shells 
were acquired in a single series with the following parameters: flip angle = 90°;  
TR = 2850ms; TE = 7 ms; voxel size = 2 mm3; matrix size of 100 x 100, and 84 slices; 
phase-encoding direction = AP with an additional acquisition in the opposite 
phase-encoding direction (PA) at b = 0, 700, 1000, 1200, 1500, 2500 s/mm2 for EPI 
distortion correction.

Structural MRI data pre-processing and gray-matter volume estimation
Synthetic T1w images were generated using the longitudinal relaxation rate (R1) 
and effective proton density (PD) high-resolution maps (acquired during the MPM 
sequence protocol). First, both maps were thresholded to achieve the required 
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FreeSurfer units. The R1 map was transformed into a T1 map by inverting its values, 
then thresholded at zero, and multiplied by one thousand to convert to milliseconds. 
The PD map was thresholded by zero and multiplied by one hundred. All 
manipulations were performed using FSL maths commands. Subsequently, the mri_
synthesize FreeSurfer command was applied to create a synthetic FLASH image based 
on the previously calculated T1 (thresholded 1/R1 map) and proton density map. The 
optional flagged argument for optimal gray and white matter contrast weighting was 
used with the following parameters: 20, 30, and 2.5. Finally, the synthetic T1w image 
was divided by four according to the scale FreeSurfer expected. The pre-processing 
of the structural data using the fMRIprep toolbox was performed in the following 
steps: firstly, the synthetic T1w images were corrected for intensity non-uniformity 
(INU) with N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs 2.3.3 
((Avants et al., 2008), RRID:SCR 004757), and used as T1w-reference throughout the 
workflow. The T1w-reference was then skull-stripped with a Nipype implementation 
of the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target 
template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter 
(WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast 
(FSL 6.0.5.1:57b01774, RRID:SCR 002823, (Zhang et al., 2001)). Brain surfaces were 
reconstructed using recon-all (FreeSurfer 6.0.1, RRID:SCR 001847, (Dale et al., 1999)), 
and the brain mask estimated previously was refined with a custom variation of the 
method to reconcile ANTs-derived and FreeSurfer-derived segmentations of the 
cortical gray-matter of Mindboggle (RRID:SCR_002438, (Klein et al., 2017)). Volume-
based spatial normalization to two standard spaces (MNI152NLin2009cAsym, 
MNI152NLin6Asym, where MNI stands for Montreal Neurological Institute) was 
performed through nonlinear registration with antsRegistration (ANTs 2.3.3), using 
brain-extracted versions of both T1w reference and the T1w template. The following 
templates were selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical 
template version 2009c ((Fonov et al., 2009), RRID:SCR_008796; TemplateFlow ID: 
MNI152NLin2009cAsym), FSL's MNI ICBM 152 non-linear 6th Generation Asymmetric 
Average Brain Stereotaxic Registration Model ((Evans et al., 2012), RRID:SCR_002823; 
TemplateFlow ID: MNI152NLin6Asym0.)  

Voxel-Based Morphometry (VBM) data was derived from the synthetic T1w 
structural images via the standard SPM12 pipeline (https://www.fil.ion.ucl.ac.  
uk/spm/software/spm12/). This approach extracts spatially unbiased estimates of 
voxelwise GM volume. T1w images were automatically segmented into GM, WM, and 
cerebrospinal fluid and affine registered to the MNI template. A high-dimensional, 
nonlinear diffeomorphic registration algorithm (DARTEL) was used to generate 
a study-specific template from GM and WM tissue segments of all participants 
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and then to normalize all segmented GM maps to MNI space with 2-mm isotropic 
resolution. All GM images were smoothed with a 4-mm full width at half maximum 
isotropic Gaussian kernel. Total brain volume was calculated by summing together 
the non-zero voxels in the modulated and warped GM and WM images of the VBM 
output (Malone et al., 2015). 

Functional MRI data pre-processing and connectome construction
First, a reference volume and its skull-stripped version were generated by aligning 
and averaging one single-band reference (SBRef). Head-motion parameters with 
respect to the BOLD reference (transformation matrices, and six corresponding 
rotation and translation parameters) were estimated before any spatiotemporal 
filtering using mcflirt (FSL 6.0.5.1:57b01774, (Jenkinson et al., 2002)). The estimated 
fieldmap was then aligned with rigid-registration to the target EPI (echo-planar 
imaging) reference run. The field coefficients were mapped on to the reference EPI 
using the transform. The BOLD reference was then co-registered to the T1w reference 
using bbregister (FreeSurfer) which implements boundary-based registration (Greve 
& Fischl, 2009). Co-registration was configured with six degrees of freedom. First, 
a reference volume and its skull-stripped version were generated using a custom 
methodology of fMRIPrep. Several confounding time-series were calculated based on 
the preprocessed BOLD: framewise displacement (FD), DVARS and three region-wise 
global signals. FD was computed following Power (absolute sum of relative motions 
(Power et al., 2014)). FD and DVARS are calculated for each functional run, both using 
their implementations in Nipype (following the definitions by Power et al., (2014)). 
The three global signals were extracted within the CSF, the WM, and the whole-
brain masks. Additionally, a set of physiological regressors were extracted to allow 
for component-based noise correction (CompCor (Behzadi et al., 2007)). Principal 
components were estimated after high-pass filtering the preprocessed BOLD time-
series (using a discrete cosine filter with 128s cut-off) for the two CompCor variants: 
temporal (tCompCor) and anatomical (aCompCor). For aCompCor, three probabilistic 
masks (CSF, WM and combined CSF+WM) are generated in anatomical space. The 
implementation differs from that of Behzadi et al. (2007) in that instead of eroding 
the masks by 2 pixels on BOLD space, the aCompCor masks are subtracted from a 
mask of pixels that likely contain a volume fraction of GM. This mask is obtained by 
dilating a GM mask extracted from the FreeSurfer's aseg segmentation, and it ensures 
components are not extracted from voxels containing a minimal fraction of GM. 
Finally, these masks are resampled into BOLD space and binarized by thresholding at 
0.99 (as in the original implementation). Components are also calculated separately 
within the WM and CSF masks. For each CompCor decomposition, the k components 
with the largest singular values are retained, such that the retained components' 
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time series are sufficient to explain 50 percent of variance across the nuisance mask 
(CSF, WM, combined, or temporal). The remaining components are dropped from 
consideration. The head-motion estimates calculated in the correction step were also 
placed within the corresponding confounds file. The confound time series derived 
from head motion estimates and global signals were expanded with the inclusion of 
temporal derivatives and quadratic terms for each (Satterthwaite et al., 2013). Frames 
that exceeded a threshold of 0.5 mm FD or 1.5 standardized DVARS were annotated 
as motion outliers. The BOLD time-series were resampled into standard space, 
generating a preprocessed BOLD run in MNI152NLin2009cAsym space. Many internal 
operations of fMRIPrep use Nilearn 0.8.1 ((Abraham et al., 2014), RRID:SCR_001362), 
mostly within the functional processing workflow. For more details of the pipeline, 
see the section corresponding to workflows in fMRIPrep's documentation.

For the streamlined application of additional denoising components and data-
cleaning strategies within a single framework, we utilized rs-Denoise (Kliemann 
et al., 2022) (please see https://github.com/adolphslab/rsDenoise), an open-source 
Python-based pipeline. This pipeline involved several steps: (1) z-score normalization 
of the signal at each voxel; (2) removal of linear and quadratic trends with polynomial 
regressors; (3) utilization of fMRIPrep’s aCompCor parameters, to regress out five 
components derived from whole-brain mean signals; (4) utilization of translational 
and rotational realignment parameters and their temporal derivatives as explanatory 
variables in motion regression; (5) temporal filtering was performed with a discrete 
cosine transform (DCT) filter with a cutoff frequency of 0.008 Hz. Lastly, the pre-
processed runs were smoothed using a 4-mm full-width at half maximum (FWHM) 
Gaussian kernel and concatenated along the time domain. Individual fMRI 
recordings were then parceled into 416 cortical and subcortical brain regions using 
the Melbourne Subcortex Atlas (Tian et al., 2020) (Schaefer2018, 400 Parcels and  
7 Networks and Tian Subcortex scale 1), and functional connectivity (FC) matrices 
were generated for each participant. 

Diffusion MRI data pre-processing and white-matter 
microstructure estimation
The preprocessing of dMRI data was executed using custom MATLAB scripts tailored in-
house. These scripts proficiently filtered noise and eradicated prevalent artifacts such as 
Gibbs ringing, susceptibility distortion, motion, and eddy current-induced distortions. 
To provide further detail, data are denoised through the process of decomposition, 
which assumes that the variation occurring in the b-directions is similar in the 
neighborhood of the voxel. The method was adapted from Veraart et al. (2016). Gibbs 
ringing is corrected using the function 'unring', which is based on the approach 
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described by Kellner (Kellner et al., 2015). FSL's function 'eddy' (http://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/EDDY) is an integrated approach correcting for off-resonance effects 
and subject movement in dMRI, and the methodology entails the following steps: first, 
FSL's 'topup' is employed to estimate the susceptibility field and generate unwarped 
b=0 images. Subsequently, the unwarped b=0 images are brain-masked using FSL 
'bet'. Finally, a combined eddy current correction, unwarping, and motion correction 
are performed using FSL 'eddy'. Individual voxelwise fractional anisotropy (FA), mean 
diffusivity (MD), and radial diffusivity (L1) maps were computed using dtifit within 
the FSL software package (Smith et al., 2004). These four DTI features were selected 
based on their ability to capture different aspects of white matter microstructure. For 
example, FA is a scalar value indicating the degree of anisotropy in water diffusion 
within a voxel, thus distinguishing directional orientation from isotropy; MD, another 
scalar value, reflects the average magnitude of water diffusion within a voxel and 
provides insight into the overall diffusion rate and structural properties of the tissue. 
Unlike MD, which provides information independent of direction, the first eigenvalue 
(L1) indicates the magnitude of diffusion along the primary direction, correlating with 
myelin structure or myelination. FA image processing involved a tract-based spatial 
statistics pipeline with registration to the FMRIB58_FA standard space. This was 
followed by the skeletonization of the mean group white matter and the projection of 
individual data onto the skeleton. The resulting mean skeleton image was thresholded 
at FA 0.2, with other DTI metrics (MD, L1) projected onto the FA skeleton using the 
tbss_non_FA option. Prior to integration into the subsequent data fusion model, all 
DTI data were standardized to 1 mm isotropic resolution.

Modalities fusion analysis
We employed LICA (Groves et al., 2011; Llera et al., 2019) to integrate inter-participant 
variability shared across five features: gray matter volume (VBM), white matter 
microstructure (FA, MD, L1), and functional connectivity (FC). LICA is a Bayesian 
multimodal extension of the ICA model that allows for simultaneous factorizations 
across multiple data modalities, connecting them at the participant level through 
a shared mixing matrix that represents each participant's contribution (one scalar 
value per participant) to each independent component. This technique provides, for 
each independent component (IC), a vector indicating the contribution (weight) of 
each modality and a spatial map per modality showing the extent of spatial variation 
(Beckmann et al., 2005). Considering our sample size and the recommendation that the 
model order be less than 25% of the sample size (Groves et al., 2012), we report results from 
a 63-dimensional factorization. Given our primary interest in multimodal components, 
and the fact none of the unimodel components correlated with DRF (Supplementary 
Table 1), we excluded any components where a single modality contributed more than 
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50% of the total variance (Kohn et al., 2021; Van Oort et al., 2023). Additionally, seven 
components were driven by a single participant, therefore, these components were 
not included in the correlation analysis (Supplementary Figure 2). To demonstrate the 
robustness of the factorization choice, different model order (60 and 65-dimensional 
factorizations) decompositions were also performed (Supplementary Figure 3, 4 and 5). 
For visualization purposes, the spatial maps were thresholded at |Z| > 3.0.

Statistical Analyses
Following the methodology of Llera et al., (2019), we conducted a permutation test 
to determine the significant Spearman partial correlations between the subject 
loadings on the independent components, derived from LICA, and our measure of 
DRF, controlling for age, sex, IQ, and total brain volume. Multiple comparisons were 
addressed using FDR correction (p<0.05), according to Benjamini and Hochberg 
(1995). The analyses were performed in R, and a fixed random seed was used to ensure 
the reproducibility of our results.

Results

Study population and general results
Participants reported an average DRF of 2.17 times per week (SD=2.05) and an 
average WAIS-IV score of 112.05 (SD=9.86) (Figure 1A). There was no evidence of age 
(rho=-0.035, p=0.57), sex (rho=0.116, p=0.062), or IQ-related (rho=0.060, p=0.367) 
differences in DRF. Nevertheless, in order to align with the methodology employed in 
previous studies, sex, age, and IQ were controlled for in the analyses. 

