Institute for Mathematics,

Astrophysics and Particle Physics R.adbOUd.
Dissertation

SIS

Uncertainty Quantification of
Machine Learning Models

Laurens Sluijterman

Laurens Sluijterman
Uncertainty Quantification of Machine Learning Models

Radboud Dissertations Series
ISSN: 2950-2772 (Online); 2950-2780 (Print)

Published by RADBOUD UNIVERSITY PRESS
Postbus 9100, 6500 HA Nijmegen, The Netherlands
www.radbouduniversitypress.nl

Design: Laurens Sluijterman

Cover: Marjolein van Borselen
Printing: DPN Rikken/Pumbo

ISBN: 9789465150475
DOI: 10.54195/9789465150475
Free download at: https://doi.org/10.54195/9789465150475

© 2025 Laurens Sluijterman

This is an Open Access book published under the terms of Creative Commons
Attribution-Noncommercial-NoDerivatives International license (CC BY-NC-ND 4.0). This
license allows reusers to copy and distribute the material in any medium or format in
unadapted form only, for noncommercial purposes only, and only so long as attribution
is given to the creator, see http://creativecommons.org/licenses/by-nc-nd/4.0/.

Uncertainty Quantification of Machine Learning Models

Proefschrift ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen
op gezag van de rector magnificus prof. dr. J.M. Sanders,
volgens besluit van het college voor promoties

in het openbaar te verdedigen op

woensdag 26 maart 2025
om 16.30 uur precies

door
Laurens Auke A£miel Sluijterman

geboren op 14 november 1995

te Eindhoven

Promotoren:
Prof. dr. E.A. Cator
Prof. dr. T.M. Heskes

Manuscriptcommissie:
Prof. dr. J.J. Houwing-Duistermaat
Prof. dr. J.M. Hernandez-Lobato (University of Cambridge, Verenigd Koninkrijk)
Prof. dr. W. Waegeman (Universiteit Gent, Belgié)

Contents

1. Introduction 7
1.1 Machine Learning oL 8
1.2 Neural Networks 10
1.3 Uncertainty Quantification 13
1.4 Structure of This Thesis 24

2. Evaluating Uncertainty Estimates for Regression 27
2.1 Introduction 28
2.2 Current Testing Methodology 30
2.3 Theoretical Shortcomings 36
2.4 Simulation-Based Testing 43
2.5 Demonstration of Simulation-Based Testing 45
2.6 Conclusion 59

3. Bootstrapped Deep Ensembles 63
3.1 Imtroduction. 64
3.2 Backgroundo o 66
3.3 Bootstrapped Deep Ensembles 69
3.4 Experimental Results. 74
3.5 Conclusion 84
3.A Proof of Theorem 3.3.1. 85
3.B Motivation of Assumptions 87
3.C Additional Experimentation 89
3.D Detecting Overfitting 98

4. Optimal Mean-Variance Estimation. 101
4.1 Introduction 102
4.2 Difficulties With Training MVE Networks 105
4.3 The Need for Separate Regularization 109

5

6 CONTENTS

4.4 UCI Regression Experiment 113
4.5 UTKFace Age Regression Experiment 118
4.6 Conclusion 121
4.A Taking The Variance Into Account 124
4.B Optimal Regularization for Linear Models 127
4.C Optimal Regularization Constants 130
5. Likelihood-Ratio Confidence Intervals 131
5.1 Imtroduction. 132
5.2 Likelihood-Ratio-Based Confidence Intervals 133
5.3 Experimental Results. 144
5.4 Discussion and Conclusion 157
5.A Proof of Theorem 5.A.1 160
5.B Empirical Distribution of Test Statistic in Toy Experiment . . 164
5.C Application of Methodology to XGBoost 164
6. Quantile Regression with XGBoost 167
6.1 Introduction.o 168
6.2 Background and Related Work 170
6.3 The Arctan Pinball Loss 175
6.4 Experimental Results. 180
6.5 Conclusion 189
6.A Constructing the Arctan Pinball Loss 191
Research Data Management 193
Summary 195
Samenvatting L 197
Publications 201
Curriculum Vitae 203
Acknowledgements 205

Bibliography 209

CHAPTER 1

Introduction

Machine learning has seen an enormous rise over the past decades. Due to
the exponential growth in computing power, machine-learning models have
evolved from basic neural networks and decision trees, capable of performing
straightforward tasks, to vastly complex architectures that may have billions
of parameters.

As the capabilities of machine learning grow, so does its integration into safety-
critical applications such as medical-image analysis (Varoquaux and Cheply-
gina, 2022), self-driving cars (Miglani and Kumar, 2019; Parekh et al., 2022),
and the prediction of natural disasters (Herndndez et al., 2022; Bentivoglio
et al., 2022). For these applications, it is essential that these models are trust-
worthy.

A trustworthy model requires trustworthy uncertainty estimates (Gal, 2016).
Relying merely on predictive performance is insufficient. However, producing
these uncertainty estimates is far from trivial. Modern models can easily have
millions of parameters, making the direct use of many classical techniques dif-
ficult or outright impossible. It is this problem of developing new methods
to quantify the uncertainty in the predictions of machine-learning models that
this thesis contributes to.

This introduction, which also serves as the background chapter, is structured
as follows. First, we provide a broad overview of the different types of ma-
chine learning. We then focus on neural networks, arguably the currently most
popular type of model, providing necessary details on the training process and
various architectures. The remainder of the chapter discusses what causes the

8 CHAPTER 1. INTRODUCTION

uncertainties in the predictions and presents some of the popular approaches
that currently exist to tackle these various sources of uncertainty. Lastly, we
provide an overview of the structure of the rest of this thesis.

1.1 Machine Learning

Machine learning can be described as the practice of letting a computer learn
from data. Imagine the task of distinguishing between images of cats and dogs.
In a classical approach, we would think of rules such as whether it has large
whiskers, pointy ears, or a long nose. With machine learning, we would give
a model many examples of cats and dogs without explicitly telling the model
how it has to make a distinction.

Machine learning is typically divided into three areas: reinforcement learn-
ing, unsupervised learning, and supervised learning. Figure 1.1 illustrates the
division.

Reinforcement learning: The model can interact with the environment
and learns from the consequences of its actions. An example is a model playing
a video game where it is rewarded for achieving a better time or surviving
longer. Another example is a robot that learns to perform a certain task, such
as picking up an object, by being rewarded for successful actions.

Unsupervised learning: The model is trained on unlabeled data. Typical
examples include clustering, dimensionality reduction, and finding association
rules. Clustering methods aim to group data based on similarities or differences,
association models search for relations between features in a given data set,
and dimensionality reduction approaches try to represent the data in a lower
dimension without losing too much information. This is useful either as a
pre-processing step or to visualize the data.

Supervised learning: The model is trained on labeled data. The goal is to
predict a label or target for a given input or covariate. A distinction is typically
made between regression, where the target is continuous, and classification
where the label represents a class, for instance cats or dogs. The work in this
thesis falls inside this category and we will therefore explore supervised learning
in greater detail.

1.1. MACHINE LEARNING 9

Figure 1.1: The three broad types of machine learning. Reinforcement learning,
where the model can interact with the environment; unsupervised learning,
where the model has access to unlabeled data; and supervised learning, where
the model has access to labeled data.

We consider the situation where we have a data set D = {(x1,¥1),... (€n,yn)},
where the pairs (x;,y;) — with ; € X and y; € Y — are independent realizations
of the random variable pair (X,Y’). Additionally, our modeling choices and
assumptions define a hypothesis class, H, that contains the functions from X
to)Y that can be made with the models that we use. When using linear models,
for example, the hypothesis class contains all linear functions.

The general idea in supervised learning is to define a loss function and to then
find the model that minimizes that loss function. The loss function,

LHXXxY—=R:(f,z,y) —~ 1(flx),y),

calculates the loss for a model by measuring the discrepancy between the pre-
dictions of the model and the actual observations.

Within the structural risk minimization framework, the goal is to find the
optimal model in our hypothesis class, f*, defined as the model that minimizes

10 CHAPTER 1. INTRODUCTION

the expected loss:

= arg;réi?r_%/l(f(X),Y)dPXy. (1.1)

However, we cannot evaluate this expectation directly, since Px y is unknown.
An alternative is therefore to minimize the empirical loss function of our train-
ing data, possibly with a regularization term that favors simpler models. The
obtained function, f , is defined as

f = argmin (Z Z<f<:ci>,yi>> . (12)

rer i

Correctly defining the loss function is crucial, and it should align well with the
desired objective. In a regression setting, for instance, optimizing the mean
squared error as the loss function penalizes outliers more than optimizing the
mean absolute error. Whether having a model that is sensitive to outliers is
desirable, depends on the problem.

The specific choice of loss function yields distinct advantages and challenges
and directly determines how the model learns from the data. It is therefore
important that this choice reflects the specific nuances and demands of the
problem at hand.

1.2 Neural Networks

Among the many different machine-learning models, neural networks are ar-
guably the most popular and the most successful. Examples of applications
using these models include modern large-language models and self-driving cars.

The basics of a neural network are straightforward. In a standard feed-forward
network, the individual operations consist of matrix multiplications and addi-
tions. The input is multiplied by a weight matrix, followed by the addition of
a bias vector. The elements of this vector are then fed through a non-linear
activation function, o, to produce the output of the hidden layer. This process
— multiplication by a weight matrix, addition of a bias vector, and application
of an activation function — is repeated multiple times across subsequent layers
to produce the final output of the network.

1.2. NEURAL NETWORKS 11

The activation functions facilitate the modeling of non-linear functions. With-
out them, the output would simply be a linear combination of the input. The
activation function of the final layer can be used to enforce the output to be in
a certain domain. When modeling a probability, a sigmoid activation function,

o(x) = 1=, can be used to restrict the output to the interval [0, 1].
14e

1.2.1 Training

Neural networks are parametrized by weight matrices and bias vectors. We
denote the parametrized network with fg, where 6 represents the full set of
model parameters. Optimizing a network involves a three-step gradient back-
propagation process: a forward pass, loss calculation, and a backward pass.

During the forward pass, the inputs are fed through the network to obtain
predictions. The empirical loss, £(0) = Y"1 | I(fo(;),:), is then evaluated.
Finally, the gradients with respect to the individual parameters, 6;, are com-
puted in a backward manner — hence the name back-propagation — using the
chain rule, starting from the output layer and working backwards to the input.

This method enables the computation of the gradients for all parameters with
only a single forward pass. Considering that modern neural networks can easily
have millions of parameters, this efficiency is crucial.

Intuitively, we would want to calculate the gradients using the entire data set.
However, especially for larger data sets, it is not feasible to store the entire
data set in memory. The common solution is to randomly divide the data
set into smaller parts, called batches. Gradients are computed using a single
batch, after which the model is updated before proceeding to the next batch.
Training typically spans multiple epochs, each representing a full pass over the
data set. For instance, with a data set of 100 data points, a batch size of ten,
and training for three epochs, the model undergoes 30 updates, using each data
point three times.

Unlike most classical models, the optimization of neural networks is inherently
stochastic. Training the model multiple times results in slightly different models
each time. This randomness is mainly due to the random initialization of
weights and biases prior to training, and due to the random ordering of the
batches during training.

12 CHAPTER 1. INTRODUCTION

1.2.2 Architectures

While the basic operations are straightforward, many intricate models can be
made from them, capable of carrying out a broad variety of tasks. We briefly
introduce a few key architectures to illustrate the vast range of possibilities
these networks can offer.

Convolutional Neural Networks (CNNs, LeCun et al. 1989) use trainable con-
volutional filters combined with pooling layers — layers that reduce the dimen-
sionality by taking the average or maximum of a group of pixels — to effectively
handle images, which typically have very large input dimensions.

Autoencoders (Hinton and Salakhutdinov, 2006) first reduce, or encode, the in-
put to a significantly lower dimension, and then attempt to recreate, or decode,
the original input. This architecture can be used for dimensionality reduction,
as a generative model, or to detect anomalies — the idea being that unfamiliar
inputs will not be reconstructed as well.

Generative Adversarial Networks (GANs, Goodfellow et al. 2014a) are designed
as a pair of competing networks: a generator that creates images aiming to be
indistinguishable from real images, and a discriminator that tries to distinguish
between real and generated images. This competitive process improves the
quality of the generated images over time, making GANs powerful tools for
image generation.

Long Short-Term Memory (LSTM, Hochreiter and Schmidhuber 1997) net-
works are specifically designed to retain long-term dependencies in the input
sequence. This mechanism is useful in cases such as natural language processing
where the start of a sentence can influence its end.

Recently, the performance of LSTMs has been surpassed by transformers (Vaswani
et al., 2017). This type of network, which forms the basis of popular large lan-
guage models like GPT (Brown et al., 2020), is highly effective due to its ability
to process entire sequences of data in parallel instead of sequentionally. Con-
sider the sentence “Sarah likes her hat very much”. A transformer is able to
process each word in this sentence in parallel. This facilitates training on sub-
stantially larger data sets. Additionally, an attention mechanism allows the
model to focus on different parts of the input depending on the context. For
instance, in the example sentence, the model is able to learn that the word
“her” refers to “Sarah”.

This modest list of architectures illustrates that machine learning, and partic-

1.3. UNCERTAINTY QUANTIFICATION 13

ularly some variation of a neural network, is extensively used for a wide variety
of tasks. Additionally, these models differ significantly from classical models
in both size and optimization: neural networks can have millions or even bil-
lions of parameters, and their optimization is often non-deterministic. These
challenges have led to the development of a research field focused on novel
uncertainty-quantification methods for these models.

1.3 Uncertainty Quantification

The remainder of this chapter focuses on introducing the main topic of this
thesis: uncertainty quantification. We adopt a source-based approach to this
topic. By exploring the entire process from data acquisition to prediction and
questioning what sources of uncertainties arise and what solutions exist, we
provide a broad overview of various existing uncertainty-quantification tech-
niques.

We do not aim to provide a complete survey of the field; for a comprehensive
review, we refer the reader to Gawlikowski et al. (2023), He and Jiang (2023),
and Abdar et al. (2021). More attention is given to certain approaches, such as
ensembling, that are featured more prominently in the remainder of this thesis,
while other approaches, such as conformal prediction, are only discussed briefly.
Additionally, various approaches, such as MC-dropout, are explained in more
detail in the individual chapters.

The first source of uncertainty is found before the building of the model begins,
during the data acquisition (Van Giffen et al., 2022). No matter how sophisti-
cated the uncertainty-estimation method of the model is, if the training data
contains biases or errors, the predictions will contain unforeseen errors.

This following list of typical issues during the data selection process is by no
means exhaustive, as it is not the main focus of this thesis. For a complete
overview, we refer the reader to Mehrabi et al. (2022). However, it is important
to acknowledge the importance of the data acquisition process and the potential
biases that may arise from it. It is easy to get lost in — or be convinced by —
the intricate mathematics and the thousands of lines of code found in modern
machine-learning models. However, no model can perfectly correct for biased
data.

Selection bias occurs when the data is not representative of the population for
which the model is intended. A face recognition program that is trained on

14 CHAPTER 1. INTRODUCTION

images from people from a certain region may fail on people from a different
region. Alternatively, a data set may be selected by sending out question-
naires to users of an application. However, since these people already use the
application, they are more likely to have a favorable opinion.

Another typical example is survivorship bias, where the data set contains an
over-representative number of survivors. The classical example dates back to
the Second World War (Mangel and Samaniego, 1984). Returning aircrafts
were examined to determine where they should be reinforced. Initially, it might
seem logical to reinforce areas most frequently hit on aircraft returning from
missions. However, these were aircraft that made it back and the locations of
the bullet holes do therefore not accurately expose the weaknesses of the plane.

When analyzing online reviews, there is often a surprisingly large number of
one- and five-star reviews, an example of reporting bias. People are less likely to
put in the effort to share that they found a certain product “perfectly average”.
If a model is trained on this data, it will not adequately predict three-star
ratings.

A notable example of biased data leading to a biased model is Amazon’s re-
cruitment tool (Dastin, 2022). In 2014, the company began developing a model
to automate parts of the recruitment process. The model was trained on actual
resumes from the previous ten years. However, since more men than women
choose working in the tech industry, the model primarily received male re-
sumes. This caused the model to inadvertently learn that male candidates
were preferable. Although the model did not have direct access to the can-
didates’ gender, it could infer this from specific word choices more prevalent
among male candidates and the presence of the words woman or women in the
resume. Consequently, the model rated equivalent female candidates lower.

This example underscores the importance of high-quality training data. How-
ever, even with a perfect, unbiased data set, uncertainties remain. The uncer-
tainty in the predictions of a model is called the predictive uncertainty. This
uncertainty is a combination of three other sources: data uncertainty, model
uncertainty, and distributional uncertainty. Figure 1.2 illustrates these sources
of uncertainty. In the remainder of this section, we delve deeper into these
terms and discuss several existing methods to address them.

1.3. UNCERTAINTY QUANTIFICATION 15

Figure 1.2: This figure illustrates the various sources of uncertainty that jointly
make up predictive uncertainty as well as various popular techniques (in italic
font) to account for these sources. Firstly, there is model uncertainty, both
because of the assumptions that are made and because the parameters are de-
termined on a finite data set. However, even with a perfect model, we still have
data uncertainty because the problem in question may be inherently stochas-
tic. Lastly, we have distributional uncertainty due to a mismatch between the
data that the model is trained on and the data that the model is applied to.
The grey boxes illustrate the specific areas of the field to which the different
chapters of this thesis contribute.

16 CHAPTER 1. INTRODUCTION

1.3.1 Data Uncertainty

There is inherent uncertainty in predictions because the underlying problem
is typically stochastic. The data is random due to the variability in both
the covariates and the outcomes. Consider a model predicting an individual’s
height based solely on their weight. Even with data on the heights and weights
of millions of people and an ideal model, absolute certainty in the predictions
for a new individual is unattainable because the distribution of Y | X inherently
has variance.

This type of uncertainty is generally referred to as aleatoric or irreducible uncer-
tainty (Hiillermeier and Waegeman, 2021; Kendall and Gal, 2017). Collecting
more data does not diminish this uncertainty. However, adding more covariates
can generally reduce it. For instance, if age data were collected, the conditional
random variable Y | X, A, where A is a random variable representing age, has
a lower variance.

Since this uncertainty in the outcome is irreducible, a common approach is to
model the density of Y | X directly. In classification problems, a categorical
distribution is typically assumed, and the neural network predicts the proba-
bilities of each class. In a regression context, a certain distribution (usually a
normal distribution) is assumed, and the network estimates the parameters of
that distribution.

More specifically, we assume that the density of Y | X = &* is given by

ply | =*) =py | pe(z”)),

where pg : RP — R? : @ — pg(x) represents the network, which is parametrized
by 6@ and maps the p-dimensional input & to the g-dimensional distributional
parameter vector. Concretely, in a classification setting the network may out-
put a 10-dimensional vector containing the class probabilities, and in a regres-
sion setting, the 2-dimensional vector containing the mean and variance that
parametrize a normal distribution. This latter type of network is referred to as
a Mean-Variance-Estimation (MVE) network (Nix and Weigend, 1994; Seitzer
et al., 2021; Skafte et al., 2019). In Chapter 4, we present improvements to this
type of network.

Other methods do not make any distributional assumptions but directly output
a prediction interval. A notable example is the method Quality-Driven ensem-
bles (Pearce et al., 2018), which optimizes a specific loss function aiming for
correct marginal coverage — ensuring that, on average, the appropriate fraction

1.3. UNCERTAINTY QUANTIFICATION 17

of targets falls inside the prediction intervals — while also being as narrow as
possible. Other works use neural networks for quantile regression (Koenker
and Bassett Jr, 1978) by optimizing a smooth approximation of the pinball
loss (Cannon, 2011; Xu et al., 2017). In Chapter 6, we present a novel smooth
approximation that is tailored for models that use the second derivative of the
loss during the optimization process.

The randomness of the input also affects the predictive uncertainty. For in-
stance, a measurement sensor may introduce noise, resulting in slightly varied
covariates upon repeated measurements. For images, capturing the picture at
a slightly different angle can affect the input.

Test-time augmentation is a practical approach to quantify how random input
variations affect predictive uncertainty. Instead of feeding the network a sin-
gle input, multiple perturbed versions of this input are processed through the
network. An early example of this method is provided by Ayhan and Berens
(2022), who employed basic transformations such as reflections, random crops,
random resizing, and adjustments in settings such as brightness and saturation,
among others. It is important that the perturbations are realistic (Shanmugam
et al., 2021) and there is a significant amount of research on finding good per-
turbations (Lyzhov et al., 2020; Kim et al., 2020; Cubuk et al., 2019).

A different approach is to explicitly learn the joint density p(y,x) instead of
the conditional density p(y |). Popular approaches include normalizing flows
(Kobyzev et al., 2021), masked autoregressive flows (Papamakarios et al., 2017),
and variational autoencoders (Kingma et al., 2015; Suzuki et al., 2016).

1.3.2 Model Uncertainty

When the model outputs a prediction interval, class probability, or distribu-
tional parameter, we do not know if the model is correct; we refer to this
type of uncertainty as model uncertainty, epistemic uncertainty, or reducible
uncertainty.

The model uncertainty can be further decomposed into two parts, as illustrated
in Figure 1.3: assumptional uncertainty, which is a consequence of the various
modeling choices and assumptions that are made; and parameter uncertainty,
which is a consequence of fitting parameters on a finite set of random data.

Various choices or assumptions are made, either implicitly or explicitly. When
choosing a specific architecture and training procedure, we implicitly assume

18 CHAPTER 1. INTRODUCTION

Figure 1.3: This figure, inspired by Figure 4 in Hiillermeier and Waegeman
(2021), illustrates the different components that make up the model uncer-
tainty. All possible functions that our neural network can make are denoted
with H. This H is contained in F, all possible functions from X to). On
the one hand, we do not know if the true function, f, is inside our hypothesis
class. We refer to this as assumptional uncertainty. On the other hand, we do
not know if the f (Equation 1.2) that we arrived at after training is even the
best function in our hypothesis class, f* (Equation 1.1). We refer to this as
parameter uncertainty.

a certain hypothesis class containing all possible networks that can be made
given these modeling assumptions. As an example, think of a simple linear
model. We make the assumption that the true function is linear and attempt
to find the optimal parameters within our hypothesis class. Additionally, we
may assume that Y | X follows a normal distribution, which is not necessarily
correct. In this work, we refer to this source as assumptional uncertainty.

Hullermeier and Waegeman (2021) refer to this term as model uncertainty.
However, the term model uncertainty is very frequently used to denote either
the entire epistemic uncertainty or the part that we call parameter uncertainty.
Therefore, we chose to introduce the new term assumptional uncertainty.

This uncertainty can be substantial. The true function, f, may not be within
our hypothesis class. We might use a linear model when the true function
is quadratic. Therefore, even if we have the perfect parameters within our
hypothesis class, we still may have a large error.

It is very difficult to quantify, or even capture, this assumptional uncertainty
(Hullermeier and Waegeman, 2021). An argument can be made that since neu-
ral networks are universal approximators (Lu et al., 2017), meaning that suffi-

1.3. UNCERTAINTY QUANTIFICATION 19

ciently large networks can fit virtually any function, the true function should
typically be within our hypothesis class. While this argument may be some-
what over-optimistic, neural networks are very flexible, and a pathology such
as using a linear function for a quadratic problem is unlikely.

Even if the true function is contained in the hypothesis class, we still have
parameter uncertainty. Both because the optimization procedure is random
for neural networks and because we are training on a finite set of random data,
the model parameters that we end up with are likely not the optimal ones.

There is an interplay between parameter uncertainty and assumptional uncer-
tainty. It is always possible to make a more flexible model by adding more
parameters and increasing the training time, thereby increasing the hypothesis
class and making more likely to contain the true function f. However, this
increases the parameter uncertainty since it becomes more challenging to find
to optimal hypothesis in this larger hypothesis class.

There exists a wide range of methods that aim to quantify parameter uncer-
tainty. The majority of these methods can be classified as a Bayesian method,
frequentist method, or ensembling method. The latter can arguably also be mo-
tivated from a Bayesian or frequentist perspective but due to their popularity,
we discuss it here as a separate class.

Bayesian methods: The general idea behind Bayesian uncertainty-estimation
methods is to place a prior distribution, 7(8), on the parameters of the neural
network (MacKay, 1992a; Neal, 2012). Subsequently, Bayes’ formula is applied
to obtain the posterior distribution of the weights given the data set D:

p(D | 8)n(0)

w(o| D) = P2

(1.3)

where the term p(D | 0) is calculated using the conditional density that the
neural network provides. The posterior density is then used to calculate the
posterior predictive density:

ply | & D) = / oy | o(a))n(8 | D)d6.

Unfortunately, the denominator in Equation (1.3) is typically intractable, mak-
ing it impossible to evaluate the posterior exactly. Several solutions exist to
combat this problem.

20 CHAPTER 1. INTRODUCTION

A first approach is to sample from the posterior. Although the denominator is
intractable, the posterior is known up to a constant, which makes it possible
to sample from it. Examples of sampling algorithms are importance sampling,
rejection sampling, and MCMC sampling (Bishop, 2006).

Another approach is to use a second-order approximation of the posterior
(MacKay, 1992b; Kass et al., 1991). This so-called Laplace approximation
requires the inversion of the high-dimensional Hessian, which is a consider-
able task. Several works focus on improving this approximation (Martens and
Grosse, 2015; George et al., 2018; Lee et al., 2020).

A slightly different approach, called variational inference (VI) (Hinton and
Van Camp, 1993), is to approximate the true posterior p(6 | D) with a vari-
ational approximation ¢, (@), parametrized by m. The network is given the
learning objective to find the approximate posterior distribution closest to the
true posterior distribution by minimizing KL(g,,(0)||p(@ | D)).

The most prominent VI method is Monte-Carlo dropout (MC-dropout) (Gal
and Ghahramani, 2016). Dropout is a regularization technique where the
weights of the network are set to zero with a given probability during each
forward pass. The authors showed that, when putting a specific prior on the
weights, training a network with dropout enabled and while using a specific
form a regularization is equivalent to minimizing KL(gm,(0)||p(€ | D)), where
Gm (0) is the density of the distribution that is implied by randomly dropping
the weights of the network. By keeping the random dropping of the weights
enabled after training, multiple forward passes through the network result in
samples from the approximate posterior.

Frequentist methods: Instead of Bayesian statistics, classical parametric
statistics can also be leveraged to obtain estimates of the parameter uncer-
tainty. The model can be seen as a parametric model, and we can therefore
evaluate the likelihood as a function of the model parameters, 8. Subsequently,
we can maximize the likelihood to find maximum-likelihood estimator, éMLE.
Asymptotic theory gives us, under various conditions, the variance of N
(e.g., see Seber and Wild 2003). This variance can then be converted to a
variance of the model predictions using the delta method. Various approaches
rely on this basic idea (Kallus and McInerney, 2022; Nilsen et al., 2022; Deng
et al., 2023; Khosravi et al., 2011). In Chapter 5, we leverage the likelihood
ratio to obtain confidence intervals with desirable qualitative properties.

1.3. UNCERTAINTY QUANTIFICATION 21

Ensembling methods: The idea behind ensembling is straightforward: mul-
tiple networks, or ensemble members, are trained and the variance in their pre-
dictions is used as an uncertainty estimate. This comes with the added benefit
that the average of these ensemble members typically gives a more stable esti-
mator.

Early work in fact introduced ensembling as a method to improve model per-
formance (Hansen and Salamon, 1990). However, later works also utilized the
potential to obtain uncertainty estimates from the ensemble members (Hes-
kes, 1997), with the currently most popular method being Deep Ensembles
(Lakshminarayanan et al., 2017).

It is crucial that the individual ensemble members have enough diversity. Pop-
ular approaches to achieve this include training various members with different
initializations, training on shuffled versions of the data, training on resampled
data (Bishop, 2006), or even using entirely different architectures (Wenzel et al.,
2020; Herron et al., 2020). In Chapter 3, we demonstrate how incorporating a
missing source of variance into the ensemble members improves the resulting
confidence and prediction intervals.

A clear downside of ensembling is the computational cost. Multiple networks
need to be trained, which may present a bottleneck both during training and
when making predictions. Various works therefore focus on reducing this
computational cost. Approaches include pruning, where redundant ensemble
members are removed (Guo et al., 2018); distillation, where a single network
is trained to represent the same information as the entire ensemble (Hinton
et al., 2015); and techniques such as sub-ensembles (Valdenegro-Toro, 2023)
and batch-ensembles (Wen et al., 2020) where parts of the network are shared
between the ensemble members.

1.3.3 Distributional Uncertainty

The final source of uncertainty results from a potential mismatch between the
distribution of the training data and the data of interest. This mismatch is
typically referred to as a data set shift (Quiionero-Candela, 2009) and the
resulting uncertainty is called distributional uncertainty (Malinin and Gales,
2018). Some of the biases during data acquisition, discussed earlier in this
section, can cause such a mismatch.

Multiple methods aim to tackle this problem. Notable examples include prior
networks (Malinin and Gales, 2018) and evidential networks (Sensoy et al.,

22 CHAPTER 1. INTRODUCTION

2018). Both papers start from a Bayesian classification setting where the goal
is to predict the class probabilities of a multinomial distribution. However,
instead of directly predicting the class probabilities, the network outputs the
parameters of a Dirichlet distribution. This Dirichlet distribution is interpreted
as a distribution over the class probabilities. The density of the posterior
predictive distribution in this framework is given by

p(y | D, z") // (v | 1) g(1e| o(@")) (0 | D) dpce,

Data Dzstmbutwnal Parameter

where ag represents the network that outputs the parameters of the Dirichlet
distribution with density function g. The three different densities account for
the three different sources of uncertainty.

This extra distribution provides a new layer of flexibility. Consider a classi-
fication problem with three classes. A Dir(0,0,0) distribution corresponds to
a scenario where every combination of classes is equally likely. In contrast,
a Dir(10, 10, 10) distribution corresponds to a scenario where all three classes
are equally likely. In this case, the model knows that all class probabilities
should be 1/3. In the first scenario, it knows that it does not know what the
probabilities should be.

Although prior networks and evidential networks may seem similar, the opti-
mization process is in fact quite different. Evidential networks are trained by
optimizing the likelihood of the data plus a regularization term. This regu-
larization term forces the model towards a more uncertain state. One could
argue, however, that this mainly estimates parameter uncertainty and recent
work indicates that it is not extremely accurate at that task (Juergens et al.,
2024).

Prior networks, on the other hand, make use of Out-of-Distribution (OoD)
data. For example, pictures of farm animals when classifying between cats
and dogs. When the network is fed a regular input, a cat or a dog, the loss
function is the KL divergence between the predicted Dirichlet distribution and
a Dirichlet distribution that is concentrated on the correct class. When the
network is fed a farm animal, the loss function is the KL divergence between
the predicted Dirichlet distribution and a flat Dirichlet distribution. In other
words, the model is taught to recognize scenarios that it is not familiar with and
to communicate this via a flat Dirichlet distribution. Both prior and evidential
networks also have extensions for regression (Amini et al., 2020; Malinin et al.,
2020).

1.3. UNCERTAINTY QUANTIFICATION 23

There are many more methods besides these two approaches. OoD detection
is an entire field with numerous different methods (Lee et al., 2018; Hendrycks
and Gimpel, 2018; Hendrycks et al., 2018). OoD methods do not necessarily
incorporate the distributional uncertainty into their estimate, like prior and ev-
idential networks, but often simply detect when a new input is unfamiliar. This
information can then be used to either withhold predictions or issue warnings,
improving the model’s reliability in practical applications. Additionally, incor-
porating OoD detection can improve system safety, particularly in applications
where unexpected inputs can lead to harmful outcomes.

1.3.4 Post-processing

After having obtained a predictive uncertainty estimate by accounting for the
various sources of uncertainty, this uncertainty estimate may not be perfectly
calibrated. In fact, most modern neural networks are overconfident in both
regression (Dheur and Taieb, 2023) and classification tasks (Guo et al., 2017).

Several post-processing techniques are available to recalibrate the predictive un-
certainty estimates (Guo et al., 2017). In classification, an example is tempera-
ture scaling, a variant of Platt scaling (Platt et al., 1999), where the predicted
logits are divided by a constant. This adjustment fine-tunes the probabilities,
forcing them closer to 0.5 when the constant is greater than 1, or toward 0 or 1
when the constant is less than 1. In regression, a concrete example is quantile
recalibration (Kuleshov et al., 2018), which involves learning a transformation
for the quantiles. This transformation ensures that the recalibrated quantiles
achieve correct empirical coverage on a validation set.

Conformal prediction (Shafer and Vovk, 2008) is related to calibration but fun-
damentally different. Unlike methods that calibrate an uncertainty estimate
using a validation set, the objective of conformal inference is to construct a
prediction interval directly from the validation set. In this approach, noncon-
formity scores, which measure the deviation between the predictions and the
observations, are calculated for each point in the validation set. These scores
are then used to construct prediction intervals that come with finite-sample
coverage guarantees.

24 CHAPTER 1. INTRODUCTION

1.4 Structure of This Thesis

In this introduction, we provided a broad overview of the field of uncertainty
quantification for machine learning. We divided the modeling process into three
parts. First, during the data acquisition phase, various biases in the data can
result in a biased model. Next, a model is built based on assumptions and
modeling choices, which makes predictions. The uncertainty in these predic-
tions arises from various sources, each requiring different solutions. Finally, the
predictive uncertainty estimate can be calibrated in a post-processing step.

The rest of this thesis contributes to various aspects of the second step: obtain-
ing the uncertainty estimates. In Figure 1.2, we indicate where the following
chapters of this thesis are situated within the field.

Chapter 2: This chapter discusses the current methodology of testing un-
certainty estimates in a regression setting. We identify several flaws. First
of all, the current approaches do not easily allow the comparison of methods
that output a likelihood with methods that directly output prediction intervals.
Secondly, only predictive uncertainty can be evaluated, making it impossible
to evaluate confidence intervals directly. Finally, the manner in which predic-
tion intervals are evaluated is marginal instead of conditional. We present a
simulation-based evaluation procedure that remedies these shortcomings.

Chapter 3: The following chapter improves upon a highly popular ensem-
bling approach, Deep Ensembles (Lakshminarayanan et al., 2017), in a regres-
sion setting. The original authors mentioned that a source of uncertainty is
missing in their approach but that incorporating it resulted in a worse per-
formance. We present a method to incorporate this missing source without
affecting the performance of the model. By using the evaluation procedures
presented in Chapter 2, we demonstrate that this results in improved uncer-
tainty estimates.

Chapter 4: Where the previous chapter focused on improving the model
uncertainty estimate, this chapter focuses on improving the data uncertainty
estimate. The individual ensemble members used in the previous chapter are
MVE networks. The predicted variance is used as a data uncertainty estimate.
Especially for noisier data sets, this estimate can be the dominant part in the

1.4. STRUCTURE OF THIS THESIS 25

predictive uncertainty, and it is therefore crucial that this predicted variance
is accurate. Novel ways to improve the training of these MVE networks are
discussed. Most notably, we demonstrate that the parts of the networks that
estimate the variance and the mean should be regularized separately, and we
experimentally verify the claim that a warm-up period — a period where the
predicted variance is kept fixed while the part of the network that estimates
the mean is trained — leads to significant improvements.

Chapter 5: In Chapter 3, we noticed that the coverage would sometimes
be extremely poor in certain regions of the data. Upon further inspection, we
noticed that the networks were biased in those regions. Since the prediction
and confidence intervals are centered around the prediction, this results in very
low coverage. We also noticed that the intervals would not always expand
sufficiently in regions where the data was more sparse, especially when interpo-
lating. To address these issues, we present an entirely new type of approach to
obtain the model uncertainty estimates by applying the likelihood-ratio testing
procedure to neural networks. This new approach asks the intuitive question
“at this new location, what values can be reached while still explaining the data
well?”. By answering this question, we obtain confidence intervals with very
desirable qqualitative properties.

Chapter 6: The Dutch power-grid operator Alliander approached us with
an interesting case. The company was using an XGBoost model (Chen and
Guestrin, 2016) to predict the loads on substations of the grid. However, using
this model for quantile regression is non-trivial due to the incompatibility be-
tween the second-order approximation of the loss function in XGBoost and the
pinball loss used in quantile regression, which has a second derivative of zero.
We present a novel smooth approximation of the pinball loss that is specifically
tailored to the needs of XGBoost.

CHAPTER 2

Evaluating Uncertainty
Estimates for Regression

This chapter is based on the paper entitled “How to Fwaluate Uncertainty
Estimates in Machine Learning for Regression?” (Sluijterman et al., 2024a),
which has been published in Neural Networks. Contrary to the other chapters
in this thesis, this chapter does not focus on any specific method to produce
uncertainty estimates but rather on how to evaluate these uncertainty estimates
in a regression setting.

27

28 CHAPTER 2. EVALUATING UNCERTAINTY ESTIMATES

Figure 2.1: The scope of Chapter 2. Rather than focussing on individual
uncertainty-quantification methods, this chapter focusses on how to evaluate
uncertainty estimates in a regression setting.

2.1 Introduction

Neural networks are, among other things, currently being used in a wide range
of regression tasks, covering many different areas. It has become increasingly
clear that it is essential to have uncertainty estimates to come with the pre-
dictions (Gal, 2016; Pearce, 2020). Uncertainty estimates can be used to make
confidence intervals or predictions intervals at a given 100 (1 —)% confidence
level. We define these intervals more precisely in Section 2.2, but the intuition
is as follows. The probability that the true function value falls inside a con-
fidence interval (CI) should be 100 - (1 — «)%. A 100 - (1 — a)% prediction

2.1. INTRODUCTION 29

interval (PI) is constructed such that the probability that an observation falls
inside this interval is 100 - (1 — «)%. The two desirable characteristics of a PI
or CI are that they cover the correct fraction of the data while being as small
as possible (Khosravi et al., 2011). At the moment, a common approach to
test a PI is to use a previously unused part of the data and then check which
fraction of the observations falls inside the corresponding PIs. This fraction is
called the Prediction Interval Coverage Probability (PICP) and is widely used
to asses the quality of prediction intervals (Pearce et al., 2018; Kabir et al.,
2023; Khosravi et al., 2011; Pearce et al., 2020; Su et al., 2018; Lai et al., 2022;
Zhang and Fu, 2023; Chen et al., 2023; Dewolf et al., 2023; Van Beers and
De Visser, 2023; Zhang et al., 2023; Zheng and Zhang, 2023).

Where some methods, such as quantile regression, output PIs directly, others
output a density. The testing procedure for these methods is largely influenced
by the article of Herndndez-Lobato and Adams (2015). To compare their pro-
posed method, probabilistic backpropagation, with existing alternatives, they
came up with a novel testing procedure. Their testing procedure uses ten pub-
licly available real-world data sets and evaluates the loglikelihood on an unseen
test set using a fixed training procedure. We explain this procedure in detail
in Section 2.2.3. This setup allowed for an effective way of comparing differ-
ent methods. Many authors subsequently used this setup as a benchmark to
compare their uncertainty estimation methods with those of others (Gal and
Ghahramani, 2016; Lakshminarayanan et al., 2017; Mancini et al., 2020; Liu
and Wang, 2016; Salimbeni and Deisenroth, 2017). Recent works on PIs also
use these data sets to calculate the PICP score, see for example Pearce et al.
(2018, 2020); Su et al. (2018); Lai et al. (2022); Nourani et al. (2023).

In this chapter, we demonstrate, both theoretically and through simulation
experiments, that both testing methodologies fail to accurately determine the
quality of a prediction or confidence interval. First of all, both approaches share
the problem that while a good predictive performance may imply a good PI,
we have no insight in the performance of the CIs. When using real-world data
sets, it is impossible to directly evaluate the CI since the true function that
generated the data is not known. Additionally, when using the loglikelihood,
it is impossible to compare methods that output a density with methods that
directly output a PI. Lastly, covering the correct fraction of points in a test set
does not test coverage correctly and even if it did, it does not guarantee that the
PIs are correct for individual data points. As a result, it is possible to select
the wrong method, that may not produce sensible Pls or Cls for individual
points, as the best.

30 CHAPTER 2. EVALUATING UNCERTAINTY ESTIMATES

The fact that an average coverage does not guarantee individual level coverage
was also noted by various other authors (Kuleshov et al., 2018; Zhao et al.,
2020; Chung et al., 2021). In this chapter, we will see that the individual level
coverage can indeed be very poor, even with a good coverage on a test set, and
we discuss testing approaches to test the individual level coverage.

This chapter consists of six sections, this introduction being the first. Sec-
tion 2.2 gives the theoretical framework that is needed to properly discuss
uncertainty. We precisely define what we mean with coverage and explain the
loglikelihood and PICP testing approach. Section 2.3 gives theoretical draw-
backs of these current testing methodologies. In Section 2.4, we propose a
simulation-based approach to combat these drawbacks. Section 2.5 verifies
these concerns using simulation results by comparing the PICP approach to
a simulation-based one. Finally, in Section 2.6, we summarize the conclusions
and give suggestions for future work.

2.2 Defining the Uncertainty Framework and
Testing Methodology

This section consists of three parts. First, we go through the terminology
necessary to properly discuss uncertainty. In the second and third part, we ex-
plain the two most popular testing procedures, evaluating the loglikelihood and
evaluating PICP. For an overview of the various methods to obtain uncertainty
estimates, we refer to Khosravi et al. (2011) for early work, and to the reviews
by He and Jiang (2023); Hiillermeier and Waegeman (2021); Gawlikowski et al.
(2023); Kabir et al. (2018) for more recent contributions.

2.2.1 Defining Uncertainty

Before we can talk about quantifying uncertainty, we need to define precisely
what we mean with the term. Throughout this chapter we assume a regression
setting. We have a data set D = ((®1,y1),...(Zn,yn)) that is a set of n
independent realizations of the random variable pair (X,Y’). We assume that
x € R and y € R. The regression situation we are considering is such that

Y|X=z~N(f(z)o(z)),

2.2. CURRENT TESTING METHODOLOGY 31

where f(x) is the true regression function and o?(x) is the variance of the
additive noise. This is equivalent to the typical description of a regression
setting where we assume that our observations are a combination of an unknown
function and a (normally distributed) noise term:

yi = f(xi) + €.

Suppose we train a neural network (or any other type of model) to approximate
f(x) with f (x). Assuming that our data is representative, we have two types of
uncertainty. In the first place, we are unsure about the quality of our estimate
f (z). We refer to this as the model uncertainty (in other works sometimes
referred to as epistemic uncertainty). On the other hand, if we want to predict
a new y-value, we face an additional source of uncertainty due to the inherent
randomness of ¢;. If the distribution of €; given x; does not depend on x;, we
have homoscedastic noise. If the distribution of ¢; given x; depends on x;, we
have heteroscedastic noise. The uncertainty due to ¢; is often referred to as
the aleatoric uncertainty, irreducible variance, or data noise variance. In this
chapter, we use the terminology data moise variance.

For an application of a model in practice, it is often necessary to quantify this
uncertainty. Ultimately, one may want to do this by giving an accompanying
confidence or prediction interval. We now take some time to define these con-
cepts more precisely as this will be the cornerstone of the discussion in the rest
of this chapter.

