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Chapter 1

Introduction

Humanity has always been fascinated with its place in the Universe. An-
cient civilizations observed the celestial bodies and distilled meaning from
their configuration. To support these interpretations, they built cosmologi-
cal models [1]. For instance, the ancient Greeks formulated the geocentric
model, positioning Earth at the center of the Universe with celestial bodies
orbiting it in perfect spheres. Similarly, the cosmological model in ancient
China portrayed Earth as a flat square, with the heavens represented by an
encompassing (hemi-)sphere. Although now known to be incorrect, these
models were the prevailing beliefs for the majority of human history.

The Copernican revolution of the 16th century marked a pivotal mo-
ment in the history of science, challenging centuries of cosmological and
religious beliefs. In 1543 Nicolaus Copernicus published De revolutionibus
orbium coelestium in which he argued in favor of a heliocentric cosmologi-
cal model: the planets revolve around the Sun rather than around the Earth.
This was a radical departure from the geocentric worldview, especially
considering that at the time a planet was nothing more than a ‘wandering’
star. Despite its vast implications, the heliocentric cosmological model
was met with mild interest, possibly due to Copernicus’s untimely death
not so long after the publication [2].

Galileo Galilei’s observations – and controversy – brought the helio-
centric model to the forefront of the public debate. In 1610, using the
just-invented refracting telescope, Galilei made many discoveries: the
phases of Venus, multiple moons orbiting Jupiter, sunspots, countless
unknown stars, the existence of the Milky Way, and the surprising rough-
ness of the Moon’s surface. These discoveries supported a heliocentric
cosmological model and sparked controversy due to potential conflicts
with the Bible. The Church eventually ordered Galilei’s house arrest and
banished all his written work1. Around the same time, Johannes Kepler,

1Not until 1992 did the Roman Catholic Church officially exonerate Galilei [3].
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through meticulous mathematical analysis and the careful observations
of his employer Tycho Brahe, established the laws of planetary motion
that now bear his name. These laws were consistent with the heliocentric
model and provided further support. More support for the heliocentric
model came from Isaac Newton in 1687 when he published Philosophiae
Naturalis Principia Mathematica, in which he presented his law of universal
gravitation and the laws of motion. These laws offered a comprehensive
explanation for the observed motions of celestial bodies within the helio-
centric model. By the end of the 17th century, the heliocentric model was
firmly established as the prevailing cosmological model [4].

Crucial in this intellectual revolution was the technological innovation
of the refracting telescope. The invention of the telescope transformed
astronomy from a speculative endeavor into a rigorous empirical science,
providing astronomers with the capabilities to verify hypotheses and
build upon them. In the 400 years since its invention, telescopes have
been continuously refined and augmented, enabling astronomers to peer
deeper into the cosmos than ever before. This evolution encompassed
several pivotal breakthroughs: from Galileo’s pioneering observations of
Jupiter’s moons to William Herschel’s discovery of Uranus in 1781, to
Edwin Hubble’s use of the 100-inch Hooker telescope in 1923 to prove
the existence of galaxies beyond our own [5]. The development of radio
telescopes in the 1930s opened up new electromagnetic wavelengths for
observation, leading to the discovery of cosmic phenomena like quasars
and pulsars [6, 7]. Most recently, the James Webb Space Telescope has
provided unprecedented views of the early Universe through its Deep Field
images [8], continuing this legacy of ever-expanding cosmic exploration.

However, telescopes rely on light, also known as an electromagnetic
wave, which originates from and interacts only with matter that has a
charge. While light-based observations have provided invaluable insights
into the composition and behavior of the Universe, they only offer a partial
view2. To expand this view, scientists have explored various forms of
cosmic messengers beyond electromagnetic waves, including neutrinos,
cosmic rays, and gravitational waves. Gravitational waves, in particular,

2It is estimated that 95% of the Universe consists of dark matter and dark energy,
which cannot directly interact with electromagnetic waves [9, 10].
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have opened a new window into the Universe. Unlike light, gravitational
waves can be emitted from matter regardless of its charge. This unique
characteristic enables gravitational wave detectors to observe cosmic phe-
nomena that are often difficult or impossible to detect through electro-
magnetic radiation alone, such as binary black hole mergers, while also
complementing electromagnetic observations of events like neutron star
mergers. The combination of data from both electromagnetic and gravita-
tional waves promises to provide a more comprehensive understanding of
the Universe.

The story of gravitational waves begins with Einstein’s revolutionary
theory of general relativity, published in 1915 [11, 12]. In this theory,
Einstein postulates that mass and energy bend the fabric of spacetime and
that what we perceive to be the gravitational force is nothing more than
objects moving along a straight line in curved spacetime. This dynamic of
mass dictating the curvature of spacetime and spacetime dictating the path
of the mass is captured in the Einstein field equations. In 1916, Einstein
showed that these equations share a parallel with Maxwell’s equations,
which describe the interaction between electric and magnetic fields and
their relationship with charge and current. Just as Maxwell’s equations led
to the deduction of electromagnetic radiation traveling at the speed of light,
Einstein’s work revealed the existence of gravitational radiation [13, 14].
Analogous to how accelerating a charge produces electromagnetic waves,
accelerating a mass results in the emission of gravitational waves. These
waves propagate outward from the accelerating mass at the speed of light.
The amplitude of a gravitational wave is proportional to the acceleration
and mass of the source object and inversely proportional to the distance
between object and observer. The stiffness of space3 combined with the
enormous distances between Earth and stellar objects makes the direct
detection of gravitational waves incredibly difficult. With current and near-
future detectors, we can primarily measure events that involve the densest
objects accelerating towards relativistic velocities: mergers between black
holes, neutron stars, or a combination of these two, also known as compact
binary coalescences. Future detectors, such as Einstein Telescope, may
expand this range to include other sources like supernovae. Given the

3Space is 1020 times stiffer than steel [15].
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faintness of these signals, highly sensitive and specialized technology is
required for their detection.

Since the 1970s, the Michelson interferometer has been a leading con-
tender for detecting gravitational waves [16, 17]. Comprising two perpen-
dicular arms connected at one joint, each outfitted with mirrors at their
opposite ends, the Michelson interferometer operates by dividing a laser
beam at the shared joint and directing the split components along the
arms to the opposite ends where a mirror reflects them back to the shared
joint. There the two components interfere with one another. If the arms
are equally long, the two components cancel each other out and no light
is transmitted. Conversely, if the arms are not equally long, constructive
interference takes place and the resulting light beam is captured by a
sensor. This setup allows for the detection of incredibly small changes in
the relative lengths of the interferometer arms, see also Figure 1.1. While
these changes could be induced by passing gravitational waves, the ex-
treme sensitivity of the interferometer also means it detects numerous
sources of noise that can mask the gravitational wave signal. These include
seismic activity and thermal fluctuations in the mirror coatings. Conse-
quently, significant effort has gone into characterizing and mitigating
these noise sources [18–20]. For example, the initial Laser Interferometer
Gravitational-Wave Observatory (LIGO) – operational between 2002 and
2005 – used a single pendulum design to isolate the mirrors from seismic
noise. In contrast, the current version employs a sophisticated quadruple
pendulum design along with an active damping system [21]. These im-
provements, among many others, have resulted in a tenfold increase in
sensitivity [22].

On 14 September 2015, just shy of a century after Einstein’s prediction,
LIGO directly detected a gravitational wave for the first time in human
history [25]. Using two interferometers, one in Livingston, Louisiana, and
the other in Hanford, Washington, they observed the waves emitted by
the merger of two black holes. The signal was named GW1509144 and was
observed for approximately 0.2 seconds. This seemingly short blip was the

4All detections are named after their detection date in the year-month-day format.
Since 2019, due to the increased frequency of detections, this notation is followed by:
_hour-minute-second.
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Figure 1.1: The interferometer setup at LIGO consists of the following
components: 1. A laser installation generates a 1064 nm beam with ex-
ceptional purity and a power output of 200W. This laser beam is directed
towards a beam splitter. 2. The beam splitter divides the incoming laser
beam into two beams, each directed into a 4 km long arm. 3. The arms of
the interferometer function as Fabry-Perot cavities [23], which allow the
laser beam to bounce back and forth multiple times, effectively increasing
the arms’ length and enhancing the detector’s sensitivity. When the beams
recombine at the beam splitter, the pattern of interference between the
recombined beams reveals any relative change in the arms’ lengths. 4A.
When the arms are precisely equal in length, the two beams nullify each
other through destructive interference, resulting in no power transmis-
sion. 4B. However, discrepancies in arm lengths, such as those caused by
gravitational waves, lead to constructive interference, allowing power to
be transmitted. 5. The transmitted power is measured by a sensor, which
allows for the determination of the disparity in arm lengths. This figure is
strongly inspired by work from Johan Jarnestad [24].
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start of gravitational-wave astronomy and its detection was key in Rainer
Weiss, Barry Barish, and Kip Thorne being awarded the Nobel Prize in
physics in 2017 [26].

In the almost nine years since GW150914, gravitational-wave astron-
omy has made huge strides through the collaborative efforts of a global
detector network. This network includes LIGO in the United States, Virgo
in Europe [27], and more recently, KAGRA in Japan [28]. Together, they
have observed and analyzed a total of ninety gravitational wave events [29],
among them two binary neutron star mergers [30, 31]. These observations
have provided bounds on the plausibility of alternative theories of general
relativity [32] and given us a glimpse into the black hole make-up of the
Universe [33]. The combination of multiple detectors vastly improves
sensitivity and enhances our ability to localize gravitational wave sources.
This precise localization enables rapid follow-up observations with optical
telescopes, potentially capturing electromagnetic counterparts to these
events. The joint observation of electromagnetic and gravitational waves
from compact object mergers involving neutron stars, whether in binary
neutron star or neutron star-black hole systems, allows us to delve into
the process of heavy element generation [34], probe the limits of general
relativity further [35], and gain unique insights into the composition and
structure of neutron stars [36].

A critical part of solving all of these science cases is the analysis of
the events. When analyzing a gravitational wave event, our primary
goal is to characterize the astrophysical source that produced the signal.
This involves determining properties such as the masses and spins of
the compact objects, their orbital parameters, and the distance to the
source. Thus, the analysis process constitutes an inverse problem: we
work backward from the observations to infer the parameters that best
explain the detected signal. Essential in solving an inverse problem is a
forward model that can map given parameters to a signal, also called a
simulation model. Such a forward model allows us to find parameters
that give rise to outputs similar to the observation, and thus characterize
the source accurately. For gravitational waves coming from compact
binary coalescences, multiple simulation models are available. The most
accurate of these models are numerical relativity simulations [37–39], but
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these are prohibitively expensive5. Therefore, multiple families of simpler
simulation models are used, see subsection 2.1.2, each with their own set
of assumptions to make the computational load manageable.

Noise is ever-present in gravitational wave observations, and plays an
important role in solving inverse problems as it introduces uncertainty
into observations. Rather than having a deterministic relationship between
observations and parameters, the presence of noise implies that multiple
parameter combinations can explain the observation well. In a Bayesian
framework, this uncertainty is elegantly handled by treating parameters as
random variables and expressing beliefs about them in terms of probability
distributions. Bayesian approaches rely on Bayes’ theorem, which states
that the posterior – the probability that parameters 𝜃𝜃 are responsible for
observation 𝐷𝐷 – is proportional to the likelihood times the prior:

𝑃𝑃(𝜃𝜃|𝐷𝐷)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
posterior

∝ 𝑃𝑃(𝐷𝐷|𝜃𝜃)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
likelihood

× 𝑃𝑃(𝜃𝜃)
⏟⏞⏞⏟⏞⏞⏟
prior

.

The likelihood function 𝑃𝑃(𝐷𝐷|𝜃𝜃) expresses the probability of observing
𝐷𝐷 assuming that the given parameters 𝜃𝜃 and the simulation model are
correct; it quantifies how well the parameters explain the observed data.
For noisy inverse problems, the likelihood function is defined by the
noise distribution, as it measures how well the observation minus the
simulation matches the noise distribution. The prior distribution 𝑃𝑃(𝜃𝜃)
captures our initial assumptions about the parameters. In cases where
no prior knowledge is available, one might assign a uniform distribution
over the possible values of 𝜃𝜃. Once the likelihood function is defined and
the prior distribution is chosen, Bayesian inference methods allow us to
compute the posterior distribution.

In gravitational-wave astronomy, a popular Bayesian inference method
is nested sampling [41]. This method divides the prior into nested shells
of ascending likelihood and constructs a posterior distribution from them.
The process begins by randomly sampling a set of points from the prior
distribution. Each of these points represents a possible set of parameters
for the model. These points are then evaluated based on their likelihood,

5A single numerical-relativity simulation of a binary black hole merger can take
months to complete on a supercomputer [40].
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and the one with the lowest likelihood is identified. This lowest likelihood
point defines the outer boundary of the first shell. Next, this point is
replaced with a new point drawn from the prior, but constrained to have
a higher likelihood than the current boundary. This iterative process of
identifying and replacing the lowest likelihood point continues, each time
shrinking the shell and increasing the overall likelihood threshold. By sys-
tematically refining the parameter space in this manner, nested sampling
effectively handles multi-modal distributions and, given a sufficiently large
set of points, is guaranteed to accurately determine the posterior distri-
bution. This robustness and efficiency make nested sampling particularly
well-suited for the multi-modal and high-dimensional parameter spaces
encountered in gravitational-wave data analysis6.

Nested sampling offers several advantages, including effective han-
dling of multi-modalities, the generation of independent posterior samples,
and it can easily be parallelized. However, its computational demands
and time-consuming nature are notable challenges; the analysis of a short
gravitational wave event can require multiple hours, even on powerful
hardware [43]. At present, given the current observation rates and tech-
nological capabilities, these challenges are manageable. Nonetheless, as
detectors undergo upgrades and new instruments such as Cosmic Ex-
plorer or Einstein Telescope7 are built, the overall sensitivity is expected
to increase significantly, see the left side of Figure 1.2. This improved
sensitivity will enable exploration of much larger volumes of space, and
thereby increase the rate of binary merger detections as is illustrated in
the right side of Figure 1.2. To demonstrate this (anticipated) increase in
detection frequency, we provide the (expected) event rate of binary black
hole mergers for several dates: during the initial run in 2015, the rate was
8.5 events per year [44]; by the third run in 2020, this rate had escalated
to 81 events per year [29]. Projections for 2025 estimate a rate ranging
between 103 and 104 events per year, while by 2030, it is anticipated to
reach between 104 and 105 events per year [45]. In addition to the expo-
nential growth of the number of events, their life time in the detectors’
sensitive band will also drastically increase. The duration of an event is

6The level of robustness differs between implementations of nested sampling [42].
7These future detectors are part of the third generation (3G) detectors.
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strongly dependent on the lowest sensitive frequency of the detectors; cur-
rent analysis often uses a value of 20 Hz. Halving this sensitive frequency
roughly sextuples the event duration. Realistically, it is anticipated to reach
10 Hz after current detectors receive upgrades and at most 5 Hz when
Cosmic Explorer and Einstein Telescope become operational. Even when
ignoring more compounding factors, a conservative back-of-the-envelope
calculation suggests that the analysis of all black hole merger events in
2030 would require a computer cluster to continuously run for 45 years.
In reality, this number should be even higher, considering the number of
observable binary neutron stars will also skyrocket. These systems, due
to their lower masses, produce significantly longer signals than binary
black holes, drastically increasing their analysis time. Additionally, the
necessity for repeated inference runs with different simulation models to
test scientific hypotheses further compounds the computational challenge.
In summary, nested sampling is well-suited for the current gravitational
wave event rate, however, the expected exponential surge in gravitational
events in the coming years poses a difficult challenge.

In preparation for this significant challenge, an increasing number of
studies are focused on speeding up gravitational wave inference. Various
solutions are being explored, including alternative simulation models [48,
49], efforts to utilize accelerator hardware [50, 51], interpolation strategies
to ease the computational load [52–55], and the development of machine
learning methods to replace Bayesian inference [56–58]. The latter, often
called likelihood-free or simulation-based inference, aims to construct the
posterior distribution without direct reliance on the likelihood function.
Within simulation-based inference, strategies can broadly be categorized
into two approaches. The first approach involves constructing a metric to
compare simulations with observations. However, this is less relevant for
gravitational wave inference since the majority of the computational load
is the simulation itself. The second approach focuses on inferring a generic
relationship between simulations and the posterior distribution, enabling
the prediction of posterior distributions for observations without the need
for simulations during inference. The second strategy is particularly de-
sirable for gravitational waves, as it eliminates the need for real-time
simulations during inference. Sadly, for gravitational waves – and most
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Figure 1.2: Comparison of detection capabilities between current and future
detectors. Left: The (expected) noise amplitudes of various detectors are
depicted as a function of frequency, with lower values indicating greater
sensitivity. The gray line represents the measured noise strength of the
LIGO detector during the O3 run (2019-2020), while the thick-colored
lines represent either upgrades (LIGO A+ and Voyager) or new detectors
(Cosmic Explorer and Einstein Telescope). The figure is taken from [46].
Right: The detection range of these upgraded and future detectors is
shown for binary neutron star and binary black hole mergers, along with
the corresponding number of events it represents. The yellow and white
dots represent populations of binary neutron star and binary black hole
mergers respectively. These upgrades and new detectors promise access
to a significantly larger volume of space, thereby drastically increasing
the number of detections. The figure is adapted from [47].
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other inverse problems – establishing the relationship between simula-
tions or observations and their posterior distributions is an immensely
challenging task, hindered by the highly non-linear and high-dimensional
nature of the relationship.

Fortunately, neural networks are a powerful tool for modeling highly
complex relationships. Since the deep learning revolution in 2012 [59, 60],
they have emerged as the go-to approach for constructing the relationships
between high-dimensional inputs, for example, images, and correspond-
ing observables, such as the object in the image. Consequently, neural
networks have gained considerable prominence in the field of simulation-
based inference. Prominent neural methods mimic a part of the Bayesian
inference toolbox: the likelihood function [61], the likelihood-ratio [62], or
the posterior distribution [63]. The last method, often referred to as neural
posterior estimation, can generate an estimate of the posterior distribution
within seconds. If the estimates are accurate, it could enable the analysis
of gravitational waves well into the future.

To explain how neural posterior estimation works in practice, let us
consider the process of training such a model to infer the parameters of a
binary black hole merger. This method requires the following components:

Prior distribution: a chosen distribution spanning the parameter space.

Simulation model: generates gravitational wave data for specified
parameters.

Neural network: maps gravitational wave inputs to a defined set of
variables.

Flexible distribution: represents the posterior distribution, with the
neural network’s outputs determining its shape and coverage across
the parameter space.

To train the model, synthetic training data is created by sampling true val-
ues from the prior distribution and generating corresponding gravitational
wave signals using the simulation model. By embedding the signal in sim-
ulated noise, we approximate real-world observational conditions. During
training, the neural network learns to map these synthetic observations to
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a distribution. The quality of this prediction is evaluated by the likelihood
of the true parameters in the predicted distribution. This likelihood is then
used to define the loss function for optimizing the neural network. With
each prediction iteration, the network adjusts its internal parameters to
minimize the loss function. After millions of iterations, the neural network
learns to approximate the actual posterior distributions with its predicted
distributions. Once trained, this model can rapidly estimate posterior dis-
tributions for new gravitational wave observations, potentially enabling
real-time parameter inference for future high-rate detections.

Neural posterior estimation and its counterparts in neural simulation-
based inference hold considerable promise, generating posterior distribu-
tions in a fraction of the time required by traditional Bayesian inference
methods. However, these predictions are made by neural networks, which
are essentially black-box models. They excel at learning mappings be-
tween given inputs and outputs, but their predictions lack interpretability
because the reasoning is hidden within a complex, non-linear computation.
This opacity can undermine trust in the model’s prediction. Moreover,
neural networks are known to suffer from catastrophic forgetting [64]
and miscalibration [65, 66] even when trained on millions to billions of
samples. They can also exhibit unexpected behavior when given inputs
outside their training data. For these simulation-based inference methods
to serve as viable alternatives, they must match the reliability and accu-
racy of traditional Bayesian inference while retaining their rapid inference
speed.

This thesis aims to improve the reliability and capabilities of the neural
posterior estimation methods, with a specific focus on their application
to gravitational waves. Chapter 2 provides the necessary background
to understand the remaining chapters. In Chapter 3, we demonstrate
that one can use importance sampling to verify and improve probabilistic
skymaps produced by Von-Mises distributions parameterized by neural
networks. Then, in Chapter 4, we demonstrate the ability of continuous
normalizing flows to estimate the posterior distribution of overlapping
signals well even in regimes where traditional methods fail. In Chapter 5,
we address the specific challenges posed by high-variance regions of the
parameter space for neural posterior estimation and propose the use of
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so-called effective priors and a fine-tuning scheme. We demonstrate the
improvements of our proposed solutions on simulated low-mass binary
black hole signals. Finally, in Chapter 6, we summarize our results and
sketch our vision of the future gravitational-wave analysis pipelines.
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Chapter 2

Background

This chapter provides an overview of the essential concepts in gravita-
tional wave physics and machine learning. We start with linearized gravity
and its prediction of Gravitational Waves (GWs) and their properties. The
discussion then moves to the characterization and simulation of GWs from
binary systems. Finally, we explore parameter estimation techniques, in-
cluding traditional Bayesian methods and novel neural approaches. While
this chapter does not present new ideas, it aims to give the reader the
necessary information to understand the remainder of this thesis. Readers
already familiar with these topics may choose to skip sections.

2.1 Gravitational Waves

Einstein’s theory of gravity, known as General Relativity (GR), is the
leading explanation for gravity and is widely regarded as one of the most
thoroughly tested and respected theories in physics. One of its predictions
is the existence of GWs in spacetime. Here, we will establish the theoretical
foundation of GWs and discuss their relationshipwith binary systems using
linearized gravity.

The Einstein Field Equations (EFE) form the foundation of GR. They are
a set of mathematical expressions that describe the relationship between
spacetime curvature and the distribution of energy-momentum1:

𝐺𝐺𝜇𝜇𝜇𝜇 = 𝑅𝑅𝜇𝜇𝜇𝜇 −
1
2
𝑔𝑔𝜇𝜇𝜇𝜇𝑅𝑅 =

8𝜋𝜋𝜋𝜋
𝑐𝑐4

𝑇𝑇𝜇𝜇𝜇𝜇. (2.1)

In this equation, 𝑇𝑇𝜇𝜇𝜇𝜇 is the symmetric energy-momentum tensor, which
describes the density and flux of energy and momentum. The constants 𝐺𝐺

1A note on notation: we will use Greek letters, particularly 𝜇𝜇 and 𝜈𝜈, to denote one
of the four spacetime components, where 0 represents time, and {1, 2, 3} represent the
spatial dimensions.
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and 𝑐𝑐 represent the gravitational constant and speed of light, respectively.
𝐺𝐺𝜇𝜇𝜇𝜇 is the symmetric Einstein tensor, which characterizes the curvature of
spacetime. The Ricci tensor 𝑅𝑅𝜇𝜇𝜇𝜇 and the Ricci scalar 𝑅𝑅 describe particular
aspects of this curvature, while the metric tensor 𝑔𝑔𝜇𝜇𝜇𝜇 defines the geometric
properties of spacetime.

The EFE do not fully constrain spacetime curvature, and thus the mass
distribution across space does not uniquely define the spacetime curvature.
Moreover, hidden inside equation 2.1 are ten coupled non-linear partial
differential equations. Consequently, deriving exact solutions for the EFE
is generally infeasible. Solutions are typically found only under idealized
conditions, constrained by symmetries or boundary conditions, as shown
by the Schwarzschild [67] and Kerr [68] solutions.

One common idealized condition is the absence of strong gravitational
sources. Under this assumption, the spacetime metric 𝑔𝑔𝜇𝜇𝜇𝜇 can be modeled
as a sum of the flat background metric 𝜂𝜂𝜇𝜇𝜇𝜇 and a small perturbation ℎ𝜇𝜇𝜇𝜇:

𝑔𝑔𝜇𝜇𝜇𝜇 = 𝜂𝜂𝜇𝜇𝜇𝜇 + ℎ𝜇𝜇𝜇𝜇 with |ℎ𝜇𝜇𝜇𝜇| ≪ 1. (2.2)

Given the small magnitude of ℎ𝜇𝜇𝜇𝜇, any terms beyond linear order can be ne-
glected. This approximation is known as linearized gravity. The harmonic
gauge simplifies the equations significantly by imposing a condition on
the coordinates, reducing the degrees of freedom. By applying this gauge
transformation and several lines of calculus2, the EFE reduce to:

(−
𝜕𝜕2

𝑐𝑐2𝜕𝜕𝜕𝜕2
+

𝜕𝜕2

𝜕𝜕𝜕𝜕2 +
𝜕𝜕2

𝜕𝜕𝜕𝜕2 +
𝜕𝜕2

𝜕𝜕𝜕𝜕2)
ℎ̄𝜇𝜇𝜇𝜇 = −

16𝜋𝜋𝜋𝜋
𝑐𝑐4

𝑇𝑇𝜇𝜇𝜇𝜇. (2.3)

In vacuum, where there is no matter or energy (𝑇𝑇𝜇𝜇𝜇𝜇 = 0), the wave equation
reduces to a homogeneous form, describing waves propagating at the
speed of light through spacetime – these are GWs. While the harmonic
gauge simplifies the equations, it leaves six degrees of freedom. By further
imposing the transverse-traceless gauge, we can reduce these to just two
degrees of freedom, exhausting the remaining gauge freedom. Under these

2For the full derivation, we refer the reader to chapter 1 of [69].
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Figure 2.1: Illustration of the two polarization states on a ring of particles.
The black ring represents the particles at rest, while the blue and red
dashed rings represent the particles when the GW has phases equal to 𝜋𝜋/2
and 3𝜋𝜋/2, respectively.

conditions, the expression for a GW traveling along the z-axis becomes:

ℎ̄𝑇𝑇 𝑇𝑇𝜇𝜇𝜇𝜇 =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 ℎ+ ℎ× 0
0 ℎ× −ℎ+ 0
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

cos (𝜔𝜔(𝑡𝑡 −
𝑧𝑧
𝑐𝑐 ))

. (2.4)

A wave with angular frequency 𝜔𝜔, and the two degrees of freedom ℎ+ and
ℎ× represent the two polarization states of the GW, often referred to as the
‘plus’ and ‘cross’ polarizations respectively. A visualization is shown in
Figure 2.1.

