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Introduction

This dissertation is based on the papers [28], [29], and [35]. The com-
mon thread among these works is the investigation of variational models
arising from problems in materials science.
In this introduction, we provide a brief overview of materials science and
present the main topics of this thesis, namely epitaxial growth and do-
main walls. For each topic, we review the relevant literature and models,
and outline the focus of our study. The mathematical core of this disser-
tation relies on variational models, therefore we will carefully introduce
them by motivating their relevance and show how they interact with ma-
terials science.
Chapters 1 and 2 are dedicated to our work on epitaxial growth, while
Chapter 3 focuses on domain walls in three dimensions. Along the Chap-
ters, we will present novel results that add to the state of art new per-
spectives and mathematical techniques that looks promising for future
investigations on the subjects.

I Materials science and variational models

The connection between mathematics and industry has become predom-
inant in many aspects over the last few decades. On the one hand, math-
ematical models are constantly tested by engineers; on the other hand,
open questions arising from industry are actively investigated by mathe-
maticians. In this context, materials science integrates many branches of
science such as physics, chemistry, engineering, and, last but not least,
mathematics. A full understanding of the micro- and macro-structural,
as well as the physical properties of a material, chemical compound, or
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Introduction

alloy is highly relevant for scientific progress. Indeed, many applications
in metallurgy, thermodynamics, optics, polymers, ceramics, biomaterials,
and micro-components for electronics require a comprehensive knowledge
from several disciplines, including mathematics. Within this framework,
mathematics plays a crucial role both in practical applications and in
the theoretical foundations, acting as a unifying element in the scien-
tific process. In this sense, mathematics offers a wide range of tools to
accurately describe the core principles of materials science. Moreover,
the massive growth in computational power in recent decades has en-
abled mathematicians to perform simulations that are far more complex
and accurate than ever before. This development enables a variety of
numerical experiments which are, in general, sufficiently economically
sustainable to attract investment from the industry. This advantage be-
comes even more significant when combined with the growing prevalence
of artificial intelligence, where trial-and-error methods often result in op-
timization processes of particular interest for the industry.
A large part of the numerical analysis applied to materials science is
rooted in variational models. This is because we typically seek equilib-
rium states, often from a kinetic point of view, which generally corre-
spond to optimal conditions with respect to certain parameters or vari-
ables. For this reason, an entire branch of mathematics, namely the
Calculus of Variations, has been extensively developed and now supports
a large and diverse global community.

Generally speaking, a variational model usually incorporates a func-
tional F : X → R := R ∪ {±∞}, often referred as an energy, where
X is a Banach space, whose elements are usually called configurations.
Applications suggest that is interesting the study of the local minimis-
ers of F . In the simplest setting, in which X = R, this corresponds to
the study of the first derivative F ′, provided that F is regular enough.
Despite X, in general, might consist of mathematical objects of different
nature (functions, measures, sets, etc.), it is possible to find an analogue
definition of local minimisers.
The first concern is the existence of such points, namely if the problem

min
x∈X

F (x) (1)

has or not a solution. Here, the topology chosen on X and the properties
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satisfied by F play a crucial role. Indeed, if F is coercive and lower
semi-continuous (with respect the same topology) then problem (1) has
a solution. Since those two properties are relevant for our analysis, we
recall them.
We say that F is lower semi-continuous if for every x ∈ X and for every
sequence (xn)n ⊂ X such that xn → x, as n → ∞, we have

F (x) ⩽ lim inf
n→∞

F (xn).

Moreover, we say that F is coercive if, for every t ∈ R, the sub-level sets

{F (x) ⩽ t}

are compact. Since X is a Banach space and usually the weak topology
is used, we have, equivalently, that F is coercive with respect to the weak
topology on X if and only if

lim
||x||→+∞

F (x) = +∞,

where ||·|| is a norm on X. In general, if we drop those assumptions on
F we can have a lack of existence of points of minimum. One way to get
around the lack of coercivity, it is to enlarge the space of configurations,
by finding a Banach Y such that X ⊂ Y . This is usually the way in
which singular configurations are introduced to the problem. In case the
lower semi-continuity of F is missing, we look for a lower semi-continuous
functional F : Y → R, with F ⩽ F , for which

min
y∈Y

F (y) (2)

has a solution. Moreover we would like to see minimum points of F as
limit of minimising sequences for F , as explained in what follows. A
minimising sequence (xn)n ⊂ X for F is a sequence such that

F (xn) → inf
x∈X

F (x),

as n → ∞. Consider a minimising sequence (xn)n ⊂ X such that xn →
x ∈ Y . If F (x) = miny∈Y F (y), we would like that

F (xn) → F (x),

11
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as n → ∞. If F is coercive, lower semi-continuous (namely (2) has a
solution) and its minimum points are limit of minimising sequences for
F , we say that F is the relaxation of F . As we can notice, the relaxation
depends on the topology chosen. Usually, since we work with Banach
spaces, we choose the weak topology. It is possible to prove that if
the dual of X is separable and F is coercive, with respect to the weak
topology, F has a sequential characterisation, and we have

F (x) := inf
{
lim inf
n→∞

F (xn) : xn ⇀ x
}
.

This idea has been generalised with the notion of Γ-convergence, intro-
duced by De Giorgi (see [30]). In this case, we address the problem of
understanding the behaviour of sequences of functionals and their min-
imising sequences. Indeed, it is usual to investigate the behaviour of a
family of functionals depending on one (or more) parameter (Fn)n∈N, such
that Fn : X → R, where X is a Banach space. Usually, we can write an
energy only for regular configurations and therefore we may have many
information on Fn, but very little is known when we consider the limit
of regular configurations, or if the sequence (Fn)n∈N is converging to a
functional in some sense. In general, if Fn → F , as n → ∞, for instance
pointwise, there is no guarantee that

inf
x∈X

Fn(xn) → min
x∈X

F (x). (3)

The Γ-convergence has been developed specifically to address this issue.
With proper hypotheses on X and on the sequence (Fn)n∈N it is possible
to give a sequential characterisation of the Γ-convergence with respect to

the weak (or weak∗) topology. Indeed we have that Fn
Γ→ F if and only

if the two following inequalities hold:

(i) Liminf inequality. For every x ∈ X and for every sequence (xn)n ⊂
X converging to x in X we have

F (x) ⩽ lim inf
n→∞

Fn(xn);

(ii) Limsup inequality. For every x ∈ X there is a sequence (xn)n ⊂ X
converging to x in X such that

lim sup
n→∞

Fn(xn) ⩽ F (x).

12
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Again, in the proper setting, if Fn
Γ→ F the we ensure the validity of (3).

Note that the liminf and limsup inequalities hold for the relaxation, when
Fn = F , for every n ∈ N. In particular, form those two inequalities, we
get that for every x ∈ X there is a sequence (xn)n ⊂ X such that

lim
n→∞

Fn(xn) = F (x).

Such a sequence is called a recovery sequence for F at x.

This dissertation fits within this broader framework and focuses specif-
ically on crystal growth and magnetism. Although the applications of
these two phenomena differ, they share a common variational founda-
tion. About crystal growth, we focus specifically on epitaxial growth. In
Chapter (1), we model a thin film that grows on a substrate by using
an energy defined on regular configurations. Then, prove a relaxation
result in which the relaxed energy is describing vertical cracks into the
thin film. In Chapter (2) we made an approximation of the relaxed en-
ergy, known as a phase-field formulation. Such an approximation allows
numerical experiments on our study. Overall, the main difficulty is given
by the approximation of the fractures inside the crystal, for which new
techniques are developed.
Chapter 3 investigates the change of magnetisation on a domain with an
extreme geometry and how the shape of the domain affects the behaviour
of local minimisers of an energy. A crucial part of our analysis is given
by a classification of where the transition happens (depending on sev-
eral rescaled parameters) and the identification of the competitors that
better adapts to the geometry of the domain. Moreover, those competi-
tors, asymptotically, describe where the transition happens, by giving a
quantitative estimate of the energy.

II Epitaxial growth

The first line of research, explored in Chapters 1 and 2, focuses on crys-
tal growth. This topic is highly relevant in applications, particularly due
to the increasing importance of rare-earth elements, which play a central
role in the production of superconductors, magnets, alloys, catalysts, and
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optical fibres.
The primary industrial goal of crystal growth is to produce materials with
specific micro- or macro-structures. One of the most prominent examples
is that of thin films, whose production and significance have grown expo-
nentially due to the high demand from various sectors, such as electronic
devices (e.g., memory or energy storage units), energy production (e.g.,
batteries or solar panels), and surface coatings (e.g., graphene, medical,
and pharmacological applications).
In those Chapters, we investigate the case in which a crystalline material
is deposited layer by layer onto a fixed crystalline substrate. If the atoms
at the interface of the substrate align with the natural lattice positions of
the deposited thin film, this process is known as epitaxial crystal growth.

Practitioners developed several techniques to grow crystals over a sub-
strate. Vapour deposition techniques are among the most important and
implemented: the substrate is immersed in a vapour, and mass transfer
from the latter to the former is responsible for the growth of the crystal.
In order for the crystal to grow, two conditions need to be satisfied: the
vapour has to be saturated, and the substrate is kept at a significantly
lower temperature than the vapour. The former ensures attachment of
vapour atoms on the substrate, while the latter the quick thermalisation
of deposited atoms. In particular, this implies that the entropic free en-
ergy is reduced after attachment.
In order to grow a crystal, attached atoms, called adatoms, need to have
sufficient energy to move from the landing location to a position of equi-
librium. This depends on the type of materials used in the vapour and
for the substrate. Surface diffusion of adatoms is therefore the mecha-
nism used by thin films to grow as a crystal.
The dynamics of the crystal growth process is extremely complicated,
and it is influenced by many factors. In particular, the ratio between the
tendency of the adatoms to stick to the substrate and their tendency to
diffuse is a key factor influencing the growth behaviour.
Three modes of growth are defined based on this ratio: the Frank-van
der Merwe growth mode, where diffusion is stronger and thus the crys-
tal grows layer by layer, the Volmer-Weber growth mode, where diffusion
is weaker, and therefore adatoms tend to form islands on the substrate,
and an intermediate one, the Stranski-Krastanov growth mode, where the
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first monolayers of the film behave like in a Frank-van der Merwe growth
mode, while after a certain threshold, it starts forming islands. Here we
consider the latter case.
In the epitaxial Stranski-Krastanov growth mode, it is observed that,
after a few monolayers of material are deposited, the film accumulates
too much elastic energy that it is no longer energetically convenient for
atoms of the film to stick to the crystalline structure of the substrate.
Thus, relaxation processes are employed in order to reduce the total en-
ergy of the system. The most important ones are surface corrugation and
defect formation. These are known in the literature as stress driven rear-
rangement instabilities (see [45]). The former is responsible for non-flat
surfaces as well as for the appearance of islands (agglomerates of atoms,
also called quantum dots) on the surface. With the latter, instead, the
film introduces singularities in its crystalline structure, such as cracks
and dislocations. It is crucial to be able to control this complex process
in such a way to reduce impurities as much as possible, or at least to be
able to quantify them.
For a complete treatment of the subject we refer to [41] and the pioneer-
ing work [64] by Spencer and Tersoff.

Sharp models

In general, we refer to sharp model to identify a mathematical model
that incorporates a variable or an expression that is a sharp interface
(for instance the boundary of a set). Those models are known for being
extremely precise when describing a phenomenon but with the down-
side of being hard to implement numerically. Sharp models on epitaxial
growth have a vast scientific literature, as explained in what follows. The
work by Fonseca, Fusco, Leoni and Morini [37], in which epitaxial growth
is modelled in the two-dimensional case and the free profile of the thin
film has the constraint to be a graph of a function. In this section we
briefly explain the main ideas studied in [37]. This class of functions
will allow us to see fracture as limiting objects of sequences of Lipschitz
functions (see Figure 1). In mathematical terms, let Ω be the sub-graph
of a Lipschitz function h : (a, b) → R, defined as

Ω := {(x, y) ∈ R2 : x ∈ (a, b), y < h(x)},

15
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Figure 1: A regular configuration.

which represents the region occupied by the thin film, and let Γ be the
sharp interface of the film, namely

Γ :=
{(

x, h(x)
)
: x ∈ (a, b)

}
.

Inside the bulk we consider a displacement variable, which describes the
atomic internal structure of the film. The task of such a variable is to
take into account all the possible rearrangements of the atoms inside the
thin film. A different disposition of the atomic structure could lead to a
different kind of crystal. Therefore we would like to be able to implement
this feature to our model. The displacement is a function v ∈ H1

loc(Ω;R2),
where the functional space is the Sobolev space

H1
loc(Ω;R2) := {v ∈ L2

loc(Ω;R2) : ∇v ∈ L2
loc(Ω;R2×2)},

where by ∇v we mean the weak gradient of v (see [13] for a complete
description of Sobolev spaces). The functional considered in [37] is F :
XLip → R, defined as

F (v,Ω) :=

∫

Ω

W
(
E(v)− E0(y)

)
dx+

∫

Γ

φ0(y) dH1, (4)

where x = (x, y) ∈ R2. Here, Hn denotes the n-dimensional Hausdorff
measure (in this case n = 1) and the admissible class of regular configu-
rations for F is given by

XLip := {(v,Ω) : v ∈ H1
loc(Ω;R2), Ω is the sub-graph of a
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Lipschitz function h : (a, b) → R}. (5)

Moreover, φ0 : Γ → R is given by

φ0(y) :=

{
σc if y > 0,

σs if y = 0,

for some constants σc, σs > 0. The surface energy taken into account
is the length of the graph, up to the two constants σc and σs that, in
the process of minimisation, tell us whether it is convenient to have the
substrate exposed or not (wetting or non-wetting regimes). In particular
if the constant relative to the substrate is σs and σs < σc, then energeti-
cally it is more convenient to leave the substrate exposed and favour the
island formation (non-wetting regime). If σs > σc, covering the substrate
with a thin crystal layer is energetically more favourable than leaving it
exposed. We remark that this mechanism is at the base of the island
formation. About this topic, we refer to the numerical simulation shown
in [9], which is also the first mathematical paper on epitaxial growth.
The first term of (4) represents the stored elastic energy, which in the
linearized setting is given by a quadratic form W : R2×2 → R defined by
the elasticity tensor C, namely

W (A) :=
1

2
A · C[A], (6)

for every A ∈ R2×2. The expression in (6) comes from a Taylor expansion
around the starting configuration E0 of the elastic energy W . First,
E0 : R → R2×2, represents the starting configuration of the substrate and
the film, in which their lattices are perfectly aligned, and it is defined as

E0(y) :=

{
te1 ⊗ e1 if y ⩾ 0,

0 if y < 0,

where t > 0 is a constant depending on the lattice of the substrate,
{e1, e2} is the canonical basis of R2 and, by definition,

e1 ⊗ e1 =

(
1 0

0 0

)
.
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In general, the strain tensor E : R2×2 → R2×2 is defined as

E :=
1

2
(A⊤A− I). (7)

An infinitesimal movement is a function s : R2 → R2 of the form s(x) =
x+ v(x), where v ∈ H1

loc(Ω;R2) is the displacement, for which

∇s(x) = I +∇v(x),

and I ∈ R2×2 is the identity matrix. Note that ∇s is a symmetric
matrix as ∇v is symmetric as well (since v ∈ H1

loc(Ω;R2)). If we choose
A = I +∇v in (7), we obtain

E(v) =
1

2

(
∇v +∇⊤v +∇⊤v · ∇v

)
.

We assume that we are in the framework of small deformations. This
hypothesis, that is rephrased as ||∇v||L2 ≪ 1, allows us to simplify the
above formula

E(v) =
1

2

(
∇v +∇⊤v +∇⊤v · ∇v

)
≈ 1

2

(
∇v +∇⊤v

)
.

Therefore, by a Taylor expansion, we get

W (E(v)) = W (E0(y)) +DW (E0(y))[E(v)− E0(y)]

+
1

2
D2W (E0(y))[E(v)− E0(y), E(v)− E0(y)]

+ o(||E(v)− E0(y)||2).

Assuming that W (E0(y)) = 0 and that E0 is an equilibrium point of the
elastic energy, namely DW (E0(y)) = 0, we are left with

W (E(v)) ≈ 1

2
D2W (E0(y))[E(v)− E0(y), E(v)− E0(y)].

Thus, we define the elasticity tensor as the Hessian of W at E0, that is

C := W (E0(y))
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and we obtain the linearised elastic energy (6).
In conclusion, it is convenient to our study to define the strain tensor E
in (7) as a function of the displacement, that is E : H1

loc(Ω;R2) → R2×2

which corresponds to the symmetric gradient

E(v) =
1

2
(∇v +∇⊤v).

The use of the symmetric gradient instead of the full gradient is given by
the fact that its anti-symmetric part describes an infinitesimal rotation.
In linear elasticity, it is assumed that the elastic energy W is invariant
under rotations, namely

W (RA) = R(A),

for every anti-symmetric matrix R ∈ R2×2 and every A ∈ R2×2. More-
over, it is possible to prove (by using again a Taylor expansion) that

D2W (E0(y))[R, ·] = 0,

for every anti-symmetric matrix R ∈ R2×2.

Phase-field models

In order to better deal with the numerical implementations of an energy
that presents a surface term like in (4), phase-field approximations of
sharp energies have an extremely vast literature. In general, we refer to
the term phase-field to indicate a mathematical model that implements
variables which are only function regular enough to be used in numerics.
A perfect example in this direction are Sobolev spaces.
In what follows we present some classical models as well as phase-field
approximations closer to our topic. In this section, w plays the role of the
phase-field variable, namely w ∈ H1(A) and 0 ⩽ w ⩽ 1, where A ⊂ Rn

and n depend on the problem we are referring to.
In the seminal paper by Ambrosio and Tortorelli [2], the authors in-
troduce the functional named after them. This energy is defined on a
bounded domain Ω ⊂ Rn, a given g ∈ L∞(Ω) and v, w ∈ H1(Ω), which
satisfy (v, w) = (g, 1) on ∂Ω. We define ATε : H

1(Ω)×H1(Ω) → R as

ATε(v, w) :=

∫

Ω

(o(ε) + w2) |∇v|2 dx
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+
1

2

∫

Ω

(
ε |∇w|2 + 1

4ε
(w − 1)2

)
dx. (8)

We remark that the definition of ATε does not coincide with the origi-
nal one given by Ambrosio and Tortorelli. However, the above modern
formulation of ATε is made in such a way that is easier to be dealt nu-
merically.
ATε has been developed to be the phase-field formulation for the Mumford-
Shah functional MS : SBV2(Ω) → R, defined as

MS(v) =

∫

Ω

|∇v|2 dx+Hn−1(∂Ω ∩ {v ̸= g}) +Hn−1(Γj
v),

where Γj
v is the jump set of v, defined as

Γj
v := {(x, y) ∈ R2 : x ∈ (a, b), v−(x) ⩽ y < v+(x)}.

The functional space SBV2 is the space of special functions of bounded
variations which are also in L2 (we refer to [1] for more details on the
topic). With respect to a suitable topology, we have that ATε Γ-converges
to MS. For more details, we refer to [61] and to the related image seg-
mentation problem (see [1]).

Closer to our topic, a phase-field model about epitaxial growth is
present in the paper by Bonnetier and Chambolle [9]. The authors stud-
ied an approximation for the functional (4). Their model includes the
two constants σc, σs > 0, already introduced above, that describe the
wetting or non-wetting regimes. The energy to be approximated, in the
same setting of (4), is BC : X → R, defined as

BC(v,Ω) :=

∫

Ω

W
(
E(v)− E0(y)

)
dx+ (σs ∧ σc)H1(Γ ∩ {y = 0})

+ σc

(
H1(Γ ∩ {y > 0}) + 2

∑
x∈Γc

(h−(x)− h(x))
)
,

where σs ∧ σc := min{σs, σc}. If we consider the vertical strip

Q := (a, b)× R and Q+ = Q ∩ {y ⩾ 0},
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the phase-field approximation ofBC is given byBCε : H
1(Q)×H1(Q+) →

R, defined as

BCε(v, w) :=

∫

Q+

(w + o(ε))W
(
E(v)− E0(y)

)
dx

+ 2σc

[ ∫

Q+

(4ε
π2

|∇w|2 + 1

ε
w(1− w)

)
dx

]
. (9)

The main result contained in [9] is the Γ-convergence of BCε to BC.

Another phase-field approximation model, which also takes into ac-
count the adatom density, is proposed by Caroccia and Cristoferi in
[17]. In this paper the authors prove a general Γ-convergence for func-
tionals defined on the set of positive Radon measures M+(Ω). Such
a result is immediately applied to a Modica-Mortola type of Theorem
and we resume it in what follows. We define the phase-field energy
CCε : H

1(Ω)× L1(Rn) → R as

CCε(w, u) :=
1

σ

∫

Ω

(
ε |∇w|2 + 1

ε
P (w)

)
ψ(u) dx,

where P : R → R+ is a double-well potential,

σ := 2

∫ 1

0

√
P (t) dt

and ψ : R → (0,+∞] is a Borel function. The functional CCε is a varia-
tion of the classical Modica-Mortola functional (see [56]) and encodes the
adatom variable u ∈ L1(Rn). The authors prove that CCε Γ-converges
to a functional CC : O ×M(Ω) → R, given by

CC(E, µ) :=

∫

∂∗E

ψ̃(u) dHn−1 + θµs(Ω),

where O is the set of open and bounded subsets of Rn, µ = uHn−1⌞∂∗E+
µs, where µs is the singular part of µ with respect to Hn−1⌞∂∗E and ∂∗E
denotes the reduced boundary of E (see [54]). Moreover ψ̃ is the convex
and sub-additive envelope of ψ (see Definition 11) and θ > 0 is the re-
cession coefficient (see Definition 14).
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We also mention the work by Conti, Focardi and Iurlano [25] (and later in
[26]) in which the authors use an Ambrosio-Tortorelli phase-field formu-
lation to model cohesive fractures. The work [36] by Forcardi proposes
a phase-field formulation in the setting of Generalised Special functions
with Bounded Variation (GSBD).

We notice that all the above phase-field models presented in this
introduction display two phases. In BCε, CCε, those two phases are
entirely encoded by the two wells of the potential. In this sense, it might
seem that ATε has only one phase as the potential has one well at 1.
However, the second phase of ATε is 0, since we expect that the phase-
field variable w vanishes on the jump set of v. This difference is further
remarked by the fact that in BCε, CCε the set Ω plays the role of a
variable.

III Outline of the results on epitaxial crys-

tal growth

In this section, we present the main results achieved in Chapters 1 and
2.

Review of previous works

From the mathematical point of view, several investigations have been
carried out, focusing on different aspects of the crystal growth process.
There are both discrete models, and continuum ones. Here we focus on
these latter. In particular, the already mentioned work [9] by Bonnetier
and Chambolle laid the foundations for rigorous mathematical investiga-
tions of stable equilibrium configurations of epitaxially strained elastic
thin films in the linear elastic regime. We discussed the work [37], by
Fonseca, Fusco, Leoni, and Morini proved a similar result by using an
independent strategy, and also investigated the regularity of configura-
tions locally minimizing the energy.
Questions about the stability of the flat profile were investigate by Fusco
and Morini in [43] for the case of linear elasticity, and in [8] by Bonacini
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in the non-linear regime. Moreover, in [7], Bonacini considered the same
question for the case where surface energy is anisotropic, showing, sur-
prisingly, that the flat interface is always stable. It was not until 2019,
with the work [27] by Crismale and Friedrich that the three dimensional
case was considered. Indeed, despite the existence of investigations for
similar functionals in higher dimension (see the work [23] by Chambolle
and Solci, and [12] by Braides, Chambolle, and Solci for the study of
material void) were available, all of them considered elastic energies de-
pending on the full gradient of the displacement. On the other hand, it is
known that physically compatible models for elasticity must depend on
the symmetrized gradient. The reason for such a time gap between the
two and the three dimensional case was technical: it was not clear how to
get compactness of a sequence of configurations with uniformly bounded
energy. This required the introduction of a new functional space: GSBD,
the space of Generalized Functions of Bounded Deformation, designed in
the work [31] by Dal Maso in 2014 specifically designed to address this
issue.

We now describe some of the main results achieved in [37]. Since the
functional F in (4) is neither lower semi-continuous nor coercive with
respect to the natural topology given by the model, we have that the
problem

min
XLip

F

might not have a solution. Therefore, according to the general theory
introduced in Section I, we look for the relaxation of F , also by enlarg-
ing the admissible configuration space XLip. This process allows us to
identify vertical fractures inside the thin film as limits of regular configu-
rations. Physically, this is justified by the fact that when excessive stress
accumulates in a crystal, it becomes energetically favourable to form a
crack and thereby reduce the internal structural tension.
First, since sharp energies like in (4) are hard to implement numerically,
the authors define a regularised energy, depending on a parameter δ, as

Fδ(v,Ω) :=

∫

Ω

W
(
E(v)− Eδ(y)

)
dx+

∫

Γ

φδ(y) dH1,
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Figure 2: A possible limiting configuration.

for a suitable regularised surface energy density φδ and starting config-
uration Eδ (we refer to [37] for a precise formulation). The first result
achieved is a mass constrained relaxation theorem. First, the class of
admissible configuration is enlarged and functions of bounded variation
are used to describe stress-free configurations (see Figure 2). We say
that h ∈ L1(a, b) has bounded variation in (a, b) if there exists a Radon
measure µ such that

∫ b

a

hφ′ dx = −
∫

(a,b)

φ dµ,

for all φ ∈ C1
c (a, b). In this case, we write h ∈ BV(a, b), and we denote

the measure µ by Dh.
Consider the class

X := {(v,Ω) : v ∈ H1
loc(Ω;R2), Ω is the sub-graph of a

lower-semi continuous function

h ∈ BV(a, b)}

and define F δ : X → R as

F δ(v,Ω) :=

∫

Ω

W
(
E(v)− Eδ(y)

)
dx+

∫

Γ̃

φδ(y) dH1

+ 2

∫

Γc

φδ(y) dH1. (10)
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Figure 2: A possible limiting configuration.
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Here, Γc is the cut part of h, given by

Γc := {(x, y) ∈ R2 | x ∈ (a, b), h(x) ⩽ y < h−(x)},

where

h−(x) = lim inf
y→x

h(y), h+(x) = lim sup
y→x

h(y).

(see Definition 6) and Γ̃ = Γ \ Γc (see Definition 6).
In [37, Theorem 2.8] the authors proved that F δ is the relaxation of Fδ

with respect to a suitable topology made in such a way that fractures and
jumps of the thin films are seen as limiting configurations of sequences
in XLip. Moreover, since the relaxed energy is lower semi-continuous and
coercive, we have that the problem

min
X

F δ

has as solution.
We remark that in the energy in (10), the contribution given by the
cut part of h is counted twice. Although it might seem that creating a
fracture is unfavourable energetically, it actually can decrease the bulk
energy. The interplay between the bulk and surface terms makes the
study of the Γ-convergence of F δ particularly interesting from a math-
ematical standpoint, as well as the regularity of local minimisers of the
Γ-limit (see [37, Theorem 2.9 and Section 3]).
The work contained in [28] continues this line of research by studying a
generalisation that includes the presence of adatoms in the energy (4)
and its relaxation (see Chapter 1 for a full description).

Novelty of the contribution

What all of the above continuum models are neglecting is the role of
adatoms in the creation of equilibrium stable interfaces. The importance
of considering their effect was made clear by Specer and Tersoff in [64],
where the authors highlighted that considering the effect of adatoms,
and in particular of surface segregation of several species of deposited
material, affect the equilibrium configurations predicted by the model,
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and hopefully provide a more accurate description of those observed in
experiments.
This was made even clearer in the seminal paper [42] by Fried and Gurtin.
The manuscript unified several ad hoc investigations that focused on spe-
cific aspects on crystal growth or used specific assumptions to derive the
model. In particular, it was noted that considering adatoms will, on the
one hand, add a new variable to the problem, while, on the other hand,
will make the evolution equations parabolic. Note that this is a huge
mathematical advantage, since in [38] and in [39], the authors had to
add an extra term to the energy (that nevertheless has some physical
interpretation) to regularize the non-parabolic evolution equations ob-
tained from the model that does not take into consideration adatoms.
Following this direction of investigation, in [18], Cristoferi, together with
Caroccia and Dietrich, started the study of a variational characteriza-
tion of the evolution equations derived by Fried and Gurtin. In that
paper, the authors considered a variational model describing the equi-
librium shape of a crystal, where the elastic energy is neglected, and
without the constraint of growing as the graph of a function. From the
energy for regular configurations, a natural topology was identified, and
a representation formula for the relaxed energy was obtained. The re-
sult highlighted the interplay between oscillations of crystal surfaces and
changes in adatom density in order to lower the total energy. The re-
sult obtained in that paper was different from previous investigations by
Bouchitté (see [10]), Bouchitté and Buttazzo (see [11]), and Buttazzo
and Freddi (see [15]), due to the choice of the topology.
In a subsequent paper (see [17]), a phase field model was considered in
a more general setting, to pave the way towards the analysis of the con-
vergence of the gradient flows.

In Chapter 1, we describe the main results achieved in [28]. We
introduce a new variable on the free surface of the film Γ that describes
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and hopefully provide a more accurate description of those observed in
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is a suitable admissible class of regular of configurations (see Definition
16) that describe the thin film via Lipschitz functions. The surface term
in (11) penalises not only the length of the graph, but also an elevate
adatom density. For a precise formulation and additional details, we refer
to Section 2.1.
We address the problem of finding the relaxed functional of (11). In
order to observe vertical fractures inside the film, one way to see them
is by using functions of bounded variation and a suitable topology in
the relaxation. The topology is chosen in such a way that fractures are
the limit of regular configurations (see Definition 20). One can expect a
similar result on the interface as in [18], in which the surface energy has
the form ∫

Γ

ψ̃(u) dH1,

where ψ̃ is the convex sub-additive envelope of ψ, defined as

ψ̃(s) := sup{f(s) | f : [0,+∞) → R is convex, sub-additive

and f ⩽ ψ}.

However, we prove that on vertical fractures we have a different be-
haviour. Indeed, we have that the interface energy is relaxed in to a
term of the form ∫

Γ

ψc(u) dH1.

Here, ψc (see Definition 12) is defined as

ψc(s) := min{ψ̃(r) + ψ̃(t) | s = r + t}.

Heuristically, since we are approximating a fracture with regular func-
tions, we expect that a cut is the limit of the contributions given by
functions on the left and on the right of it. In that sense ψc detects the
best possible way to do so.
We prove that the functional G : A → R is the relaxation of H, and is
defined as

G(Ω, v, µ) :=
∫

Ω

W
(
E(v)− E0(y)

)
dx+

∫

Γ̃

ψ̃(u) dH1
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+

∫

Γc

ψc(u) dH1 + θµs(R2). (12)

Here, A is the class of admissible configurations (see Definition 15) which
describe the thin film with the use of functions of bounded variation.
Moreover, θ > 0 is the recession coefficient (see Definition 14) and µs is
the singular part of µ with respect toH1⌞Γ. Both proofs of the liminf and
limsup inequalities are challenging and technical. New techniques needed
to be developed in order to deal with vertical cracks and the surface term
with ψc. In particular, the liminf inequality relies on an argument based
on geometric measure theory. The limsup inequality is obtained by an
approximation argument and by a careful adaptation (and generalisation)
of the wriggling process introduced in [18] and [17]. Briefly, given a
Lipschitz function f : (a, b) → [0,+∞), and r > 1, we can prove that
there exists a sequence of Lipschitz functions fn : (a, b) → [0,+∞) with

H1⌞Γfn
∗
⇀ rH1⌞Γf as n → ∞, such that

H1(Γfn) = rH1(Γf ),

with fixed boundary conditions fn(a) = f(a), fn(b) = f(b), for each
n ∈ N, and satisfying other technical properties (such as the preserva-
tion of the mass constraints). What the above inequality is pinpointing is
a quantitative lack of lower semi-continuity of the perimeter (see Propo-
sition 3).