We take a fixed-covariates viewpoint. With 2, we denote the random variables
whose realization is an entirely new set of targets (y1,...,yn). This is equiva-
lent to realizations of Y | X = x;. We add this extra notation to distinguish
taking an expectation over an entire new set of targets and taking an expecta-
tion over a single observation pair (X,Y). For a given set of covariates, we have
an estimator that is a function of the targets. In this case, we may want to take
the expectation over 2. In a machine learning context, the predictor f often
does not only depend on the data set but also on random effects, such as the
weight initialisation of a neural network and the ordering in which the training
examples are presented. With U, we denote a random variable that expresses
randomness in a training process. We are now ready to define a confidence and
prediction interval.

32 CHAPTER 2. EVALUATING UNCERTAINTY ESTIMATES

Definition 1. 4 (1—a)-100% conditional confidence interval for f is a random
mapping, CI'(% U,-) : RY = P(R) : & — CI'(% U, x), such that

E@,U |:]l{f(m)€CI(")(?/?,U,m)} =1—«a V. (21)

Here, P(R) is the power set of R. With (#/,U), we explicitly denote that the
construction of the interval depends on the specific realization of the targets
and of a random effect. For each realization of these random variables, we get
a different confidence interval. We drop this extra notation later on and simply
write CI(Q)(J:). Intuitively, this says that, given our set of covariates, if we ran-
domly sample the targets and create a confidence interval, that the probability
that f(«) falls inside that interval is 1 — « for all values of . We refer to this
type of coverage as conditional coverage. We also define marginal coverage. It
is less desirable, but implicitly often used (see Section 2.3).

Definition 2. A (1—a)-100% marginal confidence interval for f is a random
mapping, CI'(% | U,-) : R* = P(R) : & — CI'N(# U, x), such that

By v [EX [ﬂ{f(x)ecﬂw(@au,x)}” =l-a (2.2)

Marginal coverage states that the probability that, for a random realization of
X and a random realization of the confidence interval (which is random because
the specific training set and training process is random), the function value falls
inside the CI is (1 —«)-100%. The inner expectation gives the probability that
a function value for a random realization x falls in that specific confidence
interval. The outer expectation averages over all possible targets and random
training effects, each resulting in slightly different intervals. We emphasize that
in this definition the coverage may be very different across different values of .
It is immediately clear from the definitions that conditional coverage is much
stronger than marginal coverage!.

Analogously, we define a conditional and marginal prediction interval as follows.

L An even stronger notion of coverage would be simultaneous coverage, where the function
values must fall in the corresponding intervals for all z-values at the same time with proba-
bility 1 — . There is very little work on simultaneous intervals within the machine learning
community so we do not elaborate on it further. We refer to Degras (2017) for an example
in a related field.

2.2. CURRENT TESTING METHODOLOGY 33

Definition 3. A (1 — «) - 100% conditional prediction interval is a random
mapping, PI)(#,U,.) : R¢ = P(R) : & — PIN(% U, x), such that

Eo o {wazw [n{YEPI(Q)(@,’U@)}H —1-a Ve (2.3)

Definition 4. A (1 — «)-100% marginal prediction interval is a random map-
ping, PI(% U, .) : R = P(R) : & — PI)(% U, x), such that

E@’U |:EX,Y {H{YEPI(“)(@,U,X)}H =1-a. (2.4)

The difference between the two can be exemplified with a weather forecast.
Suppose a weatherman gives a 90% prediction interval for the temperature
tomorrow. If this is a conditional prediction interval, then the probability
that the true temperature tomorrow falls inside that interval is 90%. If it is
a marginal interval, however, then the weatherman says that averaged over
all possible days, the temperature will fall in those intervals in 90% of the
time, but there is no real guarantee for tomorrow. In the second case, the
weatherman is allowed to be 85% correct in winter and 95% in the summer.
The weatherman could even simply pick 3 days each month to give a point
estimate - thus aways being wrong - and give the interval from -100 to 100
degrees Celsius for the rest of the month. Since these intervals are not very
useful, we favor smaller intervals. We note that, for some applications, marginal
coverage may be adequate and that it sometimes is explicitly the goal (e.g., with
split-conformal inference).

In the following two subsections, we examine the most popular testing proce-
dures for uncertainty estimates. We identify two different strategies, which we
will explain in order:

1. The method outputs a prediction interval and the relevant metrics are
the average width of the intervals and the fraction of test points that fall
inside the prediction intervals (PICP).

2. The method outputs a density p(y|z), generally N (f(w),&2(:c)), and

the relevant metrics are the loglikelihood of a test set and the root-mean-
squared error, RMSE.

34 CHAPTER 2. EVALUATING UNCERTAINTY ESTIMATES

Table 2.1: The ten different regression data sets that are currently being used as
a benchmark for estimating the quality of uncertainty estimates. The number
of data points, N, dimensionality, d, and a short description are given.

Data set N d Description

Boston Housing 506 13 Housing prices in suburbs of Boston as a
function of covariates such as crime rates and
mean number of rooms

Concrete Compression Strength 1030 8 Concrete compressive strength as a function
of covariates such as temperature and age
Energy Efficiency 768 8 The energy efficiencies of buildings as a func-

tion of covariates such as wall area, roof area,
and height

Kin8nm 8192 8 The forward kinematics of an 8 link robot
arm

Naval propulsion 11,934 16 A simulated data set giving the propulsion
behaviour of a naval vessel

Combined Cycle Power Plant 9568 4 The net hourly electrical energy output as

a function of temperature, ambient pressure,
relative humidity, and exhaust vacuum

Protein Structure 45,730 9 Physicochemical properties of protein ter-
tiary structure

Wine Quality Red 1599 11 Wine quality as a function of physicochemical
tests such as density, pH, and sulphate levels

Yacht Hydrodynamics 308 6 Air resistance of sailing yachts as a function

of covariates such as length-beam ratio, pris-
matic coefficient, or beam-draught ratio

Year Prediction MSD 515,345 90 The release year of a song based on audio
features

2.2.2 The PICP Testing Procedure

We first explain a popular method to test prediction intervals directly. The
idea is to take a real-world data set, split it in a training and test set, create
prediction intervals using the training set, and calculate the fraction of test
points that fall inside the prediction intervals. The relevant metric in this case
is the PICP.

Definition 5. The Prediction Interval Coverage Probability, or PICP, is the
fraction of observations in a test set that fall inside the corresponding prediction
intervals:

1 Ntest

Z]l{yiEPI(wi)}'

i=1

PICP :=

Ntest

2.2. CURRENT TESTING METHODOLOGY 35

Note that every method can be tested this way. Methods that output a density
can create a PI using that density. This PI can be compared with the PI of
a method that directly outputs one (such as quantile regression for instance).
We can define the same measure for a confidence interval.

Definition 6. The Confidence Interval Coverage Probability is the fraction of
function values that fall inside the corresponding confidence intervals.

Ntest

> Lp@eci@y-
1

TNtest i

CICP :=

To be able to compute the CICP, one needs to have access to the true function
f(x). The average width of the prediction intervals is usually also reported
since we prefer intervals that capture the correct fraction of the data while
being as narrow as possible.

2.2.3 The Loglikelihood Testing Procedure

The loglikelihood testing approach assumes the uncertainty estimation method
outputs a density p(y | @), usually a normal distribution with mean f(z)
and standard deviation Opredictive- Lhe objective is to get the highest average
loglikelihood on the test set:

Ntest
1

R 2
LL = yi — f(xi) >

log exp| —= | ——————
i=1 202 (z;) 2 \ Opredictive (i)

predictive

Ntest

Evaluating the likelihood tests how well the predicted density matches the true
data generating density. This density could subsequently be used to make
prediction intervals.

This approach has been popularised by Herndndez-Lobato and Adams (2015).
In their paper, they tested their method, probabilistic backpropagation, on ten
publicly available real-world data sets (see Table 2.1). Using these data sets,
they carried out the following procedure.

Step 1: Standardize the data so that it has zero mean and unit variance.

Step 2: Split the data into a training and test set. They apply a 90/10 split.

36 CHAPTER 2. EVALUATING UNCERTAINTY ESTIMATES

Step 3: Train the network using 40 epochs and update the weights of the
network after each data point. They use a network with one hidden
layer containing 50 hidden units. For the two largest data sets, Protein
Structure and Year Prediction MSD, they chose 100 hidden units.

Step 4: Repeat steps 2 and 3 a total of 20 times and report the average root
mean squared error (RMSFE) and loglikelihood (LL) on the test set and
their standard deviations. They undo the standardization before calcu-
lating the RMSE and LL.

This setup has subsequently been used in multiple articles (Gal and Ghahra-
mani, 2016; Lakshminarayanan et al., 2017; Mancini et al., 2020; Liu and Wang,
2016; Salimbeni and Deisenroth, 2017). Recently, these data sets have also been
used to calculate the PICP metric (Khosravi et al., 2011; Pearce et al., 2020;
Su et al., 2018; Lai et al., 2022). The following section discusses shortcomings
of both the PICP and loglikelihood approach.

2.3 Theoretical Shortcomings of the Current Test-
ing Methodology

In this section, we discuss four problems with the aforementioned methods of
testing the quality of uncertainty estimates on a single test set with the PICP
or the loglikelihood.

2.3.1 Predictive Performance Does Not Guarantee Good
Model Uncertainty Estimates

For some applications, the predictive uncertainty is the only relevant quantity.
For the prices on the stock market, it does not matter what the underlying
function was; the actual observation is what counts. For a physicist trying
to measure a constant or functional relation, however, the model uncertainty
may be much more relevant. This model uncertainty is often used for out-
of-distribution detection. The reasoning is that in an area that is previously
unseen by the model, the model uncertainty is likely to be high. It is therefore
crucial to know if the model uncertainty estimate is correct or not.

It is implicitly assumed that methods that have a better predictive performance
on a test set also estimate the model uncertainty better. This need not be

2.3. THEORETICAL SHORTCOMINGS 37

the case. Suppose we have separate estimates for the data noise variance and
model uncertainty. These two estimates can be combined to obtain a predictive
uncertainty estimate. We compare these two methods, A and B, by carrying
out the tests as described in the previous section, either the PICP or the
loglikelihood. If method A gets a better score than method B, it is unclear why.
It is possible that the estimate for the model uncertainty in method A was much
worse than for method B, but that this was compensated by a superior estimate
of the data noise variance. Yet another possibility is that both estimates are
incorrect but result, more or less, in the correct total uncertainty. We provide
empirical support in Section 2.5.

2.3.2 Coverage Cannot Be Tested on a Single Data Set

A confidence or prediction interval is a random variable because it depends on
the specific realization of the targets. In the context of a neural network, there
is also an added random training aspect. It is therefore necessary to test these
intervals by repeating the entire process multiple times. This means that new
targets need to be collected, a new network needs to be trained, and a new
interval needs to be constructed. For a PI, for instance, the marginal coverage
can be approximated by evaluating the PICP multiple times:

1 1 Ntest 1 L
Z Z n Z ﬂ{yiEPIz(mi)} = Z Z (PICPl) R
=1 test i—1 —

where L is the total number of repeated experiments and the subscript [in-
dicates that the prediction intervals will be different in each simulation. In
fact, if we do this infinitely many times with an infinitely large test set, this
approximation becomes exact since by the law of large numbers

L Ntest
. . 1 1
lim ~lim — Z (Z II'{'UzEPIl(‘”i)}) =Ea v [EX,Y [IL{YEPI(O‘)(?/,U,X)}H :
1

L—00 ntest—00 Ll 1 Ntest ©
= i=

By examining the previous equation, we observe that the PICP in fact only

gives a single approximation of the inner expectation, Ex y []I{YEPIM (@,U,X)}} .

To exemplify this problem, we simulated an example where we fitted a linear
model on 25 data points. The z-values were simulated uniformly between -2 and
2,and weused Y | X =z~ N (ac, 0.12)7 a straight line with some noise. With
these 25 data points, we constructed an 80% prediction interval using classical
theory and computed the PICP using a test set containing 500 data points.

38 CHAPTER 2. EVALUATING UNCERTAINTY ESTIMATES

60-

40-

0~ . :
0.0 0.2 04 .
PICP

Figure 2.2: The PICP values of 500 simulations. In each simulation, new data
was generated, a new linear model was fit, and a new prediction interval was
created.

We repeated this process 500 times to demonstrate that a single evaluation of
the PICP is not indicative of the quality of a prediction interval. The PICP
values are shown in Figure 2.2. We have a perfect prediction interval, but the
individual PICP values range between 0.58 and 0.92.

Analogously, we see that the CICP gives a single realization of the inner ex-
pectation in the definition of marginal coverage:

L

1 1 Ntest
lelgon;;“iwfz< 2 l{fm)e‘jl’(“’i)})

n
=1 test i—1

=Eau [EX []l{f(xmcw(@,um}” :

Looking at a linear model illustrates this can be even more problematic. Con-
sider a linear model without an intercept term,

Yi = aTi + €.

The model uncertainty considers the uncertainty in our estimate a. For this
example, we assume that the true function is of the form f(z) = az, meaning
that the true function is within our hypothesis class. Suppose we have a per-
fectly calibrated procedure to construct a 95% CI for a. This means that an
interval constructed by that procedure will contain the true value of a in 95%
of the experiments (collecting data, fitting the model, creating the CI).

2.3. THEORETICAL SHORTCOMINGS 39

Figure 2.3: Illustration of the CICP for a linear model. The dashed red line
gives the true function f(z) = ax. The two dotted black lines give the confi-
dence interval. In the left figure, the true function falls inside our confidence
interval; in the right figure it does not. It is clear that the measure CICP
will either give 1 or 0, even when we have a method that gives a perfect 95%
confidence interval: It is impossible to test the coverage of our CI on a single
test set.

We can translate the CI of a to a CI of f(z;) = ax;. However, since the true
a is either inside our CI or not, f(x;) is for all x; either inside the CI or not.
This results in a CICP of either 0 or 1, even though the uncertainty estimate is
perfectly calibrated. This illustrates that we cannot test the quality of our CI
by simply looking at the fraction of points in a single test set that are in our
interval. This example is illustrated in Figure 2.3. It is simply not possible to
test the quality of a prediction or confidence interval on a single data set.

2.3.3 A Good PICP Score Does Not Guarantee Condi-
tional Coverage

The PICP score estimates marginal coverage and not conditional coverage. It
is desirable to have prediction and confidence intervals that have the correct
coverage for each specific value of and not merely on average.

Marginal and conditional coverage can be related as follows:

/ 1yepi(a)m(z, y)dzdy =/ (/ 1yepi(a)m(y | x)dll> m(x)dx. (2.5)

)

40 CHAPTER 2. EVALUATING UNCERTAINTY ESTIMATES

Figure 2.4: This figure illustrates that estimating the data noise variance cor-
rectly can result in a PICP close to the chosen confidence level. We assume
that the model uncertainty is comparably very small. The true function, f(z),
is the constant zero function. The dashed blue line gives +10(z). The dotted
black line gives 16 (x). On average, the data noise variance estimate is correct
and its corresponding PI captures the correct fraction of the data in this case.
Using PICP in this example, we do not notice that our uncertainty estimate is
wrong.

This illustrates that a good marginal coverage does not imply a good condi-
tional coverage. It is possible to get a good PICP score (which approximates
the left integral in Equation (2.5)) while only estimating the predictive uncer-
tainty correctly on average. We illustrate this in Figure 2.4. Assume that the
true function is the constant zero function, f(z) = 0, and that our estimate
of the function is very good, f(z) ~ 0. The dashed blue lines give plus and
minus one time the true standard deviation of the data. Suppose that we use
a homoscedastic estimate of this standard deviation, the dotted black line, and
that this estimate has on average the correct size. The PICP score of the 68%
PI made with our homoscedastic estimate is 0.65 in this example. The intervals
are too wide for some = and too small for others but on average capture the
correct fraction of the data. We are not able to see that our estimate is wrong
by simply evaluating the PICP on a single test set.

We also want to stress that, with a one-dimensional output, it is often possible
to get close to the desired PICP value on an unseen part of the data set by
tuning the hyperparameters. Monte Carlo dropout, for instance, has the data
noise variance as a hyperparameter. If the PICP value is too low, it is possible
to tune this parameter until it is correct. If the test set resembles the training
set, it is unsurprising that a good PICP score can also be achieved on this set.
We elaborate on this in Section 2.5.

2.3. THEORETICAL SHORTCOMINGS 41

2.3.4 Shortcomings of the Loglikelihood

The main downside of the loglikelihood is the inability to compare methods
that output a prediction interval directly with methods that output a density.
However, we argue that even when comparing methods that output a density,
the loglikelihood has shortcomings and should be supplemented with other
metrics, which are discussed in Section 2.4.

Before addressing the downside of the loglikelihood, we need to mention the
argument in favor of using it. If the goal is to find the density that is closest
to the true density 7(y | @), then the loglikelihood is optimal in the following
sense. Suppose that the outputted density is parametrized by 8 and we find 0
such that the loglikelihood is maximal on a test set:

Ntest

0 = arg max Z log(pe(y: | ;).

i=1

Akaike (1973) showed that (under some assumptions) € is a natural estimator
for the @ that minimises the KL divergence between the true density and the
outputted density. In this sense, the loglikelihood seems to be the obvious met-
ric to measure the quality of an uncertainty estimate. However, if the eventual
goal is to make a prediction interval or a confidence interval, which is often
the case in applications, then the loglikelihood could favor the method that
produces worse prediction intervals or confidence intervals. This is because,
although loglikelihood depends on the quality of the predicted variance, it also
highly depends on the quality of the fit.

A higher loglikelihood can therefore be the result of a better fit or of a better
estimate of the predictive variance. For a single model, improving the log-
likelihood will generally improve the quality of the prediction intervals. The
problem arises when comparing drastically different models that give very dif-
ferent predictions for varying regions of the data.

This ambiguity can be problematic since the method with the higher loglikeli-
hood can produce significantly worse prediction intervals. To show this, we go
through a quick example where two methods are compared by using the log-
likelihood on a test set. Suppose we have n data points, x;, from a N (100, 52)
distribution. We want to compare two blackbox methods that output a mean
estimate, [, and an uncertainty estimate, 2. The blackbox methods arrive at

42 CHAPTER 2. EVALUATING UNCERTAINTY ESTIMATES

the following estimates:

S|

fir =

iwi, 6’1 =0.9
i=1

and

1 & 1 —
iy =1.05- =S 2, Ga= =S (z; — fiz)2.
flo n;ff o) n;(x fi2)

The mean estimate of model 1 is better than that of model 2, but its uncertainty
estimate is too small. With these estimates, we create 68% prediction intervals
for both models:

PIL;, = ; + 65.

We ran 10000 simulations to compute the coverage of the prediction intervals.
This means simulating new data, getting new estimates, and creating a new
PI. In this example, model 1 has a slightly better loglikelihood (-3.109 versus
-3.110) but a considerably worse coverage (0.57 versus 0.67).

This demonstrates that it is important to clearly have in mind what the end
goal of the uncertainty quantification method is. If the end goal is to find the
density closest to the true density, then the loglikelihood is a useful metric. If,
however, the eventual goal is to construct prediction or confidence intervals,
solely using loglikelihood could be misleading.

A practical example can be found in the paper on Monte Carlo dropout (Gal
and Ghahramani, 2016). The authors compare their method to an, at that
time, popular variational inference method (Graves, 2011) and probabilistic
backpropagation (Herndndez-Lobato and Adams, 2015). Monte Carlo dropout
achieves superior or comparable loglikelihood scores on the test sets of all ten
data sets in Table 2.1. However, MC dropout also obtains the lowest RMSE on
the test sets for nine of the ten data sets. It is not immediately clear if the better
loglikelihood is the result of more precise predictions or of a better uncertainty
estimate. Subsequently, the paper on Deep Ensembles (Lakshminarayanan
et al., 2017) outperformed MC dropout in terms of both loglikelihood and
RMSE, leaving the question open if the uncertainty estimate is actually better.

We therefore argue that if the eventual goal is to make prediction or confidence
intervals, the loglikelihood should be supplemented by testing conditional
coverage directly, both for the prediction and confidence intervals. A good
conditional coverage ensures good marginal coverage as well. In the following

2.4. SIMULATION-BASED TESTING 43

section, we explain an approach that allows us to test conditional coverage:
simulation-based testing.

2.4 Simulation-Based Testing

In this section, we propose a new testing approach that addresses the issues
that were raised in the previous section. More specifically, we give a testing
procedure that tests conditional coverage in a correct manner. As we argued in
the previous section, it is impossible to test coverage correctly on a single data
set. It is necessary to repeat the entire experiment multiple times, with new
data sets, and then measure the conditional coverage. We therefore propose
a simulation-based setup, in which we are able to simulate new data sets and
know the true data generating distribution. This has two advantages:

1. The experiment can be repeated multiple times. This allows us to test
coverage in the correct sense.

2. The true function, f(«), is known. This allows us to directly test the
quality of a confidence interval, and not only a prediction interval.

The metrics we propose are the Prediction Interval Coverage Fraction (PICF),
the Confidence Interval Coverage Fraction (CICF), and the average width of
the intervals. The PICF is defined as follows.

Msim

Z Ey|x—e [L{verL (@)} : (2.6)

s=1

PICF(z) :=

Nsim

where Y is the random variable of which the realizations are the observations,
Ngim the number of simulations, and PIg(x) the prediction interval for x in
simulation s. Our proposed approach effectively gives a Monte Carlo approx-
imation of the conditional coverage. For a large number of simulations, this
precisely becomes the definition of conditional coverage by the law of large
numbers:

"silri;rgoo - z_; Eyx=2 [I{verL(@)}] = Ezv [EBy|x=2 [L{veru@,v.a)}]] -

This setup forces us to manually define the data generating process. If we use

PY|X:m =N (f(a:),aQ(zc)),

44 CHAPTER 2. EVALUATING UNCERTAINTY ESTIMATES

then the expectation in Equation (3.6) can be calculated as

RO 1) g (L0ke))

o(x) o(x)

where ® is the CDF of a standard normal Gaussian and L(*) (), R®*) () are the
lower and upper bounds respectively of the PI in simulation s. The superscript
s indicates that these intervals are different for each simulation. Analogously,
we define the Confidence Interval Coverage Fraction:

(2.7)

)

Ey|x=s [L{veri@}] = ® (

1 Msim

> Up@ect (@)}
s=1

CICF(z) :=

TNsim

where f(x) is the true function value. Note that if we have nges; observations
in our test set, then we obtain nes different computations of PICF(x) and
CICF(x). These evaluations can be plotted in a histogram to see if the coverage
fractions match the chosen confidence levels. In a one-dimensional setting, we
can also plot the PICF and CICF as a function of x.

If we construct a 100 - (1 — «)% PI or CI, then we would ideally want the
PICF(x) and the CICF(x) to be 1 — « for every . As a quantitative measure
for the quality of the PI and CI we propose to use the Brier score, where lower
is better. For the PICF, this yields

Ntest
1

> (PICF(z;) — (1—a))*. (2.8)

=1

BS =

Ntest

A Brier score for the PICF for instance is lower if the average is close to the
desired value of (1 —«) while having a low variance. We observe this by looking
at the bias-variance decomposition

Ex |(PICF(X) — (1 — oz))2] = Ex [PICF(X) — (1 — a)]® + Vx [PICF(X)].

This means that simply being correct on average instead of for all & results in
a worse score when using the Brier score of the PICF. We can use the same
measure to quantify the quality of a CI. The suggested simulation-based ap-
proach can be summarized as follows.

Step 1: Choose a distribution Px y to simulate data sets from.

2.5. DEMONSTRATION OF SIMULATION-BASED TESTING 45

Step 2: Simulate a test set. This test set does not change and must be the
same when comparing different methods.

Step 3: Simulate a training set and use the uncertainty estimation method to
obtain the PIs and CIs at different confidence levels, for instance 95, 90,
80, and 70%. Repeat this 100 times?.

Step 4: Calculate the PICF and CICF for each x-value in the test set.

Step 5: Evaluate the relevant metrics, for instance the Brier score and the
average width.

To simulate data, we propose three possibilities. The first option is to take a
known test function and a noise term. The advantage of this is having total
control over the setup. The disadvantage is that it may not be representative
of real-world situations. A second option is to use simulations that are based
on real-world data sets. The current benchmark data sets are good candidates.
In the last part of the next section, we demonstrate a simulation setup for the
popular Boston Housing data set. A third option is to use an extremely large
data set. This data set can be split in 1 test set and 100 distinct training sets.
The previous procedure can now be repeated but instead of simulating data we
can use the real data. The disadvantage is that only prediction intervals can
be tested in this way since the true underlying function is unknown.

2.5 Experimental Demonstration of the Advan-
tages of Simulation-Based Testing

In this section, we experimentally demonstrate the theoretical shortcomings
raised in Section 2.3 and show how these issues can be resolved by using a
simulation-based approach. As an illustration, we use two methods that are
easy to implement: the naive bootstrap (Heskes, 1997), and concrete dropout
(Gal et al., 2017), an improvement of the popular Monte Carlo dropout method
(Gal and Ghahramani, 2016).

With these two approaches, we first show that a good PICP does not imply that
the individual estimates for the data noise variance and model uncertainty are
correct. Since we know the true underlying function, we can look at the CICP
directly and verify its correctness. Secondly, we demonstrate the advantage

20f course, more is better, but we found that this works well enough for a comparison.

46 CHAPTER 2. EVALUATING UNCERTAINTY ESTIMATES

of our proposed procedure to average over simulations per x-value, instead of
averaging over x-values in a single test set. We demonstrate that this is useful
by observing that having the desired CICP gives no guarantees that the Cls
are correct for an individual x-value. Most importantly, we demonstrate that
it is possible to favor the wrong method when using the predictive performance
(such as the PICP or loglikelihood) on a test set as the measure. We end this
section by setting up a simulation based on the Boston Housing data set.

2.5.1 Concrete Dropout and the Naive Bootstrap

The uncertainty estimation methods used in this section assume that both the
data noise variance and model uncertainty are normally distributed:

yi = f(x:) + €, with ¢; ~ N (0,0%(z;))

and
f(:r:) = f(x) + €w,i, withe,; ~N (O,ai(mi)).

These two uncertainties can be combined to jointly make up the total predictive
uncertainty. The methods additionally assume that both uncertainty estimates
are independent. This independence allows us to add up both the variances to
obtain the variance of the predictive uncertainty.

We use the bootstrap setup from Heskes (1997). This setup outputs a CI as
described in Algorithm 1.

In this algorithm, t{‘{)2 is the 1— 5 quantile of a ¢-distribution with M degrees
of freedom. We note that the variance in line 5 technically gives the variance
of an individual ensemble member and not of the average. As we will see in
Section 5, this results in confidence intervals that are often too large.

We train networks with 40, 30, and 20 neurons respectively and ReLU activa-
tion functions for 80 epochs. In order to arrive at a prediction interval we also
need an estimate of the data noise variance. Assuming homoscedastic noise,

we take

1 Tyal

7= LS max (1 - @) - 2(a)0). (2.9

Mye
val j=1

2.5. DEMONSTRATION OF SIMULATION-BASED TESTING 47

Algorithm 1 Pseudocode to obtain a CI for f(x) using an implementation of
the naive bootstrap approach as described by Heskes (1997).

1: foriin 1:M do

2: Resample D = ((z1,41),. - - (€n, yn)) pairwise with replacement. Denote
this sample with D@,
Train an ANN on D) that outputs f;(z);
4. end for

5: Define f(m) = % 2%1 ﬁ(); ,
6: Calculate 62 (z) = ZAi (fi(x) — f(w)> ;
: Cl(z) [f(w) [a/zow(x), () + t'{vﬂa/z&w(m)];

8: return Cl(x);

o

Note that we use a small additional validation set to determine 6. With both
¢ and 6, (x), we construct the prediction interval

Pl(@) = [f(@) ~ 1} 2V/52(@) + 62, fl@)+tL, 1\/32(@) +52).

A different approach to obtain uncertainty estimates is Monte Carlo dropout
(Gal and Ghahramani, 2016). The easy implementation makes this method
very popular. The idea is to train a network with dropout enabled and then
keep dropout enabled while making predictions. The article shows that, under
certain conditions, this is equivalent to sampling from an approximate poste-
rior. The standard deviation of these forward passes is used as an estimate of
the model uncertainty. The inverse of the hyperparameter 7 gives the estimate
of the variance of the noise. A follow-up paper (Gal et al., 2017) further refines
the method. This so called concrete dropout does not rely on a hyperparame-
ter to estimate the data noise variance but outputs a heteroscedastic estimate
directly. Additionally, the dropout probability is tuned as a part of the training
process. Algorithm 2 describes the procedure in more detail.

2.5.2 A Toy Example with Homoscedastic Noise

In this subsection, we demonstrate that a good on average performance on
a single test set gives no guarantees for the actual quality of the uncertainty
estimate. We simulated data from y = f(z) + € with f(x) = (22 — 1)3, and
e ~ N (0,(0.2)%). The training and test set both contain 1000 data points. The

48 CHAPTER 2. EVALUATING UNCERTAINTY ESTIMATES

Algorithm 2 Pseudocode to obtain a confidence and prediction interval using
concrete dropout.

1: Train an ANN with dropout enaAbled on Dirain. This network has two
output neurons corresponding to f,(x;) and 67 (x;) and is trained by max-
imizing the loglikelihood assuming a normal distribution. The b subscript
indicates that each forward pass gives a different result.;

2 Define f(2) == & Y2, fy(@)

3: Define 6%(x) := &+ S p, 67(); .

(2) = 51 Sl (@)~ fol@))
+

5: Cl(z) = [Jf(w)—% a/QUw(x), f(@)+ 21 a/z%(m)]'
: PI(z) = [f(z) *21 a2V 0% () + 02(x) f)+ 21—aj2/ 02 (x) + 02 (x)];

6:
7: return Cl(z), PI(z);

4: Define &3 x

bootstrap method has an additional 150 validation data points to determine
the data noise variance. The z-values are drawn uniformly from the interval
[—0.5,0.5]. A total of M = 50 bootstrap networks are trained in order to con-
struct a CI and PI for each z-value in the test set using the bootstrap approach.
For the dropout approach, we used B = 100 forward passes through the net-
work. We repeated these procedures for estimating prediction and confidence
intervals for 100 simulations of randomly drawn training sets.

In Figure 2.5, we see that both methods give a PICP that is very close to the
desired values of 0.9 and 0.8 in each of the 100 simulations. Note that when
simply using one data set, we would only have 1 PICP value. Furthermore, as
we argued in Section 2.3.1, it is not clear that a good PICP indicates that the
CIs are good.

In a real-world scenario, we would not have access to the true function, f(z),
and we would not be able to calculate the CICP. In this case, however, we
are. In Figure 2.6, we can see that the CICP values were not that great for
most simulations. We see that there is a lot of variance between the CICP
values of individual simulations. This exemplifies why using a single test set
is not sufficient, as we argued in Section 2.3.2. Additionally, we observe that
the confidence intervals of the bootstrap method are often too large, which
we expected since the estimated model uncertainty uses the variance of an
individual ensemble member and not of the average of the ensemble members.
However, even if these CICP values would have been perfect, it is still possible
that this happens because the Cls are only correct on average. Cls that are

2.5. DEMONSTRATION OF SIMULATION-BASED TESTING 49

(a) @ =0.1. (b) a=0.2.

Figure 2.5: These histograms give 100 evaluations of the PICP, at a (1 — «)
confidence level using both the bootstrap and dropout approach. The PICP
captures the fraction of data points in the test set for which the observations y
falls inside the corresponding prediction interval. The data is simulated from
y = f(z) + € with f(z) = (22 — 1)?, and € ~ N (0,(0.2)2). The details of the
construction of the PIs can be found in Section 2.5.1. From these histograms
we can see that in a single simulation we would have a good performance of
the PI on the test set with either method.

much too large for some x can be countered by Cls that are much too small
for other z.

This effect can be seen when we actually look at the coverage fraction per
value of x calculated over all the simulations, the CICF, as we proposed in the
previous section. To reiterate, for the PICP and CICP we average over test
data points and then provide a histogram over simulations, whereas for the
PICF and CICF values we average over simulations. In Figure 2.7(b) we can
see that for some values of x the CIs contained the true value f(z) in every
simulation while hardly ever for other values of x. In Figure 2.7(a) we see that
in this set of simulations the Pls are relatively accurate for most values of x
and not only on average.

2.5.3 A Toy Example with Heteroscedastic Noise

In the previous example, the PIs behaved well. It is, however, also possible for
the PICP to be good only because the Pls are correct on average. Figure 2.8

50 CHAPTER 2. EVALUATING UNCERTAINTY ESTIMATES

(a) «=0.1 (b) a=0.2

Figure 2.6: These histograms give 100 evaluations of CICP, at a (1 — «) con-
fidence level. Each point in the histograms gives the fraction of datapoints in
the test set of a new simulation for which the true function value f(z) falls in-
side the corresponding confidence interval. Each simulation has its own CICP
value. The same setup was used as in Figure 2.5. We observe that the good
PICP values from Figure 2.5 do not translate to good CICP values.

(a) PICF, a = 0.2. (b) CICF, a = 0.2.

Figure 2.7: The PICF and CICF plotted as a function of . The PIs appear to
be correct for most = while the CIs are often too large or too small. The Pls
and CIs were constructed at an 80% confidence level.

illustrates this point. We repeat the simulation but now using a noise term with
a standard deviation of 0.14+z2. The bootstrap method assumes homoscedastic

2.5. DEMONSTRATION OF SIMULATION-BASED TESTING 51

noise, while concrete dropout does not. Figure 2.8 illustrates that the PICP
score does not show us that the data noise variance estimate of the bootstrap
method is wrong. Even worse, it can point in the wrong direction. We can
favor the worse method if we would use the coverage fraction on a test set as
our metric. Note that, in Figure 2.8(a), we can see that, in most simulations,
the bootstrap approach had a comparable or better PICP score compared to
the dropout method. On average, the PICP score of the bootstrap method was
even slightly closer to the desired value of 0.9. Figure 2.8(b), however, shows
that this is only the case because for some values of x the coverage fraction was
too high and for others too low, resulting in a good performance on average.
According to the Brier score, dropout performed much better in this specific
case.

(a) PICP, oo = 0.1. (b) PICF, a = 0.1.

Figure 2.8: These histograms give the different PICP and PICF values using
the bootstrap and dropout approach. The PICP is obtained by calculating the
coverage fraction of the PIs on the test set in each simulations. The PICF
is obtained by calculating the coverage fraction of the PIs taken over all the
simulations. In this simulation we constructed 90% PIs. Bootstrap has a Brier
score of 0.011, dropout has a Brier score of 0.0011. We see that a good PICP
score does not imply that the PIs are sensible for individual values of x.

2.5.4 Out-of-Distribution Detection

A desirable property of a confidence interval is that it gets larger in areas where
there is a limited amount of data. It is not evident that a good performance
on a test set guarantees this effect. In Figure 2.9, we use the same function

52 CHAPTER 2. EVALUATING UNCERTAINTY ESTIMATES

as in our example with homoscedastic noise, but simulate our = values from a
bimodal distribution instead of uniformly. Both models are trained using 1000
data points and are evaluated on a test set of size 1000. When making 80%
CIs and PIs, the bootstrap and dropout methods give a PICP score of 0.75 and
0.83 respectively. The PICP score of the dropout method is closer to desired
value of 0.8 and one might conclude from this that this method is better able
to construct Cls. Additionally, the average loglikelihood was higher for the
dropout method (0.14 versus 0.12). If we actually look at the CIs, however,
we see that the behaviour is not as desired and that the bootstrap approach
created more sensible CIs. The CIs of the bootstrap method get larger in the
area around 0 where there is a limited amount of data and smaller around -0.4
and 0.3 where there is more data. The intervals created by using Monte Carlo
dropout do the exact opposite, even though the performance on a single test
set was better when using the PICP or loglikelihood as a metric.

We simulated the data a total of 100 times to further demonstrate this be-
haviour. We can see in Figure 2.10(a) that in all 100 simulations both methods
got a reasonable PICP score. If we look, however, at the CICF for x values
between —0.2 and 0.1 we notice that dropout was not able to determine the
uncertainty accurately®. Additionally, both methods had a substantial bias in
the area with fewer data points. This information is only available if we use
simulated data where the true function is known. Since both methods assume
that the model is unbiased, it is unsurprising that the coverage is not perfect.
As a side-note, some other methods, such as Zhou et al. (2018) do explicitly
take this into account.

3We suspect that the behaviour of dropout is a result of the interpolation. When extrapo-
lating, the ReLu activation functions cause the function values to increase. This gives rise to
a large variance in the forward passes through the network. In the region around z = 0, the
function values are almost zero, likely resulting in less variance and thus a smaller confidence
interval. This explanation ignores subtleties with bias terms and it may be interesting to
investigate this type of behaviour of dropout further.

2.5. DEMONSTRATION OF SIMULATION-BASED TESTING 53

(a) Bootstrap (b) Dropout

Figure 2.9: These two figures give 80% Cls using the naive bootstrap (a) and
Monte Carlo dropout (b). The blue line is the true function and blue dots give
the training data. The same function and noise were used as when making
Figure 2.5 with the difference that the covariates are not uniformly sampled.
Even though the dropout approach gave a slightly better PICP score (0.83
versus 0.75) and higher average loglikelihood (0.14 versus 0.12), the CIs do not
demonstrate better behaviour than those made with the bootstrap.

(a) PICP (b) CICF

Figure 2.10: These figures demonstrate that a good PICP value (a) does not
guarantee desirable behaviour of the model uncertainty estimates. The region
between -0.2 and 0.1 contained fewer data points. This figure, combined with
Figure 2.9, demonstrates that both methods behave very differently in areas
of limited data, something that is not detectable by merely evaluating the
predictive uncertainty on a test set.

54 CHAPTER 2. EVALUATING UNCERTAINTY ESTIMATES

2.5.5 Boston Housing

So far, we only used a simple one-dimensional simulation in our testing pro-
cedure. A good testing procedure should: 1 - be representative for real-world
problems, and 2 - allow easy comparison between different methods. The data
sets that are currently being used, listed in Table 2.1, meet these criteria. As
we just demonstrated, however, it is desirable to simulate the data to get more
insights in the accuracy of the uncertainty estimates. A solution would be to
set up simulations based on data sets that are currently being used. In Algo-
rithm 3 we give a suggestion how we could set up a simulation that resembles
the Boston Housing data set.

As an illustration, we implemented this idea using two random forests with
100 trees, and max depth 15. These hyperparameters resulted from a manual
grid search. We do not attempt to simulate new x-values as it would be dif-
ficult to get the dependencies between the covariates correct. We divided the
generated data set in a train, test, and validation set of sizes 366, 100, and
40. The validation set is used by the bootstrap to determine the estimate of
the data noise variance. The same bootstrap and dropout procedures as in the
previous subsections were used to obtain PIs and CIs. To illustrate another
advantage of our method, namely that we can directly compare methods that
output a density with methods that directly output a prediction interval, we
also implemented the Quality Driven Ensembles method (QDE) (Pearce et al.,
2018). This approach directly outputs a prediction interval by optimizing a
loss function that aims for the correct PICP on the training set, while being as
narrow as possible.

Algorithm 3 Pseudo-code to simulate data based on the Boston Housing data
set
Require: A real world data set D = {(®1,91), .. (Tn,yn)};
1: Train a random forest on D and use this predictor as the true function
f(®);
2: Calculate the residuals, (y; — f(x;));
3: Train a second random forest that predicts the residuals squared as a func-
tion of & and use this predictor as the true variance o?(x);
4: Simulate a new data set Dyew = {(£1,91), .. (Zn,Un)}, where &; = x;,
and g; ~ N (f(2:),0°(%:));

5: return Dew;

2.5. DEMONSTRATION OF SIMULATION-BASED TESTING 55

In Figure 2.11(a), we can see that the PICP was a little too high on average
for the bootstrap method and QDE, a little too low for the dropout method,
but overall quite close to the desired value of 0.8 in most of the simulations.
In Figure 2.11(b), we can see, however, that for almost every @, the prediction
intervals were either too large or too small. We see a similar trend if we look
at the CICP in Figure 2.11(c). Both the bootstrap and dropout method (QDE
does not provide a confidence interval) consistently had a CICP that was too
low. This enforces the argument that simply looking at the performance on a
single test set is far from optimal. It also shows that it is possible to apply this
simulation-based testing procedure to representative data sets.

56 CHAPTER 2. EVALUATING UNCERTAINTY ESTIMATES

(a) PICP (b) PICF

(c) CICP (d) CICF

Figure 2.11: These violin plots and histograms give the different PICP, PICF,
CICP, and CICF values using the bootstrap, dropout, and QDE approach on
the Boston Housing simulation. For the QDE approach, only the PICP and
PICF values are available as this method does not provide CIs. The PICP and
CICP values are obtained by calculating the coverage fraction of the PIs and
CIs on the test set in each simulation. The PICF and CICF values are obtained
by calculating the coverage fraction of the PIs and CIs for each test data point
taken over all the simulations. In this simulation we constructed 80% PIs and
CIs. For the PICF, bootstrap has a Brier score of 0.027 and average width of
12.3. Dropout has a Brier score of 0.032 and an average width of 7.2. QDE has
a Brier score of 0.024 and an average width of 9.6. For the CICF, bootstrap
has a Brier score of 0.147 and average width of 4.92. Dropout has a Brier score
of 0.15 and average width of 3.04. We once more observe that a (relatively)
good PICP value gives no guarantees for the actual performance of either the
PI or CI on individual data points.

2.5. DEMONSTRATION OF SIMULATION-BASED TESTING 57

2.5.6 Time series

While not the main focus of this chapter, our methodology of using a random
forest to construct multiple simulated data sets can also be applied to time
series. Algorithm 4 describes one of the possible ways in which this can be
done.

Algorithm 4 Pseudo-code to simulate a new time series

Require: A real-world time series {y1,...yn}, look-back time [/, and variance
2
o
1: D= {(xi41,y141), - (Tn,Yn)}, where x; = (yi—1, ... yi-1);
Train a random forest on D and use this predictor as the true function
f(@);
for 7 in 1:/ do
Ui = Yi;

end for
for iin I+ 1:n do

i = (Ji—1,-- -+ Ji-1)
gi ~ N(f(&),07)
end for
10: Dnew = {(:il—i-lvgl-‘rl)’ s (i"’gn)}’
11: return Diey;

N

We start from a time series (y1,...yn). Specifically, we will use the well-
known air-passenger data set which has airline passenger data per month. We
will consider the task of predicting the number of passengers in the following
month based on the previous | months. We first create a baseline data set
D = {(xi41,Y14+1), - - - (®n,Yn)}, where &; = {(yi—1,...yi—1)}. With this data
set, we train a random forest that predicts y; based on x; (line 3). Using this
trained random forest, we simulate new data sets as follows. We fix the first [
observations, y; (lines 4 and 5). In other words, §; = y; for all 4 < 1. For i > I,
we then iteratively define &; = (g;—1,...,¥i—;) and sample a new observation,
7i ~ N (f(2;),0?) (lines 6 through 8). We used a constant variance of 25. This
results in an entirely new time series each time, always starting from the same
initial point.