While the above scenario provides a foundation for understanding
GWs in the absence of strong sources, our primary interest lies in the GWs
emitted by compact binary systems, such as pairs of orbiting neutron stars
or black holes. Compact binaries distinguish themselves as remarkable
GW emitters due to two key factors: (1) the continuous acceleration of
their orbiting masses and (2) their capacity to orbit at extraordinarily
close distances. The extreme density of these objects allows them to
endure strong tidal forces that would pull apart normal stars, producing
more intense gravitational fields and significantly stronger GWs. As the
binary components draw closer, they reach relativistic velocities, further
amplifying the intensity of the emitted GWs. To model GW emission from
these systems, we solve equation 2.3 for two point masses 𝑚𝑚1 and 𝑚𝑚2. This
solution assumes a distant observer and employs the weak-field, slow-
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motion limit (𝑣𝑣 𝑣𝑣 𝑣𝑣) of GR3. The first-order expression for the emitted
GWs by a point mass binary system is:

ℎ+(𝑡𝑡) =
4
𝑟𝑟 (

𝐺𝐺𝑐𝑐

𝑐𝑐2 )

5
3

(
𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜

𝑐𝑐 )
2
3

(
1 + cos2 𝜄𝜄

2 ) cos (2𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜 (𝑡𝑡 −
𝑟𝑟
𝑐𝑐))

, (2.5)

ℎ×(𝑡𝑡) =
4
𝑟𝑟 (

𝐺𝐺𝑐𝑐

𝑐𝑐2 )

5
3

(
𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜

𝑐𝑐 )
2
3
cos (𝜄𝜄) cos (2𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜 (𝑡𝑡 −

𝑟𝑟
𝑐𝑐))

, (2.6)

where 𝑟𝑟 is the distance to the observer, 𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜 the orbital angular frequency,
𝑐𝑐 is the chirp mass of the binary system, and 𝜄𝜄 is the inclination angle of
the orbital plane relative to the line of sight, see also Figure 2.2. The chirp
mass is expressed as:

𝑐𝑐 =
(𝑚𝑚1𝑚𝑚2)3/5

(𝑚𝑚1 + 𝑚𝑚2)1/5
, (2.7)

which is the dominant factor in the amplitude and frequency evolution.
While the expressions derived so far represent a stable orbit, in reality,

the emission of GWs causes the binary system to lose energy, resulting in
orbital decay. This leads to a characteristic ‘chirp’ signal, where both the
frequency and amplitude of the GWs increase over time as the objects spiral
closer together. The rate of this orbital decay is primarily determined by
the system’s chirp mass. For a circular orbit, we can quantify this evolution.
The orbital frequency change due to GW emission can be approximated
to leading order as [69]:

𝑑𝑑𝑑𝑑𝐺𝐺𝐺𝐺
𝑑𝑑𝑑𝑑

=
96𝜋𝜋8/3

5 (
𝐺𝐺𝑐𝑐

𝑐𝑐3 )

5/3

𝑓𝑓 11/3
𝐺𝐺𝐺𝐺 (𝑡𝑡 −

𝑟𝑟
𝑐𝑐)

, (2.8)

where 𝑓𝑓𝐺𝐺𝐺𝐺 is the GW frequency, which is twice the orbital frequency 𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜.
This equation demonstrates how the frequency increases more rapidly for
systems with larger chirp masses, leading to a faster inspiral and shorter
signal durations.

Beyond these considerations of orbital dynamics, a more accurate
model of GWs must incorporate additional complexities. Moving beyond

3For a full derivation, we refer the reader to chapters 3 and 4 of [69].
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𝑟𝑟
𝑐𝑐))

, (2.6)

where 𝑟𝑟 is the distance to the observer, 𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜 the orbital angular frequency,
𝑐𝑐 is the chirp mass of the binary system, and 𝜄𝜄 is the inclination angle of
the orbital plane relative to the line of sight, see also Figure 2.2. The chirp
mass is expressed as:

𝑐𝑐 =
(𝑚𝑚1𝑚𝑚2)3/5

(𝑚𝑚1 + 𝑚𝑚2)1/5
, (2.7)

which is the dominant factor in the amplitude and frequency evolution.
While the expressions derived so far represent a stable orbit, in reality,

the emission of GWs causes the binary system to lose energy, resulting in
orbital decay. This leads to a characteristic ‘chirp’ signal, where both the
frequency and amplitude of the GWs increase over time as the objects spiral
closer together. The rate of this orbital decay is primarily determined by
the system’s chirp mass. For a circular orbit, we can quantify this evolution.
The orbital frequency change due to GW emission can be approximated
to leading order as [69]:

𝑑𝑑𝑑𝑑𝐺𝐺𝐺𝐺
𝑑𝑑𝑑𝑑

=
96𝜋𝜋8/3

5 (
𝐺𝐺𝑐𝑐

𝑐𝑐3 )

5/3

𝑓𝑓 11/3
𝐺𝐺𝐺𝐺 (𝑡𝑡 −

𝑟𝑟
𝑐𝑐)

, (2.8)

where 𝑓𝑓𝐺𝐺𝐺𝐺 is the GW frequency, which is twice the orbital frequency 𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜.
This equation demonstrates how the frequency increases more rapidly for
systems with larger chirp masses, leading to a faster inspiral and shorter
signal durations.

Beyond these considerations of orbital dynamics, a more accurate
model of GWs must incorporate additional complexities. Moving beyond

3For a full derivation, we refer the reader to chapters 3 and 4 of [69].
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the quadrupole approximation, we can express the GW as a sum of spin-
weighted spherical harmonics [70]:

ℎ(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡) =
∞

∑
𝓁𝓁=2

𝓁𝓁

∑
𝑚𝑚=−𝓁𝓁

ℎ𝓁𝓁𝑚𝑚(𝑡𝑡)−2𝑌𝑌 𝓁𝓁𝑚𝑚(𝜃𝜃𝜃𝜃𝜃 ). (2.9)

Here, ℎ𝓁𝓁𝑚𝑚(𝑡𝑡) are the mode amplitudes and −2𝑌𝑌 𝓁𝓁𝑚𝑚(𝜃𝜃𝜃𝜃𝜃 ) are the spin-weighted
spherical harmonics, (𝜃𝜃, 𝜙𝜙) defining the sky location with respect to the
detector. While the (𝓁𝓁 = 2, 𝑚𝑚 = ±2) modes correspond to the quadrupole
radiation we have discussed earlier, higher values of 𝓁𝓁 and 𝑚𝑚 represent
higher-order or sub-dominant modes. These higher-order modes, though
typically less prominent, play a crucial role in certain scenarios. They
become increasingly significant for systems with highly uneven mass pair-
ings, large total masses, or significant inclination. By carrying additional
information about the source, these modes can be vital for accurate pa-
rameter estimation. The importance of these higher-order modes has been
demonstrated in recent analyses by the LIGO-Virgo-KAGRA collaboration.
For instance, in the analysis of GW190814, a binary system with a highly
asymmetric mass ratio, the inclusion of higher-order modes significantly
improved the precision of the source parameter estimates [71].

In this section, we have established the basic theory of GWs and ex-
plored their relationship with binary systems using linearized gravity.
While these simplified expressions are useful for conveying core con-
cepts, they fall short of describing real GW signals. To bridge this gap,
we must first explore the key parameters and characteristics that shape
GWs and affect their detection, which is the focus of our next subsection.
Following this, we will introduce advanced simulation models for GWs.
These sophisticated models, though more intricate, provide a substantially
more accurate representation of GW signals throughout the entire merger
process.
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2.1.1 Characterization

In Chapter 1, we gave a brief description of ground-based interferometers
for GW detection4. Here, we will take the next step and detail the interac-
tion between GWs and the detector to understand how to translate GWs
into measurable signals. Subsequently, we will discuss all the parameters
required to fully characterize the detected GW.

As illustrated in Figure 2.1, a GW affects its surroundings by periodi-
cally stretching spacetime in one direction while simultaneously squeezing
it in the perpendicular direction, and vice versa. Interferometric detectors
are designed to measure these minute distortions in spacetime. The L-
shaped configuration, as shown in Figure 1.1, represents the most straight-
forward geometry to implement for GW detection, effectively capturing
the differential changes in perpendicular directions. A passing GW al-
ters the proper distance between the interferometer’s mirrors, effectively
changing the length of the interferometer arms. This change in arm length
affects the path of the laser light traveling within the interferometer. The
resulting change in power output from the interferometer is proportional
to the fractional difference in the arm lengths [72]. This fractional differ-
ence is quantified by the strain

ℎ(𝑡𝑡) =
Δ𝐿𝐿(𝑡𝑡)
𝐿𝐿

, (2.10)

where Δ𝐿𝐿(𝑡𝑡) is the change in length of the interferometer arm caused by
the passing GW, and 𝐿𝐿 is the original length of the arm.

To accurately interpret the signals detected by these interferometers,
wemust consider the antenna pattern functions, 𝐹𝐹+ and 𝐹𝐹×. These functions
are required to translate a GW signal from the source frame to the detector
frame. In the source frame, we define the GW propagation direction as the
z-axis. However, this source frame z-axis generally does not align with
the z-axis of the detector frame. The antenna pattern functions account
for this misalignment, allowing us to correctly project the incoming GW
signal onto the detector’s reference frame. In Figure 2.2, the frames and
the relevant angles are shown. The expressions for the antenna pattern

4For a more extensive description, we refer the reader to chapter 9 of [69] or to
watch [72].
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functions can be found in [73]. The final expression for the strain due to a
passing GW reads

ℎ(𝑡𝑡) = 𝐹𝐹+(𝜃𝜃𝜃 𝜃𝜃𝜃 𝜃𝜃)ℎ+(𝑡𝑡) + 𝐹𝐹×(𝜃𝜃𝜃 𝜃𝜃𝜃 𝜃𝜃)ℎ×(𝑡𝑡). (2.11)

Note that sky angles 𝜃𝜃 and 𝜙𝜙 are fixed in the detector frame, which itself
moves as the Earth rotates. Astronomers therefore often transform the
sky angles to the equatorial angles, right ascension (RA), and declination
(DEC), which do not depend on Earth’s rotation.

To characterize a GWmeans to assign its measurement with a physical
description. This description is often a set of parameters. In GW science,
these parameters are categorized into two sets: intrinsic and extrinsic.
Intrinsic parameters concern the properties inherent to the source of the
GW, while extrinsic parameters relate to all remaining descriptors. So far,
we have already introduced quite a few of the GW parameters. Now, we
will introduce the remaining ones.

Starting with the intrinsic parameters, the no-hair conjecture states
that a stationary black hole5 is fully described by only three quantities:
its mass, electric charge, and angular momentum [75]. However, in the
context of Binary Black Holes (BBHs), the electric charge is typically
ignored. This is because the expected charge of astrophysical black holes
is negligible, and the distance between the two black holes in a binary
system is so large that the Coulomb force is insignificant. This leaves mass
and angular momentum (or spin) as the primary intrinsic parameters that
define the properties and behavior of a BBH.

In a binary black hole system, we have twomasses and two spin vectors.
The black holes are indexed by their mass, with the more massive black
hole assigned index 1 and the less massive one assigned index 2. A popular
alternative mass parameterization is to use the chirp mass 𝑐𝑐 and the
mass ratio 𝑞𝑞 = 𝑚𝑚2/𝑚𝑚1, since the chirp mass is a strong descriptor of the
GW polarizations, see also equation 2.6.

The spin vectors of the black holes, denoted as 𝑺𝑺1 and 𝑺𝑺2, can influence
the GW signal to varying degrees, depending on their magnitude and

5Other binary systems, such as neutron star binaries, have additional parameters like
tidal deformability, which describes the stars’ deformation in response to gravitational
fields.
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Figure 2.2: Three coordinate systems for GW calculations, with an ad-
ditional panel for precessing binaries. Top left: Detector frame, the
interferometer’s orthogonal arms define the 𝑥𝑥 and 𝑦𝑦 axes. Angles 𝜃𝜃 and 𝜙𝜙
define the line of sight 𝒏𝒏 between the detector and binary. Top middle:
Radiation frame, 𝒏𝒏 forms the 𝑧𝑧-axis. 𝜄𝜄 (inclination) and 𝜓𝜓 (polarization)
are the polar and azimuth angles of orbital angular momentum 𝑳𝑳. Top
right: Source frame, 𝑳𝑳 defines the 𝑧𝑧-axis. 𝒏𝒏’s projection onto the binary
plane forms the 𝑥𝑥-axis. Bottom: Precessing binary configuration. 𝑱𝑱 is
the total angular momentum, 𝑺𝑺 is the total spin (sum of spin components
𝑺𝑺1,2). The spin configuration can also be described by the spin component
magnitudes, spin difference angle 𝜙𝜙12, angle between 𝑱𝑱 and 𝑳𝑳 (𝜙𝜙𝐽𝐽𝐽𝐽), and
tilt angles 𝜃𝜃1,2 (𝜃𝜃2 omitted for figure clarity). For precessing systems, the
inclination angle is 𝜃𝜃𝐽𝐽𝐽𝐽 . Figure adapted from [74].
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are the polar and azimuth angles of orbital angular momentum 𝑳𝑳. Top
right: Source frame, 𝑳𝑳 defines the 𝑧𝑧-axis. 𝒏𝒏’s projection onto the binary
plane forms the 𝑥𝑥-axis. Bottom: Precessing binary configuration. 𝑱𝑱 is
the total angular momentum, 𝑺𝑺 is the total spin (sum of spin components
𝑺𝑺1,2). The spin configuration can also be described by the spin component
magnitudes, spin difference angle 𝜙𝜙12, angle between 𝑱𝑱 and 𝑳𝑳 (𝜙𝜙𝐽𝐽𝐽𝐽), and
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orientation. In some configurations, particularly when misaligned with
the orbital angular momentum, spins can induce precession effects that
modulate the waveform. While challenging to measure precisely, spin
information can potentially offer insights into the binary’s formation
history [76].

Spins can be parameterized using a Cartesian representation, but due
to their changing orientation during the merger, a spherical parameteriza-
tion is more commonly used. In the spherical parameterization, the spin
magnitude is often parameterized by:

𝜒𝜒1,2 =
𝑐𝑐|𝑺𝑺1,2|
𝐺𝐺𝐺𝐺1,2

(2.12)

or its dimensionless counterpart 𝑎𝑎1,2 = 𝜒𝜒1,2/𝑚𝑚1,2.
The orientation of the spin vectors is then given by the tilt angles 𝜃𝜃1,2,

which are the angles between 𝑺𝑺1,2 and the orbital angular momentum 𝑳𝑳, and
the azimuthal angles 𝜙𝜙12 and 𝜙𝜙𝐽𝐽𝐽𝐽 which are all depicted in Figure 2.2. These
parameters fully describe the spin configuration, but their importance
depends on whether the system is aligned or precessing:

Aligned spin systems: in these systems, both spin vectors are par-
allel or anti-parallel to 𝑳𝑳. The spins can be fully characterized by
projecting their magnitudes onto the z-axis (direction of 𝑳𝑳). These
systems do not exhibit precession and produce simpler gravitational
waveforms.

Precessing spin systems: in these more complex systems, at least
one spin vector is not aligned with 𝑳𝑳. All spin parameters (mag-
nitudes and orientations) are needed to describe the system. The
misalignment causes the orbital plane and spins to precess around
the total angular momentum vector, leading to modulations in the
GW signal.

Aligned spin systems are simpler tomodel but maymiss important physical
effects, while precessing systems capture the full complexity of the binary’s
dynamics but require more sophisticated analytical and computational
techniques.
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Most of the extrinsic parameters have been introduced already, but
we will cover them here briefly again. The relative position of the binary
with respect to the detector is given by the distance 𝑟𝑟 between the two and
the azimuth angles 𝜃𝜃 and 𝜙𝜙. These are, however, not the most convenient
parameterization; instead, the luminosity distance6 𝐷𝐷𝐿𝐿 and the equatorial
angles RA andDEC are used. Another extrinsic parameter is the inclination
angle. For non-precessing systems, this is denoted as 𝜄𝜄, which represents
the angle between the line of sight and the orbital angular momentum 𝑳𝑳.
However, in precessing systems, where the orbital plane itself evolves, we
instead use 𝜃𝜃𝐽𝐽𝐽𝐽 , which is the angle between the line of sight and the total
angular momentum 𝑱𝑱 . This distinction is necessary because 𝑱𝑱 remains
approximately constant in precessing systems, while 𝑳𝑳 does not. The
polarization angle 𝜓𝜓 is required to translate the polarization from the
source frame to the detector frame.

The two extrinsic parameters we have not covered yet are the coales-
cence time 𝑡𝑡𝑐𝑐 and coalescence phase 𝜙𝜙𝑐𝑐. The coalescence time is the exact
time at which the two black holes merge. The coalescence phase is the
phase of the GW at the time of merger. Both parameters are critical for
aligning the waveform with the observed signal. In practice, the time at
which the GW signal reaches the Earth’s center, the geocentric arrival
time, 𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔, is used instead of 𝑡𝑡𝑐𝑐.

We have now discussed all the parameters required to characterize
a measured GW, summarized in Table 2.1. In the next section, we will
discuss how to simulate a GW given these parameters.

2.1.2 Simulations

We have now discussed all the parameters required to characterize a BBH
merger. In the preceding sections, we introduced the concepts necessary
for understanding GWs and the parameters essential for their character-
ization. Now, we shift our focus to the methods used to simulate these
GWs, particularly from binary systems. Simulations play a vital role in
GW astronomy, serving as the cornerstone for both data analysis and

6The luminosity distance is a concept in cosmology that represents the distance an
astronomical object would be at if the universe were not expanding.
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Category Parameter Symbol
Chirp mass 𝑐𝑐

Mass ratio 𝑞𝑞
Intrinsic Spin magnitudes 𝑎𝑎1, 𝑎𝑎2

Tilt angles 𝜃𝜃1, 𝜃𝜃2
Azimuthal angles 𝜙𝜙12, 𝜙𝜙𝐽𝐽𝐽𝐽

Luminosity distance 𝐷𝐷𝐿𝐿

Right ascension RA
Declination DEC

Extrinsic Inclination angle 𝜄𝜄 or 𝜃𝜃𝐽𝐽𝐽𝐽
Polarization angle 𝜓𝜓

Geocentric arrival time 𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔
Coalescence phase 𝜙𝜙𝑐𝑐

Table 2.1: Summary of parameters used to characterize a GW signal from a
BBHmerger. Parameters are categorized as intrinsic or extrinsic. Note that
for aligned-spin systems, only the 𝑧𝑧-components of the spin magnitudes
(𝜒𝜒1𝑧𝑧, 𝜒𝜒2𝑧𝑧) are used instead of the full set of spin parameters. For precessing
systems, 𝜃𝜃𝐽𝐽𝐽𝐽 is used instead of 𝜄𝜄 for the inclination angle. Alternative mass
parameterizations, e.g. the individual masses 𝑚𝑚1, 𝑚𝑚2, are not shown but
can be derived from the listed parameters.
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theoretical predictions. Here, we will give an overview of the numerous
methods that exist to simulate GWs and provide context concerning their
use cases.

Previously, we examined the expressions for GWs emitted by binary
systems under the assumption of stable orbits and non-relativistic ap-
proximations. While these approximations are useful, they fall short in
accurately describing the highly dynamical and relativistic regime of black
hole mergers. As the two black holes spiral closer and eventually merge,
their velocities approach a significant fraction of the speed of light, and the
gravitational fields become extremely strong. In such scenarios, the ana-
lytical solutions we discussed earlier are no longer sufficient, necessitating
more sophisticated approaches.

To understand why more advanced methods are needed, it is important
to consider the different phases of black hole mergers: inspiral, merger,
and ringdown, see also Figure 2.3. During the inspiral phase, the black
holes gradually lose energy through GW emission and spiral inward in
a manner that can be accurately described by analytical methods. The
merger phase involves the highly non-linear dynamics of the black holes
colliding, producing the most intense GWs. Finally, the ringdown phase
occurs as the newly formed single black hole, resulting from the merger,
settles into a stable state, emitting GWs characterized by a series of damped
oscillations. Each of these phases presents unique challenges and requires
different modeling techniques to accurately describe the GWs produced.

To obtain complete and accurate solutions for the GWs emitted by
merging black holes, we must numerically solve the EFE with initial and
boundary conditions tailored to describe a BBH system. This approach,
known as Numerical Relativity (NR), involves discretizing spacetime into
a large, finite grid and evolving this grid over time according to the EFE.
These problems are highly non-trivial, requiring over a decade of research
to progress from early simulations of head-on colliding black holes [77]
to simulations of non-spinning, equal-mass BBH mergers [78]. Subse-
quently, [79, 80] enabled simulations of spinning, unequal mass BBHs,
expanding the scope of NR to more realistic astrophysical scenarios. Since
then, NR has made significant strides. There are now multiple open GW
catalogs, such as those in [81–83]. Despite these advancements and the
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to progress from early simulations of head-on colliding black holes [77]
to simulations of non-spinning, equal-mass BBH mergers [78]. Subse-
quently, [79, 80] enabled simulations of spinning, unequal mass BBHs,
expanding the scope of NR to more realistic astrophysical scenarios. Since
then, NR has made significant strides. There are now multiple open GW
catalogs, such as those in [81–83]. Despite these advancements and the
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Figure 2.3: Color-coded representation of a GW’s evolution. Inspiral
(purple) modeled by Post-Newtonian theory shows increasing frequency.
Late inspiral and merger (blue) require NR, capturing the peak emission.
Ringdown (red), described by Perturbation Theory, exhibits decaying oscil-
lations. Each phase demands distinct theoretical approaches for accurate
modeling. Figure adapted from [85].

use of supercomputers, these three cited catalogs hold roughly 4500 wave-
forms. However, it is crucial to understand the limitations of this dataset,
as they directly impact our ability to study the full range of astrophysi-
cal scenarios. First, many simulations concentrate on the merger’s final
stages, omitting earlier parts of the inspiral. Second, the precision of these
waveforms is not uniform, with varying levels of accuracy across different
simulations. Third, the waveforms are not sampled uniformly across the
parameter space. This uneven coverage means that some regions of the
parameter space, such as extreme mass ratios or high spin configurations,
are underrepresented [81, 84]. These limitations underscore the ongoing
challenges in NR, despite its significant progress.

While NR provides highly accurate waveforms, its computational de-
mands make it impractical for large-scale analyses. Instead, researchers
often rely on waveform approximants, which are simplified models that
can be computed more efficiently while still capturing the essential physics
of gravitational waveforms. Below, we discuss the main categories of these
approximants in detail, highlighting their pros and cons and providing
examples:
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Post-Newtonian (PN) expansions describe the inspiral phase of
a merging BBH by expanding the phase and time7 evolution as a
Taylor series with powers of 𝑣𝑣/𝑐𝑐. They are particularly effective
when velocities are relatively low and relativistic effects are weak.
This makes PN expansions suited for the early inspiral phase and
computationally efficient. However, as the black holes get closer and
their velocities increase, the accuracy of PN expansions diminishes,
limiting their applicability to later stages of the merger. A well-
known example of a PN waveform is TaylorF2 [86–88].

Effective One-Body (EOB) framework reinterprets the two-body
problem in general relativity as an effective one-body problem. It
constructs a Hamiltonian that governs the motion of a single particle
in an effective potential, accurately representing the original two-
body dynamics. EOB models are suitable for modeling all phases
of BBH mergers, including the inspiral, merger, and ringdown, as
they combine elements of PN theory with additional relativistic
corrections. However, they are more complex and computationally
intensive than PN expansions and require careful calibration with
NR results to ensure accuracy. The SEOBNRv5PHM waveform [89]
is one of the most accurate approximants available.

Surrogate models use interpolation and decomposition techniques
to fit the space between precomputed NR waveforms. These models
excel in two key aspects: speed and accuracy. They can generate
waveforms rapidly, while achieving accuracy comparable to NR
simulations in well-sampled regions of the parameter space. This
makes them valuable for in-depth analyses of specific events of
interest. However, their accuracy is limited by the range and density
of NR simulations used in training. In regions with fewer samples,
the quality of surrogate models significantly decreases. Since the
number of NR waveforms is low, parts of parameter space are poorly
covered. A notable example is the NRSur7dq2 waveform model [90].

7Some variants expand in frequency instead of time.
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Phenomological models combine multiple approximation meth-
ods to create efficient and accurate hybrid waveforms. These models
use PN theory as a base for the inspiral, supplemented with fitted
correction terms. They model the ringdown using perturbation
theory and fit the merger to NR waveforms using nontrivial factor-
ization schemes. A key feature of these models is how they stitch
together these different regions to create a coherent waveform. This
approach allows phenomenological models to balance computational
efficiency with accuracy across a wide parameter range. Their speed
and accuracy make them popular choices for GW analysis. A notable
example is the IMRPhenomXPHM waveform model [91].

While improved waveformmodels enhance our theoretical understand-
ing of GWs, their true value lies in application to observational data. The
refinements in modeling precession, higher-order modes, and the merger-
ringdown phase allow for more precise comparisons with detected signals.
The next section focuses on parameter estimation – the process of inferring
the physical properties of GW sources by comparing these models with
detector data.

2.2 Parameter Estimation

This section explores the landscape of parameter estimation techniques
in GW science. We start with Bayesian inference and traditional sam-
pling methods that have been the workhorse of GW analysis since the
first detection. We then progress to neural density estimators that could
potentially address the computational challenges posed by future detectors
like Cosmic Explorer and Einstein Telescope.

2.2.1 Bayesian Inference

The interplay between theoretical modeling and observational inference
is fundamental to GW astronomy. The waveform models discussed earlier
are essential tools in parameter estimation. This process requires us to
invert our approach: instead of predicting signals from known parameters,
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we must infer parameters from observed signals. This inverse problem
is central to GW astronomy. Building on Chapter 1, we now present a
more formal description of the statistical framework used to address this
challenge. At the core of this framework is Bayes’ theorem:

𝑝𝑝(𝜽𝜽|𝒅𝒅,) =
𝑝𝑝(𝒅𝒅|𝜽𝜽,)𝑝𝑝(𝜽𝜽|)

𝑝𝑝(𝒅𝒅|)
. (2.13)

In this equation, represents our hypothesis, realized through the chosen
waveform model. The vector 𝜽𝜽 contains the parameters we aim to infer,
and 𝒅𝒅 represents the observed detector data. The four terms in Bayes’
theorem are referred to as the posterior distribution 𝑝𝑝(𝜽𝜽|𝒅𝒅,), the likeli-
hood function 𝑝𝑝(𝒅𝒅|𝜽𝜽,), the prior distribution 𝑝𝑝(𝜽𝜽|), and the evidence
or marginal likelihood 𝑝𝑝(𝒅𝒅|). It is worth noting that the hypothesis is
often omitted from the notation for brevity, especially when dealing with
a single model or hypothesis.