LICA decomposition and statistical results
LICA was used to decompose the multi-modal MRI data into 63 ICs (Figure 1B and 
Supplementary Figure 1). Of the 63 components, 46 were identified as multimodal, 
reflecting shared variance across different modalities. The statistical analysis 
revealed a single significant correlation between independent component 51 (IC51) 
and DRF (rho=-0.20, pFDRc=0.03), while controlling for total brain volume. To further 
confirm the stability of our results, we controlled for age, sex, and IQ in an additional 
partial correlation analysis (rho=-0.19, pFDRc=0.04). From the robustness analysis, we 
observed that IC51 is reproducible across different model orders (see, Supplementary 
Material for more details). The relative contributions from different modalities to 
IC51 were as follows: 18.40% for radial diffusivity (L1), 25.02% for mean diffusivity 
(MD), 11.72% for fractional anisotropy (FA), 7.24% for gray matter volume (VBM), and 
37.62% for functional connectivity (FC) (Figure 1C). 
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Figure 1: Demographic and LICA pipeline overview. A: Density distribution of the dream recall frequency 
scores (recoded into units per week) of females and males; B: (1) Diffusion-tensor, functional, and 
structural MRI data are used to extract relevant features, that is, radial diffusivity (L1), mean diffusivity 
(MD), fractional anisotropy (FA), gray matter volume as measured by Voxel-Based Morphometry (VBM), 
and functional connectivity (FC). (2) The aforementioned features are then utilized as input to the LICA 
algorithm, generating 63 independent components (IC), with the percentage of the distinct modalities 
contributions. Subsequently, the subject loadings of each independent component are combined with 
the behavioral data. (C) Among all independent components, multi-modal IC51 demonstrated a 
significant association with dream recall frequency. 

Figure 2 presents the summarized images of each modality’s spatial map of IC51. 
DRF was associated with greater white microstructure integrity (reduced MD/L1 
values) located in the frontal orbital cortex, parahippocampal gyrus, superior parietal 
lobule, and occipital cortex, particularly in the higher-order visual areas (V3 and V4). 
Furthermore, DRF was associated with lower gray matter volume in the occipital 
cortex (specifically in the V1 and V2 areas). 
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Moreover, our results demonstrated enhanced functional connectivity within the 
occipital regions of the visual network, parietal regions of the default mode network, 
and sensorimotor networks (Figure 3A), and increased connectivity within the 
nucleus accumbens and left thalamus related to DRF. The observed relationships and 
the involvement of distinct brain regions underscore the complexity of the neural 
mechanisms underlying dream recall and emphasize the roles of microstructural and 
functional connectivity changes in this process.

Additionally, the analysis demonstrated a reduction in functional connectivity, 
particularly between the parietal and temporal regions of the default mode, visual, 
sensorimotor, and dorsal attention networks, as well as within the dorsal attention 
network (Figure 3B). In contrast, DRF was associated with regions exhibiting 
increased FA and GM values, indicative of superior white matter microstructural 
integrity and gray matter volume. These regions included the middle frontal gyrus 
and several small clusters in the occipital and temporal cortex. 

Figure 2: Brain Regions Associated with Dream Recall Frequency. Summary of the multimodal 
component (IC51) reveals the regions associated with dream recall frequency. The voxel-based 
morphometry (VBM) spatial map was thresholded at 3<|z|<8. The clusters of diffusion tensor imaging 
features were filled and thresholded at 3<|z|<8, then smoothed using a 0.3-mm Gaussian kernel in FSL 
for visualization purposes. Mean diffusivity (MD), radial diffusivity (L1), and fractional anisotropy (FA). 
The green map is the standard FMRIB58_FA-skeleton template provided in FSL.
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Figure 3: Inverse Relationship Between Functional Connectivity and Dream Recall Frequency. Functional 
connectivity is inversely associated with dream recall frequency. The connections were initially 
thresholded at |z|>3 and subsequently clustered according to their affiliation with the respective resting-
state network. The positive (Figure 3A) and negative (Figure 3B) edges were thresholded at the 99th 
percentile for visualization purposes. DMN: Default mode network, Control: Control network,  
VAN: Ventral attention network, Su.: Subcortical network, Limb: Limbic network, Sensorimotor: 
Sensorimotor network, Visual: Visual network, and DAN: Dorsal attention network. 

Discussion

The present study employs a comprehensive, multimodal neuroimaging approach 
to investigate the neural correlates of DRF, with a particular focus on both brain 
structure and function. Our findings indicate an inverse relationship between DRF 
and brain microstructure integrity, volume, and functional connectivity. It is crucial 
to highlight that among the selected DTI modalities, high and low FA values indicate 
greater and poorer white matter microstructure, respectively. Conversely, for the MD 
and L1 modalities, high values indicate poorer microstructure integrity, whereas low 



118 | Chapter 4

values indicate greater white matter microstructure integrity. Our findings will be 
further interpreted in terms of their association between higher and lower DRF and 
the observed neuroimaging findings. For instance, we observed greater white matter 
microstructure integrity in several regions, including the frontal orbital cortex, 
parahippocampal gyrus, superior parietal lobule, and occipital cortex, particularly in 
the higher-order visual areas (V3 and V4) association with higher DRF. Furthermore, 
higher DRF was associated with lower gray matter volume in the occipital cortex 
(specifically in the V1 and V2 areas). Conversely, lower DRF was associated with 
reduced white-matter microstructure in the frontal orbital cortex, middle frontal 
gyrus, parahippocampal gyrus, and specific regions of the parietal cortex. These 
findings can be interpreted from a dual perspective: brain regions potentially 
contributing to dream generation and those related to DRF. 

Gray and white-matter morphology relationship with dream 
recall frequency
Dream experiences have been linked to localized increases in electroencephalogram 
(EEG) high-frequency (20–50 Hz) and reduced low-frequency (1–4 Hz) delta activity 
within posterior-occipital cortical regions during both REM and NREM sleep 
(Siclari et al., 2017). Similar patterns have been observed in dreams following NREM 
parasomnia episodes, where conscious experiences were associated with reduced 
delta and increased beta activity in the posterior cortical regions, including the 
primary visual cortices, occipital-temporal areas, medial temporal regions, and parts 
of the precuneus and posterior cingulate cortex (Cataldi et al., 2024). These findings 
suggest that dream generation is driven by distinct oscillatory patterns characterized 
by decreased low-frequency and increased high-frequency oscillations across specific 
brain areas, regardless of the sleep stage. Our findings align with these observations, 
as we observed enhanced white matter microstructure integrity in parietal-occipital 
regions, which are associated with higher DRF. This microstructure reflects well-
organized and densely packed fibers that may facilitate optimal neural coordination 
and, thus, oscillatory activity. These results highlight the importance of particular 
brain areas and their microstructure integrity in facilitating the neural activity that 
underpins dream experiences and their frequency.

Our findings revealed a link between reduced gray matter volume in early visual 
areas (V1 and V2) and enhanced white matter microstructure integrity in higher-
order visual areas (V3 and V4) and higher dream recall. In addition to processing 
fundamental visual characteristics such as color and pattern, V4 plays a role in visual 
learning, stimulus selection, and the translation of learned pattern relationships 
across the visual field. Furthermore, this area is modulated by attention, stimulus 
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relevance, and perceptual context. V3 and V4 serve as critical connectors between 
early visual areas and higher-order cortical regions, integrating visual information 
across specialized channels and filtering it for higher-order brain regions (Farah, 
1989). Empirical evidence supports the top-down model of dreaming, which proposes 
that cognitive processes, rather than sensory-motor inputs, primarily drive dream 
content (Foulkes & Domhoff, 2014). Studies have demonstrated that dreaming is 
associated with activity in higher-order brain regions, including the prefrontal cortex 
and association areas, which are crucial for imagination and narrative construction 
(Nir & Tononi, 2010). Increased high-frequency activity was observed in the frontal 
regions during NREM sleep when contrasting dream experiences with and without 
content recall (Siclari et al., 2017). This perspective is further reinforced by the 
observed greater microstructure integrity of the frontal orbital cortex, a region that 
integrates complex sensory information and is essential for processing reward values, 
learning associations, and emotional responses (Rolls, 2004). Our findings align with 
this perspective and support the idea that dreaming engages high-level cognitive 
processes, including those mediated by the frontal orbital cortex and higher-order 
visual areas. These results contribute to a more comprehensive model of dreaming, 
highlighting the importance of higher-order brain regions and cognitive systems in 
the formation and recall of dreams.

The findings presented here can be extended to other brain regions, such as the 
parahippocampal gyrus, which plays a crucial role in connecting the default-mode 
network with the medial temporal lobe memory system and mediating functional 
connectivity between the hippocampus and posterior cingulate cortex (Ward et al.,  
2014). Furthermore, the parahippocampal gyrus plays a pivotal role in the relay of 
information between the hippocampal formation and other regions of the cerebral 
cortex, particularly the association cortices in monkeys (Van Hoesen, 1982), the 
direct electrical stimulation of the parahippocampal place area evoked topographic 
visual hallucinations, thereby demonstrating that the stimulation of higher-order 
visual areas can induce complex hallucinations in humans (Mégevand et al., 2014). 
Taken together, our findings indicate that individuals with greater white matter 
microstructure integrity in the parahippocampal gyrus recall their dreams more 
frequently, in line with these regions’ roles in processing contextual associations 
and memory processing. Given the methodological differences between our 
study and that of Zhou and colleagues (Zhou et al., 2019), a direct comparison 
is not possible. While Zhou et al. reported an inverse relationship between fiber 
integrity in the parahippocampal and fusiform gyri and DRF using a probabilistic 
tractography approach in an examination of 43 participants, we did not observe this 
same association in our data-driven analysis of white-matter integrity based on 
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distinct DTI modalities. Their method specifically traced fibers connecting the two 
regions and focused on tracts that were consistently present across participants. In 
contrast, our approach did not explicitly assess fiber connectivity between regions. 
Furthermore, we did not identify any significant clusters in the fusiform gyrus, which 
makes direct comparisons with this previous finding challenging. Nevertheless, 
further research is required to more accurately define the spatial relationship 
between the parahippocampal area, dreaming, and trait dream recall. 

Although we observed an association between higher DRF and greater white 
matter integrity in the frontal cortex, we did not find a link between increased 
medial prefrontal cortex white matter integrity linked to high DRF, as reported by 
Vallat and colleagues (2018). This discrepancy may be attributed to methodological 
differences between the studies. Our study employed DTI to assess white matter 
integrity, whereas Vallat et al. utilized voxel-based morphometry to quantify white 
matter density. Moreover, Vallat et al. focused on specific regions, including the 
medial prefrontal cortex, temporoparietal junction, hippocampus, and amygdala, 
comparing individuals with low and high DRF. In contrast, our approach was a whole-
brain analysis that did not restrict the investigation to between-group comparisons. 
Instead, we examined regions associated with trait dream recall across a continuous 
spectrum. Additionally, although high DRF has been associated with increased rCBF 
in the temporoparietal junction (Eichenlaub et al., 2014), our observation of decreased 
white microstructural integrity in the inferior temporo-occipital gyrus, which has 
been associated with reduced rCBF (Chen et al., 2013), suggests a possible divergence 
from these results. These differences underscore the importance of methodological 
considerations and highlight the need for further research to reconcile these findings 
and fully understand the neural correlates of DRF.

Functional connectivity relationship with dream recall frequency
Higher dream recall was associated with a widespread decrease in functional 
connectivity observed across various resting-state networks. This decrease was 
particularly evident between frontal, parietal and temporal regions of the default 
mode and visual networks, as well as between the sensorimotor and dorsal attention 
networks and within the dorsal attention network itself. A notable reduction in 
connectivity within the default mode network was observed, particularly in the 
right precuneus, prefrontal cortex, and posterior cingulate cortex. These findings 
are consistent with those of Zou and colleagues (2018), who reported a negative 
correlation between DRF and connectivity within the lateral visual network, the 
thalamus, and the posterior default mode network, thus indicating that decreased 
brain functional connectivity is linked to higher DRF. Similarly, we found that 
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decreased functional connectivity in the thalamus, amygdala, globus pallidus, 
left hippocampus, and specific subregions of the visual, sensorimotor and dorsal 
attention networks was associated with frequent dream recall. In terms of functional 
connectivity relationship with high-frequency (20–50 Hz) neural oscillations, a 
study using laminar fMRI found a negative correlation between beta power and 
interregional layer connectivity, indicating that increased beta power reflects 
reduced laminar-specific connectivity in the visual cortex. In contrast, gamma band 
activity did not show a relationship with laminar connectivity, suggesting that while 
gamma activity is associated with the strength of the BOLD signal in middle and 
superficial layers, it does not correlate with changes in laminar fMRI connectivity 
within and between brain regions (Scheeringa et al., 2023). Clinically, pathological 
high-frequency oscillations (>80 Hz) have been linked to decreased cortical 
functional connectivity during seizure initiation and propagation (Ibrahim et al., 
2013). Together, these findings offer valuable insights for interpreting our results, as 
they suggest that dream experiences accompanied by content recall are characterized 
by heightened high-frequency power in medial and lateral frontoparietal areas, 
potentially reflecting distinct neural dynamics underlying the recall of dream content 
(Siclari et al., 2017). 