With this simulation, we can apply the simulation-based approach to a time
series, as is illustrated in Figure 2.12. We create 100 new time series, see (a) for
two examples. On each time series, we train two methods by using the first 80%
of the series as the training set. For this example, we used the dropout method

o8 CHAPTER 2. EVALUATING UNCERTAINTY ESTIMATES

(a) Example of multiple simulated time series (b) PIs of both methods during one of the
simulations

(c) PICP values of the 100 simulations (d) PICF per month of both approaches

Figure 2.12: This figure illustrates a simulation-based approach for a time
series. A total of 100 different time series are simulated, two of which are
displayed in (a). For each time series, both methods are trained on the first
80% of the series and evaluated on the final 20%. The resulting PIs on the test
set for one of these simulations are displayed in (b). With the 100 simulations,
we can compute the PICP and PICF values. We see that the PICP varies
massively from simulation to simulation, especially for the dropout method,
again highlighting that a single PICP value can give a poor estimate of marginal
coverage. For this example, the simulation-based approach also allowed us
to observe another interesting effect. For both approaches, the conditional
coverage deteriorates further into to future.

2.6. CONCLUSION 59

and QDE, again illustrating that a method that directly outputs a PI can be
compared to a method that outputs a density. Figure 2.12(b) displays the PIs
of both methods on the test set, the final 20%, during a single simulation. By
repeating this 100 times, we get 100 evaluations of the PICP (Figure 2.12(c))
as well as conditional estimates of the PICF (Figure 2.12(d)).

The results again illustrate the shortcomings of the PICP. Especially for the
dropout method, the PICP values vary massively. This effect is particularly
strong due to the small size of this data set. An individual PICP value would
therefore not give a good estimate of marginal coverage. Additionally, we again
see that marginal coverage gives no guarantees for conditional coverage. The
QDE approach has very high coverage directly after the training horizon and
then goes down further into the future. A similar trend is visible for the dropout
method. Such an effect is only visible when evaluating conditional coverage and
would be missed when solely evaluating the PICP.

Different approaches are also possible, such as retraining the model every fixed
number of months or taking a heteroscedastic estimate of the variance of the
noise. We acknowledge that the evaluation of time series is a well-studied field
that typically uses slightly different evaluating approaches than the ones dis-
cussed in this chapter, see Cerqueira et al. (2020) for a more in-depth discussion
on these approaches. Nevertheless, we demonstrated that our simulation-based
approach is also applicable to time series and can provide interesting insights
into the conditional coverage.

2.6 Conclusion

We conclude that the testing methodology applied to many recent publications
for evaluating the quality of uncertainty estimates leaves a lot of room for im-
provement, especially if the eventual application of a method is the construction
of a confidence or prediction interval.

Both the loglikelihood and the PICP evaluate the predictive uncertainty, which
is a combination of the data noise variance and model uncertainty, on a pre-
viously unseen test set. A good predictive uncertainty overall, however, is not
necessarily indicative of a good estimate of the model uncertainty or data noise
variance. Since the true function values are unknown, it is impossible to test
confidence intervals directly.

Furthermore, we showed that the PICP score has additional problems. A single

60 CHAPTER 2. EVALUATING UNCERTAINTY ESTIMATES

PICP score gives a very unreliable estimate of marginal coverage, especially for
smaller data sets. To get a good estimate of marginal coverage, it is necessary
to repeat the entire experiment. However, marginal coverage is typically not
the desired property. A stronger and more useful characteristic is correct con-
ditional coverage. We therefore propose to explicitly evaluate the conditional
coverage of both the prediction and confidence intervals.

For the loglikelihood, the main problem is the inability to compare methods
that output a PI directly with methods that output a density. Additionally,
we demonstrated that a better score may not guarantee better prediction in-
tervals, especially when comparing different models. We therefore propose to
supplement the loglikelihood by also evaluating the conditional coverage.

To evaluate conditional coverage, we propose simulation-based testing. We
note that we assume that the eventual application of the method is to give
accompanying prediction or confidence intervals. In order to properly test
coverage, it is necessary to repeat the experiment: create a new data set,
train the model, create new intervals. Possible quantitative metrics of the PIs
and Cls are the Brier score of the PICF/CICF and the average width of the

intervals.

This approach has some downsides. The computational demands for running
these tests are higher and there is a need to simulate the data. We propose to
set up simulations based on the data sets listed in Table 2.1. It is also possible
to set up a simulation based on a data set of particular interest. The additional
computational demands only play a role during the testing of these uncertainty
quantification methods and not in their usage in practice.

2.6.1 Future Research

In order to compare different uncertainty estimation methods, it is necessary
to use the same simulations. It would therefore be useful to create a number
of benchmark simulations that can be used to test uncertainty estimates. We
propose to base these simulations on the data sets in Table 2.1. In Section
2.5.5 we gave a simple demonstration of such a simulation. In this chapter, we
only considered normally distributed noise. Different distributions would allow
us to explicitly see what happens if the customary assumption of normality
does not hold. The methods in this chapter are based on this assumption but
a method like quantile regression, for instance, is not.

We saw in Section 2.5 that a method that performs better on a test set does not

2.6. CONCLUSION 61

necessarily have better-behaving uncertainty estimates. With new benchmarks,
it would be worthwhile to re-evaluate currently available methods for estimating
uncertainty.

CHAPTER 3

Bootstrapped Deep
Ensembles

This chapter is based on the preprint entitled “Confident Neural Network Re-
gression with Bootstrapped Deep Ensembles” (Sluijterman et al., 2022), which is
currently under submission. As is visualized in Figure 3.1, this chapter focuses
on the parameter uncertainty. More specifically, we demonstrate that ensem-
bling techniques typically ignore the classical source of parameter uncertainty,
and we demonstrate that incorporating this results in improved uncertainty
estimates.

63

64 CHAPTER 3. BOOTSTRAPPED DEEP ENSEMBLES

Figure 3.1: The scope of Chapter 3. This chapter focuses on the parameter
uncertainty in an ensembling setting, while assuming that the distributional
uncertainty and assumptional uncertainty are negligible. The parameter un-
certainty is decomposed in an optimization part, a result of the random opti-
mization procedure of modern neural networks; and a classical part, a result of
estimating parameters on a finite set of random data.

3.1 Introduction

There has been an enormous interest in uncertainty quantification for machine
learning in the past years. Numerous methods, discussed in the next section,
have been developed. Of these methods, Deep Ensembles (DE) (Lakshmi-
narayanan et al., 2017), which we explain in detail in the following section, is
one of the most popular.

3.1. INTRODUCTION 65

Ensembling methods (see, e.g., Heskes 1997 for an early example) such as
DE accomplish two goals at once: The ensemble average reduces some of the
variance and then provides a more accurate prediction than a random member,
and the variance between the ensemble members can be used to estimate the
uncertainty of the prediction.

This uncertainty estimate can only be calibrated if the construction of the
ensemble members incorporates all relevant random factors. Firstly, we have
the classical source of uncertainty: The model is trained on a finite data set
that can be considered a random sample drawn from an unknown distribution.
We use the term classical since for a model with a deterministic fit (such as,
e.g., a linear model), the randomness of the data is the only source of variance
in the parameter estimates. Secondly, the optimization procedure of neural
networks is random due to random batches, initializations, and optimizers.
Both the classical and optimization factor must be incorporated in order to
have a calibrated uncertainty estimate.

DE are unable to do this. They can only capture the second source of uncer-
tainty, the random optimization procedure, since all ensemble members are
trained on the same data. Lakshminarayanan et al. (2017) were aware of
this problem but noted that using a standard bootstrap, where each ensemble
member is trained on resampled data, actually decreased performance. Nixon
et al. (2020) ascribed this decrease in performance to effectively training on
less unique data when bootstrapping.

Contribution: In this chapter, we present an efficient implementation of the
parametric bootstrap for a regression setting that incorporates the missing
source of uncertainty without affecting accuracy. We demonstrate that this
leads to significantly better confidence intervals compared to standard DE and
other popular methods.

Scope: We explicitly focus on a regression setting, in which we aim for more
accurate confidence and prediction intervals. Our approach makes use of the
separate estimates for the mean and variance that are given by Deep Ensembles
in a regression setting, which does not translate to classification where only a
single probability vector is given.

Organization: Section 3.2 describes the uncertainty framework that we use,
gives a short overview of related work, and describes DE in more detail. This
leads to Section 3.3 where we introduce our method, Bootstrapped Deep En-
sembles. In Section 3.4, we experimentally demonstrate the significance of the
effect of finite data and show that incorporating this improves the confidence

66 CHAPTER 3. BOOTSTRAPPED DEEP ENSEMBLES

intervals significantly, which in turn results in improved prediction intervals.
Finally, Section 3.5 summarises the conclusions and gives possible avenues for
future work.

3.2 Background

3.2.1 Uncertainty Framework

We consider a frequentist regression setting in which a neural network is trained
onadataset D = ((x1,91), ... (Tn,yn)) consisting of n independent realizations
of the random variable pair (X,Y), with input € R? and target y € R.
Given a new input x*, the neural network outputs a prediction f (x) for the
corresponding target y*.

We follow the framework that was introduced in Chapter 1 and is illustrated
in Figure 3.1. The uncertainty in the prediction consists of three parts; distri-
butional uncertainty, data uncertainty, and model uncertainty. In this chapter,
we assume that the data set is representative and that our model class con-
tains the true function. Our focus lies on improving the quantification of the
parameter uncertainty.

The certainty in our predictions can be expressed via a confidence and pre-
diction interval. Depending on the task, either the confidence or prediction
interval may be of more interest. A confidence interval gives the region that is
expected to cover the true function value, f(a*). The prediction interval gives
the region that is expected to cover a new observation, y*. The confidence
interval is determined only by the model uncertainty, whereas the prediction
interval also depends on the data uncertainty.

In this chapter, we adhere to the frequentist interpretation of confidence and
prediction intervals. A (1 — «) - 100% confidence interval for f(z*) is a ran-
dom mapping from x* to an interval such that if we repeated the entire ex-
periment infinitely many times - that means sampling data, training the net-
work, creating the interval - we would capture the true function value f(x*) in
(1 —a)-100% of the experiments. A confidence interval with a coverage higher
than (1—a)-100% is called conservative. Additionally, if this holds for all values
of x, it is called a conditional conservative confidence interval. A prediction
interval is defined similarly but with y instead of f(x). Bayesian methods typ-
ically output a credible interval. Although credible regions have fundamental

3.2. BACKGROUND 67

differences, it is desirable for a credible interval to maintain frequentist proper-
ties and it is common to evaluate Bayesian methods frequentistically (Ghosal
and Van der Vaart, 2017).

Throughout this chapter, we take the fixed-covariates perspective, meaning
that we treat o as being fixed and given and y as the realisation of a random
variable. The classical uncertainty due to finite data is therefore the uncertainty
due to the randomness of the targets. To make this perspective explicit, we
will use the term random targets instead of finite data.

3.2.2 Related Work and Deep Ensembles

Numerous different methods to obtain uncertainty estimates for neural net-
works have been developed. We refer the reader to Abdar et al. (2021) for
an extensive overview and list a few notable contributions here. Bayesian
Neural Networks (MacKay, 1992a; Neal, 2012) put a prior distribution over
the weights of a network and use the posterior to obtain uncertainty estimates.
The calculation of the posterior is often intractable. Variational Inference
(Hinton and Van Camp, 1993; Jordan et al., 1999) aims to solve this problem
by using a tractable approximation of the posterior. Monte-Carlo Dropout
(Gal and Ghahramani, 2016; Gal et al., 2017) is a notable example of varia-
tional inference. Since dropout is already used in many neural networks as a
regularization technique, it comes at no extra cost at training time. A downside
is that the epistemic uncertainty is only influenced by the dropout rate, thus
making it impossible to locally tune the uncertainty estimates to have the cor-
rect size (Osband, 2016). Quantile regression (Cannon, 2011; Xu et al., 2017;
Clements et al., 2019; Tagasovska and Lopez-Paz, 2019) uses a pinball loss to
output quantiles directly without the need of any distributional assumptions.
Similarly, direct Prediction Interval (PI) methods use a custom loss function
that directly outputs PIs with the goal to capture the correct fraction of data
points while being as narrow as possible (Pearce et al., 2018). Other methods
are focused more on detecting out-of-distribution (OoD) samples. These are
input values that are very different from the training data. A typical approach
is to keep track of the pre-activations, the output of the penultimate layer (or
sometimes also other layers) times the weight matrix plus the bias vector, and
use some distance measure to determine the level of difference of a new dat-
apoint (Van Amersfoort et al., 2021; Mukhoti et al., 2021; Lee et al., 2018).
Similarly, Ren et al. (2019) use likelihood ratios directly on the inputs to detect
out-of-distribution samples. OoD detection methods do not aim for calibrated

68 CHAPTER 3. BOOTSTRAPPED DEEP ENSEMBLES

prediction or confidence intervals.

Deep Ensembles train an ensemble of M networks, each member receiving
the same data but in a different order and having a different initialisation. The
architecture of the networks is similar to the mean-variance estimation method
by Nix and Weigend (1994), where each network outputs a mean, f;(z), and
variance prediction, 62(x), for every input. The variance terms 62(x) estimate
the data uncertainty. The networks are trained by minimizing the negative
loglikelihood of a normal distribution, which implies the following assumption.

Assumption 1. The targets, y, are the sum of a function value f(x) and
normally distributed heteroscedastic noise:

y=f(x)+e, withe~N(0,0*)).

Deep Ensembles assume a Gaussian Mixture of the individual models as the
predictive model. In this model, the total mean and variance are defined as

1
:MZ]‘}(&:), and
i=1

o2 Mz(fl - f@)? + 52 ()). (3.1

This results in the prediction interval

Plpg = fu(x) & 24/21/52 (),

where z, /o is the /2 quantile of a standard normal distribution. For later
comparison, we construct a confidence interval implied by DE by ignoring the
aleatoric variance terms 67(zx) in Equation (3.1) to arrive at

CIDE:f*(m) t(aj/w2 D MZfz *f* (x)?,

where t(a%_l) is the /2 quantile of a ¢ distribution with M — 1 degrees of
freedom.

Deep Ensembles have been shown to clearly outperform Variational Inference
and Monte-Carlo Dropout (Lakshminarayanan et al., 2017) and are regarded

3.3. BOOTSTRAPPED DEEP ENSEMBLES 69

the state of the art for uncertainty estimation, both in-distribution (Ashukha
et al., 2019) and under distributional shift (Ovadia et al., 2019).

Different explanations for the success of Deep Ensembles have been given. Wil-
son and Izmailov (2020) relate the method to a form of Bayesian model averag-
ing. They empirically demonstrate that DE are even able to better approximate
the predictive distribution than some standard Bayesian approaches. Similarly,
Gustafsson et al. (2020) relate the method to sampling from an approximate
posterior. Alternatively, Fort et al. (2019) explain the success via the loss
landscape. They argue that the different models are able to explore different
local minima, where a Bayesian approximation may only explore a single local
minimum.

None of these interpretations fully explains why the obtained intervals would be
properly calibrated. In fact, as we will also show in our experiments, by training
each ensemble member on the same data, DE ignore a significant part of the
epistemic uncertainty that is due to finite data (the classical box in Figure 3.1).
In the next section, we introduce our method, Bootstrapped Deep Ensembles,
an easy to implement extension of DE with comparable computational costs
that does take this source of epistemic uncertainty into account.

3.3 Bootstrapped Deep Ensembles

Our method can be summarised in two steps. We first train a regular Deep
Ensemble, resulting in the exact same predictor f* (z) and thus identical accu-
racy. Secondly, we repeat a small part of the training of these members on new
data, more on this shortly, in order to capture the uncertainty that we missed
by training the ensemble members on identical data.

As previously stated, we model a neural network as a random predictor with
an error that decomposes in a part due to the optimization procedure and a
part due to random targets. We formalize this in the following assumption.

Assumption 2. Let fl(w) be the prediction of an ensemble member trained on
the same data set D, but with a unique initialization and data ordering, and let
f(x) be the true value, then

fz(m) = f(@) + €classical + €optim,i, With

€classical ~ N (O, gzlassical(x)) and €optim,i ~ N (O, U(Q)ptim(m))7

70 CHAPTER 3. BOOTSTRAPPED DEEP ENSEMBLES

where all € are independent. The € jassical term does not have an index i since
by definition it is the same for all ensemble members.

The €lassical and aflassical(a:) terms relate to the uncertainty in box “Classical”
of Figure 3.1 and the terms €optim,i and o, (€) to the “Optimization” box.
From Assumption 2, it follows that the average of ensemble members trained

on the same data, f.(x), has variance

P 02 im (IB)
V(o) = e (@) + 22T (32)
The 02, () term does not get divided by M since all ensemble members

are trained on the same data.

One way to estimate the total variance (Equation 3.2) is to train multiple (deep)
ensembles. However, this would become extremely expensive. The contribution
of this chapter is that, with only a modest amount of extra work, we are able
estimate the total variance. The key ingredient of our approach is to separately

: 2 2
estimate the two terms 03, ;.1 (2) and o5, ().

3.3.1 Incorporating the Missing Uncertainty

The estimate for Jgpﬁm (x) is straightforward. Since the M ensemble members

are trained on the same data set, we can take the sample variance of these
ensemble members as an estimate of the variance due to the random optimiza-
tion:

1 L/, 1, 1\
&gptim(m) =1 Z <fi(m) ~ Zfi(@) .

Deep Ensembles, however, fail to measure 02, .., (z). To estimate the missing
02, sica1 (T), We propose to use an adapted version of the parametric bootstrap
(Efron, 1982). For a standard parametric model, the parametric bootstrap
consists of two steps. A single model is trained on the data, after which B
additional models are trained using new data, simulated from the first model.

The variance of those extra models is then used to obtain the model uncertainty.

Directly translating the parametric bootstrap to our setup does not work.
Training a new network on simulated targets would also capture the variance
due to the optimization procedure. As indicated before, a solution could be

3.3. BOOTSTRAPPED DEEP ENSEMBLES 71

(a) Effect of random optimization (b) Effect of random targets

Figure 3.2: Figure (a) sketches the effect of the random optimization procedure.
Through random initializations and random orderings of the data, different
regions of the loss landscape get explored. We denote the variance that arises
from this effect with o7;,,. With finite training data, our loss landscape itself
is subject to randomness. To estimate the resulting uncertainty, we apply the
parametric bootstrap, resulting in new targets and a slightly deformed loss
landscape. To ensure we end up in the deformed version of the same local

minimum, we repeat only a part of the training.

to estimate the entire variance in Equation (3.2) directly by training B en-
tire ensembles on simulated data sets, but this would be far too expensive.
We therefore propose an approach to train additional neural networks while
eliminating optimization variability.

To explain how we do this, we examine the problem from a loss landscape
perspective, as sketched in Figure 3.2. The random optimization causes the
networks to end up in different local minima, while different targets cause the
loss landscape to deform. Starting from a later point in the training cycle - as
opposed to starting at initialisation - is much more likely to cause the retrained
network to end up in the deformed version of the same local minimum, thus
eliminating optimization variability.

In order to estimate oglassical(a:), we therefore propose the following procedure.

During the training of the original ensemble members, we save a copy of the
state of the network after |nepoch - (1 —7)] epochs, where nepocn is total amount
of training epochs and r € [0, 1] is the retraining fraction. We then repeat the
final r - Mepoch epochs, starting from the saved state, with new targets that

are simulated from a N (f;(x),52(x)) distribution. We denote this retrained

7
network with f;(z).

This retraining is meant to capture solely the variance due to the random tar-
gets. A standard assumption of the parametric bootstrap is that the distribu-

72 CHAPTER 3. BOOTSTRAPPED DEEP ENSEMBLES

tions of the difference of the first model and the true model, and the difference
of the retrained model and the first model, are similar (Efron, 1982). In our
case, this assumption translates to:

Assumption 3. Let fl(w) denote the predictions of a retrained ensemble mem-

ber. The difference between f;(x) and fi(x) is normally distributed with zero
mean and variance o3, .. (T):

fi (.’13) = fz (33) + €classical,i with €classical,i ™ N (Oa Uglassical(m))'

2

lassical (T), we therefore use

As an estimate for o

1L A 2
G lassical (T) = i Z (fi(m) - fi(:c)) .

=1

In total, we have made three assumptions. Assumption 1 is a modeling assump-
tion that states that we are dealing with additive Gaussian heteroscedastic
noise. This assumption is very standard and made by most works on uncer-
tainty estimation (e.g. Deep Ensembles and Concrete Dropout). Assumption
2 states that we assume the model uncertainty to be normally distributed and
to consist of a classical part and an optimization part. This normality is also
a very standard assumption. The typical reasoning behind this assumption is
that it holds asymptotically for a parametric model and is therefore the most
sensible choice, also for finite data and non-parametric models (see Appendix
3.B for more details). The same asymptotic normality can be shown for the
third assumption, which is a common assumption of the parametric bootstrap
(Efron, 1982). We observed that these assumptions hold empirically in most of
our simulations, as we demonstrate in Appendix 3.B. The coverage values that
we obtained, given in Section 3.4, add to the plausibility of these assumptions.

The entire method is summarised in Algorithm 5. With relatively little extra
effort - we only need to train the equivalent of M (1 + r) networks, with r < 1
- we are able to get uncertainty estimates that translate to confidence and
prediction intervals that are better theoretically founded, as is substantiated in
the next subsection with a proof that the confidence intervals are guaranteed to
be conservative, and empirically result in a better coverage, as is demonstrated
in Section 3.4.

3.3. BOOTSTRAPPED DEEP ENSEMBLES 73

Algorithm 5 Pseudo-code to obtain a confidence interval with Bootstrapped
Deep Ensembles

1: Input: M - number of ensembles, ne¢poch - number of training epochs, r -
retrain fraction, D - data set;

2: fori=1to M do

3: Train ensemble member ¢ on D with random initialisation and data or-
dering to obtain f;(x) and 6?(x), while saving the model and optimizer
state after nepoch(1 —) training epochs;

4: Simulate new targets: §; ~ N (fl(a:]), &f(mj));

5: Repeat the final r - nepoen training epochs on
25 = ((wla gl)a cee (mn, ﬂn))a Obtaining fz(w),

6: end for

7 fo@) = 4 i file); o,

8: 6?lassical(m) = % sz\il (fl(m) - fl(m)) ;
~ ~ 2

9 62im (@) = 57 Loty (@) - fi@))

10: Calculate the 1 — « confidence interval:

52
a A M-—1 ~ %optim
CI() (112) = [f* (Ll':) + t¢(x/2) \/O—(%lassical(w) + ?\;)

| IS

3.3.2 Creating Confidence and Prediction Intervals

The following theorem, proven in Appendix 3.A, states that, under Assump-
tions 2 and 3, the conditional confidence interval given in Algorithm 5 is con-
servative.

Theorem 3.3.1. Following the notation introduced above, let f*(w) be the

average of the M ensemble members with predictions f;(x). Let f;(x) be the
prediction of ensemble member i after a part of the training is repeated with
newly simulated targets. Define 62, () and 62, (®) as in Algorithm 5.

Under Assumptions 2 and 3, with probability at least (1 — «) - 100%:

~2
f(CC) € f* (:L') + ts\/é_l) \/&glassical(m) + ao%m(w)7 (33)

where t(g%_l) 18 the critical value of a t-distribution with M — 1 degrees of
freedom.

74 CHAPTER 3. BOOTSTRAPPED DEEP ENSEMBLES

Algorithm 6 Pseudo-code to obtain a prediction interval with Bootstrapped
Deep Ensembles

1: Input: Trained and retrained ensemble members, N; - number of samples
to base the prediction interval on.
R M .

2: 6%(x) = % Doict % (x);

3: for j =1 to N; do

tj ~ t(M — 1);

2

¢ ~92 &gptim(w)
1221 (x) = f* (iB) + tj O.classical(m) + T;
by ~ N (@), 5 (@)):
end for
Take the (1 — a/2) and «/2 empirical quantiles of all y; as the bounds of
the PI

The confidence interval from Theorem 3.3.1 can be easily extended to a pre-
diction interval. The prediction interval combines the aleatoric uncertainty,
governed by a normal distribution with variance o(z), with the epistemic un-
certainty, a scaled student distribution with M — 1 degrees of freedom. Algo-
rithm 6 describes a simple Monte-Carlo sampling procedure to quickly estimate
empirical quantiles of the resulting distribution.

3.4 Experimental Results

In this section, we empirically examine the quality of our confidence and pre-
diction intervals. We first explain why and how we simulated data for our
experiments. We then go through our three experiments that - 1 - show that
the obtained confidence and prediction intervals have a typically better, or in
some cases at least similar, coverage compared to other popular methods, - 2
- demonstrate the significant effect of random targets on the total uncertainty
to underline the importance of incorporating this effect, and - 3 - show that
our method is able to correctly estimate the separate variances due to random
optimization and targets.

In the appendix we provide additional experimental results. Specifically, we
also test the effect of differently distributed noise, a different simulation method,
and different retraining fractions. We observe that our method works well for
a variety of data sets using retraining fractions between 0.2 and 0.4, meaning

3.4. EXPERIMENTAL RESULTS 75

that we do not need to tune it and can simply pick a default value.

3.4.1 Simulating Data

In order to compare confidence intervals, it is necessary to know the true func-
tion values. A simple toy experiment would meet this requirement but is likely
not representative for a real-world scenario. To overcome this, we created simu-
lations based on the regression benchmark data sets used in Herndndez-Lobato
and Adams (2015). These data sets were also used in other works on uncer-
tainty estimation (Gal and Ghahramani, 2016; Lakshminarayanan et al., 2017;
Mancini et al., 2020; Liu and Wang, 2016; Salimbeni and Deisenroth, 2017;
Khosravi et al., 2011; Pearce et al., 2020; Su et al., 2018) and have become the
standard benchmark data sets for regression uncertainty quantification. We
take one of these real-world data sets, for instance Boston Housing, and train a
random forest to predict y given @, and we use this model as the true function
f(x). We then train a second forest to predict the residuals squared (y— f(x))?
and use this forest as the true variance o?(x). Using these f(z) and o?(z),
we can simulate new targets from a N (f(z),0?(x)) distribution. We used
random forests with 100 trees and a max depth of 3. The simulating procedure
is summarized in Algorithm 7.

3.4.2 Training Procedure

We used neural networks with three hidden layers having 40, 30, and 20 units
respectively, ReLU activations functions in these hidden layers, and a linear
activation function in the final layer. To ensure positivity of & we used an
exponential transformation and added a minimum value of le-3 for numerical
stability for the ensemble networks. Each network was trained for 80 epochs

Algorithm 7 Pseudo-code to simulate data

1: Train a random forest on D and use this forest as the true function f(x);

2: Calculate the residuals, (y; — f(x;));

3: Train a second random forest on the squared residuals and use this function
for the true variance o?(x);

4: Simulate new targets: §; ~ N (f (), 0%(x;));

5: Return: Dypew = ((1,71), -+ (T, Tn));

76 CHAPTER 3. BOOTSTRAPPED DEEP ENSEMBLES

with a batchsize of 32 using the ADAM optimizer. We used the same the
train_test_split function from the scikit learn package with random seed 1 for
our train/test splits.

This setup is very similar to those used in Gal and Ghahramani (2016) and
Hernéndez-Lobato and Adams (2015) with the exception that we use more than
one hidden layer. We do this because we observed a much larger bias when
using only one layer. We stress that these are typical architectures and data
sets for work on uncertainty quantification in a regression setting. Uncertainty
estimation methods for regression are typically evaluated on smaller data sets
and with smaller architectures than classification methods.

We used r = 30% and M = 5. We used Iy regularization with a standard con-
stant of 1/(#Training Samples). The networks used for the Concrete Dropout
and Quality Driven Ensembles methods were trained for 240 epochs each since
we found that these networks needed longer to converge. All training data was
standardized to have zero mean and unit variance before training. All testing
was done on the original scales.

3.4.3 Experiment 1: Simulations Based on Benchmark
Data Sets

Our first experiment compares the coverage of our confidence and prediction
intervals with different popular methods. Our prediction intervals are com-
pared to DE, Concrete Dropout (CD) (Gal et al., 2017), and Quality-Driven
Ensembles (QDE) (Pearce et al., 2018). Our confidence intervals are compared
to DE, the Naive Bootstrap (NB) (Efron, 1982; Heskes, 1997), and Concrete
Dropout.

We test the coverage by using 100 simulated data sets instead of the popular
practice of using a single test set. The latter tests empirical coverage of the
intervals on a previously unseen part of a single real-world data set (Khosravi
et al., 2011; Pearce et al., 2020; Su et al., 2018). However, we argued that it
is not sufficient to evaluate the quality of prediction and confidence intervals
in this manner on a test set. As discussed in Chapter 2, this only checks the
overall coverage, which is relatively easy to tune, and not the quality of the
conditional confidence intervals. The proposed alternative is to use simulated
data and calculate the coverage per x-value over a large number of simulations.

3.4. EXPERIMENTAL RESULTS 7

This gives rise to the Confidence Interval Coverage Fraction (CICF):

Tsim

Y LiaelLcw @), RO (@) (3-4)
P

CICF(z) :=

Nsim

where ng, is the number of simulations, f(x) is the true function value, and
LCY) (x), RCY)(x) are the lower and upper limit of the CI of f(z) in simulation
j. If our CI has the correct conditional coverage, the CICF(«) should be close
to 1 — « for each value of . The following Brier score — with a perfect score
of 0 meaning a CICF of 1 — « for each individual value of & — captures this:

Ntest
1

BS =

(CICF(z;) — (1 — a))?. (3.5)

Ntest i—1

Evaluating the quality of the prediction interval is done similarly. We define
the Prediction Interval Coverage Fraction:

1 Msim

PICF(z) := P (Y e [LY)(), R(j)(a:)}), (3.6)

Nsi
sim j=1

and report the resulting Brier scores. Additionally, we report the average
widths of the intervals. In case of a comparable Brier score, we favor the
method with smaller intervals. In summary, we create 100 new data sets,
create 100 prediction and confidence intervals for each x-value in the test set,
and check how often the intervals contain the true value.

The results are presented in Table 3.1, with Figure 3.4 offering a visual summary
of the various methods’ performance. The Brier scores of all data sets are
plotted against the other methods. BDE perform better for all instances above
the dotted diagonal line. Additionally, the distance to the diagonal gives an
indication about the difference in performance.

Several trends emerge from these results. Notably, our method clearly improves
upon Deep Ensembles, producing superior Brier scores for the confidence in-
tervals in seven of the eight data sets and for the prediction intervals in six of
the eight data sets. For the other three data sets, the performance is very sim-
ilar. The performance gain is often substantial. For example, on the Concrete
data set, the Brier scores for the CICF range from 0.026 (BDE) to 0.33 (NB).
To illustrate the significance of these differences, we visualised the individual
CICF scores as a violin plot in Figure 3.3. We observe that for most values of
x the BDE confidence intervals are close to the correct size.

CHAPTER 3. BOOTSTRAPPED DEEP ENSEMBLES

78

0L X
4N} 80°C 9¢°1 [as €L2°0 9890 S¥FO F0S0 | ST'9 0080 161 7660 | 6'9c €98 LGCT 9680 ANIA
e 0°8T G0°g £€9°G LT°L 67°¢ 1v'c cLe [act 627 ¥8°'¢C 80T ¢€£¢C¢ v GTL LHOVA
[441 1¢e 621 el 08L°0 €8T 81°C 90°¢ | 8620 92°c 89900 G8L0°0 | €9¢ 8CE ¥l 67’8 HIMOd

21€0°0 0€¥0°0 ¥IE0'0 LIE0°0 | (P9'T (616°0 P81 (¥8°C | TIT'0 CI'T 8S8T°0 ¥¥e0 | 962 98¢ 69F 354 TVAVN
LEV°0 1890 2160 €€9°0 | L€20°0 ATT°0 TPIT0 L9T°0 | I1°€ 8260 8PZ'0 LCT'0 | 8'GF €19 O0O¥P9°0 08L0 INNSNIY]
0¥ PAVA ST'§ §g'g 01r'e €0'C P81 €€'C | L8S'0 ¢LT (40 G080 | PS'T TLE 199 96°¢ ADUANY
102 £6¢ 112 L2e 009 €6°L 6€°9 GL'8 29'C VT 16T €08°0 | 9PT GCE 1IT8 S9°T SALTIONOD
€9'8 8T) ¥9°L TLe G6°¢ 86°C 8¢°¢ 671 ere 8¥'¢ VT | 8LL TI8T TII 7L NOLSOg
201X 201X

an aad Ha qHadga i an aN ctel aad an clete} Haa aad an 4N ctel aad

08Id YIPIM 08ID YIPIM 08Id-12LIg [081D-101Ig NOILVTINNIS

‘sopquuesuy] des(] Iengal pue se[quuasuy dea(]
padder)sjoog] aredwiod 0} Pasn oIe SoN[eA PAIOISIOPUN PUR 9I0S ISLICQ }S9q [[BISAO O} 9)eIIPUI 0} Pasn dIe
sonyea prog ‘D ¢ Xipuaddy ul punoj aq ued ‘9siou pajnqLIIsSIp A[JUSISHIP PUe ‘[OPOU UOIIR[NUIS 9Se(JUIJIP
® YHIM ‘UOIYRZIIR[NSDI Jnoyjim Jururelr) Suipnoul ‘5] 0} uosireduod I9Y)INJ € Se [[oMm se ‘sonyea fqSINY 1V
‘Burpduresol o1[) 01 anp eJep SSO] UO pourelr} SU(| A[OAI}ILJ SI I9UIDUWI S[UISSUS (OB 90UIS Pajdadxo aq 0}
st styT, "(%0g punole usjjo) HQINY IoSIe] A[qejou e pey N Te[IWIS A[oUIaI)Xo [eIouad Ul sem (J0) JO onyea
ASINY oYL, "I0jorpaid aures oy} asn A9y} 9ouls ST [BOIIUSPI oAy F(] PUe F (5 "oSe1aa0d touadns oy} £q
poysnl St SIY} IMNq IOpIm aIe (¢ JO S[EAIUT 9OUIPYUOD O], "S[RAIDUI 9OUIPYUOD 0MY} J1q [I0] S9I0IS IOMO]
A[qRIOPISUOD pUR S[RAIOIUT UOIPIIPaId JSOUW I0] $0100s Iollg o[qeredurod aA1dsqo oA\ “((9'¢) uoryenbsy) IDIJ
a1} 10] Ajrjuenb quorearnbe o1y sejouep (RIJ-IOLIg ‘[RAISIUI 90USPYUO0D 9,08 Ue Jo ((f'¢) uoryenbsy) JOID oyl
JO 91098 ISLIE 9} S9JOUSP (R[D-IOLIE ‘POIONIJSUOD 9IOM S[RAISIUI UOIIOIPaId PUe 90USPHYUOd MAU PUR ‘paurer)
9I0M SO[(UIASUD MU ‘}oS BJEP MOU [DRd U() "SOLIJOW S} 9)e[NO[ed 0} Pash dIam S)dS B)ep paje[nuuis)T jo
e300 vV (D) serquesuy ueAli(Ayrent) pue () mmodoi opmuo)) ‘(gN) deiisjooq oareN o3 ‘(AJ)
sopquosuy] doa(] 09 (Hg) sojquosuy doa(paddeijsiooq poyjew o Jo UOSLIRAUIOD 91} JO SHNSOY :T°¢ S[R],

3.4. EXPERIMENTAL RESULTS 79

Figure 3.3: Violin plot of the individual CICF (z) values for 80% Cls, calculated
on the test set of the Concrete simulation. Each CICF value was obtained using
100 simulations. Violin plots of all other simulations, including for the PICF
values, can be found in 3.C. Note that perfect coverage would correspond to
a sharp peak at 1 — a. It can be seen that the confidence intervals for Deep
Ensembles (DE) tend to be too optimistic, those for Concrete Dropout (CD)
are often far too optimistic, and those for the Naive Bootstrap (NB) are all
over the place.

Moreover, our method is very robust. While other methods sometimes perform
very poorly, as indicated by the large deviation from the diagonal line in Figure
3.4, our method does not. In particular, our confidence intervals are almost
always better than those generated by the other methods and in the few cases
that they are not, they still perform almost as well. The confidence intervals
of Concrete dropout, for instance, perform similar on one data set and slightly
better on two data sets, but dramatically underperform on the remaining five.

To check our assumptions, we kept track of all the predictions of the first
ensemble member before and after retraining in each of the 100 simulations
of the Boston Housing part of experiment 1. Figure 3.5 shows two typical
scenarios. For most values of , we found that the errors are indeed normally
distributed and that the variance of fi(x) — f(z) is slightly larger than the

variance of fi(x) — fi(x). This is expected, since the former also has variance
due to the randomness of the training. We also see, however, that for some
values of & we get a large bias term, violating Assumption 2. Figure 3.7 in 3.B
shows these plots for the first 28 data points in the Boston Housing test set.

This violation of Assumption 2 explains that some of the BDE confidence
intervals have a low coverage. We note that Deep Ensembles have the same
problem, and that also on points with high bias, our method has better CICF
values.

80 CHAPTER 3. BOOTSTRAPPED DEEP ENSEMBLES

Confidence Intervals Prediction Intervals

Figure 3.4: Comparison of our method Bootstrapped Deep Ensembles (BDE)
to Deep Ensembles (DE), the Naive Bootstrap (NB), Concrete Dropout (CD)
and Quality Driven Ensembles (QDE). The Brier scores (see Table 3.1) of BDE
are plotted against those of the other methods. Our method has superior per-
formance for all instances above the dotted diagonal. Additionally, the distance
to the dotted line gives an indication of the difference in model performance.
BDE clearly improves upon DE and is generally very robust.

3.4. EXPERIMENTAL RESULTS 81

40 fi—f m I fi-f
30 30
20 20
10 10 ‘

‘ \

“v-— . — 0! —
4 2 0 2 i 6 8 12 -0 -8 -6 -4 -2 0 2
error error

(a) Data point 13 in the BostonHousing (b) Data point 15 in the BostonHousing
test set test set

Figure 3.5: Empirical example of Assumptions 2 and 3. Each histogram is

made by evaluating fi(z) — f(z) and fi(z) — fi(z) for a single value of x
on 100 simulated data sets. In (a) we see that the assumptions appear to
hold. We have normally distributed errors with a slightly smaller variance
after retraining. This should be the case since the aim of the retraining is
to only capture the variance due to the random targets and not the random
training. In (b), however, we see that for some values of x, a large bias can
occur.

3.4.4 Experiment 2: Relative Effect of Random Targets

To further motivate the benefit of our method, we compared the relative con-
tributions of random optimization and random data to the total variance of a
neural network. As argued above, a neural network can be seen as a random
predictor. This randomness is partially a consequence of the random optimiza-
tion procedure and initialisation, which is captured well by Deep Ensembles.
However, especially for small training sets, the classical variance due to random
targets is also a significant part of the total variance.

We set up a simulation based on the large Protein-tertiary-structure data set.
We trained two sets of 50 networks. The first set was trained with different
targets for each network and the second was trained with the same targets
for each network. The random targets were simulated using the two random
forests. We subsequently examined the average variance of the networks with
fixed and random targets on 5000 previously unseen test points. The average
variance of the 50 networks trained on random targets gives an estimate of

2 2 . .
Toptim T Tclassical, ald the average variance of the 50 networks trained on the

82 CHAPTER 3. BOOTSTRAPPED DEEP ENSEMBLES

Figure 3.6: The effect of random targets and random optimization on the total
variance of the predictor f (x), trained on the Protein data set. For small N,
the effect of random targets is dominant, and even for quite a large number of
data points, it is still significant. The variance due to random optimization,
agptim, is obtained by examining the variance of 50 networks trained on the
same data. Another 50 networks are trained on 50 different data sets, each
with newly simulated targets. The variance of the second group is an estimate
of ngtim + Uglassical'

same targets gives an estimate of o'gptim. We took the difference of the two
as an estimate of Uglassicar This process was repeated multiple times on an
increasing number of data points n.

Figure 3.6 shows that with less than 5000 data points, the classical variance
due to random targets is the dominant part of the total variance, and even
with a lot of training data, the effect of random targets is still significant. This
significant effect is not taken into account by standard DE, which explains the
subpar coverage found in the first experiment (see Table 3.1 and Figure 3.4).

3.4.5 Experiment 3: Examining the Separate Estimates

Our method gives separate estimates for 02, () and o2, (€). To test
how well BDE can capture both components, we trained a BDE with M = 50
and r = 30% on a single data set, simulated with the two random forests. The
variance of these 50 networks before retraining gives an estimate for &gptim(a}).
Through our retraining step, we get an estimate for 63, _;..;(Z). Subsequently,
we trained 50 networks using newly simulated targets for each network. These

targets were simulated using the random forests. The variance of the pre-

3.4. EXPERIMENTAL RESULTS 83

dictions of those second 50 networks gives an estimate of the ground truth

2 2 } . e ~92

O dassical (T) T 00pim (). If our assumptions are correct, our estimate 62, .ieal (T)
- 2 2 2

should be roughly the difference between 03, .1 () + 05, im (2) and o5 ;. ().

Table 3.2 shows that our separate estimates for the variances due to random
targets and due to random training sum correctly - within approximately 10%
- to the true variance when training with random targets. This shows that
our approach of repeating a part of the training on new targets is an effective
method to incorporate the uncertainty due to random targets without affecting
accuracy.

3.4.6 Limitations

We end the results section by noting some of the limitations of our method.
Most notably, it is important to realize that our assumptions will not always
hold. The goal of our method was to incorporate the classical uncertainty that
is a consequence from the fact that we are training on a random data set. In
order to translate the predictions of the ensemble members to a confidence
interval, we must make some distributional assumptions. Our assumptions are
theoretically motivated by asymptotic analysis for parametric models (see 3.B),
but are not guaranteed to always hold in practice.

In particular, the unbiasedness assumption will not always hold. This is a prob-
lem with ensembling in general, and not specific to our method. If all ensemble
members have a certain bias, then the corresponding confidence interval can
easily have a very low coverage. Similarly, if the additive noise is not Gaussian,
then the coverage can be imperfect. We investigated this in more detail in 3.C

Table 3.2: The quality of the average estimate for o2 (z) on 4 different

classical
simulated data sets. The first column gives the ground truth of 02, ca +Toptim

obtained by training with random targets. The sum of the estimates 6(2)ptim and

&flassical match the ground truth within roughly 10%.
Simulation Uglassical + 0—(2>ptim &gptim (}czlassical 6§lassical + &gptim
Boston 2.44 1.52 0.91 2.43
Concrete 13.03 6.45 6.02 12.47
Energy 0.92 0.50 0.45 0.95

kin8nm 2.7e-3 1.7¢-3 1.6e-3 3.3e-3

84 CHAPTER 3. BOOTSTRAPPED DEEP ENSEMBLES

and found this effect to be noticeable but much less substantial than the effect
of a large bias.