Bayes’ theorem enables inference about unknown parameters 𝜽𝜽 by
relating the posterior probability to the product of the prior probability
and the likelihood, scaled by the marginal likelihood of the data. The
power of Bayes’ theorem lies in its ability to reverse conditional probabili-
ties, allowing us to infer causes (parameters) from effects (observed data).
This provides a formal mechanism for combining prior knowledge with
observed data to draw conclusions about model parameters or hypothe-
ses. In GW science, this approach is crucial for extracting information
about GW sources from detector data, enabling us to estimate properties
of astrophysical systems from the signals they produce.

Two quantities are of particular interest in scientific analysis: the
posterior distribution and the evidence. Bayes’ theorem, as shown in equa-
tion 2.13, provides an expression for the posterior distribution 𝑝𝑝(𝜽𝜽|𝒅𝒅,),
which quantifies the probability of parameter values given the data and
hypothesis. The evidence 𝑝𝑝(𝒅𝒅|) allows us to compare different hypothe-
ses quantitatively and is obtained by integrating the likelihood function
over all possible parameter values, weighted by their prior probabilities:

𝑝𝑝(𝒅𝒅|) = ∫ 𝑝𝑝(𝒅𝒅|𝜽𝜽,)𝑝𝑝(𝜽𝜽|)𝑑𝑑𝜽𝜽. (2.14)

This integration effectively marginalizes out the model parameters, provid-
ing a single number that represents the probability of observing the data
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𝒅𝒅 under the hypothesis . The ratio between evidences of two compet-
ing hypotheses, known as the Bayes factor, can be used to quantitatively
compare their relative plausibility, providing a principled approach to
hypothesis testing.

To obtain the posterior distribution or the evidence, a likelihood func-
tion needs to be known. The likelihood function, 𝑝𝑝(𝒅𝒅|𝜽𝜽,), quantifies
the probability of observing the data 𝒅𝒅 given the model parameters 𝜽𝜽 and
the hypothesis . In GW science, analysis often occurs in the frequency
domain to easily incorporate the detector noise characteristics into the
likelihood function:

𝑝𝑝(𝒅𝒅|𝜽𝜽,) ∝ exp(−
⟨𝒅𝒅 − ℎ(𝜽𝜽)|𝒅𝒅 − ℎ(𝜽𝜽)⟩

2 ) , (2.15)

where the inner product is defined as:

⟨𝑎𝑎|𝑏𝑏⟩ = 4ℜ∫
∞

0

𝑎𝑎∗(𝑓𝑓 )𝑏𝑏(𝑓𝑓 )
𝑆𝑆𝑛𝑛(𝑓𝑓 )

𝑑𝑑𝑑𝑑 𝑑 (2.16)

Here, ℎ(𝜽𝜽) is the model waveform, 𝑆𝑆𝑛𝑛(𝑓𝑓 ) is the one-sided power spectral
density (PSD) of the detector noise, and ℜ denotes the real part. This
likelihood function measures the agreement between the observed data
and the model predictions in the frequency domain, weighted by the noise
characteristics of the detector, and is known as the Whittle likelihood [92].

For complex models such as those used in GW analysis, computing
analytical solutions for the posterior distribution or evidence is gener-
ally intractable. Consequently, GW science relies on advanced sampling
techniques to efficiently explore these vast parameter spaces and estimate
posterior distributions and evidence. These sophisticated techniques, cru-
cial for extracting physical information from GW signals, will be discussed
in detail in the following subsection.

2.2.2 Classical Sampling Methods

Classical sampling methods are fundamental to Bayesian inference, en-
abling the estimation of posterior distributions and evidences for com-
plicated, high-dimensional parameter spaces. While these methods can
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handle both discrete and continuous variables, this subsection focuses on
their application to continuous parameter spaces, which are typical in GW
data analysis. This subsection examines four key techniques: rejection
sampling, importance sampling, Markov Chain Monte Carlo (MCMC),
and nested sampling. We will explore their principles, strengths, and
limitations.

Rejection sampling is a simple method for drawing samples from a
target probability distribution. In Bayesian inference, this target is typically
the posterior distribution 𝑝𝑝(𝜽𝜽|𝒅𝒅,). Importantly, we only need to know
this distribution up to a normalization constant, allowing us to work
directly with the product of the likelihood and prior. We indicate the
unnormalized posterior distribution by 𝑝̂𝑝(𝜽𝜽|𝒅𝒅,). The algorithm proceeds
as follows:

1. Pick a proposal distribution 𝑞𝑞(𝜽𝜽) that is non-zero wherever 𝑝̂𝑝(𝜽𝜽|𝒅𝒅,)
is non-zero, and find a constant 𝑀𝑀 such that 𝑀𝑀𝑀𝑀(𝜽𝜽) ≥ 𝑝̂𝑝(𝜽𝜽|𝒅𝒅,) for
all 𝜽𝜽.

2. Draw a sample 𝜽𝜽′ from 𝑞𝑞(𝜽𝜽).

3. Generate a uniform random number 𝑢𝑢 from the interval [0, 1].

4. Accept 𝜽𝜽′ if 𝑢𝑢 ≤ 𝑝̂𝑝(𝜽𝜽′|𝒅𝒅,)
(𝑀𝑀𝑀𝑀(𝜽𝜽′)) ; otherwise, reject it and return to step 2.

Figure 2.4A illustrates this process, showing how samples are accepted or
rejected based on their position relative to the target distribution. Although
conceptually straightforward, rejection sampling becomes highly ineffi-
cient in high-dimensional spaces. This is because the ratio of the volume of
the target distribution to that of the proposal distribution typically shrinks
exponentially with each added dimension, a phenomenon known as the
curse of dimensionality. In GW parameter estimation, where we might be
dealing with 15 parameters, the acceptance rate becomes prohibitively low,
rendering it impractical and necessitating more sophisticated sampling
techniques.

Importance sampling offers an improvement over rejection sampling
by reducing sample waste. Instead of rejecting samples, it assigns weights
to all samples drawn from a proposal distribution 𝑞𝑞(𝜽𝜽). The weight for a
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sample 𝜽𝜽′ is given by:

𝑤𝑤(𝜽𝜽′) =
𝑝̂𝑝(𝜽𝜽′|𝒅𝒅,)

𝑞𝑞(𝜽𝜽′)
. (2.17)

These weighted samples can be used to construct an approximation of
the posterior distribution. Figure 2.4B depicts this concept, showing how
samples are weighted according to their importance relative to the target
distribution. The posterior probability of any region 𝐴𝐴 in the parameter
space can be estimated as:

𝑃𝑃(𝜽𝜽 ∈ 𝐴𝐴|𝒅𝒅,) ≈
∑𝑁𝑁

𝑖𝑖=1 𝑤𝑤(𝜽𝜽𝑖𝑖)𝕀𝕀𝐴𝐴(𝜽𝜽𝑖𝑖)
∑𝑁𝑁

𝑖𝑖=1 𝑤𝑤(𝜽𝜽𝑖𝑖)
, (2.18)

where 𝕀𝕀𝐴𝐴(𝜽𝜽) is the indicator function for region 𝐴𝐴. This allows us to ap-
proximate the entire posterior distribution from the weighted samples.
The choice of proposal distribution 𝑞𝑞(𝜽𝜽) is crucial for the efficiency of im-
portance sampling. Ideally, 𝑞𝑞(𝜽𝜽) should be as close as possible to the target
distribution 𝑝̂𝑝(𝜽𝜽|𝒅𝒅,). In practice, it is often beneficial to have a 𝑞𝑞(𝜽𝜽) that
slightly overcovers the target distribution to ensure adequate sampling of
the entire parameter space. A poor choice of 𝑞𝑞(𝜽𝜽) can lead to high variance
in the weights, reducing the effective sample size8 and compromising the
accuracy of the posterior estimates. Despite its improvements over rejec-
tion sampling, importance sampling can still struggle in high-dimensional
spaces. As the number of dimensions increases, it becomes increasingly
challenging to design a proposal distribution that efficiently the target
distribution, especially if it is a complicated target distribution.

MCMC methods can handle complicated posterior distributions much
better. Like rejection sampling, MCMC involves proposing and accepting
or rejecting samples, but it does so in a way that forms a Markov chain.
A Markov chain is a sequence of samples, in which the probability of a
sample is only dependent on its predecessor. It allows the algorithm to
efficiently explore the parameter space by making local moves, gradually
moving towards regions of high probability. Figure 2.4C provides a visual

8Effective sample size reflects the number of independent samples the weighted
samples are equivalent to. A low effective sample size indicates that a few samples
dominate the estimate, potentially leading to inaccurate results.
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representation of an MCMC chain, demonstrating how the algorithm ex-
plores the parameter space through these local moves. This approach is
more effective than independent sampling methods, like rejection sam-
pling, because it can adapt to the shape of the target distribution, spending
more time in high-probability regions while still occasionally exploring
less likely areas. A well-known method to construct such a Markov chain
is the Metropolis-Hastings algorithm [93]:

1. Start with an initial parameter value 𝜽𝜽0.

2. Propose a new value 𝜽𝜽′ from a proposal distribution 𝑞𝑞(𝜽𝜽′|𝜽𝜽0).

3. Calculate the acceptance ratio 𝛼𝛼 = min(1, 𝑝̂𝑝(𝜽𝜽
′|𝒅𝒅,)𝑞𝑞(𝜽𝜽0|𝜽𝜽′)

𝑝̂𝑝(𝜽𝜽0|𝒅𝒅,)𝑞𝑞(𝜽𝜽′|𝜽𝜽0)
).

4. Accept 𝜽𝜽′ with probability 𝛼𝛼; if accepted, set 𝜽𝜽1 = 𝜽𝜽′, otherwise set
𝜽𝜽1 = 𝜽𝜽0.

5. Repeat steps 2-4, using the most recent accepted value as the starting
point.

Provided that the Markov chain is ergodic9, posterior samples can be
extracted by discarding the first 𝑛𝑛 samples, known as the “burn-in” pe-
riod, and thinning the chain by selecting only every 𝑘𝑘-th sample to lessen
autocorrelation and mimic independent sampling. It is common to run
multiple independent chains to handle multimodality in the target distri-
bution, as different chains might settle in different modes, guaranteeing a
more exhaustive examination of the parameter space. While this descrip-
tion covers the basics of MCMC, many advanced MCMC methods have
been developed to improve efficiency and handle complicated posterior
distributions; for a comprehensive review see [94, 95].

MCMC methods, while excellent for sampling from the posterior dis-
tribution, face challenges when it comes to estimating the evidence. The
evidence, as defined in equation 2.14, requires integration over the entire
parameter space, which MCMC does not naturally perform. In complex
parameter spaces, especially those with multi-modal or highly skewed

9A Markov chain is ergodic if it can explore the entire parameter space regardless of
its starting point.
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distributions, MCMC chains may struggle to efficiently explore all regions.
If the chain is not sufficiently ergodic, it can become trapped in certain
regions, oversampling them at the expense of others. This leads to a situ-
ation where sampling proportions within explored regions are accurate,
but the relative exploration between different regions is poor due to in-
frequent transitions. Consequently, MCMC methods may miss significant
contributions to the evidence integral from inadequately sampled regions,
potentially leading to biased evidence estimates. Due to these difficulties
in evidence estimation, nested sampling is the preferred method in most
GW analyses.

Nested sampling [41], introduced by Skilling in 2004, offers a solution
to the evidence estimation problem while simultaneously providing pos-
terior samples. The algorithm operates by maintaining a set of 𝑁𝑁 “live
points” drawn from the prior distribution, progressively replacing the
point with the lowest likelihood until the contribution to the evidence
from unexplored regions becomes negligibly small. This process effectively
samples from nested contours of increasing likelihood in the parameter
space. Figure 2.4D illustrates this nested sampling process, showing how
the algorithm progressively samples from these nested contours. The
nested sampling algorithm proceeds as follows.

1. Initialize a set of 𝑁𝑁 live points {𝜽𝜽𝑖𝑖} drawn from the prior distribution
𝑝𝑝(𝜽𝜽|).

2. Initialize an empty set to store the dead points.

3. At each iteration 𝑗𝑗 :

(a) Identify the live point 𝜽𝜽𝑙𝑙𝑙𝑙𝑙𝑙 with the lowest likelihood.
(b) Add 𝜽𝜽𝑙𝑙𝑙𝑙𝑙𝑙 to the set of dead points.
(c) Draw a new point 𝜽𝜽𝑛𝑛𝑛𝑛𝑛𝑛 from the prior distribution, subject to

the constraint 𝑝𝑝(𝒅𝒅|𝜽𝜽𝑛𝑛𝑛𝑛𝑛𝑛,) > 𝑝𝑝(𝒅𝒅|𝜽𝜽𝑙𝑙𝑙𝑙𝑙𝑙,).
(d) Replace 𝜽𝜽𝑙𝑙𝑙𝑙𝑙𝑙 with 𝜽𝜽𝑛𝑛𝑛𝑛𝑛𝑛 in the set of live points.

4. Repeat step 2 until a stopping criterion is met.

5. Add all remaining live points to the set of dead points.
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While conceptually straightforward, the implementation of nested sam-
pling faces a significant challenge in step 3(c): efficiently drawing samples
from the constrained prior region. Simple rejection sampling in this step
would suffer from the same poor scaling in high-dimensional spaces as
discussed earlier. To address this issue, more sophisticated methods have
been developed to sample from this constrained region efficiently. These
include region-based sampling, slice sampling, constrained Hamiltonian
Monte Carlo, and diffusive nested sampling [96–100]. These advanced
sampling techniques are crucial for the practical implementation of nested
sampling, especially in high-dimensional parameter spaces typical of GW
analysis.

As the algorithm progresses, it generates a sequence of discarded points,
often called “dead points”, each associated with a likelihood value and an
estimate of the prior volume it represents. These dead points are key to the
algorithm’s dual capability of evidence estimation and posterior sampling.
The evidence can be estimated by summing the contributions from each
dead point:

𝑝𝑝(𝒅𝒅|) ≈ ∑
𝑗𝑗
𝑝𝑝(𝜽𝜽𝑗𝑗 |𝑑𝑑𝑑 𝑑𝑑)Δ𝑋𝑋𝑗𝑗 , (2.19)

where 𝑝𝑝(𝜽𝜽𝑗𝑗 |𝑑𝑑𝑑 𝑑𝑑) is the likelihood of the dead point at iteration 𝑗𝑗 , and Δ𝑋𝑋𝑗𝑗

is an estimate of the decrease in prior volume represented by that point.
This decrease is estimated using the statistical properties of the sampling
process. At each iteration, the remaining prior volume is expected to shrink
by a factor related to the number of live points, allowing for a probabilistic
estimate of Δ𝑋𝑋𝑗𝑗 . Specifically, Δ𝑋𝑋𝑗𝑗 ≈ 𝑋𝑋𝑗𝑗(1 − exp(−1/𝑁𝑁)) with 𝑋𝑋𝑗𝑗 being the
prior volume at iteration 𝑗𝑗 and 𝑁𝑁 the number of live points. Moreover,
posterior samples can be extracted from the dead points by assigning
each point a weight proportional to 𝑝𝑝(𝜽𝜽𝑗𝑗 |𝑑𝑑𝑑 𝑑𝑑)Δ𝑋𝑋𝑗𝑗 and resampling. To
enhance sampling efficiency and posterior resolution, dynamic nested
sampling [101] can be implemented. This method adjusts the number of
live points during the run, concentrating more samples in the posterior
bulk. These capabilities – accurate evidence estimation, detailed posterior
reconstruction, and adaptive sampling – make nested sampling a preferred
choice for many GW analyses.

The samplingmethods discussed in this section have been implemented
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A. Rejection Sampling B. Importance Sampling

C. MCMC D. Nested Sampling

Figure 2.4: Comparison of sampling methods for parameter estimation.
Each panel shows a different technique applied to a bimodal target distri-
bution (contour lines). (A) Rejection sampling: red points accepted, blue
rejected. The proposal distribution is a uniform distribution. (B) Impor-
tance sampling: point size represents importance weights. The proposal
distribution is a standard normal distribution. (C) MCMC: the gray line
shows the full path of the Markov chain exploring the parameter space,
with every 10th sample highlighted in red to illustrate thinning. (D) Nested
sampling: color gradient from light to dark red shows progression from
prior exploration to high-likelihood concentration, efficiently estimating
both posterior distribution and evidence.
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in various software packages specifically designed for GW analysis. Two
prominent examples are LALInference [102] and bilby [103]. LALInfer-
ence has its own MCMC and nested sampling implementation and has
been used extensively, for example in the analysis of GWTC-2 [104]. bilby
uses off-the-shelf implementations of nested samplers, with the default im-
plementation being dynesty [105]. bilby was one of the analysis pipelines
used for the analysis of GWTC-3 [29] and is often used in analysis studies
such as [106–108].

These classical sampling methods have been invaluable in GW analysis,
providing robust tools for parameter estimation and model comparison.
However, they all share a common limitation: they require starting from
the prior distribution and evaluating millions of likelihood samples to
accurately infer the posterior distribution and evidence for each new ob-
servation. This process is computationally intensive and time-consuming,
especially for complex waveform models. As the detection rate of GW
events is expected to increase dramatically with future detectors like Cos-
mic Explorer and Einstein Telescope, the computational demands of these
methods may become prohibitive. These limitations motivate the explo-
ration of alternative approaches, such as the neural methodswewill discuss
in the next section, which aims to provide rapid parameter estimation
while maintaining the accuracy of traditional Bayesian techniques.

2.2.3 Neural Density Estimators

Recent advances in deep learning have enabled novel approaches to pa-
rameter estimation. Neural density estimators approximate the posterior
distribution with Neural Networks (NNs), offering the potential for rapid
inference once trained. This subsection assumes a basic understanding
of NNs; readers seeking a comprehensive overview or wanting to update
their knowledge of NNs are directed to [60, 109].

One straightforward approach to neural density estimation is to use a
NN to parameterize a known probability distribution [110, 111]. Consider a
multivariate normal distribution (𝜇𝜇𝜇 Σ) as the chosen distribution, where
both the mean vector 𝜇𝜇 and covariance matrix Σ are estimated by a NN. For
a given observation 𝒙𝒙, a neural density estimator 𝑞𝑞𝜙𝜙(𝜽𝜽|𝒙𝒙) with parameters
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𝜙𝜙 is then defined as:

𝑞𝑞𝜙𝜙(𝜽𝜽|𝒙𝒙) =  ([𝑓𝑓 (𝒙𝒙, 𝜙𝜙)]0, [𝑓𝑓 (𝒙𝒙, 𝜙𝜙)]1) (2.20)

Here, 𝑓𝑓 (⋅, 𝜙𝜙) is a NN that outputs the parameters of the normal distribution.
The first output, [𝑓𝑓 (𝒙𝒙, 𝜙𝜙)]0, represents 𝜇𝜇 and the second output, [𝑓𝑓 (𝒙𝒙, 𝜙𝜙)]1,
represents Σ. To obtain appropriate values for 𝜇𝜇 and Σ, 𝜙𝜙 needs to be opti-
mized. Training typically involves maximizing the expected log-likelihood
of the true parameters given the data:

ELL(𝜙𝜙) = 𝔼𝔼(𝒙𝒙,𝜽𝜽)∼[log 𝑞𝑞𝜙𝜙(𝜽𝜽|𝒙𝒙)], (2.21)

where  represents a dataset of observations or simulations 𝒙𝒙 and their
corresponding parameters 𝜽𝜽. This approach can be viewed as a form of
amortized Bayesian inference, where the NN learns to directly approximate
the posterior distribution 𝑝𝑝(𝜽𝜽|𝒙𝒙). By optimizing 𝜙𝜙, the model captures the
relationship between observations and parameters across a wide range
of scenarios. Once trained, this neural density estimator can efficiently
generate posterior estimates for new observations, circumventing the need
for costly per-instance inference runs typically associated with traditional
Bayesian methods.

While the approach of directly parameterizing a distribution is straight-
forward, it may not always capture complicated, multi-modal distributions
effectively. To address this limitation, more sophisticated models have
been developed, notably Normalizing Flows (NFs) [112–115]. An NF model
consists of a sequence of invertible transformations that map a simple base
distribution to a target distribution. This construction establishes a bijec-
tive relationship between the distributions, preserving total probability
mass while allowing individual sample probabilities to change. A signifi-
cant feature of NFs is their potential for universal approximation: under
certain conditions, such as using sufficiently expressive bijective functions
(e.g., splines or polynomials [116, 117]) and enough transformations, NFs
can theoretically transform any continuous probability distribution into
any other continuous distribution [118]. This universality, coupled with
the bijective nature of the transformations, allows NFs to model com-
plex, multi-modal distributions effectively. The subsequent discussion will
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examine the mathematical foundations, implementation strategies, and
practical considerations of NFs.

To understand how NFs achieve the necessary flexibility, we need to
examine the change of variables rule. Let 𝑇𝑇 be an invertible transformation
such that 𝑥𝑥 = 𝑇𝑇 (𝑧𝑧), where 𝑧𝑧 is drawn from a simple base distribution 𝜋𝜋(𝑧𝑧)
and 𝑥𝑥 represents a sample from our target distribution 𝑝𝑝(𝑥𝑥). The change
of variables rule allows us to compute the density of the target distribution
given the density of the base distribution and this transformation:

𝑝𝑝(𝒙𝒙) = 𝜋𝜋(𝒛𝒛)
||||
det (

𝜕𝜕𝒛𝒛
𝜕𝜕𝒙𝒙)

||||
= 𝜋𝜋(𝑇𝑇 −1(𝒙𝒙)) |det (𝐽𝐽𝑇𝑇−1(𝒙𝒙))| (2.22)

where 𝐽𝐽𝑇𝑇−1(𝑥𝑥) is the Jacobian matrix of 𝑇𝑇 −1 evaluated at 𝑥𝑥 . For computa-
tional efficiency and stability, the log-probability form is often preferred:

log 𝑝𝑝(𝒙𝒙) = log 𝜋𝜋(𝑇𝑇 −1(𝒙𝒙)) + log |det (𝐽𝐽𝑇𝑇−1(𝒙𝒙))| (2.23)

These equations relate the density 𝑝𝑝(𝑥𝑥) of the target distribution to the
density 𝜋𝜋(𝑧𝑧) of the base distribution through the differentiable and in-
vertible transformation 𝑇𝑇 . The Jacobian determinant term accounts for
the volume change induced by the transformation, ensuring the resulting
distribution is properly normalized.

NFs enhance their flexibility by chaining multiple invertible transfor-
mations, see for example Figure 2.5. Given a sequence of 𝐾𝐾 invertible
transformations 𝑇𝑇1, 𝑇𝑇2, ..., 𝑇𝑇𝐾𝐾 , the complete transformation 𝑇𝑇 is their com-
position:

𝑇𝑇 = 𝑇𝑇𝐾𝐾 ◦ 𝑇𝑇𝐾𝐾−1 ◦ ... ◦ 𝑇𝑇2 ◦ 𝑇𝑇1 (2.24)

This composition enables increasingly complex mappings between the
base and target distributions. The change-of-variable formula extends to
this composed transformation, with the Jacobian determinant becoming a
product:

|det (𝐽𝐽𝑇𝑇 (𝒙𝒙))| =
𝐾𝐾

∏
𝑘𝑘=1

|||det (𝐽𝐽𝑇𝑇𝑘𝑘 (𝑇𝑇𝑘𝑘−1 ◦ ... ◦ 𝑇𝑇1(𝒙𝒙)))
||| (2.25)

The primary computational challenge in implementing NFs lies in
the calculation of the Jacobian determinant. For high-dimensional prob-
lems, this calculation can become costly. This computational burden arises
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Figure 2.5: Illustration of the sequence of invertible transformations in an
NF model. Each layer applies a transformation to the input, incrementally
mapping a simple base distribution to a complex target distribution in the
forward direction, and vice versa in the inverse direction. Figure adapted
from [109].

because a naive implementation would require (𝑑𝑑3) operations for a
𝑑𝑑-dimensional parameter space, making it impractical for many real-world
applications. The need to compute this determinant for every transforma-
tion in the NF model in forward and backward passes further exacerbates
the issue, leading to prohibitively long training times and high memory
requirements.

The key to overcoming the computational limitations of NFs lies in
architectural designs that force the Jacobian matrix to be triangular. A
triangular Jacobian matrix is computationally advantageous because its
determinant is the product of its diagonal elements, calculable in (𝑑𝑑)
time instead of (𝑑𝑑3). The triangular structure is achieved by designing
transformations where each output component depends on a specific sub-
set of input components, creating a form of ordered dependence. Despite
this constraint, these architectures can represent complex transformations.
The two approaches that implement this triangular Jacobian matrix strat-
egy are autoregressive models and coupling layers, both of which have
made NFs practical for a wide range of high-dimensional problems [115,
119, 120].

Autoregressive layers achieve a triangular Jacobian matrix by imposing
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an ordered dependency in the transformation [114, 115, 121]. The 𝑖𝑖-th
dimension of the output is computed with only the first 𝑖𝑖 dimensions of
the input:

𝑧𝑧𝑖𝑖 = 𝑔𝑔𝑖𝑖(𝑦𝑦𝑖𝑖), with 𝑦𝑦𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝒙𝒙1∶𝑖𝑖, 𝜙𝜙) (2.26)
where 𝑔𝑔𝑖𝑖 is a differentiable, bijective function parameterized by the out-
put of a NN 𝑓𝑓𝑖𝑖. This structure results in a lower triangular Jacobian ma-
trix, as 𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝑗𝑗
= 0 for 𝑗𝑗 𝑗 𝑗𝑗. While this approach allows for highly flexible

transformations, it introduces an asymmetry between forward and in-
verse computations. The forward pass can be parallelized, but the inverse
transformation (crucial for sampling) requires 𝑑𝑑 sequential steps for 𝑑𝑑-
dimensional data10. This trade-off between expressiveness and sampling
speed is a key consideration when using autoregressive layers in practice.

Enforcing the ordered dependency in autoregressive layers presents
a challenge in implementation. A popular solution to this challenge is
the use of masking techniques in the NN 𝑓𝑓𝑖𝑖, as introduced by the Masked
Autoencoder for Distribution Estimation (MADE) model [122]. In MADE,
each layer of the NN is equipped with a specific binary mask that con-
trols the connections between its units and those of the previous layer.
These masks are designed to ensure that the autoregressive property is
maintained throughout the network. Specifically, the mask for output
unit 𝑦𝑦𝑖𝑖 allows connections only from input units 𝑥𝑥1 to 𝑥𝑥𝑖𝑖. This approach
not only preserves the desired dependency structure but also enhances
computational efficiency, making autoregressive models feasible for high-
dimensional data.