In Chapter 2, we explain the main results obtained in [35], where
we develop a phase-field model for the sharp functional defined in (12).
Our goal is to approximate (12) using only variables that are functions
not defined on a sharp interface, that is, in our case, not defined on a
one-dimensional domain in R2. Consider the two vertical strips

Q := (a, b)× R and Q+ := Q ∩ {y > 0}.

We aim to approximate the set variable Ω in (12) with a phase-field
sequence (wε)ε ⊂ H1(Q+) such that 0 ⩽ wε ⩽ 1 and wε → χΩ in
L1(Q+), as ε → 0. In the same way, the Radon measure µ = uH1⌞Γh is
seen as the limit (in the sense of the weak∗ convergence) of a sequence
(uε)ε ⊂ L1(Q).
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To this end, we introduce the functional Gε : Ap → R defined as

Gε(w, v, u) :=

∫

Q+

(w(x) + o(ε))W
(
E(v)− E0(y)

)
dx

+
1

σ

∫

Q+

[
ε|∇w|2 + 1

ε
P (w)

]
ψ(u) dx, (13)

whereAp is the admissible set of phase-field configurations (see Definition
22), which consists of functions in H1 or L1, P is a double-well potential
and

σ := 2

∫ 1

0

√
P (t) dt.

The main result of this work is proving that Gε Γ-converges to G, as
ε → 0, with respect to a suitable topology (see Definition 25, Theorems
14 and 16).
We remark that the role of o(ε) in (13) and also in the functionals pre-
sented in this section is to ensure the compactness of minimising se-
quences.
The proof makes use of the strategies introduced in [9] and [17]. More-
over we show that the new techniques introduced in [28] proved to be
solid enough to be adapted in a phase-field formulation.

IV Geometrically constrained walls

The second line of research, discussed in Chapter 3, is on Magnetic do-
main walls, which are regions in which the magnetisation of a material
changes from one value to another one. The most familiar setting is that
of a magnet. In a simple geometry, such as a cylinder, we can observe two
distinct magnetizations at the bases. For clarity, we may assume that
the two magnetization vectors are (0, 0,±1). It is intuitive to expect
that the magnetization changes uniformly along the body of the magnet,
and we can imagine the transition to be linear due to the shape of the
domain. However, in the presence of extreme geometries, such as that of
a dumbbell-shaped domain (see Figure 3.1), the magnetic wall is more
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likely to be found in or around the neck; in this and similar geometry-
driven situations, one usually speaks of geometrically constrained walls,
to stress the fact that the domain shape plays a pivotal role in the local-
isation of the transition region of the magnetisation, for instance, when
prescribing it in the bulky parts of the dumbbell.
The model that allows us to describe geometrically constrained walls
features a sufficiently smooth potential which is minimal at the imposed
values of the magnetisation in the bulk parts of the dumbbell, and a
gradient term penalising transitions; the two are competing as soon as
the values of the magnetisation in the bulks are not the same. To better
explain, we consider a double well potential W : R → [0,+∞) of class C2

such that W−1(0) = {α, β} for some α < β and

lim
|t|→+∞

W (t) = +∞.

In this setting α and β represents the two state of the magnetisation
preferred by the potential. We notice that we are assuming that the
magnetisation u : R3 → R is a scalar function. The general case, in
which the magnetisation is a field u : R3 → R3 is extremely hard to
handle as it leads to a vectorial variational problem, which is still an
open problem. We now describe the geometries that are of interest in
the applications. We consider an infinitesimally small neck (see Figure
3), whose size is determined by three parameters ε, δ, η > 0:

Nε := {x = (x, y, z) ∈ R3 : |x| ⩽ ε, |y| < δ, |z| < η}, (14)

with the understanding that all three of them vanish when ε → 0, that
is δ = δ(ε) → 0 and η = η(ε) → 0, as ε → 0. We study a mathemati-

Figure 3: The neck Nε

cal model to characterise magnetic domain walls in a three-dimensional
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dumbbell-shaped domain (see Figure 3.1). The two bulks are modelled by
two bounded, connected, open sets Ωℓ,Ωr ⊂ R3 with Lipschitz boundary
such that

(i) the origin (0, 0, 0) belongs to ∂Ωℓ ∩ ∂Ωr;

(ii) Ωℓ ⊂ {x < 0} and Ωr ⊂ {x > 0};
(iii) there exists r0 > 0 such that (∂Ωℓ) ∩ Br0(0, 0, 0) and (∂Ωr) ∩

Br0(0, 0, 0) are contained in the plane {x = 0}, i.e., the bulks are
flat and vertical near the origin, where the conjunction with the
neck will be located.

We let ε > 0 and define the neck region as in (14), so that the dumbbell-
shaped domain Ωε is defined as

Ωε := Ωℓ
ε ∪Nε ∪ Ωr

ε,

where Ωℓ
ε = Ωℓ − (ε, 0, 0) and Ωr

ε = Ωr + (ε, 0, 0), We notice that Ωε is a
bounded, connected, open set with Lipschitz boundary. This geometry
makes the x direction the preferred one, whereas the y- and z-direction
can be interchanged upon a change of coordinates; this motivates the
fact that we will use, throughout the work, the subscript ε alone as an
indication of the smallness of the neck.
We study an energy of the form

F(u,Ωε) :=
1

2

∫

Ωε

|∇u(x)|2 dx+

∫

Ωε

W (u(x)) dx ,

which resembles a Modica-Mortola type of functional, in which also the
domain of integration varies with ε.

V Outline of the results on geometrically

constrained walls

In this section we describe the main results achieved in Chapter 3.
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Figure 4: A pictorial representation of a typical domain of interest.

Review of previous works

We discuss two recent contributions in detail, since the results we ob-
tain are related to them. In the work by Kohn and Slastikov [52], the
problem is studied in the full three-dimensional setting, with the assump-
tion that the geometry be axisymmetric: the dumbbell Ωϵ is a rotation
body around the x axis, so that the shape parameters of the neck are
essentially its length ε and its radius δ. By taking advantage of a scale-
invariant Poincaré inequality for Sobolev functions and by reducing the
problem to a one-dimensional variational one, the authors proved the
existence of three possible regimes, according to the value of the limit
limε→0 δ/ε = λ ∈ [0,+∞] and singled out a thin neck regime (λ = 0), a
normal neck regime (λ ∈ (0,+∞)), and a thick neck regime (λ = +∞).
In the first case the transition happens entirely inside the neck and is
an affine function of the x-coordinate, in the second case the transition
happens across the neck, partially inside and partially outside, depend-
ing on the value of λ, whereas in the third case the transition happens
entirely outside the neck. These behaviours are found by studying the
energy of particular competitors (essentially, an affine transition inside
the neck and a harmonic transition in a spherical shell just outside the
neck) and then rescaling the minimiser in the vicinity of the neck.
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normal neck regime (λ ∈ (0,+∞)), and a thick neck regime (λ = +∞).
In the first case the transition happens entirely inside the neck and is
an affine function of the x-coordinate, in the second case the transition
happens across the neck, partially inside and partially outside, depend-
ing on the value of λ, whereas in the third case the transition happens
entirely outside the neck. These behaviours are found by studying the
energy of particular competitors (essentially, an affine transition inside
the neck and a harmonic transition in a spherical shell just outside the
neck) and then rescaling the minimiser in the vicinity of the neck.

32

Introduction

In the works by Morini and Slastikov [59, 60] the same problem was
addressed in the case of a magnetic thin film, that is when the domain
has the shape of a dumbbell, but it is two-dimensional, that is, in Bruno’s
setting in the limit as h → 0. Mathematically speaking, the endeavour
is more difficult on two accounts: the scale-invariant Poincaré inequal-
ity is not available in dimension two, and the problem loses its vari-
ational character. Methods that are typical from the study of PDE’s
were employed to construct suitable barriers to estimate the solutions.
Moreover, due to the slow decay of the logarithm (the fundamental solu-
tion to Laplace’s equation in two dimensions), sub-regimes became avail-
able in addition to the thin, normal, and thick neck regimes already
analysed by Kohn and Slastikov: the sub-critical, critical, and super-
critical thin neck regimes were found according to the value of the limit
limε→0(δ| ln δ|)/ε ∈ [0,+∞], displaying a richer variety. In the case of
sub-regimes, the rescaling of the minimisers to study their asymptotic
behaviour is not trivial; nonetheless, the authors managed to charac-
terise the profiles as the unique solutions to certain PDE’s where the
boundary conditions track the expected asymptotic behaviour. Both in
Kohn and Slastikov’s and in Morini and Slastikov’s papers the technique
involves two steps: the first is to estimate the energy of minimisers to
understand if the wall is located all inside, all outside, or across the neck;
the second is to rescale the whole domain Ωε to an appropriate Ω∞ in a
way that either a variational problem or a PDE can be studied in Ω∞,
which brings to the attention that the boundary ∂Ω∞ must be a set in
which boundary conditions can be prescribed.

Novelty of the contribution

We are interested in understanding the asymptotic behaviour, as ε → 0,
of stable critical points (see Definition 1) of the energy

F(u,Ωε) :=
1

2

∫

Ωε

|∇u(x)|2 dx+

∫

Ωε

W (u(x)) dx , (15)
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defined for u ∈ H1(Ωε), where dx = dxdydz and





W : R → [0,+∞) is a function of class C2 such that

W−1(0) = {α, β} for some α < β

and lim
|t|→+∞

W (t) = +∞.

In (15), the function u represents a suitable quantity related to the mag-
netisation field defined on Ωε and the potential W favours the values
u(x) = α and u(x) = β for the magnetisation, corresponding to those to
be imposed in the bulks. Here, the competition between the potential
and the gradient terms is significantly influenced by the geometry of Ωε.
The energy (15) was considered in [14] as a simplified model for studying
the magnetisation inside a thin dumbbell domain under the assumption
that the magnetic field is of the form

m(x) = (0, cos(u(x)), sin(u(x))) .

Despite this simplifying assumption, the mathematical analysis is rich
enough to exhibit non-trivial behaviours of the magnetisation.
We now give the relevant definitions of critical points and isolated local
minimiser for the functional F(·,Ωε) introduced in (15).

Definition 1. For ε > 0, let uε ∈ H1(Ωε) be a critical point of F (·,Ωε).
We say that the family (uε)ε is an admissible family of nearly locally
constant critical points if

(a) there exists ε̄ > 0 such that

sup

∥uε∥∞ : ε ∈ (0, ε̄]


=: M < +∞;

(b) ∥uε − α∥L1(Ωℓ
ε)
→ 0 and ∥uε − β∥L1(Ωr

ε)
→ 0 with α < β, as ε → 0.

Moreover, we say that (uε)ε ⊂ H1(Ωε) is an admissible family of local
minimisers if it satisfies, additionally,

(c) there exist ε0 > 0 and θ0 > 0 such that for ε ∈ (0, ε0] we have
F(v,Ωε) ⩾ F(uε,Ωε) for all v ∈ H1(Ωε) such that 0 < ∥v −
uε∥L1(Ωε) ⩽ θ0.
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Unlike [52], we do not assume axial symmetry of the domain and this
results in a richer variety of regimes. In particular, we find that some
of these regimes admit sub-regimes, as was discovered for magnetic thin
films in [59, 60]. We discuss all the possible cases in the next section.

First of all, we note that, given the privileged role of the parameter ε,
it is trivial to see that the roles of δ and η can be interchanged upon
switching the coordinate axes y and z. The regimes investigated in [52]
correspond to the cases where δ ∼ η. Therefore, here we limit ourselves
to consider the other following regimes:

(i) Super thin: ε ≫ δ ≫ η;

(ii) Flat thin: ε ≈ δ ≫ η;

(iii) Window thick : δ ≫ η ≫ ε;

(iv) Narrow thick : δ ≫ ε ≈ η;

(v) Letter-box : δ ≫ ε ≫ η.

In the Letter-box regime, in particular, we have the presence of sub-
regimes, depending on the value of the following limit

ℓ := lim
ε→0

η |ln η|
ε

. (16)

Then we have the additional sub-regimes

(v′) Sub-critical Letter-box : δ ≫ ε ≫ η and ℓ = 0;

(v′′) Critical Letter-box : δ ≫ ε ≫ η and ℓ ∈ (0,+∞);

(v′′′) Super-critical Letter box : δ ≫ ε ≫ η and ℓ = +∞.

Depending on the regime, the transition will happen: completely inside,
completely outside, or in both regions. To understand this, we reason as
follows. For ε > 0 and d < min{|α| |Ωℓ|1/2, |β| |Ωr|1/2}, we consider

Bε := {u ∈ H1(Ωε) : ||u− u0,ε||L2(Ωε) ⩽ d, ∥u∥L∞(Ωε) < ∞},
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with u0,ε : Ωε → R defined as

u0,ε(x) :=





α if x ∈ Ωℓ
ε ,

α + β

2
if x ∈ Nε ,

β if x ∈ Ωr
ε .

First of all, we expect the main part of the energy to be the Dirichlet
integral. Then, we consider two harmonic functions that play the role of
competitors for the minimisation problem

min{F(v,Ωε) : v ∈ Bε};

one where the transition from α to β happens inside the neck, and the
other one where it happens only outside (and the competitor is constant
inside the neck). We then compare their energies (whose computations
will be carried out in Section 3.2) to get a guess of where the transition
will occur.
The main achievements of Chapter 3 can be resumed as follows.

(A1) For all of the above-mentioned regimes, we identify where the tran-
sition happens. More precisely, we find sequences (ϱε)ε, with ϱε →
+∞, as ε → 0, such that

lim
ε→0

ϱεFε(uε,Ωε) =: κ ∈ (0,+∞),

lim
ε→0

ϱεFε(uε, Nε) =: κN ∈ [0, κ].

Their interpretation is the following: κ is the asymptotic energy in
the whole domain, and κN that in the neck. Therefore, if κN =
κ, we say that the transition happens entirely inside the neck, if
κN = 0, the transition happens entirely outside the neck, while if
κN ∈ (0, κ), the transition happens both inside and outside the
neck. In particular, we rigorously justify the expectations derived
from the above heuristics.

(A2) We identify a proper rescaling of the independent variables that
allows us to prove that such rescaled profile converges to a solution
of a Dirichlet energy in a limiting domain with suitable boundary
conditions.
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


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α + β

2
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β if x ∈ Ωr
ε .
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VI Overview of the results

This section aims to review the results achieved and the technical diffi-
culties encountered in this dissertation.
Starting with the study of epitaxial growth, in the first paper [28], the
generalization of the wriggling process for the recovery sequence proved
to be extremely challenging. Not only did the graph constraint on the
free surface of the film introduce an additional layer of complexity, but
its interaction with the two mass constraints also had to be handled with
great care. Indeed, since the wriggling process relies on oscillations in
the graph of a function, the mass constraints had to be adjusted at each
step accordingly. This aspect became particularly delicate when approx-
imating a function of bounded variation with a sequence of Lipschitz
functions.
The phase-field model for epitaxial growth developed in [35] provides an
investigation that demonstrates the techniques introduced in the previ-
ous paper are also suitable for describing a different type of convergence
of functionals.
Both papers opened new lines of investigation, thanks to the adaptability
of the proposed techniques to similar settings. Current directions of re-
search include the case of non-linear elasticity, anisotropic surface energy,
and the three-dimensional setting. It would be of mathematical interest
to model fractures that are not vertical, in order to explore whether our
study can be generalized in that direction.

The study on magnetic domain walls in [29] was motivated by the im-
balance between the number of publications in physics and mathematics.
Despite the extensive literature in the former field, mathematical investi-
gations were lacking. The aim of our study was to clarify and classify the
various regimes arising in the dumbbell geometry. The presence of three
independently varying parameters significantly increased the number of
possible rescalings. The choice of an appropriate rescaling was dictated
not only by physical considerations, but also by the geometry of the com-
petitors found in the bulk regions. In fact, due to the mismatch between
all the parameters, we were able to identify an elliptical competitor that
yielded a lower energy order. This insight was crucial, as it led us to
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discover the existence of sub-regimes in the three-dimensional case—a
behaviour previously thought to be typical only of the two-dimensional
setting.
Future investigations will proceed in several directions. The most promis-
ing one concerns a dimension reduction problem. Now that we have a full
characterization of both the two- and three-dimensional cases, we aim to
develop a theory that connects them. More specifically, if the dumb-
bell shape is considered as a thin film, we are interested in studying
the asymptotic behaviour of the various regimes as the film’s thickness
tends to zero. Our hypothesis is that the variational problems arising
in the three-dimensional setting converge to the solutions of the PDE’s
corresponding to the two-dimensional case.
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Chapter 1

A sharp model for epitaxial
growth with adatoms

This chapter follows the study presented in [28]. We investigate epitaxial
growth by considering the case in which a crystalline material is deposited
on a substrate. In addition, its profile can be described by a function,
and both the elastic energy of the film and the surface energy of adatoms
are taken into account. The goal is to obtain a representation formula
for the relaxed energy in the natural topology of the problem. In order
to develop the main ideas needed for such an investigation, we focus on
the two dimensional case. The main contribution of [28] is to show how
the mechanism identified in [18], where oscillations of the profile interact
with adatom concentration, plays a role in the case where the geometry
of the configuration is constrained to be a graph. This might seem as
an easier case than that treated in [18], where the profile of the crystal
was free to grow in any direction. Nevertheless, the graph constraint
poses several challenges that have to be tackled with the utmost care,
in order to be properly overcome. Indeed, we prove that the relaxed
energy differs from that of [18] exactly on vertical cracks of the deposited
layer. In particular, we introduce a strategy to deal with oscillations and
adatom concentration on vertical cracks, whose robustness will be tested
in Chapter 2, where we investigate a phase-field approximation of the
model.

39



Chapter 1 - Epitaxial growth, sharp model

1.1 The model

In this section we introduce the model that we will study. We consider
the two dimensional case. This corresponds to three dimensional configu-
rations that are constant in one direction. We work within the continuum
theory of epitaxial growth. The main assumptions of the model are the
following:

(i) The profile of the configurations of the thin film can be described
as the graph of a function;

(ii) We neglect surface stress;

(iii) The exchange of atoms between the substrate and the deposited
film is negligible;

(iv) The atoms of the substrate do not change position.

The free energy of a configuration is the sum of a bulk energy and a
surface energy. The former is the elastic energy due to rearrangement of
the atoms of the deposited film from a stress free configuration (atoms
sitting in their natural lattice position) to another disposition. The lat-
ter, instead, stems from the net work needed to create an interface with
a specific density of adatoms. We first prescribe the energy of regular
configurations, and will then obtain that of more irregular configurations
by relaxing the former.

We model the substrate as the set {(x, y) ∈ R2 : y ⩽ 0}. We consider
a portion of the deposited film in a region (a, b)× {y ⩾ 0}. To describe
the free profile of the film, let h : (a, b) → R be a non-negative Lipschitz
function. Consider its graph

Γh :=
{(

x, h(x)
)
: x ∈ (a, b)

}
, (17)

and its subgraph (see Figure 1.2 on the left)

Ωh := {(x, y) ∈ R2 : x ∈ (a, b), y < h(x)}. (18)

40



Chapter 1 - Epitaxial growth, sharp model

1.1 The model

In this section we introduce the model that we will study. We consider
the two dimensional case. This corresponds to three dimensional configu-
rations that are constant in one direction. We work within the continuum
theory of epitaxial growth. The main assumptions of the model are the
following:

(i) The profile of the configurations of the thin film can be described
as the graph of a function;

(ii) We neglect surface stress;

(iii) The exchange of atoms between the substrate and the deposited
film is negligible;

(iv) The atoms of the substrate do not change position.

The free energy of a configuration is the sum of a bulk energy and a
surface energy. The former is the elastic energy due to rearrangement of
the atoms of the deposited film from a stress free configuration (atoms
sitting in their natural lattice position) to another disposition. The lat-
ter, instead, stems from the net work needed to create an interface with
a specific density of adatoms. We first prescribe the energy of regular
configurations, and will then obtain that of more irregular configurations
by relaxing the former.

We model the substrate as the set {(x, y) ∈ R2 : y ⩽ 0}. We consider
a portion of the deposited film in a region (a, b)× {y ⩾ 0}. To describe
the free profile of the film, let h : (a, b) → R be a non-negative Lipschitz
function. Consider its graph

Γh :=
{(

x, h(x)
)
: x ∈ (a, b)

}
, (17)

and its subgraph (see Figure 1.2 on the left)

Ωh := {(x, y) ∈ R2 : x ∈ (a, b), y < h(x)}. (18)

40

Chapter 1 - Epitaxial growth, sharp model

The set Ωh ∩ {y ⩾ 0} represents the deposited film.
We first introduce the surface energy. The adatom density will be de-
scribed by a positive function u ∈ L1(H1⌞Γh). The surface energy corre-
sponding to such an adatom density distribution will be

∫

Γh

ψ
(
u(x)

)
dH1(x),

where x = (x, y) ∈ R2, and ψ : [0,+∞) → (0,+∞) is a Borel function
such that

inf
s⩾0

ψ(s) > 0. (19)

Note that such a requirement has the physical interpretation that no
matter what the adatom density is, there is always an amount of energy
needed to construct a profile.

We now discuss the elastic energy. For each macroscopic configuration
Ωh, there are several arrangements of atoms inside the thin film that
produce that same profile. To each of these arrangements there is an
elastic energy associated to: this energy will depend on the displacement
between the actual position of each atom and its position in the natural
crystal lattice. This displacement will be described by a function v :
Ωh → R2, and we assume it to be of classH1(Ωh;R2). The natural crystal
configuration of the crystalline substrate and that of the deposited film
are represented by a function E0 : R → R2×2, defined as

E0(y) :=

{
te1 ⊗ e1 if y ⩾ 0,

0 if y < 0.

Here, t > 0 is a constant depending on the lattice of the substrate, and
{e1, e2} is the canonical basis of R2. The crystalline structure of the
film and the substrate might be slightly different, but we assume their
difference to be very small, namely |t| ≪ 1. This assumption allows us to
work in the framework of linearized elasticity. In particular, the relevant
object needed to compute the elastic energy is the symmetric gradient of
the displacement

E(v) :=
1

2
(∇v +∇⊤v),
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where ∇⊤v is the transpose of the matrix ∇v. Note that E(v) is zero
if ∇v is zero for any anti-symmetric matrix (for instance, a rotation
matrix).

Finally, we assume that the substrate and the film share similar elastic
properties, so they are described by the same positive definite elasticity
tensor C. The elastic energy density will be given by a function W :
R2×2 → R defined as

W (A) :=
1

2
A · C[A] = 1

2

2∑
i,j,m,n=1

cijnmaijanm,

for a 2×2 matrix A = (aij)
2
i,j=1. In addition, we ask that W is a positive

quadratic form, namely

W (A) > 0, (20)

for all symmetric matrices A ̸= 0.
The elastic energy will then be∫

Ωh

W
(
E(v(x))− E0(y)

)
dx.

Therefore, the energy of a regular configuration that we consider is given
by

E(Ωh, v, u) :=

∫

Ωh

W
(
E(v(x))− E0(y)

)
dx

+

∫

Γh

ψ
(
u(x)

)
dH1(x), (21)

where h : (a, b) → R is a non-negative Lipschitz function, u ∈ L1(H1⌞Γh),
and v ∈ H1(Ωh;R2). In the following, we will refer to such triples as
regular admissible configurations, and we will denote it by the class Ar

(see Definition 16).

1.2 Main result

In order to study the relaxation of the energy E , we need to first discuss
what topology to use. This will determine the types of limiting configu-
rations to expect, and how these effect the value of the effective energy.
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Figure 1.1: Two ways that a sequence of graphs can close up: on the
top by giving rise to a crack inside Ωh, while on the bottom to a crack
outside Ωh. We want a topology that sees the crack in the former case,
but not in the latter.

Here we justify the definition of the topology we use, that will be stated
precisely in Definition 20.

We first consider the notion of convergence for the profiles of the film.
This will be the same used in [37]. Here we give the heuristics for such
a choice. There are several mechanisms that a film can use to release
elastic energy. Our model allows for three of these: rearrangement of
atoms inside the film, corrugation of the surface, and creation of cracks.
The topology on the profile will be concerned only with the last two.
We are interested in how a crack forms. There are two mechanisms:
as a fracture inside the film, or when the free profile becomes vertical,
like it is depicted in Figure 1.1 on the top. We choose to model situa-
tions where only the latter is allowed. Note that this forces cracks to be
vertical segments touching the free profile. What we want to avoid are
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configurations where cracks happen outside of the film (Figure 1.1 on the
bottom). Thus, we need to differentiate the two situations. The right way
to do it is by considering the Hausdorff convergence of the complement of
the subgraphs (the so called Hausdorff-complement topology). We note
that, in the latter case, the sets R2 \ Ωhk

will converge to the limiting
configuration R2 \Ωh where there is no vertical cut (see Figure 1.1 on the
bottom). This topology also accommodates for corrugation of the profile.

We now consider the convergence of the displacements. Since the
energy has quadratic growth in the symmetric gradient of the displace-
ment, the natural topology will be the weak H1 topology. In particular,
in order to take care of the fact that the displacements are defined in dif-
ferent domains (the subgraphs of the profiles), we take advantage of the
fact that the complement of these latter are converging in the Hausdorff
sense. Thus, local convergence in the final domain will do the job.

Finally, we discuss the topology for the adatom density. In [18] the
idea was to see the adatom density as a Radon measure µ concentrated
on the graph describing the profile. Namely, for each u ∈ L1(Γh), we
consider

µ := uH1⌞Γh.

This identification allows not only to consider concentration of measures,
but it turns out to be the right way to model adatoms in order to exploit
the interplay between oscillations of the profile and change in adatom
density. Thus, for the adatom density, the weak∗ convergence of mea-
sures will be used.

The question we now have to address is what are the possible limiting
objects that we need to consider. This is a discussion of compactness
of sequences (Ωhk

, vk, µk)k with uniformly bounded energy, namely such
that

sup
k∈N

E(Ωhk
, vk, µk) < +∞,

We start by investigating the convergence of graphs, and the others will
follow. Thanks to the lower bound (19) on the energy density ψ, the
energy F is lower bounded by the length of the graph of hk. Indeed,
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there exists c > 0 such that

sup
k∈N

cH1(Γhk
) ⩽ sup

k∈N

∫

Γhk

ψ(uk) dH1 < +∞

which in turn is a lower bound on the total variation of hk:

sup
k∈N

H1(Γhk
) = sup

k∈N

∫ b

a

√
1 + |h′

k|2 dx ⩾
∫ b

a

|h′
k| dx.

Thus, if a mass constraint on the area of Ωk, or a Dirichlet boundary con-
dition at a and b are imposed, we get that the limiting configuration will
be the subgraph of a function h : (a, b) → [0,+∞) of bounded variation.
In particular, since we are in the one dimensional case, such a function
will have countably many jumps and countably many cuts.

Now, we consider the convergence of the displacement. Due to the
choice of the topology, the limiting displacement will be a function v ∈
H1(Ωh;R2). Note that one of the technical advantages of working in di-
mension two is that we can avoid having to rely on functions of bounded
deformation, and use instead Sobolev functions and the free profile to
describe cracks.

Finally, let us discuss the adatom densities. Each of them is seen as
the Radon measure ukH1⌞Γhk

. By imposing a mass constraint on the
total amount of adatoms, we have that their total variation is bounded,
and thus they converge (up to a subsequence), to a Radon measure µ.
Noting that each µk is supported on the graph Γhk

, and these latter also
converge in the Hausdorff sense to the graph of the limiting profile h, the
limiting measure µ will be supported on Γh.

Therefore, the class A of limiting admissible configurations we will
need to consider is given by the triples (Ωh, v, µ), where h ∈ BV(a, b),
v ∈ H1(Ωh;R2), and µ is a Radon measure supported on Γh. Moreover,

we denote by Γc
h the cuts of h, and by Γ̃h the rest of the extended graph

of h, namely regular part and jumps (see Figure 1.2 on the right, and
Definition 6 for the precise definition).
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Figure 1.2: A regular configuration on the left, and a possible limiting
configuration on the right: cracks and jumps can appear.

Thus, in light of the above discussion, given a sequence (Ωhk
, vk, µk)k

⊂ Ar, we will say that (Ωhk
, vk, µk) → (Ωh, v, µ) ∈ A if

(i) R2 \ Ωhk

H→ R2 \ Ωh in the Hausdorff convergence of sets;

(ii) vk ⇀ v weakly in H1
loc(Ωh;R2);

(iii) µk
∗
⇀ µ weakly∗ in the sense of measures;

as k → ∞.

The two main results of this Chapter provide representations of the
relaxation of the functional E when a mass constraint is in force, and
when it is not.

Theorem 1. Let (Ωh, v, µ) ∈ A, and write µ = uH1⌞Γh + µs⌞Γh, where
µs is the singular part of µ with respect to H1⌞Γh. Then, the relaxation
of the functional E defined in (21), with respect to the above topology,
is given by

G(Ωh, v, µ) =

∫

Ωh

W
(
E(v)− E0(y)

)
dx

+

∫

Γ̃h

ψ̃(u) dH1 +

∫

Γc
h

ψc(u) dH1 + θµs(Γh),

where ψ̃ is the convex sub-additive envelope of ψ (see Definition 11), the
function ψc is defined as

ψc(s) := min{ψ̃(r) + ψ̃(t) : s = r + t},
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Figure 1.2: A regular configuration on the left, and a possible limiting
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for all s ∈ [0,+∞), and

θ := lim
t→+∞

ψ(t)
t

= lim
t→+∞

ψc(t)

t
,

is the common recession coefficient of ψ and of ψc.

Theorem 2. FixM,m > 0. Denote by Ar(m,M) the triples (Ωh, v, µ) ∈
Ar such that



Γh

u dH1 = m, L2 (Ωh ∩ {y ⩾ 0}) = M,

and by A(m,M) the triples (Ωh, v, µ) ∈ A such that

µ(Γh) = m, L2 (Ωh ∩ {y ⩾ 0}) = M.

Define Hm,M : A → [0,+∞] as

Hm,M(Ωh, v, µ) :=



E(Ωh, v, µ) (Ωh, v, µ) ∈ Ar(m,M),

+∞ else.

Then, the relaxation of H in the above topology is given by Fm,M : A →
[0,+∞] as

Fm,M(Ωh, v, µ) :=


G(Ωh, v, µ) if (Ωh, v, µ) ∈ A(m,M),

+∞ else,

where G(Ωh, v, µ) denotes the right-hand side of the representation for-
mula of Theorem 1. Namely, the mass constraint is maintained by the
relaxation procedure.

Remark 1. In general, it is not possible to say more on the singular part
of the measure.

1.3 Strategy of the proof

Now, we would like to comment on the strategy to prove the main results.
First of all, in Theorem 9 we will prove the liminf inequality for the case
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of no mass constraint, and in Theorem 10 the limsup inequality for the
case with the mass constraint. These theorems will give both Theorem
1, and Theorem 2.

Similarly for the functional considered in [37], the bulk and the sur-
face terms of the energy do not interact in the relaxation process. Since
the former is quite standard, we will comment on how to deal with the
latter. In this lies the novelty of the contributions of [28]. Our strategy
relies on ideas inspired by results obtained in [18]. The main difference
with the case treated in that paper is the graph constraint. This reflects
on the fact that oscillations of the thin film profile must be in the vertical
direction in order to preserve such a constraint, and that cracks can be
created only in a specific way. The former term only gives technical chal-
lenges, while the latter is responsible for the different energy densities ψ̃
and ψc. Despite this, note that the recession coefficients for the singular
part of the measure in the two parts of the extended graph (the cuts,
and the rest of the graph) agree.