In contrast, lower DRF was associated with increased functional connectivity in 
the occipital areas of the visual network, parietal regions of the default mode and 
sensorimotor networks, as well as in the nucleus accumbens and left thalamus. 
Although our results are based on data collected during wakefulness, the increased 
functional connectivity within these regions may reflect underlying neural 
activity that supports low-frequency oscillations during sleep. Prior research has 
demonstrated a close relationship between low-frequency electrophysiological 
signals, such as delta oscillations, and resting-state fMRI signals. Specifically, the 
BOLD hemodynamic response has been shown to correlate with power coherence 
in the low-frequency delta band across various states of consciousness, including 
wakefulness, REM sleep, and NREM sleep, in both human and animal studies (Lu 
et al., 2007; He et al., 2008; Wilson III et al., 2016). The increased connectivity in 
posterior parietal, occipital, and thalamic regions observed in our study may indicate 
a stable neural configuration that is optimal for delta oscillation synchronicity and 
propagation. This hypothesis aligns with the neural dynamics observed during sleep, 
particularly when dream content recall is low, where increased delta oscillations are 
associated with diminished cortical activation and reduced conscious awareness 
and, consequently, dream experiences (Siclari et al., 2017). Although drowsiness and 
sleep-like activity can be observed during resting-state fMRI (Tagliazucchi & Laufs, 
2014), the total recording time in our study was 18 minutes, shorter than typical 
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resting-state or task-based recordings. While it is possible that some participants 
experienced brief periods of drowsiness, it is unlikely that most would have reached 
deeper sleep stages, where delta activity dominates. Instead, the association 
between resting-state functional signals and delta oscillations across various states 
of consciousness provides a plausible mechanistic explanation for our findings that 
increased functional connectivity observed in the parietal, occipital, and thalamic 
regions during wakefulness may serve as a precursor to the neural dynamics that 
occur during sleep, where local increases in delta power have been correlated with 
the absence of dream reports (Siclari et al., 2017). Further research is required to 
elucidate the relationship between functional connectivity and neural oscillations 
across different states of consciousness in humans. 

Limitations and conclusions
In the present study, we employed LICA to explore the neural correlates of trait 
dream recall. While LICA is an effective method for integrating data from different 
modalities, providing a comprehensive and biologically informative view of 
complex phenomena, several limitations should be noted. First, the efficacy of the 
method may be affected by variability in the number of features and distributions 
across modalities. Moreover, it is important to interpret the results of correlational 
studies cautiously, as there is currently no causal evidence to suggest that specific 
brain structure and functional features are directly involved in dream experiences. 
Our investigation of trait dream recall frequency may potentially overlook state 
components that may have influenced factors such as sleep stages, dream diaries, 
and daily events. These factors may have functional correlates rather than anatomical 
correlates. Future research may address these limitations by exploring additional 
measures related to state dream recall and sleep. The combination of simultaneous 
EEG/fMRI recordings over consecutive days, assessing both trait, retrospective 
and prospective dream recall, with serial awakening paradigms, has the potential 
to provide ongoing insights into the relationship between brain activity, dream 
production and dream recall. Furthermore, the incorporation of dream diaries 
would facilitate a more comprehensive capture of state-related aspects of DRF, 
given the potential for these to vary over time and influence the associations with 
anatomical and functional brain measures. Ultimately, validating our findings 
with neurostimulation techniques and extending the analysis to encompass both 
structural and functional brain aspects will be vital for a more comprehensive 
understanding of the neural correlates of dream memory recall. Further research is 
required to confirm these findings, with more diverse samples.
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Data and Code Availability
Data cannot be shared publicly because it is part of an ongoing study and is thus 
considered unanonymized under Danish law even if pseudonymized. Researchers 
who wish to access the data may contact Dr. Kristian Sandberg (kristian.sandberg@
cfin.au.dk) at The Center of Functionally Integrative Neuroscience and/or The 
Technology Transfer Office (TTO@au.dk) at Aarhus University, Denmark. After 
permission has been given by the relevant data committee, data will be made available 
to the researchers. No custom code was used in this study. Publicly available software 
tools were used to perform analyses and are referenced throughout the manuscript.
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Supplementary material

This supplementary material is intended to present the reader with further 
information about the analyses presented in the primary manuscript. 

Linked-Independent Component Analysis of Model Order 63

Supplementary Figure 1: Modality contributions for the 63-dimensional factorization. This study 
examines the modality contributions of the 63-dimensional factorization. The independent component 
highlighted in red significantly correlated with dream recall frequency. From the 63 independent 
components, those marked with an asterisk were excluded from the statistical analysis. This was 
because one single modality contributed to more than 50% of the total contributions, as was the case 
with components 1, 2, 5, 6, 7, 8, 10, 18, 20, 34, and 36. Furthermore, components 10, 15, 22, 34, 38, 44, 52,  
and 60 were not included in the final statistical analysis. This was due to the fact that they were driven 
by a single subject. Radial diffusivity (L1), mean diffusivity (MD), fractional anisotropy (FA), gray matter 
volume (Voxel-Based Morphometry - VBM), and functional connectivity (FC).
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Supplementary Table 1: Excluded unimodal independent components and their corresponding p-values 
uncorrected and corrected, respectively. 

Excluded Unimodal Independent Components (ICs)

IC rho p-value p-value (corrected)

IC1 -0.0495 0.425 0.934642373

IC2 -0.09946 0.1177 0.934642373

IC5 0.050721 0.4312 0.934642373

IC6 -0.02418 0.6971 0.934642373

IC7 -0.03533 0.5811 0.934642373

IC8 0.091886 0.1408 0.934642373

IC10 -0.04008 0.5271 0.934642373

IC18 -0.05805 0.3484 0.934642373

IC20 0.048375 0.4464 0.934642373

IC34 0.043837 0.4974 0.934642373

IC36 0.038101 0.5464 0.934642373

Supplementary Figure 2: The independent components dominated by a single subject, information 
output from LICA. Based on the fraction of energy, and represented by the dashed line, the following 
components were excluded from the statistical analysis: components 10, 15, 22, 34, 38, 44, 52, and 60. 

Robustness of the model order
To evaluate the stability of the results obtained when different model orders are 
selected. Correlation analyses were conducted between the subject-mode components 
of the presented 63-dimensional factorization and those of the 60- and 65-dimensional 
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factorizations. The top row of Figure 1 depicts the correlation matrices between the 
63-dimensional factorization (y-axis) and the factorizations with 60 and 65 components 
(left and right panels, respectively). Only those correlations that were statistically 
significant after the false discovery rate (FDR) correction are displayed; that is, those 
with p-values smaller than 0.05/(63 × 60) and 0.05/(63 × 65). Moreover, the bottom row of 
Figure 1 illustrates the reproducibility of independent component 51. The figure depicts 
the sorted absolute correlations for IC51 across the model orders (60 vs. 63 and 63 vs. 65),  
thereby demonstrating its stability across dimensionality choices. As illustrated in the 
plot, IC51 exhibits consistent high correlation values across different model orders, 
thereby underscoring its robustness and emphasizing its significance in our analysis.

Supplementary Figure 3: Correlation Stability of Independent Component 51 Across Model Orders:  
Significant correlations are demonstrated between the reported 63-dimensional factorization and the 
60-dimensional (left panel) and 65-dimensional (right panel) factorizations. The bottom row presents 
sorted absolute correlations for independent component 51 for each of the 63-dimensional 
factorizations with the corresponding components from the other model orders, thereby highlighting 
its stability and robustness across model orders.
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Supplementary Figure 4: Modality contributions for the 60-dimensional factorization. 
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Supplementary Figure 5: Modality contributions for the 65-dimensional factorization. 
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Abstract

Understanding the neural basis of dreaming has remained a puzzle in consciousness 
research, due to the lack of distinct neurophysiological markers. This study 
investigates the neural correlates of dreaming during light non-REM (NREM) sleep 
using simultaneous EEG/fMRI recordings and a novel Global Dream Index (GDI) 
that integrates subjective ratings of dream content, such as emotion, motivation 
and narrative coherence, with objective metrics such as total word count and long-
term dream recall. Using a serial awakening paradigm, we examined the relationship 
between resting-state network connectivity and the GDI to elucidate the role of 
the default mode network (DMN) and other association networks in conscious 
experience during sleep. Our results show that functional connectivity within the 
DMN, frontoparietal and ventral attention networks is positively correlated with 
richer dream experiences. Specifically, positive connectivity between left temporal 
cortex and right dorsal medial prefrontal cortex (dmPFC), left parietal regions and 
right ventral prefrontal cortex, and connections between right parietal, dmPFC and 
precuneus regions within the DMN were associated with heightened GDI scores. 
Similar patterns emerged within the frontoparietal and ventral attention networks, 
linking parietal, temporal and insular regions to more elaborate dream reports. By 
integrating subjective and objective measures, our results highlight the critical role 
of resting-state networks in shaping conscious experience during sleep, suggesting 
a common neural substrate for dreaming and waking cognition. This study advances 
our understanding of dream experiences and sets the stage for future work on the 
neurobiology of dreaming across sleep stages.

Keywords: dreaming, functional connectivity, NREM dreams, DMN, frontoparietal
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Introduction

Understanding the neural basis of dreaming is critical for advancing our knowledge 
of human consciousness. Sleep provides a unique and universally accessible window 
into consciousness, unlike anesthesia or other altered states, because it allows the 
study of spontaneous mental experiences under different physiological conditions. 
Investigating how and why we dream can provide unique insights into the neural 
mechanisms that support conscious experience, memory processing, and emotional 
regulation. Historically, rapid eye movement (REM) sleep (Aserinsky & Kleitman, 
1953),   has been associated with dreaming due to its neurophysiological features, 
including desynchronized cortical activity, rapid eye movements, and increased 
brain metabolism. Its resemblance to wakefulness, combined with the fact that early 
studies reported a higher frequency of dream reports from REM sleep compared 
to non-REM (NREM) sleep, led to the mistaken belief that dreaming was exclusive 
to this electrophysiologically active stage (Dement & Kleitman, 1957). However, 
subsequent research has demonstrated that dreaming can occur across all sleep 
stages (Foulkes, 1962; Siclari et al., 2013), challenging the traditional REM-centric 
view and highlighting the need for a broader investigation into the neural correlates 
of mental experiences across the sleep cycle.

Advances in functional neuroimaging have enabled the identification of seven 
general brain networks, which can be broadly categorized into sensory, visual and 
sensorimotor, and association networks, including the dorsal and ventral attention, 
limbic, frontoparietal, and default-mode networks (DMN) (Schaefer et al., 2018; 
Thomas Yeo et al., 2011). During waking states, the four association networks are in 
constant communication, however, after sleep onset, these interactions progressively 
diminish (Chang et al., 2013; Dixon et al., 2018). Notably, the DMN, which plays a crucial 
role in internally generated thought processes, including mind-wandering and self-
referential cognition during wakefulness (Mason et al., 2007; Christoff et al., 2009), 
remains active into NREM sleep stage 2  (Horovitz et al., 2008; Larson-Prior et al., 
2009; Sämann et al., 2011; Tagliazucchi et al., 2013), even as other networks deactivate, 
suggesting its involvement in maintaining internal mentation during sleep. Dreaming 
occurs across both REM and NREM sleep stages (Solms, 2000; Oudiette et al., 2012), 
and functional neuroimaging studies, including findings on dream recall frequency, 
support the idea that distinct brain regions contribute to the neurocognitive processes 
underlying dreaming (De Gennaro et al., 2011; Fox et al., 2013; Eichenlaub et al., 2014).

Empirical evidence supports the Internal Mentation Hypothesis, which proposes 
that the DMN facilitates self-reflective thinking, task-unrelated thoughts, mind-
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wandering, autobiographical recall, and future planning (Binder et al., 1999; Gusnard 
et al., 2001; Buckner et al., 2008), which is consistent with the idea that DMN activity, 
particularly in passive states, reflects spontaneous internal thoughts rather than 
externally directed cognitive processes (Andrews-Hanna, 2012). A study investigating 
the specific nature of DMN-supported thinking identified two primary subsystems: 
the dorsal medial prefrontal cortex (dmPFC) subsystem and the medial temporal 
lobe (MTL) subsystem (Andrews-Hanna et al., 2010). The dmPFC subsystem, which 
includes regions such as the temporoparietal junction (TPJ), lateral temporal cortex, 
and temporal pole, is critical for reflecting on and evaluating personal and social 
mental states. This subsystem particularly engages in tasks involving social cognition, 
reasoning, moral dilemmas, and non-social cognitive functions, suggesting its broad 
involvement in introspective processes. On the other hand, the MTL subsystem, 
including regions such as the retrosplenial cortex, posterior cingulate cortex (PCC), 
posterior inferior parietal lobule, and medial prefrontal cortex, is central to memory 
retrieval and is engaged during tasks involving autobiographical memory, contextual 
associations, and self-related future scenarios and decisions. Notably, the anterior 
medial prefrontal cortex and PCC are functional hubs that share properties across 
both subsystems. Supporting this view, studies linking DMN activity to mind-
wandering and self-referential thought processes during wakefulness (Mason et al., 
2007; Christoff et al., 2009) and findings from lesion studies of dreaming further 
reinforce the role of the DMN. Specifically, lesions in the ventral medial prefrontal 
cortex or TPJ have been shown to result in the total cessation of dreaming. Together, 
these various lines of evidence point to the hypothesis that the neural substrate for 
dreaming may involve specific DMN subsystems (Fox et al., 2013) in coordination 
with other brain networks to underlie both the generation and recall of dream 
experiences, irrespective of sleep stage.