In contrast to autoregressive layers, coupling layers provide computa-
tional symmetry in the forward and backward pass11, allowing for efficient
parallel processing in both directions [113]. This is achieved by partition-
ing the input 𝒙𝒙 into 𝒙𝒙1 and 𝒙𝒙2 and applying the following transformations:

𝒛𝒛1 = 𝒙𝒙1, (2.27)
𝒛𝒛2 = 𝑔𝑔(𝒙𝒙2; 𝑦𝑦), with 𝑦𝑦 = 𝑓𝑓 (𝒙𝒙1, 𝜙𝜙). (2.28)

10One can also opt for a sequential forward pass and a parallelized inverse transfor-
mation, as done in [114].

11Technically, coupling layers are also autoregressive but have only two partitions,
making them a special case with a simpler dependency structure. This simplification
allows for parallel computation in both directions.
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dimensional data10. This trade-off between expressiveness and sampling
speed is a key consideration when using autoregressive layers in practice.

Enforcing the ordered dependency in autoregressive layers presents
a challenge in implementation. A popular solution to this challenge is
the use of masking techniques in the NN 𝑓𝑓𝑖𝑖, as introduced by the Masked
Autoencoder for Distribution Estimation (MADE) model [122]. In MADE,
each layer of the NN is equipped with a specific binary mask that con-
trols the connections between its units and those of the previous layer.
These masks are designed to ensure that the autoregressive property is
maintained throughout the network. Specifically, the mask for output
unit 𝑦𝑦𝑖𝑖 allows connections only from input units 𝑥𝑥1 to 𝑥𝑥𝑖𝑖. This approach
not only preserves the desired dependency structure but also enhances
computational efficiency, making autoregressive models feasible for high-
dimensional data.

In contrast to autoregressive layers, coupling layers provide computa-
tional symmetry in the forward and backward pass11, allowing for efficient
parallel processing in both directions [113]. This is achieved by partition-
ing the input 𝒙𝒙 into 𝒙𝒙1 and 𝒙𝒙2 and applying the following transformations:

𝒛𝒛1 = 𝒙𝒙1, (2.27)
𝒛𝒛2 = 𝑔𝑔(𝒙𝒙2; 𝑦𝑦), with 𝑦𝑦 = 𝑓𝑓 (𝒙𝒙1, 𝜙𝜙). (2.28)

10One can also opt for a sequential forward pass and a parallelized inverse transfor-
mation, as done in [114].

11Technically, coupling layers are also autoregressive but have only two partitions,
making them a special case with a simpler dependency structure. This simplification
allows for parallel computation in both directions.
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Here, 𝑔𝑔 is a differentiable, bijective function parameterized by the output
of a NN 𝑓𝑓 . This structure guarantees a block triangular Jacobian matrix:

𝐽𝐽 = [
𝐼𝐼 0
𝜕𝜕𝜕𝜕2
𝜕𝜕𝒙𝒙1

𝜕𝜕𝜕𝜕2
𝜕𝜕𝒙𝒙2

] . (2.29)

The Jacobian determinant is simply | det(𝜕𝜕𝜕𝜕2/𝜕𝜕𝒙𝒙2)|. Coupling layers face
an inherent trade-off between expressiveness and computational efficiency.
Their partitioning strategy, while enabling fast bidirectional transforma-
tions, restricts the model’s capacity to capture complex dependencies in
a single layer. As a result, coupling layer architectures typically need to
stack more layers to achieve comparable modeling power. Nevertheless,
their symmetric computational properties often prove advantageous in
practice, especially when both generation and density estimation tasks are
of equal importance.

Coupling and autoregressive layers have addressed the challenge of
tractable Jacobian determinant computation by imposing specific depen-
dency constraints. The introduction of Neural Ordinary Differential Equa-
tions (Neural ODEs) [123] in 2018, opened up new possibilities for NFs. It
makes Continuous Normalizing Flows (CNFs), also known as infinitesimal
flows, possible. Figure 2.6 visualizes the continuous transformation in
CNFs. These flows handle the Jacobian determinant computation in a
fundamentally different way: instead of designing architectures to ensure
a tractable Jacobian determinant for discrete transformations, CNFs refor-
mulate the problem in continuous time. Here, ‘time’ refers to a fictitious
dimension along which the transformation evolves, not physical time.
This allows the log-density change to be computed using the trace of the
Jacobian matrix, which can be efficiently estimated without explicitly con-
structing the full Jacobian matrix. Unlike discrete normalizing flows, CNFs
allow all parameters to depend on all other parameters. This increased flex-
ibility stems from the continuous-time formulation where only the trace
of the Jacobian matters. In the limit of infinitesimal steps, off-diagonal
Jacobian elements do not contribute to the Jacobian determinant, allowing
for more complex interdependencies in the transformation function. As a
result, CNFs can use more flexible architectures for their transformations
while still maintaining computational feasibility.
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Figure 2.6: Visualization of a CNF transforming a simple distribution into
a more complex one. Bottom: Initial 1D Gaussian distribution 𝑝𝑝(𝑧𝑧(𝑡𝑡0))
along coordinate 𝑧𝑧. Middle: Transformation process of the CNF, depicting
the flow direction and density changes along the continuous dimension 𝑡𝑡.
Top: Final learned density 𝑝𝑝(𝑧𝑧(𝑡𝑡1)) after the CNF transformation. Figure
adapted from [124].

Neural ODEs extend the concept of NNs to continuous-time dynamics.
Unlike traditional NNs, which apply a fixed number of discrete, layer-by-
layer transformations, Neural ODEs define a continuous transformation
of their inputs. To model this continuous transformation, Neural ODEs
introduce the concept of a hidden state h(t). This hidden state relates to
our previous notation, but with important distinctions. In the context of
normalizing flows, we can think of ℎ(𝑡𝑡0) as being initialized with a sample
𝑧𝑧 from the base distribution, and ℎ(𝑡𝑡1) as representing the transformed
sample 𝑥𝑥 in the target distribution. The evolution of this hidden state is
achieved by parameterizing its derivative with respect to time using a NN
𝑓𝑓𝜙𝜙:

𝑑𝑑𝒉𝒉(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑓𝑓𝜙𝜙(𝒉𝒉(𝑡𝑡), 𝑡𝑡), (2.30)

where 𝒉𝒉(𝑡𝑡) represents the hidden state at time 𝑡𝑡. The evolution of this
system from an initial state 𝒉𝒉(𝑡𝑡0) to a final state 𝒉𝒉(𝑡𝑡1) is then computed
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along coordinate 𝑧𝑧. Middle: Transformation process of the CNF, depicting
the flow direction and density changes along the continuous dimension 𝑡𝑡.
Top: Final learned density 𝑝𝑝(𝑧𝑧(𝑡𝑡1)) after the CNF transformation. Figure
adapted from [124].
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using an ODE solver:

𝒉𝒉(𝑡𝑡1) = 𝒉𝒉(𝑡𝑡0) + ∫
𝑡𝑡1

𝑡𝑡0
𝑓𝑓𝜙𝜙(𝒉𝒉(𝑡𝑡), 𝑡𝑡)𝑑𝑑𝑑𝑑𝑑 (2.31)

This formulation allows for adaptive computation: the ODE solver can
automatically adjust its step size to maintain a desired level of accuracy.
Moreover, the use of ODE solvers extends to the backward pass, where the
adjoint sensitivity method enables efficient gradient computation with-
out storing intermediate activations [123, 125]. This approach not only
provides a continuous analogue to residual networks12 but also opens up
new possibilities for modeling dynamical systems and, as we will see, for
constructing flexible NFs.

The evolution of the log-probability density in a CNF can be understood
by considering an infinitesimal step in the flow. The instantaneous change
in the log-probability density is given by:

𝜕𝜕 log 𝑝𝑝(𝒛𝒛(𝑡𝑡))
𝜕𝜕𝜕𝜕

= −Tr(
𝜕𝜕𝜕𝜕
𝜕𝜕𝒛𝒛(𝑡𝑡))

. (2.32)

This equation describes how the log-density changes during this infinites-
imal step. The trace term represents the instantaneous relative change in
volume of an infinitesimal region around 𝒛𝒛(𝑡𝑡). As the ODE solver integrates
the trajectory from 𝑡𝑡0 to 𝑡𝑡1, it accumulates these infinitesimal changes in
log-density. The total change in log-density over the entire transformation
is thus given by:

log 𝑝𝑝(𝒛𝒛(𝑡𝑡1)) − log 𝑝𝑝(𝒛𝒛(𝑡𝑡0)) = −∫
𝑡𝑡1

𝑡𝑡0
Tr(

𝜕𝜕𝜕𝜕
𝜕𝜕𝒛𝒛

(𝒛𝒛(𝑡𝑡), 𝑡𝑡)) 𝑑𝑑𝑑𝑑𝑑 (2.33)

This formulation allows us to compute the change in log-density along
the entire flow without explicitly constructing large Jacobian matrices at
discrete steps, as is typically done in traditional NFs. A notable implemen-
tation of CNFs is the Free-Form Jacobian of Reversible Dynamics (FFJORD)

12Residual networks are deep neural architectures that use skip connections, allowing
for easier training of very deep models. These skip connections ℎ𝑡𝑡+1 = ℎ𝑡𝑡 + 𝑓𝑓𝜙𝜙(ℎ𝑡𝑡) mirror
the continuous trajectory of the hidden state in Neural ODEs, where the evolution is
governed by a differential equation rather than discrete layers.
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model [124], which leverages these concepts to create highly flexible and
scalable NFs.

Having explored these advanced neural density estimation techniques,
we can now appreciate their potential for parameter estimation. These
methods offer the flexibility to model the complicated posterior distribu-
tions. By learning to directly approximate the posterior 𝑝𝑝(𝜽𝜽|𝒅𝒅,), these
models can potentially provide rapid parameter estimates for new GW
observations, addressing the computational challenges posed by the in-
creasing detection rates expected from future detectors. However, it is
important to note that while these methods offer promising speed advan-
tages, their accuracy and reliability in the context of GW analysis remain
active areas of research.
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Chapter 3
Fast Sky Localization of

Gravitational Waves using Deep
Learning Seeded Importance

Sampling
Fast, highly accurate, and reliable inference of the sky origin of gravita-
tional waves would enable real-time multi-messenger astronomy. Current
Bayesian inference methodologies, although highly accurate and reliable,
are slow. Deep learning models have shown themselves to be accurate and
extremely fast for inference tasks on gravitational waves, but their output
is inherently questionable due to the black-box nature of neural networks.
In this work, we merge Bayesian inference and deep learning by applying
importance sampling on an approximate posterior generated by a multi-
headed convolutional neural network. The neural network parametrizes
Von Mises-Fisher and Gaussian distributions for the sky coordinates and
two masses for given simulated gravitational wave injections in the LIGO
and Virgo detectors. We generate skymaps for unseen gravitational-wave
events that highly resemble predictions generated using Bayesian infer-
ence in a few minutes. Furthermore, we can detect poor predictions from
the neural network, and quickly flag them.

Based on: Kolmus, A., Baltus, G., Janquart, J., van Laarhoven, T., Caudill,
S., Heskes, T., “Fast sky localization of gravitational waves using deep
learning seeded importance sampling”. Physical Review D 106, 023032
(2022).
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3.1 Introduction

Gravitational waves (GWs) have immensely advanced our understanding
of physics and astronomy since 2015 [126–129]. These GWs are observed
by the Hanford (H) and Livingston (L) interferometers of the Laser Inter-
ferometer Gravitational Wave Observatory (LIGO) [130] and the Advanced
Virgo (V) interferometer [27]. The collaboration between these three de-
tectors has enabled triple-detector observations of GWs [127], making it
possible to do proper sky localization of their astrophysical sources. This
additional detector changes the sky distribution from a broad band to a
more narrow distribution [127].

Better early sky localization capabilities would allow for real-time
multi-messenger astronomy (MMA), observing astrophysical events via
multiple channels – electromagnetic transients, cosmic rays, neutrinos –
only seconds after the GW is detected. MMA is limited to GWs originating
from binary neutron star (BNS) and neutron star-black hole mergers. Ac-
cording to current literature, it is unlikely that binary black holes (BBHs)
emit an electromagnetic counterpart during their merger [131, 132]. Cur-
rently, astrophysicists try to collect the non-GW channels in the weeks
after the event. A notable example is GW170817 [30, 133]. This process
takes an enormous amount of effort, while the obtained data quality is
often sub-optimal. Having all channels observed for the full duration of
the event would be a major leap forward. Real-time MMA would enable
a plethora of new science, e.g. unraveling the nucleosynthesis of heavy
elements using r- and s-processes, more accurate and novel tests of gen-
eral relativity, and a deeper understanding of the cosmological evolution
[134–136]. As aforementioned, real-time MMA relies on the generation of
a skymap and it imposes two limits on the methodology used to obtain one.
First, it needs to be swift to allow observatories to turn towards an event’s
origin, preferably only seconds after its observation. Second, the skymap
needs to be as accurate as possible since telescopes have a limited area
they can observe. Below we present current approaches for generating
sky maps for GW events.

Most GW software libraries [102, 137] use Bayesian inference methods
– Markov chain Monte Carlo (MCMC) and nested sampling [41] – to con-
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struct the posterior over all GW parameters. These methods asymptotically
approach the true distribution given a sufficient number of samples [138].
Although theoretically optimal, a chain with around 106 to 108 samples is
required [102] to closely approximate the true posterior distribution for a
GW event. Even when using Bilby [103] – a modern Bayesian inference
library made for GW astronomy – to perform the inference for a single
BBH event, takes hours to produce [139]; BNS events take even longer.
Bayesian inference is the most accurate method available for GW posterior
estimation, but its run-time is prohibitively long when it comes to MMA.

To overcome the speed limitations of the Bayesian approaches, Singer
and Price developed BAYESTAR in 2016 [140], an algorithm that can output
a robust skymap for a GW event within a minute. BAYESTAR realizes
this speedup in two ways. First, it exploits the information provided by
the matched filtering pipeline used in the detection of GWs. The inner
product between time strain and matched filters contains nearly all of
the information regarding arrival times, amplitudes, and phases, which
are critical for skymap estimation. Second, Singer and Price derive a
likelihood function that is semi-independent from the mass estimation
and does not rely on direct computation of GW waveforms, allowing for
massive speedups and parallelization. Although BAYESTAR is fast, its
predictions tend to be broader and less precise than those made by Bilby 1.

Deep learning (DL) algorithms have shown themselves to be excep-
tionally quick and powerful when handling high-dimensional data [141,
142]. Therefore, they are an interesting alternative to the Bayesian meth-
ods. Several papers have proposed methods to estimate the GW posterior,
including the skymap, using DL algorithms. Examples of such algorithms
are Delaunoy et al. [143] and Green and Gair [144]. Delaunoy et al. [143]
use a convolutional neural network (CNN) to model the likelihood-to-
evidence ratio when given a strain-parameter pair. By evaluating a large
amount of parameter options in parallel, they can generate confidence
intervals within a minute. The reported confidence intervals are slightly
wider than those made by Bilby. A completely different approach was

1The GWTC-2 catalog [104] data release provides skymaps made using Bayesian
inference methods for recent events. Comparison with the skymaps made by BAYESTAR
can be made by looking at skymaps on https://gracedb.ligo.org/latest/.
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taken by Green and Gair [144]. They showcase a complete 15-parameter
posterior estimate for GW150914 using normalizing flows. They apply a
sequence of invertible functions to transform an elementary distribution
into a complex distribution [145] which, in this case, is a BBH posterior.
Within a single second, their method can generate 5,000 independent
posterior samples that are in agreement with the reference posterior2. A
Kolmogorov-Smirnov test confirms that these samples very closely resem-
ble the samples that are drawn from the exact posterior. Both DL methods
are fast and seem to be accurate for the 100 - 1000 simulated GW events
they have been evaluated on. However, these methods have a few issues:
(1) they are both susceptible to changes in the power spectral density
(PSD) and signal-to-noise ratio (SNR), (2) both are close in performance
to Bilby but do not match it, (3) they can act unpredictably outside of
the trained strain-parameters pairs and, even within this space, they can
act unpredictably due to the black box nature of neural networks (NNs).
Issues (1) and (2) have been addressed for the normalizing flow algorithm
in a recent paper by Dax et al. [57], however, the robustness guarantees
remain behind those of traditional Bayesian inference.

Our method tries to bridge the gap between Bayesian inference and
DL methods, allowing for fast inference while still guaranteeing optimal
accuracy. It is to be noted that combining Bayesian inference and DL meth-
ods has recently gained traction in the GW community, see for example
reference [146]. The goal of our algorithm is to restrict the parameter
space such that, via sampling, one can quickly obtain an accurate sky map.
We use a multi-headed CNN to parameterize an independent sky and mass
distribution for a given BBH event. The model is trained on simulated
precessing quasi-circular BBH signals resembling the ones observed by
the HLV detectors. The parameterized sky and mass distributions are
Gaussian-like and are assumed to approximate the sky and mass distribu-
tions generated by Bayesian inference. Using the parameterized sky and
mass distributions, we construct a proposal posterior in which all other
BBH parameters are uniformly distributed. By using importance sampling
we can then sample from the exact reference posterior. This implies that

2Throughout this chapter, reference posterior is used to imply a posterior that is
generated using Bayesian inference.
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we effectively match the performance of Bayesian inference in a short
time span, without exploring the entire parameter space. We stress that
this work is a proof of concept to show the promises of combining NNs
and Bayesian inference. More flexible DL models and BNS events will be
considered in future studies.

This chapter is organized as follows. Section 2 discusses the model
architecture and the importance sampling scheme. Section 3 details the
performed experiments, including the model training. Section 4 covers the
results of these experiments and subsequently assesses the performance of
the model and importance sampling scheme by comparing it with skymaps
generated using Bilby for a non-spinning BBH system. Conclusions and
future endeavors are specified in Section 5.

3.2 Methodology

Our inference setup is a two-step method. In the initial step, we infer
simple distributions for the sky localization and the masses of the BBH by
using a neural network. Subsequently, we apply importance sampling to
these simple distributions to compute a more accurate posterior. The first
subsection describes the role and implementation of importance sampling.
The second subsection discusses the neural network setup and our method
for distribution estimation.

3.2.1 Importance sampling

High-dimensional distributions in which the majority of the probability
density is confined to a small volume of the space are hard to sample
from, which results in long run times to get proper estimates when using
MCMC methods. A well-known method to cope with this problem is
importance sampling. By using a proposal distribution 𝑞𝑞 that covers this
high probability density region of the complex distribution 𝑝𝑝 one can
quickly obtain useful samples. There are two requirements when using
importance sampling. First, the desired distribution 𝑝𝑝 needs to be known
up to the normalization constant 𝑍𝑍 : 𝑝𝑝(𝜆𝜆) = 1

𝑍𝑍 𝜃𝜃(𝜆𝜆), where 𝜃𝜃(𝜆𝜆) is the non-
normalized 𝑝𝑝(𝜆𝜆). Second, the proposal distribution 𝑞𝑞 needs to be non-zero
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for all 𝜆𝜆 where 𝑝𝑝 is non-zero. Importance sampling can be understood
as compensating for the difference between the distributions 𝑝𝑝 and 𝑞𝑞 by
assigning an importance weight 𝑤𝑤(𝜆𝜆) to each sample 𝜆𝜆,

𝑤𝑤(𝜆𝜆) =
𝜃𝜃(𝜆𝜆)
𝑞𝑞(𝜆𝜆)

, (3.1)

where the fraction is the likelihood ratio between the – not-normalized –
𝑝𝑝 and 𝑞𝑞. The distribution created by the reweighted samples will converge
to the 𝑝𝑝 distribution given enough samples [147].

Generating accurate posteriors for GW observations using MCMC
is very time-consuming, and thus importance sampling is an interesting
alternative. Importance sampling requires us to have a viable proposal
distribution. Published posteriors for known gravitational waves show
that the probability density in the posterior is relatively well confined
for both the sky location and the two masses [104]. A Von Mises Fisher
(VMF) and Multi-Variate Gaussian (MVG) distribution are good first-order
approximations of the sky and mass distribution respectively, and thus
suitable to use as a proposal distribution for importance sampling. We
propose to construct this proposal distribution by assuming a uniform
distribution over all non-spinning BBH parameters, except for the sky
angles which will be represented by a VMF and a MVG distribution for
the masses. Assuming that the BBH parameters, sky angles, and masses
are independent, our proposal distribution becomes the product of these
two distributions. In the next subsection, we discuss how we create this
proposal distribution using a neural network.

Importance sampling demands a likelihood function for the proposal
distribution and the desired distribution. In the previous paragraph we
have discussed how we want to create a proposal distribution, we will now
focus on the desired distribution 𝑝𝑝. For the likelihood function of the GW
posterior 𝑝𝑝(𝑠𝑠|𝜆𝜆) we take the definition given by Canizares et al. [148]:

𝑝𝑝(𝑠𝑠|𝜆𝜆) ∝ 𝜃𝜃(𝑠𝑠|𝜆𝜆) = exp(−
⟨𝑠𝑠 − ℎ(𝜆𝜆)|𝑠𝑠 − ℎ(𝜆𝜆)⟩

2 ) , (3.2)

where 𝑠𝑠 is the observed strain, ℎ(𝜆𝜆) is the GW template defined by parame-
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practice, we use the likelihood implementation provided by Bilby named
GravitationalWaveTransient.

We now have all the parts needed to discuss how we utilize importance
sampling for a given strain 𝑠𝑠. A trained neural network parameterizes
the proposal distribution 𝑞𝑞 for the given strain. The proposal distribution
generates 𝑛𝑛 samples, these samples represent possible GW parameter con-
figurations. For each sample, we calculate the logarithm of the importance
weight,

log 𝑤𝑤(𝜆𝜆) = log 𝜃𝜃(𝑠𝑠|𝜆𝜆) − log 𝑞𝑞(𝜆𝜆) + 𝐶𝐶𝐶 (3.3)

instead of the importance weight𝑤𝑤(𝜆𝜆) itself to prevent numeric under- and
overflow. The constant 𝐶𝐶 is added to set the highest log 𝑤𝑤(𝜆𝜆) to zero, to
prevent very large negative values from becoming zero when we calculate
the associated likelihood. Since we normalize the weights afterwards the
correct importance weights are still obtained. The reweighted samples
represent the desired distribution 𝑝𝑝.

If the proposal distribution does not cover the true distribution well
enough, the importance samples will be dominated by only a single to a
few weights if we restrict the run-time. We can use this as a gauge to check
if the skymap produced by the neural network and importance sampling
is to be trusted.

3.2.2 Model

Previous work done by George et al. [149] shows that convolutional neural
networks (CNN) can extract the masses from a BBH event just as well as
the currently-in-use matched filtering. Furthermore, work done by Fan
et al. [150] indicates that 1D CNNs can locate GW origins. We therefore
chose to use a 1D CNN to model both the distribution across the sky for
the origin of the GWs and a multivariate normal distribution for the two
masses of the BBH system.

The network architecture of this 1D CNN is presented in Figure 3.1 and
consists of four parts: a convolutional feature extractor and three neural
network heads. These heads are used to specify the two distributions.
The following properties were tested or tuned for optimal performance:
number of convolutional layers, kernel size, dilation, batch normalization,
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and dropout. The model shown in Figure 3.1 produced the best result on a
validation set.

The convolutional feature extractor generates a set of features that
characterize a given GW. This set of features is passed on to the neural
heads. Each head is specialized to model a specific GW parameter. The first
head determines the sky distribution, the second head the masses, and the
third head the uncertainty over the two masses. Below we will elaborate
on each of these heads and how they characterize these distributions.

The first head specifies the distribution of the GW origin. Since the sky
is described by the surface of a 3D sphere, a 2D Gaussian distribution is
an ill fit. A suitable alternative is the Von Mises-Fisher (VMF) distribution
[151] which is the equivalent of a Gaussian distribution on the surface
of a sphere. The probability density function and the associated negative
log-likelihood (NLL) of the VMF distribution:

𝑝𝑝(𝑥𝑥|𝜇𝜇𝜇 𝜇𝜇) =
𝜅𝜅

4𝜋𝜋 sinh(𝜅𝜅)
exp (𝜅𝜅𝜅𝜅𝑇𝑇 𝜇𝜇) (3.4)

𝑁𝑁𝑁𝑁𝑁𝑁VMF(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  ) = − log(𝜅𝜅) − log(1 − exp(−2𝜅𝜅)) − 𝜅𝜅 − log(2𝜋𝜋) + 𝜅𝜅𝜅𝜅𝑇𝑇𝜇𝜇𝜇
(3.5)

where 𝑥𝑥 and 𝜇𝜇 are normalized vectors in ℝ3, with the former being the true
direction and the latter being the predicted direction. 𝜅𝜅 is the concentration
parameter, which determines the width of the distribution. It plays the
same role as the inverse of the variance for a Gaussian distribution. We use
this distribution by letting the first head output a three-dimensional vector
𝐷𝐷 = (𝐷𝐷𝑥𝑥, 𝐷𝐷𝑦𝑦, 𝐷𝐷𝑧𝑧). The norm of 𝐷𝐷 specifies the concentration parameter
𝜅𝜅, and its projection onto the unit sphere gives the mean 𝜇𝜇, 𝜅𝜅 = |𝐷𝐷|, and
𝜇𝜇 = 𝐷𝐷/|𝐷𝐷|. These values together with the true direction 𝑥𝑥 are used to
calculate the negative log-likelihood, which is used as the loss function of
the first head.