Let us discuss the strategy for the liminf inequality for the surface
terms. We avoid mentioning the fine details and focus instead on the
main ideas. Let (hk)k∈N be a sequence of Lipschitz functions such that
R2 \ Ωhk

converge to R2 \ Ωh, for some function h of bounded variation.
This implies that Ωhk

converges to Ωh in L1 (see Lemma 4). Let (uk)k∈N
the be adatom densities defined on each Γhk

, and let µ = uH1⌞Γh + µs

be the limiting measure. We need to prove that

lim inf
k→∞

∫

Γhk

ψ(uk) dH1 ⩾
∫

Γ̃h

ψ̃(u) dH1

+

∫

Γc
h

ψc(u) dH1 + θµs(Γh). (22)

The idea is to separate the contribution that the energy on the left-hand
side has on a neighborhood of each cut of h, and on the other part of
the graph of h. Despite there might be a countable number of cuts, it is
just a technicality to show that we can reduce to finitely many of them
(see the beginning of the proof of Theorem 9). Thus, let us assume that
the final configuration described by h has finitely many cuts. Since the
energy is local, for the sake of simplicity, we will consider the case where
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of no mass constraint, and in Theorem 10 the limsup inequality for the
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Figure 1.3: In order to get the liminf inequality, we separate the effects
on a neighborhood Rε of the cut, and outside of it.

there is one single cut. In case the measure µ has a Dirac delta at the
point P (see Figure 1.3), we want to count its contribution to the energy

as part of the energy of the regular part of Γ̃h. For this reason, we take
ε > 0 and consider a rectangle Rε around the cut as in Figure 1.3.

Now, we claim that

lim inf
k→∞

∫

Γhk
\Rε

ψ(uk) dH1 ⩾
∫

Γ̃h\Rε

ψ̃(u) dH1 + θµs(Γ̃h \Rε), (23)

and that

lim inf
k→∞

∫

Γhk
∩Rε

ψ(uk) dH1 ⩾
∫

Γc
h\Rε

ψc(u) dH1 + θµs(Γc
h ∩Rε). (24)

Given (23) and (24), we obtain the desired liminf inequality (22) by
sending ε to zero.

To obtain both (23) and (24), we rely on (a localized version of) the
lower semicontinuity result proved in [18, Theorem 5] (see Theorem 8).
In the first case, the idea is to view the graph of each hk, and the regular
and the jump part of the extended graph of h as (H1-equivalent to) the
reduced boundaries of the corresponding subgraph.

For (24), we instead have to consider the contributions of the surface
energy from both sides of the crack. Therefore, we reason as follows: the
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rectangle Rε in Figure 1.3 is split by the vertical line passing through the
crack in two parts, one on the left and one on the right. Call them Rℓ

ε,
and Rr

ε, respectively. Then, we consider the sets Ωhk
∩Rℓ

ε and Ωhk
∩Rr

ε.

Since R2\Ωhk

H→ R2\Ωh, they converge in L1 to Rℓ
ε, and Rr

ε, respectively.
Moreover, it holds

ukH1⌞(Γhk
∩Rℓ

ε)
∗
⇀ µℓ = uℓ⌞(Γc

h ∩Rε) + µℓ
s,

ukH1⌞(Γhk
∩Rr

ε)
∗
⇀ µr = ur⌞(Γc

h ∩Rε) + µr
s.

Thus, thanks to the lower semicontinuity result (see Theorem 8), we get
that

lim inf
k→∞

∫

Γhk
∩Rℓ

ε

ψ(uk) dH1 ⩾
∫

Γc
h\Rε

ψ̃(uℓ) dH1 + θµℓ
s(Γ

c
h ∩Rε)

and

lim inf
k→∞

∫

Γhk
∩Rr

ε

ψ(uk) dH1 ⩾
∫

Γc
h\Rε

ψ̃(ur) dH1 + θµr
s(Γ

c
h ∩Rε).

We then show that uℓ + ur = u, and µℓ
s +µr

s = µs. Thus, by definition of
ψc, we obtain

ψc(u) ⩽ ψ̃(ur) + ψ̃(uℓ).

This gives (24), and, in turn, the desired liminf inequality for the surface
energy.

We now discuss the strategy for the limsup inequality for the surface
energy. This is more involved, and requires several steps. The idea is to
reduce to the situation where the limiting profile h is Lipschitz, and the
adatom measure µ is a piecewise constant density (more precisely, it is
possible to find a square grid where the density has the same value on
each of the parts of the graph inside each of these squares). In such a case,
in Proposition 13 we construct a sequence (Ωhk

, vk, µk)k that satisfies the
mass constraints such that

lim sup
k→∞

∫

Γ̃hk

ψ(uk) dH1 ⩽
∫

Γ̃h

ψ̃(u) dH1. (25)
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Without loss of generality (see Lemma 5), we can assume ψ to be convex.

Then, ψ and ψ̃ agree on [0, s0), for some s0 ∈ (0,+∞]. In particular, if

s0 < +∞ the function ψ̃ is linear on (s0,+∞) (see Lemma 5)). Thus, in
squares where u ⩽ s0, we define hk as h and uk as u. We just have to
care about those squares Q where u > s0. The energy in such a square
is ψ̃(u)H1(Γh ∩Q). The idea is to write

ψ̃(u)H1(Γh ∩Q) = ψ̃(rs0)H1(Γh ∩Q)

= rψ̃(s0)H1(Γh ∩Q)

= ψ(s0)
[
rH1(Γh ∩Q)

]
,

for some r > 1, where in the last step we used the fact that ψ(s0) = ψ̃(s0).
Then, we want to obtain the quantity rH1(Γh ∩ Q) as the length of an
oscillating profile hk in Q, and define uk as s0. This ensures the validity
of (25). Such a construction is done in Proposition 3, where we prove an
extension of the so called wriggling lemma (see [18, Lemma 4]). Namely,
given a Lipschitz function f : (a, b) → [0,+∞), and a number r > 1,
there exists a sequence of Lipschitz graphs fn : (a, b) → [0,+∞) with

H1⌞Γfn
∗
⇀ rH1⌞Γf as n → ∞, such that

H1(Γfn) = rH1(Γf ),

and fn(a) = f(a), fn(b) = f(b), for each n ∈ N, and satisfying other tech-
nical properties (see Proposition 3 for the precise statement). What the
above inequality is using is a quantitative lack of lower semi-continuity
of the perimeter. The difference with the result in [18, Lemma 4] is that
only vertical oscillations are allowed. Moreover, we also fill in details
that were not fully explained in that paper. Note that in our case, there
is an additional technical difficulty to be faced: ensuring that both mass
constraints are satisfied by each (Ωhk

, vk, µk) will be achieved by care-
fully modifying both the profile and the density. Note that modifications
of the graphs have to be done in such a way that the profile is always
non-negative.

In order to reduce from a general profile (Ωh, v, µ) ∈ A(m,M) to the
above case, we argue as follows. First of all, by using averages, we prove
that it suffices to consider the situation where the adatom measure µ is
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a piecewise constant function (see Proposition 11). Then, we need to
approximate a general profile h ∈ BV(a, b) with a sequence of Lipschitz
profiles (hk)k∈N, and corresponding piecewise constant adatom densities
(uk)k∈N, in such a way that

lim
k→∞

∫

Γ̃hk

ψ̃(uk) dH1 +

∫

Γc
hk

ψc(uk) dH1

=

∫

Γ̃h

ψ̃(u) dH1 +

∫

Γc
h

ψc(u) dH1. (26)

This is done in Proposition 12. In order to obtain the approximation of
the profiles, we employ an idea by Bonnettier and Chambolle in Section
5.2 of [9], later adapted to the case of graphs in [37, Lemma 2.7]: to use
the Moreau-Yosida transform to define a Lipschitz approximation of h to
the left and to the right of each cut (again, we are reducing to the case of
finitely many of them). To also approximate the cracks, we use a linear
interpolation. As for defining the adatom density on the graph of hk, we

exploit the fact that R2 \Ωhk

H→ R2 \Ωh implies that the graphs (hk)k∈N
are converging in the Hausdorff topology to h. In particular, for k large
enough, the graphs of the hk’s will be inside the same squares where the
graph of h is. This allows to define uk on the part of the graph of hk

inside a square, as the value that u has inside that square. Then, the
convergence of the energy required in (26) is ensured since the length of
the graph of hk inside each cube converges to the length of h inside the
same cube.

1.4 Preliminaries

We here introduce the main definitions and basic results that will be used
throughout the Chapters 1 and 2.

1.4.1 Γ-convergence

We introduce the definition of convergence of functionals used. We refer
to [30] for a complete description and to the proofs of the following results.
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We start with the topological definition of Γ-limit. LetX be a topological
space and denote O(x), for x ∈ X the set of all open neighbourhoods of
x. As a notation, we write R = R ∪ {±∞}.

Definition 2. The Γ-lower limit and the Γ-upper limit of a sequence of
functionals Fε : X → R are defined as

(Γ− lim inf
ε→0

Fε)(x) := sup
U∈O(x)

lim inf
ε→0

inf
y∈U

Fh(y),

(Γ− lim sup
ε→0

Fε)(x) := sup
U∈O(x)

lim sup
ε→0

inf
y∈U

Fε(y).

If there exists F : X → R such that

F = Γ− lim inf
ε→0

Fε = Γ− lim sup
ε→0

Fε,

we write

F = Γ− lim
ε→0

Fh

and we say that Fε
Γ→ F in X as ε → 0.

From Definition 2 is clear that the notion of Γ-convergence depends on
the topology taken into account. By making additional assumptions on
the topological space X, we can provide a sequential characterization of
Γ-convergence. In case X satisfies the first axiom of countability, namely
the neighbourhood system of every point has a countable base, we can
state the following theorem, whose proof can be found in [30, Proposition
8.1].

Theorem 3. Let X be a topological space which satisfies the first axiom

of countability. We have that Fε
Γ→ F in X, as ε → 0, if and only if

(i) For every x ∈ X and for every sequence (xε)ε ⊂ X converging to x
in X we have

F (x) ⩽ lim inf
ε→0

Fε(xε);
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(ii) For every x ∈ X there is a sequence (xε)ε ⊂ X converging to x in
X such that

lim sup
ε→0

Fε(xε) ⩽ F (x).

In this Chapter, we are working in the framework of Banach spaces
endowed with the weak or the weak∗ topology. Since the weak topology is
not a metrisable, we a result that ensures that such a topology is locally
metrisable. To this end, we use the following proposition whose proof is
contained in [33, Proposition 2.6].

Proposition 1. There exists a distance d on the space of positive mea-
sures with the following property. Let (µε)ε be a sequence of positive

measures on Rn such that supε>0 µε(Rn) < ∞. Then, µε
∗→ µ for some

positive measure µ on Rn if and only if

lim
ε→0

d(µε, µ) = 0.

Definition 3. We say that a sequence of functionals (Fn)n is equi-
coercive if there exists a lower semi-continuous coercive functional ρ :
X → R such that Fn ⩾ ρ for all n ∈ N.

We now state a theorem that ensure the convergence of minimising
sequences.

Theorem 4. Let (Fn)n be a sequence of is equi-coercive functions. Then,

if Fn
Γ→ F , we have that

∃min
X

F = lim
n→∞

inf
X

Fn.

Moreover, if (xn)n is minimising sequence for F , then every of its cluster
point is a minimum for F .

1.4.2 Function of (pointwise) bounded variation in
one dimension

A comprehensive treatment of this topic can be found in the book [53]
by Leoni.
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Definition 4. Let h : (a, b) → R. We say that h is a function of pointwise
bounded variation in (a, b) if Var(h) < +∞, where

Var(h) := sup

{
k∑

i=1

|h(xi)− h(xi−1)|

}
,

where the supremum is taken over all finite partitions of (a, b). In this
case, we write h ∈ BVP(a, b).

The main properties of functions of pointwise bounded variations that
will be used in the paper are collected in the following result (see [53,
Theorem 2.17, Theorem 2.36]).

Theorem 5. Let h ∈ BPV(a, b). Then, the limits

h(x−) := lim
y→x−

h(y), h(x+) := lim
y→x+

h(y),

exist for all x ∈ (a, b). In particular, if we define the functions

h−(x) := min{h(x+), h(x−)}, h+(x) := max{h(x+), h(x−)},

we have that there are at most countably many points x ∈ (a, b) for
which h−(x), h+(x) and h(x) do not agree. Finally, h admits a lower
semi-continuous representative.

We now connect functions of pointwise bounded variation with those
of bounded variation.

Definition 5. Let u ∈ L1(a, b). We say that u has bounded variation in
(a, b) if there exists a Radon measure µ such that

∫ b

a

uφ′ dx = −
∫

(a,b)

φ dµ,

for all φ ∈ C1
c (a, b). In this case, we write u ∈ BV(a, b), and we denote

the measure µ by Du.

The relation between functions of pointwise bounded variation and
functions of bounded variation is given by the following result (see [53,
Theorem 7.3]).
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Theorem 6. Let u ∈ BV(a, b). Then, there exists a right-continuous
function h ∈ BVP(a, b) with u(x) = h(x) for a.e. x ∈ (a, b) such that
Var(h) = |Du|(a, b).

Finally, we recall that the subgraph of a function of bounded variation
is a set of finite perimeter (see [44, Theorem 14.6]), and that its reduced
boundary coincides with the non cut part of the extended graph (see [34,
Theorem 4.5.9 (3)].

Remark 2. In Theorem 5 we introduced the functions h±. Note that

h−(x) = lim inf
y→x

h(y), h+(x) = lim sup
y→x

h(y).

In particular, if x ∈ (a, b) is a point of continuity for h, then h−(x) =
h+(x) = h(x).

Definition 6. Let h ∈ BV(a, b). We call

Γh :=
{
(x, y) ∈ R2 : x ∈ (a, b), h(x) ⩽ y ⩽ h+(x)

}

the extended graph of h. Moreover, we define:

(i) The jump part of Γh as

Γj
h := {(x, y) ∈ R2 : x ∈ (a, b), h−(x) ⩽ y < h+(x)};

(ii) The cut part of Γh as

Γc
h := {(x, y) ∈ R2 : x ∈ (a, b), h(x) ⩽ y < h−(x)};

(iii) The regular part of Γh as

Γr
h := Γh \ (Γj

h ∪ Γc
h).

Moreover, we introduce the notation Γ̃h := Γr
h ∪ Γj

h.

Remark 3. Note that

Γh = Γ̃h ∪ Γc
h = Γr

h ∪ Γj
h ∪ Γc

h,

holds for every h ∈ BV(a, b).
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When there is no room for confusion, we will drop the suffix h in
the notation above, as well as for the notation of the subgraph Ωh. We
denote by ∆ the symmetric difference between sets.

Lemma 1. Let h ∈ BV(a, b). Then, the subgraph Ω has finite perimeter
in (a, b)× R, and

H1(Γ̃△ ∂∗Ω) = 0,

where ∂∗Ω is the reduced boundary of Ω.

An important result that will be used several times is the following.

Lemma 2. Let h ∈ BV(a, b) be lower semi-continuous, and let ε > 0.
Define

P (ε) :=
{
x ∈ (a, b) : ∃ y ∈ Γ s.t. h(x) ⩽ y ⩽ h−(x)− ε

}
.

Then, P (ε) is a finite set.

Proof. By [1, Corollary 3.33], it holds that

|Dh|(a, b) = ∥h′∥L1(a,b) +
∑
x∈S

[h+(x)− h(x)] + |Dc|(a, b),

where S denotes the set of points x ∈ (a, b) such that h+(x) > h(x), and
Dch is the Cantor part of the measure Dh. we recall that from Theorem
5 we have that Jh is at most countable. Therefore, we obtain that

∑
x∈S

[h−(x)− h(x)] < +∞.

Notice that the set P (ε) corresponds to points in S where the quantity
h−(x)− h(x) is at least ε. From the convergence of the series above, we
get the desired result.

In particular, we will need to work with a specific class of piecewise
constant functions, that we introduce here.

Definition 7. Let h ∈ BV(a, b), and δ > 0. We say that a finite family
(Qj)Nj=1 of open and pairwise disjoint rectangles is δ-admissible covering
for Γ, if
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(i) The side lengths of each Qj is less than δ;

(ii) It holds

Γ ⊂
N⋃
i=1

Qj;

(iii) H1(Γ ∩ ∂Qj) = 0 for all j = 1, . . . , N .

A simple result that will be use repeatedly without mentioning it is
the following (see (a) of 8).

Lemma 3. Let h ∈ BV(a, b), and δ > 0. Then, there exists a δ-
admissible covering for Γ.

Definition 8. Let h ∈ BV(a, b), and δ > 0. Let Γ := graph(h). A
function u ∈ L1(Γ) is called δ-grid constant if there exists a δ-admissible
covering for Γ, such that u|Qj∩Γ = uj ∈ R, for every j = 1, . . . , N .
Moreover, we say that u ∈ L1(Γ) is grid constant if there exists δ > 0
such that it is δ-grid constant.

1.4.3 Hausdorff convergence

We now introduce the Hausdorff metric.

Definition 9. Let E,F ⊂ RN . We define

dH(E,F ) := inf{r > 0 : E ⊂ Fr, F ⊂ Er},

where, for A ⊂ RN and r > 0, we set Ar := {x + y : x ∈ A, y ∈ Br(0)}.
Moreover, we say that a sequence of sets (Ek)k with Ek ⊂ RN Hausdorff

converges to a set E ⊂ RN , and we write Ek
H→ E, if dH(Ek, E) → 0 as

k → ∞.

In order for the Hausdorff distance to actually be a distance, we need
to work with compact sets. This will also give compactness of the metric
space. This latter fact is known as Blaschke Theorem (see [1, Theorem
6.1]).
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Theorem 7 (Blaschke Theorem). The family of compact sets of RN

endowed with the Hausdorff distance is a compact metric space.

The convergence of subgraphs in the Hausdorff-complement topology
we use implies their L1 convergence, as it was shown in [37, Lemma 2.5].

Lemma 4. Let (hk)k ⊂ BV(a, b) be a sequence of lower semi-continuous
functions such that

sup
k∈N

|Dhk|(a, b) < +∞, R2 \ Ωhk

H→ R2 \ A,

for some open set A ⊂ R2. Then, there exists h ∈ BV(a, b) such that
A = Ωh, hk → h in L1. Moreover, Ωhk

→ Ωh in L1.

We now relate the Hausdorff metric with the notion of Kuratowski
convergence (see [1, Theorem 6.1]).

Proposition 2. Let (Ek)k, with Ek ⊂ R2, and let E ⊂ R2. Then,

Ek
H→ E if and only if the followings hold:

(i) Any cluster point of a sequence (xk)k, with xk ∈ Ek, belongs to E;

(ii) For any x ∈ E, there exists (xk)k, with xk ∈ Ek, such that xk → x.

These equivalent properties are those defining the so called Kuratowski
convergence.

1.4.4 Convex sub-additive envelope

Here we introduce all the notation and recall the result that are needed
to treat the surface term.

Definition 10. A function ψ : [0,+∞) → R is said to be sub-additive if

ψ(s+ t) ⩽ ψ(s) + ψ(t),

for any s, t ⩾ 0.
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Definition 11. Let ψ : [0,+∞) → R. The convex sub-additive envelope

of ψ is the function ψ̃ : [0,+∞) → R defined as

ψ̃(s) := sup{f(s) : f : [0,+∞) → R is convex, sub-additive

and f ⩽ ψ}.

for all s ∈ [0,+∞).

Remark 4. Note that ψ̃ is the greatest convex and sub-additive function
that is no greater than ψ.

Definition 12. Let ψ : [0,+∞) → R. We define the function ψc :
[0,+∞) → R as

ψc(s) := min{ψ̃(r) + ψ̃(t) : s = r + t},

for all s ∈ [0,+∞).

Remark 5. It is easy to see that the function ψc is well defined. Indeed,
fix s ⩾ 0. Since ψ is defined only for non-negative real numbers, by
compactness there exist a, b ⩾ 0 with s = a+ b such that

ψc(s) = ψ̃(a) + ψ̃(b).

Moreover, note that ψc(0) = 2ψ̃(0). This is consistent with the result
obtained in [37], where they consider the case ψ ≡ 1. We will prove in
Lemma 6 that ψc is convex and sub-additive.

We now recall two results on the surface energy. The first is a com-
bination of [18, Lemma A.11] and [17, Lemma 2.2].

Definition 13. Let ψ : R → R. We define its convex envelope ψcvx :
R → R as

ψcvx(x) := sup{ρ(x) : ρ is convex and ρ ⩽ ψ},

for all x ∈ R.
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Lemma 5. Let ψ : [0,+∞) → (0,+∞). Then

ψ̃ = ψ̃cvx.

Namely, in order to compute the convex sub-additive envelope of ψ, we
can assume, without loss of generality, that ψ is convex.

Moreover, assume ψ to be convex. Then, there exists s0 ∈ (0,+∞]
such that

ψ̃(s) =

{
ψ(s) s ⩽ s0,

θs s > s0,

for some θ > 0.

Remark 6. Note that, if ψ is differentiable at s0, then θ = ψ′(s0). In

particular, if s0 < +∞, it holds that ψ̃ is linear in [s0,+∞).

Definition 14. Let ψ : [0,+∞) → R. We define the recession coeffi-

cients of ψ̃ and ψc as

θ̃ := lim
s→+∞

ψ̃(s)

s
and θc := lim

s→+∞

ψc(s)

s
,

respectively, where ψ̃ is as in Definition 11 and ψc as in Definition 12.

In Lemma 7 we will prove that θ̃ = θc. The common value will be
denoted by θ.

Lemma 6. Let ψ : [0,+∞) → R. Then, the function ψc (see Definition
12) is convex and sub-additive.

Proof. Step 1. We prove that ψc is sub-additive. Fix z ⩾ 0. Then, by
definition of ψc(z), there exist x, y ⩾ 0 with z = x+ y such that

ψc(z) = ψ̃(x) + ψ̃(y).

Thus,
ψc(z) = ψ̃(x) + ψ̃(y) ⩾ ψ̃(x+ y) = ψ̃(z),
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where last inequality follows from the sub-additivity of ψ̃. Moreover,

ψc(z + w) ⩽ ψ̃(z) + ψ̃(w) ⩽ ψc(z) + ψc(w),

for every z, w ⩾ 0.

Step 2. We prove that ψc is convex. Let z, w ⩾ 0 and λ ∈ [0, 1].
By definition of ψc(z), and of ψc(w), there exist z1, z2, w1, w2 ⩾ 0 with
z = z1 + z2 and w = w1 + w2 such that

ψc(z) = ψ̃(z1) + ψ̃(z2), ψc(w) = ψ̃(w1) + ψ̃(w2).

Note that

λz + (1− λ)w = λ(z1 + z2) + (1− λ)(w1 + w2)

=
(
λz1 + (1− λ)w1

)
+
(
λz2 + (1− λ)w2

)
.

Thus, we get that

ψc
(
λz + (1− λ)z

)
⩽ ψ̃

(
λz1 + (1− λ)w1

)
+ ψ̃

(
λz2 + (1− λ)w2

)

⩽ λψ̃(z1) + (1− λ)ψ̃(w1) + λψ̃(z2) + (1− λ)ψ̃(w2)

= λψc(z) + (1− λ)ψ̃(w),

where, in the second step, we used the convexity of ψ̃.

We now prove that the recession coefficients of ψ̃ and of ψc, defined
in Definition 14, coincide.

Lemma 7. Let ψ : [0,+∞) → R. Then, θ̃ = θc.

Proof. We first prove that θc ⩽ θ̃. Indeed, since ψc(s) ⩽ 2ψ̃(s/2), for all
s ⩾ 0, we have that

θc = lim
s→+∞

ψc(s)

s
⩽ lim

s→+∞

2

s
ψ̃
(s
2

)
= θ̃.

We now prove that θc ⩾ θ̃. Fix z ⩾ 0, and let x, y ⩾ 0 with z = x + y
such that

ψc(z) = ψ̃(x) + ψ̃(y).
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s→+∞

ψc(s)

s
⩽ lim

s→+∞

2

s
ψ̃
(s
2

)
= θ̃.
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Then, we get

ψc(z) = ψ̃(x) + ψ̃(y) ⩾ ψ̃(z),

where last inequality follows from the sub-additivity of ψ̃. Therefore,

θc = lim
s→+∞

ψc(s)

s
⩾ lim

s→+∞

ψ̃(s)

s
= θ̃.

This concludes the proof.

1.5 Technical results

In this section we collect the main technical results that will be needed in
the proof of the integral representation of the relaxation and, implicitly,
in the phase-field approximation contained in Chapter 2.

The following result proved in [18, Theorem 3] gives a lower bound
for the surface energy.

Theorem 8. Let E ⊂ RN be a set of finite perimeter and µ be a Radon
measure supported on ∂E. Let A ⊂ RN be an open set with µ(∂A) = 0.
Let (Ek)k∈N ⊂ RN be a sequence of sets of finite perimeter, and let
(uk)k∈N, with uk ∈ L1(∂Ek) be such that

(i) Ek ∩ A → E ∩ A in L1(RN);

(ii) ukH1⌞(∂∗Ek ∩ A)
∗
⇀ µ⌞A.

Then,

lim inf
k→∞

∫

∂∗Ek∩A
ψ(uk) dH1 ⩾

∫

∂∗E∩A
ψ̃(u) dH1 + θµs(A),

where ψ̃ is as in Definition 11.

We now prove a result that will be needed in the limsup inequality.
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Lemma 8. Let r > 0, and let {zj}j∈N be an enumeration of Z2. Define

Qj := r
(
zj + (0, 1)2

)
.

Let h ∈ BV(a, b), and let (hk)k be a sequence of Lipschitz functions such

that R2 \ Ωhk

H→ R2 \ Ωh, as k → ∞. Then, there exists v ∈ R2, and
k ∈ N such that the grid defined as

Q̃j := v +Qj

satisfies:

(a) The intersection between the graph of h and the boundary of the
new grid is finite, namely

H0
(
Γ ∩ (

⋃
j∈N

∂Q̃j)
)
< +∞.

(b) We have that

H1(Γk ∩ Q̃j) ̸= 0 if and only if H1(Γ ∩ Q̃j) ̸= 0,

for every k ⩾ k̄.

Proof. We first prove (a). We first consider a horizontal translation.
Since h ∈ BV(a, b), it has at most a countable number of jumps and
cuts. Therefore, there is v1 ∈ R such that

H0
(
(Γj ∪ Γc) ∩

[ ⋃
j∈N

∂
(
(v1, 0) +Qj

)])
< +∞.

Now we need to find a suitable vertical translation. Using the coarea
formula (see [1, Theorem 3.40]), we infer that

Per
(
{x ∈ (a, b) : h(x) > t}

)
< +∞,

for almost every t ∈ R, where Per denotes the perimeter. Since we
are using the lower semi-continuous representative of h, the sup-level set
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{x ∈ (a, b) : h(x) > t} is open for all t ∈ R, which yields that, for almost
every t ∈ R,

∂{x ∈ (a, b) : h(x) > t} = {x ∈ (a, b) : h(x) = t}.

Thus, we obtain that

H0
(
{x ∈ (a, b) : h(x) = t}

)
< +∞,

for almost every t ∈ R. Let D ⊂ R defined as

D :=
{
t > 0 : H0

(
{x ∈ (a, b) : h(x) = t}

)
= +∞

}
.

By definition, we have that |D| = 0. Let r > 0, and, for every t > 0, set

G(t) := {rj + t : j ∈ Z}.

We now claim that

|{t ∈ [0, r) : G(t) ∩D ̸= Ø}| = 0.

First, note that if s, t ∈ [0, r), with s ̸= t, we have G(t) ∩ G(s) = Ø.
Now, define

Dj := D ∩ [rj, (r + 1)j],

D̃j := Dj − rj.

By definition D̃j ⊂ [0, r) and |Dj| = |D̃j| = 0, for every j ∈ Z. In
conclusion, we notice that

{t ∈ (0, r) : G(t) ∩D ̸= Ø} =
⋃
j∈Z

D̃j.

The claim follows from the above equality.
By proving the claim, we infer the existence of v2 ∈ R such that

H0
(
Γ ∩

[ ⋃
j∈N

∂
(
(0, v2) +Qj

)])
< +∞.

In conclusion the translation v := (v1, v2) is the one we were looking for.
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We now prove part (b). Let v ∈ R2 be the vector found above, and

let Q̃j be the translated squares. If the graph of h is contained in a single
square Q̃j, then there is nothing to prove. Thus, we assume that this is
not the case.

Fix j ∈ N such that
H1(Γ ∩ Q̃j) ̸= 0.

We will prove that there exists k̄(j) ∈ N such that

H1(Γk ∩ Q̃j) ̸= 0.

for all k ⩾ k̄(j). Let x ∈ Γ ∩ Q̃j. By the Kuratowski convergence, there
exists (xk)k with xk ∈ Γk for all k ∈ N such that xk → x as k → ∞.

Since Q̃j is open, there exists k̄(j) ∈ N (depending also on x, but this is

not a problem) such that xk ∈ Γk ∩ Q̃j for all k ⩾ k̄(j). Using the fact
that the graph of h is not entirely contained in the open square Qj, and
that the extended graph of hk is a connected curve, we obtain that

H1(Γk ∩ Q̃j) ̸= 0

as desired. Since h ∈ BV(a, b), it is bounded, and hence contained in a
finite number of squares. In the following, we will also need to consider
k̄1 ∈ N, the maximum of the k̄(j)’s.

We now prove the opposite implication. Let j ∈ N be such that

H1(Γ ∩ Q̃j) = 0.

Then, by Kuratowski convergence and the fact that Q̃j is open, we infer
that there exists k̃(j) ∈ N such that for all k ⩾ k̃(j) it holds

H1(Γk ∩ Q̃j) = 0.

Again, let k̃2 ∈ N be the maximum of the k̃(j)’s.

Setting k̄ := max{k̄1, k̃2}, we get the desired result.

Finally, we prove a result about the so called wriggling process. This
was introduced in [18, Lemma 4] to exploit the quantitative loss of lower
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semi-continuity of the perimeter in order to recover the relaxed energy
density from ψ. The difference with this latter is that, in our case, only
vertical perturbations are allowed. Moreover, we impose the oscillating
profiles to stay below the given function.

Proposition 3. Let h : [α, β] → R be a non-negative Lipschitz function
and let r ⩾ 1. Then, there exists a sequence of non-negative Lipschitz
functions (hk)k such that:

(i) H1(Γk) = rH1(Γ);

(ii) h(α) = hk(α), and h(β) = hk(β), for every k;

(iii) h ⩽ hk, for every k;

(iv) hk → h uniformly as k → ∞;

(v) H1⌞Γk
∗
⇀ rH1⌞Γ, as k → ∞,

Proof. Step 1. Fix α ⩽ p ⩽ q ⩽ β. We prove the existence of a sequence
(ξk)k of Lipschitz functions ξk : [p, q] → [0,+∞), that satisfies

(i′) H1(Γξk) = rH1(Γ);

(ii′) h(p) = ξk(p), and h(q) = ξk(q), for every k;

(iii′) h ⩽ ξk, for every k;

(iv′) ξk → h uniformly on [p, q], as k → ∞,

Notice that if r = 1 it is enough to consider the constant sequence
ξk = h, for each k. Thus, fix r > 1. Let (λk)k ⊂ (0, 1) be an infinitesimal
sequence such that 0 < λk < q − p for each k ∈ N, and kλk → ∞ as
k → ∞. For each k ∈ N, define the function ηk ∈ C

�
[p, q]


as

ηk(x) :=




x− p

λk

x ∈ [p, p+ λk),

1 x ∈ [p+ λk, q − λk],

−x− q

λk

x ∈ (q − λk, q].
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For each k ∈ N, let tk ⩾ 0 that will be chosen later, and define the
non-negative Lipschitz function ξk : [p, q] → [0,+∞) as

ξk(x) := h(x) +
(2
k
− 1

k
| sin(tkx)|

)
ηk(x). (27)

First of all, note that ξk → h uniformly as k → ∞. Moreover, from (27),
we get that

0 ⩽ h ⩽ ξk, h(p) = ξk(p), h(q) = ξk(q).