Our method is 30% more expensive than regular Deep Ensembles. While our
tailor-made bootstrapping approach is far more efficient than the alternative of
training an ensemble of ensembles, this 30% may be significant depending on
the application. Additionally, at inference time, a total of 2M forward passes
needs to be made, in comparison to M for regular Deep Ensembles.

3.5 Conclusion

In this chapter, we presented our uncertainty estimation method Bootstrapped
Deep Ensembles. The BDE confidence intervals have much better coverage than
those obtained with standard DE or other popular methods, at a price of just
30% more training time. BDE improves upon DE because it incorporates the
epistemic uncertainty due to the randomness of the training targets, where DE
only captures the randomness of the optimization procedure. Our simulations
show that the randomness of the training targets is substantial, even for larger
data sets.

Where, based on asymptotic statistical theory, one would expect this variance
to be inversely proportional to the number of data points, we observed a slower
decay, closer to ﬁ It would be interesting to study the (asymptotic) behavior
of these two components in more detail, also to be able to judge when one
can indeed be neglected compared to the other. As a potential bonus, to be
investigated in more detail in future work, our method appears to better detect
overfitting than standard DEs. Arguments and initial empirical evidence can
be found in 3.D.

In regions with relatively little data, confidence intervals tend to get larger. In
general, however, we would like to discourage the use of confidence intervals
for out-of-distribution detection: confidence intervals may get wider for quite
different reasons, in particular when we allow for heteroscedastic noise, and,
perhaps more importantly, they simply cannot be trusted in regions with little
training data, since the underlying assumptions on which they are based are
doomed to be violated. A more promising avenue for future work is to combine
our method with an orthogonal approach, specifically for OoD detection (such
as, for example, Ren et al. 2019).

3.A. PROOF OF THEOREM 3.3.1 85

APPENDIX CHAPTER 3

This appendix consists of four parts. In Section 3.A, we provide the proof of
Theorem 3.3.1. In Section 3.B, we motivate the assumptions on which Boot-
strapped Deep Ensembles rely. We provide additional experimentation in Sec-
tion 3.C and briefly investigate the possibility to detect overfitting in Section
3.D.

3.A Proof of Theorem 3.3.1

Proof The result follows by evaluating

o U@Ll (37)
6—glassical(w) + %

2 2

We recall that our estimates for o (z) and o (z) are given by:

optim classical
1 &/, LA
6gptim<w) M*lz <f1<$)——2f1<12)>)
i=1 i=1

and
1 2
Fassca(@) = 72> (fi(@) = fil@))
Assumption 2 tells us that

o2

(f(II!) - f* (:l?))2 = (Uglassical(m) + O;\?“‘) 6(2)’ Wlth € ™~ N(Ov 1)7

and)
Joptim (CE)

Oopuim () =~

2 tim Co, with (o ~x*(M —1).
Assumption 3 implies

2
N g : T
O—glassical(m) = cla‘%al()gcj

This enables us to rewrite equation (3.7) to

with e ~ x2(M).

2
T2 = ‘0 , 3.8
’YWO + (]. — ’Y)Wc ()

86 CHAPTER 3. BOOTSTRAPPED DEEP ENSEMBLES

with

WO = MCO_ 13 andv WC = C_]\2—7
and)
9optim (=)
N = M

U?lassical(m) + ﬁagptim(m)’

where we dropped the dependence of v on « to simplify notation. Our goal is
to bound the following probability:

P (vWO - (107 A > F_o(1, M — 1)) : (3.9)

which we can rewrite as

//((vwo 13_ e >F1—a<1vM—1>))dGo<wo)dGc(wc),

where Go(w,) is the cumulative distribution function of W, and G.(w.) is the
cumulative distribution function of W,.. We define the conditional probability
in the integral as ¢(7):

2
. f% _
P (WO s p— >F_o(1,M 1))) (3.10)

The next step is to show that ¢(7) is convex. Let H be the CDF of €2, which
has a x2(1) distribution, then h = H’ is strictly decreasing, which implies
h' < 0. We can rewrite ¢(v) as

P(v) =

o(v) =1 = H((ywo + (1 = y)we) F1-a(1, M — 1)),
which gives
¢/(7) = —(wo — we) Fi—a(1, M = D)h((ywo + (1 = y)we) F1-a(1, M = 1)),
and

¢”('Y) = —(wo — WC)zFl—a(lv M — 1)2
R ((ywo + (1 — y)we) Fi_o(1, M — 1)) > 0.

This means that ¢(v) is convex, which implies that equation (3.9) is convex.
The maximum of equation (3.9) is therefore either at v = 0 or v = 1. Evaluating

3.B. MOTIVATION OF ASSUMPTIONS 87

equation (3.8) shows that taking v = 0 gives T2 an F (1, M) distribution and
taking v = 1 gives T? an F(1, M —1) distribution. Since F,, (1, M) < F,(1, M —
1) for all o, we get

p (f(z) — f*g-’f))2 > F(LM-1) | <a

~2 optim
O lassical (ZIJ) + M

3.B Motivation of Assumptions

Our method relies on three assumptions. We will first provide a theoretical
motivation of these assumptions and then provide some additional empirical
support.

3.B.1 Theoretical Motivation of Assumptions

Assumption 1 is a common modeling assumption that may or may not hold
depending on the data. The second assumption claims that the output of the
neural network is normally distributed. This normality is a very standard as-
sumption. The typical reasoning is that in a deterministic parametric model
without regularization this assumption holds asymptotically. The same asymp-
totic normality can be shown for the third assumption, which is a common
assumption of the parametric model.

We now provide the supoprt of these statements for a parametric model. Here,
there is no variance due to training and we need to show - 1 - that the output
of the model is normally distributed and - 2 - that if we train the model again
on simulated targets, that the output will still be normally distributed with
roughly equal variance. We stress that this is not a proof that our assumptions
hold, which is impossible to prove for a neural network, but a proof of the result
for a parametric model, which motivates the assuptions.

Let 6 be the parameters that parametrize our network. Let pg(D) be the
likelihood of the data given €. Our setup corresponds to finding the 6 that
maximizes pg(D):

0 = argmaxpe (D),

88 CHAPTER 3. BOOTSTRAPPED DEEP ENSEMBLES

and subsequently finding 6 that maximises pg (Dhew):
é = arg meaxpe (Dnew>7

Furthermore, we define

0
1(6y) := Covg, 20 log(pe(x1,¥1)) (3.11)

0o

Under certain consistency and regularity conditions it is possible to show that
V(8 — 80) — N (0,1(8,)7Y),
and

(0 —0) = N (0.16)7").

For a proof and clarification of the assumed consistency and regularity see Van
der Vaart (2000) or Seber and Wild (2003).

With f; and fi, we denote the output of the mean prediction of an ensemble
member before and after repeating part of the training. The delta method

gives the variance of fz and fl

and

V[é] (a%fg(m) é)T.

Under the assumed consistency, 6 and 6 will be close and thus 0% fo(x) ‘ o Will

v [f;@)] = spfo@)

0

be close to %fg(m)b. By the same consistency, 1(8y) and 1(8) will be close.

3.C. ADDITIONAL EXPERIMENTATION 89

3.B.2 Empirical Assessment of Assumptions

During the Boston Housing part of Experiment 1, we kept track of all the
predictions of the first ensemble member before and after retraining in each of
the 100 simulations. For most values of x, we found that the errors are indeed
normally distributed and that the variance of fi(x) — f(x) is slightly larger

than the variance of fi() — fi(z). This is expected, since the former also has
variance due to the randomness of the training. We also see, however, that for
some values of x, we get a large bias term, violating Assumption 2. Figure 3.7
shows these plots for the first 28 data points in the Boston Housing test set.

3.C Additional Experimentation

In this section, we provide additional experimental results. We repeated parts
of Experiment 1 in Section 3.4 with the following alterations:

1. We used differently distributed noise — violating Assumption 1 — in order
to see how this affects the confidence intervals.

2. We removed all regularization in the neural networks.

3. We used a different simulation model. Recall that we used a random
forest that was trained on real-world data sets to be able to simulate
data for our experiments. We replaced the random forest with a neural
network as the true function, f(x).

4. We used different retraining fractions.

We also give the RMSE values from Experiment 1 and provide the violin plots
for all the prediction and confidence intervals.

90 CHAPTER 3. BOOTSTRAPPED DEEP ENSEMBLES

Figure 3.7: The same error plots as in Figure 3.5 for the first 28 data points
in the Boston Housing test set. The assumed normality seems to hold well.
However, the original predictor is often biased.

3.C. ADDITIONAL EXPERIMENTATION 91

3.C.1 Differently Distributed Noise

We study what would happen if we misspecified our model. In order to test
this, we simulated data with additive ¢(3) and T'(1/10,1/10) distributed noise,
denoted with e¢. In order to make the experiments comparable to the earlier
ones, we used the variance o?(z) from the random forest and a scaling factor,
C, to obtain a comparable size heteroscedastic variance:

y= f(@) + Co(a)e

For the #(3) distribution we have C = /1/3 and for the T'(1/10,+/10) distri-
bution we have C' = 1.

Table 3.3 illustrates that BDE still produce better confidence intervals than
DE, but that the performance is affected by the violation of Assumption 1. In
the case of the, purposely very skewed, gamma distribution, we also see that
the prediction intervals are no longer calibrated, as is illustrated in Figure 3.8.

Table 3.3: Results of the comparison of our method Bootstrapped Deep Ensem-
bles (BDE) to Deep Ensembles (DE) on the Boston simulation using differently
distributed additive noise. A total of 100 simulated data sets were used to cal-
culate the metrics. Brier-CIA denotes the Brier score of the CICF of an A%
confidence interval.

Noise Brier-CI90 | Brier-CI80 Brier-CI70 | Width CI90
BDE DE BDE DE BDE DE BDE DE
x1072 x1072 x1072
N(0,1) 6.15 9.74 7.88 11.1 7.67 10.5 4.70 4.13
t(3) 6.28 9.45 8.07 10.9 7.69 10.1 4.48 3.93

I'(1/10,4/10) 9.63 11.8 11.6 13.0 10.9 11.9 2.66 2.55

92 CHAPTER 3. BOOTSTRAPPED DEEP ENSEMBLES

(a) a=0.2 (b) a=0.3

Figure 3.8: Histogram of the individual PICF(x) values calculated on the test
set of the Boston simulation. Each point in the histogram represents the frac-
tion of times the true function value f(x) was inside the confidence interval
calculated over 100 simulations. The skewness of the gamma distribution shows
in the error of the PICF.

3.C.2 No Regularization

To examine the effect of regularization, we repeated a part of Experiment 1
without any regularization. The results are given in Table 3.4. We note that
the regularization seems to have hardly any effect on the outcome. This could
be the result of the fixed training time of 80 epochs and a relatively simple
neural network architecture preventing overfitting.

3.C. ADDITIONAL EXPERIMENTATION 93

Table 3.4: Results of the comparison of our method Bootstrapped Deep En-
sembles (BDE) to Deep Ensembles (DE) without any regularization. A total of
100 simulated data sets were used to calculate the metrics. On each new data
set, new ensembles were trained, and new confidence and prediction intervals
were constructed. Brier-CI90 denotes the Brier score of the CICF of a 90%
confidence interval. Brier-PI90 denotes the equivalent quantity for the PICF.
RMSE gives the root mean squared error of the predictions with respect to the
targets. Since the predictor is identical for both methods, there is only one
value.

SIMULATION Brier-CI90 | Brier-PI90 | RMSE Width CI90 Width PI90
BDE DE ‘BDE DE ‘BDE/DE ‘ BDE DE ‘BDE DE

x1072 x1073
Boston 8.0 11 8.9 13 3.82 4.32 3.88 11.2 10.7
Concrete 4.1 8.6 3.9 6.8 10.3 10.7 8.13 30.6 29.0
Energy 9.0 12 6.2 8.3 2.87 2.98 2.43 4.98 4.73

3.C.3 Different Simulation Method

Instead of a random forest, we used a neural network in order to simulate
data (see Algorithm 8). The network has the same architecture and training
procedure as the ones used for the experiment.

We see in Table 3.5 that we get better results for both BDE and DE, although
BDE still perform better. A likely explanation is that this task is easier, as
is indicated by the significantly lower RMSE. The model we are simulating
targets from is identical to the model we are using for the experiment.

3.C.4 Different Retraining Fractions

As expected, we observe from Table 3.6 that the widths of the confidence
intervals get larger with an increasing retraining fraction. Trivially, setting the
retraining fraction to 0 would yield zero variance and setting it to 1 would also
capture the uncertainty due to random training.

94 CHAPTER 3. BOOTSTRAPPED DEEP ENSEMBLES

Algorithm 8 Pseudo-code to simulate data based on a real-world data set D
using a neural network.

1: Train a neural network on D that outputs f(x) and o?(x);
2: Simulate new targets: §; ~ N (f(x;),0%(x;));
3: Return: Dyew = ((€1,71),-- -, (Zn, In));

Table 3.5: Results of the comparison of our method Bootstrapped Deep Ensem-
bles (BDE) to Deep Ensembles (DE) when using a neural network to simulate
data. A total of 100 simulated data sets were used to calculate the metrics.
On each new data set, new ensembles were trained, and new confidence and
prediction intervals were constructed. Brier-CI90 denotes the Brier score of the
CICF of a 90% confidence interval. Brier-PI90 denotes the equivalent quantity
for the PICF. RMSE gives the root mean squared error of the predictions with
respect to the targets. Since the predictor is identical for both methods.

SIMULATION Brier-CI90 | Brier-PI90 | RMSE Width CI90 Width PI90
BDE DE ‘ BDE DE ‘ BDE/DE ‘ BDE DE ‘ BDE DE

%1072 x1073
Boston 2.8 3.1 6.3 8.8 2.92 3.31 3.27 7.86 7.50
Concrete 2.4 3.3 4.9 6.9 6.00 7.81 7.12 17.7 16.6
Energy 3.7 3.8 8.5 8.9 2.64 3.10 1.99 5.82 5.53

Table 3.6: The effect of the training fraction on BDE. A total of 100 simu-
lated data sets were used to calculate the metrics. On each new data set, new
ensembles were trained, and new confidence and prediction intervals were con-
structed. Brier-CI80 denotes the Brier score of the CICF of an 80% confidence
interval. Brier-PI80 denotes the equivalent quantity for the PICF.

Retraining fraction Brier-CI80 Brier-PI80 Width CI80 Width PI80

x10~2 x1072
0.1 11.5 3.03 2.84 7.37
0.2 9.07 2.70 3.16 7.54
0.3 7.78 2.45 3.38 7.64
0.4 6.93 2.34 3.60 7.78

3.C.5 Additional Results Experiment 1

Table 3.7 gives the RMSE values of all methods during Experiment 1 of this
chapter. Figures 3.9 and 3.10 give the violin plots of the CICF and PICF values

3.C. ADDITIONAL EXPERIMENTATION 95

from the same experiment. These figures demonstrate that bootstrapped DE
are able to provide reliable confidence and prediction intervals. We also note
that high-quality prediction intervals do not guarantee high-quality confidence
intervals.

Table 3.7: The RMSE values of the methods during the simulations of Exper-
iment 1. Each value is calculated with respect to the targets of the test set
and are averaged over the 100 simulations that were used for each data set.
Bootstrapped Deep Ensembles and Deep Ensembles have the same score since
they use the exact same predictor. Concrete Dropout has a very comparable
score. The Naive Bootstrap has significantly larger errors. This is to be ex-
pected since each ensemble member is effectively being trained on less data due
to the resampling.

SIMULATION (Bootstrapped) Deep Ensembles Naive Bootstrap ~ Concrete Dropout

Boston 3.92 4.03 3.95
Concrete 10.4 12.5 10.8
Energy 2.73 3.38 2.67
Kin8nm 0.216 0.286 0.238
Naval 0.0128 0.0180 0.0128
Power-Plant 5.01 5.66 5.08
Yacht 3.26 3.86 2.68

Wine 0.654 0.677 0.709

96 CHAPTER 3. BOOTSTRAPPED DEEP ENSEMBLES

(a) Boston, @ = 0.05 (b) Boston, @ =0.2 (c) Concrete,a = 0.05 (d) Concrete, a = 0.2

(e) Energy, « =0.05 (f) Energy, « = 0.2 (g) kin8nm, o =0.05 (h) kin8nm, oo = 0.2

(i) Naval, o = 0.05 (j) Naval, « = 0.2 (k) Power-plant, (1) Power-plant,
a = 0.05 a=0.2

(m) Wine, a = 0.05 (n) Wine, a = 0.2 (o) Yacht, « =0.05 (p) Yacht, « = 0.2

Figure 3.9: Violin plots of the CICF values for all 8 simulations of Experiment
1. For each simulation, we give the CICF values for the 95% and 80% confidence
intervals. Each plot is made using the CICF scores of each data point in the test
sets. The CICF scores are calculated using 100 simulations. The confidence
intervals of Bootstrapped Deep Ensembles have better coverage than the other
methods in most simulations.

3.C. ADDITIONAL EXPERIMENTATION 97

(a) Boston, & = 0.05 (b) Boston, « = 0.2 (c) Concrete,a = 0.05 (d) Concrete,ac = 0.2

(e) Energy, =0.05 (f) Energy, « =0.2 (g) kin8nm, a = 0.05 (h) kin8nm, oo = 0.2

(i) Naval, a = 0.05 (j) Naval, « = 0.2 (k) Power-plant, (1) Power-plant,
a=0.05 a=0.2

(m) Wine, « =0.05 (n) Wine, a = 0.2 (o) Yacht, « =0.05 (p) Yacht, « = 0.2

Figure 3.10: Violin plots of the PICF values for all 8 simulations of Experiment
1. For each simulation, we give the PICF values for the 95% and 80% prediction
intervals. The prediction intervals have better coverage than the confidence
intervals. Quality-Driven Ensembles give prediction intervals that are too large
in most simulations.

98 CHAPTER 3. BOOTSTRAPPED DEEP ENSEMBLES

3.D Detecting Overfitting

While not the primary goal of our method, a potential added bonus is the
possibility to detect overfitting. Suppose that we are in a situation where the
networks are overfitting the noise. The ensemble members of standard DE, that
are trained on the exact same targets, will tend to provide the same predic-
tions when overfitting on the targets, yielding very small confidence intervals.
The retrained ensemble members of Bootstrapped DE, on the other hand, are
trained on different targets and hence will tend to provide quite different pre-
dictions from their original counterparts, leading to relatively large confidence
intervals. With extreme overfitting, to the point that 6%(x) gets close to zero,
this advantage of bootstrapped DE over DE will vanish and both methods will
fail to detect overfitting.

We provide short a motivating example by comparing BDE and DE in a sce-
nario in which we know that the network will overfit: a complex network with
only 7 data points and no regularization. The targets were simulated from a
N (0, 0.22) distribution, pure noise. Each ensemble member had three hidden
layers containing 400, 200, and 100 hidden layers and was trained for 80 epochs.

Figure 3.11 illustrates that BDE is better able to detect overfitting. The con-
fidence intervals of our method increase at the location of the data points,
indicating overfitting, whereas those of DE almost vanish. The reason is as
follows. The original ensemble members fl(w) are the same for both BDE and
DE. In the retraining step of BDE, however, the ensemble members will overfit
to new targets, resulting in a large estimate for aflassical(m). This overfitting
is even more apparent by the fact that confidence intervals of BDE sometimes
actually increase at the locations of the training data. We only investigated
this briefly and it may be worthwhile to investigate this further.

3.D. DETECTING OVERFITTING 99

Figure 3.11: The 90% confidence intervals of Bootstrapped Deep Ensembles
(BDE) and Deep Ensembles (DE). The original ensemble members were trained
long enough to overfit on the data. DE are unable to detect this since all
ensemble members behave roughly the same. The variance of the networks
after retraining on new targets, however, is much larger since each network will
overfit on different targets. BDE are therefore better able to detect overfitting.

CHAPTER 4

Optimal Mean-Variance
Estimation

This chapter is based on the paper entitled “Optimal Training of Mean Vari-
ance Estimation Neural Networks” (Sluijterman et al., 2024b), which has been
published in Neurocomputing. Where the previous chapter mainly focused on
the model uncertainty, this chapter focuses on the data uncertainty, see Figure
4.1. Specifically, we focus on improving the type of networks that were used as
the individual ensemble members in the previous chapter.

101

102 CHAPTER 4. OPTIMAL MEAN-VARIANCE ESTIMATION

Figure 4.1: The scope of Chapter 4. This chapter focuses on the data un-
certainty in a regression setting. We focus on methods to improve the neural
networks that were used as ensemble members in the previous chapter.

4.1 Introduction

Neural networks are gaining tremendous popularity both in regression and
classification applications. In a regression setting, the scope of this chapter,
neural networks are used for a wide range of tasks such as the prediction of
wind power (Khosravi and Nahavandi, 2014), bone strength (Shaikhina and
Khovanova, 2017), and floods (Chaudhary et al., 2022).

Due to the deployment of neural networks in these safety-critical applications,
uncertainty estimation has become increasingly important (Gal, 2016). Assum-
ing a representative data set, the uncertainty in the prediction can be roughly

4.1. INTRODUCTION 103

decomposed into two parts: epistemic or model uncertainty, the reducible un-
certainty that captures the fact that we are unsure about our model, and
aleatoric uncertainty, the irreducible uncertainty that arises from the inher-
ent randomness of the data (Hiillermeier and Waegeman, 2021; Abdar et al.,
2021). In this chaper, we refer to the latter as the variance of the noise, to
avoid any confusion or philosophical discussions. The variance of the noise can
be homoscedastic if it is constant, or heteroscedastic if it depends on the input
xT.

There is a vast amount of research that studies the model uncertainty. Notable
approaches include Bayesian neural networks (MacKay, 1992a; Neal, 2012),
dropout (Gal and Ghahramani, 2016; Gal et al., 2017), and ensembling (Hes-
kes, 1997). Conversely, a lot less emphasis is often placed on the estimation
of the variance of the noise. Monte-Carlo dropout, for example, simply uses a
single homoscedastic hyperparameter. Some other methods, such as concrete
dropout (Gal et al., 2017) and the hugely popular Deep Ensembles (Laksh-
minarayanan et al., 2017), use a Mean Variance Estimation (MVE) network
(Nix and Weigend, 1994). While acknowledging that there are alternative ap-
proaches for uncertainty quantification, in this chapter we therefore focus on
optimal training of MVE networks.

An MVE network, see Figure 4.2, works as follows. We assume that we have
a data set consisting of n pairs (z;,y;), with y; ~ N (u(z;),02(x;)). An
MVE network consists of two sub-networks that output a prediction for the
mean, f19(z), and for the variance, o3(x). These sub-networks only share the
input layer and do not have any shared weights or biases. In order to enforce
positivity of the variance, a transformation such as a softplus or an exponential
is used. The network is trained by using the negative loglikelihood of a normal
distribution as the loss function:

2

£0) = 3 g looh(wn) + 3 M T (11)

Since the MVE network is often used as the building block for complex uncer-
tainty estimation methods, it is essential that it works well. Multiple authors
have noted that the training of an MVE network can be unstable (Seitzer et al.,
2021; Skafte et al., 2019; Takahashi et al., 2018). The main argument, elabo-
rated on in the next section, is that the network will start focusing on areas
where the network does well at the start of the training process while ignoring
poorly fitted regions.

104 CHAPTER 4. OPTIMAL MEAN-VARIANCE ESTIMATION

Q : g::ﬁijzzzo u(a)
T Q a

Q T

G O 5 00
Figure 4.2: Original MVE architec- Figure 4.3: Modern MVE architec-
ture ture

However, Nix and Weigend (1994) already warned for the possibility of harmful
overfitting of the variance and gave the solution:

The training of an MVE network should start with a warm-up period where
the variance is fized and only the mean is optimized.

Additionally, the variance is initialized at a constant value in order to make
all data points contribute equally to the loss. Nix and Weigend (1994) did
not demonstrate the importance of this warm-up period in the original paper.
In this chapter, we empirically demonstrate that using a warm-up period can
greatly improve the performance of MVE networks and fixes the instability
noted by other authors.

A limited amount of research has investigated possible improvements of the
MVE network (Seitzer et al., 2021; Skafte et al., 2019). Most improvements
require a significant adaptation to the training procedure such as a different loss
function or locally aware mini-batches. One of the most prominent approaches
is the B8-NLL loss (Seitzer et al., 2021), which multiplies the loss in Equation
(4.1) by a factor 035 (z;) while disabling gradient back-propagation for this
factor. This induces a combination of the original NLL loss (8 = 0) and the
mean-squared error loss (8 = 1). However, to the best of our knowledge, none
have investigated our proposed easy-to-implement improvement:

The mean and variance in an MVE network should be reqularized separately.

Most modern methods (Jain et al., 2020; Egele et al., 2022; Gal et al., 2017;
Lakshminarayanan et al., 2017) appear to use the same regularization for both
the mean and the variance. In fact, the current use of the MVE network often
does not even easily allow for different regularizations. Typically, only a second
output node is added to represent the variance, instead of an entire separate
sub-network (see Figure 4.3). As we will demonstrate in this chapter, separate
regularization can be very beneficial to the predictive results.

4.2. DIFFICULTIES WITH TRAINING MVE NETWORKS 105

Contributions:

e We provide experimental results that demonstrate the importance of a
warm-up period as suggested by Nix and Weigend (1994).

e We explore the benefits of updating the mean and variance simultaneously
after the warm-up versus solely learning the variance while keeping the
mean fixed.

o We offer a theoretical motivation for why distinct regularization of the
mean and variance is essential for an MVE network. We back up our
claims with real-world evidence, demonstrating how this approach can
lead to significant enhancements.

Organization:

This chapter consists of 6 sections, this introduction being the first. In Section
4.2, we go through the problems with MVE networks that have recently been
reported in the literature. In the same section, we show that these problems can
be resolved by following the recommendation of using a warm-up period. We
also provide an additional theoretical motivation in favor of updating both the
mean and the variance after the warm-up as opposed to keeping the mean fixed
and only learning the variance. Section 4.3 explains, both intuitively and using
classical theory, why we expect to need different amounts of regularization for
the mean and the variance estimates. Both the effect of the warm-up and of
separate regularization are experimentally examined in Sections 4.4 and 4.5.
The final section summarizes the results, gives a list of recommendations when
training an MVE network, and provides possible avenues for future work.

4.2 Difficulties With Training MVE Networks

It is known that the training of an MVE network can be unstable (Seitzer
et al., 2021; Skafte et al., 2019; Takahashi et al., 2018). The main argument
is that the network may fail to learn the mean function for regions where it
initially has a large error. In these regions, the variance estimate will increase,
which implies that the residual does not contribute to the loss as much. The
network will start to focus more on regions where it is performing well, while
increasingly ignoring poorly fit regions. For a more in-depth explanation of
this effect, we refer to Nix and Weigend (1994).

106 CHAPTER 4. OPTIMAL MEAN-VARIANCE ESTIMATION

(a) Regular (b) Warm-up

(c) Separate regularization (d) B-NLL

Figure 4.4: The effect of various MVE training strategies. The orange area gives
plus or minus a single standard deviation. Without a warm-up or separate reg-
ularization, the network fails to learn the mean function when simultaneously
updating the mean and the variance. The use of a S-NLL loss with a 8 of 0.5
does not resolve the convergence issues.

To illustrate what can happen, we reproduced an experiment from Seitzer et al.
(2021). We sampled 1000 covariates, z;, uniformly between 0 and 10, and sub-
sequently sampled the targets, y;, from a N (0.4 sin(27x;), 0.012) distribution.
Figure 4.4(a) shows that the MVE network is unable to properly learn the
mean function. Increasing training time does not solve this. A network with
a similar architecture that was trained using the mean-squared error loss was
able to learn the mean function well.

We provide a second explanation for this behavior by noting that the loss land-
scape is likely to have many local minima. We already encounter this in a very
simple example. Suppose we have a data set consisting of two parts: 100 data

4.2. DIFFICULTIES WITH TRAINING MVE NETWORKS 107

Figure 4.5: A simple example of local minima in the negative loglikelihood. The
data consist of two parts: 100 data points from a A/ (2, 0.52) distribution and
100 data points from a A/ (5, 0.12) distribution. The graph shows the negative
loglikelihood as a function of ji where we take the optimal variance estimates
for each value of i. The loss has a positive definite 3 x 3 Hessian at both of
the locations, which means they are genuine minima in R3.

points from a N (2, 0.52) distribution and 100 data points from a N (5, 0.12)
distribution. For each part, we are allowed to pick a separate variance esti-
mate, 67 and 63, but we can only pick a single estimate for the mean. In this
situation, there are two local minima of the negative loglikelihood (see Figure
4.5): we can set ji to approximately 2 with a small 67 and large 62 or set fi to 5
with a large 67 and small 53. The negative loglikelihood has a positive definite
3 x 3 Hessian at both locations, which are thus minima in R3. This implies
that it is not possible to get out of the local minima illustrated in Figure 4.5
by varying &1 and G5.

While this simplified setting is of course not a realistic representation of a
neural network, it does illustrate that there can easily be many local minima
when dealing with complex functions for the mean and the variance. When we
start from a random estimate for the mean, it is therefore not unlikely to end
up in a bad local minimum.

4.2.1 The Solution: Warm-up

The original authors advised to use a warm-up, which indeed alleviates most
problems. After initialization, the variance is fixed at a constant value and
the mean estimate is learned. In a second phase, the mean and variance are
updated simultaneously.

108 CHAPTER 4. OPTIMAL MEAN-VARIANCE ESTIMATION

We can motivate why a warm-up is beneficial, both from the loss-contribution
perspective and from the local minima perspective. From the loss-contribution
perspective, when keeping the variance fixed during the warm-up, we do not
have the problem that regions that are predicted poorly initially fail to learn.
Because the variance estimate at initialization is constant, all residuals con-
tribute to the loss equally. From the loss-landscape perspective, we are less
likely to end up in a bad local minima if we start from a sensible mean func-
tion. Figure 4.4(b) shows that adding a warm-up period indeed solves the
convergence problem shown in Figure 4.4(a).

The use of a warm-up period shares similarities with a technique proposed by
Kabir et al. (2021) for directly estimating prediction intervals. In this method,
the network is initially trained on approximate targets to steer the prediction
intervals toward the correct direction. It is then trained on the exact targets
in a subsequent phase. This both improved performance and decreased the
required training time.

4.2.2 What to Do After the Warm-up?

After the warm-up period, we could either update the variance while keeping
the mean estimate fixed or update both simultaneously. In the original MVE
paper, the authors argue that simultaneously estimating the mean and the
variance is also advantageous for the estimate of the mean. The reasoning is
that the model will focus its resources on low noise regions, leading to a more
stable estimator.

From a general theoretical perspective, there are clear advantages to optimiz-
ing the full likelihood. The resulting maximum-likelihood-estimate is consis-
tent and asymptotically efficient (see any standard textbook on statistics, for
instance DeGroot 1986, chapter 7). No other consistent estimator can asymp-
totically have a lower variance. For a linear model, a similar result even holds
for the non-asymptotic regime: Taking the variance of the noise into account
leads to an estimator with lower variance. We provide additional details on
these statements in Appendix 4.A.

This lower variance in turn results in improved metrics such as RMSE. We
demonstrate this both for the general case and for a linear model in Appendices
4.A.1 and 4.A.2. These theoretical results suggest that, besides the obvious
benefit of having an estimate of the variance, it is also beneficial for the mean
estimate to take the variance into account. Even if we measure performance

4.3. THE NEED FOR SEPARATE REGULARIZATION 109

on unseen data with the mean-squared error, there are valid arguments to take
the variance of the residuals into account when estimating the mean.

In summary, focusing on low noise regions is beneficial. However, the estimate
of the variance of the noise strongly depends on the quality of the mean pre-
dictor. If the mean predictor is bad, the estimation will not focus on low noise
regions but on high accuracy regions, which can be very detrimental. We there-
fore need a warm-up period, after which classical theory would suggest that
estimating the mean and variance simultaneously has advantages. In Section
4.4, we test whether estimating the mean and variance simultaneously is indeed
beneficial for the mean estimate.

4.3 The Need for Separate Regularization

In this section, we give a theoretical motivation for the need for a different
regularization of the parts of the network that give the mean and variance esti-
mate. The amount of regularization that is needed when estimating a function
depends on the smoothness and there is no reason to assume that the mean
function and the variance function are equally smooth. If one function is much
smoother than the other, we should not regularize them the same way. For
instance, in the case of homoscedastic additive noise, the variance function is
a constant function, whereas the mean function is likely not.

We can make this argument explicit for a classical linear model. We do this
by considering two linear models that most closely resemble the scenario of an
MVE network. The first model will estimate the mean while knowing the vari-
ance and the second model will estimate the log of the variance! while knowing
the mean. Both models will in general have a different optimal regularization
constant. All derivations for the properties of linear models used in this chapter
can be found in Van Wieringen (2015).

We acknowledge that a neural network is much more intricate than a linear
model. However, since even for a simple linear model it is essential to have
different regularization, the same applies to more complex models like neural
networks that have a linear model as a special case. The empirical results that
follow later corroborate this.

LAn MVE network often uses an exponential transformation in the output of the variance
neuron to ensure positivity. The network then learns the log of the variance.

110 CHAPTER 4. OPTIMAL MEAN-VARIANCE ESTIMATION

4.3.1 Scenario 1: Estimating the Mean With a Known
Variance

We consider a linear model with unknown homoscedastic noise. Specifically,
we assume that we have a data set consisting of n data points (x;,y;), with
x; € RP and y € R. With X, which we assume to be of full rank, we denote
the n x p design matrix which has the n covariate vectors x; as rows. With
Y, we denote the n x 1 vector containing the observations y;. We assume that
the true relation between the covariates and the observations is linear, so we
consider the following model:

Y=XB+U U~N(00°L), (4.2)

where 3 is the true linear relation. The goal is to find the 3 € R? that minimizes
the total squared error plus a regularization term:

n p
S w8’ +)55
j=1

i=1

Different values of result in different estimators B(\). In 4.B, we show that
optimal regularization constant, *, satisfies

N ocp(B78)7,
where we defined optimal as the A\ for which

MSE(B(\) =E [18 - BO)P]

is minimal.

4.3.2 Scenario 2: Estimating the Log-Variance With a
Known Mean

Next, we examine a linear model that estimates the logarithm of the variance.
We again have n datapoints (x;,y;) and we assume the log of the variance to
be a linear function of the covariates:

yz‘:lii‘f'ﬁ ENN(O76:D1T~)

4.3. THE NEED FOR SEPARATE REGULARIZATION 111

We use the same covariates and for the targets we define:
zi=log((yi — p)?) — C, with C =1)(1/2) +log(2),

where v is the digamma function. This somewhat technical choice for C' is
made such that

z; = log(oz(mi)) + €,

where € has expectation zero and a constant variance. The details can be found
in 4.B. In the same appendix we repeat the same procedure, i.e. minimizing
the mean-squared error with a regularization term, and demonstrate that the
optimal regularization constant, *, satisfies

A ocp(BTB) 7

The conclusion is that for these two linear models, that most closely resem-
ble the scenario of regularized neural networks that estimate the mean and
log-variance, the optimal regularization constants rely on the true underlying
parameters 3 and ,@ Since there is no reason to assume that these are sim-
ilar, there is also no reason to assume that the mean and variance should be
similarly regularized.

4.3.3 Separate Regularization of the Variance Alleviates
the Variance-Overfitting

While the problem of ignoring initially poorly fit regions is still present, proper
regularization of the variance can alleviate the harmful overfitting of the vari-
ance. To illustrate this effect, we trained four MVE networks, without a warm-
up period, on a simple quadratic function with heteroscedastic noise. The z-
values were sampled uniformly from [—1, 1] and the y-values were subsequently
sampled from a ' (m2, 0.1+ 0.4$2)2) distribution. We used the original MVE
architecture which has two sub-networks that estimate the mean and the vari-
ance. We used separate ls-regularization constants for both sub-networks in
order to be able to separately regularize the mean and the variance. We used
the same mean regularization in all networks and gradually decreased the reg-
ularization of the variance.

Figure 4.6 demonstrates the effect of different amounts of regularization of the
variance. When the variance is regularized too much, the network is unable
to learn the heteroscedastic variance. This is problematic both because the
resulting uncertainty estimates will be wrong, but also because we lose the

112 CHAPTER 4. OPTIMAL MEAN-VARIANCE ESTIMATION

(a) High regularization: 0.1 (b) Medium regularization: 0.04

(¢) Low regularization: 0.01 (d) No regularization: 0

Figure 4.6: The effect of the different amounts of regularization of the variance.
In all four figures, the mean has the same regularization constant of 0.1. The
regularization constants of the variance is given in the subcaptions. The orange
area gives plus or minus a single predicted standard deviation. The dotted black
line gives the true function and the dotted blue lines illustrate plus or minus
the true standard deviation. The blue dots represent the training set. The
targets follow a quadratic function with heteroscedastic noise. The covariates
are sampled uniformly between -1 and 1. If the variance is regularized too
much, the heteroscedasticity is not learned. If the variance is not regularized
enough, however, the model fails to learn the mean function.

4.4. UCI REGRESSION EXPERIMENT 113

beneficial effect on the mean that we discussed in the previous subsection. In
the second subfigure, the network was able to correctly estimate both the mean
and variance. When we decreased the regularization of the variance further,
however, we see that the networks starts to increase the variance on the left
side instead of learning the function. When we remove the regularization of
the variance all together, the network was completely unable to learn the mean
function.

Additionally, we repeated the sine experiment while using a higher regulariza-
tion constant for the variance than for the mean. In Figure 4.4(c), we see that
the MVE network is now able to learn the sine function well, even without a
warm-up period. We were unable to achieve this when using the same regular-
ization constant for both the mean and the variance or when using the 5-NLL
loss function with a 8 of 0.5.

4.4 UCI Regression Experiment

In this section, we experimentally demonstrate the benefit of a warm-up period
and separate regularization. In Subsection 4.4.1, we specify the four training
strategies that we compare. Subsections 4.4.2 and 4.4.3 give details on the
data sets, experimental procedure, and architectures that we use. Finally, the
results are given and discussed in Subsection 4.4.4.

4.4.1 Four Approaches

We compare four different approaches:

1. No warm-up: This is the approach that is used in popular methods such
as Concrete dropout and Deep Ensembles. The mean and the variance
are optimized simultaneously.

2. Warm-up: This is the approach recommended in the original paper. We
first optimize the mean and then both the mean and the variance simul-
taneously.

3. Warm-up fixed mean: We first optimize the mean and then optimize the
variance while keeping the mean estimate fixed. We add this procedure
to test if optimizing both the mean and the variance after the warm-up
further improves the mean estimate.

114 CHAPTER 4. OPTIMAL MEAN-VARIANCE ESTIMATION

4. B-NLL: The approach from Seitzer et al. (2021). We use a 3 of 0.5.
For each approach, we consider two forms of lo-regularization:

1. Separate regularization: The part of the network that estimates the mean
has a different regularization constant than the part of the network that
estimates the variance.

2. Equal regularization: Both parts of the network use the same l>-regularization
constant.

4.4.2 Data Sets and Experimental Procedure

We compare the three approaches on a number of regression UCI benchmark
data sets. These are the typical regression data sets that are used to evaluate
neural network uncertainty estimation methods (Gal and Ghahramani, 2016;
Lakshminarayanan et al., 2017; Herndandez-Lobato and Adams, 2015; Pearce
et al., 2018).

For each data set, we use a 10-fold cross-validation and report the average
loglikelihood and RMSE on the validation sets along with the standard errors.
For each of the 10 splits, we use another 10-fold cross-validation to obtain the
optimal regularization constants. The entire experimental procedure is given
in Algorithm 9.

4.4.3 Architecture and Training Details

e We use a split architecture, meaning that the network consists of two
sub-networks that output a mean and a variance estimate. Each sub-
network has two hidden layers with 40 and 20 hidden units and ELU
(Clevert et al., 2015) activation functions. The mean-network has a linear
transformation in the output layer and variance-network an exponential
transformation to guarantee positivity. We also added a minimum value
of 107° for numerical stability.

e All covariates and targets are standardized before training.

e We use the Adam optimizer (Kingma and Ba, 2014) with gradient clip-
ping set at value 5. We found that this greatly improves training stability
in our experiments.

4.4. UCI REGRESSION EXPERIMENT 115

Algorithm 9 Our experimental procedure. A 10-fold cross-validation is used
to compare the different methods. In each fold, a second 10-fold cross-validation
is used to obtain the optimal regularization constants. We use the same splits
when comparing approaches.
Require: Data set D

1: Divide D in 10 distinct subsets, denoted D®;

2: for i from 1 to 10 do

3: Dhrain = Uj;ﬁiD(j), Dyal = D(l)v

4: Use 10-fold cross-validation (using only Diyain) to find the optimal lo-
regularization constants. This is done by choosing the constants for
which the loglikelihood on the left-out sets is highest. The possible reg-
ularization constants are [0.00001,0.0001,0.001,0.01,0.1]. Note that for
separate regularization, the optimal combination of regularization con-
stants is used.;
Train a model using the optimal separate regularization constants;
Train a model using the optimal equal regularization constant;
Evaluate the loglikelihood and RMSE on the validation set;
: end for
: return The average of the 10 loglikelihood and RMSE values along with

the standard error;

© ® N>

o We use a default batch-size of 32.

e Within the uncertainty-quantification literature, different approaches are
typically compared using a fixed training time (Herndndez-Lobato and
Adams, 2015). We use 1000 epochs for each training stage. We found
that this was sufficient for all networks to converge.

e We set the bias of the variance to 1 at initialization. This makes sure
that the variance predictions are more or less constant at initialization.

4.4.4 Results and Discussion

The results are given in Table 4.1 and the optimal regularization constants can
be found in 4.C. Bold values indicate that for that specific training strategy
(no warm-up, warm-up, or warm-up fixed mean) there is a significant difference
between equal and separate regularization. This means that every row can have
up to four bold values. Significance was determined by taking the differences

116 CHAPTER 4. OPTIMAL MEAN-VARIANCE ESTIMATION

per fold and testing if the mean of these differences is significantly different
from zero using a two-tailed ¢-test at a 90% confidence level.

We see that a warm-up is often very beneficial. For the yacht data set, we
observe a considerable improvement in the RMSE when we use a warm-up
period. A warm-up also drastically improves the result on the energy data set
when we do not allow separate regularization.

Generally, the difference between keeping the mean fixed after the warm-up
and optimizing the mean and variance simultaneously after the warm-up is less
pronounced. For a few data sets (Concrete, Kin8nm, Protein) we do observe
a considerable difference in root-mean-squared error if we only consider equal
regularization. If we allow separate regularization, however, these differences
disappear.

The use of the 8-NLL loss function also appears to yield improvements over the
baseline (no warm-up and equal regularization). We also observe some notable
improvements when compared to a warm-up with equal regularization (see, for
instance, the energy data set). Again, when separate regularization is allowed,
these differences mostly disappear.