The second and third neural heads specify a 2D multivariate Gaussian
(MVG), which describes the possible configurations of the masses. The
means 𝜈𝜈 of the MVG are given by the second head and the covariance
matrix Σ is specified by the third head. Given the true values of the masses
𝑦𝑦 = (𝑚𝑚1, 𝑚𝑚2) the probability density function and associated negative
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Figure 3.1: A graphical depiction of the convolutional neural network used
in this work. After each MaxPool1d and Batchnorm1d layer, a leaky ReLU
activation function with an 𝛼𝛼 = 0.1 is applied. The convolutional part is
shown on the left and takes as input a time series of 4096 elements with 3
channels. Conv1D(𝑖𝑖, 𝑜𝑜, 𝑘𝑘 , 𝑑𝑑) denotes a 1D convolution with 𝑖𝑖 input chan-
nels, 𝑜𝑜 output channels, kernel size 𝑘𝑘 and dilation factor 𝑑𝑑. MaxPool1d(𝑘𝑘)
denotes a 1D max pooling layer with kernel size 𝑘𝑘. The output of the
convolutions is given to three independent neural network heads. The
first head predicts the sky location parameterized as 𝐷𝐷 = (𝐷𝐷𝑥𝑥, 𝐷𝐷𝑦𝑦, 𝐷𝐷𝑧𝑧), the
second head predicts the mean of the masses of the two black holes, and
the last head predicts the uncertainty elements of the covariance matrix
over the two masses. Linear(𝑖𝑖, 𝑜𝑜) denotes a linear transformation with 𝑖𝑖
input features and 𝑜𝑜 output features. Lastly, Batchnorm1d(𝑖𝑖) denotes a 1D
batch normalization layer with 𝑖𝑖 input features.
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log-likelihood of the MVG are:

𝑝𝑝(𝑦𝑦|𝜈𝜈𝜈 Σ) =
1√

(2𝜋𝜋)2|Σ|
exp(−

1
2
(𝑦𝑦 − 𝜈𝜈)𝑇𝑇Σ(𝑦𝑦 − 𝜈𝜈)) (3.6)

𝑁𝑁𝑁𝑁𝑁𝑁MVG(𝑦𝑦𝑦𝑦𝑦𝑦  Σ) =
1
2
(𝑦𝑦 − 𝜈𝜈)𝑇𝑇Σ−1(𝑦𝑦 − 𝜈𝜈) +

1
2
log (|Σ|) + log (2𝜋𝜋) . (3.7)

The inverse covariance term in the negative log-likelihood can contain
imaginary numbers if the covariance matrix is not positive-definite. To
ensure that the covariance matrix Σ remains positive-definite, it is param-
eterized through:

Σ11 = exp(𝑠𝑠11) (3.8)
Σ22 = exp(𝑠𝑠22) (3.9)
Σ21 = Σ12 = tanh(𝑠𝑠12)

√
Σ11Σ22 . (3.10)

The three variables 𝑠𝑠11, 𝑠𝑠22, 𝑠𝑠12 are predicted by the third neural head and
define the covariance matrix completing the MVG prediction of the masses.
The parametrization and implementation of the MVG are based on the
work of Russell et al. [110].

By further assuming that the sky distribution is independent of the
mass distribution, we obtain a first approximation of the posterior distri-
bution, thereby satisfying the requirements for importance sampling.

3.3 Experiments

Experiments were performed on two different fronts: (1) training the
neural network followed by the empirical evaluation of its performances on
unseen test data, and (2) comparing the neural network model, importance
sampling scheme, and Bilby based on several metrics and skymaps. Below
we describe the experimental details and justify the decisions we made. All
experiments were performed on a computer with a 16-core AMD Ryzen
5950X CPU, NVIDIA 3090 RTX GPU, and 64 GB of RAM.
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3.3.1 Training and evaluating the neural model

To obtain strain-parameter pairs for training and validation, we sampled
parameters from a BBH parameter prior (see Table 3.1) and generated the
associated waveforms using the IMRPhenomPv2 waveform model [152].
The waveforms were generated in the frequency domain in the frequency
band of 20 to 2048 Hz. The duration of the signal is 2 seconds. Subse-
quently, these waveforms were projected onto the HLV interferometers.
We sampled the SNR from a scaled and shifted Beta distribution with its
peak set to 15 (see Figure 3.2). The luminosity distance in the prior was set
to 1000 Mpc and scaled afterward to match the desired SNR. We generated
Gaussian noise from the design sensitivity PSD for each detector. Finally,
the signal was injected into the noise and an inverse Fourier transform
was applied to obtain the strains as time series. This setup allowed us
to generate an arbitrary amount of unique strain-parameter pairs, which
resulted in every training epoch having a unique dataset.

Figure 3.2: Scaled and shifted Beta distribution that acts as the SNR sam-
pling distribution during training and validation. The vertical axis repre-
sents the probability density function of this Beta distribution, the hori-
zontal axis represents the SNR value.

We applied three preprocessing steps to the data. All time series were
whitened with the aforementioned PSDs. Next, the time series were nor-
malized. A normalizer was calculated such that noise-only strains have
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Table 3.1: The priors used for the data generation. The luminosity distance
in the prior was set to a 1000 Mpc and scaled afterwards to match the
desired SNR.

Parameter Prior Minimum Maximum Unit
Masses (constraint) - 20 80 M⊙

Chirp mass Uniform 10 100 M⊙

Mass ratio Uniform 0.25 1.0 -
Spin magnitudes Uniform 0 0.95 -
Spin polar angles Sine 0 𝜋𝜋 rad
Spin azimutal angles Uniform 0 2𝜋𝜋 rad
Right ascension Uniform 0 2𝜋𝜋 rad
Declination Cosine -0.5𝜋𝜋 0.5𝜋𝜋 rad
Binary inclination angle Sine 0 𝜋𝜋 rad
Coalescence phase angle Uniform 0 2𝜋𝜋 rad
Polarization angle Uniform 0 𝜋𝜋 rad
Time Shift Uniform -0.1 0.1 s
Luminosity distance - 1000 1000 Mpc

a mean of zero and a standard deviation of one. We found empirically
that calculating a normalizer for the noise instead of noise plus signal
allowed the neural network to converge faster and achieve lower losses.
Lastly, to make the mass distribution easier to learn we calculated a shift
and scaling factor for the target masses such that all target masses were
between -1 and +1. The shifting and scaling were applied inversely to
the neural network output during importance sampling to get the correct
masses.

The model was trained for 300 epochs with a batch size of 128. Dur-
ing each epoch, we drew 500 000 strain-parameter pairs for training and
100 000 strain-parameter pairs for validation. The Adam optimizer [153]
was used to optimize the weights of the model in conjunction with a
cosine annealing scheme with warm restarts [154]. The learning rate
oscillated between 10−3 and 10−5 with a period of 20 epochs; weight decay
was set to 10−6. Multiple hyperparameter configurations were tested; this
configuration obtained the best performance.

58



Table 3.1: The priors used for the data generation. The luminosity distance
in the prior was set to a 1000 Mpc and scaled afterwards to match the
desired SNR.

Parameter Prior Minimum Maximum Unit
Masses (constraint) - 20 80 M⊙

Chirp mass Uniform 10 100 M⊙

Mass ratio Uniform 0.25 1.0 -
Spin magnitudes Uniform 0 0.95 -
Spin polar angles Sine 0 𝜋𝜋 rad
Spin azimutal angles Uniform 0 2𝜋𝜋 rad
Right ascension Uniform 0 2𝜋𝜋 rad
Declination Cosine -0.5𝜋𝜋 0.5𝜋𝜋 rad
Binary inclination angle Sine 0 𝜋𝜋 rad
Coalescence phase angle Uniform 0 2𝜋𝜋 rad
Polarization angle Uniform 0 𝜋𝜋 rad
Time Shift Uniform -0.1 0.1 s
Luminosity distance - 1000 1000 Mpc

a mean of zero and a standard deviation of one. We found empirically
that calculating a normalizer for the noise instead of noise plus signal
allowed the neural network to converge faster and achieve lower losses.
Lastly, to make the mass distribution easier to learn we calculated a shift
and scaling factor for the target masses such that all target masses were
between -1 and +1. The shifting and scaling were applied inversely to
the neural network output during importance sampling to get the correct
masses.

The model was trained for 300 epochs with a batch size of 128. Dur-
ing each epoch, we drew 500 000 strain-parameter pairs for training and
100 000 strain-parameter pairs for validation. The Adam optimizer [153]
was used to optimize the weights of the model in conjunction with a
cosine annealing scheme with warm restarts [154]. The learning rate
oscillated between 10−3 and 10−5 with a period of 20 epochs; weight decay
was set to 10−6. Multiple hyperparameter configurations were tested; this
configuration obtained the best performance.

58

To benchmark the trained model, an unseen test set was generated
of 100 000 strain-parameter pairs at specific SNR values. The model was
evaluated using the mean absolute angular error (maae) and the average
90% confidence area of the predicted VMF distributions.

3.3.2 Applying and evaluating importance sampling

To evaluate the importance sampling procedure, we constructed a slightly
simpler test set in which we restricted the maximum spin magnitude to
zero. This was done to limit the Bilby run-time. The importance sampling
procedure discussed in Section 2.2 was applied to the first 100 strain-
parameter pairs of this test set at three different optimal SNR values: 10, 15,
and 20. For each strain-parameter pair, we generated 200 000 importance
samples. To simulate multiple independent runs at various time points
for the same strain-parameter pair, we subsampled from these 200 000
importance samples during the experiments.

We ran two experiments to test the convergence of the importance sam-
pling method. In the first experiment, we used the importance sampling
scheme as a maximum likelihood estimator. For a given set of importance
samples, we chose the sample with the highest likelihood and calculated
the angle between this sample and the true sky coordinates. In the sec-
ond experiment, we represented the probability density function of the
importance samples by a kernel density estimator and tested how well the
resulting density covered the true right ascension. Specifically, we used a
Gaussian kernel density estimator3 to fit the right ascension distribution
proposed by the importance samples. The log-likelihood of the actual
right ascension was used to measure the quality of the estimated density.
We removed a few outliers from the second experiment, by restricting
ourselves to only the right ascension the number of outliers was reduced.
These outliers had densities that did not cover the true right ascension
at all, resulting in extreme negative log-likelihoods which dominate the
average log-likelihood. For both experiments we expect the metric to
improve as the number of importance samples increases, and to level after
a significant number of importance samples indicating convergence.

3The gaussian_kde from the scipy python package.
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3.3.3 Generating skymaps

We use Bilby as a benchmark to generate skymaps for the first ten strain-
parameter pairs of the test set and for each create a version at an SNR of 10,
15, and 20. To make a fair comparison, the prior given to the Bilby sampler
has its spin components set to zero. Moreover, the posterior inference
was performed with standard settings, and each run took between 2.5 and
7 hours to complete. During these runs, the live points of the sampler
were saved every 5 seconds and labeled by the total number of sampled
points. These saved points were used to run the two importance sampling
experiments for Bilby.

3.4 Results

In this section, we first discuss the performance of the CNN. Then, the
importance sampling scheme is evaluated using the experimental setup
discussed in the previous section. Lastly, we compare sky maps generated
using only the neural network, importance sampling, and Bilby.

3.4.1 CNN

In Figure 3.3 we summarize the results for the first experiment: the left
panel gives the mean absolute angular error (maae) in the sky location and
the right panel we plot the 90% confidence area of the VMF distribution.
As expected, as the SNR increases the prediction error in the sky location
decreases and the 90% confidence area becomes smaller. The error in
the mass prediction is similar to those of other CNN approaches [149],
see Figure 3.4, indicating that the setup works well. We do note that the
error in the sky location seems to be quite high for SNR < 10 and that
it does not converge to zero for high SNR. We can think of two possible
explanations for the poor performance at low SNR. First, the detection
rate using either CNNs or matched filtering pipelines at an SNR of 5 is
less than 40% [149, 155]. At such a low SNR, it is difficult for the model to
discern the differences in arrival time at each detector, which explains the
slightly better than random predictions for SNR < 7. When we compare
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our angular error with other CNN approaches [150, 156], the average error
seems to be similar. Furthermore, Chua and Vallisneri [157] reported that
Gaussian approximations are only accurate for high SNR (SNR > 8), and
even then multimodality might arise. Second, the sky distribution can be
multimodal. This multi-modality is either due to strong noise or can be due
to a sky reflection [102]. For three detectors, there are two viable solutions
to the triangulation problem: the true sky location and its reflection. In
most cases, the amplitude information is sufficient to break the degeneracy
between the location and its reflection. However, at certain sky angles,
this amplitude information does not lift the degeneracy, and a multimodal
distribution is required. For these angles, the model has a 50% chance of
guessing the wrong mode and thus has an average angular error of 90◦.

3.4.2 Importance sampling

The results of the importance sampling experiments are shown in Figure
3.5. The left panel shows the maae as the number of importance samples
increases. The right panel shows the log-likelihood of the true right ascen-
sion given by kernel density based on a varying number of importance
samples. Most maae convergence occurs within the first 30 ,000 samples.
The slow convergence mostly stems from strains with wide predicted sky
distributions.. When we compare this to the results of Bilby, we see that
the maae of the highest likelihood sample for all SNR is always between 1
and 8 degrees. Importance sampling is competitive for an SNR of 20 and is
close for an SNR of 15, especially when we consider that in both cases 2
out of the 100 sky distributions were parameterized as the sky reflection.

However, importance sampling is not competitive with Bilby in the
second experiment. For all SNR values Bilby reports log-likelihoods be-
tween 2 and 3, see the left side of Figure 3.6, and importance sampling does
not reach these values. If we consider runs that show good convergence,
i.e. where 90% of the importance weight is not determined by less than
ten importance samples, importance sampling also reports log-likelihoods
between 2 and 3. On the right side of Figure 3.6 we have repeated the
kernel density experiment, but only for the well-converged runs. These
runs represent 30% of all runs, and almost no SNR < 10 runs.
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Figure 3.3: Characterization of the neural network in terms of accuracy
and certainty over the test. Left: the maae (mean absolute angular error)
between the sky angle predicted by the model and the actual sky location
as a function of the SNR. Right: the average size of the 90% confidence
area, expressed in degrees squared, of the predicted VMF distributions as
a function of the SNR.

Figure 3.4: The mean relative error of the estimated masses by the neural
network on the test set as a function of the optimal SNR. It is almost
identical to Figure 5 in [149].
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Figure 3.5: Characterization of the importance sampling, with the number
of importance samples ranging from 1 000 to 50 000. The colors represent
different SNR values with blue, green, and red being 10, 15, and 20 respec-
tively. Left: the maae of the importance sample with the highest likelihood
as a function of the sample size. Right: the log-likelihood of the true right
ascension according to the kernel density estimator created by importance
samples as a function of sample size.

Figure 3.6: Left: The loglikelihood of the true right ascension according
to the kernel density estimator created by the Bilby samples. The vertical
axis represents how many samples Bilby has generated (live plus dead
samples). Right: The log-likelihood of the true right ascension according
to the kernel density estimator using only the importance samples of well
converged runs. These values are more in line with those of Bilby.
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3.4.3 Generating skymaps

As a final test, we generated skymaps using the neural network, importance
sampling, and Bilby on the same signals. Three representative skymaps
are shown in Figure 3.7. The skymaps generated by the neural network
are significantly more spread out than those generated by importance
sampling and Bilby. As we explained in the previous sections, this might
be due to the neural network overestimating the uncertainty and having
difficulty extracting the exact signal from the detector noise.

Figure 3.7: Examples of predicted skymaps by our neural network (left),
importance sampling after 100 000 steps or roughly 5minutes of computing
time (middle), Bilby at convergence (right). The Bilby runs took at least 3
hours to complete. The true sky location is indicated in red. The shown
skymaps were generated for signals with an SNR of 15. The number of
significant importance samples, and hence the quality of the sky maps,
increases as we go from the top row to the bottom row.

The skymaps generated by importance sampling and Bilby resemble
each other quite a lot, their peak intensities are in the same position and
the sky distributions occupy roughly in the same area. However, the im-
portance sampling skymaps are grainy and sometimes do not cover the
complete area that Bilby does. As can be seen in the bottom row of Figure
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3.7, when the predicted VMF distribution has its peak intensity in the
correct position the importance sampling creates better-looking sky maps.
This improvement is due to the increased number of significant impor-
tance samples. These results indicate that a larger number of significant
importance samples is needed, which is to be expected with only 5 minutes
of run-time. Within only 1-4% of the Bilby run-time, we are already able
to recover the essentials of the skymaps.

3.5 Conclusion
In this chapter, we produced skymaps for simulated BBH events using an
importance sampling scheme that turns an approximate skymap made
by a neural network into a skymap that represents the exact Bayesian
posterior distribution. Experiments show that our method is competitive
with Bilby and can produce the essentials of the skymap within 4% of
the Bilby run-time. However, in some cases, the proposal distributions
made by the neural network are too crude, which hampers the efficiency
of the importance sampling scheme. If the sampling efficiency is improved
further, importance sampling could be used as a quick alternative to Bilby
or LALInference for inferring the GW posterior. Currently, the DL model
has only been trained and tested on simulated noise with a given PSD. We
expect that providing the DL model with various PSD representations as
input into the model during training, as was done in [57], should allow
the model to interpret the real-world signals correctly regardless of the
noise profile. In future work, we will also consider more advanced deep
learning models such as normalizing flows to infer more accurate posterior
distributions and apply the model to real measurements.
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Chapter 4
Normalizing Flows as an

Avenue to Study Overlapping
Gravitational Wave Signals

Due to its speed after training, machine learning is often envisaged as a
solution to a manifold of the issues faced in gravitational-wave astronomy.
Demonstrations have been given for various applications in gravitational-
wave data analysis. In this chapter, we focus on a challenging problem
faced by third-generation detectors: parameter inference for overlapping
signals. Due to the high detection rate and increased duration of the signals,
they will start to overlap, possibly making traditional parameter inference
techniques difficult to use. Here, we show a proof-of-concept application of
normalizing flows to perform parameter estimation on overlapped binary
black hole systems.

Based on: Langendorff, J., Kolmus, A., Janquart, J., Van Den Broeck, C.,
“Normalizing flows as an avenue to studying overlapping gravitational
wave signals”. Physical Review Letters 130, 171402 (2023).
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4.1 Introduction

Over the last few years, the improved sensitivity of the LIGO [130] and
Virgo [27] detectors has made the detection of gravitational waves (GWs)
originating from compact binary coalescences (CBCs) more and more
common, with over 90 detections reported after the third observation
run [29]. Soon, the upgrade of the current detectors and the addition of
KAGRA [28, 158–160] and LIGO India [161] to the network of ground-
based interferometers will lead to even more detections. In addition, the
passage from second-generation (2G) to third-generation (3G) detectors
(Einstein Telescope (ET) [162, 163] and Cosmic Explorer (CE) [164–166])
will lead to an important increase in the number of observed CBCs. These
detectors are also projected to have a reduced lower frequency cutoff [167],
leading to longer signal durations. Therefore, CBC signals will overlap in
3G detectors [168–172].

Analyzing one of the overlapping signals without accounting for the
presence of the other can lead to biases in the recovered posteriors, espe-
cially when the merger times of the two events are close [169–173]. These
could impact any direct science case for CBCs (e.g. tests of general relativ-
ity [174]), but also indirectly related ones such as the hunt for primordial
black holes [175–180]. In Ref. [181], the authors demonstrate on two over-
lapped binary black holes (BBHs) how adapted Bayesian inference can help
reduce the biases. In particular, they perform joint parameter estimation,
where the two signals are analyzed jointly. While accounting for all the
noise characteristics, their analysis also suffers from some instabilities,
and further upgrades are needed for it to be entirely reliable. An issue
also mentioned in this work is the computational time. With hundreds of
thousands of CBC mergers expected in the 3G era [169], analyses taking
several weeks are not a realistic alternative.

Even if traditional methods can be sped-up [52–54, 182], or quantum
computing [183] could potentially be used in the future, the development
of frameworks capable of doing complete analyses in short timescales is
crucial for the development of 3G detectors. Therefore, in this work, we
propose the first step in that direction, showing how overlapping BBHs
can be analyzed with a normalizing flow (NF) approach [112, 114, 115].
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4.2 Machine learning for overlapping gravi-
tational waves

The use of machine learning (ML) in GW data analysis has been growing
over the last years, having a wide range of applications [184]. A subset of
these methods fall under the umbrella of simulation-based inference [185],
and are being developed to perform parameter estimation for CBCs [57,
139, 143, 144, 146, 186–188]. Refs. [57, 187, 188] use NFs to get posterior
distributions for BBH parameters, obtaining results close to those from
traditional Bayesian methods. Our approach is somewhat similar to theirs,
with some notable differences explained below.

Our approach uses continuous conditional NFs [145, 189] (CCNFs), a
variant of NFs suited for probabilistic modeling and Bayesian inference.
Due to the recursive and continuous nature of these models, their memory
footprint can be quite small [123], allowing for extensive training on home-
grade GPUs while retaining the ability to capture complex distributions.

NFs are a method in ML through which a neural network can learn
the mapping from some simple base distribution 𝑝𝑝𝑢𝑢(𝒖𝒖) to a more complex
final distribution 𝑞𝑞(𝜽𝜽). This is done through a series of invertible and
differentiable transformations, summarized by a function 𝑔𝑔(𝜽𝜽). However,
in our case, the final distribution we seek depends on the GW data to
analyze. Therefore, we use conditional NFs [190], where the transformation
functions are dependent on the data 𝒅𝒅 (hence, 𝑔𝑔 = 𝑔𝑔(𝜽𝜽, 𝒅𝒅)). A major
difference with [190] is that our base distributions are kept static. Thus our
model 𝑔𝑔(𝜽𝜽, 𝒅𝒅) is a trainable conditional bijective function transforming a
simple 30-D Gaussian into a 30-D complex distribution. The bijectivity
allows us to express and sample 𝑞𝑞(𝜽𝜽|𝒅𝒅) in terms of 𝑔𝑔(𝜽𝜽, 𝒅𝒅) and 𝑝𝑝𝑢𝑢(𝒖𝒖) via:

𝑞𝑞(𝜽𝜽|𝒅𝒅) = ||det(Jg−1(𝜽𝜽, 𝒅𝒅))||pu(g
−1(𝜽𝜽, 𝒅𝒅)) , (4.1)

where det(Jg−1(𝜽𝜽, 𝒅𝒅)) is the determinant of the Jacobian 𝐽𝐽𝑔𝑔−1(𝜽𝜽, 𝒅𝒅) of the
transformation. For training, we minimize the forward KL-divergence,
which is equivalent to maximum likelihood estimation [63, 115]. As noted
by [188], 𝑞𝑞(𝜽𝜽|𝒅𝒅) should cover the actual (Bayesian) posterior 𝑝𝑝(𝜽𝜽|𝒅𝒅), and
asymptotically approach it as training progresses due to the mode-covering
nature of the forward KL divergence.
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A distinctive choice of our method is the continuous nature of the
flow, which is linked to the transformation function itself. Neural ordinary
differential equations (neural ODEs) [123] are the foundation of contin-
uous NFs; they are not represented by a stack of discrete layers but by a
hypernetwork [191]. Hypernetworks can be understood as regular net-
works where ‘external’ inputs such as a time or depth variable smoothly
change the output of the network for identical inputs. They can thus
represent multiple transformations. In [123], hypernetworks are used to
represent ODEs and are trained by using ODE-solvers and clever use of
the adjoint sensitivity method. A continuous NF uses neural ODEs as its
transformations.

We will now explain the training of a continuous flow. For clarity, we
will use ℎ to refer to a continuous transformation and 𝑔𝑔 for a discrete one.
If 𝜽𝜽(𝑡𝑡) represents the samples from the distribution at a given time 𝑡𝑡, when
going from 𝑡𝑡1 to 𝑡𝑡2, the continuous NF obeys

d𝜽𝜽(t)
dt

= ℎ(𝑡𝑡𝑡 𝜽𝜽(𝑡𝑡)) . (4.2)

The change in likelihood associated with this ‘step’ differs slightly from
Eq. (4.1) due to the continuous nature of the flow:

log(𝑝𝑝(𝜽𝜽(𝑡𝑡1))) = log(𝑝𝑝(𝜽𝜽(𝑡𝑡0))) − ∫
𝑡𝑡1

𝑡𝑡0
Tr[Jg(𝜽𝜽(t))] . (4.3)

Assuming a non-stiff ODE the integration can be performed rapidly with
state-of-the-art ODE-solvers, MALI [192] in our case. In addition, we have
to calculate a trace instead of a determinant, speeding up the computation
which reduces the complexity, going from (𝐷𝐷3) to at most (𝐷𝐷2) with
𝐷𝐷 being the dimensionality of posterior space, speeding-up the compu-
tation [124]. Moreover, using continuous NFs removes the need to use
coupling layers between transformations, instead, all parameter dimen-
sions can be dependent on each other throughout the flow. Combining the
continuous and conditional flows leads to CCNFs, where the conditional
consists of the GW 𝒅𝒅 and the time 𝑡𝑡.

We also need a better data representation than the raw strain to train
and analyze the data. Therefore, we follow a similar approach as in [57, 144,
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Figure 4.1: Representation of our analysis framework. It is made of a pre-
processing part where we build an SVD basis to filter the data, followed
by a normalizing-flow-based neural network.

186–188], using a singular value decomposition (SVD) [193] as summary
statistics, reducing the dimension and the noise content of the data while
retaining at least 99% of the original signal. Each of the 256 generated
basis vectors is used as a kernel in 1D convolutions used as an initial layer
in a ten-layer residual convolutional neural network (CNN), enabling one
to capture the time variance of the signal. Therefore, we do not need
to use a Gibbs sampler to estimate the time of the signal as done in [57,
187, 188], and can sample over time like any other variable. The CCNF
itself is represented by two multi-layer perceptrons with 3 hidden layers
of 512 units. Furthermore, we use a different representation for the angles.
Instead of directly using their values, we project them onto a sphere for
the sky location and onto a circle for the other angles. This makes for a
better-posed domain for these angles, and plays on the strong interpolation
capacities of the network, making the training step easier.

In the end, our framework combines data representation as a hybrid
between SVD and CNN, followed by the CCNF network. A representation
of our analysis framework is given in Fig. 4.1. Our entire framework is
relatively small compared to the ones presented in [187], both the residual
network and CNF network. Therefore, it can run on lower-end GPUs, but
could also be limited in its capacity to model the problem.
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4.3 Data and setup
To test our framework, we start with a simplified setup, considering a
network made of the two LIGO detectors and the Virgo detector, at design
sensitivity [27, 194], and with a lower sensitive frequency of 20Hz. We
generate stationary Gaussian noise from their power spectral density
(PSD) and inject two precessing BBH mergers using the IMRPhenomPv2
waveform [195]. Our data frames have an 8 seconds duration and are
whitened after the signals are injected. The chirp mass (𝑐𝑐 = (𝑚𝑚1 +
𝑚𝑚2)3/5/(𝑚𝑚1𝑚𝑚2)1/5) and mass ratio (𝑞𝑞 = 𝑚𝑚2/𝑚𝑚1) are sampled from uniform
distributions, between 10𝑀𝑀⊙ and 100𝑀𝑀⊙ and 0.125 and 1, respectively. The
individual component masses are constrained between 5𝑀𝑀⊙ and 100𝑀𝑀⊙.
During the data generation, the luminosity distance is kept fixed. It is then
rescaled to result in a network signal-to-noise ratio value taken randomly
between 10 and 50 from a beta distribution with a central value of 20.
The coalescence time for the two events is set randomly around a time
of reference, with 𝑡𝑡𝑐𝑐 ∈ [𝑡𝑡ref − 0.05, 𝑡𝑡ref + 0.05]s, ensuring that the two BBH
merge in the high bias regime [170]. The other parameters are drawn from
their usual domain. Table 4.1 gives an overview of the parameters and the
function from which they are sampled.

During the training, we continuously generate data by sampling the
prior distributions for the events and making a new noise realization for
each frame. The training is stopped when convergence is reached and
before over-fitting occurs. Our model was trained for about 12 days on a
single Nvidia GeForce GTX 1080.