We claim that it is possible to choose tk > 0 such that H1(Γξk) = rH1(Γ),
for every k ∈ N. In order to show that, for each k ∈ N, let fk : [0,+∞) →
(0,+∞) be defined as

fk(t) :=

∫ q

p

√
1 + ∂xHk(x, t)2 dx,

where

Hk(x, t) := h(x) +
(2
k
− 1

k
| sin(tx)|

)
ηk(x). (28)

We claim that:

(a) limt→+∞ fk(t) = +∞, for every k ∈ N;

(b) limk→∞ fk(0) = H1(Γ).

Therefore, since fk is continuous for every k ∈ N, and r > 1, it is possible
to chose tk > 0 such that fk(tk) = H1(Γξk) = rH1(Γ), for every k ∈ N.
We now prove claims (a) and (b) in two separate sub-steps.

Step 1.1. We now prove claim (a). First, notice that

fk(t) =

∫ q

p

√
1 + ∂xHk(x, t)2 dx ⩾

∫ q−λk

p+λk

√
1 + ∂xHk(x, t)2 dx.

Now, fix k ∈ N and consider the set

Zt := {x ∈ (p+ λk, q − λk) : cos(tx) ⩾ 1/2}.
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We now prove that
inf
t>0

|Zt| > 0. (29)

In order to do so, we first show that |Zn| > 0, for n ∈ N. Set I :=
(p+ λk, q − λk) and consider the function g : I → {0, 1} defined as

g(x) := 1{cos(y)⩾1/2}(x),

and extend it periodically on R. Notice that, for n ∈ N,

g(nx) = 1{cos(ny)⩾1/2}(x).

By applying the Riemann-Lebesgue Lemma, we get that

|Zn| = |{cos(nx) ⩾ 1/2} ∩ I|

=

∫

I

g(nx) dx → 1

|I|

∫

I

g(x) dx > 0, (30)

as n → ∞. Now, we use the above result to show (29). Let t ∈ (n, n+1).
We have that

|Zt| = |{cos(tx) ⩾ 1/2} ∩ I|
and that ∫

I

g(tx) dx =
1

t

∫

tI

g(z) dz.

As

g(z) =
∑
m∈Z

1{−π
3
+2mπ⩽y⩽π

3
+2mπ}(z), (31)

we can define the following families of intervals. Set

At := {J ⊂ R : J ∩ tI ̸= Ø} Bt := {J ⊂ R : J ⊂ tI}.

Then, by (31), we have

2π

3t
H0(Bt) ⩽ |Zt| ⩽

2π

3t
H0(At). (32)

Since t ∈ (n, n+ 1) and by (30) and (32), we get that

|Zt| ⩾
2π

3(n+ 1)
H0(Bn) =

2π

3(n+ 1)
(H0(An)− 2)
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⩾
∫

I

g(nx) dx− 4π

3(n+ 1)
> C − 4π

3(n+ 1)
,

where C > 0 is a constant independent of n. We conclude our claim by
letting n → ∞.

Note that for every t > 0, on Zt we have ηk(x) = 1 and cos(tx) > 1/2.
Thus, we get that

fk(t) ⩾
∫

Zt

√
1 + h′(x)2 +

t

k
cos(tx)

[ t
k
cos(tx)− 2ℓ

]
dx

⩾
∫

Zt

√
1 + h′(x)2 +

t

k
cos(tx)

[ t

2k
− 2ℓ

]
dx

⩾
∫

Zt

√
1 +

t

k
cos(tx)

[ t

2k
− 2ℓ

]
dx, (33)

where ℓ is the Lipschitz constant of h. By choosing t > 0 such that

t > 4kℓ,

from (33), and from cos(tx) > 1/2 on Zt, we obtain

fk(t) ⩾
∫

Zt

√
1 +

t

2k

[ t

2k
− 2ℓ

]
dx. (34)

Thus, from (29) and (34), we conclude that

lim
t→+∞

fk(t) = +∞.

Step 1.2 Now we prove claim (b). Notice that

fk(0) =

∫ p+λk

p

√
1 +

(
h′(x) +

2

kλk

)2

dx+

∫ q−λk

p+λk

√
1 + h′(x)2 dx

+

∫ q

q−λk

√
1 +

(
h′(x) +

2

kλk

)2

dx. (35)

Since the sequence (λk)k is such that kλk → ∞, and ∥h′∥L∞ < +∞ since
h is Lipschitz, it holds that

sup
k∈N

sup
x∈[p,q]

∣∣∣∣h′(x) +
2

kλk

∣∣∣∣ < +∞.
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2
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2
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Thus, letting k → ∞ in (35), we obtain

lim
k→∞

fk(0) = H1(Γ).

This concludes the proof of (b).

Step 2. We now prove the statement of the Lemma. Fix r > 1,
otherwise the statement is trivial. For k ∈ N, divide the interval [α, β]

into k subintervals
(
[αk

i , α
k
i+1]

)k
i=1

, where α1
k = α and αk

k+1 = β. Assume

that |αk
i+1 − αk

i | < 2/k. Thanks to Step 1, for each k ∈ N, and each
i ∈ {1, . . . , k}, there exists a function ξki : [αk

i , α
k
i+1] → [0,+∞) such that

ξk1 (α) = h(α), ξki (α
k
i+1) = ξki+1(α

k
i+1), ξkk+1(β) = h(β),

for all i ∈ {2, . . . , k}, with

∥ξki − h∥C0(R) ⩽
1

k
,

and such that

H1(graph(ξki )) = rH1(Γ⌞[αk
i , α

k
i+1]× R),

for all i ∈ {1, . . . , k}, and all k ∈ N. Define hk : [α, β] → [0,+∞) as

hk(x) := ξki (x),

for x ∈ [αk
i , α

k
i+1]. Note that hk is Lipschitz, h ⩽ hk for all k ∈ N, hk → h

uniformly in k, and

H1(Γk) =
k∑

i=1

H1
(
graph(ξki )

)
= r

k∑
i=1

H1(Γ⌞[αi, αi+1]× R) = rH1(Γ).

It remains to prove property (v). To do so, fix φ ∈ Cc(R2) and ε > 0.
Thanks to the uniform continuity of φ, there exists k̄ ∈ N such that for
k ⩾ k̄ the following holds: if xi ∈ [αk

i , α
k
i+1], then

|φ
(
x, hk(x)

)
− φ

(
xi, hk(xi)

)
| ⩽ ε. (36)
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Moreover, from the fact that hk is converging uniformly to the continuous
function h, up to increasing the value of k̄, we can also assume that

|φ
(
xi, hk(xi)

)
− φ

(
xi, h(xi)

)
| ⩽ ε. (37)

Using (36), we get

∫

Γk

φ(x) dH1 − r

∫

Γ

φ(x) dH1

=
k∑

i=1

∫ αi+1

αi

[
φ
(
x, hk(x)

)√
1 + h′

k(x)
2 − rφ

(
x, h(x)

)√
1 + h′(x)2

]
dx

⩽
k∑

i=1

[
ε

∫ αi+1

αi

(√
1 + h′

k(x)
2 + r

√
1 + h′(x)2

)
dx

+

∫ αi+1

αi

(
φ
(
xi, hk(xi)

)√
1 + h′

k(x)
2

− rφ
(
xi, h(xi)

)√
1 + h′(x)2

)
dx

]

⩽ ε
k∑

i=1

∫ αi+1

αi

(√
1 + h′

k(x)
2 + r

√
1 + h′(x)2

)
dx

+ φ
(
xi, h(xi)

) k∑
i=1

[ ∫ αi+1

αi

(√
1 + h′

k(x)
2 − r

√
1 + h′(x)2

)
dx

]

= ε

k∑
i=1

∫ αi+1

αi

(√
1 + h′

k(x)
2 + r

√
1 + h′(x)2

)
dx, (38)

where in the previous to last step we used (37), while last step follows
from H1(Γk) = rH1(Γ). Thus, from (38) we obtain

∫

Γk

φ(x) dH1 − r

∫

Γ

φ(x) dH1 ⩽ 2rH1(Γ)ε.

Thus, since ε is arbitrary, we get that H1⌞Γk
∗
⇀ rH1⌞Γ as k → ∞.

Remark 7. From the above proof, we can infer the following facts:
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(i) Following (34),

rH1(Γ) ⩾
∫

Ztk

√
1 + h′(x)2 +

tk
2k

[ tk
2k

− 2ℓ
]
dx ⩾ µ

√
tk
2k

[ tk
2k

− 2ℓ
]
,

where µ := inft⩾0 |Zt|. This leads us to
( tk
2k

)2

− 2ℓ
( tk
2k

)
⩽

1

µ2
r2H1(Γ)2.

If we solve for t/2k we get

tk
k

⩽ C, (39)

where

C := 2
(
ℓ+

√
ℓ2 +

r2H1(Γ)2

µ2

)
.

(ii) We claim that tk → +∞ as k → ∞. Assume by contradiction this
is not the case, namely that

sup
k

tk ⩽ τ,

for some τ > 0. Thus, we have that

h′
k(x) = h′(x)− tk

k
cos(tkx)

| sin(tkx)|
sin(tkx)

ηk(x)

+
(2
k
− 1

k
| sin(tkx)|

)
η′k(x)

⩽ h′(x) +
τ

k
+

2η′k(x)

k
,

for every k. From the inequality

|h′
k(x)− h′(x)| ⩽ τ

k
+

2η′k(x)

k
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we infer that

H1(Γk) → H1(Γ). (40)

From step 1 we know that

H1(Γk) = rH1(Γ) > H1(Γ), (41)

with r > 1 and for every k. By putting together (40) and (41) we
get a contradiction.

(iii) From the expression of h′
k, we can actually choose the sequence

(λk)k such that the sequence (hk)k is uniformly Lipschitz. Indeed,
on [α, α + λk] we have

|h′
k(x)| ⩽ ℓ+

tk
k
+

2

kλk

.

As tk/k is bounded and (λk)k is chosen such in such a way that
kλk → +∞ as k → ∞, we can conclude.

1.6 Setting

In this section we give the rigorous definitions of the objects discussed in
the introduction. We start with the set of admissible configurations.

Definition 15. We say that the triplet (Ω, v, µ) is an admissible sharp
configuration if Ω is the subgraph of h ∈ BV(a, b), v ∈ H1(Ω;R2) and
µ = uH1⌞Γ+ µs, with u ∈ L1(Γ). We denote the set of admissible sharp
configurations by A.

Definition 16. An admissible sharp configuration (Ω, v, µ) is called reg-
ular if Ω is the subgraph of a Lipschitz function and µ = uH1⌞Γ with
u ∈ L1(Γ). The set of such configurations is denoted by Ar.

The next definition introduces configurations which satisfy the mass
constraints.
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Definition 17. Given M,m > 0, we say that (Ω, v, µ) ∈ A(m,M) if
(Ω, v, µ) ∈ A and

 b

a

h(x) dx = M and µ(R2) = m. (42)

In a similar way we say that (Ω, v, µ) ∈ Ar(m,M) if (Ω, v, µ) ∈ Ar and
(42) holds.

Now, we are in position to give the definitions of the functional treated
in [28]. Let ψ : [0,∞) → (0,∞) be a Borel function with infs⩾0 ψ(s) > 0
and set

E(Ω, v, u) :=


Ω

W
�
E(v)− E0(y)


dx+



Γ

ψ(u) dH1,

Definition 18. We define the functional H : A → [0,+∞] as

H(Ω, v, µ) :=



E(Ω, v, u) (Ω, v, µ) ∈ Ar,

+∞ else.

and Hm,M : A → [0,+∞] as

Hm,M(Ω, v, µ) :=



E(Ω, v, u) (Ω, v, µ) ∈ Ar(m,M),

+∞ else.

Definition 19. We define the functional F : A → [0,+∞] as

F(Ω, v, µ) :=


G(Ω, v, µ) if (Ω, v, µ) ∈ A,

+∞ else,

where

G(Ω, v, µ) :=


Ω

W
�
E(v)− E0(y)


dx

+



Γ̃

ψ(u) dH1 +



Γc

ψc(u) dH1 + θµs(R2),
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where we recall that

θ = lim
s→+∞

ψ̃(s)

s
,

and that ψ̃, ψc are given in Definitions 11 and 12 respectively. Moreover,
we define the functional Fm,M : A → [0,+∞] as

Fm,M(Ω, v, µ) :=

{
G(Ω, v, µ) if (Ω, v, µ) ∈ A(m,M),

+∞ else.

We now define the notion of convergence that we are going to use to
study our functionals.

Definition 20. We say that a sequence (Ωk, vk, µk)k ⊂ A converges to
(Ω, v, µ) ∈ A if the following three conditions are satisfied:

(i) R2 \ Ωk
H→ R2 \ Ω in the Hausdorff convergence of sets;

(ii) vk ⇀ v weakly in H1
loc(Ω;R2),

(iii) µk
∗
⇀ µ weakly∗ in the sense of measures;

as k → ∞. We will write (Ωk, vk, µk) → (Ω, v, µ) to denote the above
convergence.

Remark 8. Note that, if K ⊂ Ω is a compact set, then there exists
k0 ∈ N such that K ⊂ Ωk for all k ⩾ k0. Therefore, the convergence of
the functions vk’s is well defined.

1.7 Liminf inequality

We now present the main ideas of the proof of the liminf inequality,
contained in the following theorem. One of the issues that we take into
account is the fact that our final configuration Γ, is the graph of a BV
function which might have a dense cut set. In particular, this is a problem
since in our argument we deal with what is happening on the left and
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s
,
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on the right of every cut in Γ. This is not doable in case the cut set is
dense. One possible way to go around, is to split the energy on Γc. By
fixing ε > 0, since h is a BV function, the cuts in Γc whose lengths are
larger than ε is necessarily finite. For those amount of cuts we do the
liminf inequality by using the result contained in [17]. Finally, for the
portion of the cut in Γc with length smaller than ε, we prove that the
energy there can be made arbitrarily small as ε → 0.

Theorem 9. For every sharp configuration (Ω, v, µ) ∈ A and for every
sequence of regular sharp configurations (Ωk, vk, µk)k ⊂ Ar such that
(Ωk, vk, µk) → (Ω, v, µ) as k → ∞, we have

F(Ω, v, µ) ⩽ lim inf
k→∞

H(Ωk, vk, µk).

Proof. Fix ε > 0 and consider the set

Cε := {x = (x, y) ∈ Γc : h−(x)− y < ε}.

By a standard measure theory argument, it is possible to choose ε such
that µ(Γ ∩ ∂Cε) = 0. As a consequence, from Lemma 2, we have that
Γc \Cε consists of a finite number of vertical segments, whose projections
on the x-axis corresponds to the set (xi)Ni=1. Recalling the definition of
Γc (see Definition 6), it holds that Cε is monotonically converging to the
empty set, as ε → 0. Therefore, we get that

µ(Cε) → 0, µ(Γc \ Cε) → µ(Γc), (43)

as ε → 0. Let δ = δ(ε) > 0 such that δ → 0, as ε → 0, and δ < |xi − xj|,
for every i, j = 1, . . . , N . As we have a finite number of cuts, in order to
simplify the notation, we do the following construction as we had only
one cut point, and then we repeat it for each other one.

Fix i ∈ 1, . . . , N . Since R2 \ Ωk
H→ R2 \ Ω, for every cut point(

xi, h(xi)
)
, there is a sequence of the form

(
xk, hk(xk)

)
k
such that (xk)k ⊂

(xi − δ, xi + δ) and
(
xk, hk(xk)

)
→

(
xi, h(xi)

)
as k → ∞. Indeed,

by Proposition 2 there is a sequence (xk, yk)k ⊂ R2 \ Ωk such that
(xk, yk) →

(
xi, h(xi)

)
. By definition, we have that hk(xk) ⩽ yk , up

to a subsequence (not relabelled), we have that
(
xk, hk(xk)

)
→ (xi, zi),

77



Chapter 1 - Epitaxial growth, sharp model

for some zi ∈ R. We would like to have zi = h(xi). If we had zi > h(xi),
then

lim
k→∞

hk(xk) ⩽ h(xi) < zi,

which contradicts our convergence above. Vice versa, if zi < h(xi),
then (xi, zi) /∈ R2 \ Ω. In conclusion we have zi = h(xi) and thus(
xk, hk(xk)

)
→

(
xi, h(xi)

)
, as k → ∞.

Around each vertical cut, we set, for each k ∈ N (see Figure 1.4),

Rℓ
k := (xi−δ, xk)×(−δ, h−(xi)−ε), Rr

k := (xk, x
i+δ)×(−δ, h−(xi)−ε),

and
Rε

δ := Rℓ
k ∪Rr

k ∪
[
{xk} × (−δ, h−(xi)− ε)

]
,

Thanks to the existence of the right and left limits of h at every point
(see Theorem 5), up to further reducing δ, we can assume that

Rε
δ ∩ Γ = {xk} × [h(xi), h−(xi)− ε).

Now we split the energy in the following way. Take any (Ωk, vk, µk)k ⊂ Ar

such that (Ωk, vk, µk) → (Ω, v, µ) as k → ∞. We have

lim inf
k→∞

[ ∫

Ωk

W
(
E(vk)− E0(y)

)
dx+

∫

Γk

ψ(uk) dH1
]

⩾ lim inf
k→∞

∫

Ωk

W
(
E(vk)− E0(y)

)
dx

+ lim inf
k→∞

∫

Γk\Rε
δ

ψ(uk) dH1 + lim inf
k→∞

∫

Γk∩Rε
δ

ψ(uk) dH1. (44)

We are going to estimate each term on the right-hand side of (44) sepa-
rately.

Step 1. Here we estimate the bulk term on the right-hand side of (44).
Since vk ⇀ v in H1

loc(Ω;R2) as k → ∞, for every compactly contained
set K ⊂ Ω, we get

lim inf
k→∞

∫

Ωk

W
(
E(vk)− E0(y)

)
dx ⩾ lim inf

k→∞

∫

K

W
(
E(vk)− E0(y)

)
dx
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Figure 1.4: The rectangles we are using for the estimate of the liminf,
in case h(xi) > 0. In particular, the set Aε

δ is the light blue, while the
boundary of the rectangle Rε

δ is the one in purple. We remark that,
in general, we need to consider rectangles that go below {y = 0}, as a
cut might touch the y-axes and a singular measure (for instance a Dirac
delta) might be present at the endpoint of such a cut.

⩾
∫

K

W
(
E(v)− E0(y)

)
dx,

as E(vk) ⇀ E(v) weakly in L2(K), as k → ∞, and W (·) is convex. Since
K is arbitrary, we can conclude by taking an increasing sequence (Kj)j
of sets compactly contained in Ω with |Ω \ Kj| → 0 as k → ∞. Thus,
sending j → ∞ and by using the Monotone Convergence Theorem, we
obtain

lim inf
k→∞

∫

Ωk

W
(
E(vk)− E0(y)

)
dx ⩾

∫

Ω

W
(
E(v)− E0(y)

)
dx. (45)

Therefore, we get the liminf inequality for the bulk term.

Step 2. For the second term on the right-hand side of (44), we would
like to apply Theorem 8. Fix ε > 0. By knowing that for each k ∈ N we
have |hk| ⩽ M , we define the open set

Aε
δ :=

(
[a, b]× [0,M ]

)
\ Rε

δ.
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We have that Aε
δ ∩ Ωk → Aε

δ ∩ Ω in L1 as k → ∞. From Lemma 1, we
have that

H1
(
(∂∗Ω ∩ Aε

δ)∆Γ̃
)
= 0.

By definition, we can write

ukH1⌞(∂Ωk ∩ Aε
δ)

∗
⇀ µ⌞Aε

δ = uH1⌞Γ̃ + µs⌞Aε
δ + uH1⌞Cε,

as k → ∞, and, by applying Theorem 8, we have

lim inf
k→∞

∫

∂Ωk∩Aε
δ

ψ(uk) dH1 ⩾
∫

Γ̃∩Aε
δ

ψ̃(u) dH1

+ θµs(Aε
δ) + θ

∫

Cε

u dH1, (46)

as desired.

Step 3. We now deal with the third term on the right-hand side of
(44). Define

Eℓ
k := Ωk ∩Rℓ

k and Er
k := Ωk ∩Rr

k. (47)

Using Lemma 4 we obtain that

Eℓ
k → Rℓ = := (xi − δ, xi)× (−δ, h−(xi)− ε),

Eℓ
k → Rr := (xi, xi + δ)× (−δ, h−(xi)− ε),

as k → ∞ in L1. Note that, for every k large enough, both Eℓ
k ̸= Ø and

Er
k ̸= Ø. Furthermore, notice that

∂Eℓ
k ∩Rℓ =

(
Γk ∩Rℓ

k

)
∪
[
{xk} ×

(
− δ, hk(xk)

)]
,

∂Er
k ∩Rr =

(
Γk ∩Rr

k

)
∪
[
{xk} ×

(
− δ, hk(xk)

)]
.

We now define the densities

uℓ
k(x) :=

{
uk(x) x ∈ Γk ∩Rℓ

k,

0 x ∈ {xk} × (−δ, hk(xk)),
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ur
k(x) :=

{
uk(x) x ∈ Γk ∩Rr

k,

0 x ∈ {xk} × (−δ, hk(xk)).

We now prove that that

µℓ
k := uℓ

kH1⌞(∂Eℓ
k ∩Rℓ)

∗
⇀ µℓ := fH1⌞(Γc \ Cε) + (µℓ)s,

µr
k := ur

kH1⌞(∂Er
k ∩Rr)

∗
⇀ µr := gH1⌞(Γc \ Cε) + (µr)s,

for some f, g ∈ L1(Γc \ Cε) such that

f + g = u|Γc\Cε , (48)

and

(µℓ)s + (µr)s = µs, (49)

where (µℓ)s and (µr)s are supported in Γc \ Cε. Notice that

µℓ
k

(
{xk} × (−δ, hk(xk))

)
= µr

k

(
{xk} × (−δ, hk(xk))

)
= 0

holds for every k ∈ N. By definition we have µℓ
k + µr

k = µk, for every
k ∈ N. Moreover, for every set A, measurable with respect to µk (thus
also for µℓ

k and µr
k), we have

µℓ
k(A) ⩽ µk(A) =

∫

Γk∩A
uk dH1 = ||uk||L1(Γk∩A) ⩽ L,

where L is a constant independent of A, and is given by the fact that
the sequence (µk)k is weakly∗ converging. The same bound for µr

k also
holds. We have that, up to a subsequence (not relabelled), there are two
Radon measures µℓ and µr such that

µℓ
k

∗
⇀ µℓ and µr

k
∗
⇀ µr,

as k → ∞.

We claim that supp(µℓ) ⊂ Γc \ Cε and supp(µr) ⊂ Γc \ Cε. Indeed,
take any set A such that µ

(
(Γc \ Cε) ∩ ∂A

)
= 0 and A ∩ (Γc \ Cε) = Ø.
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Then µ
(
(Γc\Cε)∩A

)
= 0. If we had µℓ

(
(Γc\Cε)∩A

)
> µ

(
(Γc\Cε)∩A

)
,

we would have

µ
(
(Γc \ Cε) ∩ A

)
= lim

k→∞
µk

(
(Γc \ Cε) ∩ A

)

⩾ lim
k→∞

µℓ
k

(
(Γc \ Cε) ∩ A

)

= µℓ
(
(Γc \ Cε) ∩ A

)
,

and this implies that µℓ
(
(Γc \ Cε) ∩ A

)
= 0. Thus µℓ ⩽ µ and if µ

(
(Γc \

Cε)∩A
)
= 0, then also µℓ

(
(Γc \Cε)∩A

)
= 0. As the same holds for µr,

we conclude our claim.

Then, there are f, g ∈ L1(Γc \ Cε) for which we can write

µℓ = fH1⌞(Γc \ Cε) + (µℓ)s and µr = gH1⌞(Γc \ Cε) + (µr)s,

with (µℓ)s and (µr)s are singular measures with respect to fH1⌞(Γc \Cε)
and gH1⌞(Γc \ Cε) respectively. We now prove that µ = µℓ + µr. Notice
that for every φ ∈ Cc(R2),

∫

∂Eℓ
k∪∂E

r
k

φ dµk →
∫

Γc\Cε

φ dµ,

as k → ∞, from the fact that µk
∗
⇀ µ. On the other hand we have

∫

∂Eℓ
k∪∂E

r
k

φ dµk =

∫

∂Eℓ
k∪∂E

r
k

φ d(µℓ
k + µr

k) =

∫

∂Eℓ
k

φ dµℓ
k +

∫

∂Er
k

φ dµr
k

−→
k→∞

∫

Γc\Cε

φ dµℓ +

∫

Γc\Cε

φ dµr.

Since φ ∈ Cc(R2) is arbitrary, we get µ = µℓ + µs . In particular, we
obtain (48) and (49).

We now prove the convergence of the energy. Set

Sk := {xk} ×
(
− δ, hk(xk)

)
and S := {xi} ×

(
− δ, h(xi)

)
.
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We notice that H1(Sk) → H1(S) as k → ∞. In particular, this implies
that

lim
k→∞

∫

Sk

ψ(0) dH1 =

∫

S

ψ(0) dH1. (50)

Now, we want to apply Theorem 8. Recalling Definition 47 of the
sets Eℓ

k and Er
k, we obtain

lim inf
k→∞

∫

Γk∩Rε
δ

ψ(uk) dH1 + 2

∫

S

ψ(0) dH1

= lim inf
k→∞

[∫

Γk∩Rε
δ

ψ(uk) dH1 + 2

∫

Sk

ψ(0) dH1

]

= lim inf
k→∞

[∫

∂Eℓ
k∩R

ε
δ

ψ(uℓ
k) dH1 +

∫

∂Er
k∩R

ε
δ

ψ(ur
k) dH1

]

⩾ lim inf
k→∞

∫

∂Eℓ
k∩R

ε
δ

ψ(uℓ
k) dH1 + lim inf

k→∞

∫

∂Er
k∩R

ε
δ

ψ(ur
k) dH1

⩾
∫

∂Rℓ∩Rε
δ

ψ̃(f) dH1 + θ(µℓ)s(∂Rℓ ∩Rε
δ)

+

∫

∂Rr∩Rε
δ

ψ̃(g) dH1 + θ(µr)s(∂Rr ∩Rε
δ)

=

∫

Γc\Cε

ψ̃(f) dH1 + θ(µℓ)s(Γc \ Cε)

+

∫

Γc\Cε

ψ̃(g) dH1 + θ(µr)s(Γc \ Cε) + 2

∫

S

ψ(0) dH1

⩾
∫

Γc\Cε

ψc(u) dH1 + θµs(Γc \ Cε) + 2

∫

S

ψ(0) dH1,

where the last inequality follows from (48) together with the definition
of ψc. Thus,

lim inf
k→∞

∫

Γk∩Rε
δ

ψ(uk) dH1 ⩾
∫

Γc\Cε

ψc(u) dH1 + θµs(Γc \ Cε), (51)
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for all ε > 0

Step 5. Using (44), (45), (46) and (51) we obtain

lim inf
k→∞

[ ∫

Ωk

W
(
E(vk)− E0(y)

)
dx+

∫

Γk

ψ(uk) dH1
]

⩾
∫

Ω

W
(
E(v)− E0(y)

)
dx

+

∫

Γ̃∩Aε
δ

ψ̃(u) dH1 + θµs(Aε
δ) + θ

∫

Cε

u dH1

+

∫

Γc\Cε

ψc(u) dH1 + θµs(Γc \ Cε).

By letting ε → 0, and using (43) we get the desired liminf inequality.

1.8 Limsup inequality

The goal of this section is to prove the limsup inequality for the mass
constrained problem. We recall that the classes Ar(m,M) and Ar(m,M)
are given in Definition 17.

Theorem 10. Let m,M > 0 and (Ω, v, µ) ∈ A(m,M). Then, there ex-
ists a sequence of regular sharp configurations (Ωk, vk, µk)k ⊂ Ar(m,M)
such that

lim sup
k→∞

H(Ωk, vk, µk) ⩽ F(Ω, v, µ),

and such that (Ωk, vk, µk) → (Ω, v, µ) as k → ∞.

The proof is long and therefore it will be divided in several steps,
each proved in a separate result. Therefore, we explain the steps of the
strategy that we will use in order to prove Theorem 10.

Step 1: For any sharp configuration (Ω, v, µ) ∈ A(m,M), we find a se-
quence (uk)k ⊂ L1(Γ) where each uk is a grid constant function
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for all ε > 0

Step 5. Using (44), (45), (46) and (51) we obtain

lim inf
k→∞

[ ∫

Ωk

W
(
E(vk)− E0(y)

)
dx+

∫

Γk

ψ(uk) dH1
]

⩾
∫

Ω

W
(
E(v)− E0(y)

)
dx

+

∫

Γ̃∩Aε
δ

ψ̃(u) dH1 + θµs(Aε
δ) + θ

∫

Cε

u dH1

+

∫

Γc\Cε

ψc(u) dH1 + θµs(Γc \ Cε).

By letting ε → 0, and using (43) we get the desired liminf inequality.
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(see Definition 8), such that µk := ukH1⌞Γ
∗
⇀ µ as k → ∞,

(Ω, v, µk) ∈ A(m,M) for all k ∈ N, and

lim
k→∞

F(Ω, v, µk) ⩽ F(Ω, v, µ).

This will be proved in Theorem 11;

Step 2: Let (Ω, v, µ) ∈ A(m,M), be such that µ = uH1⌞Γ, and u ∈
L1(Γ) is grid constant. In Theorem 12, we construct a sequence(
Ωk, vk, µk

)
k
⊂ Ar(m,M), where µk = ukH1⌞Γk and uk ∈ L1(Γk)

is grid constant, such that (Ωk, vk, µk) → (Ω, v, µ) as k → ∞, and

lim
k→∞

F(Ωk, vk, µk) = F(Ω, v, µ);

Step 3: For every sharp configuration (Ω, v, µ) ∈ Ar, in Theorem 13 we
build a sequence

(
Ωk, vk, µk

)
k
⊂ Ar where µk = ukH1⌞Γk and

uk ∈ L1(Γk) is grid constant, such that (Ωk, vk, µk) → (Ω, v, µ) as
k → ∞, and

lim
k→∞

H(Ωk, vk, µk) = F(Ω, v, µ);

Step 4: From Theorems 11, 12 and 13 and a diagonalization argument we
get the limsup inequality.

Remark 9. Using Theorem 10 with Theorem 9, we have proved Theorem
1 and Theorem 2.

We now carry on Step 1: approximate any admissible configuration
with a sequence of configurations where the density is grid constant.

Theorem 11. Let (Ω, v, µ) ∈ A(m,M). Then, there exists a sequence
(uk)k ⊂ L1(Γ), with uk ∈ L1(Γ) grid constant, such that (Ω, v, µk) →
(Ω, v, µ), as k → ∞, and

lim
k→∞

F(Ω, v, µk) ⩽ F(Ω, v, µ),

where µk := ukH1⌞Γ. Moreover, (Ω, v, µk) ∈ A(m,M).
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Proof. Step 1. Given (Ω, v, µ) ∈ A(m,M), with µ = uH1⌞Γ + µs, we
would like to approximate µs with a finite number of Dirac deltas. Given
k ∈ N, consider an 1/k-admissible covering of Γ. Let Q1, . . . , QNk be
those cubes that intersect with Γ. For each i = 1, . . . , Nk, let x

i
k ∈ Qi∩Γ.