A separate regularization often drastically outperforms equal regularization.
The energy data set gives the clearest example of this. For all three training
strategies with the regular loss function, a separate regularization performs
much better than an equal regularization of the mean and variance. A similar
pattern can be seen for the yacht data set. The optimal regularization for
the variance was typically similar or an order of magnitude larger than the
optimal regularization of the mean, never lower. We would like to stress that
statistically significant results are difficult to obtain with only 5 to 10 folds but
that the pattern emerges clearly: separate regularization often improves the
results while never leading to a significant decline.

Equal regularization and no warm-up perform as well as the other strategies
for some data sets, although never considerably better. For Boston Housing,
for example, using a warm-up and separate regularization yields very similar
results as the other strategies. This can happen since the problem may be
easy enough that the network is able to simultaneously estimate the mean and
the variance without getting stuck. Additionally, while there is no reason to
assume so a priori, the optimal regularization constant for the mean and the
variance can be very similar. In fact, for the Boston Housing experiment, we
often found the same optimal regularization constant for the mean and variance
during the cross-validation.

117

UCI REGRESSION EXPERIMENT

4.4.

00FI1CT 900 F vy €00 F 67V 90°0 F 657 c00F vy 100 F L¥'y 100 F¥67 200 F eV ujord
¢100°0 F L690°0 €T00°0 F L690°0 | 6000°0 F T0L0°0 €T00°0 F ¥€80°0 | ST00°0 F L5L0°0 0T00°0 F T2LL0°0 | STO00 F90L0°0 TT000 F LTLO0 wugursy
T10°0 F+€€9°0 ¢10°0 F2€9°0 800°0 F 8690 0100 F €¥9°0 600°0 F 2¥9°0 900°0 F 1¥9°0 6000 F099°0 2600°0 F €£99°0 | Po Ayipenb ourpy
0Z°0 + 667 020 F84°¢ TTO0Fve'g LT0F0CL 810 F €8°¢ GC0FE6°S GT°0F LG9 960 F 179 91915U0])
G0T°0F L09°0 ¥90°0 F €1¢°0 ¥80°0 F S0L°0 ET0OFCI'T €0¢°0 F L16°0 S8T'0F 00T 0L°0 F 1€°€ 8L'0F L8'8 LRGN
620°0 F 087°0 L20°0 F 997°0 ¥€0°0 F 7090 €CT'0F €180 | €20°0 F L0S°0 881°0 F0¢8°0 | 020°0 F 897°0 S1'0F 02T ABzouy
670 F LLE SVOFILE 0voFeLe €G0F 6T 0G0 F 8¢ 050 F 8¢ 00 F9¢€ 07°0 F9g°¢ | Sulsnoy uoysog
uoryezIIRMSal uoryeZIIRMSal uoryeZIIRMSaT uoryeZIIRMSal uoryeZIIRMIal uoryeZIIRMSal uoryezIIRSal uoryeZIIRMIal
ajeredog renbgy ajeredog renbgy ajeredog renbgy oyeredog Tenbgy
TIN-¢ ued]y poxy dn-trrepy dn-urrepy dn-turepy oN
A39yea3g Sururedy, 198 ereq
HSINY
00 F LLC— 00 F9LC— 100 F €8°¢— c0'0F 98C— | TO'0F 08°c— 10°0 F 28¢— 100 F¥8°¢— 10°0 F €8°¢— umjold
100 F 6C°T 100 F 6C°1 T0°0 F92°T TO0OFVT'T T00F 92T T00F 42T TO'0F 82T T00F LC'T wuguIsy
P10°0 F 0€6'0— PI0°0 F 066'0— G100 F&L6'0— 080°0 F LS6°0— | G00°0 F 96°0— T0°0 F096'0— | L00°0 F 296°0— ¥T10°0 F 766°0— | PO £yrrenb surpyy
EV'0F 996~ €00 F0T°€— L0°0F2T°8— Y00 F 0€°€— ST0F€TE— ST0F €06~ 600 F LT€— 80°0 F LE€— 9)2.I0U0T)
09T°0 F9¥¢°0— 9210 F8€€0— | 60T°0 F 6TS°0— T191°0 F¢L6°0— | 8020 F91¢0— TCI'0F6Vc0— W0 F28v'0— LvI'0F6650— RSN
0¢T°0 F 1€L°0— 9IT'0F 6,90~ 8LT°0 F 986°0— PPOFEVT— | LIT'0F86L0— LVOF8T'T— | 00T°0 F 989°0— €C0F ST T~ ABzoug
60°0 F84'c— €T0F L9C— L00F 09— 600 F L9~ 600 F 65— 600 F 65— IT0F19C¢— IT0F 19¢— | Sulsnoy uojsog
uorjezire[ndal UOIjRZLIRNSDL uoryezLIRN3al uorjezire[ndal | uorjezLRNIdl uOlRzZLIR[NIIL uoryezLre[ndal uoryezLre[n3al
oyeredog renbry ajeredog renbry oyeredog renbgy ojeredog renbgy
TIN-¢ uea[\ pPoxy dn-urrepy dn-twrepy dn-trep\ oN
A3oger)g Sururedy, 108 ere(

pooyiISoT

‘uorjezLIengar ojeredos wey) 19339¢ A[JUROYIUSIS suriofrod
IoAdU UOIjezLIR[NGal [enby ‘[9AS] 90USPYU0D U6 ® Je uoljezLIe[ndal ajeredes pue [enbe Ueom1aq 90USIIPID
JIROYIUSIS © 9JRITPUI SON[RA P[Og 'S10S BJRP UII0I] PUR WUQUIY I98Ie] 91} I0] UOTJRPI[RA-SSOID P[OJ-G PIST AN
“UOT)ePI[RA-SSOID P[OJ-()] PUOIDS © IIM PIUTRICO dIOM SIURISUO0D UOTpezLIe[NSal fewljdo o1} ‘41ds 1oea 10, "SI0LId
pIepue)s o) Yim Suore s3[ds UOTIePI[RA-SSOID ()T 91} JO Son[eA-JSIAY PUR SPOOYI[ONI[S0] o8eIoA® oY T, 1§ 9[RBT,

118 CHAPTER 4. OPTIMAL MEAN-VARIANCE ESTIMATION

4.5 UTKFace Age Regression Experiment

In this section, the effects of warm-up and separate regularization are analyzed
when using a larger convolutional neural network (CNN). The specific task
under consideration is age estimation based on photographic images.

4.5.1 Data Set

We used the aligned and cropped version of the UTKFace data set (Zhang
et al., 2017b). The images were downsized from 244 x 244 to 64 x 64. The ages
are technically discrete, but the range is very large and we therefore treat it is
a continuous variable. To achieve a more balanced data set, all individuals over
the age of 80, as well as two-thirds of the individuals aged 1, were excluded. The
data set was divided into training, validation, and test sets, comprising 3500,
1500, and 1000 samples, respectively. The validation set is used to determine
the optimal regularization constants and the test set is used to obtain the final
results.

4.5.2 Architecture and Training Details

The CNN is visualized in Figure 4.7. The backbone consists of four pairs of
a convolutional layer followed by a max-pool layer. All convolutional layers
have 3 x 3 filters with a stride of one, ls-regularization with a constant of one,
batch-normalization, and ELU activation functions. The first two convolutional
layers have four filters and the final two have eight. Each max-pool layer has
a 2 x 2 filter with a stride of 2. The network’s second segment consists of two
sub-networks that output the mean and the variance predictions, similar to
the split architecture used in the previous experiments. Both sub-networks are
densely connected networks consisting of four hidden layers with 20, 10, 5, and
2 hidden units respectively. To ensure positivity, an exponential transformation
is used for the variance with an added value of 10~ for numerical stability.
The two sub-networks have separate [o-regularization constants.

All targets are standardized prior to training. We use the Adam optimizer
with a learning rate of 3 - 107°, gradient clipping set at a value of 5, a default
batch-size of 32, and 150 epochs. The weights are saved at the end of each
epoch and restored to the ones with the highest likelihood on the validation

4.5. UTKFACE AGE REGRESSION EXPERIMENT 119

7
————
[===—————
]
\ /
==
\ B
m@
\ 7
v/

/20

Y

6x6x8

14x14x8 conv+maxpool 32/\

31x31x4 conv-maxpool flatten™. |

64x64x8 conv+maxpool @0

7
e
[S===—==|
\ /

conv+maxpool

Figure 4.7: The architecture of the CNN used in the UTKFace age regression
experiment. The network consists of two segments. We first have 4 pairs of a
convolutional layer followed by a max-pool layer. The second segment consist
of two densely connected sub-networks that provide the mean and variance
predictions.

set. All the results in the following subsections are calculated using the unseen
test set.

4.5.3 Separate Regularization

Separate regularization of the mean and variance is more difficult when using
a joint backbone. The two sub-networks connected to the backbone can be
easily given a different amount of regularization. However, the backbone largely
determines what types of functions can be achieved by the network.

We evaluated the effect of different [5-regularization constants for the two sub-
networks (the blue part of Figure 4.7). We started from the same initialization,
without a warm-up, and restored the weights to the weights with the highest
loglikelihood on the validation set. Figure 4.8 gives the results on the unseen
test set.

We observe that for the loglikelihood, the regularization of the mean has a
substantial effect. The regularization of the variance is less critical but it
appears to be optimal to use a lower regularization constant for the variance.
For the RMSE, we also see that a high regularization for the mean is beneficial
but we do not observe any clear pattern for the variance.

Although, due to the backbone, it is not possible to fully separate the regu-

120 CHAPTER 4. OPTIMAL MEAN-VARIANCE ESTIMATION

Figure 4.8: The negative loglikelihood and RMSE on the unseen test set for
various combinations of ly-regularization constants. The CNN was trained for
150 epochs without a warm-up and the weights were restored to the epoch with
the highest loglikelihood on the validation set.

larization of the mean and variance, regularizing the sub-networks separately
still affects the final result. In this example, modest improvements in both
likelihood and RMSE could be achieved by using a separate regularization.

4.5.4 A Warm-up When Using a Backbone

An extra step is needed to keep the predicted variance constant during the
warm-up. Merely freezing the weights of the variance sub-network is insuffi-
cient since the network can still change these predictions through the backbone.
The solution is to set the weights of the final layer of the variance sub-network
to zero. This ensures that the variance remains constant. Additionally, we
initialize the bias of the output layer to zero, which yields unit variance every-
where when using an exponential transformation to ensure positivity.

To demonstrate the effect of a warm-up, we trained two networks from the same
initialization, one with and one without a warm-up. We saved the network at
the end of each epoch to see the difference between the two strategies and in
particular to visualize the transition point from warm-up to full training.

Figure 4.9 gives an illustration of the evolution of the predictions on one of the
points from the test set. We observe that the variance remains constant during
the warm-up. At the transition, at epoch 50, we observe no instabilities. Other
data points have similar smooth transitions.

4.6. CONCLUSION 121

Figure 4.9: The effect of a warm-up on the training process. Both networks
had the same initialization and random seed for easier comparison. The verti-
cal dotted line indicates the transition from warm-up to full training and the
horizontal dotted lines gives the true age. We see that by initializing the final
weights of the variance network to zero, it is possible to keep the predicted
variance completely stable during the warm-up. Additionally, we observe no
instabilities at the transition point. We evaluated this plot for 100 different
inputs and the transition was always smooth.

For this specific example, we did not observe a significant difference in results
when using warm-up. This is in line with the UCI experiment, where we also
did not always observe an improvement. However, we also see no downside and
would therefore still advise to implement it to prevent possible convergence
issues.

Additionally, we observe in Figure 4.9 that the manner in which we initialized
the network results in an automatic version of a warm-up period. Unit variance
is on average the optimal value at initialization since the targets are standard-
ized. On top of that, since the final weights are zero at initialization, changing
the backbone does not immediately affect the predicted variance, resulting in
a relatively stable variance at the start of training.

4.6 Conclusion

In this chapter, we tested various training strategies for MVE networks. Specif-
ically, we investigated whether following the recommendations of the original
authors solves the recently reported convergence problems, and we proposed a
novel improvement, separate regularization.

122 CHAPTER 4. OPTIMAL MEAN-VARIANCE ESTIMATION

We conclude that the use of a warm-up period is often essential to achieving
optimal results and fixes the convergence problems. Without this period, the
network can fail to learn regions on which it performs poorly at the start of the
training. We empirically observed that not using a warm-up period can lead
to highly suboptimal results, both in terms of RMSE and loglikelihood.

We did not find evidence that clearly favors one of the strategies after the
warm-up, keeping the mean fixed or optimizing the mean and variance simul-
taneously. In theory, joint maximum likelihood estimation of the mean and
the variance is advantageous. In practice, we did not observe significant dif-
ferences. Optimizing the mean and variance simultaneously after the warm-up
was seemingly only beneficial when separate regularization was not allowed.

Current practice - see for instance the implementation of Concrete Dropout
(Gal et al., 2017) - is to enforce the same regularization constants for estimating
the mean and variance, which implicitly assumes that both functions exhibit
a similar degree of smoothness. However, our experiments indicate that this
assumption is often violated. Real-world data sets often require a complex mean
function that differs significantly from a constant function, while the variance
function varies more smoothly, if at all. Therefore, it is more realistic to apply
separate regularization constants for the mean and variance functions. Our
UCI experiment demonstrate that this approach can indeed lead to significant
improvements in model performance across various data sets.

The UTKFace experiments demonstrate that a warm-up is also easy to imple-
ment when using a shared backbone. We observed a perfectly constant variance
during the warm-up and no instabilities at the transition between the warm-up
and full training. Separate regularization is harder to achieve since both the
mean and variance sub-networks use the same backbone. Nevertheless, we did
observe some moderate improvements when the two sub-networks were given
separate regularization constants.

4.6.1 Recommendations

Based on our experiments, we make the following recommendations when train-
ing an MVE network:

e Use a warm-up when possible. It is important to initialize the variance
such that it is more or less constant for all inputs. Otherwise, some
regions may be neglected. This is easily achieved by setting the bias of the
variance neuron to 1 at initialization, or by setting the bias of the variance

4.6.

CONCLUSION 123

output and weights that connect to it to zero. For a joint-backbone, this
second approach must be used. For some reinforcement learning settings
or online learning settings, a warm-up may not be possible.

Use gradient clipping. We found gradient clipping to yield more stable
optimization when optimizing the mean and variance simultaneously.

Use separate regularization for the mean and variance when possible. If a
hyperparameter search is computationally infeasible, the variance should
typically be regularized an order of magnitude stronger than the mean.
When a backbone is used, the effect of separate regularization is less
pronounced.

Use the S-NLL loss, especially when not using a warm-up or separate reg-
ularization. We observed improvements in both RMSE and NLL when
compared to the baseline of not using a warm-up and separate regular-
ization. However, we also observed that the convergence issues are not
always resolved and therefore advice to not use the S-NLL loss alone,
but rather in combination with a warm-up and separate regularization if
possible.

4.6.2 Future Work

The results on separate regularization indicate that variance and mean func-
tions are generally not equally smooth. It is therefore likely not optimal to use
a similar architecture and training procedure for both. It would be interesting
to investigate whether the use of a separate architecture and training procedure
leads to further improvements.

124 CHAPTER 4. OPTIMAL MEAN-VARIANCE ESTIMATION

APPENDIX CHAPTER 4

4.A Details on the Advantage of Taking the
Variance Into Account

4.A.1 General Case

As we stated in the main text, there are advantages to optimizing the full like-
lihood. The resulting maximum-likelihood-estimate is consistent and asymp-
totically efficient (DeGroot, 1986, chapter 7). Specifically, no other consistent
estimator can asymptotically have a lower variance.

This lower variance results in improved metrics such as RMSE. To see this, we
analyze the expected squared error of a new observation: E [(ynew — f1g(Znew))?]-

Here, we assume that there exists a true 6y and that 0 is the maximum-
likelihopd-estimate. The expectation is taken over ynew and the data with
which 0 is created. The expected squared error is given by

E [(ynew — Hé (wneW))ﬂ
=E [(ynew — Mo, (wnew) + He, (wnew) - /Jé (mnew))ﬂ
=E [(ynew — M, (mneW))Q] +E [(/LOO (Tnew) — Hé(mnew»ﬂ

~ E [(Ynew — 0y (@aew))?] + E [(Dot (@uew) (6 — 60))’]

2 N
= C'+E | Dotio, (®0e) (0 = 00)| +V [Doia, (@0en)0)]. (43)

We now compare this to a different consistent estimator for 6y, denoted by 6.
By following the same derivation, we obtain an expected squared error of

~ 2 ~
C+E | Dotio, (@aen) (6 = 00)] +V [Dopio, (@0en)0)]. (44)

We can show that this is larger than (or equal to) the final line in Equation
(4.3). The first term, C, is equal for both (4.3) and (4.4). Since 6 was obtained
by using maximum likelihood optimization, we know two things. Firstly, we
know that the second term in (4.3) is asymptotically of lower order than the
third term, and secondly, we know that

\Y D9N90(mneW)(0~)} >V [Deﬂeo(wneW)(é))

4.A. TAKING THE VARIANCE INTO ACCOUNT 125

which shows that our estimate 6 asymptotically will have a larger expected
quadratic error.

4.A.2 Linear Model

In the non-asymptotic regime, a similar result holds for a linear model. Taking
the variance into account, leads to a lower-variance estimator. All derivations
for the statements in this chapter regarding linear models can be found in
Van Wieringen (2015).

We assume that we have a data set consisting of n data points (x;,y;), with
x; € RP and y € R. With X, we denote the n x p design matrix which has the
n covariate vectors x; as rows. With Y, we denote the n x 1 vector containing
the observations y;. We assume X to be of full rank and consider the linear
model:

Y=XB+U, U~N(,Y), (4.5)

where ¥ can be any invertible covariance matrix, possibly heteroscedastic and
including interaction terms. Suppose this covariance matrix is known, then
classical theory tells us that it is beneficial for our estimate of B to take this
into account.

To see this, we will compare the linear model in Equation (4.5) with a rescaled
version that takes the covariance matrix into account. Since ¥ is positive semi-
definite, we can write it as BB” and rescale our model by multiplying with
B~
Z:=B'Y=B'XBg+B'U (4.6)
=XB+V, V~N(OI,)

Both formulations lead to different estimators of 3. The unscaled formulation
leads to .
B=X"X)"'Xx"y,

and the second formulation leads to
B = (XTX)"'XTB Y.

Both estimators are linear unbiased estimators of 3. However, the Gauss-
Markov theorem (Gauss, 1823) (see Dodge (2008) for a version that is not in
Latin) tells us that the variance of 8* is lower than the variance of 3.

126 CHAPTER 4. OPTIMAL MEAN-VARIANCE ESTIMATION

Gauss-Markov Theorem (Gauss, 1823)
In the notation introduced above, consider the linear model Y = X3+4+U. Under
the following assumptions:

2. VU] = cl,,
3. X is of full rank,

the ordinary least squares (OLS) estimator for 3, 8= (XTX)"'XTY, has the
lowest variance of all unbiased linear estimators of 3, i.e., the difference of the
covariance matrixz of any unbiased linear estimator and the covariance matriz
of the OLS estimator is positive semi-definite.

We note that in the second formulation all the conditions of the theorem are
met. We therefore know that 8* has the lowest variance of all unbiased linear
estimators of 8 and thus in particular we know that it has a lower variance
than 3.

We want to emphasize that this leads to improved metrics such as RMSE. Let
us for instance look at difference between the expected squared errors of a new
pair (Tpew, Ynew) When using 3 and B*:

E |:(ynew - mzewB)Q - (ynew - wgewé*)ﬂ
=K [y?lew - 2ynewmz:ew/é + mgewBBTwnew}
-]E |:y1210W - 2yn€Wm£ch* + wgowlé*B*Tmnew]
=E [mzewBBTwnew - wgewB*B*Tmnew}
A N s
= Thew (Eﬁ Eﬁ*) LTnew Z 0.
We used that B and ﬁ* are both unbiased and independent of y,eyw. In the final

line, we applied the Gauss-Markov theorem that guarantees that Y5 X5 s
a positive semi-definite matrix.

4.B. OPTIMAL REGULARIZATION FOR LINEAR MODELS 127

4.B Details on the Different Optimal Regular-
ization Constants for Linear Models

We consider two linear models that most closely resemble the scenario of an
MVE network. The first model will estimate the mean while knowing the vari-
ance and the second model will estimate the log of the variance while knowing
the mean. An MVE network often uses an exponential transformation in the
output of the variance neuron to ensure positivity. The network then learns the
log of the variance. We show that both models will generally have a different
optimal regularization constant.

4.B.1 Scenario 1: Estimating the Mean With a Known
Variance

We use the same notation as in the previous example and assume a homoscedas-
tic noise with variance o2. If we do not consider regularization, the goal is to
find the estimator that minimizes the sum of squared errors,

n

> (i — =z B)>.

=1

The solution is given by
B=(XTXx)"1xTy,

for which we know that

E[B} -8 and V[B} =%, =2(X"X)"

In particular, we used that E [¢] = 0 and V [¢] = o2.
When we add a regularization constant, A, the objective becomes to minimize

N

P
D wi—aB)*+1) 8]

i=1 j=1
The solution to this problem is given by

BN = (XTX +A,) ' XTy.

128 CHAPTER 4. OPTIMAL MEAN-VARIANCE ESTIMATION

For simplicity, we assume that we have an orthonormal basis, in which case
XTX = 1. This does not change the essence of the argument and makes the
upcoming comparison clearer. Our new estimate is no longer unbiased but has
a lower variance:

2 [60)] = -1

=B e v [B)] =21+ 072,

Our goal is to answer the question what the optimal value for A is. We define
optimal as the A for which

MSE(B()\)) := E [Iﬁ —~ B(A)Iz}

is minimal.

Theobald (1974) showed that there exists A > 0 such that MSE(B(\)) <

MSE(B). Typically, the exact value of A is unknown, but in our controlled
example, the optimal value can be derived analytically (Van Wieringen, 2015):

X =po?(BTB)

4.B.2 Scenario 2: Estimating the Log Variance With a
Known Mean

Next, we examine a linear model that estimates the logarithm of the variance.
We again have n datapoints (x;,y;) where we assume the log of the variance
to be a linear function of the covariates:

Yi = i + €, €~ N (Oa GWTB)
We use the same covariates and for the targets we define:
zi:=log((yi —p)?) — C, with C = 1(1/2) +log(2),

where 1 is the digamma function. This somewhat technical choice for C' is
made such that

z; = log(02(mi)) + ¢,

4.B. OPTIMAL REGULARIZATION FOR LINEAR MODELS 129

where € has expectation zero and a constant variance, as can be seen from the
following derivation:

€T, — 2
= log(c*(:)) + log (%)

= log(c?(z;)) +log (¢), ¢ ~ x*(1)
= log(o®(;)) + €.

The random variable €* has an expectation C' and a constant variance that
does not depend on pu or o?(zx) (Pav, 2015). The key result of this specific
construction of z is that we have recovered a linear model with additive noise
that has zero mean and a constant variance.

This allows us to repeat the procedure from the previous subsection, i.e. min-
imizing the sum of squared errors with a regularization term. We obtain the
following optimal regularization constant

N =pV[E(BT8)

The conclusion is that for these two linear models, that most closely resem-
ble the scenario of regularized neural networks that estimate the mean and
log-variance, the optimal regularization constants rely on the true underlying
parameters B and (3. Since, in general, these are different, a different regular-
ization constant should be used.

OPTIMAL MEAN-VARIANCE ESTIMATION

CHAPTER 4.

130

(y-0¢'¥ ‘¢0¢'8) e (g7 ‘9-07"9) G987 (g% ‘9-09'F) 9-97'9 (9-02'8 ‘¢-917) asiad 2IM3ONTYS-ATe13103-wR30Id
(€00°T ‘¢-00°T) €001 (01070 “€00°T) £90T (€079 ‘¢-00°T) €00 (§-07°9 ‘¢-00°T) £98°C uruguLy|
(61070 0T0°0) 010°0 (@70 ‘010°0) 0100 (¥2°0 ‘910°0) $90°0 (£2°0 990°0) 010 po-Ayrenb-oum
(9200 ‘€-08°1) €908 (#9070 ‘€-00°1) 010°0 (820°0 ‘010°0) 0100 (8200 ‘280°0) 28070 99010100
(7012 ‘g0g6) 7-01€°9 (010°0 ‘F-06°1) €081 (010°0 ‘€-1°9) €906 (01°0 ‘g-oL°€) ¥10°0 ypes
(100 ‘7-o¢°¢) 7o (P10 #-00°1) poLe (220 ‘¥-00°1) 7709 (97°0 ‘€-06°¢) £€-01°6 £310u0
(6200 ‘¥90°0) 790°0 (€270 ‘€-97'8) 82°0 (01°0 ‘01°0) 01°0 (01°0 ‘01°0) 010 Sursnofyuojsoq

(o “11) (g0 1) (g0) (o ‘1)
uorjeZLIRMSdl UOIRZIIRINGOI | UOIJRZILIRINGOI UOIRZIIR[NGOI | UOIRZLIR[NGOI — UOIJRZLIR[NSDI | UWOIjRZIIRINGDI UOIjRzZLIR[NSol

ayeredag renbsy oyeredog renbsy ayeredog renbry ayeredag renbsy

TIN-¢ weo N poxy dn-uwrepy dn-urrepy dn-urrep oN
A3ogea)g Sururedy, 108 elR(
pooyryiSoy

"$19S BJRD UIJOIJ PUe WURUIY I9SIe] 91} I0]
UOT)ePI[RA-SSOID P[OJ-G PIS DA\ “UOIJEPI[RA-SSOID P[OJ-(T PUOIDS © [IIM POUTR)(O DIIM SPURISTOD UOTJRZLIR[NSOT
rewrgdo oy “9rpds yore 10 ‘sH[dS UOIIRPI[RA-SSOID ()] O} JO JUBISU0D UoryezLrenSar adeiose oy], :Z'F 9[qeL

sjue)suo)) uoljyezirensay rewnndg Oy

CHAPTER 5

Likelihood-Ratio-Based
Confidence Intervals

This chapter is based on the preprint entitled “Likelihood-ratio-based confidence
intervals for neural networks” (Sluijterman et al., 2023), which is currently un-
der submission. This chapter introduces a novel way to quantify the parameter
uncertainty by leveraging the likelihood ratio. The resulting confidence inter-
vals have very desirable qualitative qualities and also incorporate parts of the
distributional uncertainty. For out-of-distribution data points and in regions
where the data is sparse, the confidence intervals expand significantly.

In this chapter, we will also encounter the connection between assumptional
uncertainty and parameter uncertainty that was touched upon in Chapter 1.
Choosing a more flexible model increases the hypothesis class, making it more
likely to include the true function, at the cost of a higher parameter uncertainty.

131

132 CHAPTER 5. LIKELIHOOD-RATIO CONFIDENCE INTERVALS

Figure 5.1: The scope of Chapter 5. This chapter focuses on estimating the pa-
rameter uncertainty by using a likelihood-ratio-based approach. The resulting
confidence intervals have very desirable properties and also incorporate parts
of the distributional uncertainty.

5.1 Introduction

Over the past two decades, neural networks have seen an enormous rise in
popularity and are currently being used in almost every area of science and
industry. In light of this widespread usage, it has become increasingly clear
that trustworthy uncertainty estimates are essential (Gal, 2016).

Many uncertainty estimation methods have been developed using Bayesian
techniques (Neal et al., 2011; MacKay, 1992a; Gal, 2016), ensembling tech-
niques (Heskes, 1997; Lakshminarayanan et al., 2017), or applications of fre-
quentist techniques such as the delta method (Kallus and McInerney, 2022).

5.2. LIKELIHOOD-RATIO-BASED CONFIDENCE INTERVALS 133

Many of the resulting confidence intervals (for the frequentist methods) and
credible regions (for the Bayesian methods) have two common issues. Firstly,
most methods result in symmetric intervals around the prediction which can be
overly restrictive and can lead to very low coverage in biased regions (Sluijter-
man et al., 2022). Secondly, most methods rely heavily on asymptotic theorems
(such as the central limit theorem or the Bernstein-von-Mises theorem) and can
therefore only be trusted in the asymptotic regime where we have many more
data points than model parameters, the exact opposite scenario of where we
typically find ourselves within machine learning.

Contribution: In this chapter, we demonstrate how the likelihood-ratio test
can be leveraged to combat the two previously mentioned issues. We provide a
first implementation of a likelihood-ratio-based approach, called DeepLR, that
has the ability to produce asymmetric intervals that are more appropriately
justified in the scenarios where we have more parameters than data points.
Furthermore, these intervals exhibit desirable behavior in regions far removed
from the data, as evidenced in Figure 5.5.

Organization: This chapter is structured into four sections, with this introduc-
tion being the first. Section 5.2 explains our method in detail and also contains
the related work section which is simultaneously used to highlight the advan-
tages and disadvantages of our method. Section 5.3 presents experimental
results that illustrate the desirable properties of a likelihood-ratio-based ap-
proach. Finally, Section 5.4 summarizes and discusses the results and outlines
possible directions for future work.

5.2 DeepLR: Deep Likelihood-Ratio-Based Con-
fidence Intervals

In this section, we present our method, named DeepLR, for constructing con-
fidence intervals for neural networks using the likelihood-ratio test. We first
formalize the problem that we are considering in Subsection 5.2.1. Subsection
5.2.2 explains the general idea behind constructing a confidence interval via
the likelihood-ratio test. Subsequently, in Subsection 5.2.3, we outline the high
level idea for translating this general procedure to neural networks. The details
regarding the distribution and the calculation of the test statistic are provided
in Subsections 5.2.4 and 5.2.5. Finally, in Subsection 5.2.6, we compare our
method to related work while highlighting its strengths and limitations.

134 CHAPTER 5. LIKELIHOOD-RATIO CONFIDENCE INTERVALS

5.2.1 Problem Formulation

We consider a data set D = {(X1,Y1),...,(Xn,Y,)}, consisting of n indepen-
dent observations of the random variable pair (X,Y). Contrary to previous
chapters, we use capital letters to emphasize that the we are dealing with
random variables. We consider networks that provide an estimate for the con-
ditional density of Y | X. This is achieved by assuming a distribution and
having the network output the parameter(s) of that distribution.

Three well-known types of networks that fall in this class are: (1) A regression
setting where the network outputs a mean estimate and is trained using a
mean-squared error loss. This is equivalent to assuming a normal distribution
with homoscedastic noise. (2) Alternatively, the network could output both
a mean and a variance estimate and be optimized by minimizing the negative
loglikelihood assuming a normal distribution. (3) In a classification setting, the
network could output logits that are transformed to class probabilities while
assuming a categorical distribution.

The network is parametrized by 6@ € RP, where p is typically much larger
than n. With O, we denote the set containing all the @ that are reachable
for a network with a specific training process. This includes choices such as
training time, batch size, optimizer, and regularization techniques. With pg,
we denote the predicted conditional density. Additionally, we assume that the
true conditional density is given by pg, for some 6y in ©. In other words, we
assume that our model is well specified.

The objective of our method is to construct a confidence interval for one of the
output nodes of the network for a specific input of interest Xy. We denote this
output of interest with fg,(Xo) for the remainder of the chapter. In the context
of a regression setting, this output of interest is the true regression function
value at Xy and in a classification setting it is the true class probability for
input Xj.

We define a (1 — «) - 100% confidence interval for fg,(Xo) as an interval,
CI(fe,(Xo)), which is random since it depends on the random realization of
the data, such that the probability (taken with respect to the random data set)
that CI(fe,(X0)) contains the true value fg,(Xo) is (1 — «) - 100%.

5.2. LIKELIHOOD-RATIO-BASED CONFIDENCE INTERVALS 135

5.2.2 Confidence Intervals Based on the Likelihood Ratio

We explain the general idea behind constructing a confidence interval with
the likelihood-ratio by working through a well-known example. We consider
n observations Y; that are assumed to be normally distributed with unknown
mean u and unknown variance 0. Our goal is to create a confidence interval
for p by using the likelihood-ratio test.

The duality between a confidence interval and hypothesis testing states that
we can create a (1 — «) - 100% confidence interval for p by including all the
values ¢ for which the hypothesis y = ¢ cannot be rejected at a (1 — «) - 100%
confidence level. We must therefore test for what values ¢ we can accept the
hypothesis u = c.

The general approach to test a hypothesis is to create a test statistic of which
we know the distribution under the null hypothesis and to reject this hypothesis
if the probability of finding the observed test statistic or an extremer value is
smaller than «a.

As our test statistic, we take two times the log of the likelihood ratio:

T(c) —2<Sup<210g n,0>—sup<21og (Yi; 0)))

where L denotes the likelihood function 8 — L(Y;;0), © is the full parameter
space and Og the restricted parameter space. In our example, we have

0= {(/%0—2) | ne R702 € R>0}7

and
0 = {(c, 02) | o’ e Rso}-

Wilks (1938) proved that T'(c) weakly converges to a x?(1) distribution under
the null hypothesis that = c¢. We therefore reject if T'(c) > x3_,(1) and our
confidence interval for ;1 becomes the set {c | T'(c) < x3_, (1)}, where x7__ (1)
is the (1 — a)-quantile of a y?(1) distribution.

In our example, this results in the well-known confidence interval for the mean:

_ 1 1 _
Yooy~ > (Y-,
i=1

where 21 _,/5 is the (1 — a/2)-quantile of a standard-normal distribution.

136 CHAPTER 5. LIKELIHOOD-RATIO CONFIDENCE INTERVALS

5.2.3 High-Level Idea of DeepLR

Our goal is to apply the likelihood-ratio testing procedure outlined in the pre-
vious subsection to construct a confidence interval for fg,(Xp), the value of
one of the output nodes given input Xy. We create this confidence interval
by including all the values ¢ for which the hypothesis fg,(Xo) = ¢ cannot be
rejected. The testing of the hypothesis is done with the likelihood-ratio test.
Specifically, we use two times the log likelihood ratio as our test statistic:

n

T(e) = 2(sgp<;1og<L<Xm; o)~ sup (3 Ion(L(X. Y: e»))

= 2((sup (Y- ogra(¥; | X))~ sup (3 Ioe(po¥i | X)) (51)

©o(c) ;=1

and we construct a confidence interval for fg,(Xo) by including all values ¢ for
which the test statistic is not larger than x3_,(1):

CI(fo,(X0)) = {c| T(c) < xT o(1)}- (5.2)

Here, we consider © C RP? to be the set containing all reachable parameters,
and Og(c) = {6 € © | fo,(Xo) = c}. The set O is explicitly not equal to
all parameter combinations. Due to explicit (e.g., early stopping) and im-
plicit regularization (e.g., lazy training (Chizat et al., 2019)) not all parameter
combinations can be reached. The set © should therefore be seen as the set
containing the parameters of all neural networks that can be found given the
optimizer, training time, regularization techniques, and network architecture.

Intuitively, this approach answers the question: What values could the network
have reached at location Xo while still explaining the data well? This is a
sensible question for a highly flexible and typically overparameterized machine-
learning approach. After training, the model ends up with a certain prediction
at location Xy. However, since the model is typically very complex, it is likely
that the model could just as well have made other predictions at that location
while still explaining the data well. Therefore, all those other function values
should also be considered as possibilities. Inherently, all modeling choices are
taken into account by asking this question. A more flexible model, for instance,
is likely able to reach more values without affecting the likelihood of the training
data, leading to a larger confidence interval.

The construction of the confidence interval in Equation (5.2) assumes that the
test statistic, T'(c), has a x2(1) distribution. We discuss this assumption in the

5.2. LIKELIHOOD-RATIO-BASED CONFIDENCE INTERVALS 137

following subsection. The subsection thereafter describes how to calculate the
test statistic.

5.2.4 Distribution of the Test Statistic

In the classical setting, Wilks (1938) proved that the likelihood-ratio test statis-
tic asymptotically has a x?(1) distribution when the submodel has one degree
of freedom less than the full model. We are, however, not in this classical
regime. We have many more parameters than data points and therefore need
a similar result for this setting.

It has been shown that the likelihood-ratio test statistic converges to a x2
distribution for a wide range of settings, which is referred to as the Wilks-
phenomenon by later authors (Fan et al., 2001; Boucheron and Massart, 2011).
For a semi-parametric model, which more closely resembles our situation, it has
been shown that the test statistic also converges in distribution to a y? dis-
tribution under appropriate regularity conditions (Murphy and van der Vaart,
1997).

We prove a similar result for our setting in Appendix 5.A. The theorem states
that, under suitable assumptions, our test statistic has a x?(1) distribution.
Intuitively, this results from the fact that we added a single constraint, namely
that fo(Xo) = ¢. We emphasize that even if the test statistic does not exactly
follow a x2(1) distribution, the qualitative characteristics of the confidence
intervals will remain evident, albeit with inaccurate coverage levels.

5.2.5 Calculating the Test Statistic

Calculating the two terms in equation (5.1) presents certain challenges. The
first term, supg (Y . log(pe(Yi | X;))), is relatively straightforward. We train
a network that maximizes the likelihood, which gives the conditional densities
p(Yi | Xi).

The second term is substantially more complex. Ideally, we would optimize over
the set ©g(c) = {6 € © | fo(Xo) = ¢}. This is problematic for two reasons.
Firstly, it is unclear how we can add this constraint to the network and secondly,
this would necessitate training our network for every distinct value ¢ that we
wish to test. Even when employing an efficient bisection algorithm, this could
easily result in needing to train upwards of 10 additional networks.

138 CHAPTER 5. LIKELIHOOD-RATIO CONFIDENCE INTERVALS

We address this problem as follows. We first create a network that is perturbed
in the direction of a relatively large value (cmax) at Xo and a network that is
perturbed in the direction a relatively small value (¢pnin) at Xo while maximiz-
ing the likelihood of the data. We denote the resulting network parameters
with 0:|:Z

0, = argmax L(D;0), and 6_ = argmax L(D;0).
fco, gco,
fo(Xo)~cmax Ffo(Xo0)=emin

Subsequently, the network that maximizes the likelihood under the constraint
fo(Xo) = c is approximated using a linear combination. Specifically, suppose
we want the network that maximizes the likelihood of the training data while
passing through c at Xg. In the case that ¢ > f4(Xo), we approximate this
network by taking a linear combination of the outputs such that

(1= fe(Xo) +Afg, (Xo) =c,

and we define p. as the density that we get by using the same linear combi-
nations for the distributional parameters that are predicted by the networks
parametrized by 0 and é+. We then approximate the second term in equation
(5.1) as follows:

sup (D log(pa(Yi | Xi)) =) log(pe(Y; | Xi)). (5:3)

©o(c) =1 i=1

This procedure is visualized in Figure 5.2 for a regression setting. Details on
the second step, finding the perturbed networks, are provided below both for
a regression and binary-classification setting.

Regression Suppose we completed step 1 and we have a network that max-
imizes the data’s likelihood. For step 2, our objective is to adjust this network
such that it goes through a relatively large value at Xy while continuing to
maximize the data’s likelihood. Moreover, we aim to achieve this in as stable a
manner as possible, given that minor differences can significantly influence the
test statistic, particularly for large data sets.

We accomplish this by copying the original network and training it on the ob-
jective to maintain the original predictions — as those maximized the likelihood
— while predicting f4(Xo)+1 for input Xg. For the perturbation in the negative
direction we use —1. These values 1 are chosen assuming that the targets are
normalized prior to training.

5.2. LIKELIHOOD-RATIO-BASED CONFIDENCE INTERVALS 139

(a) Step 1: Train a network on the (b) Step 2: Copy the resulting network
data. and train it on the objective to have
the same predictions at the training lo-
cations and a larger prediction at Xjo.

z(zlog@é(mxi))

i=1

-3 os(ou(vi | X))

i=1
2
< leoz(l)'
(c) Step 3: Choose A such that (d) Step 4: Repeat step 3 for multi-
(1 = N)fg(Xo) + AMfg, (Xo) = c and ple values of ¢ and define the confi-
+ .
let p. be the density resulting from dence interval for CI(fg,(Xo0)) as all ¢
for which:

the same linear combination of the pre-
dicted distributional parameters.

Figure 5.2: Illustration of the steps of our method for the positive direction
in a regression setting. Steps 2, 3, and 4 are also carried out in the negative
direction.

We obtain this training objective by using modified training set, D, that is con-
structed by replacing the targets Y; in the original training set with the predic-
tions f4(X;) of the original network and adding the data point (Xo, fg(Xo)+1).

The resulting problem is very imbalanced. We want the network to change the
prediction at location X, which is only present in the data once. This makes
the training very unstable since, especially when training for a small number
of epochs, it is very influential which specific batch contains the new point. To
remedy this, we use a combination of upsampling and downweighting of the
new data point (Xo, f4(Xo) 4+ 1). Merely upsampling the new data point - i.e.,
adding it multiple times — is undesirable as this can introduce significant biases
(Van den Goorbergh et al., 2022). Hence, we add many copies of (Xo, fg(Xo)+
1) but we reweigh the loss contributions of these added data points such that

140 CHAPTER 5. LIKELIHOOD-RATIO CONFIDENCE INTERVALS

they have a total contribution to the loss that is equivalent to that of a single
data point.

We propose to add 2n/batch size extra data points such that each batch is
expected to have 2 new data points. The same training procedure is used as
for the original network. We found slightly larger or smaller number of added
data points to perform very similarly. This setting worked for a wide variety
of data sets and architectures. In Appendix 5.B, we experimentally check the
distribution of the test statistic in a controlled simulation experiment.

Binary Classification Consider a data set where the targets are either 1
or 0. Our network outputs logits, denoted with fg(X), that are transformed
to probabilities via a sigmoid function. The procedure is nearly identical for
this binary classification setting: We create a positively perturbed network,
parametrized by é+, and a negatively perturbed network, parametrized by o_.

The only difference is in the construction of the augmented data sets. We again
replace the targets Y; by the predictions of the original network, fs(X;), but
now we add multiple copies of the data point (Xy, 1) for the positive direction,
and multiple copies of the data point (Xg,0) for the negative direction.

The entire method is summarized in Algorithm 10. In summary, we want to
test what values the network can reach while still explaining the data well.
We do this by perturbing the network in a positive direction and a negative
direction and subsequently testing which linear combinations would still explain
the data reasonably well, i.e., linear combinations with a test statistic smaller
than x7_(1).