4.4 Results
To demonstrate the method’s reliability, a P-P plot for the recovered pa-
rameters is shown in Fig. 4.2. It is constructed by sampling the posteriors
of 1000 overlapped events1 with parameters drawn from the distributions
detailed in Table 4.1. Since the cumulative density aligns along the diago-
nal, our network is reliable. Comparing this to the results given in [187]

1We refer the reader to Fig. 1 in Ref. [181] for an illustration of overlapping BBH
signals.
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Parameter Function
Chirp mass ()  (10, 100)𝑀𝑀⊙

Mass ratio (𝑞𝑞)  (0.125, 1)
Component masses (𝑚𝑚1,2) Constrained in [5, 100]𝑀𝑀⊙

Luminosity distance (𝐷𝐷𝐿𝐿) Rescaled to follow SNR
SNR (10, 50)
Coalescence time (𝑡𝑡𝑐𝑐)  (𝑡𝑡ref − 0.05, 𝑡𝑡ref + 0.05)
Spin amplitudes (𝑎𝑎1,2)  (0, 1)
Spin tilt angles (𝜃𝜃1,2) Uniform in sine
Spin vector azimuthal angle (𝜙𝜙𝑗𝑗𝑗𝑗)  (0, 2𝜋𝜋)
Spin precession angle (𝜙𝜙12)  (0, 2𝜋𝜋)
Inclination angle (𝜃𝜃𝑗𝑗𝑗𝑗) Uniform in sine
Wave polarization (𝜓𝜓)  (0, 𝜋𝜋)
Phase of coalescence (𝜙𝜙)  (0, 2𝜋𝜋)
Right ascension (RA)  (0, 2𝜋𝜋)
Declination (DEC) Uniform in cosine

Table 4.1: Summary of the parameters considered and the function used
to generate the BBHs.
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Figure 4.2: P-P plots for a subset of the recovered parameters for the two
events in the data. The parameters shown are representative of all the
BBH parameters for the two events. In both cases, the lines align along the
diagonal, showing that our method can be trusted. The legend indicates
which line corresponds to which parameters. The parameters for event
1 (resp. 2) are noted P_1 (resp. P_2), where 𝑃𝑃 are the usual parameter
symbols as presented in Table 4.1. The values between the brackets are
the KS test statistic.

for single signals, there is a broadening of the shell around the diagonal,
showing more variability in signal recovery, meaning our inference is
less accurate than for single signals. Possible origins are the degenerate
posteriors, increased complexity of the problem, and the reduced size of
our network. This increased variability when going from single to joint
parameter estimation has also been noted in Bayesian approaches [181].

While Bayesian methods have been developed in [181], they are not
yet fully stable and take a long time to analyze a BBH system. Therefore,
making a statistically significant study comparing the two approaches
seems a bit premature at this stage. However, to have some sense of the
performances of our network compared to traditional methods, we make
15 injections complying with our network’s setup and analyze them with
the framework presented in [181]. Using these analyses, we can already
identify some trends between the two pipelines. The first is that our ML
pipeline typically has broader posteriors than the Bayesian approach. As
mentioned in Ref. [181], the classical joint parameter estimation approach
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Figure 4.3: Comparison between our approach and the one from [181] for
two separate events and for the chirp mass, mass ratio, right ascension,
and declination. The injected values are given by the black lines. For the
left event the true value is encapsulated by the posteriors of both methods,
for the right event this is only the case for our method. Our posteriors are
generally broader but include the injected value within the 90% confidence
interval. This could be corrected by applying importance sampling on the
output samples.
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can sometimes get overconfident –see Ref. [181] for a discussion on the
Bayesian algorithm–, where the recovered injected value lies outside of the
90% confidence interval. Our method is not confronted with this bottleneck
as the broader posterior encapsulates the injected value. Fig. 4.3 illustrates
the two representative situations: one where the Bayesian approach finds
the event correctly, and one where we see that our ML approach covers
the injected values while it does not for the classical approach. Bias in the
posterior, similar to the one noted in Ref. [181], can exist in our method
and would not be seen because of the broad posteriors. However, because
we are using the forward KL divergence, we expect the posteriors to have
some support for the injected values. The origin of the larger posterior,
which is not observed in the single parameter estimation machine learning-
based methods, is probably due to the increased complexity of the problem
combined with the small residual and CNF network sizes. One possible
avenue is applying importance sampling after the normalizing flow as
shown in Chapter 3 or Ref. [188]. However, such methods can be tricky,
and additional modifications to our network could be needed.

Finally, an important advantage of our method is its speed. After being
trained, it can analyze two overlapping BBH signals in about a second, to
compare with (20𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) reported in [181]. While it is difficult to estimate
the time gain for other CBC signals, we can expect the inference time after
training not to be significantly larger than for BBHs. Since computational
time is a crucial aspect of studies in the 3G era, ML approaches seem to be
more suited to study realistic scenarios for these detectors.

4.5 Conclusions and Perspectives

In this work, we have presented a proof-of-concept machine learning-
based method to analyze overlapping BBH signals. We focused on a 2G
detector scenario with the two LIGO, and the Virgo detectors at design
sensitivity, with a lower frequency cutoff of 20Hz. Our approach is based
on continuous normalizing flows.

While also using normalizing flows, as in [57, 144, 186–188], we bring
extra modifications that seem to help in the inference task. We repre-
sent the data through a mixture of SVD and convolutions, enabling us
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to sample directly over the events’ arrival time, retaining the ability to
access the likelihood of a sample. We also move to continuous conditional
normalizing flows, reducing the computational cost of the method as we
need to solve a trace instead of a determinant when going from one step
to the other in the transformation. Finally, we also use a particular rep-
resentation of the angles, projecting them onto circles (for the phase, the
polarization, . . . ) and spheres (for the sky location). We believe that these
modifications make our network more flexible, enabling it to deal with
overlapping signals even in a reduced form.

With this simplified setup, we have shown that our approach is reliable,
with posteriors consistent with the injected values. Our method takes
about one week to train on a single GPU. After that, it only takes about
a second to analyze two overlapped BBHs. While, in reality, other types
of CBC mergers can happen, their inference after training should not
be significantly longer than for BBHs. We also compared our machine
learning method with classical Bayesian methods for overlapping signals.
While our scheme leads to wider posteriors, it can correctly recover the
injected values, even when the Bayesian approach gets overconfident and
misses the injection. A possibility to correct for the widened posteriors is
to use importance sampling.

Our method’s combined reliability and speed show that machine learn-
ing is a viable approach to analyzing CBC mergers in the 3G era. More
interestingly, it would even be possible without needing to account for
the development of more powerful computational means and could enable
some science-case studies for ET and CE soon. For example, once trained
for all possible BBH systems, it could help study the BBH mass function
in the 3G era.

Still, one should note that extra improvements are needed before using
our method in realistic 3G scenarios. One would first need to change our
setup to the 3G detectors, where a lower frequency cutoff and extreme
SNRs could be encountered. In addition, a wider range of objects should
be accounted for. One should include higher-order modes and eccentricity
as they could play a crucial role in the 3G era. Other modifications could
also be implemented. Additionally, we need to account for the change in
noise realization from one event to the other. Some of these steps, like
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changing the detector configuration, should be relatively easy. Others
are more complex, as it is hard to perform parameter inference for long-
lasting mergers due to the computational burden. So, extra developments
in parameter estimation using machine learning would be required to get
to the realistic 3G scenario. For overlapping signals, one would also benefit
from developments in the classical study of the 3G scenario, such as how
to deal with the noise characterization or the types of other events that
could come into the data.

In the end, there is still work to be done before machine learning can be
used in realistic 3G scenarios. However, we believe that this work shows
it is an interesting avenue and could be practical on a relatively short time
scale.
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Chapter 5
Tuning Neural Posterior

Estimation for Gravitational
Wave Inference

Modern simulation-based inference techniques use neural networks to
solve inverse problems efficiently. One notable strategy is neural posterior
estimation (NPE), wherein a neural network parameterizes a distribution
to approximate the posterior. This approach is particularly advantageous
for tackling low-latency or high-volume inverse problems. However, the
accuracy of NPE varies significantly within the learned parameter space.
This variability is observed even in seemingly straightforward systems
like coupled-harmonic oscillators. This chapter emphasizes the critical
role of prior selection in ensuring the consistency of NPE outcomes. Our
findings indicate a clear relationship between NPE performance across
the parameter space and the number of similar samples trained on by
the model. Thus, the prior should match the sample diversity across the
parameter space to promote strong, uniform performance. Furthermore,
we introduce a novel procedure, in which amortized and sequential NPE
are combined to swiftly refine NPE predictions for individual events. This
method substantially improves sample efficiency, on average from nearly
0% to 10-80% within ten minutes. Notably, our research demonstrates its
real-world applicability by achieving a significant milestone: accurate and
swift inference of posterior distributions for low-mass binary black hole
(BBH) events with NPE.

Based on: Kolmus, A., Janquart, J., Baka, T., van Laarhoven, T., Van
Den Broeck, C., & Heskes, T., “Tuning neural posterior estimation for
gravitational wave inference”. arXiv preprint arXiv:2403.02443 (2024).
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5.1 Introduction

Inverse problems encompass the challenging task of deducing the un-
derlying causal factors behind observed phenomena in various scientific
domains [196–199]. A specific example of such a phenomenon is a gravi-
tational wave (GW) – coherent, tiny ripples in space-time generated by
the acceleration of massive celestial objects such as black holes or neutron
stars [200]. The observatories of the LIGO-Virgo-KAGRA collaboration [27,
28, 130] regularly observe these GW events [29]. The insights derived
from analyzing these events have a huge impact on the field of astron-
omy [201–204]. To continue progressing, it is crucial to infer the properties
of new GW events accurately, and in a timely manner, especially since the
computational demands continue to grow as the detectors improve [205].
In this introduction, we will give a brief overview of traditional and neural
methods for solving inverse problems, focusing on their applicability in
GW astronomy.

How does one find the causal factors explaining an observation 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜?
Traditionally, tackling complex inverse problems involves three compo-
nents. First, a simulation model is needed to translate event parameters
𝜃𝜃 into synthesized observations 𝑥𝑥 . Next, a likelihood function 𝑝𝑝(𝑥𝑥|𝜃𝜃) is
determined, and finally, Bayesian inference methods construct a posterior
distribution over the parameters 𝜃𝜃 given by Bayes’ theorem:

𝑝𝑝(𝜃𝜃|𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜) =
𝑝𝑝(𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜|𝜃𝜃)𝑝𝑝(𝜃𝜃)

𝑝𝑝(𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜)
, (5.1)

where 𝑝𝑝(𝜃𝜃) is the prior distribution and 𝑝𝑝(𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜) is the evidence. These
Bayesian methods often evaluate millions to billions of potential event
parameters before converging to the true posterior distribution. There-
fore, quick evaluation of the likelihood function is a necessity. However,
obtaining such a practical likelihood function 𝑝𝑝(𝑥𝑥|𝜃𝜃) can be challenging
due to mathematical or computational complexity.

Current GW pipelines built on this traditional framework take a lot
of time to run, ranging from hours to a full month depending on the
event properties and desired accuracy [102, 103, 206]. The primary factor
contributing to the runtime is the evaluation of the likelihood, which
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requires simulating a GW. Simulating a GWcan take anywhere from tens of
milliseconds to several seconds [207], dependent on variables like sampling
frequency, signal duration, and the chosen simulation algorithm. With the
anticipated construction of third-generation detectors [162], alongside the
planned upgrades to existing observatories such as LIGO and Virgo [208],
the computational demands are expected to surge. Consequently, the
accurate inference of posterior distributions for future GW observations
without substantial enhancements poses a growing challenge. As a result,
there is a growing interest in alternative methods for GW inference [52,
53, 56, 58, 139, 146, 157, 188, 209–212].

Simulation-based inference (SBI) methods [185] offer potential alterna-
tives for solving inverse problems in a more computationally efficient man-
ner. These methods approximate the posterior distribution and need only
a simulation model. In recent years, neural networks (NNs) have gained
considerable prominence in the SBI domain [213]. Due to their expressiv-
ity and capacity, NNs can mimic essential components of the Bayesian
inference framework: the likelihood [61], the likelihood-ratio [214], and
the posterior itself [112]. The neural likelihood ratio and neural poste-
rior methods can be trained either for a single event or for any possible
event from the prior distribution; these modes are respectively referred
to as non-amortized and amortized inference. The latter takes longer
to train and is potentially less accurate but the computational burden
is paid in advance and only once. Consequently, amortized inference is
preferred when faced with low-latency or high-volume challenges. Of spe-
cial interest is amortized neural posterior estimation (NPE) [112], where
one trains a conditional neural density estimator to transform a simple,
well-understood distribution into an approximate posterior 𝑄𝑄(𝜃𝜃|𝑥𝑥). To
our knowledge, this is the only neural SBI method that does not require
any subsequent Bayesian or variational inference steps to construct an
approximate posterior and thus allows for sub-second inference [144].

In NPE, an NN parameterizes an approximate posterior distribution
over the event parameters. The NN is trained by feeding it simulated
observations 𝑥𝑥 and iteratively increasing the likelihood of the true parame-
ters 𝜃𝜃 in the predicted distribution. While mixture density networks [215]
and normalizing flow (NF) models [112] are both commonly used in NPE,
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our focus in this work is exclusively on NF models due to their high ex-
pressivity. NFs consist of a sequence of differentiable, bijective functions
with parameters defined by NNs. These functions can transform a simple
distribution into a complex one while accurately tracking the likelihood
via the change of variables theorem. The loss function commonly used
in NPE is the forward KL divergence, which is equivalent to maximum
likelihood estimation for NFs [145]. Due to the mode-covering property of
the forward Kullback-Leibler (KL) divergence, the approximate posterior
should always cover the true posterior[216]. This property enables using
importance sampling to converge to the true posterior when a known like-
lihood function is available. As we will see, NPE followed by importance
sampling produces similar results as traditional methods for significantly
reduced computational costs [188, 217].

While NPE holds promise as an alternative for full GW inference,
certain challenges need to be addressed. First, NPE can struggle with
generalizing across the entire parameter space. As we shall demonstrate
in section 5.3, even for simple problems, NPE can have poor sample effi-
ciency for specific subsets of the data. We hypothesize and characterize
a correlation between the performance of an NPE model for a specific
event and the number of similar samples it has been trained on. The rea-
soning behind this hypothesis is that NNs learn from examples. Effective
training thus demands a prior that exposes the NN to diverse samples,
which often does not correspond to the uninformative prior, but an effec-
tive one. Second, NPE models struggle to be competitive with Bayesian
inference when they need to learn large numbers of high-dimensional
observations, producing posteriors that appear correct but are wider than
their Bayesian counterparts. Extended training can compensate to some
extent, but does not scale well. In section 5.4 we propose fine-tuning of
trained NPE models for single instances of the problem. This procedure
optimizes the NPE model by self-sampling and correcting these samples
with an importance-weighted loss function. By switching from learning all
possible events to only a single instance, the problem becomes a lot easier
to optimize for. To demonstrate the improvements offered by switching
to effective priors and fine-tuning, section 5.5 shows that we can infer

82



our focus in this work is exclusively on NF models due to their high ex-
pressivity. NFs consist of a sequence of differentiable, bijective functions
with parameters defined by NNs. These functions can transform a simple
distribution into a complex one while accurately tracking the likelihood
via the change of variables theorem. The loss function commonly used
in NPE is the forward KL divergence, which is equivalent to maximum
likelihood estimation for NFs [145]. Due to the mode-covering property of
the forward Kullback-Leibler (KL) divergence, the approximate posterior
should always cover the true posterior[216]. This property enables using
importance sampling to converge to the true posterior when a known like-
lihood function is available. As we will see, NPE followed by importance
sampling produces similar results as traditional methods for significantly
reduced computational costs [188, 217].

While NPE holds promise as an alternative for full GW inference,
certain challenges need to be addressed. First, NPE can struggle with
generalizing across the entire parameter space. As we shall demonstrate
in section 5.3, even for simple problems, NPE can have poor sample effi-
ciency for specific subsets of the data. We hypothesize and characterize
a correlation between the performance of an NPE model for a specific
event and the number of similar samples it has been trained on. The rea-
soning behind this hypothesis is that NNs learn from examples. Effective
training thus demands a prior that exposes the NN to diverse samples,
which often does not correspond to the uninformative prior, but an effec-
tive one. Second, NPE models struggle to be competitive with Bayesian
inference when they need to learn large numbers of high-dimensional
observations, producing posteriors that appear correct but are wider than
their Bayesian counterparts. Extended training can compensate to some
extent, but does not scale well. In section 5.4 we propose fine-tuning of
trained NPE models for single instances of the problem. This procedure
optimizes the NPE model by self-sampling and correcting these samples
with an importance-weighted loss function. By switching from learning all
possible events to only a single instance, the problem becomes a lot easier
to optimize for. To demonstrate the improvements offered by switching
to effective priors and fine-tuning, section 5.5 shows that we can infer

82

previously inaccessible low-mass parameter ranges1 for binary-black hole
(BBH) mergers observed with GWs. To our knowledge, the inference of
posterior distributions for low-mass BBH events remains beyond the reach
of existing SBI algorithms [56, 143, 188].

5.2 Experimental setup
To investigate the behavior of NPE, we first start with a simple toy prob-
lem. This section will first describe our toy problem: coupled-harmonic
oscillators, an ideal toy problem for three reasons: (1) they are computa-
tionally inexpensive to generate, (2) there is a known and cheap likelihood
function, which makes importance sampling straightforward, and (3) like
gravitational wave observations, they are a time series and have correlated
channels. This section will end with a description of our NPE model and
training setup.

5.2.1 Toy problem description

We study a linear chain containing four oscillators moving along a single
axis, as illustrated in Figure 5.1. Each oscillator has a mass 𝑚𝑚 and is
connected to its neighbors by springs with a spring constant 𝑘𝑘. The first
and last oscillators in the chain are attached to rigid walls by springs
on their left and right sides. The system’s dynamics can be expressed
in terms of normal modes 𝑣𝑣. This expression derived in [218] where the
displacement over time 𝑥𝑥𝑢𝑢(𝑡𝑡) of oscillator 𝑢𝑢 is expressed as a sum over the
four normal modes with known amplitudes 𝑎𝑎𝑣𝑣 and phases 𝜙𝜙𝑣𝑣:

𝑥𝑥𝑢𝑢(𝑡𝑡) =
4

∑
𝑣𝑣=1

|𝑎𝑎𝑣𝑣| sin (
𝑣𝑣
5
𝑢𝑢𝑢𝑢) cos

(
2

√
𝑘𝑘
𝑚𝑚
| sin (

𝑣𝑣𝑣𝑣
10)

|𝑡𝑡 + 𝜙𝜙𝑣𝑣)
(5.2)

Conversely, given the displacements over time, the amplitudes and phases
of the normal modes can be determined. The described toy problem has a
10-dimensional parameter space: mass 𝑚𝑚, spring constant 𝑘𝑘, and for each
normal mode an amplitude 𝑎𝑎𝑣𝑣 and phase 𝜙𝜙𝑣𝑣.

1Down to a chirp mass of 5 solar masses.
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Figure 5.1: An illustration of the coupled-harmonic oscillators used in the
toy problem. There are four oscillators, each has a mass 𝑚𝑚, and they are
connected via springs with spring constant 𝑘𝑘. Their displacement from
rest position 𝑥𝑥𝑢𝑢(𝑡𝑡) is measured along the horizontal plane.

To introduce uncertainty into the inverse problem, we incorporate
white noise into the observed displacements 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡), and discretize these
into 𝒙𝒙𝑜𝑜𝑜𝑜𝑜𝑜

2 depending on the sampling frequency. This allows us to use the
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phases, and 𝒔𝒔𝑢𝑢(𝜽𝜽) denotes a clean simulated signal parameterized by 𝜽𝜽. This
likelihood functionmeasures howwell the residuals, the observationminus
the simulation, match a standard normal distribution. A set of {𝜽𝜽𝑖𝑖} for
which the residuals resemble white noise should explain the observation
well. To evaluate the performance of an NPE model, ideally, we would
calculate the KL divergence between the exact Bayesian posterior and the
posterior predicted by the NPE model. However, the computational costs
would be excessively high for all the experiments in this chapter. Instead,
the sample efficiency 𝜂𝜂 is used to quantify the performance of the NPE
model. For 𝑛𝑛 drawn samples from the NPE model, the sample efficiency is
defined as:

𝜂𝜂 = (∑𝑛𝑛
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where 𝑤𝑤𝑖𝑖 represents the ratio between the Whittle likelihood and the
likelihood given by the NPE model for the 𝑖𝑖th sample. And 𝑛𝑛eff is the Kish

2Bold symbols indicate vectors.
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Figure 5.1: An illustration of the coupled-harmonic oscillators used in the
toy problem. There are four oscillators, each has a mass 𝑚𝑚, and they are
connected via springs with spring constant 𝑘𝑘. Their displacement from
rest position 𝑥𝑥𝑢𝑢(𝑡𝑡) is measured along the horizontal plane.
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effective sample size [219]. If 𝑛𝑛 is sufficiently large and the support of our
approximate distribution covers the support of the true distribution, we
can interpret the sample efficiency as a quality measure of the approximate
distribution. NF models trained with the forward KL-divergence are in
general mode-covering and can generate thousands of posterior samples
within a second, satisfying these requirements.

5.2.2 NPE model specification and training

As can be seen in Figure 5.2, the NPEmodel is a combination of twomodels:
(1) The context model transforms the time series into a neural repre-

sentation. It begins with a linear transformation, followed by three residual
blocks, and ends with another linear transformation to produce the neural
representation. Although it has a consistent structure across experiments,
the dimensions of the linear layers can change to accommodate longer or
more complex time series. The specific dimensions of the context network
for each experiment can be found in the at the end of this section.

(2) The NFmodel transforms a base distribution 𝑄𝑄𝑏𝑏 into a complicated
distribution 𝑄𝑄𝑧𝑧. The NF model builds this transformation via a series of
coupling layers [113]. A coupling layer with index 𝑙𝑙 divides the input
into two halves: a dynamic 𝒃𝒃𝑙𝑙𝑖𝑖 and static 𝒃𝒃𝑙𝑙𝑗𝑗 , where the static half acts as a
condition for the transformation of the dynamic half. The transformation
is a function 𝑓𝑓 , which has to be differentiable and bijective in its first
parameter. It is typically a monotonically increasing polynomial whose
coefficients 𝛽𝛽 are generated by an NN 𝑔𝑔 with parameters 𝝉𝝉𝑙𝑙. The input to
𝑔𝑔 is the static half, and possibly a context vector 𝑐𝑐. The output of such a
coupling layer is

𝒃𝒃𝑙𝑙+1𝑖𝑖 = 𝑓𝑓 (𝒃𝒃𝑙𝑙𝑖𝑖, 𝑔𝑔(𝒃𝒃
𝑙𝑙
𝑗𝑗 ; 𝝉𝝉𝑙𝑙)) = 𝑓𝑓 (𝒃𝒃𝑙𝑙𝑖𝑖, 𝛽𝛽

𝑙𝑙) (5.5)
𝒃𝒃𝑙𝑙+1𝑗𝑗 = 𝒃𝒃𝑙𝑙𝑗𝑗 . (5.6)

By alternating which dimensions are dynamic and which are static in
consecutive coupling layers, the model can represent a flexible distribution
over the parameters. The entire series of coupling layers is denoted 𝑆𝑆
and the corresponding set of parameters is denoted 𝝍𝝍. The principle of a
normalizing flow is based on the equivalence relation between 𝑄𝑄𝑧𝑧 and 𝑄𝑄𝑏𝑏
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via the change of variables theorem:

𝑄𝑄𝑧𝑧(𝒛𝒛|𝝍𝝍) = 𝑄𝑄𝑏𝑏(𝒃𝒃) | det 𝐉𝐉𝑆𝑆(𝒃𝒃; 𝝍𝝍) |−1 where 𝒛𝒛 = 𝑆𝑆(𝒃𝒃). (5.7)

Here, 𝐉𝐉𝑆𝑆(𝒃𝒃; 𝝍𝝍) represents the Jacobian of the transformation function. One
can optimize 𝑄𝑄𝑧𝑧 to approximate an (unnormalized) target distribution 𝑃𝑃(𝒛𝒛)
with 𝑄𝑄𝑧𝑧(𝑧𝑧|𝝍𝝍) by minimizing the forward KL-divergence𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃(𝒛𝒛)|𝑄𝑄𝑧𝑧(𝒛𝒛|𝝍𝝍)),
which for NF models is equivalent to fitting 𝑄𝑄𝑧𝑧(𝒛𝒛|𝝍𝝍) by maximum likeli-
hood estimation [145]. The loss function for a single sample reads:

𝐿𝐿(𝒛𝒛|𝝍𝝍) = − log(𝑄𝑄𝑧𝑧(𝒛𝒛|𝝍𝝍)). (5.8)

The base distribution of our NF model is a truncated standard normal
distribution. We went with a truncated distribution since they match
naturally with the boundaries of the parameter space, for example, the
phase is bounded between 0 and 2𝜋𝜋. For our transformation function, we
choose Bernstein polynomials [117], which are both highly expressive and
robust, regardless of noise or polynomial order. These qualities allow us to
build a relatively shallow, yet highly expressive NF model. It is also faster
to train and has a smaller memory footprint, compared to the conventional
RQ-spline NF models [116]. As we shall see in section 5.4, a fast NF model
is very beneficial if low latency is desired. For all of the experiments,
the Bernstein polynomials are parameterized by a shallow multi-layer
perceptron (MLP).

Table 5.1: The priors used for the data generation of the coupled-harmonic
oscillators. The prior for the mass is a power law prior whose coefficient
was either -3.0, -1.5, or 0.0, depending on the experiment.

Parameter Prior Min Max Unit
𝑚𝑚 Power law (-3.0, -1.5, 0.0) 0.1 10 kg
𝑘𝑘 Uniform 10 100 N/m
𝑎𝑎0,1,2,3 Uniform 0.5 5.0 m
𝜙𝜙0,1,2,3 Uniform 0 2𝜋𝜋 rad
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Figure 5.2: A schematic of our NPE model. The flow through the schematic
is made explicit by arrows. The left side of the schematic shows the context
network, which is a residual network consisting of three residual blocks.
The right side shows the NF model which transforms a simple distribution
𝑄𝑄𝑏𝑏 into an approximate posterior distribution 𝑄𝑄𝑧𝑧. The NF model consists of
four coupling layers, each conditioned by the output of the context network.
The method of conditioning is discussed in more detail in Section 5.4. Each
coupling layer has two inputs, a dynamic half and a static half. The static
half is used as input into an MLP which produces the 𝛽𝛽 coefficients for
the Bernstein polynomial, which transforms the dynamic half. At the end
of the coupling layer the dynamic and static halves trade places for the
consecutive coupling layer.
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Table 5.2: The priors used for the data generation of the GWs. Instead of
luminosity distance the optimal SNR of the signal is sampled. During the
generation of the waveform the luminosity distance is set to 1000 MPC
and after the generation, the waveform and luminosity distance are scaled
to match the desired SNR.