We define

mi
k := µs(Qi

k)

and set

µk := uH1⌞Γ +

Nk∑
i=1

mi
kδxi

k
,

where, for every k ∈ N, Nk is finite. It is possible to see that µk(Γ) = m

and µk
∗
⇀ µ as k → ∞. Furthermore, the fact that µs(Γ) =

∑Nk

i=1 m
i
k,

for every k ∈ N, implies that

F(Ω, v, µk) = F(Ω, v, µ),

for every k ∈ N.

Step 2. Now, consider (Ω, v, µ) ∈ A(m,M), with µ = uH1⌞Γ +∑N
i=1 m

iδxi
, with xi ∈ Γ and mi > 0 as defined in step 1, for every

i = 1, . . . N . We now construct an admissible covering in order to define
a suitable density on Γ.
For k ∈ N, consider (Qj

k)
Lk
j=1, an 1/k-admissible covering for Γ. Consider

the covering of Γ given by

( N⋃
i=1

Q(xi, 1/k)
)
∪
[( Lk⋃

j=1

Qj
k

)
\
( N⋃

i=1

Q(xi, 1/k)
)]

. (52)

We notice that
(⋃Lk

j=1 Q
j
k

)
\
(⋃N

i=1 Q(xi, 1/k)
)
can be divided Nk rectan-

gles whose sides does not exceed 1/k. Thus, up to a further subdivision
in rectangles, we consider (52) as a 1/k-admissible covering of Γ. In or-
der to simplify the notation, we denote as Qj

k any rectangle contained in
(52). Furthermore, by reordering the rectangles in (52), we assume that
for j = 1, . . . , N , Qj

k ⊂
⋃N

i=1 Q(xi, 1/k) and for j = N + 1, . . . , N + Nk,
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we have Qj
k ⊂

�Lk

j=1 Q
j
k


\
�N

i=1 Q(xi, 1/k)

.

Fix ε > 0. Since

lim
k→∞

µs(Γ ∩Qj
k)

H1(Γ ∩Qj
k)

= +∞, and lim
k→∞

µs(Γc ∩Qj
k)

H1(Γc ∩Qj
k)

= +∞,

for all j = 1, . . . , N , there is k̄ ∈ N such that, for every k ⩾ k̄, we have


H1(Γ ∩Qj

k)

µs(Γ ∩Qj
k)

ψ


µs(Γ ∩Qj
k)

H1(Γ ∩Qj
k)


− θ

 < ε (53)

and

H1(Γ ∩Qj

k)

µs(Γ ∩Qj
k)

ψc


µs(Γ ∩Qj

k)

H1(Γ ∩Qj
k)


− θ

 < ε. (54)

We now define a density on Γ. For x ∈ Qj
k, we define uk : Γ → R as

uk(x) :=




µ(Γ ∩Qj
k)

H1(Γ ∩Qj
k)

if x ∈ Γ, Γ ∩Qj
k ̸= Ø,

µ(Γc ∩Qj
k)

H1(Γc ∩Qj
k)

if x ∈ Γc, Γc ∩Qj
k ̸= Ø.

Note that the function uk ∈ L1(Γ) is 1/k-grid constant by definition. For
each k ∈ N, define the measure

µk := ukH1⌞Γ. (55)

By definition, it follows directly that the mass constraint is satisfied,
namely that (Ω, v, µk) ∈ A(m,M).

Step 3. We now prove that µk
∗
⇀ µ as k → ∞. Take φ ∈ Cc(R2). Fix

ε > 0. Using the uniform continuity of φ, there exists k̄ ∈ N such that
for every k ⩾ k̄ we have that

|φ(x)− φ(xi
k)| < ε,
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for every x ∈ Qj
k, where xi

k is the intersection point of the diagonals of
Qj

k. First, we write

∣∣∣
∫

Γ

φ dµk −
∫

Γ

φ dµ
∣∣∣ ⩽

∣∣∣
∫

Γ̃

φ dµk −
∫

Γ̃

φ dµ
∣∣∣+

∣∣∣
∫

Γc

φ dµk −
∫

Γc

φ dµ
∣∣∣

⩽
N+Nk∑
j=1

∣∣∣
∫

Γ̃∩Qj
k

φ dµk −
∫

Γ̃∩Qj
k

φ dµ
∣∣∣

+

N+Nk∑
j=1

∣∣∣
∫

Γc∩Qj
k

φ dµk −
∫

Γc∩Qj
k

φ dµ
∣∣∣, (56)

and we estimate the two terms on the right-hand side of (56) separately.
We have that

N+Nk∑
j=1

∣∣∣
∫

Γ̃∩Qj
k

φ dµk −
∫

Γ̃∩Qj
k

φ dµ
∣∣∣ ⩽

N+Nk∑
j=1

[ ∫

Γ̃∩Qj
k

|φ(x)− φ(xi
k)| dµk

+

∫

Γ̃∩Qj
k

|φ(x)− φ(xi
k)| dµ

+ |φ(xi
k)|

∣∣µ(Γ̃ ∩Qj
k)− µk(Γ̃ ∩Qj

k)
∣∣]

⩽ 2mε∥φ∥C0(R2), (57)

where we used the fact that µ(Γ̃ ∩ Qj
k) = µk(Γ̃ ∩ Qj

k) for each j =
1, . . . ,M + Nk and every k ∈ N, by definition of µk. Using similar
computations, we also get that the second term on the right-hand side
of (56) can be estimated as

N+Nk∑
j=1

∣∣∣
∫

Γc∩Qj
k

φ dµk −
∫

Γc∩Qj
k

φ dµ
∣∣∣ ⩽ 2mε∥φ∥C0(R2), (58)

Finally, from (56), (57) and (58), we get

∣∣∣
∫

Γ

φ dµk −
∫

Γ

φ dµ
∣∣∣ ⩽ 4mε∥φ∥C0(R2).
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As ε > 0 is arbitrary, we can conclude that µk
∗
⇀ µ as k → ∞.

Step 4. We now prove the convergence of the energy. We will prove
that

lim sup
k→∞

F(Ω, v, µk) ⩽ F(Ω, v, µ).

Since the bulk term of the energy is unchanged, we estimate the other
contributions. We have that

∫

Γ̃

ψ̃(uk) dH1 +

∫

Γc

ψc(uk) dH1

=

N+Nk∑
j=1

[∫

Γ̃∩Qj
k

ψ̃(uk) dH1 +

∫

Γc∩Qj
k

ψc(uk) dH1

]

=

N+Nk∑
j=1

[
H1(Γ̃ ∩Qj

k)ψ̃

(
µ(Γ̃ ∩Qj

k)

H1(Γ̃ ∩Qj
k)

)

+H1(Γc ∩Qj
k)ψ

c

(
µ(Γc ∩Qj

k)

H1(Γc ∩Qj
k)

)]

=
N∑
j=1

[
H1(Γ̃ ∩Qj

k)ψ̃

( ∫

Γ̃∩Qj
k

u dH1 +
µs(Γ̃ ∩Qj

k)

H1(Γ̃ ∩Qj
k)

)

+H1(Γc ∩Qj
k)ψ

c

( ∫

Γc∩Qj
k

u dH1 +
µs(Γc ∩Qj

k)

H1(Γc ∩Qj
k)

)]

+

N+Nk∑
j=N

[
H1(Γ̃ ∩Qj

k)ψ̃
( ∫

Γ̃∩Qj
k

u dH1
)

+H1(Γc ∩Qj
k)ψ

c
( ∫

Γc∩Qj
k

u dH1
)]

⩽
N∑
j=1

[
H1(Γ̃ ∩Qj

k)ψ̃
( ∫

Γ̃∩Qj
k

u dH1
)
+H1(Γ̃ ∩Qj

k)ψ̃

(
µs(Γ̃ ∩Qj

k)

H1(Γ̃ ∩Qj
k)

)
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+H1(Γc ∩Qj
k)ψ

c
( ∫

Γc∩Qj
k

u dH1
)

+H1(Γc ∩Qj
k)ψ

c

(
µs(Γc ∩Qj

k)

H1(Γc ∩Qj
k)

)]

+

N+Nk∑
j=N

[
H1(Γ̃ ∩Qj

k)ψ̃
( ∫

Γ̃∩Qj
k

u dH1
)

+H1(Γc ∩Qj
k)ψ

c
( ∫

Γc∩Qj
k

u dH1
)]

⩽
N∑
j=1

[∫

Γ̃∩Qj
k

ψ̃(u) dH1 +H1(Γ̃ ∩Qj
k)ψ̃

(
µs(Γ̃ ∩Qj

k)

H1(Γ̃ ∩Qj
k)

)

+

∫

Γc∩Qj
k

ψc(u) dH1 +H1(Γc ∩Qj
k)ψ

c

(
µs(Γc ∩Qj

k)

H1(Γc ∩Qj
k)

)]

+

N+Nk∑
j=N

[∫

Γ̃∩Qj
k

ψ̃(u) dH1 +

∫

Γc∩Qj
k

ψc(u) dH1

]

=
N∑
j=1

[∫

Γ̃∩Qj
k

ψ̃(u) dH1 + µs(Γ̃ ∩Qj
k)
H1(Γ̃ ∩Qj

k)

µs(Γ̃ ∩Qj
k)

ψ̃

(
µs(Γ̃ ∩Qj

k)

H1(Γ̃ ∩Qj
k)

)

+ µs(Γc ∩Qj
k)
H1(Γc ∩Qj

k)

µs(Γc ∩Qj
k)

ψc

(
µs(Γc ∩Qj

k)

H1(Γc ∩Qj
k)

)]

+

N+Nk∑
j=N

[∫

Γ̃∩Qj
k

ψ̃(u) dH1 +

∫

Γc∩Qj
k

ψc(u) dH1

]

+

∫

Γc∩Qj
k

ψc(u) dH1, (59)

where in the first inequality we used the sub-additivity of ψ̃ and ψc, while
in the previous to last step we used Jensen’s inequality.

By construction, we have that (53) and (54) hold. Thus, from (59),
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+H1(Γc ∩Qj
k)ψ

c
( ∫

Γc∩Qj
k

u dH1
)

+H1(Γc ∩Qj
k)ψ

c

(
µs(Γc ∩Qj
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H1(Γc ∩Qj
k)
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Γc∩Qj
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⩽
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j=1
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Γ̃∩Qj
k

ψ̃(u) dH1 +H1(Γ̃ ∩Qj
k)ψ̃
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µs(Γ̃ ∩Qj

k)

H1(Γ̃ ∩Qj
k)
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we obtain∫

Γ̃

ψ̃(uk) dH1 +

∫

Γc

ψc(uk) dH1

⩽
N∑
j=1

[∫

Γ̃∩Qj
k

ψ̃(u) dH1 + µs(Γ̃ ∩Qj
k)(θ + ε)

+

∫

Γc∩Qj
k

ψc(u) + µs(Γc ∩Qj
k)(θ + ε)

]

+

N+Nk∑
j=N

[∫

Γ̃∩Qj
k

ψ̃(u) dH1 +

∫

Γc∩Qj
k

ψc(u) dH1

]

=

N+Nk∑
j=1

[∫

Γ̃∩Qj
k

ψ̃(u) dH1

+

∫

Γc∩Qj
k

ψc(u) dH1 + θµs(Γ ∩Qj
k) + εµs(Γ ∩Qj

k)

]

⩽
∫

Γ̃

ψ̃(u) dH1 +

∫

Γc

ψc(u) dH1 + θµs(Γ) + εµs(Γ). (60)

From (60), since ε is arbitrary, we can conclude

lim sup
k→∞

F(Ω, v, µk) ⩽ F(Ω, v, µ).

This concludes the proof.

We proceed our analysis with the second step, which will allows us
to reduce to the case of a Lipschitz profile and a grid constant adatom
density.

Theorem 12. Let (Ω, v, µ) ⊂ A(m,M) be such that u is grid constant.
Then, there exists a sequence (Ωk, vk, µk)k ⊂ Ar(m,M), where µk =
ukH1⌞Γk with each uk grid constant, such that

lim
k→∞

F(Ωk, vk, µk) = F(Ω, v, µ),

and (Ωk, vk, µk) → (Ω, v, µ), as k → ∞.
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Proof. The strategy of the proof is the following. In Step 1 we show that
it suffices to build the required sequence in case h has finitely many cut
points. In Step 2 we build the recovery sequence. Finally in Step 3 we
show the convergence of the energy.

Step 1. In this first step we are going to show that it suffices to prove
the result in the case h has a finite number of cuts. Namely, we prove
that there exist sequences (Ωgk , wk, νk)k ⊂ A(m,M) where each gk has a
finite number of cuts, and νk is grid constant, such that

lim
k→∞

F(Ωgk , wk, νk) = F(Ω, v, µ),

and (Ωgk , wk, νk) → (Ω, v, µ) as k → ∞.

The following construction is inspired by [37, Theorem 2.8]. For k ∈
N, define (see Figure 1.5)

ĝk(x) := min{max{h−(x)− 1/k, 0}, h(x)},

for every x ∈ (a, b). It is possible to see that, for each k, the function
ĝk is lower semicontinuous, of bounded variation, and such that ĝk ⩽ h.
Moreover, thanks to Lemma 2, we have that ĝk has finitely many cuts.
We then define

gk(x) := ĝk(x) + εk, (61)

for each k, where

εk :=
1

b− a


M −

 b

a

ĝk(x) dx

> 0.

Set Γk := Γgk , and note that

lim
k→∞

H1(Γk) = H1(Γ). (62)

We now need, for each k ∈ N, to define the displacement vk and the
adatom density uk. For the former, by fixing a y0 < 0 such that v(·, y0) ∈
H1

�
(a, b);R2


, we define

wk(x) :=




v(x, y − εk) if y > y0 + εk,

v(x, y0) if y0 < y ⩽ y0 + εk,

v(x, y) if y ⩽ y0.

(63)
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Figure 1.5: In order to reduce to a finite number of cuts, we do the
following: first, we shift down by 1/k the regular part of the graph of
h (not the cuts), getting the red graph. In this process, some parts of
the graph might have gone below zero. Thus, we get the function ĝk by
cutting them, and by adding the remaining part of the original cuts.

For k ∈ N \ {0}, and x ∈ Γk, we define

zk(x) :=




u
�
x, y + 1/k


if (x, y + 1/k) ∈ Γ, and h(x) > 1/k,

u(x, y) if x ∈ Γc,

u(x, 0) if h(x) = 0.

For each k ∈ N \ {0}, we then define the measure

νk := (zk + rk)H1⌞Γk,

where

rk :=
1

H1(Γk)



Γ

u dH1 −


Γk

zk dH1


.

We notice that, by using (62),

lim
k→∞

rk = 0. (64)

Step 1.1 Note that, by definition, the sequences (gk)k and (νk)k sat-
isfy the mass and the density constraint as in Theorem 2, and thus
(Ωgk , wk, νk)k ⊂ A(m,M).
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Step 1.2 We now prove that (Ωgk , wk, νk) → (Ω, v, µ) as k → ∞.

By using the definition, it is possible to see that R2 \ Ωgk

H→ R2 \ Ω,
and wk ⇀ v in H1

loc(Ω;R2) as k → ∞. In particular, we have that
H1(Γk) → H1(Γ) as k → ∞.

We now prove that νk
∗
⇀ µ as k → ∞. Take any φ ∈ Cc(R2) and

fix ε > 0. By the uniform continuity of φ we find δ > 0 such that, if
|(x, y − 1/k)− (x, y)| < δ, we have

|φ(x, y − 1/k)− φ(x, y)| < ε.

Then, for k large enough,

∣∣∣
∫

Γk

φzk dH1 +

∫

Γk

rkφ dH1 −
∫

Γ

φu dH1
∣∣∣

⩽
∣∣∣
∫

Γ̃∩{h>1/k}
φ(x, y − 1/k)u dH1

+

∫

Γ̃∩{h=0}
φu(x, 0) dH1 −

∫

Γ̃

φu dH1
∣∣∣

+
∣∣∣
∫

Γc
k

φu dH1 −
∫

Γc

φu dH1
∣∣∣+ ||φ||C0(R2)H1(Γk)rk

⩽ ε||u||L1(Γ̃) +
∣∣∣
∫

Γ̃∩{h>1/k}
φu dH1 −

∫

Γ̃∩{h>0}
φu dH1

∣∣∣

+
∣∣∣
∫

Γc\Γc
k

φu dH1
∣∣∣+ ||φ||C0(R2)H1(Γk)rk.

Here we notice that Γc \ Γc
k → Ø, rk → 0 and that Γ̃ ∩ {h > 1/k} →

Γ̃ ∩ {h > 0} as k → ∞. From these considerations, as ε is arbitrary, we

infer that νk
∗
⇀ µ as k → ∞.

Step 1.3 Finally, we prove the convergence of the energy. First, by
a standard argument, we can reduce to the case u ∈ L∞(Γ). Thus, we
have

|F(Ωgk , wk, νk)−F(Ωgk , v, µ)| ⩽
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∣∣∣
∫

Ωk

W
(
E(wk)− E0(y)

)
dx−

∫

Ω

W
(
E(v)− E0(y)

)
dx

∣∣∣

+
∣∣∣
∫

Γ̃k

ψ̃(zk + rk) dH1 −
∫

Γ̃

ψ̃(u) dH1
∣∣∣

+
∣∣∣
∫

Γc
k

ψc(zk + rk) dH1 −
∫

Γc

ψc(u) dH1
∣∣∣. (65)

Regarding the bulk term on the right-hand side of (65), we have that
wk → v in H1

loc(Ω;R2) as k → ∞. Remember that, by construction,
Ωgk ⊂ Ω. From the fact that Ωgk → Ω in L1 as k → ∞, we can find
k̄ ∈ N such that for every k ⩾ k̄, we have |Ω \Ωgk | < ε. Then, for k ⩾ k̄,
we have

∣∣∣
∫

Ωgk

W
(
E(wk)− E0(y)

)
dx−

∫

Ω

W
(
E(v)− E0(y)

)
dx

∣∣∣

⩽
∫

Ωgk
∩{y>y0+εk}

∣∣W(
E(wk))− E0(y)

)
−W

(
E(v)− E0(y)

)∣∣ dx

+

∫

Ωgk
∩{y0<y<y0+εk}

∣∣W(
E(wk)− E0(y)

)
−W

(
E(v)− E0(y)

)∣∣ dx

+
∣∣∣
∫

Ω\Ωgk

W
(
E(v)− E0(y)

)
dx

∣∣∣. (66)

Notice that the first term on the right-hand side of (66) goes to 0 as
k → ∞ by a continuity argument for integral functional of convex in-
tegrand. The second term is infinitesimal as well, by noticing that the
domain of integration is converging to a negligible set. Finally, for the
last term we can apply the Dominated Convergence Theorem to conclude
the estimate for the bulk term.

We now consider the surface terms on the right-hand side of (65).
From (64), we can choose k large enough so that rk ⩽ 1. Since u ∈ L∞(Γ),

we have that ψ̃ and ψc are uniformly continuous in [0, ∥u∥L∞ +1]. Then,
for every ε > 0, there is k̄ ∈ N such that, for every k ⩾ k̄,

|ψ̃(u+ rk)− ψ̃(u)| < ε and |ψc(u+ rk)− ψc(u)| < ε. (67)
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For the first term, we get

∣∣∣
∫

Γ̃k

ψ̃(zk + rk) dH1 −
∫

Γ̃

ψ̃(u) dH1
∣∣∣ =

∣∣∣
∫

Γ̃

[
ψ̃(u+ rk)− ψ̃(u)

]
dH1

∣∣∣

+
∣∣∣
∫

Γ̃∩{0<h<1/k}
ψ̃(zk + rk) dH1

∣∣∣. (68)

Now we use (67), together with

Γ̃ ∩ {0 < h < 1/k} → Ø,

and we conclude the convergence to 0 of the surface term in (68), as
k → ∞. Regarding the second surface term on the right-hand side of
(65), we have that

∣∣∣
∫

Γc
k

ψc(u+rk) dH1 −
∫

Γc

ψc(u) dH1
∣∣∣ ⩽

∣∣∣
∫

Γc

[
ψc(u+ rk)− ψc(u)

]
dH1

∣∣∣

+
∣∣∣
∫

Γc∩{h−(x)−1/k<y<h−(x)}
ψc(u) dH1

∣∣∣ (69)

From (67) and since

Γc ∩ {h−(x)− 1/k < y < h−(x)} → Ø

for k → ∞, we conclude our estimate on the cut part.

By putting together (66), (68) and (69) in (65), we get that

lim
k→∞

F(Ωgk , wk, νk) = F(Ω, v, µ).

Step 2. Now, consider h ∈ BV(a, b) with a finite number of cuts. Let
(ci)ni=1 ⊂ (a, b) be the orthogonal projection on the x-axes of the cuts.
Set

ε0 := min{|ci − cj| : i ̸= j = 1, . . . , n}. (70)

In order to lighten the notation, and since we are considering a function
h which has a finite number of cut points, we can work as h had a single
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cut and then repeating the following construction for the general case.
So let c be the cut point of h.

The idea of the construction is to use a Yosida-Moreau transform far
from the cut point a < c < b and, around the cut, we use an interpolation
in [c − ε0/k, c + ε0/k] in order to get the Hausdorff convergence to the
vertical cut. We need to apply the Yosida-Moreau transform of h with
maximal slope k beforehand because we need the mass constraint to be
satisfied, as we want to use the same procedure as in (61), which requires
a sequence that lies below h. Moreover, since we use the Yosida-Moreau
transform of h with maximal slope k far form the cut point, thanks to
[37, Lemma 2.7], we have the Hausdorff convergence to our configuration
as well as the convergence of the length of the graph.

We define, for each k ∈ N, hℓ
k : (a, c) → [0,∞) as the Yosida-Moreau

transform of h with maximal slope k on (a, c) and hr
k : (c, b) → [0,∞) as

the Yosida transform of h on (c, b). Namely

hℓ
k(x) := inf{h(z) + k|x− z| : z ∈ (a, c)},

hr
k(x) := inf{h(z) + k|x− z| : z ∈ (c, b)}.

We have that both hℓ
k and hr

k are k-Lipschitz functions such that hℓ
k ⩽ h

and hr
k ⩽ h. Furthermore, by [37, Lemma 2.7] we have that Ωhℓ

k
→

Ω ∩
[
(a, c) × R

]
and Ωhr

k
→ Ω ∩

[
(c, b) × R

]
as k → ∞, together with

their convergence of the length of their respective graph, namely

H1(Γhℓ
k
) → H1

(
Γ ∩ ((a, c)× R)

)
,

H1(Γhr
k
) → H1

(
Γ ∩ ((c, b)× R)

)
,

as k → ∞. We can also extend by continuity hℓ
k and hr

k at c, as we have
both right and left limit of h at c. We are going to use the following
notation

Sk :=
[
c− ε0

k
, c+

ε0
k

]
× R,

Sℓ
k :=

[
c− ε0

k
, c
]
× R,

Sr
k :=

[
c, c+

ε0
k

]
× R,
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where ε0 is defined in (70). The definition of our sequence (hk)k uses
the definition of hℓ

k and hr
k outside Sk whereas in Sk we have a linear

interpolation from the cut point (c, h(c)) and the points (c− ε0/k, h
ℓ
k(c−

ε0/k) and (c+ ε0/k, h
r
k(c+ ε0/k)). We define our Lipschitz sequence as

ĥk(x) :=





hℓ
k(x) x ∈ (a, c− ε0/k),

mℓ
kx+ qℓk x ∈ Sℓ

k,

mr
kx+ qrk x ∈ Sr

k,

hr
k(x) x ∈ (c+ ε0/k, b),

with suitable coefficients mℓ
k, q

ℓ
k,m

r
k, q

r
k ∈ R such that we have linear

interpolation from
�
c − ε0/k, h

ℓ
k(c − ε0/k)


and

�
c + ε0/k, h

r
k(c + ε0/k)


to the point (c, h(c)). Notice that, by definition, ĥk(c) = ĥ(c) and hk is
continuous. Moreover, thanks to Theorem 5, for k large enough, it holds
that ĥk ⩽ h. Now, following the same path as in (61), we set

hk(x) := ĥk(x) + εk,

where

εk :=
1

b− a


M −

 b

a

ĥk(x) dx

.

We then have that the sequence (hk)k satisfies the mass constraint,
namely,

 b

a

hk(x) dx = M.

Step 2.1. For every k ∈ N, let Ωk be the subgraph of hk. We prove

that R2 \ Ωk
H→ R2 \ Ω as k → ∞. We use again the equivalence of the

Hausdorff convergence with the Kuratowski convergence (see Proposition
2). Take x̄ = (x̄, ȳ) ∈ R2 \ Ω. We first want to prove that there exists
a sequence (xk, yk)k ⊂ R2 \ Ωk such that (xk, yk) → x̄. Then, we have
different cases depending on whether x̄ ∈ Sk or not. In case x̄ /∈ Sk, as
the sequence (hk)k is defined as the Yosida-Moreau transform of h, away
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H→ R2 \ Ω as k → ∞. We use again the equivalence of the

Hausdorff convergence with the Kuratowski convergence (see Proposition
2). Take x̄ = (x̄, ȳ) ∈ R2 \ Ω. We first want to prove that there exists
a sequence (xk, yk)k ⊂ R2 \ Ωk such that (xk, yk) → x̄. Then, we have
different cases depending on whether x̄ ∈ Sk or not. In case x̄ /∈ Sk, as
the sequence (hk)k is defined as the Yosida-Moreau transform of h, away
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from the cut point we can use Lemma 2.7 of [37] and we have already
the Hausdorff convergence desired.

Next we deal the case in which x̄ ∈ Sk. If x̄ = c and ȳ ⩽ h−(c),
consider the sequence

(xk, yk) :=

(
ȳ − qℓk
mℓ

k

, ȳ

)
,

for every k ∈ N. We obtain (xk, yk) → (c, ȳ) as k → ∞.

In case x̄ = c and ȳ ⩾ h−(c) or in case x̄ ̸= c, it is enough to consider
the constant sequence (xk, yk) := (c, ȳ), since by definition hk ⩽ h and
thus we have that (x̄, ȳ) ∈ R2 \ Ωk, for every k ∈ N.

We are left to check the second condition of the Kuratowski conver-
gence. Take a sequence (xk, yk)k ⊂ R2 \ (Ωk ∩ Sk) and suppose that
(xk, yk) → (x, y) as k → ∞. We need to prove that (x, y) ∈ R2 \Ω. Since
(xk, yk) ∈ Sk and the vertical strip Sk is shrinking to the vertical line
c× R, then we must have that x = c thus the point (x, y) ∈ R2 \ Ω.

In case our sequence (xk, yk)k is laying both in R2 \ (Ωk ∩ Sk) and in
R2\(Ωk\Sk), as it is converging, it is enough consider k large enough and
we get that (xk, yk) is only in one of the two sets. Then we can proceed
as before.

Thus, we can conclude that R2 \ Ωk
H→ R2 \ Ω as k → ∞.

Step 2.2. We are going to define a density on Γk. Since u is grid
constant we can consider a family of squares (Qj)j∈J , with J = {1, . . . N},
such that on each square Qj we have

u|Qj∩Γ = uj ∈ R.

We now define two index sets

Ak :=
{
j ∈ J : Qj ∩ Sk = Ø

}
, Bk := J \ Ak. (71)

In order to define what follows, we recall Lemma 8. The density is then
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defined as uk : Γk → R

uk(x) :=





uj H1(Γ ∩Qj)

H1(Γk ∩Qj)
x ∈ Γk ∩Qj, j ∈ Ak,

aj
H1(Γc ∩Qj)

H1(Γk ∩Qj ∩ Sℓ
k)

x ∈ Γk ∩Qj ∩ Sℓ
k, j ∈ Bk,

bj
H1(Γc ∩Qj)

H1(Γk ∩Qj ∩ Sr
k)

x ∈ Γk ∩Qj ∩ Sr
k, j ∈ Bk,

uj H
1
�
(Γ ∩Qj) \ Sk



H1
�
(Γk ∩Qj) \ Sk

 x ∈ (Γk ∩Qj) \ Sk, j ∈ Bk,

where aj, bj are such that

aj + bj = uj (72)

and

ψc(uj) = ψ(aj) + ψ(bj). (73)

As the size of the squares is fixed, we take k large enough such that the
vertical strip Sk is contained in a single vertical column of squares.

For each k ∈ N, define the measure µk := ukH1⌞Γk. We have that µk

satisfies the density constraint. Indeed,


Γk

uk dH1 =

j∈Ak



Γk∩Qj

uj H1(Γ ∩Qj)

H1(Γk ∩Qj)
dH1

+

j∈Bk



Γk∩Qj∩Sℓ
k

aj
H1(Γc ∩Qj)

H1(Γk ∩Qj ∩ Sℓ
k)

dH1

+



Γk∩Qj∩Sr
k

bj
H1(Γc ∩Qj)

H1(Γk ∩Qj ∩ Sr
k)

dH1

+



(Γk∩Qj)\Sk

uj

H1
�
(Γ ∩Qj) \ Sk



H1
�
(Γk ∩Qj) \ Sk

 dH1


=

j∈Ak

ujH1(Γ ∩Qj) +

j∈Bk


ajH1(Γc ∩Qj) + bjH1(Γc ∩Qj)
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defined as uk : Γk → R

uk(x) :=





uj H1(Γ ∩Qj)

H1(Γk ∩Qj)
x ∈ Γk ∩Qj, j ∈ Ak,

aj
H1(Γc ∩Qj)

H1(Γk ∩Qj ∩ Sℓ
k)

x ∈ Γk ∩Qj ∩ Sℓ
k, j ∈ Bk,

bj
H1(Γc ∩Qj)

H1(Γk ∩Qj ∩ Sr
k)

x ∈ Γk ∩Qj ∩ Sr
k, j ∈ Bk,

uj H
1
�
(Γ ∩Qj) \ Sk



H1
�
(Γk ∩Qj) \ Sk

 x ∈ (Γk ∩Qj) \ Sk, j ∈ Bk,

where aj, bj are such that

aj + bj = uj (72)

and

ψc(uj) = ψ(aj) + ψ(bj). (73)

As the size of the squares is fixed, we take k large enough such that the
vertical strip Sk is contained in a single vertical column of squares.

For each k ∈ N, define the measure µk := ukH1⌞Γk. We have that µk

satisfies the density constraint. Indeed,


Γk

uk dH1 =

j∈Ak



Γk∩Qj

uj H1(Γ ∩Qj)

H1(Γk ∩Qj)
dH1

+

j∈Bk



Γk∩Qj∩Sℓ
k

aj
H1(Γc ∩Qj)

H1(Γk ∩Qj ∩ Sℓ
k)

dH1

+



Γk∩Qj∩Sr
k

bj
H1(Γc ∩Qj)

H1(Γk ∩Qj ∩ Sr
k)

dH1

+



(Γk∩Qj)\Sk

uj

H1
�
(Γ ∩Qj) \ Sk



H1
�
(Γk ∩Qj) \ Sk

 dH1


=

j∈Ak

ujH1(Γ ∩Qj) +

j∈Bk


ajH1(Γc ∩Qj) + bjH1(Γc ∩Qj)

100

Chapter 1 - Epitaxial growth, sharp model

+ ujH1
(
(Γ̃ ∩Qj) \ Sk

))

=
N∑
j=1

∫

Γ∩Qj

uj dH1 = m,

where in the previous to last step we used (72).