5.2. LIKELIHOOD-RATIO-BASED CONFIDENCE INTERVALS 141

Algorithm 10 Pseudocode for the construction of CI(fg,(Xo)) using DeepLR

Require: D = {(X,Y1),...,(X,.Yn)}, 0, X0, a;

1:
2:

9:
10:
11:

12:
13:

14:
15:
16:
17:

Nextra = 21/ (batch 51ze)
For binary classification cpax = 1 and ¢y, = 0, and for regression cpax =
fé(XO) + (5 and Cmin — fé(X()) — (5;

Nextra times

75-!— = {(Xh fé(Xl))v LR (Xm fé(X7L))7 (XOa cmax)7 seey (X07Cma><)}§

Nextra times

D_= {(le fé(Xl))’ ERE) (Xnv fé(Xn))’ (X07 Cmin)) RN (X07 Cmin};

Make two copies of network parametrized by 0 and train them on 15+ and
D_ using the original training procedure. During the training, the loss
contribution of the added data points is divided by mextra. Denote the
parameters of the resulting networks with 0+ and 0_;

for ¢ € R (> since testing all possible ¢ is impossible, we propose to use
some variation of a bisection search algorithm) do

if ¢ > f5(Xo) then
Pick X such that (1 — X)fs(Xo) + Me, (Xo0) = ¢ with corresponding
density p.; > The density p. is obtained by taking the same linear
combination of the predicted distribution parameters outputted by
the networks parametrized by 6 and 6. ;
end if
if ¢ < f4(Xo) then
Pick X such that (1 — X)fs(Xo) + Afs (Xo) = ¢ with corresponding
density pe;
end if
if 2(2?:1 log(pg (Vi | X3)) — 327 log(pe(Yi | XD)) < xf_a(1) then
Include ¢ in CI(fg,(X0));
end if
end for
return CI(fq,(Xo))

5.2.6 Related Work

In this subsection, we place our work in context of existing work while simulta-
neously highlighting the strengths and limitations of our approach. Our aim is
not to give a complete overview of all uncertainty quantification methods, for

142 CHAPTER 5. LIKELIHOOD-RATIO CONFIDENCE INTERVALS

which we refer to the various reviews and surveys on the subject (Abdar et al.,
2021; Gawlikowski et al., 2023; He and Jiang, 2023). Instead, we discuss several
broad groups in which most methods can be categorized: Ensembling methods,
Bayesian methods, frequentist methods, and distance-aware methods.

Ensembling methods train multiple models and use the variance of the predic-
tions as an estimate for model uncertainty (Heskes, 1997; Lakshminarayanan
et al., 2017; Zhang et al., 2017a; Wenzel et al., 2020; Jain et al., 2020; Dwaracherla
et al., 2022). While being extremely easy to implement, they can be compu-
tationally expensive due to the need to train multiple networks. Moreover,
the resulting confidence intervals can behave poorly in regions with a limited
amount of data where the predictor is likely biased. Additionally, ensemble
members may interpolate in a very similar manner, potentially leading to un-
reasonably narrow confidence intervals.

Bayesian approaches place a prior distribution on the model parameters and
aim to simulate from the resulting posterior distribution given the observed
data (MacKay, 1992a; Neal, 2012; Herndndez-Lobato and Adams, 2015). Since
this posterior is generally intractable, it is often approximated, with MC-
Dropout being a notable example (Gal and Ghahramani, 2016; Gal et al.,
2017).

A downside is that these methods can be challenging to train, potentially re-
sulting in a lower accuracy. Our proposed approach does not change the op-
timization procedure and therefore has no accuracy loss. Another downside is
that while asymptotically Bayesian credible sets become confidence sets by the
Bernstein-von Mises theorem (see Van der Vaart (2000, Chapter 10)); However,
this theorem generally does not apply for a neural network where the dimension
of the parameter space typically exceeds the number of data points. Moreover,
the prior distribution is often chosen out of computational convenience instead
of being motivated by domain knowledge.

Distance-aware methods have a more pragmatic nature. They use the dissim-
ilarity of a new input compared to the training data as a metric for model
uncertainty (Lee et al., 2018; Van Amersfoort et al., 2020; Ren et al., 2021).
As we will see in the next section, our method also exhibits this distance-aware
property, albeit for a different reason: The further away from the training
data, the easier it becomes for the network to change the predictions without
negatively affecting the likelihood of the training data.

Frequentist methods use classical parametric statistics to obtain model uncer-
tainty estimates. The typical approach - more elaborately explained in text-

5.2. LIKELIHOOD-RATIO-BASED CONFIDENCE INTERVALS 143

books on parametric statistics, e.g. Seber and Wild (2003) - involves obtaining
(an estimate of) the variance of the model parameters using asymptotic theory
and then converting this variance to the variance of the model predictions using
the delta method. This approach has been used by various authors to create
confidence intervals for neural networks (Kallus and McInerney, 2022; Nilsen
et al., 2022; Deng et al., 2023; Khosravi et al., 2011).

Confidence intervals of this type are often referred to as Wald-type intervals.
These intervals are necessarily symmetric. Various authors have noted that,
for classical models, Wald-type intervals often behave worse than likelihood-
ratio type intervals in the low-data regime (Hall and La Scala, 1990; Andersen
et al., 2012; Murphy, 1995; Murphy and van der Vaart, 1997). Specifically,
when the loglikelihood cannot be effectively approximated with a quadratic
function, Wald-type intervals may behave very poorly (Pawitan, 2001, Chapter
2). The significant advantage of Wald-type intervals in the classical setting is
the easier computation. However, while only a single model needs to be fitted,
the necessary inversion of a high-dimensional p x p matrix and the quadratic
approximation of the likelihood strongly rely on being in the asymptotic regime.

Conversely, the construction of the DeepLR confidence interval does not rely
on a quadratic approximation of the likelihood, which is in general only valid
asymptotically. While we still utilize asymptotic theory to determine the dis-
tribution of our test statistic (see our proof of Theorem 5.A.1 in Appendix
5.A), we do impose the extremely strong requirement that the second deriva-
tive of the loglikelihood must converge and be invertible. We only require this
second derivative to behave nicely in a single direction, which is a much weaker
requirement.

Another benefit of likelihood-ratio-based confidence intervals is that they are
transformation invariant (Pawitan, 2000). In other words, a different parametriza-
tion of the distribution does not alter the resulting confidence intervals. This
is not the case for most Wald-type intervals or Bayesian approaches.

The main limitation of DeepLR in its current form is the computational cost.
We compare the computational costs of the various approaches in Table 5.1.
Our method comes at no extra training cost but requires two additional net-
works to be trained for every confidence interval. Ensembling methods also
need to train multiple networks, typically from five to ten, but these networks
can be reused for different confidence intervals. Frequentist methods typically
come at no additional training cost but require the inversion of a p X p ma-
trix to construct the confidence interval. The cost of Bayesian methods varies
drastically from method to method. The training process can be substantially

144 CHAPTER 5. LIKELIHOOD-RATIO CONFIDENCE INTERVALS

Table 5.1: A comparison of the computational costs of different types of meth-
ods that create confidence intervals or credible regions.

Approach Additional training cost Additional inference cost
DeepLR No additional costs Two additional networks per
new input and multiple addi-
tional forward passes.
Ensembling | Multiple, typically five to ten, | A forward pass through each
extra networks need to be | of the ensemble members.

trained.
Frequentist | None Inversion of a p X p matrix.
Bayesian Varies. MC dropout requires | Varies. Typically, every new
no additional training costs. | input requires a large number

of forward passes.

more involved and the construction of a credible set requires multiple samples
from the (approximate) posterior.

In summary, a likelihood-ratio-based method is distance aware, transforma-
tion invariant, has no accuracy loss, and is capable of creating asymmetric
confidence intervals. However, it comes with the downside of being computa-
tionally expensive. Producing a confidence interval for a single input requires
the training of two additional networks.

5.3 Experimental Results

In this section, we present the results of various experiments that showcase the
desirable properties of DeepLLR, such as its distance-aware nature and capability
to create asymmetric confidence intervals. The high computational cost of
our method prohibits any large-scale experiments. Nevertheless, the following
experiments demonstrate the effectiveness of a likelihood-ratio-based approach.

5.3.1 Toy Examples

To start, we present two one-dimensional toy examples that effectively illus-
trate the behavior of our method. Specifically, these examples illustrate the
capability of our method to produce asymmetric confidence intervals that ex-
pand in regions with a limited amount of data points, both during interpolation
and extrapolation.

5.3. EXPERIMENTAL RESULTS 145

Regression The data set consists of 80 realisations of the random variable
pair (X,Y). Half of the x-values are sampled uniformly from the interval
[—1,—0.2], while the remaining half are sampled uniformly from the interval
[0.2,1]. The y-values are subsequently sampled using

Y| X =z~N(22%0.17).

On this training set, we train a network by minimizing the mean-squared error,
which is equivalent to maximizing the loglikelihood while assuming a normal
distribution with homoscedastic variance. We use the mean-squared-error of
the residuals as an estimate for the variance (this estimate is updated for ev-
ery evaluation of the test statistic). The network is trained for 400 epochs,
using a default Adam optimizer (Kingma and Ba, 2014) and a batch size of
32. The network consists of 3 hidden layers with 40, 30, and 20 hidden units
respectively. All layers have elu activation functions (Clevert et al., 2015) with
lo-regularization applied in each dense layer with a constant value of le-4.

Figure 5.3 gives the 95% confidence intervals for mean predictions. Notably,
in the biased region around 0, the intervals become highly asymmetric. In
contrast, most other methods produce symmetric interval around the original
network. In a region with a bias, this can easily lead to intervals with very
poor coverage. This is exemplified by the biased symmetric intervals generated
by an ensemble consisting of 10 ensemble members (we used the ensembling
strategy employed by Lakshminarayanan et al. (2017)).

In Appendix 5.C, we demonstrate that our likelihood-ratio-based approach also
works for this example with the popular XGBoost model (Chen and Guestrin,
2016). While our chapter focuses on applying the methodology to neural
networks, this highlights that likelihood-ratio-based uncertainty quantification
methods could also be developed for other types of models.

Binary classification The data set consists of 60 realisations of the random
variable pair (X,Y’), where half of the z-values are sampled uniformly from
the interval [0,0.2] and the other half are sampled uniformly from the interval
[0.8,1]. The y-values are subsequently simulated using

Y | X =2 ~Ber(p(z)), with p(z)=0.5+0.4cos(6zx).

On this training set, we train a fully connected network with three hidden lay-
ers consisting of 30 hidden units with elu activations functions. The final layer

146 CHAPTER 5. LIKELIHOOD-RATIO CONFIDENCE INTERVALS

(a) DeepLR (b) Ensemble

Figure 5.3: This figure illustrates DeepLR for a regression problem. The blue
dots indicate the locations of the training points, the dotted orange line rep-
resents the true function, and the solid green line represents the predicted
regression function of the network. The shaded blue region gives the 95% CI of
the regression function. DeepLR exhibits two desirable properties when com-
pared to an ensemble approach. Firstly, the intervals expand in regions where
data is sparse. Secondly, the intervals can be asymmetric, allowing for the
compensation of potential bias.

outputs a logit that is transformed using a sigmoid to yield a class probabil-
ity. The network is trained for 300 epochs using a binary-crossy-entropy loss
function and the Adam optimizer with a batch size of 32.

The resulting 95% confidence intervals of the predicted probability of class 1 are
given in Figure 5.4. We carried out the experiment with two amounts of regu-
larization to illustrate how this affects the result. For comparison, we also im-
plemented an ensembling approach and MC-Dropout (see Lakshminarayanan
et al. (2017) and Gal and Ghahramani (2016) for details). We used ten ensem-
ble members and a standard dropout rate of 0.2. All networks were trained
using the same training procedure.

We observe the same desirable properties as in the regression example. The
intervals get much larger in regions with a limited amount of data, also when
interpolating, and can become asymmetrical. Additionally, the intervals get
smaller when we increase the amount of regularization. The model class be-
comes smaller (fewer parameters can be reached) making it more difficult for
the model to change the predictions without affecting the likelihood. This, in
turn, leads to smaller confidence intervals. If the model is overly regularized, it
will become miss specified (6y ¢ ©) and the resulting confidence intervals will
not be correct.

This effect illustrates the trade-off between assumptional uncertainty and pa-
rameter uncertainty that we explained in Chapter 1. A more flexible model

5.3. EXPERIMENTAL RESULTS 147

is more likely to contain the true function but it is more difficult to find the
optimal parameters, resulting in a larger confidence interval.

The other approaches do not share the same qualitative properties. The en-
sembling approach results in confidence intervals that are far too narrow. All
ensemble members behave more or less the same, especially when interpolating.
The MC-Dropout credible regions do not expand in the regions in between the
data and also only moderately expand when extrapolating.

(a) DeepLR, regularization constant le-5 (b) DeepLR, regularization constant le-4

(c) Dropout (d) Ensemble

Figure 5.4: This figure illustrates DeepLR for a binary classification problem.
The blue dots represent the training data, the dotted orange line the true prob-
ability of class 1 and the solid green line the predicted probability of class 1.
The shaded blue region provides the 95% CI for the predicted probability of
class 1. Figures (a) and (b) demonstrate the behavior of DeepLR for vary-
ing amounts of regularization. The more regularization, the smaller the class
of admissible functions becomes, which naturally results in smaller intervals.
Additionally, the top left figure demonstrates that the intervals expand when
interpolating, a feature not shared by the dropout and ensembling approach.

148 CHAPTER 5. LIKELIHOOD-RATIO CONFIDENCE INTERVALS

(a) DeepLR (b) Ensembling (c¢) Dropout

Figure 5.5: A comparison of the confidence intervals of our likelihood-ratio
approach (DeepLR), an ensembling approach, and MC-Dropout on the two-
moon data set. The colorbar represents the width of 95% confidence intervals,
where yellow indicates greater uncertainty. The orange and the blue circles
indicate the location of the data points of the two different classes. Crucially,
DeepLR presents high levels of uncertainty in regions far away from the data,
generating confidence intervals of [0.00, 1.00], unlike the other methods that
display extreme certainty in those regions.

5.3.2 Two-moon Example

The data set consists of 80 data points, generated using the make moons func-
tion from the scikit-learn package, which creates a binary classification prob-
lem with two interleaving half circles (Pedregosa et al., 2011).

We utilize the same network architecture as in the toy classification example.
The network is trained for 500 epochs using the Adam optimizer with default
learning rate and batch size of 32, while also applying lo-regularization in each
layer with a constant value of le-3.

Figure 5.5 presents the 95% confidence intervals for the predicted class prob-
abilities. The results illustrate that DeepLR becomes extremely uncertain in
regions farther from the data (i.e., the confidence interval for the class proba-
bility spans the full range of [0, 1]).

In contrast, both an ensembling approach and MC-Dropout report excessively
high certainty in the upper left and lower right regions. The ensemble’s be-
havior can be attributed to all ensemble members extrapolating in the same
direction causing all ensemble members to report more or less the same class
probability. For MC-dropout, a saturated sigmoid is causing the narrow cred-
ible intervals.

This comparison underscores the unique capability of DeepLR to provide more
accurate uncertainty estimates in regions less well represented by data — a
crucial capability in practical applications.

5.3. EXPERIMENTAL RESULTS 149

5.3.3 MNIST Binary Example

For a more difficult task, we train a small convolutional network on the first
two classes of the MNIST data set, consisting of handwritten digits. In this
binary classification task, the 0’s labeled as class 0 and the 1’s as class 1.

The CNN architecture consists of two pairs of convolutional layers (with 28
filters and 3x3 kernels) and max-pooling layers (2x2 kernel), followed by a
densely connected network with two hidden layers with 30 hidden units each
and elu activation functions.

The network is trained for 10 epochs, using the SGD optimizer with a batch
size of 32, default learning rate, and Iy regularization with a constant value
of 1e-5, and binary cross-entropy loss function. The amounts of training time
and regularization were determined from a manual grid search using an 80/20
split of training data. For the actual experiment, the entire training set was
utilized.

Figure 5.6 presents 95% CIs for a number of different training points, test
points, and OoD points. As shown, the OoD points have wider confidence
intervals than the training and test points, reflecting greater uncertainty.

In an additional experiment, we rotated one of the test-points and created
confidence intervals for the rotated images. As Figure 5.7 illustrates, increasing
the rotation angle results in larger confidence intervals. This behavior is also
seen with the ensembling and MC-dropout, but to a significantly lesser extent.

These larger intervals can be explained as follows: Our approach essentially asks
the intuitive question how much the network can change the prediction for this
new input without overly affecting the likelihood of the training data. A heavily
rotated image of a number 1 deviates greatly from the typical input, utilizing
pixels that are almost never used by the training inputs. It is therefore relatively
straightforward for the network to change the prediction of this rotated input
without dramatically lowering the likelihood of the training data. This, in turn,
results in very large confidence intervals, accurately indicating that it is a very
unfamiliar input.

150 CHAPTER 5. LIKELIHOOD-RATIO CONFIDENCE INTERVALS

Training Test OoD
(a) (b) (c)
LR: [0.00, 0.00] LR: [0.00, 0.00] LR: [0.00, 0.13]
DR: [0.00, 0.00] DR: [0.00, 0.00] DR: [0.00, 0.07]
EN: [0.00, 0.00] EN: [0.00, 0.00] EN: [0.00, 0.10]
(d) (e) ®)
LR: [0.00, 0.00] LR: [0.00, 0.00] LR: [0.09, 0.39]
DR: [0.00, 0.00] DR: [0.00, 0.00] DR: [0.00, 0.10]
EN: [0.00, 0.00] EN: [0.00, 0.00] EN: [0.00, 0.21]
(2) (h) @)
LR: [1.00, 1.00] LR: [1.00, 1.00] LR: [0.04, 0.33]
DR: [0.99, 1.00] DR: [1.00, 1.00] DR: [0.00, 0.03]
EN: [1.00, 1.00] EN: [1.00, 1.00] EN: [0.00, 0.04]

Figure 5.6: 95% CIs for different training points (first column), test points
(second column), and OoD points (third column). Each subcaption displays
the 95% CI for the probability of class 1 made with DeepLR (LR), MC-dropout
(DR), and ensembling (EN). For in-distribution points (zeros and ones), all
three methods provide extremely narrow intervals. For the OoD points, our
method provides much larger Cls, a property also present in the other methods,
albeit to a lesser extent.

5.3. EXPERIMENTAL RESULTS 151

0° 30° 60° 90°

Figure 5.7: This figure provides 95% CIs for different amounts of rotation.
For rotations of 0 and 30 degrees, all methods produce very narrow confidence
intervals, implying high certainty. At 60 degrees of rotation, DeepLR outputs
high uncertainty whereas the ensembling approach and MC-dropout remain
fairly certain. At 90 degrees of rotation, DeepLR outputs very high uncertainty,
a confidence interval of [0.05, 1.00], a behavior also observed to a lesser extent
in both ensembling and MC-dropout.

152 CHAPTER 5. LIKELIHOOD-RATIO CONFIDENCE INTERVALS

5.3.4 CIFAR Binary Example

We extend the previous experiment to the CIFAR10 data set, using the first
two classes — planes and cars — as a binary classification problem.

We use a CNN consisting of two pairs of convolutional layers (with 32 filters
and 3x3 kernels) and max-pooling layers (2x2 kernel), followed by a densely
connected network with three hidden layers with 30 hidden units each and elu
activation functions.

The CNN is trained for 15 epochs using the SGD optimizer with default learning
rate, a batch size of 32, and ls-regularization with a constant value of 1le-5. The
training time and regularization are determined the same way as for the MNIST
experiment, using an 80/20 split of the training data.

Figure 5.8 presents 95% confidence intervals for several training, test, and OoD
points. Our method is uncertain for out-of-distribution inputs. However, con-
trary to the MNIST example, we also see that the model is uncertain for various
in-distribution points. Figures 5.8(e) and 5.8(g) provide examples of such un-
certain predictions. The exact reason why the model is uncertain for those
inputs remains speculation. Possible explanations might be the open hood of
the car in (e) or the large amount of blue sky in (g). An interesting avenue
for future work would be to investigate what specific features cause DeepLR to
output greater uncertainty.

5.3. EXPERIMENTAL RESULTS 153
Training Test OoD
(a) (b) (c)
LR: [0.01, 0.30] LR: [0.01, 0.14] LR: [0.08, 0.94]
DR: [0.01, 0.34] DR: [0.00, 0.05] DR: [0.71, 0.97]
EN: [0.00, 0.20] EN: [0.00, 0.23] EN: [0.17, 1.00]
(d) (e) (f)
LR: [0.57, 0.95] LR: [0.00, 0.93] LR: [0.00, 1.00]
DR: [0.12, 0.57] DR: [0.43, 0.91] DR: [0.16, 0.69]
EN: [0.33, 1.00] EN: [0.38, 1.00] EN: [0.33, 1.00]
(8) (h) (1)
LR: [0.13, 0.97] LR: [0.82, 0.99] LR: [0.00, 0.69]
DR: [0.08, 0.64] DR: [0.84, 0.99] DR: [0.11, 0.40]
EN: [0.11, 1.00] EN: [0.99, 1.00] EN: [0.02, 0.43]

Figure 5.8: This figure gives 95% ClIs for various training points (first column),
test points (second column), and OoD points (third column). Each subcaption
provides the CIs for the probability of class 1 (cars) made with DeepLR (LR),
MC-dropout (DR), and ensembling (EN). All methods demonstrate greater
uncertainty than in the MNIST example, which is sensible as the CIFAR data
set is significantly harder. Our method is very uncertain for all OoD points,
which is not always the case for MC-dropout (c and i) and ensembling (i).
We also observe relatively uncertain predictions by all methods for some in-
distribution points, notably (e) and (g).

154 CHAPTER 5. LIKELIHOOD-RATIO CONFIDENCE INTERVALS

5.3.5 Brain Tumor Example

As we mentioned before, there are scenarios where the high computational
cost can be justified. As an example, we consider the task of detecting brain
tumors in MRI images. Compared to the very high costs of making the MRI
image, the extra computational cost of retraining the network in order to get
an uncertainty estimate is justified.

As a training set, we use the Br35h data set (Hamanda, 2020), conisting of
1500 MRI images that contain a tumor and 1500 MRI images that do not
contain a tumor. All images, see Figure 5.9 for examples, are taken in the axial
(horizontal) plane above the level of the eyes. As OoD inputs, we take two
images from a second MRI data set (Sartaj, 2020). The first OoD image is in
the sagittal (vertical) plane. The second OoD image is in the axial plane but
contains the eyes.

For this experiment, we use a slightly larger CNN consisting of four blocks of
convolutional layers with max-pooling and batch-normalization — the first two
blocks have 3x3 kernels with 8 filters, and the last two have 3x3 kernels with 16
filters — followed by three densely connected layers with 20, 10, and 5 hidden
units respectively, batch-normalization, and elu activation functions.

The CNN is trained for 30 epochs using the SGD optimizer with default learning
rate, a batch size of 32, and [y-regularization with a constant value of 1le-5. The
training time and regularization are determined in the same way as during the
MNIST and CIFAR experiment. The resulting model has roughly 95% accuracy
on the unseen test set.

Contrary to the previous experiments, we keep the convolutional layers fixed
during the retraining to reduce the computational cost. This illustrates that it
is possible to use cheaper procedures to approximate the test statistic.

The results for six different inputs are visualized in Figure 5.9. DeepLR pro-
duces extremely narrow intervals for all four in-distributions points and very
wide intervals for both OoD points. While the ensembling approach also pro-
duces large intervals for the OoD points, the intervals are also wide for the test
points and to a lesser extent for the training points. MC-dropout produces
wide intervals for all inputs except for one of the two training inputs (a). No-
tably, MC-dropout the intervals are not wider for the OoD inputs than for the
test inputs.

5.3. EXPERIMENTAL RESULTS 155

Training Test OoD
(a) (b) (c)
LR: [0.00, 0.03] LR: [0.00, 0.02] LR: [0.02, 0.82]
DR: [0.00, 0.19] DR: [0.00, 0.72] DR: [0.00, 0.25]

EN: [0.00, 0.02]

(d)
LR: [0.99, 1.00]
DR: [0.68, 0.99]
EN: [0.97, 1.00]

EN: [0.00, 0.62]

(e)
LR: [0.94, 0.99]
DR: [0.53, 1.00]
EN: [0.86, 1.00]

EN: [0.00, 1.00]

(f)
LR: [0.00, 0.93]
DR: [0.00, 0.43]
EN: [0.00, 1.00]

Figure 5.9: 95% ClIs for different training points (first column), test points
(second column), and OoD points (third column). Each subcaption displays
the 95% CI for the probability of class 1 (a tumor) made with DeepLR (LR),
MC-dropout (DR), and ensembling (EN). DeepLR produces very narrow Cls
both for the two training and the two test inputs. For the OoD inputs, the
intervals become substantially wider. MC-dropout produces wide inputs for
all three types of inputs. Ensembling produces very narrow intervals for both
training inputs but relatively large interval for one of the test inputs (b). Both
OoD inputs have a very wide CI.

156 CHAPTER 5. LIKELIHOOD-RATIO CONFIDENCE INTERVALS

5.3.6 Adversarial Example

In addition to the previous experiments, we briefly tested how the method deals
with adversarial examples (Goodfellow et al., 2014b). Adversarial examples are
modified inputs that are specifically designed to mislead the model, typically
by adding small perturbations to the input. While virtually imperceptible to
humans, these perturbations can dramatically alter the model’s prediction.

We constructed adversarial versions of the two most confident test-inputs in
Figure 5.8 using the FGSM method (Goodfellow et al., 2014b), which works
by using the gradients of the networks’ loss function with respect to the input
to create an input that maximizes the loss.

As illustrated in Figure 5.10, DeepLR demonstrates a higher uncertainty for the
two adversarial inputs. This effect can be explained as follows. Although very
similar to a human observer, an adversarial example is significantly different to
a neural network. The difference was so large that both adversarial examples
were wrongly classified by the network. Since these adversarial examples differ
significantly from the training data, the network can more easily change the
prediction at this location without changing the other predictions and thus the
likelihood of the training data too much. This results in much larger confidence
intervals.

These results provide an encouraging sign that our method could also be able
to handle adversarial examples, offering the unique capability to create confi-
dence intervals, detect OoD examples, and offer robustness against adversarial
examples, all with a single method. Unfortunately, the high computational
cost of the method prevents more large-scale comparisons with other methods
to more firmly establish this potential.

5.4. DISCUSSION AND CONCLUSION 157

Normal Adversarial
(a) (b)
CI = [0.01, 0.14] CI = [0.57, 1.00]
(c) (d)
CI = [0.82, 0.99] CI = [0.00, 0.77]

Figure 5.10: Adversarial inputs generated by the FGSM method result in more
uncertain predictions. The same network was used as for the CIFAR example
illustrated in Figure 5.8. The intuition behind the larger Cls is as follows. While
very similar to humans, the adversarial examples are significantly different
to a neural network. This allows the network to change the prediction for
the adversarial example without changing the predictions of the training data,
resulting in larger confidence intervals.

5.4 Discussion and Conclusion

In this chapter, we demonstrated the potential of a likelihood-ratio-based un-
certainty estimate for neural networks. This approach is capable of producing
asymmetric confidence intervals that are better motivated in cases where we
have fewer data points than parameters, i.e. most deep learning applications.

158 CHAPTER 5. LIKELIHOOD-RATIO CONFIDENCE INTERVALS

The experimental results verify the theoretical advantages of a likelihood-ratio-
based approach. The intervals are larger in regions with fewer data points, can
get asymmetric in biased regions, and get larger for OoD and adversarial out-
puts. However, not being specifically designed for OoD detection or robustness
against adversarial attacks, we do not claim it to be competitive in this regard
against tailor-made alternatives.

While we made an effort to reduce it, our method still has some variance and
can produce slightly different intervals upon repetition due to the randomness
of the optimization procedure. This effect is greater for larger data sets where
small differences can have a large effect on the test statistic.

Furthermore, it is essential that the model is well specified. This is the case
for any model and not specific to our method. If the true density pg, cannot
be reached, the resulting confidence intervals will surely be wrong. A model
can be miss specified if it is overly regularized or if incorrect distributional
assumptions are made (e.g. incorrectly assuming Gaussian noise).

In its current form, the high computational cost makes DeepLR unsuitable
for many deep learning applications. A self-driving car that is approaching
a cross-section cannot stop and wait for an hour until it has an uncertainty
estimate. Nevertheless, a trustworthy uncertainty estimate may be critical in
certain situations, or only a limited number of confidence intervals may be
required. For instance, for medical applications, the extra computational time
may be worthwhile. Alternatively, for some applications within astrophysics,
only very few confidence intervals may be needed. If only a single interval is
needed, for instance, our method is cheaper than an ensemble.

5.4.1 Future Work

Overall, our findings highlight the potential of a likelihood-ratio-based approach
as a new branch of uncertainty estimation methods. We hope that our work
will inspire further research in this direction. Several areas for improvement
include:

e Reduced computational cost: A clear limitation of the current implemen-
tation is the cost. For every confidence interval, we need to train two
additional networks. We acknowledge that this is infeasible for many -
although not all - applications and we hope that the proof of concept in
this chapter motivates further research in this direction that may result
in reduced computational cost.

5.4. DISCUSSION AND CONCLUSION 159

e Improved approximation of the test statistic: The calculation of the test
statistic uses an approximation for the second term in equation (5.1). Fur-
ther research could focus on finding better and possibly cheaper approx-
imations. It may also be worthwhile to investigate the use of a Bartlett
correction. There are multiple ways to approximate the test statistic and
we do not claim that our proposal is the optimal one. In fact, in this
chapter we use three slightly different approaches. For the brain-tumor
example, we only retrained parts of the network. For the XGBoost exam-
ple in Appendix 5.C, we simply retrained the entire model from scratch,
and for the other examples, we perturbed the networks starting from the
original one. This new branch of uncertainty-estimation methods should
focus on improving the approximation of the test statistic.

e Application to other machine-learning models: We applied this approach
to neural networks. However, the methodology should also be applicable
to other models, for example random forests. Especially for models that
are relatively cheap to train, this approach could be very promising. In
Appendix 5.C, we demonstrated that a similar approach is also viable for
the XGBoost model.

e Extension beyond binary classification: We currently approximate the
test statistic by retraining the network two times and using a linear com-
bination of the original and the perturbed network. This does not easily
extend to multiple classes. In that case, we would need to retrain the
network in many more directions and we would no longer have a one-
dimensional interpolation problem.

e Development of the theory on the distribution of the test statistic: It
would be interesting to develop the theory surrounding the distribution
of the test statistic in greater generality, possibly also when explicitly
considering a regularization term. We constructed a reparametrization
that showed that, under some assumptions, the test statistic has a y?(1)
distribution. It would be interesting to study these assumptions further.

e A better understanding of what causes DeepLR to become uncertain: We
saw, for example, that various planes and cars had rather large accompa-
nying confidence intervals. It would be interesting to study what causes
certain input to become more uncertain than others.

160 CHAPTER 5. LIKELIHOOD-RATIO CONFIDENCE INTERVALS

APPENDIX CHAPTER 5

5.A Proof of Theorem 5.A.1

Theorem 5.A.1. Assume that © contains an open subset around Oy in RP.
Let 1(D;0) be the loglikelihood of the data given 6. Define ©g(c) = {0 € © |
fo(Xo) = ¢} and denote the tangent space of O¢(c) at Oy with Ty,O0(c). Also
define @ as the Mazimum Likelihood Estimator (MLE) of 8y and 6, as the
MLE when we restrict our parameterspace to Gg(c).

We assume:
A1: I(D;0) is three times continuously differentiable in a neighbourhood of 6y,
A2: 6 = 0o + Op(n_1/4> and éO =6y + Op(n_1/4)7

A3: There exists a vector i € RP such that h1(80)n = O,(n||hol|?) for all
ho € (Og(c) — 0y). Also, 1 is transversal to Ty, O0(c).

AJ: There exists a constant i > 0 such that %ﬁT[(Ho)fz = —i+0,(1).
Under these assumptions, the test statistic
T(c)= 2<supl(D;0)) — sup I(D; 0)>
(€] O (c)
converges in distribution to a x?(1) distribution.
We will first prove this theorem and then comment on the assumptions we

make.

Proof. Our strategy is to construct a reparametrization
U :00(c) xR—O:(6,t) — U(0,t), such that

L(D; ¥(8.t)) =~ L(D; 0)¢(D;t),

with high probability for 8 € ©, close to 8y, for some function ¢. In other
words, we use a parametrization such that the likelihood factorizes in a part
that depends on 0c ©(c), and a part that depends on t € R. If we can con-
struct such a parametrization, then T'(¢) will reduce to 2 times the loglikelihood-
ratio of a one-dimensional model, which is known to converge in distribution
to a x2(1) distribution.

5.A. PROOF OF THEOREM 5.A.1 161

We use the following parametrization:
0 =P(0) +tn,

with P(6) being the projection onto Og. In a neighbourhood of 8 this projec-
tion (i.e., the closest point in Oy to €) is uniquely defined and since 7 is not

tangent to Tg,Oo(c), t is also unique. We define fzo and fzéo) such that

ho = P(é) — 00 and ﬁ(()O) = éo — 00.

See Figure 5.11 for a visualization of the notation. Condition A2 implies that
|holl= 0p(n1/*) and ||héo)||= 0p(n™1/%). We also define such that 8 =
P(6) + in. Finally, we define £ by

(60)72

_ . 1 .
t = argmax ([(8)tn + =t>nT1(6 ﬁ> = ——
; X<(o)+ gt (B AT1(00)n

teR

By condition A4, this is indeed a maximum for large enough n. The loglikeli-
hood is a sum of n i.i.d. random variables, and the expectation has its maximum
at 8p. Therefore, [(6y) and its derivatives are all Op(n), but since [(6y) is a sum
of i.i.d. random variables with expectation 0, we see that [(6y) = O,(n'/?);
this implies that ¢ = Op(nfl/ 2). In what follows, we drop the dependence of
the loglikelihood on the data for notational simplicity. A Taylor expansion of
the loglikelihood and using the fact that 6 and 8, are MLE’s yield the following
inequalities:

1(6) = 1(8) + ho + in)

> 1(60 + A" +)

~ . ~ _ 1 ~
100 + A + (60 + AR + SinTi(60 + h\Ya + O, (nt?)

R . _ R _ 1 .
= 1(00 + b)) + [(00)tn + A" Ti(00) R + 5" 1(80)n

+ Oy (nB + n?||RY || +nil[RS]12), (5.4)

162 CHAPTER 5. LIKELIHOOD-RATIO CONFIDENCE INTERVALS

Figure 5.11: Visualization of the notation used in the proof. The shaded area
represents © and the dotted red line ©g(c).
and
1(6) = 1(8) + ho + in)
= 1(8) + ho) + (89 + ho)in + %Fﬁﬁ(eo + ho)f + O,(nt?)
< 1(60 + hY") +i(60)tr + RTi(6,)iR + %f%T[(ao)ﬁ
+ Op(nd® + né?||ho||+ni||ho|[*) (5.5)
<100 +) +i(6)n + ATi(6,)in + %FﬁTZ(BO)ﬁ
+ Oy (nf® + né?||ho||+ni||ho|[*). (5.6)
Combining (5.5) and (5.4), we see that { = O,(f) = O,(n"'/2). Using A2, we

also see that all terms in the remainder are 0,(1). Because of A3, this is also
true for ﬁéO)Tf(Oo)fﬁ and hT1(6)tn. Using (5.4) and (5.6), our test statistic

5.A. PROOF OF THEOREM 5.A.1 163

therefore reduces to

T(c) = <supl(0)— sup z(e))

By the central limit theorem and a well-known property of the loglikelihood
relating the variance of the derivative to the expectation of the second deriva-
tive, ﬁ 47(0y+tn)|i—o converges in distribution to a normal distribution with
mean zero and covariance ¢ € R. We conclude that T'(¢) weakly converges to a
x2(1) distribution. OJ

Assumption Al is necessary for the Taylor expansion, and A2 is important
for localization, but notice that the rate of convergence in directions other
than 7 can be slower than parametric. A4 mainly implies that the Fisher in-
formation of the relevant one-dimensional model is not 0. The more technical
A3 requires more explanation: a natural choice would be to consider the ex-
pected 1(8g) and pick 7 such that [(6g)n is perpendicular to Og(c) at 8y. This
does not require that the full second derivative matrix is invertible (a strong
requirement when the parameter space is very high dimensional), since it only
needs to solve one vector equation. The intuition is that the second derivative
only needs to behave well in a direction transversal to Gg(c).

We acknowledge that we cannot prove that these assumptions hold in practice.
It could happen, for instance, that Tp,0O0(c) = ©. In this case, we are over-
parameterized to such an extent that the restriction fg(Xo) = ¢ has no effect
on the likelihood, leading to a test statistic of 0, which clearly is not x?(1)
distributed. Our resulting confidence interval, however, is still conservative in
this case since we will not reject the null hypothesis when the test statistic is
Zero.

164 CHAPTER 5. LIKELIHOOD-RATIO CONFIDENCE INTERVALS

5.B Empirical Distribution of Test Statistic in
Toy Experiment

It is not possible to explicitly verify the distribution of T'(¢) since it is not
possible to perform the constrained optimization that would be required to
obtain it. However, we can evaluate the distribution of our approximation of
the test statistic.

For the toy regression example, we know the true function and we can check the
distribution of the test statistic under the null hypothesis. This corresponds to
the perturbation at X, that goes through f(Xo).

We simulated a new data set 100 times and for each data set trained a net-
work and calculated the test statistic. We did this for four values of X,
(-0.9,—-0.5,0.5,0.9). It is possible that the test statistic becomes negative,
in which case we simply set it to zero. This corresponds to a test statistic that
would result in exactly the same CIs. The negative values have no influence on
the actual coverage of the interval since a hypothesis only gets rejected when
the test statistic is too large. The results are given in Figure 5.12.

5.C Application of Methodology to XGBoost

While our chapter focuses on neural networks, the likelihood-ratio methodology
presented can also be applied to other types of models. To illustrate this, we
repeated the toy regression example from Section 5.3 with the popular XGBoost
model (Chen and Guestrin, 2016).

XGBoost is a highly popular gradient boosting approach. Weak learners, typ-
ically tree models, are trained iteratively on the residuals of all previous trees
while using a quadratic approximation of the loss function.

We used the default implementation of XGBoost from the sklearn API. XG-
Boost models can be regularized in a variety of ways; a common approach is
through the A and v parameters. The A\ parameter regularizes the size of the
outputs of the trees and 7 regularizes the number of splits. We constructed 95%
ClIs for two models: one model with a high amount of regularization (A = 5 and
v = 0.4) and one with a lower amount of regularization (A = 2.5 and v = 0.2).

Since XGBoost does not have a random initialization and does not use batches,

5.C. APPLICATION OF METHODOLOGY TO XGBOOST 165

(a) z=0.5 (b) =09

(c) x=-0.5 (d) z=-0.9

Figure 5.12: These histograms visualize the distribution of the test statistic
during our toy regression experiment at four different locations. For each lo-
cation, we simulated a new data set, trained a model, and calculated the test
statistic 100 times. The orange line gives the probability density function of a
x2(1) distribution.

we used a slightly different retraining approach. Instead of replacing the targets
with the predictions of the model, we simply keep the original network and add
the data point (Xo, f5(X0)). A new model is trained from scratch on this new
data set.

Figure 5.13 visualizes the 95% CIs for both models. The greater flexibility
of the model with a lower amount of regularization is reflected in the ClIs.
The intervals are substantially wider than the intervals of the model with a
larger amount of regularization. Additionally, we observe the same qualitative

166 CHAPTER 5. LIKELIHOOD-RATIO CONFIDENCE INTERVALS

behaviour as we saw with neural networks. The intervals expand in regions
where the data is more sparse and can become asymmetric.

This example illustrates that our likelihood-ratio methodology can also be ap-
plied to other machine-learning models besides neural networks. It also shows
that there are multiple possible approaches to find suitable perturbations. We
used a slightly different construction, simply adding a single data point and
training from scratch, and still observed the same qualitative behavior. We
do not claim that the method we used to find perturbations in this work is
the optimal one. Future work should focus on finding optimal perturbation
strategies.

(a) High regularization (b) Low regularization

Figure 5.13: This figure illustrates that the likelihood-ratio methodology can
also be applied to other models, such as XGBoost. The resulting 95% Cls
inherently take the amount of regularization into account. A model with a
lower amount of regularization is more flexible and can therefore reach values
more easily without affecting the likelihood of the training data. We also
observe the same favorable behaviour as we saw with neural networks. The
intervals get larger in regions where the data is more sparse and can become
asymmetric in biased regions.

CHAPTER 6

Quantile Regression with
XGBoost

This chapter is based on the preprint entitled “Composite Quantile Regres-
sion With XGBoost Using the Novel Arctan Pinball Loss” (Sluijterman et al.,
2024c), which is currently under review. The chapter focuses on the data un-
certainty in a regression setting. Contrary to the rest of this thesis, we do
not use neural networks, but instead XGBoost models, explained later in this
chapter. A popular approach to deal with data uncertainty in a regression set-
ting is quantile regression. However, XGBoost has specific issues that make it
difficult to use for quantile regression. In this chapter, we present solutions to
this problem and evaluate the resulting model on data sets of the Dutch energy
grid, provided by power-grid operator Alliander.

167

168 CHAPTER 6. QUANTILE REGRESSION WITH XGBOOST

Figure 6.1: The scope of Chapter 6. This chapter focusses on quantile regression
using XGBoost models. Quantile regression is a popular approach to quantify
the data uncertainty.

6.1 Introduction

Extreme Gradient Boosting (XGBoost, Chen and Guestrin (2016)) is a power-
ful, open-source software library renowned for its performance in structured or
tabular data sets across a wide range of domains, including finance (Gumus and
Kiran, 2017; Nobre and Neves, 2019), healthcare (Ogunleye and Wang, 2020;
Ramaneswaran et al., 2021; Li et al., 2019), and cybersecurity (Dhaliwal et al.,
2018; Jiang et al., 2020). XGBoost is increasingly being used for safety-critical
applications, such as predicting floods (Ma et al., 2021).

For these safety-critical applications, it is typically insufficient to rely solely

6.1. INTRODUCTION 169

on predicting a point estimate. When predicting the water level in a river,
understanding the potential extreme values is more important than predicting
averages. Quantile regression (Koenker and Bassett Jr, 1978) offers an attrac-
tive solution. Instead of merely predicting a point estimate, various quantiles
are predicted, for instance including the 0.95-quantile of the water levels.

Quantile regression has been carried out with a large variety of models. While
originally mainly linear models were used, modern implementations of quantile
regression often leverage complex models such as random forest (Meinshausen,
2006) and neural networks (Hatalis et al., 2019). These implementations may
also predict multiple quantiles with a single model (Xu et al., 2017), typically
referred to as composite quantile regression.

A large advantage of quantile regression is that it makes no distributional
assumptions. Many uncertainty estimation methods will typically assume a
Gaussian distribution (Lakshminarayanan et al., 2017; Nix and Weigend, 1994;
Gal and Ghahramani, 2016), which could lead to subpar prediction intervals if
the data is not normally distributed. Given the large popularity of XGBoost
and quantile regression, there is a clear appeal to use XGBoost for this task.

Unfortunately, using XGBoost for quantile regression is nontrivial. At its heart,
the model uses a quadratic approximation of the loss function during the op-
timization. However, as we will discuss in more detail later, the objective that
is typically used for quantile regression, the pinball loss, is not differentiable
everywhere and has a second derivative of zero, which makes this second-order
approximation impossible.

Several solutions have been developed. The current implementation in the
XGBoost package uses a different type of trees, additive trees, that do not
require the second derivative during the optimization. However, this requires
the use of separate models for each quantile. This is undesirable both as this can
easily result in a very high number of quantile crossings — for example, the 0.45-
quantile being larger than the 0.55-quantile — and because it is inefficient (Zou
and Yuan, 2008). Another option is to use the regular XGBoost model but with
a smooth approximation of the pinball loss that is differentiable everywhere.