Parameter Name Prior Min Max Unit
𝑚𝑚1, 𝑚𝑚2 Component mass Constraint 3 150 M⊙

𝑐𝑐 Chirp mass Power law (-3.0) 5 100 M⊙

𝑞𝑞 Mass ratio Power law (-1.5) 0.2 1.0 -
|𝜒𝜒1|, |𝜒𝜒2| Spin amplitudes Uniform 0 0.9 -
THETA Sky coordinate 1 Uniform 0 2𝜋𝜋 rad
PHI Sky coordinate 2 Cosine 0 𝜋𝜋 rad
𝑡𝑡𝑐𝑐 Coalescence time Uniform -0.1 0.1 s
𝜙𝜙𝑐𝑐 Coalescence phase Uniform 0 2𝜋𝜋 rad
𝜄𝜄 Inclination angle Sine 0 𝜋𝜋 rad
𝜓𝜓 Polarization angle Uniform 0 𝜋𝜋 rad
SNR Signal-to-noise ratio Uniform 10 30 -

Coupled-harmonic oscillators setup

The context network consisted of a linear layer, three residual blocks,
and a linear layer. The initial linear layer reduced the dimension from
number of oscillators × duration × sampling frequency down to 512. The
residual blocks contained an MLP following the pre-activation format
suggested in reference [220]. Specifically, the MLP was defined by the
following sequence a GELU activation function [221], a LayerNorm [222],
a linear layer with an output dimension of 512, followed by a GELU acti-
vation, a LayerNorm, and linear layer with an output dimension of 512.
The final linear layer reduced the dimension from 512 to 128. The weight
vectors of the linear layers were reparamertized following the weight
normalization paper [223], which significantly improved convergence
rates.

Each coupling layer in the NF model had its own MLP to parameterize
its 128-degree Bernstein polynomial. These MLPs consisted of a linear
layer with an output dimension of 256, a GELU activation function, a
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LayerNorm, and another linear layer with an output dimension of 128.
It was observed that the use of weight normalization did not improve
convergence in this context, so it was not used.

For each training step, we generated a new data batch, by sampling
the parameters 𝜽𝜽 from the prior specified in Table 5.1 and running the
simulations to generate the corresponding oscillations and finally adding
white noise. Each batch consisted of 1024 parameters-observation pairs
and each epoch had 5000 training steps. The NPE model was optimized
using Adam [153], with a learning rate of 0.01 for the first 90% of the
epochs, and 0.001 for the last 10% of the epochs. Lowering the learning
rate further gave minimal improvements so the cut-off was set at a learning
rate of 0.001.

Gravitational waves setup

The context network is identical in setup compared to the one made for
the coupled-harmonic oscillator, except that the dimensions are bigger.
The all linear layer, except the last linear layer, has an output dimension
of 4096. The last linear layer has an output dimension of 512. The setup of
the NF model is the same for the coupled-harmonic oscillator.

For each training step, we generated a new data batch, by sampling
the parameters 𝜽𝜽 from the prior specified in Table 5.2. To improve the
generation speed we generate only 64 waveforms, and each waveform is
copied 16 times and gets new sky coordinates, polarization angle, SNR,
and arrival time which are used to scale, and subsequently, project the
waveform onto the HLV detectors. The waveforms are then whitened after
which we add white noise.

Each batch consisted of 1024 parameters-observation pairs and each
epoch was 5000 training steps. The NPE model was optimized using
Adam [153], with a learning rate of 0.01 for the first 450 epochs, and 0.001
for the last 50 epochs. Lowering the learning rate further gave minimal
improvements so the cut-off was set at a learning rate of 0.001.

For the sky coordinates we use the polar coordinates over the celestial
coordinates removing the implicit dependence on Greenwich Mean Side-
real Time. Since we already have several theta’s and phi’s as notation we
opted to use THETA and PHI as notation for these polar / sky coordinates.
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5.3 Effective priors for NPE

The relationship between the size of the training dataset and NN per-
formance remains a topic of ongoing research [224–226]. However, the
general sentiment is that increasing the size of the dataset improves per-
formance. Conversely, NNs do not perform well at inference time for input
which it has not been sufficiently trained on. Neural simulation-based
inference relies on training the model with simulated data originating
from a chosen prior. Conventionally, one uses an uninformative prior to
mirror the Bayesian inference framework. In this section, we argue that
to train a robust and accurate NPE model one has to choose the prior such
that the model trains on an as diverse set of samples as possible. In other
words, the prior should be effective in training the NN.

We used the toy problem for all the experiments in this section. We
simulated observations from the coupled-harmonic oscillator of two sec-
onds at a sampling frequency of 128 Hz. The simulated time series is a
mix of four sinusoids, whose frequencies 𝑓𝑓𝑣𝑣 are proportional to

√
𝑘𝑘/𝑚𝑚.

A change in mass does not translate into a linear response in frequency.
It implies that with a uniform prior on 𝑚𝑚, there is more data with low
frequencies. Ideally, for any sample drawn from the prior, the number of
similar samples is roughly equal.

To quantify the similarity between time series we use the cosine simi-
larity, also known as the match in GW astronomy. By keeping one sample
as a constant argument and drawing the other from a chosen prior, we
estimate the NN’s exposure to the reference sample. Here, the analysis is
limited to mass because the similarity between samples changes the most
across this dimension, and is, therefore, the most troublesome to infer
correctly. To determine the number of similar signals that the model sees
as a function of the prior 𝑝𝑝(𝑚𝑚) we define the sample exposure as

𝜉𝜉(𝑚𝑚𝑚 𝜽𝜽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = 𝔼𝔼𝑚𝑚′∼𝑝𝑝 [
𝒔𝒔(𝑚𝑚𝑚 𝜽𝜽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)𝑇𝑇 𝒔𝒔(𝑚𝑚′, 𝜽𝜽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)

||𝒔𝒔(𝑚𝑚𝑚 𝜽𝜽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)|| ||𝒔𝒔(𝑚𝑚′, 𝜽𝜽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)||]
, (5.9)

where 𝜽𝜽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 are the all parameters except the mass 𝑚𝑚. We approximated
𝜉𝜉(𝑚𝑚𝑚 𝜽𝜽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) by sampling 1000 equidistant points from the inverse cumulative
density function of 𝑝𝑝(𝑚𝑚). On the left side of Figure 5.3, we show the result
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where 𝜽𝜽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 are the all parameters except the mass 𝑚𝑚. We approximated
𝜉𝜉(𝑚𝑚𝑚 𝜽𝜽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) by sampling 1000 equidistant points from the inverse cumulative
density function of 𝑝𝑝(𝑚𝑚). On the left side of Figure 5.3, we show the result
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of this calculation for three different priors: a power law3 with 𝛼𝛼 = −3,
𝛼𝛼 = −1.5, 𝛼𝛼 = 0. The right side shows the sample efficiency of the
corresponding NPE models. The sample exposure seems to align well
with the sample efficiency. It seems that NPE models demonstrate strong
performance only when they have been exposed to a sufficient number
of (similar) observations. If one desires a stable performance over the
entire parameter space, it is critical that one chooses a prior that gives
uniform sample exposure. If we switch from the power law prior back
to a uniform prior during evaluation of the trained NPE models, these
conclusions remain true, see Figure 5.4.
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Figure 5.3: A comparison between the sample exposure for different priors
and the sample efficiency of the corresponding NPE models. Left. The
sample exposure at a specific mass for three different priors. The priors
consist of a uniform prior (blue), a power law with an exponent of -1.5
(orange), and a power law with an exponent of -3.0. To cover the influence
of the other parameters, we compute the sample exposure across the mass
with 1000 different instances of 𝜽𝜽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 . The band shows the central 50% of
computed sample exposures. Right. The sample efficiency for three NPE
models trained with the three different priors, the shown band covers the
central 50%. Although the sample exposure and sample efficiency do not
match exactly, there is a clear correspondence between them.

3A power law distribution with power 𝛼𝛼 is defined as 𝑝𝑝𝛼𝛼(𝑥𝑥) = 𝑥𝑥𝛼𝛼/𝐴𝐴 where 𝐴𝐴 is a
normalization constant.
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Figure 5.4: Sample efficiency of NPE models trained with different priors,
but evaluated with posterior probabilities divided by prior probabilities
(mimicking uniform prior). Colors indicate training priors: uniform (blue),
power law -1.5 (orange), and power law -3.0. The NPE model trained with
power law (-1.5) still recovers the posterior across the entire mass range.
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Figure 5.5: The sample efficiency for different training durations: 100 (blue),
200 (orange), and 400 (green) epochs. The shown bands cover the central
50%. Left. An NPE model trained with power law distribution (𝛼𝛼 = −1.5)
as mass prior. Right. An NPE model trained with uniform distribution as
mass prior. Training for longer improves sample efficiency regardless of
prior. Despite the improvements in sample efficiency, longer training does
not give satisfactory performance for small masses when using a uniform
prior. Thousands of epochs are probably needed to guarantee sufficient
sample efficiency across the mass range. Only the power law distribution
shows stable performance over the entire mass range regardless of training
iteration.
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To further validate the hypothesis that the model’s performance im-
proves with increased exposure to similar samples, we conducted a second
experiment. Two NPE models, one with a uniform mass prior and the
other with a power law prior of 𝛼𝛼 = −1.5, were trained for 100, 200, and
400 epochs4. Figure 5.5 presents the sampling efficiencies obtained from
this extended training. The results demonstrate a significant enhancement
in performance for both 𝛼𝛼 = −1.5 and 𝛼𝛼 = 0 as the training duration
increases. This finding further supports the notion that the NPE model
functions optimally when it has encountered a sufficient number of similar
observations. However, it also indicates that training for longer has dimin-
ishing returns. In the next section, we propose a scheme to overcome this
problem.

5.4 Fine-tuning neural posterior estimation
As demonstrated in the previous section, exposure to a diverse set of
samples is necessary to ensure a strong NPE model. However, when
dealing with an enormous parameter space, obtaining adequate exposure
can require billions of samples. To accurately store the massive volume
of information, the NPE model must become bigger and thus will be
slower to train, requiring more sophisticated hardware. At a certain point,
NPE will no longer be viable due to the training requirements. In this
section, we address the complications arising from large parameter spaces
and present a fine-tuning procedure designed to maintain high sample
efficiency, regardless of the parameter space’s scale.

5.4.1 Challenges in large parameter spaces

To illustrate the challenges posed by larger parameter spaces, we repeat the
experiment of the previous section with a longer duration signal. The dura-
tion was changed from two to twenty seconds. This adjustment decreased
the sample exposure by a factor of ten. To counteract the decrease in ex-
posure, the NPE model needs to be trained ten times longer. Moreover, the
NPE model was given a context network that was a factor ten wider than

4A single epoch is 5000 updates with a batch of 1024.
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the original one. Despite these changes, the sample efficiency was only
0.02% after 100 epochs, and 0.07% after 1000 epochs. This is significantly
worse than the 20–30% sample efficiency achieved in Section 5.3.

While the NPE model was still able to approximate the posterior distri-
bution for the extended twenty-second signal (see Figure 5.6) its predictions
were significantly wider than its importance-sampled counterpart. This
widening suggests that the NPE model was not able to extract all the
information from the signal, despite being trained on roughly 5 billion
unique samples. Naturally, a signal with a longer duration contains more
information, and therefore a tighter posterior distribution. This is reflected
in the decreased sample exposure, but cannot account for the significant
drop in performance. We attribute the lower performance to the inherent
difficulty of accurately storing more and much higher-dimensional time
series. Traditional methods can still find the correct posterior by running
for longer. Altering amortized NPE such that iterative improvements post-
prediction are possible might be the solution for large parameter space
problems.

5.4.2 Fine-tuning procedure

As is evident from the last subsection, learning the posterior distributions
for all possible events becomes increasingly harder as the parameter space
grows or the sample exposure decreases. To circumvent these difficulties
we propose switching back to a non-amortized setting after training the
NPE model. From now on, we will refer to the optimization of a trained,
amortized NPE model for a single observation 𝒙𝒙𝑜𝑜𝑜𝑜𝑜𝑜 as fine-tuning. Fine-
tuning makes learning the posterior distribution more manageable for
two reasons. First, the NPE model only needs to train on parameters
that produce simulations resembling 𝒙𝒙𝑜𝑜𝑜𝑜𝑜𝑜. These can be sampled from the
amortized model. Second, the NF only needs to learn a single posterior
distribution it already roughly approximates. In summary, fine-tuning
enables the NPE model to quickly learn the posterior distribution by being
more sample-efficient and simplifying the objective.

We will now discuss the implementation of the fine-tuning, outlined
in Algorithm 1. To switch from an amortized setting to a non-amortized
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Figure 5.6: The predicted posterior distribution for 20 seconds long signal,
shown as 1D histograms and 2D contour plots. There are three posterior
predictions, the original NPE model (green), the fine-tuned NPE model
(blue), and the importance-sampled posterior (red). The contours represent
the 90% confidence area. The sample efficiency of the green posterior is
0.1%, and of the blue posterior it is 3.5%. The improvement was achieved
in five seconds.
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Algorithm 1 Fine-tune NPE model
Require: observation 𝒙𝒙𝑜𝑜𝑜𝑜𝑜𝑜, context model 𝑀𝑀 , parameters of pre-trained

NPE model 𝝍𝝍
𝒄𝒄 ← 𝑀𝑀(𝒙𝒙𝑜𝑜𝑜𝑜𝑜𝑜) ⊳ Generate the context vector
𝝍𝝍′ ← 𝝍𝝍
for i in 1..cycles do

𝜽𝜽𝑖𝑖 ∼ 𝑅𝑅(𝜽𝜽|𝝍𝝍′, 𝒄𝒄)
𝑝𝑝𝑖𝑖 ← 𝑝𝑝(𝒙𝒙𝑜𝑜𝑜𝑜𝑜𝑜|𝜽𝜽𝑖𝑖) 𝑝𝑝(𝜽𝜽𝑖𝑖)
for j in 1..10 do

𝑤𝑤𝑖𝑖 ← 𝑝𝑝𝑖𝑖/𝑅𝑅(𝜽𝜽𝑖𝑖|𝝍𝝍′, 𝒄𝒄) ⊳ No gradients are calculated
𝐿𝐿 ← −𝑤𝑤2

𝑖𝑖 log(𝑅𝑅(𝜽𝜽𝑖𝑖|𝝍𝝍′, 𝒄𝒄))
𝝍𝝍′ ← update(𝐿𝐿𝐿 𝝍𝝍′) ⊳ Update 𝝍𝝍′ with Adam using gradient

𝜕𝜕𝜕𝜕/𝜕𝜕𝝍𝝍′

end for
end for

setting, the context vector 𝒄𝒄 is calculated by passing observation 𝒙𝒙𝑜𝑜𝑜𝑜𝑜𝑜

through the context model and using it as a static condition for the NF
model. For clarity, we define a newNPEmodel𝑅𝑅(𝜽𝜽|𝝍𝝍′, 𝒄𝒄)whose parameters
𝝍𝝍′ are initialized with the parameters 𝝍𝝍 of 𝑄𝑄(𝒄𝒄). The remainder of the
fine-tuning procedure operates in three steps:

1. Generate samples 𝜽𝜽𝑖𝑖 from distribution 𝑅𝑅(𝜽𝜽|𝝍𝝍′, 𝒄𝒄) and calculate the
true posterior probability 𝑝𝑝(𝜽𝜽𝑖𝑖|𝒙𝒙𝑜𝑜𝑜𝑜𝑜𝑜) by multiplying the Whittle like-
lihood 𝑝𝑝(𝒙𝒙𝑜𝑜𝑜𝑜𝑜𝑜|𝜽𝜽𝑖𝑖) and the prior 𝑝𝑝(𝜽𝜽𝑖𝑖).

2. Calculate posterior probability of 𝜽𝜽𝑖𝑖 under the NF model 𝑅𝑅(𝜽𝜽𝑖𝑖|𝝍𝝍′, 𝒄𝒄).

3. Update 𝝍𝝍′ with the 𝜒𝜒2-divergence as loss function:

𝐿𝐿(𝜽𝜽𝑖𝑖; 𝒙𝒙𝑜𝑜𝑜𝑜𝑜𝑜, 𝝍𝝍′) = −(
𝑝𝑝(𝜽𝜽𝑖𝑖|𝒙𝒙𝑜𝑜𝑜𝑜𝑜𝑜)
𝑅𝑅(𝜽𝜽𝑖𝑖|𝝍𝝍′, 𝒄𝒄))

2

log(𝑅𝑅(𝜽𝜽𝑖𝑖|𝝍𝝍′, 𝒄𝒄)) (5.10)

The loss function, as introduced in reference [227], uses the square of
the importance weight rather than the regular importance weight. This
approach serves to minimize the variance of importance weights and
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discourages the importance weights from becoming too big, leading to
improved convergence and sample efficiency. During fine-tuning most
of the time is consumed by running simulations to calculate the Whittle
likelihood. By repeating steps (ii) and (iii) for the same samples generated
in step (i), we can cut down on simulation time and still improve our model.
In our experiments, we could repeat steps (ii) and (iii) at least ten times
while still having a similar loss progression as without any repeated steps.
We will refer to completing steps (i), (ii), and (iii) – including repetitions
– as a cycle. For harder problems, more cycles, and samples, are needed
to reliably converge to the correct posterior. Increasing the number of
samples generated in step (i) has been sufficient to always find the correct
posterior distribution, regardless of multi-modality or the quality of the
initial posterior prediction. However, this does increase the time needed
to fine-tune the model. As we will see in section 5.5 we can mitigate most
issues with multimodalities by redefining 𝑅𝑅, saving a lot of time.

Fine-tuning has a close resemblance to sequential NPE methods [63,
228–230]. Both use self-sampling to generate samples and a (pseudo-
)importance weight to update the model. However, sequential NPE models
seem to shun the use of amortized models as initial priors and use their
own likelihood estimates as a replacement for the true likelihood. The
importance ratio is then calculated between sequential iterations of the
model, potentially requiring many rounds to converge. Moreover, without
using an amortized model, the initial sample quality can be poor, poten-
tially missing part of the posterior due to strong non-convex likelihood
landscapes. Or requiring long run-times to explore the parameter space.
All of these issues are mitigated by using fine-tuning. To our knowledge,
this is the first time amortized and non-amortized SBI have been combined.

The results of our fine-tuning procedure, depicted in Figure 5.6, under-
line its ability to improve the sample efficiency of NPE models. The green
area represents the posterior predicted by the original NPE model, while
the blue area represents those predicted by the fine-tuned NPE model,
and the red area depicts the true posterior, derived through importance
sampling of the fine-tuned distribution. The fine-tuning was performed
for 10 cycles, with a batch size of 10240, 10 repetitions, and finished within
five seconds. Fine-tuning brought the sample efficiency from 0.1% to 3.5%,

97



sufficient to extract the true posterior with importance sampling. To reach
higher sample efficiencies we need to add more NF layers to the model, as
we will see in the next subsection.

5.4.3 Optimizations for Fine-tuning Performance

Our investigation into improving the fine-tuning procedure led us to
explore two key aspects of the NPE model architecture: the method of
conditioning coupling layers and the addition of extra normalizing flow
layers.

Conditioning Methods

There are several straightforward ways to condition the coupling layers on
the output of the context network. Perhaps the easiest is to concatenate the
context vector and the static half 𝒃𝒃𝑙𝑙𝑗𝑗 and feed the new vector to the MLP of
the coupling layer. Slightly more involved methods transform the context
vector, via a linear transformation, into a bias vector, a scaling vector, or
a vector followed by a sigmoid function. To evaluate these methods, we
conducted experiments using our oscillator toy model with a duration of
2 seconds, training for 5 epochs. Table 5.3 summarizes the performance of
these different conditioning methods.

Table 5.3: The performance of NPE models with different forms of con-
ditioning. They were trained for 5 epochs on the toy problem, with a
duration of 2 seconds. The percentages represent sampling efficiency be-
fore and after fine-tuning.

Conditioning Training loss Pre fine-tuning (%) Post fine-tuning (%)
Concatenate -11.5 0.76 39.1
Bias -11.7 0.76 38.9
Scale -11.2 0.60 47.5
Sigmoid -11.5 0.76 41.2

As we can see in Table 5.3, while concatenation works well for training,
it is not optimal for fine-tuning. Of the conditioning methods tested, the
scaling vector proved to be the most effective for fine-tuning performance.
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Consequently, we adopted the scale method of conditioning throughout
this chapter.

Additional Normalizing Flow Layers

Fine-tuning allows us to add NF layers after the amortized training. These
additional layers do not need conditioning and can improve the flexibility
of the NPE model. Since these NF layers are initialized to approximate the
identity function, they should not significantly alter the initial output.

To test the impact of additional layers, we used our NPE model trained
for 100 epochs on coupled-harmonic oscillators with signals of 20 seconds.
Table 5.4 demonstrates the effect of increasing the number of coupling
layers on sample efficiency after fine-tuning.

Table 5.4: The results of fine-tuning for with additional layers.

Additional coupling layer After fine-tuning (%)
0 2.1
1 4.4
2 7.9
4 8.3
8 7.9

As evident from Table 5.4, adding coupling layers significantly im-
proves the sample efficiency, with the best performance achieved with
4 additional layers, increasing efficiency to 8.3% after fine-tuning. This
approach allows us to enhance the model’s capacity without requiring
retraining of the entire network.

These architectural optimizations play a crucial role in improving the
performance of our fine-tuning procedure, enabling more efficient and
accurate posterior estimation. By carefully considering both the condi-
tioning method and the number of additional flow layers, we were able to
substantially enhance the capabilities of our NPE model in the context of
fine-tuning.
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5.5 Gravitational waves

Posterior inference for GW events via NPE is possible for BBH events
with chirp masses above 15 solar masses [188]. However, extending SBI
models to low-mass BBH events has proven challenging. Here, we will
show that by adapting an effective prior and by fine-tuning the NPE model
for given events, it becomes possible to accurately infer posteriors for BBH
events with chirp masses between 5 and 100 solar masses. This section is
structured as follows: first, we discuss the choice of prior in gravitational
wave inference. Second, the data generation and preprocessing steps are
discussed. Third, we discuss the incorporation of symmetry relations into
the fine-tuning procedure to ensure all modes of the posterior are found.
Finally, we present and discuss the inference results for simulated, non-
precessing BBH GW events with a chirp mass between 5 and 100 solar
masses.

5.5.1 Effective priors for gravitational waves

Previous works in machine learning for gravitational wave inference com-
monly adopt either uniform priors for chirpmass andmass ratio or uniform
priors for the component masses [56, 57]. As shown in section 5.3, NPE
model performance matches the sample exposure caused by the choice
of prior. In the left graph of Figure 5.7, we show the sample exposure as
a function of chirp mass. By switching from a uniform prior to a power
law with 𝛼𝛼 = −3, the sample exposure is evenly distributed across the
chirp mass range. To put the difference in GW similarity into context: the
average match between gravitational waves with chirp masses of 5.000 and
5.025 equals the average match between gravitational waves with chirp
masses of 60 and 90. A similar analysis can be performed for the mass
ratio; the results are shown in the right graph of Figure 5.7. While a power
law as prior may not result in a uniform sample exposure, significant
improvement is achieved by choosing a power law with 𝛼𝛼 = −1.5. To
improve sample diversity during training, we selected power laws with
𝛼𝛼 = −3 for chirp mass and 𝛼𝛼 = −1.5 for mass ratio.

100



5.5 Gravitational waves

Posterior inference for GW events via NPE is possible for BBH events
with chirp masses above 15 solar masses [188]. However, extending SBI
models to low-mass BBH events has proven challenging. Here, we will
show that by adapting an effective prior and by fine-tuning the NPE model
for given events, it becomes possible to accurately infer posteriors for BBH
events with chirp masses between 5 and 100 solar masses. This section is
structured as follows: first, we discuss the choice of prior in gravitational
wave inference. Second, the data generation and preprocessing steps are
discussed. Third, we discuss the incorporation of symmetry relations into
the fine-tuning procedure to ensure all modes of the posterior are found.
Finally, we present and discuss the inference results for simulated, non-
precessing BBH GW events with a chirp mass between 5 and 100 solar
masses.

5.5.1 Effective priors for gravitational waves

Previous works in machine learning for gravitational wave inference com-
monly adopt either uniform priors for chirpmass andmass ratio or uniform
priors for the component masses [56, 57]. As shown in section 5.3, NPE
model performance matches the sample exposure caused by the choice
of prior. In the left graph of Figure 5.7, we show the sample exposure as
a function of chirp mass. By switching from a uniform prior to a power
law with 𝛼𝛼 = −3, the sample exposure is evenly distributed across the
chirp mass range. To put the difference in GW similarity into context: the
average match between gravitational waves with chirp masses of 5.000 and
5.025 equals the average match between gravitational waves with chirp
masses of 60 and 90. A similar analysis can be performed for the mass
ratio; the results are shown in the right graph of Figure 5.7. While a power
law as prior may not result in a uniform sample exposure, significant
improvement is achieved by choosing a power law with 𝛼𝛼 = −1.5. To
improve sample diversity during training, we selected power laws with
𝛼𝛼 = −3 for chirp mass and 𝛼𝛼 = −1.5 for mass ratio.

100

Figure 5.7: The mean sample exposure as a function of the chirp mass
𝑐𝑐 and mass ratio 𝑞𝑞. Switching from a uniform prior to a power law
distribution improves sample exposure for both the chirp mass and the
mass ratio.

5.5.2 Data generation

Table 5.2 specifies the full prior used for parameter sampling. For waveform
generation, we used the IMRPhenomXAS waveform model [231] provided
by the ripple library [50], enabling GPU-based waveform generation. The
training waveforms were generated in the frequency domain between 20
and 256 Hz and with a duration of 24 seconds. The selected frequency
range was chosen to optimize data generation and reduce memory burden
during training. This range, while not covering the entire frequency
span of low-mass BBH mergers, suffices for training the NPE model to
capture rough posteriors. During the fine-tuning procedure, we generate
waveforms in the 20 to 2048 Hz frequency band to ensure that the model
converges to the correct posterior. To speed up data generation further,
we use each generated waveform eight times, with each use featuring a
new sky position, signal-to-noise ratio (SNR), and polarization angle. To
ensure that detectable signals are given to the NPE model, we sample the
optimal SNR from a uniform distribution between 10 and 30 and scale
the luminosity distance to match the sampled SNR. All waveforms were
whitened with the design sensitivity power spectral densities of the HLV
detectors [27, 28, 130]. These steps allowed us to quickly and continuously
generate parameter-strain pairs during training to prevent overfitting.
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5.5.3 Reduced-order basis

The NPEmodel trained on the generated data remains the same as specified
in Section 5.2. However, its input is not the raw frequency series, but the
frequency series projected on a reduced-order basis (ROB). This approach
creates a lower-dimensional approximation of the high-dimensional gravi-
tational waveform data, significantly reducing computational complexity
while preserving essential features of the signal.