Step 2.3. We prove that µk
∗
⇀ µ. Take any φ ∈ Cc(R2). For every ε >

0, we can find k̄ ∈ N such that for every k ⩾ k̄ we have |φ(x)−φ(xj)| ⩽ ε
for all x ∈ Qj, where xj denotes the center of the squareQj. From Lemma
8 we have

∣∣∣
∫

Γk

φuk dH1 −
∫

Γ

φu dH1
∣∣∣

⩽
∑
Ak

∣∣∣
∫

Γk∩Qj

φuk dH1 −
∫

Γ̃∩Qj

φuj dH1
∣∣∣

+
∑
Bk

(∣∣∣
∫

Γk∩Qj∩Sk

φuk dH1 −
∫

Γ∩Qj∩Sk

φuj dH1
∣∣∣

+
∣∣∣
∫

(Γk∩Qj)\Sk

φuk dH1 −
∫

(Γ̃∩Qj)\Sk

φuj dH1
∣∣∣
)
. (74)

We now compute first the sum over the indexes in Ak on the right-
hand side of (74). By summing and subtracting φ(xj) inside each of the
integral, it holds that

∑
j∈Ak

∣∣∣
∫

Γk∩Qj

φuj H1(Γ̃ ∩Qj)

H1(Γk ∩Qj)
dH1 −

∫

Γ̃∩Qj

φuj dH1
∣∣∣

⩽ 2
∑
j∈Ak

∣∣φ(x)− φ(xj)
∣∣|uj|H1(Γ̃ ∩Qj)

⩽ 2ε
∑
j∈Ak

H1(Γ̃ ∩Qj)|uj|

⩽ 2ε||u||L1(Γ̃). (75)

101



Chapter 1 - Epitaxial growth, sharp model

We now estimate the sum over Bk on the right-hand side of (74). Note
that, up taking a larger k̄ ∈ N, we can assume that

∑
j∈Bj

|H1(Γ ∩Qj ∩ Sk)−H1(Γ ∩Qj)| ⩽ 4ε,

for all k ⩾ k̄. Bearing in mind that for every j ∈ N it holds aj + bj = uj,
we get

∑
j∈Bk

∣∣∣
∫

Γk∩Qj∩Sk

φuk dH1 −
∫

Γ∩Qj∩Sk

φuj dH1
∣∣∣

=
∑
j∈Bk

∣∣∣
∫

Γk∩Qj∩Sℓ
k

φaj
H1(Γc ∩Qj)

H1(Γk ∩Qj ∩ Sℓ
k)

dH1

+

∫

Γk∩Qj∩Sr
k

φbj
H1(Γc ∩Qj)

H1(Γk ∩Qj ∩ Sr
k)

dH1

−
∫

Γ∩Qj∩Sk

φuj dH1
∣∣∣

⩽ 2ε
∑
j∈Bk

uj
(
H1(Γc ∩Qj) +H1(Γ ∩Qj ∩ Sk)

)

+ |φ(xj)|uj
∣∣∣H1(Γc ∩Qj)−H1(Γ ∩Qj ∩ Sk)

∣∣

⩽ 2ε(2||u||L∞(Γ) + 4ε) + 4ε∥φ∥C0(R2)∥u∥L∞(Γ). (76)

In the same way, we can obtain the estimate for last two terms of the
sum over Bk on the right-hand side of (74),

∑
j∈Bk

∣∣∣
∫

(Γk∩Qj)\Sk

φuj dH1 −
∫

(Γ̃∩Qj)\Sk

φuj dH1
∣∣∣ ⩽ Cε||u||L1(Γ̃), (77)

for some constant C > 0. In conclusion, if we put together (74), (75),
(76), (77), we obtain that

∣∣∣
∫

Γk

φuk dH1 −
∫

Γ

φu dH1
∣∣∣ < C ′ε,
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We now estimate the sum over Bk on the right-hand side of (74). Note
that, up taking a larger k̄ ∈ N, we can assume that

∑
j∈Bj

|H1(Γ ∩Qj ∩ Sk)−H1(Γ ∩Qj)| ⩽ 4ε,

for all k ⩾ k̄. Bearing in mind that for every j ∈ N it holds aj + bj = uj,
we get

∑
j∈Bk

∣∣∣
∫

Γk∩Qj∩Sk

φuk dH1 −
∫

Γ∩Qj∩Sk

φuj dH1
∣∣∣

=
∑
j∈Bk

∣∣∣
∫

Γk∩Qj∩Sℓ
k

φaj
H1(Γc ∩Qj)

H1(Γk ∩Qj ∩ Sℓ
k)

dH1

+

∫

Γk∩Qj∩Sr
k

φbj
H1(Γc ∩Qj)

H1(Γk ∩Qj ∩ Sr
k)

dH1

−
∫

Γ∩Qj∩Sk

φuj dH1
∣∣∣

⩽ 2ε
∑
j∈Bk

uj
(
H1(Γc ∩Qj) +H1(Γ ∩Qj ∩ Sk)

)

+ |φ(xj)|uj
∣∣∣H1(Γc ∩Qj)−H1(Γ ∩Qj ∩ Sk)

∣∣

⩽ 2ε(2||u||L∞(Γ) + 4ε) + 4ε∥φ∥C0(R2)∥u∥L∞(Γ). (76)

In the same way, we can obtain the estimate for last two terms of the
sum over Bk on the right-hand side of (74),

∑
j∈Bk

∣∣∣
∫

(Γk∩Qj)\Sk

φuj dH1 −
∫

(Γ̃∩Qj)\Sk

φuj dH1
∣∣∣ ⩽ Cε||u||L1(Γ̃), (77)

for some constant C > 0. In conclusion, if we put together (74), (75),
(76), (77), we obtain that

∣∣∣
∫

Γk

φuk dH1 −
∫

Γ

φu dH1
∣∣∣ < C ′ε,
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with C ′ > 0. Since ε is arbitrary, we get that µk
∗
⇀ µ as k → ∞.

Step 2.5. Arguing as in (63), we can define the displacement sequence
(vk)k, with vk ∈ H1(Ωk;R2) such that vk ⇀ v in H1

loc(Ω;R2) as k → ∞.

Step 2.6. It remains to prove the convergence of the energy. By using
the index sets in (71), we have that

|F(Ωk, vk, µk)−F(Ω, v, µ)|

⩽
∣∣∣
∫

Ωk

W
(
E(vk)− E0(y)

)
dx−

∫

Ω

W
(
E(v)− E0(y)

)
dx

∣∣∣

+
∑
j∈Ak

∣∣∣
∫

Γk∩Qj

ψ̃(uj) dH1 −
∫

Γ̃∩Qj

ψ̃(uj) dH1
∣∣∣

+
∑
j∈Bk

∣∣∣
∫

Γk∩Qj∩Sk

ψ̃(uj) dH1 −
∫

Γc∩Qj
k

ψc(uj) dH1
∣∣∣

+
∑
j∈Bk

∣∣∣
∫

(Γk∩Qj)\Sk

ψ̃(uj) dH1 −
∫

(Γ̃∩Qj)\Sk

ψ̃(uj) dH1
∣∣∣. (78)

We will estimate the four terms on the right-hand side of (78) separately.
For the bulk term, we can use the same method as in (66) and we conclude
that

∣∣∣
∫

Ωk

W
(
E(vk)− E0(y)

)
dx−

∫

Ω

W
(
E(v)− E0(y)

)
dx

∣∣∣ → 0, (79)

as k → ∞.
We now consider the first sum on the right hand side of (78).We have
that

∑
j∈Ak

∣∣∣
∫

Γk∩Qj

ψ̃

(
uj H1(Γ̃ ∩Qj)

H1(Γk ∩Qj)

)
dH1 −

∫

Γ̃∩Qj

ψ̃(uj) dH1
∣∣∣

⩽
∑
j∈Ak

∣∣∣ψ̃
(
uj H1(Γ̃ ∩Qj)

H1(Γk ∩Qj)

)
H1(Γk ∩Qj)− ψ̃(uj)H1(Γk ∩Qj)

∣∣∣
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+
∑
j∈Ak

∣∣∣ψ̃(uj)H1(Γk ∩Qj)− ψ̃(uj)H1(Γ̃ ∩Qj)
∣∣∣. (80)

From the fact that ψ̃ is continuous and since H1(Γk ∩Qj) → H1(Γ̃∩Qj)
as k → ∞, for every ε > 0, there is k̄ ∈ N such that for every k ⩾ k̄ we
have

|H1(Γk ∩Qj)−H1(Γ̃ ∩Qj)| < ε.

and
∣∣∣∣∣ψ̃

(
uj H1(Γ̃ ∩Qj)

H1(Γk ∩Qj)

)
− ψ̃(uj)

∣∣∣∣∣ < ε.

Then, from (80) we have that

∑
j∈Ak

∣∣∣
∫

Γk∩Qj

ψ̃

(
uj H1(Γ̃ ∩Qj)

H1(Γk ∩Qj)

)
dH1 −

∫

Γ̃∩Qj

ψ̃(uj) dH1
∣∣∣

⩽ ε
∑
j∈Ak

H1(Γk ∩Qj) + ε
∑
j∈Ak

ψ̃(uj). (81)

As ε is arbitrary, we can conclude our estimate.

Regarding the second sum on the right-hand side of (78), we use the a
similar method as in (76). Now, for the first two terms can be estimated
as follows,

∑
j∈Bk

∣∣∣
∫

Γk∩Qj∩Sk

ψ̃(uj) dH1 −
∫

Γc∩Qj

ψc(uj) dH1
∣∣∣

=
∑
j∈Bk

∣∣ψ̃
(
aj

H1(Γc ∩Qj)

H1(Γk ∩Qj ∩ Sℓ
k)

)
H1(Γk ∩Qj ∩ Sℓ

k)

+ ψ̃

(
bj

H1(Γc ∩Qj)

H1(Γk ∩Qj ∩ Sr
k)

)
H1(Γk ∩Qj ∩ Sr

k)

− ψc(uj)H1(Γc ∩Qj)
∣∣. (82)
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+
∑
j∈Ak

∣∣∣ψ̃(uj)H1(Γk ∩Qj)− ψ̃(uj)H1(Γ̃ ∩Qj)
∣∣∣. (80)

From the fact that ψ̃ is continuous and since H1(Γk ∩Qj) → H1(Γ̃∩Qj)
as k → ∞, for every ε > 0, there is k̄ ∈ N such that for every k ⩾ k̄ we
have

|H1(Γk ∩Qj)−H1(Γ̃ ∩Qj)| < ε.

and
∣∣∣∣∣ψ̃

(
uj H1(Γ̃ ∩Qj)

H1(Γk ∩Qj)

)
− ψ̃(uj)

∣∣∣∣∣ < ε.

Then, from (80) we have that

∑
j∈Ak

∣∣∣
∫

Γk∩Qj

ψ̃

(
uj H1(Γ̃ ∩Qj)

H1(Γk ∩Qj)

)
dH1 −

∫

Γ̃∩Qj

ψ̃(uj) dH1
∣∣∣

⩽ ε
∑
j∈Ak

H1(Γk ∩Qj) + ε
∑
j∈Ak

ψ̃(uj). (81)

As ε is arbitrary, we can conclude our estimate.

Regarding the second sum on the right-hand side of (78), we use the a
similar method as in (76). Now, for the first two terms can be estimated
as follows,

∑
j∈Bk

∣∣∣
∫

Γk∩Qj∩Sk

ψ̃(uj) dH1 −
∫

Γc∩Qj

ψc(uj) dH1
∣∣∣

=
∑
j∈Bk

∣∣ψ̃
(
aj

H1(Γc ∩Qj)

H1(Γk ∩Qj ∩ Sℓ
k)

)
H1(Γk ∩Qj ∩ Sℓ

k)

+ ψ̃

(
bj

H1(Γc ∩Qj)

H1(Γk ∩Qj ∩ Sr
k)

)
H1(Γk ∩Qj ∩ Sr

k)

− ψc(uj)H1(Γc ∩Qj)
∣∣. (82)
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By using the same argument that led us to (81), consider ε > 0 as before,
then, for k large enough, we have

|H1(Γk ∩Qj ∩ Sℓ
k)−H1(Γc ∩Qj)| < ε,

|H1(Γk ∩Qj ∩ Sr
k)−H1(Γc ∩Qj)| < ε,

and, by the continuity of ψ̃,∣∣∣∣∣ψ̃
(
aj

H1(Γc ∩Qj)

H1(Γk ∩Qj ∩ Sℓ
k)

)
− ψ̃(aj)

∣∣∣∣∣ < ε,

∣∣∣∣∣ψ̃
(
bj

H1(Γc ∩Qj)

H1(Γk ∩Qj ∩ Sr
k)

)
− ψ̃(bj)

∣∣∣∣∣ < ε.

As a consequence, from (82) we get

∑
j∈Bk

∣∣∣
∫

Γk∩Qj∩Sk

ψ̃(uj) dH1 −
∫

Γc∩Qj

ψc(uj) dH1
∣∣∣

⩽ ε
∑
j∈Bk

(
H1(Γk ∩Qj ∩ Sℓ

k) +H1(Γk ∩Qj ∩ Sr
k)
)

+
∑
j∈Bk

|ψ̃(aj)H1(Γk ∩Qj ∩ Sℓ
k)

+ ψ̃(bj)H1(Γk ∩Qj ∩ Sr
k)− ψc(uj)H1(Γc ∩Qj)|

= ε
∑
j∈Bk

H1(Γk ∩Qj ∩ Sk) + ε
∑
j∈Bk

(
ψ̃(aj) + ψ̃(bj)

)

+
∑
j∈Bk

|ψ̃(aj) + ψ̃(bj)− ψc(uj)|H1(Γc ∩Qj) (83)

Now, we conclude our estimate by using (73) and the fact that ε is arbi-
trary.

The third sum in the right hand side of (78) can be treated in the
same way as before. Consider ε > 0 as above, then, for k large enough
we have

|H1
(
(Γ̃ ∩Qj) \ Sk

)
−H1(Γ̃ ∩Qj)| < ε
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and
∣∣∣∣∣ψ̃

(
uj

H1
(
(Γ̃ ∩Qj) \ Sk

)

H1
(
(Γk ∩Qj) \ Sk

)
)

− ψ̃(uj)

∣∣∣∣∣ < ε.

Thus, we have

∑
j∈Bk

∣∣∣
∫

(Γk∩Qj)\Sk

ψ̃

(
uj

H1
(
(Γ̃ ∩Qj) \ Sk

)

H1
(
(Γk ∩Qj) \ Sk

)
)

dH1 −
∫

(Γ̃∩Qj)\Sk

ψ̃(uj) dH1
∣∣∣

⩽ ε
∑
j∈Bk

H1
(
(Γk ∩Qj) \ Sk

)
+ ε

∑
j∈Bk

ψ̃(uj)H1
(
(Γk ∩Qj) \ Sk

)

+
∑
j∈Bk

∣∣ψ̃(uj)H1
(
(Γk ∩Qj) \ Sk

)
− ψ̃(uj)H1(Γ̃ ∩Qj)

∣∣. (84)

Since ε is arbitrary and from the fact thatH1
(
(Γk∩Qj)\Sk

)
→ H1(Γ̃∩Qj)

as k → ∞, we can conclude the last estimate.

By putting together (79), (81), (83) and (84) in (78), we conclude
that

lim
k→∞

F(Ωk, vk, µk) = F(Ω, v, µ).

Theorem 13. Let (Ω, v, µ) be such that h is a non-negative Lipschitz
function, v ∈ H1(Ω;R2) and µ = uH1⌞Γ, with u ∈ L1(Γ) a grid constant
density. Then, there is a sequence (Ωk, vk, µk)k ⊂ Ar(m,M), with µk =
ukH1⌞Γk and uk ∈ L1(H1⌞Γk) grid constant, such that

lim
k→∞

H(Ωk, vk, µk) = F(Ω, v, µ),

and (Ωk, vk, µk) → (Ω, v, µ), as k → ∞.

Proof. Step 1. Denote by ψcvx the convex envelope of ψ, namely,

ψcvx := {ρ : ρ is convex and ρ ⩽ ψ}.
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∣∣∣
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It is well known (see, for instance, [40, Theorem 5.32 and Remark 5.33])
that for any given density w ∈ L1(Γg), with g a Lipschitz function, then
there is a sequence (wm)m ⊂ L1(Γg) such that wm ⇀ w in L1(Γg) and

lim
m→∞

∫

Γg

ψ(wm) dH1 =

∫

Γg

ψcvx(w) dH1.

In particular, wmH1⌞Γg
∗
⇀ wH1⌞Γg as k → ∞. Therefore, if we prove

the statement of the proposition for ψ convex we also have it for ψ Borel.
Thus, from now on, in order to enlighten the notation, we will assume ψ
to be a convex function.

Step 2. Take any configuration (Ω, v, µ), where h is a Lipschitz func-
tion, v ∈ H1(Ω;R2) and µ = uH1⌞Γ is a grid constant density. Then, we
can consider a finite grid of open squares (Qj)j∈J such that

u|Qj∩Γ = uj ∈ R.

for each j ∈ J . By construction, there are finitely many points a = x0 <
x1 < · · · < xn = b such that u = ui ∈ R on

graph(h) ∩ [(xi, xi+1)× R],

for every i = 0, . . . , n (see Figure 1.6).

Define the index sets

A := {i = 1, . . . , n : ui ⩽ s0},
B := {i = 1, . . . , n} \ A, (85)

where s0 is given by Lemma 5. In such a way, we are going to apply the
wriggling process for i ∈ B. By Lemma 3, for every i ∈ B, we choose
ri > 1 such that

ui = ris0.

and we have, on each interval (xi, xi+1), a Lipschitz sequence (h̄i
k)k, that

verifies the following properties:

(i) H1(Γi
k) = riH1(Γ ∩ [(xi, xi+1)× R]), where Γi

k := graph(h̄i
k),
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Figure 1.6: On each interval [xi, xi+1], depending on whether uj > s0 or
not, we will apply the wriggling process and change the density to s0, or
do not change anything.

(ii) h(xi) = h̄i
k(x

i), and h(xi+1) = h̄i
k(x

i+1),

(iii) h|(xi,xi+1) ⩽ h̄i
k,

(iv) h̄i
k → h|(xi,xi+1) uniformly as k → ∞,

(v) H1⌞Γi
k

∗
⇀ riH1⌞(Γ ∩ (xi, xi+1)× R), as k → ∞.

Then, we define the Lipschitz sequence (h̄k)k as

h̄k|(xi,xi+1) :=

{
h̄i
k ui > s0,

h|(xi,xi+1) ui ⩽ s0,

By setting Γk := graph(h̄k), we define the density ūk on Γk as

ūk|(xi,xi+1)×R :=

{
s0 ui > s0

ui ui ⩽ s0,
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We have that the sequence (ūk)k define above satisfies the density con-
straint. Indeed, by considering the index set defined in (85), we have
∫

Γk

ūk dH1 =
∑
i∈A

∫

Γk∩[(xi,xi+1)×R]
ui dH1 +

∑
i∈B

∫

Γk∩[(xi,xi+1)×R]
s0 dH1

=
∑
i∈A

uiH1(Γk ∩ [(xi, xi+1)× R])

+
∑
i∈B

s0H1(Γk ∩ [(xi, xi+1)× R])

=
∑
i∈A

uiH1(Γ ∩ [(xi, xi+1)× R])

+ +
∑
i∈B

s0r
iH1(Γ ∩ [(xi, xi+1)× R])

=
n∑

i=1

∫

Γ∩[(xi,xi+1)×R]
ui dH1

= m,

where in the third to last step we used the fact that

H1(Γk ∩ [(xi, xi+1)× R]) = riH1(Γ ∩ [(xi, xi+1)× R]), (86)

for every i ∈ B.

Step 3. Since in general h ⩽ h̄k, we have that M = |Ω| ⩽ |Ωk|,
where Ωk is the subgraph of h̄k, for each k ∈ N. In order to fix the mass
constraint we set

γk :=
M

|Ωk|
⩽ 1,

and we have that γk → 1 as k → ∞. Define, for each k ∈ N,

hk := γkh̄k.

Now the sequence (hk)k satisfies the mass constraint, indeed
∫ b

a

hk dx =

∫ b

a

γkh̄k dx = γk|Ωk| = M.
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Now, let Γk := graph(hk). Since in general, for every k ∈ N, H1(Γk) ⩽
H1(Γk), we need to adjust the density constraint. By knowing that

∫

Γk

ūk dH1 = m,

we need to define a new sequence of density (uk)k on Γk such that, for
every k ∈ N,

∫

Γk

uk dH1 = m.

Thus we set, for each k ∈ N,

uk :=
ūk

tk
,

with

tk :=
H1(Γk)

H1(Γk)
⩽ 1.

Notice that tk → 1 as k → ∞. We have that the sequence (uk)k satisfies
the density constraint. Indeed,

∫

Γk

uk dH1 =
ūk

tk
H1(Γk) = ūkH1(Γk) =

∫

Γk

ūk dH1 = m.

Step 3. We now prove the convergence of the density, namely ukH1⌞Γk
∗
⇀

uH1⌞Γ. To do so, we first prove that ūkH1⌞Γk
∗
⇀ uH1⌞Γ, and then we

conclude by triangle inequality.

Take any φ ∈ Cc(R2) and consider ε > 0. We can find δ > 0 such
that, if x,y ∈ R2 satisfy

|y− x| < δ,

then

|φ(y)− φ(x)| < ε. (87)
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ūk dH1 = m.

Step 3. We now prove the convergence of the density, namely ukH1⌞Γk
∗
⇀

uH1⌞Γ. To do so, we first prove that ūkH1⌞Γk
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Up to refining the intervals (xi, xi+1), we can assume that

|xi − xi+1| < δ√
2
.

Let K > 0 such that for every k ∈ N we have hk ⩽ K and h ⩽ K.
This is possible, as our sequence is uniformly bounded by definition
and h is bounded. Consider a finite partition of [0, K] given by y0 =
0, y1, . . . , ym = K, such that for every l = 1, . . . ,m we have

|yl − yl+1| < δ√
2
.

Moreover, for every l, consider ȳl ∈ [yl, yl+1]. Then, from (87), for every
x ∈ [xi, xi+1]× [yl, yl+1], we have

|φ(x)− φ(x̄i, ȳl)| < ε.

We then have
∣∣∣
∫

Γk

ūkφ dH1 −
∫

Γ

uφ dH1
∣∣∣

=
∣∣∣
∑
i∈A

∫

Γk∩[(xi,xi+1)×R]
uiφ dH1 +

∑
i∈B

∫

Γk∩[(xi,xi+1)×R]
s0φ dH1

−
n∑

i=0

∫

Γ∩[(xi,xi+1)×R]
uiφ dH1

∣∣∣

=
∑
i∈B

∣∣∣
∫

Γk∩[(xi,xi+1)×R]
s0φ dH1 −

∫

Γ∩[(xi,xi+1)×R]
uiφ dH1

∣∣∣

=
m∑
l=0

∑
i∈B

∣∣∣
∫

Γk∩[(xi,xi+1)×(yl,yl+1)]

s0
[
φ(x)− φ

(
x̄i, ȳl

)]
dH1

∣∣∣

+
m∑
l=0

∑
i∈B

∣∣∣
∫

Γ∩[(xi,xi+1)×(yl,yl+1)]

ui
[
φ(x)− φ

(
x̄i, ȳl

)]
dH1

∣∣∣

+
m∑
l=0

∑
i∈B

∣∣s0φ(x̄i, ȳl)H1(Γk ∩ [(xi, xi+1)× (yl, yl+1)])
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− uiφ(x̄i, ȳl)H1(Γ ∩ [(xi, xi+1)× (yl, yl+1)])
∣∣

⩽ εs0

m∑
l=0

∑
i∈B

H1(Γk ∩ [(xi, xi+1)× (yl, yl+1)])

+ εui

m∑
l=0

∑
i∈B

H1(Γ ∩ [(xi, xi+1)× (yl, yl+1)])

+ ||φ||C0(R2)

m∑
l=0

∑
i∈B

|s0H1(Γk ∩ [(xi, xi+1)× (yl, yl+1)])

− uiH1(Γ ∩ [(xi, xi+1)× (yl, yl+1)])|

⩽ εs0
∑
i∈B

H1(Γk ∩ [(xi, xi+1)× R])

+ εui
∑
i∈B

H1(Γ ∩ [(xi, xi+1)× R])

+ ||φ||C0(R2)

∑
i∈B

|s0H1(Γk ∩ [(xi, xi+1)× R])

− uiH1(Γ ∩ [(xi, xi+1)× R])|

Now, by using condition (86) we get
∣∣∣
∫

Γk

ūkφ dH1 −
∫

Γ

uφ dH1
∣∣∣ ⩽ 2ε||u||L1(Γ), (88)

where we can conclude as ε was arbitrary.

In order to prove that ukH1⌞Γk
∗
⇀ uH1⌞Γ, we can use (88) together

with the triangle inequality and the following estimates. We fix φ and ε
as in (87), so we have
∣∣∣
∫

Γk

ukφ dH1 −
∫

Γk

ūkφ dH1
∣∣∣

=
∣∣∣
∫ b

a

( ūk

tk
φ(x, hk(x))

√
1 + γ2

kh̄
′
k(x)

2 − ūkφ(x, h̄k(x))
√
1 + h̄′

k(x)
2
)
dx

∣∣∣
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∣∣
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where we can conclude as ε was arbitrary.

In order to prove that ukH1⌞Γk
∗
⇀ uH1⌞Γ, we can use (88) together

with the triangle inequality and the following estimates. We fix φ and ε
as in (87), so we have
∣∣∣
∫

Γk

ukφ dH1 −
∫

Γk

ūkφ dH1
∣∣∣

=
∣∣∣
∫ b

a

( ūk

tk
φ(x, hk(x))

√
1 + γ2

kh̄
′
k(x)

2 − ūkφ(x, h̄k(x))
√

1 + h̄′
k(x)

2
)
dx

∣∣∣
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⩽
∣∣∣
∫ b

a

[( 1

tk
− 1

)
ūkφ(x, hk(x))

√
1 + γ2

kh̄
′
k(x)

2

+ ūkφ(x, hk(x))
√
1 + γ2

kh̄
′
k(x)

2

− ūkφ(x, h̄k(x))
√
1 + h̄′

k(x)
2
]
dx

∣∣∣. (89)

Regarding the first term on the right hand side of (89), we have that the
sequence (h̄k)k is uniformly Lipschitz, as stated in Remark 7. Then there
is L > 0 such that |h̄′

k| ⩽ L. Furthermore, we have that, for every k ∈ N,
|ūk| ⩽ C, with C > 0, and we get

∣∣∣
∫ b

a

( 1

tk
− 1

)
ūkφ(x, hk(x))

√
1 + γ2

kh̄
′
k(x)

2 dx
∣∣∣

⩽
∣∣∣ 1
tk

− 1
∣∣∣C||φ||C0(R2)

√
1 + γ2

kL
2, (90)

Now, we estimate the remaining two terms on the right-hand side of (89).
Let ε′ > 0. There is k′ ∈ N such that for k ⩾ k′ we have

|γk − 1| ⩽ ε′.

Since the function x →
√
1 + x2 is Lipschitz we have

∣∣
√

1 + γ2
kh̄

′
k(x)

2 −
√
1 + h̄′

k(x)
2
∣∣ ⩽ 2|γkh̄′

k(x)− h̄′
k(x)|

⩽ 2L|γk − 1|

⩽ 2Lε′. (91)

Thus we have
∫ b

a

∣∣∣ūkφ(x, hk(x))
√
1 + γ2

kh̄
′
k(x)

2 − ūkφ(x, h̄k(x))
√
1 + h̄′

k(x)
2

∣∣∣ dx

⩽
∫ b

a

∣∣∣ūkφ(x, hk(x))
√
1 + γ2

kh̄
′
k(x)

2 − ūkφ(x, hk(x))
√
1 + h̄′

k(x)
2

∣∣∣ dx

+

∫ b

a

∣∣∣ūkφ(x, hk(x))
√
1 + h̄′

k(x)
2
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− ūkφ(x, h̄k(x))
√
1 + h̄′

k(x)
2

∣∣∣ dx. (92)

Then, the first term on the right-hand side of (92) can be estimated by
using (91) and we get

∫ b

a

∣∣∣ūkφ(x, hk(x))
√
1 + γ2

kh̄
′
k(x)

2 − ūkφ(x, hk(x))
√
1 + h̄′

k(x)
2

∣∣∣ dx

⩽ K ′ε′, (93)

where K ′ := 2LC(b− a)||φ||C0(R2).
The second term on the right-hand side of (92) is estimated by using the
uniform continuity of φ. Since there is C ′ > 0 such that |hk| < C ′, for
every k ∈ N, we also have

|hk(x)− h̄k(x)| = |γk − 1||h̄k(x)| ⩽ ε′C ′.

As a consequence, by using a similar approach as in (87), we get

∫ b

a

∣∣∣ūkφ(x, hk(x))
√
1 + h̄′

k(x)
2 − ūkφ(x, h̄k(x))

√
1 + h̄′

k(x)
2

∣∣∣ dx

⩽ K ′′ε, (94)

where K ′′ := (b− a)C
√
1 + L2.

By putting (93) and (94) in (91), we get that

∫ b

a

∣∣∣ūkφ(x, hk(x))
√
1 + γ2

kh̄
′
k(x)

2 − ūkφ(x, h̄k(x))
√
1 + h̄′

k(x)
2

∣∣∣ dx

⩽ K ′ε′ +K ′′ε. (95)

Now, by putting (90) and (95) in (89) we get

∣∣∣
∫

Γk

ukφ dH1 −
∫

Γk

ūkφ dH1
∣∣∣ ⩽

∣∣∣ 1
tk

− 1
∣∣∣C||φ||C0(R2)

√
1 + γ2

kL
2

+K ′ε′ +K ′′ε. (96)

Finally, by using (88) and (96) we get

∣∣∣
∫

Γk

ukφ dH1 −
∫

Γ

uφ dH1
∣∣∣ ⩽

∣∣∣
∫

Γk

ukφ dH1 −
∫

Γk

ūkφ dH1
∣∣∣
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kh̄
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2
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uniform continuity of φ. Since there is C ′ > 0 such that |hk| < C ′, for
every k ∈ N, we also have

|hk(x)− h̄k(x)| = |γk − 1||h̄k(x)| ⩽ ε′C ′.

As a consequence, by using a similar approach as in (87), we get

∫ b

a

∣∣∣ūkφ(x, hk(x))
√

1 + h̄′
k(x)

2 − ūkφ(x, h̄k(x))
√

1 + h̄′
k(x)

2

∣∣∣ dx

⩽ K ′′ε, (94)

where K ′′ := (b− a)C
√
1 + L2.

By putting (93) and (94) in (91), we get that

∫ b

a

∣∣∣ūkφ(x, hk(x))
√

1 + γ2
kh̄

′
k(x)

2 − ūkφ(x, h̄k(x))
√

1 + h̄′
k(x)

2

∣∣∣ dx

⩽ K ′ε′ +K ′′ε. (95)

Now, by putting (90) and (95) in (89) we get

∣∣∣
∫

Γk

ukφ dH1 −
∫

Γk

ūkφ dH1
∣∣∣ ⩽

∣∣∣ 1
tk

− 1
∣∣∣C||φ||C0(R2)

√
1 + γ2

kL
2

+K ′ε′ +K ′′ε. (96)

Finally, by using (88) and (96) we get

∣∣∣
∫

Γk

ukφ dH1 −
∫

Γ

uφ dH1
∣∣∣ ⩽

∣∣∣
∫

Γk

ukφ dH1 −
∫

Γk

ūkφ dH1
∣∣∣
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+
∣∣∣
∫

Γk

ūkφ dH1 −
∫

Γ

uφ dH1
∣∣∣

⩽ 2ε||u||L1(Γ) +K ′ε′ +K ′′ε

+
∣∣∣ 1
tk

− 1
∣∣∣C||φ||C0(R2)

√
1 + γ2

kL
2.

we can conclude since ε and ε′ were arbitrary and by letting k → ∞.