Dreaming, a key manifestation of mental experiences ranges from simple 
perceptual phenomena to elaborate, story-like narratives. Despite its importance in 
consciousness studies, investigating dreams comes with unique challenges, primarily 
due to their retrospective and subjective nature, marked by the absence of a clear 
neurophysiological marker for dreaming. While prior research has suggested that the 
DMN plays a crucial role in internally generated thought processes, the precise neural 
dynamics underlying dream generation remain unresolved. Specifically, it is unclear 
how different subsystems of the DMN interact with other large-scale networks 
during sleep to support the varied phenomenology of dreams. Additionally, while 
EEG studies have provided valuable insights into the electrophysiological correlates 
of dreaming, they lack the spatial resolution necessary to pinpoint the involvement 
of specific brain regions and network interactions. The combination of fMRI and 



| 139Default-mode network involvement in non-REM sleep dreaming

5

EEG presents a unique opportunity to overcome these limitations by combining high 
spatial and temporal resolution, allowing for a more comprehensive investigation of 
the neural basis of dreaming. However, EEG/fMRI sleep studies come with significant 
methodological challenges, including signal artifacts, participant discomfort, and 
the difficulty of maintaining sleep in the scanner (Pereira et al., 2025). Given these 
limitations, studies that combine EEG/fMRI with a serial awakening paradigm 
are essential, as they allow for the direct assessment of neural activity preceding 
dream reports, providing a novel and more precise approach to studying the neural 
mechanisms underlying dreaming.

This paper aims to explore light (N1 and N2) NREM sleep dreams, which we will refer 
to as NREM mentation, by using simultaneous EEG/fMRI recordings. Using a serial-
awakening paradigm, we examined how resting-state networks relate to combined 
subjective and objective measures of dreaming. Given the inherent challenges of 
sleep imaging leading to a moderate sample size, analyzing individual measures 
separately would limit the scope of our findings and might increase false positives. 
Therefore, we developed a composite measure of dreaming, the Global Dream Index 
(GDI), which integrates subjective measures such as the amount of dreaming, 
emotion, storylikeness, and motivation, as rated by participants for each mentation 
report, alongside the objective measure of total recall count, which reflects the word 
count of each report, as well as memory on the next day and six months after the 
experimental nap. By combining these measures, the GDI provides a holistic index 
of dream richness, offering deeper insights into the interplay between subjective 
and objective aspects of dreaming. We hypothesized that DMN connectivity, 
particularly in regions related to introspection and self-referential thoughts, will 
positively correlate with richer dream reports. This study presents a novel approach 
to understanding the neural correlates of NREM mentation, contributing to a more 
comprehensive understanding of the relationship between brain connectivity and 
conscious experience.

Materials and Methods

Study Population
Ten healthy participants (six female, four male) aged 19 to 22 were recruited from 
Ruhr-Universität Bochum. Seven participants were students from the Department of 
Psychology who received academic credit, while three from other departments received 
financial compensation (€150 for four nights of participation). All participants provided 
informed consent, and the local ethics committee of the Ruhr-Universität Bochum 
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approved the study. Participant eligibility was determined through an online screening 
questionnaire, which gathered general health and demographic information. The 
selection criteria were as follows: i) Sleep Quality: participants were required to have 
a Pittsburgh Sleep Quality Index (PSQI) score of less than 5, indicating optimal sleep 
quality, and a habitual bedtime before midnight; ii) MRI Compatibility: all participants 
were confirmed to be MRI-compatible with no contraindications for scanning; 
iii) Handedness: handedness was assessed using the Edinburgh Handedness Inventory 
(Oldfield, 2013), and only right-handed individuals were included; iv) Body Mass Index 
(BMI): participants were required to have a BMI within the normal range (18.5-24.9); 
v) Dream Recall Frequency: dream recall was assessed via three questions regarding 
the frequency of dream recall, nightmares, and lucid dreaming. Only individuals 
who reported recalling dreams at least once a week were included. Exclusion criteria 
included any chronic medical condition or psychiatric diagnosis that could affect sleep, 
such as asthma or epilepsy (Benca et al., 1992; Guilleminault, 2005; Nofzinger, 2005). 
Additionally, participants were excluded if they were taking any regular medications 
(except oral contraceptives) or had a history of psychoactive drug use or smoking (both 
social and chronic), as these factors have been shown to alter natural sleep patterns 
(Domino & Yamamoto, 1965; Pagel, 2005).

Selected participants were provided comprehensive instructions delineating the study 
procedure. Subjects were instructed to maintain a regular sleep schedule and refrain 
from consuming alcohol or psychotropic substances for the three nights preceding 
each measurement. Furthermore, participants were obliged to complete a brief sleep 
diary for the aforementioned nights, in which they were required to document their 
sleep duration, the latency of their sleep onset, the duration of their wakefulness, 
and the quantity of alcohol consumed. Furthermore, the diary incorporated a rating 
scale for subjective dream content, which was also employed during the EEG/fMRI 
measurement. On the night preceding the measurement, participants were instructed 
to sleep for a duration that was two hours less than their usual amount. This mild sleep 
deprivation was implemented to facilitate sleep onset in the unfamiliar laboratory 
environment, a methodological approach that minimizes difficulties falling asleep 
without significantly affecting sleep architecture (Deuker et al., 2013). On the 
measurement day, participants were advised to abstain from caffeine, as it has been 
demonstrated to impact sleep quality (Hindmarch et al., 2000).

Data acquisition
Data acquisition sessions were conducted using a 3 Tesla Phillips Achieva MRI (Philips, 
Amsterdam, Netherlands) scanner at the Bergmannsheil Hospital in Bochum, Germany. 
For each volume, 50 slices (thickness = 2.5 mm without gap, FOV = 96 mm x 96 mm,  
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voxel size: 2.5 mm isotropic) encompassing the entire brain, oriented parallel to 
the inferior edge of the occipital and temporal lobes, were acquired with an EPI 
sequence. The slices had a repetition time (TR) of 3000 ms, an echo time (TE) of 30 
ms, and a flip angle of 83. For each participant, structural images were acquired with 
a T1-weighted 3D sequence (TR/inversion time (TI)/TE/flip angle = 1570 ms/8.4 ms/ 
3.42 ms/ 8, FOV = 256 × 256 × 220 mm3, matrix size = 256 × 256 × 220 voxels,  
voxel size = 0.929 mm x 0.929 mm x 1mm).

Simultaneous with the fMRI scanning, a 14-channel MR-compatible system (Brain 
Products GmbH, Gilching, Germany) was utilized, along with ten cortical (EEG) 
electrodes. Among these, two electrodes were positioned to record electrooculography 
(EOG), three electrodes on the chin monitored electromyography (EMG), and a single 
electrocardiogram (ECG) electrode was placed on the back to track participants' 
sleep patterns. Preprocessing was carried out using Brain Analyzer software (Brain 
Products GmbH, Gilching, Germany). Gradient artifacts were removed offline 
through a sliding average method using 21 intervals. The EEG data, originally sampled 
at 5000 Hz, was subsequently down-sampled to 500 Hz and low-pass filtered with a 
finite impulse response filter at a cutoff frequency of 70 Hz. To effectively remove 
ballistocardiogram and ocular artifacts, a template subtraction approach (Allen et al., 
1998) was applied to handle artifacts. The preprocessed EEG data were then scored by 
three experts each, according to standardized American Academy of Sleep Medicine 
(AASM) polysomnographic criteria for sleep scoring (Iber, 2007).

The sessions began at 8:30 p.m. every week. Upon arrival at the medical facility, the 
EEG apparatus was prepared and ready for use within approximately 45 minutes. 
The environment was designed to promote relaxation, with the lighting adjusted 
to a low level to encourage the participants to become drowsy. Data collection 
started at approximately 9:15 p.m., following the participant's positioning within 
the scanner. The investigator monitored the participant's sleep status in real-time 
via EEG. Once it indicated that the participant was asleep for a stable period, the 
investigator proceeded to awaken them by calling their name. The mean number of 
awakenings per session was 10, ranging from four to 14 verbal reports per session, 
including reports when no dream was remembered. Communication following 
participant awakening was standardized and recorded. Upon being awoken in the 
MRI scanner, participants were asked to, “Please report everything that was going 
through your mind immediately before I called your name” (Foulkes, 1962). Following 
the verbal report, participants were asked to rate their mentation according to the 
following questions (in depth explanation in the following section): “How deep was 
your sleep?”, “How much did you dream?”, “How emotional was your dream overall?”, 
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“How connected or storylike was the dream?”, “Were you trying to do anything in 
your dream, or did you feel motivated to do anything?”, and   “How visual was the 
dream?”. If the initial report was brief or lacked detail, participants were asked the 
follow-up question: “Can you remember anything else?” or “Please provide a more 
detailed description”. After 90 minutes in the scanner, participants were woken for 
the last time and removed from the scanner. Participants were allowed to wash their 
hair and supplied with shampoo and a hairdryer if necessary.

Subjective and Objective Measures
The participants were requested to evaluate their dreams using a series of scales 
assessing various aspects of their sleep and dreaming experiences. The first scale 
was designed to assess sleep depth, with participants rating their sleep experience 
on a scale from 0 (indicating wakefulness) to 3 (indicating deep sleep). The second 
scale evaluated the amount of dreaming, with ratings ranging from 0 (indicating 
no dreaming) to 4 (indicating a significant amount of dreaming). The third scale 
was designed to assess the emotional intensity of the dreams, with ratings ranging 
from 0 (indicating no emotional intensity) to 3 (indicating a high level of emotional 
intensity). Should a participant assign an emotional intensity rating above 0, 
they must specify whether the dream was perceived as pleasant, unpleasant, or a 
combination of both. The fourth scale evaluated the coherence or narrative structure 
of the dream, which we will refer to as storylikeness, with scores ranging from 0 
(indicating a lack of coherence) to 4 (indicating a high degree of coherence). The fifth 
scale evaluated the degree of motivation or goal-directed behavior exhibited by the 
participant within the dream, with responses ranging from 0 (indicating a lack of 
motivation) to 3 (demonstrating a high level of motivation). Lastly, the sixth scale 
evaluated the visual clarity of the dream, with ratings ranging from 0 (no visual 
imagery) to 4 (high detail and clarity, akin to waking life). Questions related to sleep 
depth and the amount of dreaming are regularly used in dream research to assess 
subjective sleep and dreaming quality (Roth et al., 1972; Kramer & Roth, 1979). The 
remaining questions were validated through a factor analysis of 159 dream reports, 
predicting three subscales: dream intensity, pleasantness, and visuality (Wainstein, 
2013). These subscales accounted for 52.32% of the variance in the sample and 
correlated with previous objective analyses of dream dimensions (Hauri et al., 1967).

In addition to the subjective ratings, objective measures of the dream reports were 
conducted by two independent raters. The first measure, Total Recall Count, involved 
counting the meaningful words in each dream report to quantify the length and 
richness of the dream mentation, serving as an indicator of the amount of dreaming 
(Antrobus, 1983; Oudiette et al., 2012). The second measure, relation to everyday 
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experience, assessed the bizarreness of the dream by rating how realistically the 
dream content could occur in everyday life. This scale ranged from 1 (high relation to 
everyday experiences) to 5 (no relation to everyday experiences) (Foulkes & Pope, 1973).

Next Day Measures
Subsequent to the scanning session, participants were contacted by telephone at least 
12 and no more than 20 hours later to ascertain whether they could recall any mental 
activities from the prior session. These telephone conversations were conducted in 
a standardized manner to ensure consistency across participants. Subsequently, 
the post-scan questionnaire, which included the transcribed dream reports from 
the previous night, was transmitted to each participant via email. The participants 
were then instructed to complete the questionnaire, which required them to assess a 
number of aspects related to their dream recall and significance.

First, participants were asked to rate the extent to which they recalled the dream 
after reading the transcription, using a scale from 0 (indicating no recall at all) to 4  
(indicating complete recall). Secondly, participants were asked to evaluate the 
significance or meaningfulness of the dream on a scale from 0 (indicating no 
significance) to 5 (indicating extreme significance). Furthermore, participants were 
asked whether the dream was related to a current concern in their life, with a binary 
response option of "yes" or "no." If the response was affirmative, participants were 
instructed to rate the strength of this concern on a scale from 1 (very little concern) 
to 5 (extremely concerned). Finally, participants were requested to identify and 
mark any portions of the dream reports that they believed were related to real-life 
experiences from the previous week.

Long-Term Memory Recall
Six months after the final scanning session, participants were contacted by phone 
and asked to assess their memory of each mentation report after it was verbally 
recited to them. They rated their familiarity on a scale from 0 (no recollection) to 4 
(a clear, vivid memory of the dream). Out of ten participants, only eight agreed to 
participate in this follow-up assessment.

Global Dream Index Calculation
To integrate the various subjective and objective dream measures into a single 
representative variable, we applied principal component analysis (PCA) to the 
behavioral dataset. Before performing PCA, all variables (amount of dreaming, 
motivation, emotion, storylikeness, visual, meaningful, concern, memory next day, 
memory six months, total recall count, and bizarreness) were subjected to a centering 
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and scaling process. The first principal component (PC1), which accounted for the 
greatest proportion of variance across the dream measures (34.9%), was extracted 
and utilized as the GDI. This index represents a composite score for each subject, 
encapsulating the shared variance among the original variables.

Preprocessing
Data preprocessing was performed using the fMRIprep toolbox version 21.0.2 
(Esteban et al., 2019). The toolbox pipeline utilizes a combination of several well-
known software packages for fMRI data pre-processing and constitutes a robust tool 
that also generates quality reports.