While building an ROB for GWs is regularly performed with singular
value decomposition (SVD) [232], our approach utilizes the covariance
matrix and its eigendecomposition. This choice was made to accommodate
the large number of samples that are required to guarantee strong coverage.
Computing the covariance matrix and its eigendecomposition consumes
constant memory with respect to the number of samples. Consequently,
the ROB can be constructed with as many samples as necessary to achieve
sufficient coverage.

Our ROB was made by calculating, per detector, the eigenbasis of the
covariance matrix over five million simulated strains and taking the first
768 eigenvectors, which were necessary to reach a minimal match of 0.95
when tested on a million samples. This dimensionality reduction serves
two important purposes. First, it provides rudimentary denoising of the
frequency series; the ROB preserves at least 95% of the signal content while
significantly reducing dimensionality, effectively increasing the signal-
to-noise ratio as the noise becomes distributed across fewer dimensions.
Second, the dominant eigenvectors likely correlate with high-impact pa-
rameters such as chirp mass, making these crucial features more accessible
to the NPE model. This not only increases the convergence speed of the
NPE model but also reduces the computational resources needed, as the
network no longer needs to learn these features from raw data.

5.5.4 Fine-tuning for gravitational wave inference

The fine-tuning procedure is a slightly augmented version of Algorithm 1
– we redefine our 𝑅𝑅(𝜽𝜽|𝝍𝝍′, 𝒄𝒄) to incorporate the potential symmetries in the
polarization-phase (𝜓𝜓-𝜙𝜙𝑐𝑐) plane. For each sample drawn from 𝑅𝑅(𝜽𝜽|𝝍𝝍′, 𝒄𝒄),
three additional copies are introduced, each shifted by 𝜋𝜋 in 𝜙𝜙𝑐𝑐 and/or 0.5𝜋𝜋
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in 𝜓𝜓 to encompass all four potential modalities. To reflect this symmetry
in 𝑅𝑅, we average the likelihood of the four samples, assigning this average
likelihood to all four instances. This approach safeguards against missing
modes due to unfortunate sampling or inaccuracies in predictions from
the amortized NPE model.

As already shown in Section 5.4.3 adding additional flow layers before
fine-tuning improves the performance of the model. From our experience,
the effect is not as pronounced for GWs, however it is still a positive effect.

We fine-tune the NPE model for 20 cycles. In each of the first 10
cycles, we generate 100000 strains with a frequency range spanning from
20 to 256 Hz. In these cycles, the initial rough posterior concentrates its
probability mass in the correct parts of the parameter space but does not
necessarily match the true posterior perfectly. In each of the remaining
cycles, we generate 50000 strains with a frequency range spanning from 20
to 2048 Hz. In this second phase, the likelihood contributions of the higher
frequencies correct the posterior prediction where needed. Afterward,
the NPE model generates samples, which are importance-weighted, until
100000 samples are generated or the effective sample size reaches 5000.
The entire fine-tuning procedure takes 10 minutes at most on an NVIDIA
GeForce RTX 3090, including model loading, JAX compilation, and the
importance sampling after fine-tuning.

The fine-tuned posteriors often closely match the importance-sampled
ones. In Figure 5.8, we can see that the fine-tuned posterior (blue) closely
aligns with the importance-sampled posterior (red). Despite the challeng-
ing characteristics of this event—featuring a low chirp mass, mass ratio,
and high multimodality—the fine-tuned NPE model accurately captures
the posterior distribution. Notably, just 10 minutes of fine-tuning results
in a significant increase in sample efficiency, increasing from 0.00249% to
51.2%. We see similar performance across the entire parameter space. An
example of a low-sample efficiency posterior is shown in Figure 5.9.

To compare with Bayesian inference methods a posterior distribution
was inferred with nested sampling. For a fair comparison, the nested sam-
pling algorithm was implemented in JAX to have access to GPU waveform
generation. The implementation is based on RADFRIENDS [42], due to the
ease of implementation and robustness of its results. The nested sampling
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Figure 5.8: The predicted posterior distribution for a low-mass O3 signal,
shown as 1D histograms and 2D contour plots. The contours in blue depict
the predictions of the fine-tuned NPE model and the contours in red the
importance-sampled posterior distribution. The grey mass is the posterior
distribution obtained via nested sampling, for easy comparison we choose
to use a filled contour. The NPE posterior matches the nested sampling
posterior quite well. Moreover, despite the many modes in the posterior
distribution, the fine-tuning procedure is still able to find all of them. The
sample efficiency of amortized NPE and after fine-tuning NPE for this
event differs by a factor of 20000 (0.0025% vs 51.2%).
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Figure 5.8: The predicted posterior distribution for a low-mass O3 signal,
shown as 1D histograms and 2D contour plots. The contours in blue depict
the predictions of the fine-tuned NPE model and the contours in red the
importance-sampled posterior distribution. The grey mass is the posterior
distribution obtained via nested sampling, for easy comparison we choose
to use a filled contour. The NPE posterior matches the nested sampling
posterior quite well. Moreover, despite the many modes in the posterior
distribution, the fine-tuning procedure is still able to find all of them. The
sample efficiency of amortized NPE and after fine-tuning NPE for this
event differs by a factor of 20000 (0.0025% vs 51.2%).
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Figure 5.9: The predicted posterior distribution for a low-mass O3 signal,
shown as 1D histograms and 2D contour plots. The contours in blue
depict the predictions of the fine-tuned NPE model and the contours in
red the importance-sampled posterior distribution. The sample efficiency
of the fine-tuned posterior is 0.79%. Although it seems to have found the
posterior distribution, for a single sample the ratio between actual and
assigned likelihood is massive, resulting in a low sample efficiency. This
sample shows up in the 1D histograms as a sharp peak in red.
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posterior, shown as a filled grey contour in Figure 5.8, closely aligns with
the importance sampled posterior. However, the time to compute the
posterior distribution with nested sampling is more than 3 days, 400 times
longer than our fine-tuning algorithm. To be fair, RADFRIENDS is not
the most time-efficient nested sampling implementation and we expect
more sophisticated implementations can complete the posterior inference
within a day.

It is important to acknowledge that all inference methods face inherent
challenges in complex parameter spaces. The accuracy of nested sampling
depends on appropriate prior selection and sufficient sampling density,
especially for multimodal distributions like those in GW inference. Simi-
larly, as we have shown in Sections 5.3 and 5.4, our NPE approach requires
careful consideration of effective priors and fine-tuning parameters. Nev-
ertheless, our comparison demonstrates that the fine-tuned NPE approach
offers a favorable balance between accuracy and computational efficiency
for gravitational wave inference.

Figure 5.10: The sample efficiency after fine-tuning and chirp mass over
500 simulated GW events. Half of these events were sampled from a power
law (orange), and the other 250 events were sampled from a uniform dis-
tribution (green). Across the entire chirp mass range we achieve strong
performance. The near-zero sampling efficiencies are due to large im-
portance weights that dominate the sampling efficiency or not-yet fully
converged posteriors.
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To quantify the NPEmodel performance after fine-tuning, we simulated
500 GW events and predicted their posterior distributions by fine-tuning
the NPEmodel for the events. The corresponding sampling efficiencies and
chirp masses are depicted in Figure 5.10. For half of the 500 GW events, the
chirp mass was drawn from a power-law distribution (shown in orange),
while for the remaining 250 events, the chirp mass was drawn from a
uniform distribution (depicted in green). Across the 500 events, 14 events
exhibited a sample efficiency below 5%. For 11 out of the 14 events, the
low sample efficiency can be attributed to the NPE model assigning a low
likelihood to a high likelihood sample, reducing the sampling efficiency.
The loss of the remaining 3 events did not converge within the two rounds
and required an additional ten cycles for convergence. These events can
easily be identified by a high percentage of near-zero importance weights.

5.6 Conclusion

In conclusion, our investigation into GW inference using NPE models has
yielded promising results that advance the capabilities of SBI methods.
The performance of NPE models appears to align closely with the sample
exposure, stressing the importance of prior selection. Moreover, our fine-
tuning approach proves pivotal in overcoming the inherent limitations of
amortized NPE models, providing a pathway to accurate inference for low-
mass BBH posteriors. While acknowledging that all inference methods
involve inherent trade-offs between computational efficiency, accuracy,
and robustness, our approach offers a balanced solution that addresses
many limitations of traditional methods. Although our primary focus is
on GW inference, we believe that our findings may prove fruitful in other
research areas.

Looking ahead, we see many avenues for further improvement in
fine-tuning for GW events. The implementation of adaptive stopping
mechanisms holds promise to enhance convergence speed, allowing us
to monitor loss or adjust frequency ranges based on initial chirp mass
estimates. Differentiable waveforms enable us to use score matching to
reduce the number of cycles required during fine-tuning, saving even
more valuable time. Additionally, the likelihood function can be chosen
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at the start of fine-tuning, removing problems of unseen power spectral
densities, or changing different waveform models after convergence. As
part of future work, we also aim to explore even longer signal durations
and to go to even lower chirp masses by considering NSBH or BNS events.
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Chapter 6

Conclusion

GW astronomy has made remarkable strides since the first detection
in 2015. However, as detector sensitivity improves and more events are
observed, the field faces significant challenges. The computational de-
mands for analyzing GW signals are increasing dramatically due to longer
in-band durations and higher event rates. Traditional Bayesian inference
methods, while accurate, are becoming prohibitively slow for the volume
of data expected from future detectors. This thesis aimed to address these
challenges by developing rapid and reliable parameter estimation methods
for GWs using machine learning techniques.

Key Findings and Contributions

In Chapter 3, we introduced a novel approach to GW sky localization that
combines deep learning with importance sampling. The key innovation
lies in using a multi-headed convolutional neural network to parameterize
simple distributions for the sky location and masses of binary black hole
systems. These distributions serve as proposal distributions for impor-
tance sampling, providing a good initial estimate of the sky position. The
importance sampling step then refines this estimate, converging to the true
Bayesian posterior. This method combines the speed of neural networks
with the potential to achieve the accuracy of traditional Bayesian meth-
ods. By using importance sampling, we can also quantify the reliability
of the predictions of the NN, flagging cases where the network might
be underperforming. Our approach demonstrated the ability to generate
sky maps in minutes rather than hours, while generating sky maps that
resembled those generated by bilby. While the method showed promise
on simulated data, its performance was limited by the relatively inflexible
neural architecture used. The impact of this work lies in its potential to
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enable rapid sky localization for multi-messenger astronomy, facilitating
prompt follow-up observations of GW events.

Chapter 4 addressed the challenge of analyzing overlappingGWsignals,
a scenario expected to become common with next-generation detectors.
Our key contribution was demonstrating that posterior inference for over-
lapping GWs is possible using CCNFs. The main results of this work are
twofold. First, we showed that CCNFs can successfully analyze two over-
lapping binary black hole signals within seconds, a task that takes weeks
with traditional Bayesian methods. Second, and perhaps more importantly,
we found that our method produces well-calibrated posteriors, avoiding
some of the biases observed in regular Bayesian inference when dealing
with overlapping signals. The impact of this work lies in its potential
application to future detectors with higher event rates, where overlapping
signals will be commonplace. While our demonstration was limited to
simulated data and specific scenarios – namely, two overlapping high-
mass binary black hole signals – it opens up new avenues for tackling
the challenge of overlapping signals in GW astronomy. The speed and
scalability of our approach suggest that it could be extended to handle
multiple overlapping signals of various types, a crucial capability for future
GW data analysis.

In Chapter 5, we tackled the challenge of improving the performance of
NPE for GW analysis, with a focus on low-mass binary black hole systems.
Our key innovations were twofold: the use of effective priors to improve
training efficiency, and a fine-tuning procedure to enhance performance
for individual events. Recognizing that neural networks learn by example,
we developed the concept of effective priors to tackle the crucial chal-
lenge of achieving sufficiently high sample efficiency in NPE models. We
demonstrated that the performance of NPE models correlates strongly
with the sample exposure during training, which is directly influenced by
the choice of prior distribution. Traditional uninformative priors, while
theoretically sound, can lead to suboptimal performance in practice due
to uneven sampling across the parameter space. We introduced the notion
of sample exposure, a metric quantifying how often the model encounters
similar samples during training. By carefully choosing priors that provide
uniform sample exposure across the parameter space, we significantly
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with overlapping signals. The impact of this work lies in its potential
application to future detectors with higher event rates, where overlapping
signals will be commonplace. While our demonstration was limited to
simulated data and specific scenarios – namely, two overlapping high-
mass binary black hole signals – it opens up new avenues for tackling
the challenge of overlapping signals in GW astronomy. The speed and
scalability of our approach suggest that it could be extended to handle
multiple overlapping signals of various types, a crucial capability for future
GW data analysis.

In Chapter 5, we tackled the challenge of improving the performance of
NPE for GW analysis, with a focus on low-mass binary black hole systems.
Our key innovations were twofold: the use of effective priors to improve
training efficiency, and a fine-tuning procedure to enhance performance
for individual events. Recognizing that neural networks learn by example,
we developed the concept of effective priors to tackle the crucial chal-
lenge of achieving sufficiently high sample efficiency in NPE models. We
demonstrated that the performance of NPE models correlates strongly
with the sample exposure during training, which is directly influenced by
the choice of prior distribution. Traditional uninformative priors, while
theoretically sound, can lead to suboptimal performance in practice due
to uneven sampling across the parameter space. We introduced the notion
of sample exposure, a metric quantifying how often the model encounters
similar samples during training. By carefully choosing priors that provide
uniform sample exposure across the parameter space, we significantly
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improved the model’s ability to estimate posteriors accurately for a wide
range of signals. This approach is particularly beneficial for GW anal-
ysis, where the parameter space is vast and signals can vary greatly in
their characteristics. For instance, we found that using a power-law prior
for the chirp mass, rather than a uniform prior, led to more consistent
performance across the mass range. This insight not only improved our
model’s performance but also provides a general principle for training NPE
models in other domains with complex parameter spaces. The effective
prior approach ensures that the model receives adequate training across
all regions of the parameter space, leading to more robust and reliable
posterior estimates.

To complement the effective priors approach, we developed a novel
fine-tuning procedure that allows for rapid optimization of a pre-trained
NPE model for a specific GW event. This method addresses a fundamental
challenge in amortized inference: the difficulty of achieving high precision
across the entire parameter space. Amortized models, tasked with learning
to generate posteriors for all possible events, often produce overly conser-
vative estimates as a compromise. Our fine-tuning procedure overcomes
this limitation by allowing the model to adapt to the specific characteristics
of a given event. The procedure works by using the pre-trained model’s
output as a proposal distribution for importance sampling, then iteratively
refining the model based on the importance weights. This approach com-
bines the advantages of amortized inference (rapid initial estimates) with
the precision of event-specific optimization, all while maintaining compu-
tational efficiency. The main result of this work is a dramatic improvement
in the analysis of low-mass binary black hole events, a regime that has
been challenging for previous machine learning approaches due to the
longer duration and higher complexity of these signals. We achieved sam-
ple efficiencies of up to 80% for events with chirp masses as low as 5 solar
masses, representing a significant advance in the application of machine
learning techniques to GW parameter estimation. This high sample ef-
ficiency translates to more accurate and reliable posterior distributions,
crucial for precise astrophysical inference.

The fine-tuning procedure we introduced extends the model’s capa-
bilities, allowing it to accommodate specific noise patterns and evolving
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detector characteristics. This adaptability is a key strength, positioning the
method well for future real-world applications. While our current results
are based on simulated data, the demonstrated rapid adaptation suggests
significant potential for analyzing real GW signals. The possible reduction
in parameter estimation time from days to minutes could transform our
approach to GW astronomy, enabling swift responses to detected events
and accelerating scientific discovery.

Final Thoughts

As we look to the future of GW astronomy, it is clear that data analysis
techniques must evolve in tandem with instrumental advances. Future
GW analysis will likely rely on neural models to obtain initial posterior
estimates. However, these will be initial estimates only, as neural networks
are unlikely to learn the full parameter space of future signals to suffi-
cient accuracy, especially for overlapping signals or events with unusual
characteristics.

To refine initial estimates into final, accurate posteriors, techniques
like importance sampling or fine-tuning will be crucial. These methods
can combine the speed of neural networks for rapid initial estimates with
the precision required for rigorous scientific inference. As the field pro-
gresses, we anticipate a hybrid approach where machine learning and
traditional methods complement each other. This synergy will be essen-
tial in handling the increased complexity and volume of data from future
detectors, enabling real-time analysis for multi-messenger astronomy, and
facilitating comprehensive population studies.
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Summary

This thesis addresses a critical challenge in gravitational wave astronomy:
developing efficient methods to analyze the rapidly increasing volume of
data from gravitational wave detectors. As detector sensitivity improves
and future observatories come online, traditional analysis methods will
struggle to keep pace with the volume and complexity of observations.
The research presented here explores machine learning approaches to
significantly accelerate gravitational wave parameter estimation while
maintaining the reliability of traditional Bayesian methods.

Gravitational waves, ripples in spacetime predicted by Einstein’s theory
of general relativity, were first directly detected in 2015 by the LIGO-Virgo
collaboration. This landmark discovery opened a new window to observe
our universe, enabling us to study binary black hole and neutron star
mergers. Analysis of these signals provides insights into astrophysics,
fundamental physics, and cosmology. However, eachmerger event requires
intensive computational analysis to extract the physical parameters of the
source, such as masses, spins, and sky location.

The current analysis pipeline relies on Bayesian inference methods
that, while accurate, can take hours to weeks to process a single event.
This approach becomes unsustainable with the projected detection rates of
at least thousands of events per year from future observatories. This thesis
tackles this computational bottleneck through three innovative approaches
using machine learning.

First, we developed a method for rapid sky localization of gravitational
wave sources by combining deep learning with importance sampling. Us-
ing a convolutional neural network to generate approximate distributions
of sky location and source masses, followed by importance sampling to
refine these estimates, we demonstrated the ability to produce accurate
sky maps within minutes rather than hours.

Second, we addressed the challenge of overlapping gravitational wave
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signals, which will become common in future detectors. Using continuous
conditional normalizing flows, we created a framework that can analyze
two overlapping binary black hole signals in seconds rather than weeks.
This method not only offers tremendous speed improvements but also
produces well-calibrated posteriors that avoid some of the biases observed
in traditional methods when signals overlap.

Third, we tackled the fundamental limitations of neural posterior esti-
mation through two key innovations: effective priors and a fine-tuning
procedure. By recognizing that neural networks learn from examples, we
showed that carefully choosing training priors to provide uniform sample
exposure across the parameter space significantly improves performance.
We then developed a novel fine-tuning procedure that rapidly optimizes a
pre-trained model for specific events, achieving high sample efficiencies
for low-mass binary black hole systems — a regime previously challenging
for machine learning approaches.

The methods developed in this thesis demonstrate that machine learn-
ing can dramatically accelerate gravitational wave parameter estimation
without sacrificing reliability. By reducing analysis times from days to
minutes, these approaches could transform how we respond to gravita-
tional wave events and analyze large populations of sources. As detector
sensitivity improves and event rates increase, we envision a hybrid ap-
proach where neural networks provide rapid initial estimates, refined
through techniques like importance sampling or fine-tuning to achieve
the precision required for scientific inference.

This research represents a significant step toward addressing the com-
putational challenges of next-generation gravitational wave astronomy,
helping to ensure that our analysis capabilities keep pace with the re-
markable advances in detector technology. The methods developed here
show promise not only for gravitational wave astronomy but potentially
for other fields facing similar challenges in inverse problems and high-
dimensional parameter estimation.
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Samenvatting

Dit proefschrift behandelt een cruciale uitdaging in de zwaartekrachts-
golfastronomie: het ontwikkelen van efficiënte methoden om de snel
toenemende hoeveelheid data van zwaartekrachtsgolfdetectoren te kun-
nen analyseren. Naarmate de gevoeligheid van detectoren verbetert en
toekomstige observatoria operationeel worden, zullen traditionele ana-
lysemethoden moeite hebben om gelijke tred te houden met het volume
en de complexiteit van de waarnemingen. Het hier gepresenteerde onder-
zoek verkent machine learning-benaderingen om de parameterschatting
van zwaartekrachtsgolven aanzienlijk te versnellen, terwijl de betrouw-
baarheid van traditionele Bayesiaanse methoden behouden blijft.

Zwaartekrachtsgolven, rimpelingen in de ruimtetijd die Einstein met
zijn algemene relativiteitstheorie voorspelde, werden in 2015 voor het
eerst rechtstreeks gedetecteerd door de LIGO-Virgo-samenwerking. Deze
baanbrekende ontdekking bood nieuwe mogelijkheden om ons universum
te observeren: we kunnen bijvoorbeeld nu versmeltingen van binaire
zwarte gaten en neutronensterren waarnemen. Analyse van deze signalen
biedt nieuwe inzichten in de astrofysica, fundamentele natuurkunde, en
kosmologie. Elke observatie vereist echter gigantisch veel computationele
rekenkracht om de fysieke parameters van de bron te extraheren, zoals
massa’s, spins en de positie aan de hemel.

De huidige analyses zijn afhankelijk van Bayesiaanse inferentiemeth-
oden die, hoewel ze nauwkeurig zijn, uren tot weken nodig hebben om
een enkele waarneming te verwerken. Deze aanpakken zijn niet meer
werkbaar als er duizenden zwaartekrachtsgolven per jaar waargenomen
gaan worden. Dit proefschrift pakt dit computationele knelpunt aan en
presenteert hiervoor drie innovatieve machine learning-benaderingen.

De eerste is een methode voor snelle lokalisatie van zwaartekrachts-
golfbronnen die deep learning combineert met importance sampling. Door
gebruik te maken van een convolutioneel neuraal netwerk dat distributies
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van de hemellocatie en bronmassa’s genereert, gevolgd door importance
sampling om deze schattingen te verfijnen, hebben we aangetoond dat
nauwkeurige hemelkaarten binnen minuten in plaats van uren kunnen
worden geproduceerd.

Vervolgens gingen we aan de slag met de uitdaging overlappende
zwaartekrachtgolfsignalen te kunnen analyseren, die in de toekomst steeds
vaker waargenomen zullen worden. Met behulp van continuous conditional
normalizing flows creëerden we een methode die twee overlappende bi-
naire zwarte gat-signalen in seconden in plaats van weken kan analyseren.
Deze methode produceert daarnaast ook goed gekalibreerde posterior-
distributies die sommige vertekeningen die in traditionele methoden wor-
den waargenomen vermijdt.

Ten derde tackelden we de fundamentele beperkingen van neural pos-
terior estimation door twee belangrijke innovaties: effective priors en een
finetuning-procedure. We toonden aan dat zorgvuldige keuze van train-
ing priors de analyses aanzienlijk verbetert. Vervolgens ontwikkelden
we een nieuwe finetuning-procedure die een getraind model snel opti-
maliseert voor specifieke waarnemingen, waardoor de parameterschatting
van binaire zwarte gat-systemen (met een lage massa) snel, accuruut, en
betrouwbaar zijn.

De methoden die in dit proefschrift zijn ontwikkeld, tonen aan dat ma-
chine learning de parameterschatting van zwaartekrachtsgolven drastisch
kan versnellen zonder aan betrouwbaarheid in te boeten. We presenteren
een hybride aanpak waarbij neurale netwerken snelle initiële schattingen
leveren, die door technieken zoals importance sampling of finetuning verfi-
jnd worden om de precisie te bereiken die nodig is voor wetenschappelijke
inferentie.

Dit onderzoek vertegenwoordigt een belangrijke stap in het aanpakken
van de computationele uitdagingen van de volgende generatie zwaarte-
krachtsgolfastronomie, waardoor we kunnen garanderen dat onze analyse-
capaciteiten gelijke tred houden met de grote vooruitgang in detectortech-
nologie. De hier ontwikkelde methoden zijn niet alleen veelbelovend
voor zwaartekrachtsgolfastronomie, maar potentieel ook voor andere
vakgebieden die voor vergelijkbare uitdagingen met inverse problemen en
hoogdimensionale parameterschatting staan.
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Contributions

The following paragraphs outline my specific contributions to each of the
main research chapters, as well as additional publications resulting from
collaborative work during my studies.

Chapter 3
For this study, I developed the multi-headed convolutional neural net-
work architecture and implemented the importance sampling scheme. I
conducted all the experiments, including the comparison with Bilby, and
wrote the majority of the manuscript with input and edits from co-authors.

Chapter 4
For this study, I developed the majority of the codebase. For the experi-
ments, I assisted with the training and evaluation of the model, and helped
write and edit the manuscript.

Chapter 5
I introduced the idea of using effective priors for neural posterior estima-
tion, developed and implemented the fine-tuning procedure, and conducted
all experiments. I wrote the majority of the manuscript with feedback and
edits from co-authors.

Other Publications
Throughout my studies, I also contributed to several collaborative research
projects, resulting in the following publications:

1. Straalen, W., Kolmus, A., Janquart, J., Van Den Broeck, C., “Pre-
Merger Detection and Characterization of Inspiraling Binary Neu-
tron Stars Derived from Neural Posterior Estimation”. Under review
at Physical Review D (2024).
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2. Vlijmen, D., Kolmus, A., Liu, Z., Zhao, Z., Larson, M., “Generative Poi-
soning Using Random Discriminators”. Accepted at the Responsible
Computer Vision Workshop, ECCV (2022).

3. Liu, Z., Zhao, Z., Kolmus, A., Berns, T., van Laarhoven, T., Heskes,
T., Larson, M., “Going Grayscale: The Road to Understanding and
Improving Unlearnable Examples”. arXiv preprint arXiv:2111.13244
(2021).
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Research Data Management

This thesis research has been carried out under the research data manage-
ment policy of the Institute for Computing and Information Science of
Radboud University, The Netherlands.

The following research datasets have been produced during this PhD
research:

• The code for Chapter 3 is available at:
https://gitlab.science.ru.nl/akolmus/swiftsky

• The code for Chapter 4 is available at:
https://gitlab.science.ru.nl/akolmus/overlapping

• The code for Chapter 5 is available at:
https://gitlab.science.ru.nl/akolmus/tuning
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