Step 4. Regarding the displacement, set

vk(x, y) := v(x, γky).

The definition of the vk’s is well posed, indeed (x, γky) ∈ Ωk if and only if
y ⩽ h̄k(x). In particular h ⩽ h̄k, hence v(x, γky) is well defined at every
point. Notice that, since hk ⩾ 0, we have that for y ⩽ 0 it holds vk = v.
Thus, denote the bounded open set

Ω+ := Ω ∩ {y > 0},

and note that the set

Ω+
k := {(x, γky) : (x, y) ∈ Ω+}.

is also open and bounded.

We now prove that vk ⇀ v in H1
loc(Ω;R2), as k → ∞. Indeed, take

φ ∈ Cc(R2). Fix ε > 0 and since φ is uniformly continuous, we have that
|φ(x)− φ(y)| < ε, every time |x− y| < δ for some δ > 0. In particular,
since γk → 1, if k is large enough, we have

∣∣∣φ
(
x,

y

γk

)
− φ(x, y)

∣∣∣ < ε.

By using the above fact, we get

∣∣∣
∫

R2

vkφ dx−
∫

R2

vφ dx
∣∣∣ =

∣∣∣
∫

Ω+
k

vkφ dx−
∫

Ω+

vφ dx
∣∣∣

=
∣∣∣ 1
γk

∫

Ω+

v(x, y)φ
(
x,

y

γk

)
dxdy
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−
∫

Ω+

v(x, y)φ(x, y) dxdy
∣∣∣

⩽
1

γk

∣∣∣
∫

Ω+

v(x, y)
[
φ
(
x,

y

γk

)
− φ(x, y)

]
dxdy

∣∣∣

+
( 1

γk
− 1

)∫

Ω+

v(x, y)φ(x, y) dxdy
∣∣∣

⩽
ε

γk
||v||L1(Ω) +

∣∣∣ 1
γk

− 1
∣∣∣||v||L2(Ω)||φ||L2(Ω).

By letting ε → 0 and k → ∞ we conclude the first estimate. Here, we
used the Sobolev embedding for H1(Ω+;R2).

Now we prove the convergence of the gradient. First we note that the
gradients are uniformly bounded, namely it can be verified that

||∇vk||L2(Ω) ⩽ C||∇v||L2(Ω),

for some positive uniform constant C > 0. Thus, we have

∣∣∣
∫

R2

∇vk · ∇φ dx−
∫

R2

∇v · ∇φ dx
∣∣∣

=
∣∣∣
∫

Ω+
k

∇vk · ∇φ dx−
∫

Ω+

∇v · ∇φ dx
∣∣∣

=
1

λk

∫

Ω+

∂xv(x, y)∂xφ
(
x,

y

λk

)
dxdy

+

∫

Ω+

∂yv(x, y)∂yφ
(
x,

y

λk

)
dxdy,

and, from similar estimates as before, together with the uniform bound-
edness of the gradients, we can conclude that vk ⇀ v in H1(Ω+;R2), as
k → ∞.

Step 5. It remains to prove the convergence of the energy. Set µk :=
ukH1⌞Γk. We have

H(Ωk, vk, µk)−F(Ω, v, µ)
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=

∫

Ωk

W
(
E(vk)− E0(y)

)
dx−

∫

Ω

W
(
E(v)− E0(y)

)
dx

+

∫

Γk

ψ(uk) dH1 −
∫

Γ

ψ̃(u) dH1 (97)

Step 5.1 We now prove the convergence of the bulk term in (97).
∫

Ωk

W
(
E(vk)− E0(y)

)
dx−

∫

Ω

W
(
E(v)− E0(y)

)
dx

=

∫

Ωk

W
(
E(v(x, γky))− E0(y)

)
dx−

∫

Ω

W
(
E(v)− E0(y)

)
dx

=
1

γk

[ ∫

Ωk

W
(
E(v)− E0

( z

γk

))
dx−

∫

Ω

W
(
E(v)− E0(z)

)
dx

]

+
( 1

γk
− 1

)∫

Ω

W
(
E(v)− E0(z)

)
dx (98)

By noticing that E0(z) = E0(z/γk), fix ε′ > 0 such that, if k is large
enough, |Ωk \ Ω| ⩽ ε′. In the first two terms on the right-hand side of
(98), we have that, for every k, Ω ⊂ Ωk, and then we can proceed as in
(66), and we get

1

γk

[ ∫

Ωk

W
(
E(v)− E0(z)

)
dx−

∫

Ω

W
(
E(v)− E0(z)

)
dx

]

=
1

γk

∫

Ωk\Ω
W

(
E(v)− E0(y)

)
dx.

From here we conclude by Dominated Convergence Theorem. Notice
that the second term on the right-hand side of (98) is going to zero,
since γk → 1 as k → ∞.
From here we conclude the convergence of the bulk term in (97).

Step 5.2 We now consider the surface terms in (97). Using the index
sets defined in (85), we get

∫

Γk

ψ(uk) dH1 =
∑
i∈A

∫

Γk∩[(xi,xi+1)×R]
ψ
(uj

tk

)
dH1
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+
∑
i∈B

∫

Γk∩[(xi,xi+1)×R]
ψ
(s0
tk

)
dH1.

By using the fact that ψ is continuous (as we are in the convexity as-
sumption stated in Step 1) and from the fact that, for every i ∈ B,

ψ
(s0
tk

)
H1(Γk ∩ [(xi, xi+1)× R]) = ritkψ

(s0
tk

)
H1(Γ ∩ [(xi, xi+1)× R]),

we get

lim
k→∞

∫

Γk

ψ(uk) dH1

= lim
k→∞

[∑
i∈A

ψ
(uj

tk

)
H1(Γ ∩ [(xi, xi+1)× R])

+
∑
i∈B

ritkψ
(s0
tk

)
H1(Γ ∩ [(xi, xi+1)× R])

]

=
∑
i∈A

ψ(uj)H1(Γ ∩ [(xi, xi+1)× R])

+
∑
i∈B

riψ(s0)H1(Γ ∩ [(xi, xi+1)× R])

=
∑
i∈A

ψ̃(uj)H1(Γ ∩ [(xi, xi+1)× R])

+
∑
i∈B

ψ̃(uj)H1(Γ ∩ [(xi, xi+1)× R])

=

∫

Γ

ψ̃(uj) dH1.

This concludes the estimate for the surface term in (97).

Step 6. By putting all the steps together, we then conclude that

lim
k→∞

H(Ωk, vk, µk) = F(Ω, v, µ).

This completes the proof of Theorem 10.
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Chapter 2

A phase-field formulation for
epitaxial growth with
adatoms

This Chapter is the continuation of the study contained in the previous
one and is based on the paper [35]. Here we will develop a phase-field
formulation for the functional F defined in (19). Phase-field formula-
tions are, in general, useful for their flexibility in the numerical analysis.
Indeed, a sharp interface such as the surface of a thin film (e.g. the one
studied in Chapter 1) is hard to tackle numerically. Therefore, we aim
to replace the free interface Γ in F with a diffuse region that in the limit
can approximate it, in some sense that will be clarified, in the analysis
performed in this Chapter.
The following analysis will use the notations and definitions introduced
in Chapter 1. Moreover, in what follows, we will use the convergence
of sequences of the form (εn)n∈N. Every time we would write εn → 0
as n → ∞, in order to enlighten the notation, we write ε → 0 instead.
However, since the main results of this paper do not depend on a sub-
sequence, we can replace the discrete parameter with a continuous one
and get the same results.
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2.1 The model

In this section we introduce the functionals that are object of our study.
We notice that the formulation we are going to propose resembles the
Modica-Mortola (also known as Cahn-Hilliard) and the Ambrosio-Tortorelli
energies. We start with the definition of a double-well potential.

Definition 21. Let P : R → R+ be a continuous function such that

(i) P−1(0) = {0, 1};

(ii) There exist r, C > 0 such that

P (t) ⩾ C |t| ,

for every |t| > r. A function that satisfies those properties is re-
ferred as double-well potential.

Consider

Q := (a, b)× R and Q+ := Q ∩ {y > 0}.

We define the phase field variable w ∈ H1(Q+; [0, 1]) and the admissible
configurations that will be used in the phase-field formulation.

Definition 22. We say that the triplet (w, v, u) is an admissible phase-
field configuration if w ∈ H1(Q+) is such that 0 ⩽ w ⩽ 1, v ∈ H1(Q;R2)
and u ∈ L1(R2) with associated measure µ := uL2⌞Q+. We denote the
set of admissible phase-field configurations by Ap.
Given M,m > 0, we say that (w, v, u) ∈ Ap(m,M) if (w, v, u) ∈ Ap and
if

∫

Q+

w dx = M,

∫

Q+

u dx = m (99)

hold.

The phase-field functional is given in the following definition.
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Definition 23. We define the functional Fε : H1(Q+) × H1(Q;R2) ×
L1(R2) → [0,+∞] as

Fε(w, v, u) :=

{
Gε(w, v, u) if (w, v, u) ∈ Ap,

+∞ else,

where

Gε(w, v, u) :=

∫

Q+

(w + ηε)W
(
E(v)− E0(y)

)
dx

+
1

σ

∫

Q+

[
ε|∇w|2 + 1

ε
P (w)

]
ψ(u) dx,

with ηε = o(ε), as ε → 0, and

σ := 2

∫ 1

0

√
P (t) dt.

Additionally, we define the functional with the mass constraint Fm,M
ε :

H1(Q+)×H1(Q;R2)× L1(R2) → [0,+∞], as

Fm,M
ε (w, v, u) :=

{
Gε(w, v, u) if (w, v, u) ∈ Ap(m,M),

+∞ else.

For the reader’s convenience, we recall the definitions of the Γ-limiting
functionals, that are already mentioned in Definition 19.

Definition 24. We define the functional F : A → [0,+∞] as

F(Ω, v, µ) :=

{
G(Ω, v, µ) if (Ω, v, µ) ∈ A,

+∞ else,

where

G(Ω, v, µ) :=
∫

Ω

W
(
E(v)− E0(y)

)
dx

+

∫

Γ̃

ψ̃(u) dH1 +

∫

Γc

ψc(u) dH1 + θµs(R2).
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Moreover, we define the functional Fm,M : A → [0,+∞] as

Fm,M(Ω, v, µ) :=

{
G(Ω, v, µ) if (Ω, v, µ) ∈ A(m,M),

+∞ else,

where A and A(m,M) are defined in Definitions 15 and 17.

2.2 Main result

In this section, we state the main results achieved in [35]. First, we need
to introduce the notion of convergence we will use.

Definition 25. We say that (wε, vε, uε)ε ⊂ Ap converges to (Ω, v, µ) ∈ A,
and we write (wε, vε, uε) → (Ω, v, µ) as ε → 0, if

(i) wε → χΩ in L1
loc(Q

+), where χΩ is the indicator function of Ω;

(ii) vε → v in L2
loc(Q);

(iii) µε
∗
⇀ µ weak∗ in the sense of measures, where

µε :=
uε

σ

(
ε|∇wε|2 +

1

ε
P (wε)

)
L2⌞Q+.

Remark 10. Thanks to Proposition 1, the configuration space Ap is a
metric space.

We now present the main contribution of this Chapter.

Theorem 14. Fε
Γ−→ F , as ε → 0, with respect to the topology in

Definition 25.

We now investigate the class of configurations for which we have com-
pactness.

Remark 11. We notice that the function ψ does not need any further
hypotheses for the coerciveness, beside being a strictly positive Borel
function.
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Theorem 15. Let (wε, vε, uε)ε ⊂ Ap(m,M) be a sequence such that

sup
ε>0

F(wε, vε, uε) < ∞,

sup
ε>0

∫

Q+

|E(vε)|2 dx < ∞,

µε
∗
⇀ µ

with

suppµ ⊂ Γ.

Then, there exists (Ω, v, µ) ∈ A(m,M) such that (wε, vε, uε) → (Ω, v, µ),
as ε → 0.

The following theorem is similar to Theorem 14, but when the con-
straints (42) and (99) on the configurations are in force.

Theorem 16. Fm,M
ε

Γ−→ Fm,M , as ε → 0, with respect to the topology
in Definition 25.

The proofs of Theorems 14 and 16 are a consequence of the following
two steps.

Step 1 Liminf inequality. In Theorem 20 we will prove that for every
(Ω, v, µ) ∈ A and for every (wε, vε, uε)ε ⊂ Ap, such that (wε, vε, uε) →
(Ω, v, µ) as ε → 0, we have

F(Ω, v, µ) ⩽ lim inf
ε→0

Fε(wε, vε, uε).

Step 2 Limsup inequality for the constrained problem. In Theorem 21
we prove that for every (Ω, v, µ) ∈ A(m,M), there is a sequence
(wε, vε, uε)ε ⊂ Ap(m,M) such that (wε, vε, uε) → (Ω, v, µ) as ε → 0
and

lim sup
ε→0

Fε(wε, vε, uε) ⩽ F(Ω, v, µ).
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The following theorem is a consequence of Theorems 4, 15 and 16 and
states the convergence of the minimising sequences for Fε.

Theorem 17. We have that

lim
ε→0

min
Ap(m,M)

Fε = min
A(m,M)

F .

We remark that the family (Fε)ε is equi-coercive and lower semi-continuous
and therefore we have the existence of minimisers (see Theorem 4).

We would like to briefly give an idea of the proof of Theorems 20 and
21.
The main difficulty of the liminf inequality comes from the surface term.
Indeed, for a given configuration (Ω, v, µ) ∈ A, the set Γ might present
a dense cut set. To get around it, we define

Cξ := {x = (x, y) ∈ Γc : h−(x)− y < ξ}.

It is possible to prove that Γc \Cξ is a finite number of vertical segments.
Since we can now separate those cuts and include each of them in a
suitable rectangle R, we suppose that we only have one cut point xc and
we repeat the argument for each other one afterward. The energy around
such a cut is given by

lim inf
ε→0

1

σ

∫

Q+∩R

[
ε|∇wε|2 +

1

ε
P (wε)

]
ψ(uε) dx.

From here we can separate the energy on the left and on the right of
each single cut, namely we can split R = Rℓ ∪ Rr in such a way that
Rℓ ∩ Rr = {xc} × [0, h−(xc)]. Therefore, when we pass to the liminf, we
get

lim inf
ε→0

1

σ

∫

Q+∩R

[
ε|∇wε|2 +

1

ε
P (wε)

]
ψ(uε) dx

⩾ lim inf
ε→0

1

σ

∫

Q+∩Rℓ

[
ε|∇wε|2 +

1

ε
P (wε)

]
ψ(uε) dx

+ lim inf
ε→0

1

σ

∫

Q+∩Rr

[
ε|∇wε|2 +

1

ε
P (wε)

]
ψ(uε) dx.
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The following theorem is a consequence of Theorems 4, 15 and 16 and
states the convergence of the minimising sequences for Fε.

Theorem 17. We have that

lim
ε→0

min
Ap(m,M)

Fε = min
A(m,M)

F .

We remark that the family (Fε)ε is equi-coercive and lower semi-continuous
and therefore we have the existence of minimisers (see Theorem 4).
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First, we prove that

uε

σ

(
ε|∇wε|2 +

1

ε
P (wε)

)
L2⌞Rℓ ∗

⇀ fH1⌞(Γc ∩R) + (µs)ℓ,

uε

σ

(
ε|∇wε|2 +

1

ε
P (wε)

)
L2⌞Rr ∗

⇀ gH1⌞(Γc ∩R) + (µs)r,

for some f, g ∈ L1(Γc \ Cξ), as ε → 0 such that

f + g = u|Γc\Cξ
and (µs)ℓ + (µs)r = µs. (100)

Therefore, if we take into account the rectangle on the left of the cut, we
can prove that

lim inf
ε→0

1

σ

∫

Q+∩Rℓ

[
ε|∇wε|2 +

1

ε
P (wε)

]
ψ(uε) dx

⩾
∫

∂∗Rℓ

ψ̃(f) dH1 + θ(µs)ℓ(R2).

We can conclude by summing up the contribution given by the term
integrated on Rr and by considering the definition of ψc, given the fact
that

ψ̃(f) + ψ̃(g) ⩾ ψc(u),

provided that f + g = u.

The limsup inequality is based on a diagonalisation argument. Namely,
we can approximate a given configuration (Ω, v, µ) ∈ A(m,M), with a
sequence (Ωε, vε, uεH1⌞Γε) such that Ωε is the subgraph of a C∞ function
and uε ∈ L1(Γε) is grid- constant (see Definition 8 and Theorems 22 and
24).
One of the key ingredients of the proof of Theorem 24 is the wriggling
process see in Chapter 1, first introduced in [18], largely used in [17] and
later refined in [28].
In Theorem 25, we use a similar strategy to the one used in [9, Theo-
rem 3.1], in which the phase-field approximating sequence (wε)ε is built
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by making use of the almost optimal profile problem as explained in [55,
Proposition 2], which is the solution of the following differential equation,





ε2 |γ′
ε(t)|

2 = P (γε(t)) +
√
ε t ∈ R,

γε(0) = 0,

γε(1) = 1.

(101)

We can define the phase-field variable as

wε(x) := γε

dΩ(x)
ε


,

where γε is the solution of (101) and

dΩ(x) := dist(x,Ω)− dist(x,R2 \ Ω),

is the signed distance from ∂Ω. Now, once we make sure that all the
constraints are satisfied, we follow a path inspired by the one contained
in [9].

2.3 Compactness

In this section we give the proof of Theorem 15. For the reader’s conve-
nience, we recall the statement.

Theorem 18. Let (wε, vε, uε)ε ⊂ Ap(m,M) be a sequence such that

sup
ε>0

Fε(wε, vε, uε) < ∞, (102)

sup
ε>0



Q+

|E(vε)|2 dx < ∞, (103)

µε
∗
⇀ µ,

as ε → 0, with

suppµ ⊂ Γ. (104)

Then, there exists (Ω, v, µ) ∈ A(m,M) such that (wε, vε, uε) → (Ω, v, µ),
as ε → 0.
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Proof. Step 1. The compactness of the phase-field variable wε follows a
standard argument, which makes use of the first bound in (102), and can
be found in [55]. Therefore, we have the existence of w ∈ BV(Q+; {0, 1})
such that, up to a subsequence wε → χΩ in L1(Q+). Moreover

∫

Q+

wε dx →
∫

Q+

χΩ(x) dx = |Ω| = M,

thus the mass constraint is preserved.
Step 2. From (104) we have that suppµ ⊂ Γ. From the fact that ∂Γ ∩
(a, b) = Ø, we have, by standard properties of the weak∗ convergence
that

µ(Q+) = lim
ε→0

µε(Q
+) = m. (105)

Step 3. By (103), there exists a function E ∈ L2(Q;R2) such that

E(vε) ⇀ E

in L2(Q;R2) as ε → 0. By Korn’s inequality, there exists C > 0 such
that

∫

Q+

|∇vε|2 dx ⩽ C

∫

Q+

|E(vε)|2 dx < ∞.

From that, again by compactness, we have the existence of a function
v ∈ H1(Q;R2) such that, up to a subsequence (not relabelled), vε ⇀ v
as ε → 0. By uniqueness of the weak limit, E(vε) ⇀ E = E(v).
By putting together the three above steps, we conclude the proof of the
Theorem.

Remark 12. In Theorem 15, hypothesis (104) is essential. Indeed, if we
drop it we cannot ensure the validity of (105) and neither the fact that
(µε)ε is converging to a Radon measure that is supported on Γ. This
behaviour is due to the fact that the phase-field variable and the density
one are completely independent, see Figure 2.1.
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Figure 2.1: The phase-field variable converges to χΩ, whereas the uε,
being independent from the other variables, can concentrate in an area
away from Γ.

2.4 Liminf inequality

The liminf inequality relies on the strategy used in Theorem 9 and a
corollary of the main result contained in [17]. In this paper, the authors
work with a surface energy in a bounded domain in Rn, with an adatom
density at the interface. We recall such a result, with our notation. The
proof is presented in [17, Theorem 3.10].

Theorem 19. Let Σ ⊂ R2 be an open set and consider the functional

Eε(w, u) :=
1

σ

∫

Σ

[
ε |∇w|2 + 1

ε
P (w)

]
ψ(u) dx,

where P as in Definition 21 and, with an abuse of notation, (w, u) ∈ Ap.

Then, Eε
Γ→ E , as ε → 0, where

E(A, µ) :=
∫

∂∗A∩Σ
ψ̃(u) dH1 + θµs(R2), (106)

for (A, µ) ∈ A, with respect to the topology in Definition 25. Here θ is
as in Definition 14 and µs is the singular part of µ with respect to H1.
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Figure 2.1: The phase-field variable converges to χΩ, whereas the uε,
being independent from the other variables, can concentrate in an area
away from Γ.
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The liminf inequality relies on the strategy used in Theorem 9 and a
corollary of the main result contained in [17]. In this paper, the authors
work with a surface energy in a bounded domain in Rn, with an adatom
density at the interface. We recall such a result, with our notation. The
proof is presented in [17, Theorem 3.10].
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P (w)

]
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Then, Eε
Γ→ E , as ε → 0, where

E(A, µ) :=
∫

∂∗A∩Σ
ψ̃(u) dH1 + θµs(R2), (106)

for (A, µ) ∈ A, with respect to the topology in Definition 25. Here θ is
as in Definition 14 and µs is the singular part of µ with respect to H1.
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Remark 13. We notice that if we consider an open subset B compactly
contained in Σ and denote by Cb(B) the set of continuous and bounded
functions on B, then, if we consider the convergence

∫

B

φ dµε →
∫

B

φ dµ,

for every φ ∈ Cb(B), we have that the set of integration in the Γ-limit in
(106) is ∂∗A ∩ B.

The main theorem of this section, namely the liminf inequality, is the
following.

Theorem 20. Let (Ω, v, µ) ∈ A. Then, for every (wε, vε, uε)ε ⊂ Ap, such
that (wε, vε, uε) → (Ω, v, µ) as ε → 0, we have

F(Ω, v, µ) ⩽ lim inf
ε→0

Fε(wε, vε, uε).

Proof. Step 1. Bulk term. Take any compact set K ⊂⊂ Ω. We have

lim inf
ε→0

∫

Q+

(wε + ηε)W
(
E(vε)− E0(y)

)
dx

⩾ lim inf
ε→0

∫

K

(wε + ηε)W
(
E(vε)− E0(y)

)
dx

⩾
∫

K

W
(
E(v)− E0(y)

)
dx, (107)

where in the last step we used the fact that W is convex and the fact
that lim infε→0wε = 1 on every K ⊂⊂ Ω. Now we can consider an in-
creasing sequence of compact sets Kj ⊂⊂ Ω and conclude with the use of
the Dominated Convergence Theorem. Here we remark that, differently
from Theorem 9, the vε’s are defined on the entire Q and there is no need
of the additional technicalities as in the mentioned Theorem, in which
the displacement sequence was defined only in H1

loc(Ωε;R2).

Step 2. Surface term. We would like to separate Γ̃ and Γc. On the
regular part we apply the result contained in [17] together with an error
that occurs when the cut part meet the regular part. On the cut part, we
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isolate each vertical cut, far enough from the regular part, and we look
at the contribution given by the left and right contribution given by uε.

Fix ξ > 0 and consider the set

Cξ := {x = (x, y) ∈ Γc : h−(x)− y < ξ}.

By a standard measure theory argument, there is a sequence (ξγ)γ ⊂ R
such that ξγ → 0, as γ → 0 and

µ(Γ ∩ ∂Cξγ ) = 0, (108)

for every γ > 0. As a consequence, from Lemma 2 and for every γ > 0,
we have that Γc \ Cξγ consists of a finite number of vertical segments,
whose projections on the x-axis correspond to the set (xi)Ni=1. Recalling
the definition of Γc (see Definition 6), it holds that Cξγ is monotonically
converging to the empty set, as ε → 0. Therefore, we get that

µ(Cξγ ) → 0, µ(Γc \ Cξγ ) → µ(Γc), (109)

as γ → 0. Let δ = δ(ε) > 0 such that δ → 0 as ε → 0 and we have
δ < |xi − xj|, for every i, j = 1, . . . , N . As we have a finite number of
cuts, in order to simplify the notation, we do the following construction
as we had only one cut point, and then we repeat it for each other
one. Therefore, let (xc, h(xc)) be the only cut point of Γ. Consider the
rectangle

R = R(δ, ξγ) := (xc − δ, xc + δ)× (−δ, h−(xc)− ξγ).

Up to further reducing δ, we can assume that Γ̃ ∩ R = Ø. We can split
R as

Rℓ = Rℓ(δ, ξγ) := (xc − δ, xc)× (−δ, h−(xc)− ξγ),

Rr = Rr(δ, ξγ) := (xc, xc + δ)× (−δ, h−(xc)− ξγ).

We remark that we need to consider rectangles that go below {y = 0}, as
a cut might touch the y-axes and a singular measure (e.g. a Dirac delta)
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might be present at the endpoint of such a cut.
Therefore, we get

lim inf
ε→0

1

σ

∫

Q+

[
ε|∇wε|2 +

1

ε
P (wε)

]
ψ(uε) dx ⩾

lim inf
ε→0

1

σ

∫

Q+∩R

[
ε|∇wε|2 +

1

ε
P (wε)

]
ψ(uε) dx

+ lim inf
ε→0

1

σ

∫

Q+\R

[
ε|∇wε|2 +

1

ε
P (wε)

]
ψ(uε) dx. (110)

Step 2.1 Cut part Γc. We deal now with the first term on the right-hand
side of (110). We have

lim inf
ε→0

1

σ

∫

Q+∩R

[
ε|∇wε|2 +

1

ε
P (wε)

]
ψ(uε) dx

⩾ lim inf
ε→0

1

σ

∫

Q+∩Rℓ

[
ε|∇wε|2 +

1

ε
P (wε)

]
ψ(uε) dx

+ lim inf
ε→0

1

σ

∫

Q+∩Rr

[
ε|∇wε|2 +

1

ε
P (wε)

]
ψ(uε) dx. (111)

Now, we localise the weak∗ convergence of uε to µ. Namely, we prove

uε

σ

(
ε|∇wε|2 +

1

ε
P (wε)

)
L2⌞Rℓ ∗

⇀ fH1⌞(Γc ∩R) + (µs)ℓ,

uε

σ

(
ε|∇wε|2 +

1

ε
P (wε)

)
L2⌞Rr ∗

⇀ gH1⌞(Γc ∩R) + (µs)r,

for some f, g ∈ L1(Γc \ Cξγ ), as ε → 0 such that

f + g = u|Γc\Cξγ
and (µs)ℓ + (µs)r = µs,

where (µℓ)s and (µr)s are supported in Γc \ Cξγ . Since the strategy is
similar to the one proposed in Theorem 9, we only recall the main ideas.
By the weak∗ covergence of uε to µ and by compactness we have that up
to a subsequence

uε

σ

(
ε|∇wε|2 +

1

ε
P (wε)

)
L2⌞Rℓ ∗

⇀ µℓ
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and

uε

σ

(
ε|∇wε|2 +

1

ε
P (wε)

)
L2⌞Rr ∗

⇀ µr,

for some Radon measures µℓ and µr. It is possible to prove that suppµℓ ⊂
Γc \Cξγ and suppµr ⊂ Γc \Cξγ and, by the Radon-Nikodym decomposi-
tion, there are f, g ∈ L1(Γc \ Cξγ ) such that

µℓ = fH1⌞(Γc ∩R) + (µs)ℓ and µr = gH1⌞(Γc ∩R) + (µs)r,

where (µℓ)s and (µr)s are singular measures with respect to fH1⌞(Γc\Cξγ )
and gH1⌞(Γc \ Cξγ ) respectively. It is a straight computation to prove
the fact that µ = µℓ + µr, which implies (100).

We now focus on the first term on the right-hand side of (111).
Notice that since wε → χΩ∩R in L1(Q+ ∩ R), we can apply Theorem 19
(see Remark 13 with Σ = Q and B = Rℓ) and we get

lim inf
ε→0

1

σ

∫

Q+∩Rℓ

[
ε|∇wε|2 +

1

ε
P
(
wε

)]
ψ(uε) dx

⩾
∫

∂∗Rℓ

ψ̃(f) dH1 + θ(µs)ℓ(Γc \ Cξγ ).

By applying the same argument to the second term on the right-hand
side of (111), we get

lim inf
ε→0

1

σ

∫

Q+∩R

[
ε|∇wε|2 +

1

ε
P
(
wε

)]
ψ(uε) dx

⩾
∫

∂∗Rℓ

ψ̃(f) dH1 + θ(µs)ℓ(Γc \ Cξγ )

+

∫

∂∗Rr

ψ̃(g) dH1 + θ(µs)r(Γc \ Cξγ )

⩾
∫

Γc\Cξγ

ψc(u) dH1 + θµs(Γ̃ \ Cξγ ), (112)

where in the last step we used Definition 12 and (100).
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σ
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1

ε
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P
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1

σ
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1

ε
P
(
wε
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Step 2.2 Regular part Γ̃. We deal with the second term on the right-
hand side of (110). We can see the remaining cut part Cξγ in Q+ \R as
a singular measure with respect to H1, namely

uεL2(Q+ \R)
∗
⇀ µ⌞(Q+ \R) = uH1⌞Γ̃ + µs(Q+ \R) + uH1⌞Cξγ ,

where we used (108). Now, we can apply Theorem 19 and since Γ̃∩Cξγ ⊂
Q+ \R, we obtain

lim inf
ε→0

1

σ

∫

Q+\R

[
ε|∇wε|2 +

1

ε
P
(
wε

)]
ψ(uε) dx

⩾
∫

Γ̃∪Cξγ

ψ̃(u) dH1

+ θ
(
µs(Γ̃ ∪ Cξγ ) +

∫

Cξγ

u dH1
)
. (113)

Step 3. Conclusion. Using (107), (112) and (113) we get

∫

Ω

W
(
E(v)− E0(y)

)
dx+

∫

Γc\Cξγ

ψc(u) dH1 + θµs(Γc \ Cξγ )

+

∫

Γ̃∪Cξγ

ψ̃(u) dH1 + θ
(
µs(Γ̃ ∪ Cξγ ) +

∫

Cξγ

u dH1
)

⩽ lim inf
ε→0

∫

Q+

(wε + ηε)W
(
E(vε)− E0(y)

)
dx

+ lim inf
ε→0

1

σ

∫

Q+

[
ε|∇wε(|2 +

1

ε
P
(
wε

)]
ψ(uε) dx

⩽ lim inf
ε→0

Fε(wε, vε, uε). (114)

Now, by letting ξγ → 0, by (108) and since Cξγ → Ø, we get

µs(Γc \ Cξγ ) → µs(Γc), µs(Γ̃ ∪ Cξγ ) → µs(Γ̃)

and

∫

Cξγ

u dH1 → 0. (115)
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In conclusion, from (114) and (115), we get the desired liminf inequality

F(Ω, v, u) ⩽ lim inf
ε→0

Fε(wε, vε, uε).

2.5 Limsup inequality

The main result of this section is the mass-constrained limsup inequality.
Its proof is not a direct application of the main result of [17, Theorem
3.10]. This is due to the interplay of the phase-field variable in the bulk
and in the surface term. For that reason our approach is partially inspired
by [9].

Theorem 21. Let (Ω, v, µ) ∈ A(m,M). Then, there exists (wε, vε, uε)ε ⊂
Ap(m,M), such that (wε, vε, uε) → (Ω, v, µ) as ε → 0, and

lim sup
ε→0

Fε(wε, vε, uε) ⩽ F(Ω, v, µ).

Due to the work carried out in Chapter 1, we can reduce to prove the
existence of a recovery sequence for a simpler case. We now see, step by
step, the argument that allows us to reduce to the case in Theorem 25.