Structural Data
The pre-processing of the structural data using the fMRIprep toolbox was performed 
in the following steps: firstly, the T1w images were corrected for intensity non-
uniformity (INU) with N4BiasFieldCorrection (Tustison et al., 2010), distributed with 
ANTs 2.3.3 (Avants et al., 2008), RRID:SCR_004757), and used as T1w-reference 
throughout the workflow. The T1w-reference was then skull-stripped with a 
Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using 
OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid 
(CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-
extracted T1w using fast (FSL 6.0.5.1:57b01774, RRID:SCR 002823, (Zhang et al., 
2001)). Brain surfaces were reconstructed using recon-all (FreeSurfer 6.0.1, RRID:SCR 
001847, (Dale et al., 1999)), and the brain mask estimated previously was refined 
with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-
derived segmentations of the cortical gray-matter of Mindboggle (RRID:SCR_002438, 
(Klein et al., 2017)). Volume-based spatial normalization to two standard spaces 
(MNI152NLin2009cAsym, MNI152NLin6Asym) was performed through nonlinear 
registration with antsRegistration (ANTs 2.3.3), using brain-extracted versions of both 
T1w reference and the T1w template. The following templates were selected for spatial 
normalization: ICBM 152 Nonlinear Asymmetrical template version 2009c ((Fonov et al., 
2009), RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym), FSL's MNI 
ICBM 152 non-linear 6th Generation Asymmetric Average Brain Stereotaxic Registration Model 
((Evans et al., 2012), RRID:SCR_002823; TemplateFlow ID: MNI152NLin6Asym0.)

Functional Data
First, a reference volume and its skull-stripped version were generated by aligning 
and averaging 1 single-band reference (SBRef). Head-motion parameters with respect 
to the BOLD reference (transformation matrices, and six corresponding rotation and 
translation parameters) were estimated before any spatiotemporal filtering using 
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mcflirt (FSL 6.0.5.1:57b01774, (Jenkinson et al., 2002)). The estimated fieldmap was then 
aligned with rigid-registration to the target EPI (echo-planar imaging) reference run. 
The field coefficients were mapped on to the reference EPI using the transform. The 
BOLD reference was then co-registered to the T1w reference using bbregister (FreeSurfer) 
which implements boundary-based registration (Greve & Fischl, 2009). Co-registration 
was configured with six degrees of freedom. First, a reference volume and its skull-
stripped version were generated using a custom methodology of fMRIPrep. Several 
confounding time-series were calculated based on the preprocessed BOLD: framewise 
displacement (FD), DVARS and three region-wise global signals. FD was computed 
following Power (absolute sum of relative motions, (Power et al., 2014)). FD and DVARS 
are calculated for each functional run, both using their implementations in Nipype 
(following the definitions by Power et al., (2014)). The three global signals were extracted 
within the CSF, the WM, and the whole-brain masks. Additionally, a set of physiological 
regressors were extracted to allow for component-based noise correction (CompCor, 
(Behzadi et al., 2007)). Principal components were estimated after high-pass filtering 
the preprocessed BOLD time-series (using a discrete cosine filter with 128s cut-off) for 
the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). For 
aCompCor, three probabilistic masks (CSF, WM and combined CSF+WM) are generated 
in anatomical space. The implementation differs from that of Behzadi et al., (2007) in 
that instead of eroding the masks by 2 pixels on BOLD space, the aCompCor masks are 
subtracted a mask of pixels that likely contain a volume fraction of GM. This mask is 
obtained by dilating a GM mask extracted from the FreeSurfer's aseg segmentation, and 
it ensures components are not extracted from voxels containing a minimal fraction of 
GM. Finally, these masks are resampled into BOLD space and binarized by thresholding 
at 0.99 (as in the original implementation). Components are also calculated separately 
within the WM and CSF masks. For each CompCor decomposition, the k components 
with the largest singular values are retained, such that the retained components' 
time series are sufficient to explain 50 percent of variance across the nuisance mask 
(CSF, WM, combined, or temporal). The remaining components are dropped from 
consideration. The head-motion estimates calculated in the correction step were also 
placed within the corresponding confounds file. The confound time series derived 
from head motion estimates and global signals were expanded with the inclusion of 
temporal derivatives and quadratic terms for each (Satterthwaite et al., 2013). Frames 
that exceeded a threshold of 0.5 mm FD or 1.5 standardized DVARS were annotated as 
motion outliers. The BOLD time-series were resampled into standard space, generating 
a preprocessed BOLD run in MNI152NLin2009cAsym space. Many internal operations of 
fMRIPrep use Nilearn 0.8.1 ((Abraham et al., 2014), RRID:SCR_001362), mostly within 
the functional processing workflow. For more details of the pipeline, see the section 
corresponding to workflows in fMRIPrep's documentation.
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For the streamlined application of additional data-cleaning strategies within a 
single framework, we utilized rs-Denoise (Dubois et al., 2018; Kliemann et al., 
2022), see https://github.com/adolphslab/rsDenoise), an open-source Python-based 
pipeline. This pipeline involved several steps: (1) z-score normalization of the signal 
at each voxel; (2) removal of linear and quadratic trends with polynomial regressors;  
(3) utilization of fMRIPrep’s aCompCor parameters, to regress out five components 
derived from CSF and white-matter signals; (4) utilization of translational and 
rotational realignment parameters and their temporal derivatives as explanatory 
variables in motion regression; (5) temporal filtering was performed with a discrete 
cosine transform (DCT) filter with a cutoff frequency of 0.008 Hz. Lastly, the pre-
processed runs were smoothed using a 4-mm full-width at half maximum (FWHM) 
Gaussian kernel and trimmed to the last minute before each session ended (meaning 
the last minute before participants were awakened).

Connectivity-Correlation Analysis 
In this analysis, we computed partial correlations between functional connectivity 
edges within the resting state networks and GDI, controlling for subject variability. 
First, trimmed individual time-series data were extracted from the preprocessed 
fMRI data using a predefined mask (Schaefer2018, 400 Parcels and 7 Networks 
and Tian Subcortex scale 1) (Tian et al., 2020) and transformed into functional 
connectivity matrices using Pearson correlation. From these, we isolated the 
lower triangular edges of each network. To account for individual differences, we 
performed Spearman partial correlation analyses on each edge using the Pingouin 
Python package, with subject IDs as a covariate to control for repeated measures. 
The resulting correlation coefficients and p-values were then corrected for multiple 
comparisons using the false discovery rate (FDR) method (Benjamini & Hochberg, 
1995). Significant edges were identified, and results were visualized by plotting both 
the partial correlations and the connectivity matrices of significant correlations (p 
< 0.05). This approach allowed us to identify specific functional connections within 
resting-state networks significantly associated with GDI, independent of individual 
subject effects.

Results

Study Population and General Results
The average sleep quality index among participants was 3.4 (SD = 0.7), the average BMI 
index was 21.67 (SD = 2.24), and the average frequency of dream recall was 3.9 times 
per week (SD = 1.94). All participants slept a minimum of four times in the scanner, 
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two participants had five sessions. A total of 372 simultaneous EEG/fMRI recordings 
followed by a dream report were collected. Thirty recordings were excluded from 
the present analysis because the final epoch scoring indicated wakefulness. After 
conducting quality checks and identifying significant imaging artifacts, additional 
seventeen recordings were excluded. One further recording was removed due to the 
absence of the accompanying EEG recording. This resulted in 324 usable EEG/fMRI 
recordings across participants. Figure 1 illustrates the total amount of dreaming, a 
subjective measure rated by each participant for each collected dream report.

Figure 1: Subjective Dream Ratings per Participant. The amount of dreaming participants rated each 
awakening on a scale of 0–4: 0 – awake, 1 – forgotten/none, 2 – little, 3 – moderately, 4 – greatly.

A total of three participants indicated that they had experienced "greatly" dreams, 
with two of these participants, namely participants 2 and 8, providing the majority 
of these reports. Neither of these participants reported any instances of forgotten 
or no dreams. In contrast, participants 4 and 10 were notable for their frequent 
reports of forgotten or no dreams. The most prevalent category was "little" dreaming, 
constituting 212 out of 324 reports (65.43%). Similarly, participants exhibited 
variability in their categorization of thought-like dreams, with some labeling them 
as "little" and others as "forgotten." The dreams described as forgotten exhibited 
considerable variation. Some participants recalled vague details but felt they had 
forgotten most of the content, while others reported complete amnesia or the absence 
of dreaming. The bar graphs displayed in Figure 2 demonstrate the standardized 
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subjective emotion, visual perception, connectedness, and motivation ratings for 
each participant. It should be noted that these measures were only standardized to 
more clearly illustrate the extent to which participants fall above or below the group 
mean. Table 1 summarizes the relationship between subjective and objective dream 
ratings with the amount of dreaming.

Table 1: Dream Measure Means in Relation to Amount of Dreaming.

Amount depth moti emo story vis mean con mem mem6 word biz

Forgotten 1.60 0.14 0.57 0.71 1.00 1.60 2.00 0.20 0.28 3.95 0.82

Little 1.46 1.21 1.33 1.47 2.31 1.32 2.16 0.33 1.06 15.67 2.05

Moderate 1.87 1.54 1.40 1.80 2.62 1.62 2.13 0.34 1.60 25.25 2.24

Greatly 1.90 2.04 2.09 2.04 3.72 1.36 2.00 0.40 2.27 45.15 2.93

Moti=motivation in the dream, emo=emotions, story=storylikeness/ narrative cohesion, vis=visual 
perception, mean = whether the dream is meaningful, con = related to concerns in real life and the 
severity of the concerns, mem= cued next day memory, mem6 = cued memory at six months, word = total 
recall count, biz = bizarreness.

The correlation matrix (Figure 3) indicates that the GDI is strongly correlated 
with each of its component measures, thereby demonstrating its effectiveness 
in combining both subjective and objective scales into a representative index of 
global dreaming. Although future research may demonstrate that either subjective 
or objective measures are more closely correlated with neural activity, the current 
composite index is utilized under the statistical assumption that combining multiple 
measures of the same construct reduces measurement error, thereby enhancing both 
reliability and validity.
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Figure 2: Standardized Subjective Dream Ratings per Participant. This figure presents dream ratings 
based on six subjective scales. Emotional intensity was rated from 0 (no intensity) to 3 (high intensity), 
with an additional categorization of dreams as pleasant, unpleasant, or mixed for ratings above 0. Visual 
clarity ranged from 0 (no visual imagery) to 4 (high clarity, resembling waking life). Storylikeness or 
narrative structure ranged from 0 (no coherence) to 4 (high coherence). Goal-directed behavior (scale 5) 
measured the degree of motivation within the dream, from 0 (no motivation) to 3 (high motivation). Next 
day measures assessed how meaningful the dream report was ranging from 0 (not at all) to 5 (extremely), 
and how concerning the dream report was, if the answer was yes, the concern severity ranged from 1 
(very little) to 5 (extremely).
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Figure 3: Correlation Matrix Between the Global Dream Index (GDI) and Its Component Measures. The 
correlation matrix demonstrates that GDI is strongly correlated with each of its component measures, 
effectively combining subjective and objective scales into a comprehensive index of global dreaming.

Functional Connectivity Association with Global Dream Index
We identified several functional connectivity edges across all seven resting-state 
networks and subcortical regions that survived multiple comparison corrections 
and were associated with GDI. Although these edges displayed positive functional 
connectivity values, the majority of correlations between the functional connectivity 
edges and GDI were negative. However, specific associations were positive, suggesting 
that stronger connections in these edges correlate with richer dream experiences. 
These positive correlations were exclusively found within the association networks: 
DMN, frontoparietal, and ventral-attention networks (Figure 4). Specifically, within 
the DMN, positive associations emerged between the left temporal cortex and the 
right dmPFC, left parietal regions and the right ventral prefrontal cortex, the right 
parietal cortex and both the right dmPFC and right ventral prefrontal cortex, as well 
as between the right dmPFC and the precuneus/posterior cingulate cortex. In the 
frontoparietal Network, positive associations were found between the right parietal 
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cortex and both the right precuneus and right temporal cortex. Lastly, in the Ventral 
Attention Network, a positive association was observed between the left temporo-
occipital cortex and the frontal operculum/insular cortex.

Figure 4: Correlation Matrix Between Resting-State Networks and Global Dream Index (GDI). In the top 
panel, the left side displays the correlation values between the connectivity edges of the Default-Mode 
Network (DMN) and GDI. In contrast, the right side shows a glass-brain illustration of these edges with 
their respective coordinates. The middle and bottom panels present the same information for the 
frontoparietal and ventral-attention Networks, respectively. Positive correlations are highlighted in 
green on the connectivity matrix and the glass-brain plots.
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Discussion

This study explored how functional connectivity within resting-state networks 
supports NREM mentation, integrating subjective and objective dream measures 
through a combination of simultaneous EEG/fMRI and a serial awakening paradigm. 
Our findings reveal that resting-state networks, particularly the default-mode, 
frontoparietal, and ventral attention networks, contribute to dream experiences during 
light NREM sleep as measured by the newly developed GDI. Specifically, we found 
positive associations between functional connectivity within the DMN, frontoparietal, 
and ventral attention networks and richer dream experiences. These results support 
the hypothesis that the DMN, which facilitates self-reflection, mind-wandering, and 
memory retrieval (Binder et al., 1999; Buckner et al., 2008; Andrews-Hanna et al., 
2010), may underlie internal mentation during light NREM sleep. This reinforces the 
value of GDI as a comprehensive metric that integrates both subjective and objective 
dimensions to capture inter- and intra-subject variability in dream experiences.