While various of these approximations have been used for neural networks
(Hatalis et al., 2019; Zheng, 2011; Xu et al., 2017), these approximations typi-
cally have a second derivative that is either zero or becomes extremely small.
These approximations are unsuitable for XGBoost given its reliance on the
second-order approximation of the loss function.

In this chapter, we therefore present a novel smooth approximation, named

170 CHAPTER 6. QUANTILE REGRESSION WITH XGBOOST

the arctan pinball loss, specifically tailored for XGBoost. Crucially, the loss
function is differentiable everywhere and has a much larger second derivative
than the existing alternatives, making it more suitable for XGBoost. This
allows the use of a single model for multiple quantiles, resulting in far fewer
crossings and an increased efficiency.

Our chapter is organized as follows. Section 6.2 contains all relevant technical
details on XGBoost and quantile regression. Additionally, the existing smooth
approximations are discussed. The arctan pinball loss is presented in Section
6.3. In Section 6.4, our implementation of quantile regression with XGBoost
is compared to the current implementation. Crucially, our approach has sig-
nificantly fewer crossings while achieving similar or superior coverage. Final
concluding remarks can be found in Section 6.5.

6.2 Background and Related Work

This section consists of three parts. We first provide the details on XGBoost
that are necessary for this chapter. We then discuss quantile regression and
explain why it is non-trivial to use XGBoost for this task. The third subsection
provides current solutions for this problem along with the shortcomings of those
solutions.

6.2.1 XGBoost

We provide an introduction to XGBoost at the minimal level that is required for
this chapter. For a more in-depth introduction, we refer to Chen and Guestrin
(2016), whose notation we have followed here.

XGBoost is a boosting approach (Schapire, 1990) that iteratively trains weak
learners, typically tree models, while employing both the first and second
derivative of the loss function, hence the name Extreme Gradient.

The eventual output of the model is the sum of the outputs of the K trees:

K
Ji = o(@i) = fol@:) + 1Y fr(®:), (6.1)

k=1

where fo(;) is the base score, 7 is the learning rate, and fj is a tree with tree
structure g, a function that maps the inputs to a leaf index, and weights-vector

6.2. BACKGROUND AND RELATED WORK 171

wg, a vector containing the weights of each leaf.

XGBoost iteratively trains the trees with the goal to predict the remaining
residual. These individual trees are trained by optimizing a regularized objec-
tive:

£08) = Yy) + SO0, with O(fe) =Tk + gAlwnl P (6.2
% k

The loss function, [, measures the difference between the outputs, g, and the
observations, y. The output could be an estimate of y but it could also be
a conditional quantile. The regularization term () favors simpler trees with a
smaller number of leaves, T}, and smaller weights.

The model is trained iteratively, one tree at a time. Each tree aims to learn the
residual from all the previous trees. Let th) be the i-th prediction after having
trained the first ¢ trees. During the training of tree ¢, the following objective
is optimized:

L£O =371y g0 + fula) + QUfe)- (6.3)

1

XGBoost uses a quadratic approximation of Equation (6.3) during the opti-
mization:

(— 1
£0 %3 s, 3 70) + ful@i)gi + 5 SR @R] + QL) (6.4)
Ay, ') and he — (i, 3"

oy~ ;)2
weight of leaf j of tree ¢ can be calculated:

Zieltj gi
Zieftj hi +)\’

where g; = . Using this equation, the optimal

(6.5)

*
wtj——

where I; = {i|¢:(x;) = j}, are the indices of the data points that end up in
leaf j.

By using Equation (6.5), the approximate loss function in Equation (6.4) can
be calculated for a specific tree structure. An efficient split-finding algorithm
is used to find the optimal tree structure.

XGBoost further distinguishes itself through several key features that enhance
its performance and versatility in machine learning tasks. Firstly, it employs a
highly efficient split finding algorithm that optimizes the selection of split points

172 CHAPTER 6. QUANTILE REGRESSION WITH XGBOOST

in trees, significantly speeding up the learning process. Secondly, XGBoost has
excellent parallelization capabilities, allowing it to utilize multiple cores during
the training phase, which greatly reduces the time required to build models.
Furthermore, it is adept at handling missing values in the data set. XGBoost
automatically learns the best direction to assign missing values during the split,
either to the left or right child, depending on which choice leads to the best gain.
This ability to deal with incomplete data directly, without needing imputation
or dropping rows, makes XGBoost a robust and flexible tool for a wide array
of data science and machine learning applications.

Depending on the specific data set, XGBoost can be a good candidate due to
these advantages. Depending on the specific task, it may be desirable to obtain
quantiles via quantile regression. Given a specific data set and task, e.g., a large
tabular data set with the goal to predict water levels, we may therefore ideally
want to perform quantile regression using XGBoost. As we will discuss later,
however, this is far from trivial.

6.2.2 Quantile Regression

Quantile regression aims to predict a specific quantile of a probability distri-
bution rather than, for instance, predicting the mean. A conditional quantile
is defined as:

¢r () = min{y|FY|X:w(y> 2 T}'

In other words, it is the smallest value y, such that the probability that Y
is smaller than y, given X = x, is at least 7. Koenker and Bassett Jr (1978)
showed that conditional quantiles can be estimated by minimizing the so-called
pinball loss:

Ly (yiy 9i) = 7(Yi — 9)lgi<ysy + (7 = D) (Wi — 9:) g5 y:3 (6.6)

where g; is the predicted quantile, y; is the observed value, and [is the indicator
function. This loss is also known as the check function, tick function, or quantile
loss. The pinball loss is visualized in Figure 6.2 for two different values of 7. For
the 0.9-quantile, estimating a quantile smaller than the observation is penalized
more than estimating a quantile that is too large!.

LIf we predict a single quantile (that does not depend on any input), the pinball loss is
minimized when the quantile is such that the number of observations larger than the predicted
quantile is equal to (1 — 7)n. This can be seen by differentiating L,(9) = Ez‘:ggyi T(yi —
4) + Ei:g>yi (r — 1)(y — 9) with respect to § and setting it to zero.

6.2. BACKGROUND AND RELATED WORK 173

Figure 6.2: The pinball loss for two different values of 7. An observation above
the predicted 0.9-quantile leads to a much larger loss than an observation below.

Note that the pinball loss only depends on y; — ¢;. In the remainder of this
chapter, we will therefore use the notation u := y — y and present the loss
functions in terms of wu.

The original paper from Koenker and Bassett Jr (1978) sparked a large amount
of further research which developed into an entire subfield within statistics
and econometrics. Non- and semiparametric versions were developed (Chaud-
huri, 1991; Lee, 2003) as well as extensions to simultaneously predict multiple
quantiles (Zou and Yuan, 2008). Adaptions were constructed for time series
(Koenker and Xiao, 2006; Chen et al., 2009), causal inference (Chernozhukov
and Hansen, 2006), and dealing with censored data (Powell, 1986; Yang et al.,
2018). Simultaneously, advances were made on the theory of variable selection
and regularization (Belloni and Chernozhukov, 2011). We refer the interested
reader to a survey by Koenker (2017) that provides an overview of the impor-
tant advances in the four decades following the first seminal work.

More recently, there has been a growing interest to perform quantile regression
using machine learning models (Hatalis et al., 2019; Zheng, 2011; Xu et al.,
2017; Meinshausen, 2006). As we discuss now, using XGBoost to perform
quantile regression comes with specific challenges.

174 CHAPTER 6. QUANTILE REGRESSION WITH XGBOOST

6.2.3 Challenges and previous solutions

Ideally, we would want to let XGBoost output the quantiles and use the pinball
loss function directly. However, this is not possible for two reasons. First of all,
the loss function is not differentiable at u = 0. Secondly, the second derivative
is zero everywhere. This is problematic for XGBoost since it uses a second
order approximation of the loss function during the optimization.

The current solution in the XGBoost package is to use additive trees. These
are slightly different trees that do not require the second derivative but rely
on an adapted training algorithm that uses line searches. However, using these
modified trees requires a separate model for each quantile, which is highly
inefficient.

The problem of the differentiability at w = 0 can also be overcome by using a
smooth approximation of the loss function. Multiple different smooth approx-
imations have been suggested for neural networks.

Hatalis et al. (2019) use the following smooth approximation based on work
from Zheng (2011):

L(Te;‘p)(u) = 7u + slog (1 + exp(—u/s)), (6.7)

where s is a smoothing parameter that determines the amount of smoothing.
A smaller value gives a closer approximation to the true pinball loss.

Cannon (2011) and Xu et al. (2017) use the Huber norm to approximate the
pinball loss. The Huber norm is given by:

L2 for |u|< 4,
ns(u) = {2 ol (68)
|u|—56 otherwise.

The resulting approximation of the pinball loss is given by:

L) (w) = mns(w)gusoy + (1~ 7)ns(w) <oy (6.9)

This Huber pinball loss has also been applied to XGBoost (Yin et al., 2023).
However, since the second derivative of the Huber pinball loss is still zero for
|u|> 6, the algorithm requires a large value of A to properly converge in practice.
Being forced to use a large A is undesirable. The second derivative becomes
obsolete and the training in practice reduces to gradient descent with a very
low learning rate. This can be seen by evaluating Equation (6.5) for a large
value of \.

6.3. THE ARCTAN PINBALL LOSS 175

To really benefit from the convergence speed caused by the quadratic approx-
imation used by XGBoost, it is essential to use an approximation of the pin-
ball loss that is not only differentiable at zero but also has a non-zero second
derivative everywhere. The exponential approximation, Lf’s{p) (u), may there-
fore seem like a suitable candidate. In fact, the second derivative is strictly

positive:

32L(T?§p)(u) u u .21
T = (o) +exp(zn)) (6.10)

However, when implementing this, we ran into similar problems. Although the
second derivative is always positive, it decays exponentially as a function of |ul,
resulting in a vanishing second derivative. This caused extreme updates and
overflow errors, even in simple examples. The only solution was to use a large
value of A or a large value of s. As explained before, being forced to use a large
value of A is undesirable. Similarly, using a large value of s is undesirable as
this leads to a very rough approximation of the loss function and overly wide
intervals. We elaborate on this last point later. In summary, we need to find a
smooth approximation with a reasonably large second derivative.

6.3 The Arctan Pinball Loss

Our goal is to develop a smooth approximation of the pinball loss function that
maintains a large second derivative. To achieve this, we introduce the following
approximation, named the arctan pinball loss:

t
Lretan) () (T 054 M) wtl (6.11)
s s m

where s is a smoothing parameter that controls the amount of smoothing. A
smaller value of s results in a closer approximation but, as we will soon see, also
a smaller second derivative. The s/7 term ensures that the approximation is
unbiased for large values of |u|. For XGBoost, this term is purely aesthetic, as it
does not influence the first or second derivative. However, for other applications
or optimisation procedures, it could be useful. We provide more details on the
construction and the unbiasedness in Appendix 6.A.

176 CHAPTER 6. QUANTILE REGRESSION WITH XGBOOST

Figure 6.3: A comparison of Lgfifp)(u) and ngcmn)(u) for 7 =0.9 and s = 0.1.
Both the exponential approximation and the arctan approximation approxi-
mate the pinball loss very closely. However, as is displayed in (b), the second
derivative of the arctan pinball loss is much larger.

The second derivative of the arctan pinball loss is given by:

82L(f?§cwn) (u) 2 1 2u? 9
— S = (1 + (u/s)2) -3 (1 + (u/s)Q)
2

—(1+ (u/s)*) 72

™8

Crucially, this second derivative is strictly positive and falls off polynomially
. 52 [,(exP)

as opposed to the exponential decay of %(u)

Figure 6.3 visualizes this difference in second derivative. Figure 6.3(a) shows
that both the exponential pinball loss and the arctan pinball loss approximate
the true pinball loss very well when using s = 0.1. However, as can be seen in
Figure 6.3(b), the arctan pinball loss has a second derivative that is orders of
magnitude larger, making it a much better candidate to use with XGBoost.

By using this loss function, we are able to carry out quantile regression while
using the default version of XGBoost. One of the advantages of this is that
we can predict multiple quantiles with the same model by using multi-output
leaves. From a theoretical point of view, using the same model for multiple
quantiles is advantageous. The different quantiles can share information, mak-
ing it more efficient than estimating all the quantiles with separate models (Zou
and Yuan, 2008).

A second advantage of using the same model for different quantiles is that
all these quantiles share the same splits. This makes it much less likely that
quantiles cross. As we will see in the Section 6.4, using separate models for each

6.3. THE ARCTAN PINBALL LOSS 177

quantile results in many more quantiles crossings, which is clearly undesirable.

However, even when using a single model, crossings cannot be entirely pre-
vented. Due to the quadratic approximation, a single update can still result in
a crossing. Three scenarios where crossings could occur during an update are
visualized in Figure 6.4.

For simplicity, we consider the scenario where there is only a single data point
in a leaf. Suppose we predict the 0.95-quantile (red) and the 0.85-quantile
(blue). Without any regularization, A\ = 0, the update for both quantiles is
proportional to the gradient divided by the second derivative (Equation (6.5)).

In situation 1, the 0.95-quantile is slightly larger than y and the 0.85-quantile
substantially smaller than y. The update is proportional to the gradient divided
by the second derivative. In the first situation, the gradient for the 0.95-quantile
is smaller than for the 0.85-quantile and the second derivative is larger. These
resulting updates cause the 0.85-quantile to become substantially bigger and
the 0.95-quantile to become slightly smaller. This could result in a crossing.

In situation 2, the 0.85-quantile is smaller than y and the 0.95-quantile is larger
than y by a similar amount. In this case, the second derivatives for both are
equal. However, the gradient for the 0.85 quantile is roughly 0.85 compared
to -0.05 for the 0.95 quantile. This could also result in a crossing during this
update.

In the final scenario, both quantiles are larger than y. The gradient of the
0.95-quantile is —0.05 and the gradient for the 0.85-quantile is -0.15. At first
glance this should not be able to result in a crossing. However, since the second
derivative for §g.95 is smaller, this is still a possibility.

Note that two of the three crossing scenarios were caused by a difference in
second derivative. Since the second derivative of our arctan pinball loss is
polynomial instead of exponential, we do not suffer from this effect as much.
Additionally, using a larger A would also diminish this effect.

In general, using any approximation of the true loss can result in a slightly
biased model. Figure 6.5 illustrates the bias that both approximations of the
pinball loss, LS?;‘p)(u) and L(;"j;“a“) (u), have near the origin. The optimum for
both losses is slightly below u = 0 when using a 7 larger than 0.5. This causes
the predicted quantiles to be slightly larger. This would result in slightly more
conservative prediction intervals, especially when using larger values of s. We
will observe this behaviour in Section 6.4.

178 CHAPTER 6. QUANTILE REGRESSION WITH XGBOOST

Situation 1: Different second derivative and gradient

(1-0.95)
~ TR(0.95) N
S °4o.9s
|
ly
do.s5 ® 0.85
1,(0-85)
Situation 2: Different gradient
_ (1-0.95)
R(0.95) .

——°40.95
|
ly
do.g5 ® 085
h(0.85)

Situation 3: Different second derivative

(1-0.95)
~ TR(0.95)
e

|
ly
——*(0.85
(1—0.85)
h(0.85)

® 60.95

Figure 6.4: Three scenarios where crossings can occur, not at scale. While
the optimum of the arctan pinball loss has no crossings, individual updates
can result in crossings due to the quadratic approximation of the loss function.
The resulting update is proportional to the gradient divided by the second
derivative, denoted with h. These second derivatives in particular can vary
greatly in size, leading to updates that can result in crossings.

6.3. THE ARCTAN PINBALL LOSS 179

(arctan)

Figure 6.5: A comparison of Lgf);p)(u) and Ly (u) for 7=0.9 and s = 0.1
at a very small scale. Near the origin, the bias in both approximations is clear.
Both approximations have the actual minimum of the loss function slightly
below u = 0. This results in slightly more conservative quantiles, meaning
larger quantiles for 7 > 0.5 and smaller quantiles for 7 < 0.5 compared to
when using the regular pinball loss. This effect is larger when using a larger
value of s.

For optimal use of the arctan pinball loss, we recommend the following modeling
choices.

1. Always use standardized targets. This allows us to keep certain hyper-
parameters, most notably the smoothing parameter s, fixed regardless of
the data set. We typically found values between 0.05 and 0.1 to work
well. Smaller values result in extremely small second derivatives, and
much larger values result in an approximation that is too rough, leading
to overly conservative prediction intervals.

2. Set the min-child-weight parameter to zero. This parameter regularizes
the trees by requiring a minimum weight in each leaf in order to allow a
split. The weight is defined as the sum of the second derivatives of the
points in the resulting leaf. This makes sense when using a loss function
with a constant second derivative, such as the mean-squared error. In
that case, this parameter enforces a minimum number of data points in
each leaf to prevent overfitting. However, since the second derivative of
our loss function is far from constant, we advise to not use this parameter
and set it to zero.

3. Use a slightly smaller learning rate of 0.05 (compared to 0.1 in the stan-

180 CHAPTER 6. QUANTILE REGRESSION WITH XGBOOST

dard implementation). The weights of the new tree are given by Equation
(6.5). The outputs of the new tree are multiplied by the learning rate
to obtain the actual update. Since the second derivative can be substan-
tially smaller than 1, it is still possible to obtain rather large updates. To
make this more stable, we advise to use a slightly smaller learning rate.

4. Set the max-delta parameter to 0.5. This is done for the same reason
as the slightly lower learning rate. To prevent overly large updates, this
parameter is set to 0.5. During our experiments, we observed no negative
effects of using this parameter in terms of coverage or validation loss but
it reduced the number of quantile crossings.

6.4 Experimental Results

This section consists of three parts. We first go through the various data
sets that were used. Subsequently, we explain our experimental design. This
includes the choices of hyper-parameters, the optimization procedure, and the
metrics that were used. Finally, the results are given and discussed in the third
subsection.

6.4.1 Data Sets

Toy example Our first example is a one-dimensional toy example. This
experiment demonstrates the qualitative advantages of our approach. Specifi-
cally, we illustrate that the splits for the different quantiles are all located at
the same positions, significantly reducing the number of quantile crossings.

The training set consists of 1,000 realizations of the random variable pair
(X,Y), where X ~ U[0,1] and Y | X = 2 ~ N (sin(7x),0.2%).

UCI Benchmark Data sets Secondly, we examine our method on six pub-
licly available UCI regression data sets: Boston housing, energy, concrete, wine
quality, yacht, and kin8nm. These data sets range from a few hundred data
points, with yacht being the smallest at 308, to several thousands, kin8nm
having over 8,000 data points. The data sets feature between 6 and 13 co-
variates, encompassing both continuous and categorical variables. Given their
high dimensionality and the wide range of tasks they represent, these data

6.4. EXPERIMENTAL RESULTS 181

sets are frequently used as benchmark data sets in machine learning research
(Herndndez-Lobato and Adams, 2015).

Electricity-grid Substations Lastly, we examine the total load on four dis-
tinct substations from the Dutch electricity grid. For each substation, three
months of data at a temporal resolution of 15 minutes is available. The ob-
jective is to predict the load on the substation one day ahead using the 81
available covariates. These covariates comprise a mix of measurements, pre-
dictions, and categorical values. Examples include load measurements from
the previous day, day-ahead electricity price, predicted amounts of solar ra-
diation and windspeed for the next day, and calendar-derived variables such
as whether the day is a weekday or a holiday. These data sets have been
provided to us by the distribution system operator Alliander and are publicly
available as part of the OpenSTEF package: https://github.com/0OpenSTEF/
openstef-offline-example/tree/master/examples/data.

6.4.2 Experimental Design

For all experiments, we predict 10 different quantiles:

0.05,0.15,0.25, ..., 0.75,0.85, 0.95].

The following hyper-parameters are optimized:
e The number of estimators: [100, 200, 400].
e The) regularization parameter: [0.01, 0.1, 0.25, 0.5, 1, 2.5, 5, 10].
e The ~ regularization parameter: [0.1, 0.25, 0.5, 1, 2.5, 5, 10].
e The maximum depth of the trees: [2, 3, 4].

For the toy example, we applied 3-fold cross-validation (using the average pin-
ball loss as the criterion) to determine the optimal hyper-parameters and eval-
uated the resulting model on a separate test set.

For the UCI data sets, we used 3-fold cross-validation to obtain predicted
quantiles for every data point in the data set. During each cross-validation,
another round of 3-fold cross-validation was used to determine the optimal
hyper-parameters.

182 CHAPTER 6. QUANTILE REGRESSION WITH XGBOOST

Training Val Test

_t

Figure 6.6: Illustration of the train/val/test split used for the Alliander data.

Since the substation data sets are time series, we could not use regular cross-
validation. Instead, we used a train/validation/test split where we allocated the
first 80% of the time series as the training set, the next 10% as the validation
set, and the final 10% as the test set. The optimal hyper-parameters were
determined using the validation set, and the actual model was fitted using
these parameters on the combined training and validation set. Subsequently,
the model was evaluated on the test set. This procedure is visualized in Figure
6.6.

Metrics For the toy-example, which is mainly illustrative, we provide visual-
izations of the various quantiles. For the UCI data set and the electricity-grid
substation data sets, we provide the following quantitative metrics:

1. The marginal coverage percentage and average width of the 90% PI:

1 n
Coverage = - Zﬂ{yiepl(mi)} -100%, (6.12)

i=1

where PI(x;) is the 90% PI that is constructed using the predicted 0.05- and
0.95-quantile. We also report the average width of this interval.

The marginal coverage of an interval, however, does not fully capture the qual-
ity of the predicted conditional quantiles. The typical argument is that we
want an interval that has the correct marginal coverage while being as narrow,
or sharp, as possible (Kuleshov et al., 2018). A similar argument has been
made in terms of calibration and refinement (DeGroot and Fienberg, 1983) for
a probabilistic classifier. This argument translates well to quantile regression.

Suppose we are predicting a conditional 7-quantile, denoted with §(X). The
perfect predicted quantile would satisfy:

P(Y <§(X)|X=a)=7 Va.

6.4. EXPERIMENTAL RESULTS 183

The predicted quantile is never perfect and we therefore make the following
erTOors:

PY<gX)| X=x)=7+ P <g(
+ (P (Y < g(

X)) =)

X) | X =)~ P(V < §(X))).
(6.13)
The error in the first line of Equation (6.13), P (Y < §(X))—, is the calibration
error. Crucially, this error can be low by having conditional quantiles that are
only correct on average and not for individual values of . This can be seen by
noting that:

PW<MX»=LPW<mXHX=@ﬂ@m7

where 7(2) is the density function of the random variable X.

The error term in the second line of Equation (6.13) is the refinement error.
This term is large if the coverage of the conditional quantile is substantially
larger or smaller than the marginal coverage.

As an example, the empirical CDF would be relatively well-calibrated but
would not be practical as it entirely ignores the covariates. A similar point
is made by Kuleshov et al. (2018).

2. The average pinball loss:

Because of the limitation of only reporting the marginal coverage, we also report
the average pinball loss:

n nr

1
Average pinball loss = Z Z L+, (yis 9ij),

nsn

i=1 j=1

where L., is the pinball loss for quantile 7;, n, is the number of predicted
quantiles, n is the number of data points, and g;; is the j-th predicted quantile
of data point ¢. The pinball loss is a proper scoring rule for conditional quantiles
(Gneiting and Raftery, 2007) and therefore measures both the calibration error
and the refinement error.

3. The crossing percentage, which is the percentage of adjacent predicted
quantiles that cross:

184 CHAPTER 6. QUANTILE REGRESSION WITH XGBOOST

Ligi 5000 - 100%.

n ny—1

1
Crossing percentage = —————
(n, —)n

i=1 j=1

6.4.3 Results and Discussion

Toy example Figure 6.7 illustrates the difference between our approach and
the default implementation of quantile regression in XGBoost. The default
implementation uses a separate model for each quantile. This causes the splits
to be at different locations, easily resulting in quantile crossings. On the con-
trary, our approach uses a single model for all ten quantiles and therefore has
the splits at the same locations. In this example, our approach had 0 crosses.

Figure 6.7: A comparison of the original implementation and the arctan loss.
By using the arctan loss function, a multi-output tree can be used in XGBoost.
This causes the splits to be at the same locations for all quantiles, greatly
reducing the number of crossings.

UCI data sets The results on the six UCI data sets are given in Table 6.1.
We evaluated two values of s, our smoothing parameter. A larger value means
more smoothing.

We observe far fewer crossings for all six data sets. Additionally, while our
intervals are typically smaller, our marginal coverage is overall closer to the
desired 90%, with the exception of the energy data set. We do not see a

6.4. EXPERIMENTAL RESULTS 185

Table 6.1: Results on UCI benchmark data sets. The marginal coverage and
the average width are calculated for the 90% PIs that are constructed with the
0.05- and the 0.95 quantiles. Using the arctan pinball loss results in significantly
fewer quantile crossings while achieving comparable performance. On 5 of the
6 data sets, energy being the exception, we observe superior coverage and an
equal or better pinball loss. We also see the effect that using a larger value of
s results in more conservative quantiles and thus wider prediction intervals.

Data set Average Pinball loss 90% PI coverage 90% PI width Crossing percentage
s=0.05 s=0.1 default | s=0.05 s=0.1 default | s=0.05 s=0.1 default | s=0.05 s=0.1 default
Energy 0.22 0.22 0.17 93.9 97.1 88.9 5.4 5.8 4.5 7.1 0.3 20.2
Concrete 1.5 1.4 1.5 814 86.1 81.3 15.2 15.8 19.8 5.5 3.2 16.1
Kin8nm 0.040 0.040 0.041 83.1 84.3 82.3 0.44 0.44 0.46 1.1 0.6 11.0
Boston Housing 0.92 0.91 0.95 80.0 83.2 76.1 8.0 8.7 9.9 2.4 0.7 18.5
Yacht 0.21 0.26 0.21 90.9 95.5 69.2 2.8 4.9 5.5 0.5 0.0 29.8
Wine 0.17 0.17 0.17 88.1 88.7 61.2 1.5 1.7 1.8 3.1 2.2 5.3

clear difference in performance in terms of the pinball loss. This illustrates
the previously mentioned fact that the coverage is a marginal coverage. A
model can be very well calibrated, but not very informative, or it can be very
informative yet poorly calibrated.

An insightful way to visualize the marginal coverage is via reliability diagrams
(Murphy and Winkler, 1977; Niculescu-Mizil and Caruana, 2005). For each
quantile, for instance the 0.05-quantile, the fraction of observations below the
corresponding predicted quantiles is plotted. Perfect calibration would result
in a diagonal line, a biased model would result in a line above or below the
diagonal, and over- or underconfident models result in an (inverted) s-curve.

Figure 6.8 provides the reliability diagrams for both approaches on the energy
and wine data sets. The left plot illustrates why the pinball loss of our new
approach was worse on the energy data set. We observe that practically all
the intervals are overly conservative. This is likely caused by using an s-value
that was slightly too large. As we previously argued, this can cause overly
conservative quantiles. This is further confirmed by the fact the intervals were
even wider when using s = 0.1. Additionally, the right plot clearly shows
that the extremely low marginal coverage on the wine data set by the original
approach was caused by the 0.05-quantiles being too large.

At first glance, the performance of the original approach on the wine data set
looks rather dramatic. The 90% PI of the original approach only has a 61.2%
marginal coverage. The reliability diagram already revealed that this is caused
by the 0.05-quantile that is too large. However, the average pinball loss shows

186 CHAPTER 6. QUANTILE REGRESSION WITH XGBOOST

Figure 6.8: Reliability diagrams for the quantiles obtained for the energy (left)
and wine (right) data sets using the arctan loss with s = 0.05 (orange) or the
regular pinball loss (blue). For the wine data set, the lower quantiles of the
original approach are calibrated very poorly. For the energy data sets, all the
quantiles are too conservative, meaning that the lower ones are too small and
the larger ones are too large. This leads to intervals that are slightly too large
and a higher pinball loss.

that the actual model is not that much worse than our implementation. When
investigating this further, we found that the original 0.05-quantiles were very
slightly, but consistently, too large. This resulted in a very low coverage of the
90% PIs even though the intervals were in fact only very slightly too small.

Figure 6.9 illustrates this effect. The observations are plotted against the differ-
ences between the observations and the predicted quantiles. A positive value
corresponds to an observation above the predicted quantile. For the 0.05-
quantiles, 95% of observations should be above the quantiles. As we observe,
this is only 67.9%. However, the figure illustrates that this is caused by a sub-
stantial number of observations that are only very slightly larger than these
quantiles. In fact, when reducing the predicted quantiles by just 1%, the per-
centage of observations above the corresponding 0.05-quantiles rose to 96.9%.

While the marginal coverage is often closer to 90% with the arctan loss, we
also have a number of data sets where the intervals are too narrow, especially
when using a smaller s. As mentioned, the original implementation even had a
marginal coverage as low as 61.2% for one of the data set. This overconfidence

6.4. EXPERIMENTAL RESULTS 187

Figure 6.9: Differences between observations and 0.05-quantiles of the default
implementation on the wine data set. The values on x-axis are jittered slightly
for better visibility. No jitter was used for y-axis. Ideally, 5% of the y-values
should be smaller than the predicted quantiles. For the original approach,
this was 32.1% of observations (denoted in orange). However, reducing the
predicted quantiles by a mere 1% caused the percentage of points below the
predicted quantiles to fall to just over 3%. This effect was particularly strong
on this data set since the wine scores are not continuous.

is in line with the observation of Guo et al. (2017) who noted that modern
machine learning models are often overconfident. The pinball loss depends
on both calibration and refinement and therefore the resulting optimal model
according to the pinball loss may not be the best calibrated model.

A general approach to improve the calibration is to add a post-hoc calibration
step. The PIs are evaluated on a previously unseen part of the data set and are
tuned such that they are better calibrated. We advise to always consider using
such a post-hoc calibration step when implementing these models in practice.
An example of such a procedure can be found in Romano et al. (2019).

Electricity-grid substations The results for the electricity substations are
given in Table 6.2. Our approach yields comparable results while having far
fewer crossing and requiring only a single model. For two of the four substa-
tions, we have a slightly better pinball loss while for two others, we perform
slightly worse. A similar pattern is observed for the coverage.

We also observed that the models are sometimes biased, rather than overconfi-
dent, causing a subpar coverage. We suspect that this is caused by the varying
conditions combined with the fact that trees do not extrapolate well.

188 CHAPTER 6. QUANTILE REGRESSION WITH XGBOOST

Table 6.2: Results on Alliander data sets. We obtain comparable performance
with only a single model and have almost zero quantile crossings. The coverage
is lower for both approaches, an effect we expect to be the result of the inability
of tree based models to extrapolate well.

Data set Average Pinball loss | 90% PI coverage | 90% PI width | Crossing percentage
s=0.1 default s=0.1 default | s=0.1 default | s=0.1 default
Substation 287 0.19 0.18 80.6 76.7 1.66 1.56 0.4 12.8
Substation 307 0.75 0.77 88.2 84.11 8.24 7.95 0.0 4.2
Substation 435 0.53 0.55 78.8 86.1 4.83 5.88 0.0 2.1
Substation 438 0.69 0.68 84.6 86.1 7.0 7.3 0.0 3.3

For substation 287, the training data (including validation) starts halfway
through October and ends in early January. The entire test set consists of
days in January. During that time, the loads in the substation were typically
lower. Multiple factors might cause this, but a likely explanation is reduced
sunlight in January.

Figure 6.10 provides reliability diagrams for both substations. The aforemen-
tioned bias of both models for substation 287 is clearly visible. All the quantiles
are too large. For substation 307, we observe that both approaches yielded
well-calibrated quantiles.

The 90% PIs for substations 287 and 307 are visualised for both approaches in
Figure 6.11. For substation 287, we observe that the intervals fail to capture
the lowest peaks. Additionally, both models exhibit a bias around the 24th
of January. The predicted intervals are often above the actual loads in that
region.

In this specific application, which involves a time series with only three months
of training data, using tree-based models presents clear disadvantages. In-
evitably, the model will encounter unseen scenarios, such as the first signifi-
cantly sunny day or the first frost period in a three-month period. In these
instances, the model may fail since the individual trees cannot extrapolate.

This illustrates that XGBoost may not always be the correct model. We stress
that we do not claim this to be the optimal way to perform quantile regression.
Other models, such as neural networks or even simple linear models, could work
just as well, or better, depending on the specific situation. However, there may
be situations where XGBoost is preferred due to its efficient training and its
capability to handle missing data. In such cases, using the arctan pinball
loss allows for the simultaneous estimation of multiple quantiles, resulting in

6.5. CONCLUSION 189

Figure 6.10: Reliability diagrams for the quantiles obtained for substations 287
(left) and 307 (right) using the arctan loss (orange) or the regular pinball loss
(blue). For substation 287, both models are biased. All the quantiles are too
large, likely the result of a distributional shift between the training and test
data. For substation 307, both models are calibrated very well.

substantially fewer crossings.

6.5 Conclusion

This chapter introduced a novel smooth approximation of the pinball loss func-
tion, termed the arctan pinball loss, which has been specifically designed to
meet the needs of the XGBoost framework. The key advantage of this loss
function lies in its second derivative, which decreases significantly more slowly
than that of the currently available alternatives.

This arctan loss facilitates the use of a single model for multiple quantiles
simultaneously. This is both more efficient and greatly reduces the number of
quantile crossings. The experimental results demonstrate that this approach is
viable for a wide range of data sets and yields competitive results while using
only a single model and while having far fewer quantile crossings.

190 CHAPTER 6. QUANTILE REGRESSION WITH XGBOOST

Figure 6.11: A visualization of the time series for substations 287 and 307.
The grey area gives the 90% PI that is constructed using the 0.05- and 0.95-
quantiles. For substation 287, the values of the lowest peaks are overestimated
by both models and there is a substantial bias around the 24th of January.

6.A. CONSTRUCTING THE ARCTAN PINBALL LOSS 191

APPENDIX CHAPTER 6

6.A Constructing the Arctan Pinball Loss

Recall that we defined u := y — 3. We will discuss the pinball loss as a function
of u and 7, the desired quantile. The classical pinball loss is (7 — 1)u for u < 0
and 7u for u > 0. We can place this pinball loss in a larger set of functions,
namely {L(u) = (7 — f(u))u}. For the pinball loss, f(u) is a stepfunction that
goes from 1 to 0 at u = 0.

We can also consider other functions for f(u) that go from 1 to 0 to find
approximations of the loss function. For a loss function to be suitable for
XGBoost we require that L”(u) is non-negligible in the relevant domain of u.
If the targets are standardized, this relevant domain is roughly from -10 to 10
for most data sets.

It is immediately clear that the classical pinball loss is not suitable. A simple
calculation shows that

L' (u) = —2f'(u) — f"(w)u.

Writing it out in terms of f(u) allows us to easily check different functions and
see how quickly the second derivative goes to zero.

We propose the following function f as a suitable candidate:

fulw) = 05— arctai(u/s).

Using this f would result in the following loss function:

arctan(u/s)

L;s(u)=(r—05+ u.

However, this loss function is asymptotically biased, as we demonstrate for the

192 CHAPTER 6. QUANTILE REGRESSION WITH XGBOOST

limit v — oo. The limit u to —oo is identical and can be obtained similarly.

. t
lim L, q(u) — LP™P () = lim (7 — 0.5 + M)u —T-u
uU—r00 U—r 00
 lim (—0.5 4 Ctan(u/s),
U—r 00
. (705 + arctal;(u/s))
= lim —
U—r 00 u

. 1 1
L’Hopital i s 1+ (u/s)2
U— 00 u

u2
- lim —
s u—oo 1 4 (u/s)?

s2u?

im ——
T8 u—oo 82 + u?
s

™

To obtain an asymptotically unbiased loss function, we therefore add an 2 term
and end up with our arctan pinball loss:

arctan(u/s) s

L2780 () = (7 — 0.5 + Jut —

Crucially, the second derivative of this arctan pinball loss is polynomial:

Q2 Lctan(y) 9 o1 2u? oy —2
T—g(lﬂL(U/S)) —@(1+(u/8))
2

—(1+ (u/s)*) 7%

™8

Research Data
Management

The research in this thesis has been carried out under the institute research
data management policy of the Institute for Mathematics, Astrophysics and
Particle Physics (IMAPP) of the Radboud University.

The more substantial pieces of code used in the various chapters have been
made publicly available on GitHub:

Chapter 3 https
Ensembles

Chapter 4 https

Chapter 5 https
intervals

Chapter 6 https
regression

://github.

://github.

://github.

://github.

com/LaurensSluyterman/Bootstrapped_Deep_

com/LaurensSluyterman/Mean_Variance_Estimation

com/LaurensSluyterman/Likelihood_ratio_

com/LaurensSluyterman/XGBoost_quantile_

193

Summary

The work in this thesis contributes to the field of uncertainty quantification
for machine-learning models, in particular neural networks. The first chapter
gives an introduction to the field by first going through the various sources of
uncertainty and then discussing popular approaches to quantify each of these
uncertainties.

Roughly speaking, there are three sources of uncertainty. Firstly, we are unsure
about the optimal model parameters because the model is trained on a finite
amount of random data. Secondly, even if we were absolutely certain about the
model parameters, the quantity that we are trying to predict may be inherently
random and thus we can never be entirely sure. Lastly, the data on which we
trained could be not entirely representative of the data for which we want to
make predictions. Each chapter focuses on improving the estimation of one or
multiple of these uncertainty sources.

Chapter 2 proposes an improved approach to evaluate the quality uncertainty
estimates in a regression setting. By using a simulation-based approach, meth-
ods that output a density can be compared with methods that output pre-
diction intervals. An added benefit of using a simulated data is that the true
data-generating process is known. This facilitates explicit testing of conditional
prediction and confidence intervals.

The third chapter provides an extension to the popular Deep Ensembles ap-
proach. As noted by the original authors (Lakshminarayanan et al., 2017),
their approach (purposely) does not incorporate the uncertainty in the model
parameters that is caused by training on a finite random sample. While it is
possible to incorporate this, for example via bootstrapping, they found that

195

196 Summary

solely incorporating the uncertainty due to the random training produced bet-
ter results. The reasoning is that, when bootstrapping, the model effectively
trains on fewer data points, leading to a lower performance. We provide a
parametric bootstrapping approach that allows us to incorporate the missing
uncertainty component without affecting accuracy and show that this results
in improved coverage of the resulting confidence intervals.

Chapter 4 presents an improvement to Mean-Variance Estimation networks
(Nix and Weigend, 1994). These networks estimate both the conditional mean
and variance, assuming a normal distribution. We show that recently reported
convergence problems with these networks (Skafte et al., 2019) can be relatively
easily prevented by using the warm-up that the original authors proposed. We
provide experimental results that demonstrate how crucial this step can be.
Additionally, we present a novel improvement by demonstrating that separately
regularizing the parts of the network that predict the mean and the variance
can result in improved performance.

In Chapter 5, we present a likelihood-ratio-based approach to construct a con-
fidence interval for the prediction of a network for a specific new input. In-
tuitively, this approach works by asking the question: “For this new input,
what predictions can the network make while still explaining the data reason-
ably well?” We show that answering this question leads to confidence intervals
with very desirable properties such as the ability to become asymmetric in
biased regions and greatly expanding in regions where there is less data.

The final Chapter 6 diverges from studying neural networks and discusses a
novel loss function that facilitates the use of the popular XGBoost model for
quantile regression. This chapter is the result of a collaboration with the Dutch
power-grid operator Alliander, who approached us with an interesting case.
Their goal is to use XGBoost to predict loads on substations of the grid. Be-
cause XGBoost is very efficient and capable of dealing with missing values, this
is their model of choice. However, as we see in this chapter, it is a non-trivial
task to use this model for quantile regression because the loss function that is
typically used for that task, the pinball loss, has a second derivative of zero.
This is problematic since XGBoost uses the second derivative in the optimiza-
tion procedure. We therefore develop a novel loss function that has a second
derivative that approaches zero polynomially.

Samenvatting

Dit proefschrift bestudeert onzekerheidskwantificatie voor machine learning
modellen, in het bijzonder neurale netwerken. Het eerste hoofdstuk geeft een
inleiding tot het veld door de verschillende bronnen van onzekerheid te bespre-
ken en per bron populaire methoden te behandelen om deze te kwantificeren.

Grofweg zijn er drie bronnen van onzekerheid. Ten eerste zijn we, omdat het
model is getraind op een eindige hoeveelheid willekeurige data, onzeker over
de optimale parameters van het model. Ten tweede, zelfs als we de optimale
parameters exact zouden weten, kan wat we proberen te voorspellen inherent
willekeurig zijn. Hierdoor kunnen we dus nooit helemaal zeker zijn van een
nieuwe voorspelling. Ten derde is het mogelijk dat de dataset waarop we ons
model baseren niet volledig representatief is voor de data waarvoor we voorspel-
lingen willen maken. Elk hoofdstuk presenteert verbeteringen voor het schatten
van één of meerdere van deze bronnen van onzekerheid.

Het tweede hoofdstuk beschrijft een nieuwe aanpak om de kwaliteit van on-
zekerheidsschattingen te testen in een regressiecontext. Deze aanpak maakt
gebruik van simulaties waardoor het mogelijk wordt methoden die een dicht-
heid voorspellen te vergelijken met methoden die een betrouwbaarheids- of
predictie-interval voorspellen. Een bijkomend voordeel is dat het echte data-
genererende proces bekend is. Hierdoor is het mogelijk expliciet de conditionele
betrouwbaarheids- en predictie-intervallen te testen.

Het derde hoofdstuk beschrijft een uitbreiding op de populaire Deep Ensembles
techniek. Zoals opgemerkt door de oorspronkelijke auteurs (Lakshminarayanan
et al., 2017), houdt hun aanpak (bewust) geen rekening met de onzekerheid in
de modelparameters die wordt veroorzaakt door het trainen op een eindige

197

198 Samenvatting

hoeveelheid willekeurige data. Hoewel het mogelijk is om dit wel te doen, bij-
voorbeeld via een bootstrap, merkten zij op dat alleen het meenemen van de
onzekerheid door het niet-deterministische trainingsproces tot betere resulta-
ten leidde. De reden is dat bij bootstrappen het model effectief op minder data
traint, wat leidt tot een lagere precisie. Wij presenteren een parametrische
bootstrap benadering waarmee de ontbrekende onzekerheidscomponent gevan-
gen kan worden zonder dat dit invloed heeft op de nauwkeurigheid. We tonen
aan dat dit leidt tot een verbeterde coverage van de resulterende betrouwbaar-
heidsintervallen.

Hoofdstuk 4 presenteert een verbetering van Mean-Variance Estimation net-
werken (Nix and Weigend, 1994). Deze netwerken schatten zowel het conditi-
onele gemiddelde als de variantie, onder aanname van een normale verdeling.
We laten zien dat recent gerapporteerde convergentieproblemen met deze net-
werken (Skafte et al., 2019) relatief eenvoudig kunnen worden voorkomen door
de aanbevelingen van de oorspronkelijke auteurs te volgen. Specifiek blijkt het
cruciaal om eerst het gemiddelde te leren voordat de variantie wordt geopti-
maliseerd. We laten experimenteel zien hoe cruciaal deze stap kan zijn. Verder
zien we dat deze netwerken verbeterd kunnen worden door het apart regula-
riseren van de delen van het netwerk die respectievelijk het gemiddelde en de
variantie voorspellen.