Extensive research has highlighted the role of the dmPFC in self-referential processing 
and its connectivity with the PCC across both wakefulness and sleep. Our findings align 
with studies that documented dmPFC-PCC connectivity during light and deep NREM 
sleep (Koike et al., 2011), suggesting that this connectivity supports integrative processes 
essential for constructing complex dreams. During wakefulness, the dmPFC shows 
heightened activity when individuals focus on their current self as opposed to their 
past or future selves (D’Argembeau et al., 2008, 2010). It also shows greater activation 
during self-focused thoughts and internally directed cognition, as opposed to externally 
focused tasks (Raij & Riekki, 2017). In sleep, the dmPFC may facilitate the incorporation 
of self-reflective and social elements, enhancing dream complexity and narrative depth. 
This aligns with evidence showing that recent memories, especially from the preceding 
day, frequently appear in dreams during both light NREM and REM sleep (Picard-
Deland et al., 2023), consistent with the dmPFC’s role in processing the present self and 
integrating recent memories into dream contexts. While early PET studies found partial 
reactivation of the dmPFC during REM sleep but no significant connectivity with the 
PCC (Koike et al., 2011), a magnetoencephalography study report increased gamma-
band activity in the dmPFC during both REM and late NREM sleep, suggesting that this 
region may play a broader role across sleep stages and may support dream experiences 
(Ioannides et al., 2009). Further research is needed to clarify dmPFC-PCC connectivity, 
particularly in deep NREM and REM sleep, and its relationship to dream content.

Our study also found associations between functional connectivity within the 
frontoparietal and ventral attention networks and richer dream experiences. The 
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frontoparietal network, which supports goal-directed behavior, cognitive control, 
and attention (Marek & Dosenbach, 2018), showed enhanced connectivity and 
relationship between the right parietal cortex, precuneus, and temporal cortex 
during NREM mentation, suggesting that these coordinated cognitive functions may 
support the formation of complex dream content during light NREM sleep. Previous 
research has shown that temporal coupling between the frontoparietal network and 
the DMN enables executive regions in the frontoparietal network to guide, evaluate, 
and select among streams of spontaneous thoughts and memories generated by the 
DMN (Andrews-Hanna et al., 2014; Fox & Christoff, 2014). This co-activation has been 
linked to processes such as autobiographical memory recall, mentalizing, and future-
oriented thinking (Spiers & Maguire, 2006; Spreng et al., 2009; Christoff, 2012; 
Gerlach et al., 2014), which may similarly support dream coherence and narratives 
structure. Light NREM sleep, which is characterized by vivid visual imagery and 
brief but elaborate dreams (Nielsen, 1992; Hori et al., 1994; Hayashi et al., 1999), may 
engage frontoparietal regions, particularly the parietal-temporal connections, in 
sensory and mnemonic integrations rather than full executive control.

Within the ventral attention network, the frontal operculum plays a key role in 
regulating cognitive control by modulating activity in category-selective occipito
temporal regions (Higo et al., 2011), contributing to perceptual and attentional 
shifts relevant to dreaming. The frontal operculum’s top-down modulation on 
posterior brain regions helps determining which representations are enhanced or 
suppressed based on behavioral relevance (Higo et al., 2011), consistent with our 
findings of functional connectivity between the frontal operculum and temporo-
occipital areas associated with enhanced NREM mentation. Given the pivotal role 
of posterior cortical activity in shaping dream experiences (Siclari et al., 2017), such 
a regulatory influence could contribute directly to the richness of dream imagery. 
Notably, patients with lesions near or in the temporo-parieto-occipital junction 
report diminished or absent visual dream imagery (Solms, 1997), emphasizing the 
importance of connectivity between the frontal operculum and temporo-occipital 
regions in contributing to the vividness and complexity of dream narratives.

Our findings emphasize the essential role of the ventral prefrontal cortex and 
occipitotemporal connectivity in dream generation and content, supporting the 
notion that dreaming is driven by specific cerebral activations rather than being 
exclusive to REM sleep. Clinical lesion studies reveal that damage to the ventral 
prefrontal cortex, particularly the ventromedial white matter, leads to complete 
cessation of dreaming, highlighting this region’s importance in generating the 
episodic qualities of dream cognition (Jus et al., 1973; Solms, 1997). This is consistent 
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with the ventral prefrontal cortex’s involvement in value-based decision-making, 
future-oriented thought, and mind-wandering, all essential components of the 
imaginative and self-reflective nature of dreams (Bertossi et al., 2016; Bertossi & 
Ciaramelli, 2016; Schneider & Koenigs, 2017). Additionally, our findings implicate 
temporo-occipito-parietal regions, where connectivity appears essential for visual 
and spatial dream imagery, with lesions in these areas leading to dream imagery 
deficits similar to those observed in waking perception (Solms, 2000). We found 
no positive associations between the GDI score and limbic, subcortical, visual, 
and somatomotor networks, nor did we find any significant associations between 
resting-state network connectivity. Thus, our results support a framework in which 
specific activations within the ventral prefrontal cortex and temporo-occipital 
regions are crucial for translating sleep-related brain activity into the vivid, narrative 
experiences characteristic of dreams.

While our study focused on the relationship between large-scale resting-state 
network connectivity during NREM mentation and the richness of dream experiences 
based on the GDI score, it did not extend analyses into the immediate post-awakening 
period. Interesting findings by Vallat et al. (2020) demonstrate that brain functional 
connectivity upon awakening can significantly predict interindividual differences 
in dream recall frequency. Specifically, high dream recallers exhibited enhanced 
connectivity within the DMN and between the DMN and memory-related areas, for 
instance, the precuneus, medial prefrontal cortex, and angular gyrus, five minutes 
after awakening from sleep. These patterns suggest that successful dream recall 
may not only depend on neural activity during sleep but also on post-awakening 
reactivation and maintenance of memory-related connectivity. In contrast, our study 
showed that similar DMN nodes are already engaged during sleep and are associated 
with the richness of dream content. The convergence of these findings supports a 
broader model in which both intra-sleep and transitional neural dynamics contribute 
to the encoding and retrieval of dream experiences.

This study provides valuable insights into how functional connectivity within 
resting-state networks, particularly the default mode and frontoparietal networks, 
may support dream generation during light NREM sleep. However, several 
limitations should be considered. A primary limitation lies in the unnatural 
setting of the MRI scanner, which, while consistent across participants, could have 
impacted their natural sleep patterns and dream experiences. Additionally, the 
study did not specifically aim to investigate the behavioral effects of dream recall or 
memory consolidation, suggesting that future research designed to directly assess 
how sleep influences dream memory could yield more precise findings. Another 
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limitation involves the participant selection: this study exclusively examined high 
dream recallers, limiting generalizability, as dream recall frequency likely differs 
between high and low dream recallers (Schredl & Montasser, 1996). Expanding this 
research with a larger and more diverse sample across a full night of sleep, along 
with assessments of personality factors, could shed further light on the complex 
relationships between various sleep stages, their shared neural mechanisms for 
dream generation and recall, and associated memory processes. Tailored tasks, 
such as those directly targeting memory consolidation, may also help clarify these 
interactions more effectively. Finally, while the GDI was developed to address the 
challenge of analyzing individual measures with a moderate sample size, it introduces 
a new construct that, though valuable for this study, is difficult to compare with prior 
research that did not employ this composite measure.
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In this thesis, I have presented a series of studies investigating the trait and state 
neural correlates of dreaming using several MRI modalities. My first goal was to 
review the progress made in sleep neuroimaging, focusing on influential studies 
and understanding the technical and methodological challenges that have emerged 
over time (Chapter 2). A significant limitation I identified in previous research is the 
small sample sizes that have understandably constrained many sleep neuroimaging 
studies. To address this limitation, a large cohort study was conducted to investigate 
whether dysfunction in emotional regulation processes, particularly involving 
the prefrontal cortex and amygdala, could be a predictor for nightmare frequency 
(Chapter 3). Interestingly, the results supported the null hypothesis, even when 
replicated in an independent large sample. This led me to critically replicate two 
whole-brain studies in the literature, which also yielded null findings. These results 
raised concerns about the need for greater statistical rigor in sleep neuroimaging 
studies. Another gap I identified in the field was the need for more research 
integrating multiple neuroimaging modalities. I applied a modality-fusion approach 
to address this, combining gray matter, white matter, and functional connectivity 
features to examine their relationship to dream recall frequency. This method 
provided a comprehensive, data-driven understanding of the structural and 
functional neural correlates of retrospective trait dream recall (Chapter 4). Next, I 
investigated the functional connectivity correlates of dreaming using simultaneous 
EEG/fMRI recordings combined with a serial awakening paradigm during sleep 
(Chapter 5). Many previous studies lacked quantified measures for each dream 
report, limiting their ability to systematically analyze the neural basis of dreaming. 
By implementing this combined methodology, I aimed to gain new insights into 
the neural dynamics of resting-state networks associated with dream experiences 
during light sleep. Here, I discuss key challenges in sleep neuroimaging, including 
methodological limitations and potential future directions, based on our experience 
collecting overnight sleep neuroimaging data. Finally, I interpret my findings in 
the broader context of dream research, highlighting how these studies advance our 
understanding of the neural mechanisms underlying dreaming.

Lessons learned: Methodological and technical challenges in sleep 
neuroimaging studies
Sleep neuroimaging studies present unique challenges compared to typical 
neuroimaging studies. The most significant is the difficulty of obtaining long, high-
quality sleep recordings in an MRI scanner, which is an inherently uncomfortable 
and unnatural environment. This issue significantly contributes to the small sample 
sizes common in the field and is also why REM sleep remains understudied in 
neuroimaging research. Despite advances, the technical limitations of movement 
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restrictions and discomfort continue to pose significant barriers to collecting whole-
night sleep data. Additionally, scanner noise has been demonstrated to suppress 
REM sleep, complicating efforts to study this stage. Nevertheless, the investigation 
of dreams through the use of neuroimaging during REM sleep is crucial for 
several reasons. Integrating neuroimaging data with dream content analysis has 
the potential to enhance our understanding of the possible functions of dreams, 
particularly in providing better spatial information concerning brain activation and 
organization during REM sleep. These studies may also offer insights into the role 
of dreams in emotional regulation. Furthermore, neuroimaging during REM sleep 
facilitates the differentiation between REM, NREM, and waking states, underscoring 
the parallels between mental experiences and brain physiology. This approach 
contributes to our growing understanding of the neurobiological underpinnings of 
the dream experience.

In Chapter 2, I discussed several strategies to increase recording durations from short 
naps to whole-night sleep studies. One promising approach is the use of adaptation 
nights, in which participants are familiarized with the scanner environment before 
the actual study. This method has been shown to improve sleep quality on subsequent 
nights without needing sleep deprivation protocols, which are effective but introduce 
their own confounds. A recent study also concluded that non-consecutive adaptation 
nights effectively control the first-night effect, justifying their current practice in 
sleep research (Wick et al., 2024). In addition, careful selection of participants based 
on sleep chronotype that aligns with recording times, combined with pre-study 
sleep hygiene protocols (e.g., maintaining a regular sleep schedule in the so-called 
"baseline week"), can further enhance sleep consolidation and stability. In our in-
house study, these strategies have proven successful in prolonging recordings and 
achieving REM sleep, as we focused on the second part of the night instead of whole-
night recordings. Despite high sleep pressure, one of the most significant obstacles 
is the discomfort participants experience in the scanner, particularly when asked to 
remain in a supine position. The discomfort and movement restrictions intended to 
prevent artifacts and the unavoidable loud scanner noise make it extremely difficult 
to obtain stable, long-duration sleep recordings. In total, 74 participants completed 
the intake session, but 32 were excluded based on our criteria, leaving 42 participants 
who were invited to the overnight imaging experimental sessions. Of these,  
37 participants completed the two consecutive experimental nights, resulting in  
79 overnight EEG/fMRI recordings and over 1,738 hours of data collection. Using our 
online sleep scoring method, 16 out of the 42 participants reached REM sleep during 
the experimental sessions, yielding a 38% success rate. We hope this number will 
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increase with offline scoring conducted by expert sleep scorers. This study could not 
be included in this thesis due to the time frame.

Although noise-canceling headphones have been marketed as a solution to reduce 
scanner noise, we have found that they do not always effectively cancel out the noise, 
depending on the specific imaging protocol. In addition, the added discomfort of 
wearing the EEG cap and noise-canceling headphones exacerbates participants' 
discomfort during long recording sessions and does not always fit the size of the 
MRI head coil. One strategy that showed some promise was to have participants 
listen to the scanner noise at home during the baseline week to habituate them to 
the scanner sound. However, more substantial technological advances in sleep 
neuroimaging, such as increased portability and reduced movement restrictions 
discussed in Chapter 2, have yet to emerge, leaving us dependent on the strategies 
mentioned above.

Going forward, the field will need to adopt innovative solutions to overcome these 
persistent challenges. One promising avenue is multi-site data collection. By 
combining resources across research centers and using standardized protocols, we 
can gather larger datasets that would otherwise be unfeasible for individual labs, 
allowing for larger samples and generalizable findings (called Multilab studies). 
Additionally, using preregistration reports and openly sharing data with the scientific 
community could increase collaboration, reduce redundancy, and accelerate progress 
in understanding sleep from neuroimaging lenses. In summary, sleep neuroimaging 
has many challenges, but it is not impossible to overcome them as technology 
advances. Continued improvement of research protocols and collaborative efforts 
across multiple sites will likely be vital to overcoming current limitations. With these 
strategies, the field can move towards a future in which full-night sleep recordings, 
including REM sleep, become feasible on a larger scale, ultimately advancing our 
understanding of the neural mechanisms of sleep and consciousness.

Reproducibility crisis
Over the past decade, reproducibility has received significant attention from the 
scientific community, driven by concerns about false positives and unreliable 
findings (Eklund et al., 2016; Gorgolewski & Poldrack, 2016). This effort to ensure 
reproducibility has led to the development of open science practices, including 
standardized tools, well-documented methods, transparent reporting, and public 
data-sharing repositories. Ensuring reproducibility is essential for validating 
scientific findings and advancing knowledge that can guide future research and 
benefit society. The credibility of published studies is critical for advancing science 
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and efficiently using public research funding. Irreproducible results waste resources 
and mislead subsequent studies, thereby stagnating progress.

In this context, reproducibility can be categorized into three types: 1) analytical 
reproducibility, which involves obtaining the same results using the original data 
and methods; 2) replicability, or the ability to replicate results with new data using 
the same methods, and 3) robustness, which refers to reproducing similar results 
using different methods on the same data (Botvinik-Nezer & Wager, 2023). Each 
type is critical in ensuring that findings can be reliably integrated into broader 
scientific knowledge and practical applications. In Chapter 3, I aimed to replicate 
previous findings that applied regional homogeneity (ReHo) analysis to investigate 
the neural correlates of nightmare frequency (Shen et al., 2016; Marquis et al., 
2021) while addressing concerns about fMRI studies reproducibility. Using the 
same methods on a new dataset with an equivalent sample size, I employed two 
approaches to control for false positives: a traditional cluster-defining threshold 
with a parametric approach and a nonparametric permutation method. However, 
neither approach yielded significant results. False-positive rates are a well-
documented challenge in neuroimaging studies, mainly when liberal cluster-
defining thresholds are used, leading to spurious findings that do not replicate when 
tested in new datasets. Previous evaluations have demonstrated that parametric 
methods used in fMRI analysis can inflate false-positive rates due to violations of 
assumptions regarding spatial smoothness and independence (Eklund et al., 2016). 
Nonparametric permutation methods, while more robust, may still suffer from 
limited sensitivity when sample sizes are small or when the underlying effects are 
weak. These methodological limitations have prompted changes in the field toward 
stricter correction strategies, such as false discovery rate (FDR) correction, family-
wise error (FWE) control, and open science practices emphasizing transparency 
and reproducibility. My unsuccessful replication analyses highlight the challenges 
faced in this field and emphasize the need to address false-positive rates through 
rigorous statistical methods. As neuroimaging continues to evolve, research on sleep 
and dreams must also adapt by incorporating these practices, particularly as we 
strive to increase sample sizes and enhance data recording durations. This chapter 
not only emphasizes the issues with reproducibility but also calls for a reassessment 
of the theoretical models that link specific brain regions associated with frequent 
nightmares, hoping that future studies will contribute to more reliable and robust 
scientific knowledge.
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Neural Mechanisms of Dream Traits and States
This thesis offers original insights into the neural correlates and mechanisms 
underlying dreaming by examining both stable neural traits, such as individual 
differences in dream recall and nightmare frequency, and dynamic brain states 
associated with conscious mentation during sleep. The findings contribute to 
understanding how specific brain regions and resting-state networks facilitate 
dream experiences and recall frequency, thereby shedding light on the structural and 
functional neural mechanisms involved.

The phenomenon of nightmares, influenced by many psychological and neuro
physiological factors, remains poorly understood mechanistically. While previous 
studies have accounted for nightmare distress (Marquis et al., 2021; Carr et al., 
2022) or focused on populations with nightmare disorder (Shen et al., 2016), our 
null findings in Chapter 3 suggest that future studies should carefully reconsider 
the variables and populations that are targeted in order to better understand the 
underlying causes of nightmare frequency and formation. The primary contribution 
of this chapter lies in its emphasis on the complexity of identifying the neural 
correlates of nightmare frequency as a proxy for nightmare formation across different 
populations. My work demonstrated the challenges in identifying consistent neural 
markers of nightmare frequency, even when robust statistics and large sample size 
were employed. Variability in study populations, such as healthy individuals versus 
those with nightmare disorder, and different measures (nightmare frequency or 
nightmare distress) emphasize the need for methodological standardization and 
larger, more representative sample sizes. From an alternative perspective, my 
findings suggest that nightmare frequency may not be strongly tied to specific, 
isolated functional differences. Instead, it may emerge from a dynamic interplay of 
factors, including neuronal mechanisms, personality traits, and emotional regulation 
abilities. This insight paves the way for future studies to adopt more integrative and 
systematic approaches. For example, multi-site studies combining retrospective 
and prospective trait-level assessments crucial to achieving reliable measurements 
that are less susceptible to memory bias, with task-based fMRI paradigms, such 
as emotional picture viewing tasks, could provide valuable insights. Furthermore, 
state-dependent factors, such as stress, anxiety, emotional reactivity, and trauma 
history, should be considered as potential confounding variables in future research 
to account for their potential influence on nightmare frequency. A key focus would be 
on functional connectivity, particularly between the amygdala and prefrontal cortex, 
still examining how regulatory processes differ under positive, neutral, and negative 
conditions. For example, the study could investigate whether functional connectivity 
in response to salient negative stimuli modulates nightmare frequency. Using the 
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prefrontal cortex as a seed, I would also explore if and how distinct connectivity 
patterns across conditions relate to nightmare frequency. As a secondary, exploratory 
analysis, I would investigate whether the observed cluster in the cerebellum displays 
different activation patterns across conditions and whether it contributes to 
frequent nightmares. By controlling state and trait factors, it will be possible to more 
accurately assess their role in the frequency and formation of nightmares and explore 
whether any residual variance might reveal core mechanisms underlying nightmare 
frequency. Ultimately, these refined methodological approaches may help clarifying 
the neuropsychological mechanisms driving nightmare experiences and facilitate 
more targeted interventions for affected individuals.

In Chapter 4, I showed that trait dream recall frequency was associated with 
distinct structural and functional brain features. A positive correlation was observed 
between higher dream recall frequency and increased white matter microstructure 
integrity in regions associated with memory integration and sensory processing, 
including the parahippocampal gyrus, superior parietal lobule, and occipital cortex. 
Conversely, a reduction in gray matter volume was observed in primary visual areas. 
These findings complement and extend the clinical-anatomical literature, as lesions 
in the visual association cortex have been demonstrated to impair specific dream 
imagery, such as color and facial imagery. In contrast, lesions in the primary visual 
cortex do not impact visual dreaming (Solms, 1997). For example, individuals who 
are cortically blind can still experience visual dream imagery, whereas those with 
lesions in V4 cannot generate faces or colors in their dreams. Similarly, lesions in 
primary sensory or motor cortices do not disrupt corresponding imagery in dreams, 
as evidenced by studies of regular somatosensory and aphasic patients (Solms, 
1997, 2000). Moreover, regional cerebral blood flow (rCBF) activity in primary visual 
areas was reduced during REM sleep (Braun et al., 1998), which may corroborate our 
findings of decreased gray matter volume in these regions, as this reduction in rCBF 
may indicate diminished activity during dreams. Taken together, these findings 
suggest that regions actively involved in dream imagery, memory consolidation, and 
integration are microstructurally better organized in individuals with higher dream 
recall frequency, thereby enhancing trait dream content recall.

The results presented in Chapter 5 also support clinical and anatomical observations 
indicating the importance of the ventral prefrontal, parietal, and occipitotemporal 
regions in dreaming. The study revealed a correlation between dream states, defined 
as conscious mentation during sleep, and functional connectivity patterns within 
resting-state networks during light NREM sleep. Functional connectivity within 
the default mode, frontoparietal, and ventral attention networks was essential for 
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facilitating the vividness and complexity of dreams, suggesting that dreaming results 
from specific functional processes that dynamically engage higher-order networks 
during sleep. Clinical studies have demonstrated that lesions in the ventromedial 
prefrontal cortex are associated with the complete cessation of dreaming (Solms, 
1997), which was thought to be due to its connections with limbic structures. 
However, our results did not reveal significant associations between the limbic or 
subcortical regions and the global dream index or between resting-state networks 
and the global dream index, highlighting the importance of occipitotemporal-
parietal and dorsal and ventral prefrontal-parietal interactions in generating 
complex dream imagery, further distinguishing the functional neural bases of dream 
traits and states. Furthermore, rCBF activity in the dorsolateral prefrontal cortex is 
significantly diminished during REM sleep (Braun et al., 1998), supporting that the 
executive functions associated with this region are suppressed during the dreaming 
state. It should be noted, however, that the results presented in Chapter 5 relate to 
functional connectivity rather than direct activity. Although connectivity patterns are 
indirectly related to activity, they represent different aspects of neural function since 
connectivity reflects how regions coordinate rather than their intrinsic activity levels.

Interpretation of Results and Their Contribution to Dream Research
Reflecting on my PhD journey, three seminal books have significantly influenced the 
direction of my work: The Neuropsychology of Dreams by Mark Solms, Neurocognitive 
Theory of Dreaming by William Domhoff, and When Brains Dream by Antonio 
Zadra and Robert Stickgold. Each of these works provided a unique perspective 
on understanding the neural correlates of dreaming. Solms' clinical-anatomical 
approach demonstrated that lesions affecting dreaming often paralleled deficits 
in waking cognition, challenging the traditional distinction between sleep and 
wakefulness. Domhoff emphasized the continuity of mental experiences across 
these states, urging a broader framework for dream research. Finally, Zadra 
and Stickgold's exploration of why we dream inspired my investigation into the 
mechanisms underlying dream traits and experiences. My studies sought to integrate 
two perspectives - dream traits (wakefulness) and dream experiences (sleep) - to 
bridge knowledge from neuroimaging with evidence from clinical and EEG studies 
of dreams, ultimately contributing to the broader understanding of the brain 
mechanisms involved in dreaming.

The default mode network (DMN), a large-scale brain network encompassing 
the medial prefrontal cortex, posterior cingulate cortex, precuneus, and 
parahippocampal gyrus, plays a central role in internally directed cognitive processes 
such as self-referential thought, memory retrieval, task-unrelated cognition, and 
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the mental simulation of imagined scenarios. As I reviewed in Chapter 2, the DMN 
remains active during light NREM sleep, decouples during deep NREM sleep, and 
reactivates during REM sleep. This activity pattern supports the hypothesis that 
dreaming represents an intensified and immersive form of spontaneous thought 
primarily driven by the DMN. This hypothesis also aligns with evidence showing that 
the same regions support both waking mind-wandering and dreaming, suggesting a 
continuum of internally directed cognition across states of consciousness (Domhoff 
& Fox, 2015).

My findings, presented in Chapters 4 and 5, support and extend this hypothesis by 
highlighting the critical role of the DMN and associated networks in both dream 
traits and dream states. Higher dream recall frequency was associated with enhanced 
brain microstructure in key DMN regions such as the parahippocampal gyrus and 
higher-order visual areas. These structural features likely facilitate the cognitive 
processes underlying vivid and complex dream content and recall. Functional 
connectivity analyses further revealed that interactions between the DMN, 
frontoparietal, and ventral attention networks during light NREM sleep are essential 
for generating organized and immersive dream narratives. These align with clinical 
evidence that lesions in ventral prefrontal and occipitotemporal regions disrupt 
dreaming, while lesions in primary sensory and motor cortices do not. My findings 
highlight the dynamic interplay between these regions, as dreaming involves both 
a decoupling from external sensory processing and a heightened engagement of 
higher-order networks.

One area where further research is needed is in directly comparing ongoing task-
unrelated thoughts during wakefulness with dreaming. While dreaming significantly 
overlaps with waking mind-wandering in its reliance on spontaneous DMN activity, 
dreams' immersive, narrative-rich nature reflects a heightened recruitment of 
higher-order visual and cognitive systems. Although my work associates dream traits 
with brain activity during resting wakefulness, likely reflecting mind-wandering, 
there remains a gap in understanding how different task-unrelated thoughts map 
onto dreaming. Not all mind-wandering is equivalent to daydreaming, and although 
traditional research often uses these terms interchangeably, key differences exist 
(Dorsch, 2015). Daydreaming is more imagistic and purposeful, whereas mind-
wandering can include diverse cognitive phenomena. Recent studies have started 
addressing these distinctions by comparing immersive and non-immersive mental 
imagery across waking and sleeping states (Kirberg et al., 2024) and addressing to 
what extent daydreaming involves an experience of dreaming while awake (Sanchez 
Alcaraz, 2024). Such approaches are imperative to differentiate and assess various 
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conscious experiences, serving as a value tool to facilitate the investigation of such 
differences and similarities at the mechanistic level.