In Hoofdstuk 5 presenteren we een aanpak, gebaseerd op de likelihood-ratio
test, om een betrouwbaarheidsinterval te construeren voor de voorspelling van
een netwerk voor een specifiek nieuw datapunt. Deze benadering werkt door de
intuitieve vraag te stellen: “Welke voorspellingen kan het netwerk maken voor
dit nievwe datapunt terwijl het nog steeds de rest van de data goed voorspelt?”
We tonen aan dat het beantwoorden van deze vraag leidt tot betrouwbaar-
heidsintervallen met zeer wenselijke eigenschappen, zoals de mogelijkheid om
asymmetrisch te worden in gebieden met een bias en aanzienlijk groter te wor-
den in gebieden waar minder data beschikbaar is.

Het laatste hoofdstuk, Hoofdstuk 6, gaat als enige niet over neurale netwer-
ken maar bestudeert een nieuwe loss-functie die het gebruik van het populaire
XGBoost-model voor kwantielregressie mogelijk maakt. Dit hoofdstuk is het
resultaat van een samenwerking met de Nederlandse netbeheerder Alliander,
die ons benaderde met een interessant probleem. Hun doel is om XGBoost te
gebruiken om de belasting op transformatorstations van het net te voorspel-
len. Omdat XGBoost zeer efficiént is en goed met ontbrekende waarden kan
omgaan, willen ze graag dit model gebruiken. Echter, zoals we in dit hoofd-
stuk zien, is het een niet-triviale taak om dit model voor kwantielregressie te

199

gebruiken. Dit komt doordat de loss-functie die typisch voor die taak wordt
gebruikt, de pinball-loss, een tweede afgeleide van nul heeft. Dit is problema-
tisch omdat XGBoost de tweede afgeleide gebruikt tijdens de optimalisatie. We
ontwikkelen daarom een nieuwe loss-functie die een tweede afgeleide heeft die
op polynomiale wijze naar nul gaat.

Publications

The work during this PhD project has resulted into three published papers,
one accepted paper, and three papers that are currently under review.

Published or Accepted

Sluijterman et al. (2024a): Sluijterman, L., Cator, E., & Heskes, T. “How
to Evaluate Uncertainty Estimates in Machine Learning for Regression?”,
published in Neural Networks.

Sluijterman et al. (2024b): Sluijterman, L., Cator, E., & Heskes, T. “Op-
timal Training of Mean Variance Estimation Neural Networks”, published
in Neurocomputing.

Van Borselen et al. (2024)%: Van Borselen, M., Sluijterman, L., Gre-
upink, R., & de Wildt, S. “Towards More Robust Fvaluation of the Pre-
dictive Performance of Physiologically Based Pharmacokinetic Models:
Using Confidence Intervals to Support Use of Model-Informed Dosing in
Clinical Care”, published in Clinical Pharmacokinetics.

Sluijterman et al. (2023): Sluijterman, L., Cator, E., & Heskes, T. “Likelihood-

ratio-based confidence intervals for neural networks”, accepted for publi-
cation in Machine Learning.

2Not part of this thesis, joint first author

201

202 Publications

Under Review

— Sluijterman et al. (2022): Sluijterman, L., Cator, E., & Heskes, T. “Con-
fident Neural Network Regression with Bootstrapped Deep Ensembles”.

— Sluijterman et al. (2024c¢): Sluijterman, L., Kreuwel, F., Cator, E., & Hes-
kes, T. “Composite Quantile Regression With XGBoost Using the Novel
Arctan Pinball Loss”.

— Krebbers et al. (2024)3: Krebbers, R., Sluijterman, L., Meurs, J., Khod-
abakhsh, A., Cator, E., & Critescu, S.“Optimizing Data Analysis for
Broadband Mid-Infrared Absorption Spectroscopy: A Hybrid Dataset Ap-
proach”.

3Not part of this thesis, joint first author

Curriculum Vitae

Laurens Sluijterman was born in Eindhoven, the Netherlands, on November
14th 1995. After completing high school, he enrolled at Radboud University in
Nijmegen, where he obtained a bachelor’s degree in Physics (cum laude) and
Mathematics in 2018, and a master’s degree in Mathematics (cum laude) in
2020 with a specialization in Applied Stochastics. That same year, at the same
university, he started as a PhD student under the supervision of Eric Cator
and Tom Heskes. In July 2024, Laurens began working as a researcher in the
biostatistics group of the Radboud University Medical Center.

203

Acknowledgements

Four years is both a surprisingly short and surprisingly long period. It is short
enough that it is over in a heartbeat and long enough that significant life events
invariably occur. Both of these applied to the past four years, and there are
many people who helped me tremendously to navigate them. Without some,
it would have been far more difficult, or at the very least substantially less
enjoyable, to finish this project.

First and foremost, I want to thank my supervisors Eric and Tom. In some ways
you are very different: One of you is more chaotic, the other more organized;
one of you answers emails in thirty minutes, the other somewhere between
ten seconds and ten days. In other ways, however, you are the same: both
excellent supervisors, and more importantly, both extremely pleasant to be
around. Someone once told me that a good supervisor is more important than
a good topic and I can hardly imagine better supervision.

To Tom: One of the more satisfying parts of my PhD were the times when
I was working through your lists of suggestions and seeing a paper improve
significantly in the span of a couple of hours. Knowing how busy you are,
I do not know where you found the time to supervise me the way that you
did. Sometimes I suspect you must have an identical twin. I also enjoyed our
frequent chats about tennis, although I did not particularly enjoy losing to you
in straight sets, one of them being 6-1. You would think that being roughly
three decades younger would give you an advantage.

To Eric: Our collaboration felt very complementary to me. We both approach
problems quite differently: I would quickly try to code out a working example
to play around a bit, whereas you were more theoretical, but the combination

205

206 Acknowledgements

of these approaches turned out to work very well. Although I must admit,
trying to follow you on a whiteboard was troublesome at times. Partly because
of the lightning speed with which you would work out some intricate detail of a
linear model, but also because your whiteboard is not really white but rather a
colorful mixture of older ideas — some (it is my suspicion) dating back to before
the start of my PhD. I hope that your current health issues are over soon so
that we can quickly see you back in front of your not-so-whiteboard.

To Greta, Astrid, and Emma: It is easy to forget, especially when everything is
going well, how crucial your work is to a nice working environment. You have
helped me with countless administrative tasks and the department would surely
not be the same without the many outings and lunches that you organized.

To my fellow PhD students: Thanks for all the nice talks, coffee-machine chats,
and lunches. Coming to the office was always very enjoyable, for a large part
because of you.

A special thanks to Rein, without whom I think there would have been a good
chance I never would have started a PhD at the mathematics department. I
first got to know you when I saw you studying for a topology exam. I, the
expert planner that I am, still had to start two days before the exam so I
figured it may be a good idea to join your study sessions. You had worked
through every single exercise in the lecture notes and explained some of the
ones I was struggling with. I think it may be the first time I recall enjoying the
struggle of working through something that was not immediately clear to me.
During the years that followed, we worked together a lot, although I may have
learned a bit more from you than the other way around. I am very grateful
that we are still working together at the moment and I can hopefully return
the favor over the coming years.

To Francesco: I greatly enjoyed all our nice discussions during our band re-
hearsals. The word band may be a bit too strong though, since at the end
it was just the two of us, and the word rehearsal is also a bit overblown to
describe the 30 minutes of playing preceding the two hours of drinking wine.

To my grandmother Corrie, who sadly passed away during my PhD: I don’t
think you quite understood what it was I was doing, or how this was any
different than high school, but I do know that you were always proud regardless.
You always made sure that getting a paper rejected or some other setback was
quickly forgotten, just by being who you were. I also want to thank my uncle
Michel for taking extremely good care of her during the last decade or so of
her life.

207

To my father Seyno: At a very young age, I got to see you defend your PhD,
sitting all the way at the back next to my grandmother who made sure I was
behaving, and perhaps that unconsciously inspired me to want to do the same.
I also appreciate the many occasions on which you drove all the way from
Eindhoven to Nijmegen, just to have lunch.

To Maarten and Esther: Thank you for always watching the dog whenever
I was at the office and for celebrating every success, no matter the (lack of)
significance, with cake, dinner, or a postcard.

To Marjolein: First of all, thank you for helping me design my cover, which
is based on a short example from the introduction. The thinking robot sees a
horse via its neural network, but since it is trained on only cats and dogs, it is
determining if this is a rather large dog or an enormous cat. I am also grateful
for you introducing me to the medical side of the university and allowing me
to contribute to your own PhD research. This has surely helped me to get my
current job, which I enjoy profoundly. Without you, doing this PhD, or all of
life for that matter, would have been substantially less enjoyable.

Bibliography

Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L.,
Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., Acharya, U. R., et al.
(2021). A review of uncertainty quantification in deep learning: Techniques,
applications and challenges. Information Fusion.

Akaike, H. (1973). Information theory and an extension of the likelihood prin-
ciple. In Proceedings of the Second International Symposium of Information
Theory.

Amini, A., Schwarting, W., Soleimany, A., and Rus, D. (2020). Deep Evi-
dential Regression. In Advances in Neural Information Processing Systems,
volume 33, pages 14927-14937. Curran Associates, Inc.

Andersen, P. K., Borgan, O., Gill, R. D., and Keiding, N. (2012). Statistical
Models Based on Counting Processes. Springer Science & Business Media.

Ashukha, A., Lyzhov, A., Molchanov, D., and Vetrov, D. (2019). Pitfalls
of in-domain uncertainty estimation and ensembling in deep learning. In
International Conference on Learning Representations.

Ayhan, M. S. and Berens, P. (2022). Test-time Data Augmentation for Esti-
mation of Heteroscedastic Aleatoric Uncertainty in Deep Neural Networks.
In Medical Imaging with Deep Learning.

Belloni, A. and Chernozhukov, V. (2011). ¢1-penalized quantile regression in
high-dimensional sparse models. The Annals of Statistics, 39(1):82-130.

Bentivoglio, R., Isufi, E., Jonkman, S. N., and Taormina, R. (2022). Deep learn-

209

210 BIBLIOGRAPHY

ing methods for flood mapping: A review of existing applications and future
research directions. Hydrology and Earth System Sciences, 26(16):4345-4378.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Information
Science and Statistics. Springer, New York.

Boucheron, S. and Massart, P. (2011). A high-dimensional Wilks phenomenon.
Probability Theory and Related Fields, 150(3):405-433.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-
Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D.,
Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S.,
Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever,
I., and Amodei, D. (2020). Language Models are Few-Shot Learners. In
Advances in Neural Information Processing Systems, volume 33, pages 1877—
1901. Curran Associates, Inc.

Cannon, A. J. (2011). Quantile regression neural networks: Implementation in
R and application to precipitation downscaling. Computers & Geosciences,
37(9):1277-1284.

Cerqueira, V., Torgo, L., and Mozeti¢, 1. (2020). Evaluating time series fore-
casting models: An empirical study on performance estimation methods.
Machine Learning, 109(11):1997-2028.

Chaudhary, P., Leitao, J. P., Donauer, T., D’Aronco, S., Perraudin, N., Obozin-
ski, G., Perez-Cruz, F., Schindler, K., Wegner, J. D., and Russo, S. (2022).
Flood uncertainty estimation using deep ensembles. Water, 14(19):2980.

Chaudhuri, P. (1991). Nonparametric Estimates of Regression Quantiles and
Their Local Bahadur Representation. The Annals of Statistics, 19(2).

Chen, T. and Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting Sys-
tem. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’16, pages 785-794, New
York, NY, USA. Association for Computing Machinery.

Chen, X., Koenker, R., and Xiao, Z. (2009). Copula-based nonlinear quantile
autoregression. The Econometrics Journal, 12(s1):S50-S67.

Chen, Z., Zhang, B., Meng, A., and Li, P. (2023). Prediction interval estimation
of dynamic thermal rating considering weather uncertainty. FElectric Power
Systems Research, 214:108927.

211

Chernozhukov, V. and Hansen, C. (2006). Instrumental quantile regression in-
ference for structural and treatment effect models. Journal of Econometrics,
132(2):491-525.

Chizat, L., Oyallon, E., and Bach, F. (2019). On lazy training in differentiable
programming. In NeurIPS 2019-33rd Conference on Neural Information Pro-
cessing Systems, pages 2937-2947.

Chung, Y., Neiswanger, W., Char, 1., and Schneider, J. (2021). Beyond Pinball
Loss: Quantile Methods for Calibrated Uncertainty Quantification. In Ad-
vances in Neural Information Processing Systems, volume 34, pages 10971—
10984. Curran Associates, Inc.

Clements, W. R., Robaglia, B.-M., Van Delft, B., Slaoui, R. B., and Toth,
S. (2019). Estimating risk and uncertainty in deep reinforcement learning.
arXiw preprint arXiv:1905.09638.

Clevert, D.-A., Unterthiner, T., and Hochreiter, S. (2015). Fast and accurate
deep network learning by exponential linear units (elus). arXiv preprint
arXiw:1511.07289.

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le, Q. V. (2019). Au-
toAugment: Learning Augmentation Strategies From Data. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 113-123.

Dastin, J. (2022). Amazon Scraps Secret Al Recruiting Tool that Showed Bias
against Women. In Ethics of Data and Analytics, pages 296-299. Auerbach
Publications.

Degras, D. (2017). Simultaneous confidence bands for the mean of functional
data. Wiley Interdisciplinary Reviews: Computational Statistics, 9(3):e1397.

DeGroot, M. H. (1986). Probability and Statistics. Addison-Wesley Pub. Co,
Reading, Mass, 2nd ed edition.

DeGroot, M. H. and Fienberg, S. E. (1983). The Comparison and Evalua-
tion of Forecasters. Journal of the Royal Statistical Society. Series D (The
Statistician), 32(1/2):12-22.

Deng, D., Chen, G., Yu, Y., Liu, F., and Heng, P-A. (2023). Uncertainty
Estimation by Fisher Information-based Evidential Deep Learning. arXiv
preprint arXiw:2303.02045.

212 BIBLIOGRAPHY

Dewolf, N., Baets, B. D., and Waegeman, W. (2023). Valid prediction intervals
for regression problems. Artificial Intelligence Review, 56(1):577-613.

Dhaliwal, S. S., Nahid, A.-A., and Abbas, R. (2018). Effective Intrusion De-
tection System Using XGBoost. Information, 9(7):149.

Dheur, V. and Taieb, S. B. (2023). A Large-Scale Study of Probabilistic Cal-
ibration in Neural Network Regression. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, pages 7813-7836. PMLR.

Dodge, Y. (2008). The Concise Encyclopedia of Statistics. Springer Science &
Business Media.

Dwaracherla, V., Wen, Z., Osband, 1., Lu, X., Asghari, S. M., and Van Roy,
B. (2022). Ensembles for uncertainty estimation: Benefits of prior functions
and bootstrapping. arXiv preprint arXiw:2206.03633.

Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans.
SIAM.

Egele, R., Maulik, R., Raghavan, K., Lusch, B., Guyon, I., and Balaprakash,
P. (2022). AutoDEUQ: Automated Deep Ensemble with Uncertainty Quan-
tification. In 2022 26th International Conference on Pattern Recognition
(ICPR), pages 1908-1914.

Fan, J., Zhang, C., and Zhang, J. (2001). Generalized Likelihood Ratio Statis-
tics and Wilks Phenomenon. The Annals of Statistics, 29(1):153-193.

Fort, S., Hu, H., and Lakshminarayanan, B. (2019). Deep ensembles: A loss
landscape perspective. arXiv preprint arXiv:1912.02757.

Gal, Y. (2016). Uncertainty in Deep Learning. PhD thesis, University of
Cambridge.

Gal, Y. and Ghahramani, Z. (2016). Dropout as a Bayesian approximation:
Representing model uncertainty in deep learning. In International Confer-
ence on Machine Learning, pages 1050-1059.

Gal, Y., Hron, J., and Kendall, A. (2017). Concrete dropout. Advances in
Neural Information Processing Systems, 30.

Gauss, C.-F. (1823). Theoria Combinationis Observationum Erroribus Minimis
Obnoziae. Henricus Dieterich.

Gawlikowski, J., Tassi, C. R. N.; Ali, M., Lee, J., Humt, M., Feng, J., Kruspe,
A., Triebel, R., Jung, P., Roscher, R., Shahzad, M., Yang, W., Bamler, R.,

213

and Zhu, X. X. (2023). A survey of uncertainty in deep neural networks.
Artificial Intelligence Review, 56(1):1513-1589.

George, T., Laurent, C., Bouthillier, X., Ballas, N., and Vincent, P. (2018). Fast
Approximate Natural Gradient Descent in a Kronecker Factored Eigenbasis.
In Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc.

Ghosal, S. and Van der Vaart, A. (2017). Fundamentals of Nonparametric
Bayesian Inference, volume 44. Cambridge University Press.

Gueiting, T. and Raftery, A. E. (2007). Strictly Proper Scoring Rules, Pre-
diction, and Estimation. Journal of the American Statistical Association,
102(477):359-378.

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., and Bengio, Y. (2014a). Generative Adversarial Nets.
In Advances in Neural Information Processing Systems, volume 27. Curran
Associates, Inc.

Goodfellow, 1. J., Shlens, J., and Szegedy, C. (2014b). Explaining and harness-
ing adversarial examples. arXiv preprint arXiv:1412.6572.

Graves, A. (2011). Practical variational inference for neural networks. In Ad-
vances in Neural Information Processing Systems, pages 2348-2356. Citeseer.

Gumus, M. and Kiran, M. S. (2017). Crude oil price forecasting using XG-
Boost. In 2017 International Conference on Computer Science and Engi-
neering (UBMK), pages 1100-1103, Antalya. IEEE.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. (2017). On calibration of
modern neural networks. In International Conference on Machine Learning,
pages 1321-1330. PMLR.

Guo, H., Liu, H., Li, R., Wu, C., Guo, Y., and Xu, M. (2018). Margin &
diversity based ordering ensemble pruning. Neurocomputing, 275:237-246.

Gustafsson, F. K., Danelljan, M., and Schon, T. B. (2020). Evaluating scalable
Bayesian deep learning methods for robust computer vision. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, pages 318-319.

Hall, P. and La Scala, B. (1990). Methodology and Algorithms of Empiri-
cal Likelihood. International Statistical Review / Revue Internationale de
Statistique, 58(2):109-127.

214 BIBLIOGRAPHY

Hamanda, A. (2020). Br35H :: Brain Tumor Detection 2020.

Hansen, L. and Salamon, P. (1990). Neural network ensembles. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 12(10):993-1001.

Hatalis, K., Lamadrid, A. J., Scheinberg, K., and Kishore, S. (2019). A Novel
Smoothed Loss and Penalty Function for Noncrossing Composite Quantile
Estimation via Deep Neural Networks. arXiv preprint arXiv:1909.12122.

He, W. and Jiang, Z. (2023). A Survey on Uncertainty Quantification Meth-
ods for Deep Neural Networks: An Uncertainty Source Perspective. arXiv
preprint arXiw:2302.13425.

Hendrycks, D. and Gimpel, K. (2018). A Baseline for Detecting Misclassi-
fied and Out-of-Distribution Examples in Neural Networks. arXiv preprint
arXiv:1610.02136.

Hendrycks, D., Mazeika, M., and Dietterich, T. (2018). Deep Anomaly De-
tection with Outlier Exposure. In International Conference on Learning
Representations.

Herndndez, P. D., Ramirez, J. A., and Soto, M. A. (2022). Deep-Learning-
Based Earthquake Detection for Fiber-Optic Distributed Acoustic Sensing.
Journal of Lightwave Technology, 40(8):2639-2650.

Herndndez-Lobato, J. M. and Adams, R. (2015). Probabilistic backpropagation
for scalable learning of Bayesian neural networks. In International Confer-
ence on Machine Learning, pages 1861-1869.

Herron, E. J., Young, S. R., and Potok, T. E. (2020). Ensembles of Net-
works Produced from Neural Architecture Search. In Jagode, H., Anzt, H.,
Juckeland, G., and Ltaief, H., editors, High Performance Computing, pages
223-234, Cham. Springer International Publishing.

Heskes, T. (1997). Practical confidence and prediction intervals. In Advances
in Neural Information Processing Systems, pages 176-182.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the Knowledge in a
Neural Network. arXiv preprint arXiv:1503.02531.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the Dimensionality
of Data with Neural Networks. Science, 313(5786):504-507.

Hinton, G. E. and Van Camp, D. (1993). Keeping the neural networks simple
by minimizing the description length of the weights. In Proceedings of the
Sixth Annual Conference on Computational Learning Theory, pages 5—13.

215

Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory. Neural
Computation, 9(8):1735-1780.

Hullermeier, E. and Waegeman, W. (2021). Aleatoric and epistemic uncertainty
in machine learning: An introduction to concepts and methods. Machine
Learning, 110(3):457-506.

Jain, S.; Liu, G., Mueller, J., and Gifford, D. (2020). Maximizing overall diver-
sity for improved uncertainty estimates in deep ensembles. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34, pages 4264-4271.

Jiang, H., He, Z., Ye, G., and Zhang, H. (2020). Network Intrusion Detection
Based on PSO-Xgboost Model. IEEE Access, 8:58392-58401.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999). An
introduction to variational methods for graphical models. Machine Learning,
37(2):183-233.

Juergens, M., Meinert, N., Bengs, V., Hiillermeier, E., and Waegeman, W.
(2024). Is Epistemic Uncertainty Faithfully Represented by Evidential Deep
Learning Methods? In Proceedings of the 41st International Conference on
Machine Learning, pages 22624-22642. PMLR.

Kabir, H. D., Khosravi, A., Hosen, M. A., and Nahavandi, S. (2018). Neural
network-based uncertainty quantification: A survey of methodologies and
applications. IEEFE access, 6:36218-36234.

Kabir, H. M. D., Khosravi, A., Nahavandi, S., and Srinivasan, D. (2021). Neural
Network Training for Uncertainty Quantification Over Time-Range. IEEE
Transactions on Emerging Topics in Computational Intelligence, 5(5):768—
779.

Kabir, H. M. D., Mondal, S. K., Khanam, S., Khosravi, A., Rahman, S.,
Qazani, M. R. C., Alizadehsani, R., Asadi, H., Mohamed, S., Nahavandi,
S., and Acharya, U. R. (2023). Uncertainty aware neural network from sim-
ilarity and sensitivity. Applied Soft Computing, 149:111027.

Kallus, N. and McInerney, J. (2022). The Implicit Delta Method. In Advances
in Neural Information Processing Systems.

Kass, R., Tierney, L., and Kadane, J. (1991). Laplace’s method in Bayesian
analysis. Contemporary Mathematics, pages 89-135.

Kendall, A. and Gal, Y. (2017). What Uncertainties Do We Need in Bayesian

216 BIBLIOGRAPHY

Deep Learning for Computer Vision? In Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.

Khosravi, A. and Nahavandi, S. (2014). An optimized mean variance estimation
method for uncertainty quantification of wind power forecasts. International
Journal of FElectrical Power & Energy Systems, 61:446-454.

Khosravi, A., Nahavandi, S., Creighton, D., and Atiya, A. F. (2011). Com-
prehensive review of neural network-based prediction intervals and new ad-
vances. IEEE Transactions on Neural Networks, 22(9):1341-1356.

Kim, I., Kim, Y., and Kim, S. (2020). Learning Loss for Test-Time Augmen-
tation. Advances in Neural Information Processing Systems, 33:4163-4174.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

Kingma, D. P., Salimans, T., and Welling, M. (2015). Variational dropout
and the local reparameterization trick. In Advances in Neural Information
Processing Systems, pages 2575-2583.

Kobyzev, 1., Prince, S. J. D., and Brubaker, M. A. (2021). Normalizing Flows:
An Introduction and Review of Current Methods. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 43(11):3964-3979.

Koenker, R. (2017). Quantile regression 40 years on. Technical report, The
IFS.

Koenker, R. and Bassett Jr, G. (1978). Regression quantiles. Econometrica:
Journal of the Econometric Society, pages 33-50.

Koenker, R. and Xiao, Z. (2006). Quantile Autoregression. Journal of the
American Statistical Association, 101(475):980-990.

Krebbers, R., Sluijterman, L., Meurs, J., Khodabakhsh, A., Cator, E., and
Critescu, S. (2024). Optimizing Data Analysis for Broadband Mid-Infrared
Absorption Spectroscopy: A Hybrid Dataset Approach. Paper under sub-
mission.

Kuleshov, V., Fenner, N., and Ermon, S. (2018). Accurate Uncertainties for
Deep Learning Using Calibrated Regression. In Proceedings of the 35th In-
ternational Conference on Machine Learning, pages 2796-2804. PMLR.

Lai, Y., Shi, Y., Han, Y., Shao, Y., Qi, M., and Li, B. (2022). Exploring uncer-
tainty in regression neural networks for construction of prediction intervals.
Neurocomputing.

217

Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017). Simple and scal-
able predictive uncertainty estimation using deep ensembles. In Advances in
Neural Information Processing Systems, pages 6402—6413.

LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard,
W., and Jackel, L. (1989). Handwritten Digit Recognition with a Back-
Propagation Network. In Advances in Neural Information Processing Sys-
tems, volume 2. Morgan-Kaufmann.

Lee, J., Humt, M., Feng, J., and Triebel, R. (2020). Estimating Model Un-
certainty of Neural Networks in Sparse Information Form. In Proceedings of
the 37th International Conference on Machine Learning, pages 5702-5713.
PMLR.

Lee, K., Lee, K., Lee, H., and Shin, J. (2018). A simple unified framework for
detecting out-of-distribution samples and adversarial attacks. In Advances
in Neural Information Processing Systems.

Lee, S. (2003). Efficient Semiparametric Estimation of a Partially Linear Quan-
tile Regression Model. Econometric Theory, 19(1):1-31.

Li, W., Yin, Y., Quan, X., and Zhang, H. (2019). Gene Expression Value
Prediction Based on XGBoost Algorithm. Frontiers in Genetics, 10.

Liu, Q. and Wang, D. (2016). Stein variational gradient descent: A general
purpose Bayesian inference algorithm. In Advances in Neural Information
Processing Systems, pages 2378-2386.

Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. (2017). The expressive power
of neural networks: A view from the width. Advances in Neural Information
Processing Systems, 30:6231-6239.

Lyzhov, A., Molchanova, Y., Ashukha, A., Molchanov, D., and Vetrov, D.
(2020). Greedy Policy Search: A Simple Baseline for Learnable Test-Time
Augmentation. In Proceedings of the 36th Conference on Uncertainty in
Artificial Intelligence (UAI), pages 1308-1317. PMLR.

Ma, M., Zhao, G., He, B., Li, Q., Dong, H., Wang, S., and Wang, Z. (2021).
XGBoost-based method for flash flood risk assessment. Journal of Hydrology,
598:126382.

MacKay, D. J. (1992a). A practical Bayesian framework for backpropagation
networks. Neural Computation, 4(3):448-472.

218 BIBLIOGRAPHY

MacKay, D. J. C. (1992b). Information-Based Objective Functions for Active
Data Selection. Neural Computation, 4(4):590-604.

Malinin, A., Chervontsev, S., Provilkov, I., and Gales, M. (2020). Regression
Prior Networks. arXiv preprint arXiv:2006.11590.

Malinin, A. and Gales, M. (2018). Predictive Uncertainty Estimation via Prior
Networks. In Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc.

Mancini, T., Calvo-Pardo, H., and Olmo, J. (2020). Prediction intervals for
deep neural networks. arXiv preprint arXiv:2010.04044.

Mangel, M. and Samaniego, F. J. (1984). Abraham Wald’s Work on Aircraft
Survivability. Journal of the American Statistical Association, 79(386):259—
267.

Martens, J. and Grosse, R. (2015). Optimizing Neural Networks with
Kronecker-factored Approximate Curvature. In Proceedings of the 32nd In-
ternational Conference on Machine Learning, pages 2408-2417. PMLR.

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., and Galstyan, A. (2022).
A Survey on Bias and Fairness in Machine Learning. ACM Computing Sur-
veys, 54(6):1-35.

Meinshausen, N. (2006). Quantile Regression Forests. The Journal of Machine
Learning Research, 7:983-999.

Miglani, A. and Kumar, N. (2019). Deep learning models for traffic flow predic-
tion in autonomous vehicles: A review, solutions, and challenges. Vehicular
Communications, 20:100184.

Mukhoti, J., Kirsch, A., van Amersfoort, J., Torr, P. H., and Gal, Y. (2021).
Deterministic neural networks with appropriate inductive biases capture epis-
temic and aleatoric uncertainty. arXiv preprint arXiv:2102.11582.

Murphy, A. H. and Winkler, R. L. (1977). Reliability of Subjective Probability
Forecasts of Precipitation and Temperature. Journal of the Royal Statistical
Society. Series C' (Applied Statistics), 26(1):41-47.

Murphy, S. A. (1995). Likelihood Ratio-Based Confidence Intervals in Survival
Analysis. Journal of the American Statistical Association, 90(432):1399—
1405.

Murphy, S. A. and van der Vaart, A. W. (1997). Semiparametric likelihood
ratio inference. The Annals of Statistics, 25(4):1471-1509.

219

Neal, R. M. (2012). Bayesian Learning for Neural Networks, volume 118.
Springer Science & Business Media.

Neal, R. M. et al. (2011). MCMC using hamiltonian dynamics. Handbook of
markov chain monte carlo, 2(11):2.

Niculescu-Mizil, A. and Caruana, R. (2005). Predicting good probabilities with
supervised learning. In Proceedings of the 22nd International Conference on
Machine Learning, pages 625-632.

Nilsen, G. K., Munthe-Kaas, A. Z., Skaug, H. J., and Brun, M. (2022). Epis-
temic uncertainty quantification in deep learning classification by the Delta
method. Neural Networks, 145:164-176.

Nix, D. A. and Weigend, A. S. (1994). Estimating the mean and variance of the
target probability distribution. In Proceedings of 1994 IEEE International
Conference on Neural Networks (ICNN’94), volume 1, pages 55-60. IEEE.

Nixon, J., Lakshminarayanan, B., and Tran, D. (2020). Why are bootstrapped
deep ensembles not better? In I Can’t Believe It’s Not Better!” NeurlPS
2020 Workshop.

Nobre, J. and Neves, R. F. (2019). Combining Principal Component Analysis,
Discrete Wavelet Transform and XGBoost to trade in the financial markets.
Expert Systems with Applications, 125:181-194.

Nourani, V., Zonouz, R. S., and Dini, M. (2023). Estimation of prediction inter-
vals for uncertainty assessment of artificial neural network based wastewater

treatment plant effluent modeling. Journal of Water Process Engineering,
55:104145.

Ogunleye, A. and Wang, Q.-G. (2020). XGBoost Model for Chronic Kidney
Disease Diagnosis. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 17(6):2131-2140.

Osband, I. (2016). Risk versus uncertainty in deep learning: Bayes, bootstrap
and the dangers of dropout. In NIPS Workshop on Bayesian Deep Learning,
volume 192.

Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., Nowozin, S., Dillon, J.,
Lakshminarayanan, B., and Snoek, J. (2019). Can you trust your model’s
uncertainty? Evaluating predictive uncertainty under dataset shift. Advances
in Neural Information Processing Systems, 32:13991-14002.

220 BIBLIOGRAPHY

Papamakarios, G., Pavlakou, T., and Murray, I. (2017). Masked Autoregressive
Flow for Density Estimation. In Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc.

Parekh, D., Poddar, N., Rajpurkar, A., Chahal, M., Kumar, N., Joshi, G. P.,
and Cho, W. (2022). A Review on Autonomous Vehicles: Progress, Methods
and Challenges. Electronics, 11(14):2162.

Pav, S. E. (2015). Moments of the log non-central chi-square distribution.
arXiv preprint arXiv:1503.06266.

Pawitan, Y. (2000). A Reminder of the Fallibility of the Wald Statistic: Like-
lihood Explanation. The American Statistician, 54(1):54-56.

Pawitan, Y. (2001). In All Likelihood: Statistical Modelling and Inference Using
Likelihood. OUP Oxford.

Pearce, T. (2020). Uncertainty in Neural Networks; Bayesian Ensembles, Pri-
ors € Prediction Intervals. PhD thesis, University of Cambridge.

Pearce, T., Brintrup, A., Zaki, M., and Neely, A. (2018). High-quality predic-
tion intervals for deep learning: A distribution-free, ensembled approach. In
International Conference on Machine Learning, pages 4075-4084.

Pearce, T., Leibfried, F., and Brintrup, A. (2020). Uncertainty in neural net-
works: Approximately Bayesian ensembling. In International Conference on
Artificial Intelligence and Statistics, pages 234-244. PMLR.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
(2011). Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research, 12(85):2825-2830.

Platt, J. et al. (1999). Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods. Advances in large margin
classifiers, 10(3):61-74.

Powell, J. L. (1986). Censored regression quantiles. Journal of Econometrics,
32(1):143-155.

Quinonero-Candela, J., editor (2009). Dataset Shift in Machine Learning. Neu-
ral Information Processing Series. MIT Press, Cambridge, Mass.

Ramaneswaran, S., Srinivasan, K., Vincent, P. M. D. R.,; and Chang, C.-
Y. (2021). Hybrid Inception v3 XGBoost Model for Acute Lymphoblas-

221

tic Leukemia Classification. Computational and Mathematical Methods in
Medicine, 2021:1-10.

Ren, J., Fort, S., Liu, J., Roy, A. G., Padhy, S., and Lakshminarayanan, B.
(2021). A simple fix to mahalanobis distance for improving near-ood detec-
tion. arXiv preprint arXiv:2106.09022.

Ren, J., Liu, P. J., Fertig, E., Snoek, J., Poplin, R., Depristo, M., Dillon, J.,
and Lakshminarayanan, B. (2019). Likelihood ratios for out-of-distribution
detection. Advances in Neural Information Processing Systems, 32:14707—
14718.

Romano, Y., Patterson, E., and Candes, E. (2019). Conformalized Quantile Re-
gression. In Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc.

Salimbeni, H. and Deisenroth, M. (2017). Doubly stochastic variational in-
ference for deep Gaussian processes. In Advances in Neural Information
Processing Systems, pages 4588-4599.

Sartaj, B. (2020). Brain Tumor Classification (MRI).

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning,
5(2):197-227.

Seber, G. and Wild, C. (2003). Nonlinear Regression. Wiley.

Seitzer, M., Tavakoli, A., Antic, D., and Martius, G. (2021). On the pitfalls
of heteroscedastic uncertainty estimation with probabilistic neural networks.
In International Conference on Learning Representations.

Sensoy, M., Kaplan, L., and Kandemir, M. (2018). Evidential Deep Learning
to Quantify Classification Uncertainty. In Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc.

Shafer, G. and Vovk, V. (2008). A Tutorial on Conformal Prediction. The
Journal of Machine Learning Research, 9:371-421.

Shaikhina, T. and Khovanova, N. A. (2017). Handling limited datasets with
neural networks in medical applications: A small-data approach. Artificial
Intelligence in Medicine, 75:51-63.

Shanmugam, D., Blalock, D., Balakrishnan, G., and Guttag, J. (2021). Better
Aggregation in Test-Time Augmentation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1214-1223.

222 BIBLIOGRAPHY

Skafte, N., Jorgensen, M., and Hauberg, S. (2019). Reliable training and es-
timation of variance networks. Advances in Neural Information Processing
Systems, 32.

Sluijterman, L., Cator, E., and Heskes, T. (2022). Confident neural
network regression with bootstrapped deep ensembles. arXiv preprint
arXiv:2202.10908.

Sluijterman, L., Cator, E., and Heskes, T. (2023). Likelihood-ratio-based con-
fidence intervals for neural networks. arXiv preprint arXiv:2308.02221.

Sluijterman, L., Cator, E., and Heskes, T. (2024a). How to evaluate uncertainty
estimates in machine learning for regression? Neural Networks, 173:106203.

Sluijterman, L., Cator, E., and Heskes, T. (2024b). Optimal training of Mean
Variance Estimation neural networks. Neurocomputing, 597:127929.

Sluijterman, L., Kreuwel, F., Cator, E., and Heskes, T. (2024c). Composite
Quantile Regression With XGBoost Using the Novel Arctan Pinball Loss.
arXww preprint arXiv:2406.02293.

Su, D., Ting, Y. Y., and Ansel, J. (2018). Tight prediction intervals using
expanded interval minimization. arXiv preprint arXiv:1806.11222.

Suzuki, M., Nakayama, K., and Matsuo, Y. (2016). Joint Multimodal Learning
with Deep Generative Models.

Tagasovska, N. and Lopez-Paz, D. (2019). Single-model uncertainties for deep
learning. In Advances in Neural Information Processing Systems, pages 6417—
6428.

Takahashi, H., Iwata, T., Yamanaka, Y., Yamada, M., and Yagi, S. (2018).
Student-t variational autoencoder for robust density estimation. In IJCAI
pages 2696-2702.

Theobald, C. M. (1974). Generalizations of mean square error applied to ridge
regression. Journal of the Royal Statistical Society: Series B (Methodologi-
cal), 36(1):103-106.

Valdenegro-Toro, M. (2023). Sub-Ensembles for Fast Uncertainty Estimation in
Neural Networks. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 4119-4127.

Van Amersfoort, J., Smith, L., Jesson, A., Key, O., and Gal, Y. (2021). Improv-
ing deterministic uncertainty estimation in deep learning for classification
and regression. arXiw preprint arXiv:2102.114009.

223

Van Amersfoort, J., Smith, L., Teh, Y. W., and Gal, Y. (2020). Uncertainty
estimation using a single deep deterministic neural network. In International
Conference on Machine Learning, pages 9690-9700. PMLR.

Van Beers, J. J. and De Visser, C. C. (2023). Peaking into the Black-box: Pre-
diction Intervals Give Insight into Data-driven Quadrotor Model Reliability.
In AIAA SCITECH 2023 Forum, National Harbor, MD & Online. American
Institute of Aeronautics and Astronautics.

Van Borselen, M. D., Sluijterman, L. A. A., Greupink, R., and de Wildt, S. N.
(2024). Towards More Robust Evaluation of the Predictive Performance of
Physiologically Based Pharmacokinetic Models: Using Confidence Intervals
to Support Use of Model-Informed Dosing in Clinical Care. Clinical Phar-
macokinetics, 63(3):343-355.

Van den Goorbergh, R., Van Smeden, M., Timmerman, D., and Van Calster, B.
(2022). The harm of class imbalance corrections for risk prediction models:
Tllustration and simulation using logistic regression. Journal of the American
Medical Informatics Association, 29(9):1525-1534.

Van der Vaart, A. W. (2000). Asymptotic Statistics, volume 3. Cambridge
University Press.

Van Giffen, B., Herhausen, D., and Fahse, T. (2022). Overcoming the pitfalls
and perils of algorithms: A classification of machine learning biases and
mitigation methods. Journal of Business Research, 144:93-106.

Van Wieringen, W. N. (2015). Lecture notes on ridge regression. arXiv preprint
arXiv:1509.09169.

Varoquaux, G. and Cheplygina, V. (2022). Machine learning for medical imag-
ing: Methodological failures and recommendations for the future. npj Digital
Medicine, 5(1):1-8.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L., and Polosukhin, I. (2017). Attention is All you Need. In Advances
in Neural Information Processing Systems, volume 30. Curran Associates,
Inc.

Wen, Y., Tran, D., and Ba, J. (2020). Batchensemble: An alternative approach
to efficient ensemble and lifelong learning. arXiv preprint arXiv:2002.06715.

Wenzel, F., Snoek, J., Tran, D., and Jenatton, R. (2020). Hyperparameter
Ensembles for Robustness and Uncertainty Quantification. In Advances in

224 BIBLIOGRAPHY

Neural Information Processing Systems, volume 33, pages 6514-6527. Curran
Associates, Inc.

Wilks, S. S. (1938). The Large-Sample Distribution of the Likelihood Ratio
for Testing Composite Hypotheses. The Annals of Mathematical Statistics,
9(1):60-62.

Wilson, A. G. and Izmailov, P. (2020). Bayesian deep learning and a probabilis-
tic perspective of generalization. Advances in neural information processing
systems, 33:4697-4708.

Xu, Q., Deng, K., Jiang, C., Sun, F., and Huang, X. (2017). Composite
quantile regression neural network with applications. FEzpert Systems with
Applications, 76:129-139.

Yang, X., Narisetty, N. N., and He, X. (2018). A New Approach to Censored
Quantile Regression Estimation. Journal of Computational and Graphical
Statistics, 27(2):417-425.

Yin, X., Fallah-Shorshani, M., McConnell, R., Fruin, S., Chiang, Y.-Y., and
Franklin, M. (2023). Quantile Extreme Gradient Boosting for Uncertainty
Quantification. arXiv preprint arXiv:2304.11732.

Zhang, C. and Fu, Y. (2023). Probabilistic Electricity Price Forecast with
Optimal Prediction Interval. IEEE Transactions on Power Systems, pages
1-10.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D. (2017a). Mixup:
Beyond empirical risk minimization. arXiv preprint arXiw:1710.09412.

Zhang, J., Liu, Z., and Chen, T. (2023). Interval prediction of ultra-short-
term photovoltaic power based on a hybrid model. Electric Power Systems
Research, 216:109035.

Zhang, Z., Song, Y., and Qi, H. (2017b). Age Progression/Regression by Con-
ditional Adversarial Autoencoder. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5810-5818.

Zhao, S., Ma, T., and Ermon, S. (2020). Individual Calibration with Ran-
domized Forecasting. In Proceedings of the 37th International Conference on
Machine Learning, pages 11387-11397. PMLR.

Zheng, S. (2011). Gradient descent algorithms for quantile regression with
smooth approximation. International Journal of Machine Learning and Cy-
bernetics, 2(3):191-207.

225

Zheng, Z. and Zhang, Z. (2023). A Stochastic Recurrent Encoder Decoder
Network for Multistep Probabilistic Wind Power Predictions. IEEE Trans-
actions on Neural Networks and Learning Systems, pages 1-14.

Zhou, Y., Zhou, Z., and Hooker, G. (2018). Approximation trees: Statistical
stability in model distillation. arXww preprint arXiv:1808.075785.

Zou, H. and Yuan, M. (2008). Composite quantile regression and the oracle
model selection theory. The Annals of Statistics, 36(3):1108-1126.

9 "789465"150475">

Radboud Universiteit :

PN
% %
“errer

MiNe s

	Cover
	Colophon
	Contents
	1. Introduction
	2. Evaluating Uncertainty Estimates for Regression
	3. Bootstrapped Deep Ensembles
	4. Optimal Mean-Variance Estimation
	5. Likelihood-Ratio-Based Confidence Intervals
	6. Quantile Regression with XGBoost
	Research Data Management
	Summary
	Samenvatting
	Publications
	Curriculum Vitae
	Acknowledgements
	Bibliography