My work substantiates and refines the DMN hypothesis of dreaming by combining 
multimodal neuroimaging and simultaneous EEG-fMRI with serial awakening 
paradigm to reveal the structural and functional correlates of dream recall and 
generation. This research highlights how structural traits, such as enhanced white 
matter microstructure in the parahippocampal gyrus and higher-order visual 
areas, overlap with and support functional processes like the dynamic interactions 
within the DMN, frontoparietal network, and ventral attention network. Together, 
these findings bridge the relationship between the neural substrates predisposing 
individuals to high dream recall and the functional mechanisms that generate the 
vivid, immersive, and narrative-driven dreaming experiences.

Future Directions and Research Outlook
The findings presented in this thesis contribute to the growing body of evidence 
regarding the neural mechanisms underlying sleep and dreaming. Future research 
could benefit from a multi-level characterization of dreams that integrates 
neuroimaging and neurophysiological data to explore the micro, meso, and macro 
aspects of dreaming. Replicating current findings in populations suffering from 
different types of parasomnia on a micro-scale will strengthen our understanding 
of the field, as has been done in sleepwalkers (Cataldi et al., 2024). Combining a 
minimal serial awakening paradigm with intracranial electrodes, particularly those 
placed in the frontal, parietal, and occipital regions, will provide finer evidence of 
neuronal firing through electrical potentials. To minimize patient burden, the 
study can focus on patients already undergoing intracranial EEG monitoring for 
clinical purposes, such as pre-surgical epilepsy evaluation. Additionally, limiting 
the number of serial awakenings by targeting key sleep stages (light/deep NREM 
and REM) based on real-time monitoring will reduce sleep disruption and fatigue. 
This integration could open new avenues for correlating brain activity with recalled 
dream content. On a meso scale, simultaneous EEG-fMRI recordings could be 
instrumental in identifying neuronal markers of dreaming, explicitly differentiating 
between dreams with and without content and forgotten and dreamless sleep. By 
combining these two neuroimaging techniques, we obtain better spatial information 
to identify a core "minimum dreaming network" integrating neurophysiological data 
with specific dream characteristics. On a macro scale, an emerging area of interest 
involves exploring mental experiences across the sleep-wake continuum. Evidence of 
local sleep and wake states has challenged the traditional binary distinction between 
sleep and wakefulness. Comparative studies of mind-wandering, daydreaming, 
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and dreaming may reveal shared cognitive and functional mechanisms underlying 
these internally generated experiences across various states of consciousness. Such 
investigations could clarify these mental states' roles in waking cognition and sleep 
function, particularly whether altered dreaming parallels altered mind-wandering 
or daydreaming. For instance, understanding the parallels between dreaming and 
mind-wandering could provide a novel framework for exploring the adaptive or 
maladaptive roles of these processes in clinical populations, such as individuals with 
PTSD and chronic ruminators.

From a clinical perspective, investigating dream alterations in specific populations 
could offer diagnostic and therapeutic benefits. For example, examining changes 
in dream content, such as increased vividness or violent themes in individuals 
with REM sleep behavior disorder (RBD), could yield insights into the neurological 
underpinnings of these alterations. Understanding if such changes correlate with 
dysfunctions in limbic, prefrontal, parietal, or occipital regions may help establish 
altered dreaming as a biomarker for neurological conditions like Parkinson's disease, 
where RBD is recognized as a prodromal marker. Since Parkinson's disease patients 
may also experience daytime hallucinations, it is essential to determine whether these 
are linked to sleep-related changes. These findings would enhance our theoretical 
understanding of dreaming and assist as an early detection and monitoring strategy 
for neurodegenerative disorders.

Overall, integrating neuroimaging techniques on various levels of characterization 
will strengthen our understanding of sleep-wake phenomenology and the potential 
translational of sleep and dreaming research to the clinical population. By bridging 
diverse methodologies, encouraging cross-disciplinary multi-site collaborations, 
and emphasizing robust and replicable findings, the field is well-positioned to 
make significant advances in understanding the interplay between brain activity 
and consciousness.
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English summary

English Summary

Dreams have fascinated humankind for centuries, yet their neurobiological 
underpinnings remain elusive. This thesis investigates the neural mechanisms 
underlying dream traits and states by integrating multiple neuroimaging approaches, 
including structural and functional MRI, diffusion imaging, and simultaneous EEG/
fMRI recordings. By addressing key methodological challenges in sleep neuroimaging 
and incorporating large-scale datasets, this work provides novel insights into the 
trait and state-dependent neural correlates of dreaming.

The first part of this thesis, Chapter 2,  reviews the progress and challenges in sleep 
neuroimaging, highlighting the limitations of small sample sizes, lack of multimodal 
integration, and the difficulty of recording REM sleep in MRI environment. 
Chapter 3 critically reassesses the neural correlates of nightmare frequency, 
revealing null findings even in large cohorts and raising concerns about statistical 
rigor and reproducibility in the field. The study underscores the need for robust 
methodological frameworks and larger, well-controlled samples to establish reliable 
associations between emotional regulation processes (particularly prefrontal-
amygdala interactions) and nightmare frequency.

To overcome the limitations of previous research, Chapter 4 employs a modality-
fusion approach, combining gray and white matter microstructure with functional 
connectivity measures to examine their relationship with dream recall frequency. 
The findings reveal that individuals with higher dream recall exhibit enhanced white 
matter integrity in regions involved in memory integration and sensory processing, 
such as the parahippocampal gyrus, superior parietal lobule, and occipital cortex, 
while also showing reduced gray matter volume in primary visual areas. These results 
align with lesion studies demonstrating that visual association areas, rather than 
primary sensory cortices, are critical for dream imagery.

Chapter 5 shifts focus to state-dependent neural mechanisms of dreaming by utilizing 
simultaneous EEG/fMRI and a serial awakening paradigm. Functional connectivity 
analyses reveal that dreaming engages dynamic interactions between the default mode 
network (DMN), frontoparietal, and ventral attention networks during light NREM 
sleep. These findings refine existing models of dream generation, demonstrating 
that higher-order cognitive networks, rather than subcortical structures alone—play 
a central role in dream experiences. Importantly, while previous studies suggested 
limbic involvement in dreaming, this thesis finds no direct association between 
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limbic connectivity and dream experiences, emphasizing the role of occipitotemporal-
parietal and prefrontal interactions in generating complex dream narratives.

This thesis contributes to dream neuroscience by integrating multimodal 
neuroimaging, large-scale replication studies, and rigorous statistical methods to 
reassess key theoretical models. The findings challenge traditional views of REM sleep 
as the primary substrate for dreaming and instead support a continuum model of 
internally generated cognition, where dreaming, mind-wandering, and spontaneous 
thought share overlapping neural mechanisms. Future research directions include 
multi-site collaborations, intracranial EEG studies, and comparative investigations 
of mind-wandering, daydreaming, and dreaming, which will further elucidate the 
relationship between conscious experience and brain activity.

By bridging insights from clinical lesion studies, functional neuroimaging, and 
electrophysiological research, this thesis advances our understanding of the neural 
basis of dream traits and states, paving the way for novel applications in sleep 
disorders, cognitive neuroscience, and consciousness research.
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Dutch Summary

Dutch Summary

Dromen fascineren de mensheid al eeuwen, maar hun neurobiologische onder
bouwing blijft onduidelijk. Dit proefschrift onderzoekt de neurale mechanismen 
die ten grondslag liggen aan droomkenmerken en -toestanden door meerdere 
neuroimaging benaderingen te integreren, waaronder structurele en functionele 
MRI, diffusiebeeldvorming en gelijktijdige EEG/fMRI opnames. Door belangrijke 
methodologische uitdagingen in slaapneurobeeldvorming aan te pakken en 
grootschalige datasets te integreren, biedt dit werk nieuwe inzichten in de kenmerk- 
en toestandsafhankelijke neurale correlaten van dromen.

Het eerste deel van dit proefschrift, Hoofdstuk 2, geeft een overzicht van de 
vooruitgang en uitdagingen in slaapneuro-imaging, waarbij de beperkingen van 
kleine steekproefgroottes, het gebrek aan multimodale integratie en de moeilijkheid 
van het registreren van REM-slaap in MRI-omgevingen naar voren komen. In 
hoofdstuk 3 worden de neurale correlaten van de frequentie van nachtmerries 
kritisch opnieuw beoordeeld, waarbij zelfs in grote cohorten nulbevindingen 
naar voren kwamen en zorgen werden geuit over de statistische nauwkeurigheid 
en reproduceerbaarheid in het veld. De studie onderstreept de noodzaak van 
robuuste methodologische kaders en grotere, goed gecontroleerde steekproeven 
om betrouwbare associaties tussen emotionele regulatieprocessen (in het bijzonder 
prefrontale-amygdala interacties) en nachtmerrie frequentie vast te stellen.

Om de beperkingen van eerder onderzoek te ondervangen, gebruikt Hoofdstuk 4  
een modaliteit-fusie benadering, waarbij grijze en witte stof microstructuur 
gecombineerd worden met functionele connectiviteitsmetingen om hun relatie 
met droomherinneringsfrequentie te onderzoeken. De bevindingen laten zien dat 
individuen met een hogere droomherinneringsfrequentie een verhoogde witte 
stof integriteit vertonen in gebieden die betrokken zijn bij geheugenintegratie en 
sensorische verwerking, zoals de parahippocampale gyrus, superieure pariëtale 
lobule en occipitale cortex, terwijl ze ook een verminderd grijze stof volume vertonen 
in primaire visuele gebieden. Deze resultaten komen overeen met laesiestudies die 
aantonen dat visuele associatiegebieden, in plaats van primaire sensorische cortex, 
cruciaal zijn voor droombeelden.

Hoofdstuk 5 verschuift de focus naar toestandsafhankelijke neurale mechanismen 
van dromen door gebruik te maken van gelijktijdige EEG/fMRI en een paradigma 
voor serieel ontwaken. Functionele connectiviteitsanalyses onthullen dat dromen 
dynamische interacties tussen het default mode netwerk (DMN), frontopariëtale 
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en ventrale aandachtsnetwerken inschakelt tijdens de lichte NREM-slaap. Deze 
bevindingen verfijnen bestaande modellen van droomgeneratie en tonen aan dat 
cognitieve netwerken van hogere orde - en niet alleen subcorticale structuren - een 
centrale rol spelen in droomervaringen. Belangrijk is dat, terwijl eerdere studies 
limbische betrokkenheid bij dromen suggereerden, deze dissertatie geen directe 
associatie vindt tussen limbische connectiviteit en droomervaringen, wat de rol van 
occipitotemporale-pariëtale en prefrontale interacties in het genereren van complexe 
droomverhalen benadrukt.

Deze dissertatie draagt bij aan de droomneurowetenschap door het integreren 
van multimodale neuroimaging, grootschalige replicatiestudies en rigoureuze 
statistische methoden om belangrijke theoretische modellen opnieuw te beoordelen. 
De bevindingen betwisten traditionele opvattingen van de REM-slaap als het 
primaire substraat voor dromen en ondersteunen in plaats daarvan een continuüm 
model van intern gegenereerde cognitie, waarbij dromen, dwalen door de geest 
en spontane gedachten overlappende neurale mechanismen delen. Toekomstige 
onderzoeksrichtingen omvatten samenwerkingsverbanden op meerdere locaties, 
intracraniële EEG-studies en vergelijkende onderzoeken naar dwalen in de geest, 
dagdromen en dromen, die de relatie tussen bewuste ervaring en hersenactiviteit 
verder zullen ophelderen.

Door inzichten uit klinische laesiestudies, functionele neuroimaging en elektro
fysiologisch onderzoek te combineren, bevordert dit proefschrift ons begrip van 
de neurale basis van droomkenmerken en -toestanden, waardoor de weg wordt 
vrijgemaakt voor nieuwe toepassingen in slaapstoornissen, cognitieve neuroweten
schappen en bewustzijnsonderzoek.
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Research Data Management

Research Data Management

This research followed the applicable laws and ethical guidelines. Research Data 
Management was conducted according to the FAIR principles. The paragraphs below 
specify in detail how this was achieved.

Ethical Approval
This thesis is based on the results of human studies, which were conducted in 
accordance with the principles of the Declaration of Helsinki. All data collections of 
the three datasets in this thesis were approved by the local ethics committees.

Data Storage and Availability
The research data in chapters 3 and 4 are based on existing data that cannot be shared 
publicly because it is part of an ongoing study and is thus considered unanonymized 
under Danish law even if pseudonymized. However, researchers who wish to access 
the data may contact Dr. Kristian Sandberg (kristian.sandberg@cfin.au.dk) at The 
Center of Functionally Integrative Neuroscience and/or The Technology Transfer 
Office (TTO@au.dk) at Aarhus University, Denmark, and Prof. Dr. Michał Wierzchoń 
(michal.wierzchon@uj.edu.pl) at the Institute of Psychology at Jagiellonian 
University, Poland, to make a data sharing contract.

The research data in chapter 5 have not been deposited in a public repository but 
is available upon request. Researchers may contact Prof. Dr. Nikolai Axmacher 
(nikolai.axmacher@ruhr-uni-bochum.de) at the Department of Neuropsychology, 
Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, 
Bochum, Germany.

Interoperable and reusable
Each research chapter of this thesis provides a description of the experimental setup 
(including the used software and specific version), and access to the raw data needs 
to be requested. No custom code was used in this study. Publicly available software 
tools were used to perform analyses and are referenced throughout the manuscript.
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