Remark 14. In what follows, a diagonal argument will be used to obtain
the desired result. We note that this is possible as we are in the setting
in which the Γ-convergence can be rephrased in terms of the liminf and
limsup inequality.

We start with an approximation results proved in [28] and reported
in Chapter 1.

Theorem 22. For every (Ω, v, µ) ∈ A(m,M), there exists a sequence
(Ωε, vε, µε)ε ⊂ Ar(m,M), with µε = uεH1⌞Γε, where uε is grid-constant,
such that (Ωε, vε, µε) → (Ω, v, µ) as ε → 0. Moreover,

lim sup
ε→0

F(Ωε, vε, µε) ⩽ F(Ω, v, µ).
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Remark 14. In what follows, a diagonal argument will be used to obtain
the desired result. We note that this is possible as we are in the setting
in which the Γ-convergence can be rephrased in terms of the liminf and
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We start with an approximation results proved in [28] and reported
in Chapter 1.

Theorem 22. For every (Ω, v, µ) ∈ A(m,M), there exists a sequence
(Ωε, vε, µε)ε ⊂ Ar(m,M), with µε = uεH1⌞Γε, where uε is grid-constant,
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Proof. The proof is given in Theorems 11 and 12.

Therefore, Theorem 21 will be a consequence of the following result
together with a diagonal argument.

Theorem 23. Let (Ω, v, µ) ∈ Ar(m,M) be such that µ = uH1⌞Γ with
u ∈ L1(Γ) grid constant. Then, there exists (wε, vε, uε)ε ⊂ Ap(m,M),
such that (wε, vε, uε) → (Ω, v, µ) as ε → 0, and

lim sup
ε→0

Fε(wε, vε, uε) ⩽
∫

Ω

W
(
E(v)− E0(y)

)
dx+

∫

Γ

ψ̃(u) dH1.

Using the following approximation result proved in [28] and reported
in Chapter 1, we can simplify even further our statement by considering
the functional with ψ instead of ψ̃ in the surface term.

Theorem 24. Let (Ω, v, µ) ∈ Ar(m,M). Then, there exists a sequence
(Ωε, vε, µε)ε ⊂ Ar(m,M) such that (Ωε, vε, µε) → (Ω, v, µ) and

lim
ε→∞

H(Ωε, vε, µε) =

∫

Ω

W
(
E(v)− E0(y)

)
dx+

∫

Γ

ψ̃(u) dH1,

where H is defined (18).

Proof. The proof is given in Theorem 13.

Remark 15. From a standard result (see, for instance, [40, Theorem
5.32 and Remark 5.33]) we can assume in without loss of generality that
ψ is convex.

Thus, the following Theorem, together with a diagonalisation argu-
ment, will give the limsup inequality.

Theorem 25. For every configuration (Ω, v, µ) ∈ Ar(m,M), there is a
sequence (wε, vε, uε)ε ⊂ Ap(m,M) such that (wε, vε, uε) → (Ω, v, µ) as
ε → 0. Moreover,

lim sup
ε→0

Fε(wε, vε, uε) ⩽ H(Ω, v, µ).
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Proof. Step 1. C∞ approximation. Let (Ω, v, µ) ∈ Ar(m,M). We ap-
proximate h by convolution in order to get a C∞ approximant gε such
that the mass constraint is satisfied, for every ε > 0.
Consider a convolution kernel ρ ∈ C∞

c (R) (namely,
∫
R ρ dx = 1, ρ ⩾ 0

and supp ρ ⊂ [−1/2, 1/2]). Let, for each x ∈ R,

ρε(x) :=
1

ε
ρ
(x
ε

)

and gε : (a, b) → R be defined as

gε(x) := h ∗ ρε(x).

Let Ωε be the subgraph of gε. By standard results, Γε := ∂Ωε∩
(
(a, b)×R

)
is a C∞ curve and since gε → h uniformly as ε → 0 we have

R2 \ Ωε
H→ R2 \ Ω. (116)

In addition,

lim
ε→0

H1(Γε) = H1(Γ), (117)

Conisider a grid (Rj)Nj=1 for which µ is grid-constant. From (iii) of Def-
inition 7, the uniform convergence and (117), we can assume that there
exists ε0 > 0 such that for every ε < ε0 and for each j = 1, . . . , N we
have

Γ ∩Rj ̸= Ø and Γε ∩Rj ̸= Ø.

We also note that from the previous assumption that

lim
ε→0

H1(Γε ∩Rj) = H1(Γ ∩Rj), (118)

for each j = 1, . . . , N .
We define uε : Γε → R as

uε|Γε∩Rj :=
H1(Γ ∩Rj)

H1(Γε ∩Rj)
uj. (119)
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In addition,

lim
ε→0

H1(Γε) = H1(Γ), (117)

Conisider a grid (Rj)Nj=1 for which µ is grid-constant. From (iii) of Def-
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By assumption on u we get that

∫

Γε

uε dH1 =
N∑
j=1

uεH1(Γε ∩Rj) =
N∑
j=1

ujH1(Γ ∩Rj) = m.

By using standard properties of the convolution, we obtain

∫ b

a

gε dx =

∫ b

a

h ∗ ρε dx =
(∫ b

a

h(x) dx
)(∫

R
ρε(x) dx

)
= M.

We are left to define a displacement sequence vε ∈ H1(Ωε;R2). We claim
that for every x ∈ (a, b) it holds

gε(x) ⩽ h(x) + εL, (120)

where ℓ is the Lipschitz constant of h. We have

gε(x) = h ∗ ρε(x) =
∫

R
h(t)ρε(x− t) dt

⩽
∫ b

a

h(x)ρε(x− t) dt+

∫ b

a

|h(t)− h(x)| ρε(x− t) dt

⩽ h(x) + ℓε.

Thanks to (120), we have

{(x, y − εℓ) : (x, y) ∈ Ωε} ⊂⊂ Ω

and thus, the function vε : Q → R2, set as

vε(x, y) := v(x, y − εℓ),

is well defined in a neighbourhood of Ωε.
We conclude that (Ωε, vε, µε)ε ⊂ Ar(m,M), where µε := uεH1⌞Γε, and
that (Ωε, vε, uε) → (Ω, v, µ) from (116) and the fact that vε is a transla-
tion of v and ||vε − v||H1(Q;R2) → 0 (see [13, Theorem 4.26]) as ε → 0.
Now we prove that we also have the approximation of the energy. First,
we have

∣∣∣
∫

Ωε

W
(
E(vε)− E0(y)

)
dx−

∫

Ω

W
(
E(v)− E0(y)

)
dx

∣∣∣
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⩽


Ωε

W�
E(vε)− E0(y)


−W

�
E(v)− E0(y)

 dx

+



Ωε\Ω
W

�
E(v)− E0(y)


dx. (121)

The second term on the right-hand side of (121) goes to zero by Lebesgue
Dominated Convergence Theorem. Regarding the first term, by a con-
tinuity argument for W (as it is a quadratic form), we obtain that for
every λ > 0 there is a ε > 0 such that for every ε < ε we have

W�
E(vε)− E0(y)


−W

�
E(v)− E0(y)

 ⩽ λ. (122)

From (121) and by taking into account (122), we obtain



Ωε

W
�
E(vε)− E0(y)


dx−



Ω

W
�
E(v)− E0(y)


dx



⩽ λ |Ωε|+


Ωε\Ω
W

�
E(v)− E0(y)


dx → 0, (123)

as ε → 0. Moreover, by (117) and (119), we have



Γε

ψ(uε) dH1 =
N
j=1

ψ
 H1(Γ ∩Rj)

H1(Γε ∩Rj)
uj

H1(Γε ∩Rj)

→


Γ

ψ(u) dH1, (124)

as ε → 0, where we used the convexity of ψ and (118). From (123) and
(124) we can conclude that

lim
ε→0

H(Ωε, vε, uε) = H(Ω, v, µ).

Therefore, in the sequel we can assume h to be of class C∞.

Step 2. Displacement and phase-field sequences. Given ε > 0, con-
sider the almost optimal profile problem




ε2 |γ′
ε(t)|

2 = P (γε(t)) +
√
ε 0 ⩽ t ⩽ 1,

γε(0) = 1

γε(1) = 0.

(125)
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⩽
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 dx

+



Ωε\Ω
W

�
E(v)− E0(y)


dx. (121)
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tinuity argument for W (as it is a quadratic form), we obtain that for
every λ > 0 there is a ε > 0 such that for every ε < ε we have
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E(vε)− E0(y)


−W

�
E(v)− E0(y)

 ⩽ λ. (122)

From (121) and by taking into account (122), we obtain



Ωε

W
�
E(vε)− E0(y)


dx−



Ω

W
�
E(v)− E0(y)


dx



⩽ λ |Ωε|+


Ωε\Ω
W

�
E(v)− E0(y)


dx → 0, (123)

as ε → 0. Moreover, by (117) and (119), we have



Γε

ψ(uε) dH1 =
N
j=1

ψ
 H1(Γ ∩Rj)

H1(Γε ∩Rj)
uj

H1(Γε ∩Rj)

→


Γ

ψ(u) dH1, (124)

as ε → 0, where we used the convexity of ψ and (118). From (123) and
(124) we can conclude that

lim
ε→0

H(Ωε, vε, uε) = H(Ω, v, µ).

Therefore, in the sequel we can assume h to be of class C∞.

Step 2. Displacement and phase-field sequences. Given ε > 0, con-
sider the almost optimal profile problem




ε2 |γ′
ε(t)|

2 = P (γε(t)) +
√
ε 0 ⩽ t ⩽ 1,

γε(0) = 1

γε(1) = 0.

(125)
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We have that (125) has an unique solution γε ∈ C1([0, 1]) and 0 ⩽ γε ⩽ 1.
Moreover, we can extend γε on R by setting γε = 1 for x < 0 and γε = 0
for x > 1. Note that, for every ε > 0,

|γ′
ε(t)| =

1

ε

√
P (γε(t)) +

√
ε <

C

ε
, (126)

as the potential P is bounded in [0, 1].
From Step 1 we can assume that Ω is the subgraph of a smooth function.
We define the phase-field approximating sequence zε : Q

+ → R as

zε(x) := γε

(dΩ(x)
ε

)
.

We have that zε ∈ H1(Q+), indeed from the regularity of Ω follows that
dΩ ∈ C2(R2), and therefore γε ∈ C1(R). We first prove that zε → χΩ in
L1
loc(Q), as ε → 0. Take any compact K ⊂ Q. We have that
∫

Q+∩K
|zε(x)− χΩ(x)| dx =

∫

{x∈Q+∩K: 0⩽|dΩ(x)|⩽ε}
|zε(x)− χΩ(x)| dx

⩽ |{x ∈ Q+ ∩K : 0 ⩽ |dΩ(x)| ⩽ ε}|. (127)

Using standard properties of the Minkowski content (see [1, Definition
2.100 and Theorem 2.104]) we have that

lim
ε→0

1

2ε
|{x ∈ Q+ ∩K : 0 ⩽ |dΩ(x)| ⩽ ε}| = H1(∂Ω ∩K), (128)

as ε → 0. Therefore, from (127) and (128), we can conclude that for
every compact set K,

lim
ε→0

∫

Q+∩K
|zε(x)− χΩ(x)| dx = 0.

In order to get the mass constraint satisfied, we set

αε :=
M∫

Q+ zε(x) dx
.

Note that, from similar computation to (127), we can deduce
∫

Q+

zε(x) dx ⩾ M. (129)
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Now, since
∫

Q+

|zε| dx → M,

and from (129), we have

αε ⩽ 1 and lim
ε→0

αε = 1. (130)

We define a rescaled phase-field variable wε : R2 → R as

wε(x, y) := zε(x, αεy),

In such a way, for each ε > 0, wε satisfies
∫

Q+

wε(x) dx = M,

and wε → χΩ in L1
loc(Q), as ε → 0. Moreover, for every ε > 0, wε ∈

H1(Q,R). Indeed, from (127), (130) and up to a change of variable, it
is enough to show that, for every ε ⩾ 0, zε ∈ H1(Q,R). We have that,
by using (128), we have zε ∈ L2(Q+). For the gradient, we have the
following estimate,
∫

Q+

|∇zε|2 dx =

∫

{x∈Q+: 0⩽|dΩ(x)|⩽ε}

∣∣∣γ
′
ε(dΩ(x))

ε

∣∣∣
2

dx ⩽
C2

ε
H1(∂Ω) < ∞,

where C > 0 is as in (126). Thus, we obtain that zε ∈ H1(Q,R), for
every ε > 0, which implies wε ∈ H1(Q,R).
Let ℓ be the Lipschitz constant of h and assume ℓ ⩾ 1. We claim that if
(x, y) ∈ Q \ Ω is such that dΩ(x, y) < ε, then

(x, y − ℓε) ∈ Ω. (131)

Indeed, take any point (x̄, h(x̄)) ∈ Γ. We have

|h(x̄)− h(x)| ⩽ ℓ |x̄− x| ,

from which we can infer, by adding and subtracting y and by using ℓ ⩾ 1,
that

y − h(x) ⩽ ℓ(|x̄− x|+ |h(x̄)− y|).
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Now, if we take the infimum on both sides for x̄ ∈ Γ, we obtain

y − h(x) ⩽ ℓdΩ(x, y) ⩽ ℓε,

for which (131) follows. The case in which ℓ < 1 is easier and therefore
omitted.
We define the approximating displacement sequence vε : Q → R2 as

vε(x, y) :=

{
v(x, y − ℓε)wε(x, y − ℓε) if wε(x, y − ℓε) > 0,

0 else,

Since h ∈ C∞(a, b), the definition of vε is well posed and vε ∈ H1(Q;R2).
Indeed, for every compact set K ⊂ Q

∫

Q∩K
|vε|2 dx ⩽ ||v||2L2(Q;R2) (132)

and therefore vε ∈ L2
loc(Q;R2). Now, we set w̃ε(x, y) := wε(x, y− ℓε) and

estimate
∫

Q∩K
|∇vε|2 dx ⩽

∫

Q∩K

(
|∇vε(x, y)w̃ε(x, y)|2

+ 2 |∇vε(x, y)w̃ε(x, y)| |vε(x, y)⊗∇w̃ε(x, y)|

+ |vε(x, y)⊗∇w̃ε(x, y)|2
)
dx. (133)

To see that vε ∈ H1
loc(Q;R2), taking into account (132), we prove that the

right-hand side of (133) is bounded. The first term is easily estimated by
the Sobolev norm of the gradient of v, indeed, setQ∩Kε := Q∩K+(0, ℓε),
we have

∫

Q∩K
|∇vε(x, y)w̃ε(x, y)|2 dx ⩽

∫

Q∩K
|∇vε(x, y)|2 dx

=

∫

Q∩Kε

|∇v|2 dx

⩽ ||∇v||L2(Q) .
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We estimate the second one and then conclude for the entire right-
hand side of (133). We have that
∫

Q∩K
|vε(x, y)⊗∇w̃ε(x, y)|2 dx ⩽

∫

Q∩K
|vε(x, y)|2 |∇w̃ε(x, y)|2 dx

⩽
∫

Q∩Kε

|v(x, y)|2
∣∣∣∣
γ′
ε(dΩ(x, αεy))

ε2

∣∣∣∣
2

dx

=
C2 ||v||2L2(Q;R2)

ε4
,

where we used (126) and (128). Therefore, for each ε, vε ∈ H1
loc(Q;R2).

By using similar computations, it is possible to show that vε → v in
L2
loc(Q;R2), as ε → 0. Consider

Eε(y) := E0(y − ℓε) =

{
te1 ⊗ e1 if y ⩾ ℓε,

0 if y < ℓε.

It follows, by definition, that

E(vε) =

{
E
(
vε(x, y)

)
w̃ε(x, y) + vε(x, y)⊙∇w̃ε(x, y) if w̃ε(x, y) > 0,

0 else.

The reason for which the following computation is made with the trans-
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∫

Q+

(
wε(x) + ηε

)
W

(
E(vε)− Eε(y)

)
dx

= (1 + ηε)
[ ∫

{wε>0}
W

(
E(vε)− Eε(y)

)
dx
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We estimate the second one and then conclude for the entire right-
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Q∩K
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∫

Q∩K
|vε(x, y)|2 |∇w̃ε(x, y)|2 dx

⩽
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Q∩Kε

|v(x, y)|2
∣∣∣∣
γ′
ε(dΩ(x, αεy))

ε2

∣∣∣∣
2

dx

=
C2 ||v||2L2(Q;R2)

ε4
,
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Figure 2.2: For each x, the function w̃ε(x, y) = wε(x, y− ℓy) allows us to
see e the potential term W , where ∇w̃ε = 0.

+

∫

Ãε

W
(
E(vε)− Eε(y)

)
dx

]

+ ηε

∫

{0<w̃ε<1}
W

(
E(vε)− Eε(y)

)
dx. (134)

For the first term on the right-hand side of (134), we have
∫

{wε>0}
W

(
E(vε)− Eε(y)

)
dx =

∫

{wε(x,y+ℓε)>0}
W

(
E(v)− E0(y)

)
dx

⩽
∫

Ω

W
(
E(v)− E0(y)

)
dx, (135)

since {wε(x, y+ℓε) > 0} ⊂ Ω. Proceeding with the second term, we have
∫

Ãε

W
(
E(vε)− Eε(y)

)
dx =

∫

Aε

W
(
E(v)− E0(y)

)
dx, (136)

which goes to 0, as ε → 0, by Dominated Convergence Theorem. Finally

ηε

∫

{0<w̃ε<1}
W

(
E(vε)− Eε(y)

)
dx

⩽ Kηε

∫

{0<w̃ε<1}

( ∣∣E(
vε)w̃ε − Eε(y)

∣∣2

+ 2
∣∣E(

vε)w̃ε − Eε(y)
∣∣ |vε(x, y)| |∇w̃ε(x, y)|
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+ |vε(x, y)|2 |∇w̃ε(x, y)|2
)
dx, (137)

where K > 0 is the constant from the upper bound of the growth of W .
We estimate the three terms in the sum on the right-hand side of (137).
We have

ηε

∫

{0<w̃ε<1}

∣∣E(
vε)w̃ε − Eε(y)

∣∣2 dx

= ηε

∫

{0<wε<1}
|E(v)wε − E0(y)|2 dx

⩽ ηε

∫

{0<wε<1}
|E(v)wε|2 + |E0(y)|2 + 2 |E(v)wε| |E0(y)| dx

⩽ ηε

∫

{0<wε<1}
|E(v)|2 dx+

∫

{0<wε<1}
|E0(y)|2 dx

+ 2

∫

{0<wε<1}
|E(v)| |E0(y)| dx. (138)

Now, all the terms on the right-hand of (138) are bounded, since ∇v ∈
L2({0 < wε < 1};R2) ⊂ L1({0 < wε < 1};R2) and since |E0(y)| is
constant on {0 < wε < 1}. From that, we conclude that

ηε

∫

{0<w̃ε<1}

∣∣E(
vε)w̃ε − Eε(y)

∣∣2 dx → 0, (139)

since ηε → 0, as ε → 0.
For the second term on the right-hand side of (137), by taking into ac-
count (126), we have

ηε

∫

{0<w̃ε<1}
|vε|2 |∇w̃ε|2 dx

⩽ C2ηε
ε2

∫

{0<wε<1}
|v|2 dx

⩽ C2ηε
ε2

||v||2
∣∣{x ∈ Q+ : 0 < dΩ(x) ⩽ ε}

∣∣ → 0, (140)

as ε → 0, indeed, by (128)

1

ε

∣∣{x ∈ Q+ : 0 < dΩ(x) ⩽ ε}
∣∣ → H1(Γ)
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{0<wε<1}
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||v||2
∣∣{x ∈ Q+ : 0 < dΩ(x) ⩽ ε}
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as ε → 0, indeed, by (128)

1

ε

∣∣{x ∈ Q+ : 0 < dΩ(x) ⩽ ε}
∣∣ → H1(Γ)
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and ηε/ε → 0 by assumption.
Finally, the third term on the right-hand side of (137) goes to 0 by a
similar approach to the one used for (139) and (140).
In conclusion, from (134), (135), (139) and (140) we obtain

lim sup
ε→0



Q+

�
wε(x) + ηε


W

�
E(vε)− Eε(y)


dx

⩽


Ω

W
�
E(v)− E0(y)


dx. (141)

Step 3. Density sequence. Since u is grid-constant, there exists a
family of squares {Rj}Nj=1, for which

u|Rj∩Γ = uj ⩾ 0.

Note that for every x ∈ Q such that |dΩ(x)| > ε, we have wε(x) = 0
or wε(x) = 1. Up to further reducing ε, from Lemma 8, we can assume
that, for every j = 1, . . . , N ,

{x ∈ R2 : |dΩ(x)| < ε} ⊂ Rj,

so that if x /∈ Rj, for every j = 1, . . . , N , we have

P (wε) = |∇wε|2 = 0. (142)

We set

pjε :=
1

σ



Q+∩Rj


ε|∇wε|2 +

1

ε
P (wε)


dx

On each Rj, we define the approximating density uε : R2 → R as

uε|Rj(x) :=



H1(Γ ∩Rj)

pjε
uj x ∈ Rj

0 else

and notice that

lim
ε→0

H1(Γ ∩Rj)

pjε
= 1, (143)
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for every j = 1, . . . , N . We note that if we set

µε :=
1

σ

(
ε|∇wε|2 +

1

ε
P (wε)

)
uεL2⌞Q+,

we have

µε(R2) =
1

σ

∫

Q+

(
ε|∇wε|2 +

1

ε
P (wε)

)
uε dx =

N∑
j=1

ujH1(Γ ∩Rj) = m.

Moreover, µε
∗
⇀ µ, as ε → 0, indeed, take any φ ∈ Cc(Q), we have

∫

Q+

φ dµε =
1

σ

∫

Q+

(
ε|∇wε|2 +

1

ε
P (wε)

)
uεφ dx

=
N∑
j=1

uj
(H1(Γ ∩Rj)

pjε
− 1

)∫

Q+∩Rj

(
ε|∇wε|2 +

1

ε
P (wε)

)
φ dx

+
N∑
j=1

uj

σ

∫

Q+∩Rj

(
ε|∇wε|2 +

1

ε
P (wε)

)
φ dx

→
N∑
j=1

ujH1(Γ ∩Rj),

as ε → 0, where we used [17, Proposition 5.4, Lemma 6.2].
Now, we show that

lim sup
ε→0

∫

Q+

(
ε|∇wε|2 +

1

ε
P (wε)

)
ψ(uε) dx ⩽ σ

∫

Γ

ψ(u) dH1.

First we have, by applying a change of variable and taking into account
(130) and (142), that

∫

Q+

(
ε|∇wε|2 +

1

ε
P (wε)

)
ψ(uε) dx

⩽
N∑
j=1

1

αε

∫

Rj

(
ε |∇zε|2 +

1

ε
P (zε)

)
ψ
(H1(Γ ∩Rj)

pjε
uj
)
dx. (144)
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)
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Γ
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(130) and (142), that
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Q+

(
ε|∇wε|2 +

1

ε
P (wε)

)
ψ(uε) dx

⩽
N∑
j=1

1

αε

∫

Rj

(
ε |∇zε|2 +

1

ε
P (zε)

)
ψ
(H1(Γ ∩Rj)

pjε
uj
)
dx. (144)
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Morover, since ψ is continuous (as it is convex by assumption), for every
λ > 0, there is ε0 > 0 such that, for every ε < ε0, we have that, by taking
into account (143), that

∣∣∣∣ψ
(H1(Γ ∩Rj)

pjε
uj
)
− ψ(uj)

∣∣∣∣ < λ.

Therefore, by adding and subtracting ψ(uj) and for ε < ε0, from (144),
we have∫

Q+

(
ε|∇wε|2 +

1

ε
P (wε)

)
ψ(uε) dx

⩽
N∑
j=1

λ

αε

∫

Rj

(
ε |∇zε|2 +

1

ε
P (zε)

)
dx

+
N∑
j=1

ψ(uj)

αε

∫

Rj

(
ε |∇zε|2 +

1

ε
P (zε)

)
dx (145)

Finally, since the sequence (zε)ε makes use of the solution of problem
(125), we can apply the same argument as in [55, Proposition 2] for the
limsup inequality. By taking the limsup on both sides of (145) and then,
by letting λ → 0, we obtain

lim sup
ε→0

∫

Q+

(
ε|∇wε|2 +

1

ε
P (wε)

)
ψ(uε) dx

⩽ σ

N∑
j=1

ψ(uj)H1(Γ ∩Rj)

= σ

∫

Γ

ψ(u) dH1. (146)

Step 4. Conclusion. Using (141) and (146) we obtain that

lim sup
ε→0

Fε(wε, vε, uε) ⩽ H(Ω, v, u),

which concludes the proof of Theorem 25.

By putting together Theorems 25 and 20 we proved Theorem 14 and
16.
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148

Chapter 3

Geometrically constrained
walls in three dimensions

This Chapter shows the results investigated in [29] about geometrically
constrained walls in a dumbbell-shaped domain in R3 (See Figure 3.1).
The model features a sufficiently smooth potential which is minimal at
the imposed values of the magnetisation in the bulk parts of the dumb-
bell, and a gradient term penalising transitions; the two are competing
as soon as the values of the magnetisation in the bulks are not the same.

The study of the behaviour of the magnetisation in a dumbbell-shaped
domain is relevant in micro- and nano-electronics applications, where the
neck of the dumbbell models magnetic point contacts. We refer the reader
to [24, 50, 51, 57, 63, 65] for an incomplete list of applications and con-
texts of relevance of geometrically constrained walls. If one imposes two
different values of the magnetisation, one in each of the two macroscopic
components, a transition is expected in the vicinity of the neck, as ini-
tially observed by Bruno in [14]: if the neck is small enough, so that the
geometry of the material varies drastically when passing from one bulk
to the other, it can play a crucial role in determining the location of
the magnetic wall, by influencing the mere minimisation of the magnetic
energy. Three scenarios are to be considered: the transition may happen
either completely inside the neck, or partly inside and partly outside the
neck, or completely outside the neck.
The body of literature on this problem counts many physical contribu-
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Figure 3.1: A pictorial representation of a typical domain of interest.

tions stemming from Bruno’s work [14] and a few mathematical items,
which we are going to briefly review to give a context to our novel re-
sults. In [14], Bruno considers the special geometry of a thin (0 < h ≪ 1)
three-dimensional wall Ω = S × (−h, h), where S is a planar region with
a dumbbell shape whose neck is located at the origin and the bulks are
in {x < 0} and {x > 0}. He assumes that the preferred directions of
the magnetisation vector are m = (0, 0,±1) and makes the Ansatz that
it varies only in the y-z plane, as a function of the x-coordinate alone,
namely

m(x) = (0, cos(u(x)), sin(u(x))) . (147)

The energy that Bruno minimises is the one usually describing Bloch
walls and turns out to be a functional of u alone, with two emerging
length scales when imposing that m ≈ (0, 0,±1) in {±x > 0}: one
driven by the shape S of the domain, the other one dictated by the phys-
ical parameters entering the expression of the energy. Despite Bruno’s
insightful intuition, the special form of the magnetisation has some limi-
tations, some of which were removed (for instance, by allowing m to vary
also in the x-z plane and considering fully three dimensional geometries)
in [58].
Among the mathematical literature on this topic, we mention [3, 4,
5, 6, 21, 46, 47, 48, 49] as far as the PDE aspect is concerned, and
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Figure 3.1: A pictorial representation of a typical domain of interest.
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[16, 20, 19, 62] for variational approaches.

For the reader’s convenience, we recall here the setting of the problem
already mentioned in the introduction.
To model the geometries that are of interest in the applications, we will
consider an infinitesimally small neck, whose size is determined by three
parameters ε, δ, η > 0:

Nε := {x = (x, y, z) ∈ R3 : |x| ⩽ ε, |y| < δ, |z| < η}, (148)

with the understanding that all three of them vanish when ε → 0, that is
δ = δ(ε) → 0 and η = η(ε) → 0, as ε → 0. The full domain is described
by

Ωε := Ωℓ
ε ∪Nε ∪ Ωr

ε, (149)

where Ωℓ
ε = Ωℓ − (ε, 0, 0) and Ωr

ε = Ωr + (ε, 0, 0), for certain open sets
Ωℓ ⊂ {x < 0} and Ωr ⊂ {x > 0} such that 0 ∈ ∂Ωℓ∩∂Ωr. This geometry
makes the x direction the preferred one, whereas the y- and z-direction
can be interchanged upon a change of coordinates; this motivates the
fact that we will use, throughout the work, the subscript ε alone as an
indication of the smallness of the neck.

We are interested in understanding the asymptotic behaviour, as ε →
0, of stable critical points (see Definition 27) of the energy

F(u,Ωε) :=
1

2



Ωε

|∇u(x)|2 dx+



Ωε

W (u(x)) dx , (150)

defined for u ∈ H1(Ωε), where dx = dxdydz and





W : R → [0,+∞) is a function of class C2 such that

W−1(0) = {α, β} for some α < β

and lim
|t|→+∞

W (t) = +∞.

In (150), the function u represents a suitable quantity related to the
magnetisation field defined on Ωε and the potential W favours the values
u(x) = α and u(x) = β for the magnetisation, corresponding to those to
be imposed in the bulks. Here, the competition between the potential
and the gradient terms is significantly influenced by the geometry of Ωε.
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The energy (150) was considered in [14] as a simplified model for studying
the magnetisation inside a thin dumbbell domain under the assumption
that the magnetic field is of the form

m(x) = (0, cos(u(x)), sin(u(x))) .

Despite this simplifying assumption, the mathematical analysis is rich
enough to exhibit non-trivial behaviours of the magnetisation.

3.1 Main result

In this section we present the main achievement we reached in [29].

Set up of the problem

We study a mathematical model to characterise magnetic domain walls
in a three-dimensional dumbbell-shaped domain The two bulks are mod-
elled by two bounded, connected, open sets Ωℓ,Ωr ⊂ R3 such that

(H1) the origin (0, 0, 0) belongs to ∂Ωℓ ∩ ∂Ωr;

(H2) Ωℓ ⊂ {x < 0} and Ωr ⊂ {x > 0};
(H3) there exists r0 > 0 such that (∂Ωℓ) ∩ Br0(0, 0, 0) and (∂Ωr) ∩

Br0(0, 0, 0) are contained in the plane {x = 0}, i.e., the bulks are
flat and vertical near the origin, where the conjunction with the
neck will be located.

Remark 16. We point out that assumption (H3) is made for mere conve-
nience and it does not affect the generality of our results. While allowing
the reader to focus on the main qualitative geometrical properties of the
domain, it can be removed following the strategy outlined in [59].

We let ε > 0 and define the neck region as in (148), so that the dumbbell-
shaped domain Ωε is defined as in (149), where Ωℓ

ε = Ωℓ − (ε, 0, 0) and
Ωr

ε = Ωr + (ε, 0, 0). We notice that Ωε is a bounded, connected, open set
with Lipschitz boundary.

We now give the relevant definitions of critical points and isolated
local minimiser for the functional F(·,Ωε) introduced in (150).
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nience and it does not affect the generality of our results. While allowing
the reader to focus on the main qualitative geometrical properties of the
domain, it can be removed following the strategy outlined in [59].

We let ε > 0 and define the neck region as in (148), so that the dumbbell-
shaped domain Ωε is defined as in (149), where Ωℓ

ε = Ωℓ − (ε, 0, 0) and
Ωr

ε = Ωr + (ε, 0, 0). We notice that Ωε is a bounded, connected, open set
with Lipschitz boundary.

We now give the relevant definitions of critical points and isolated
local minimiser for the functional F(·,Ωε) introduced in (150).
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Definition 26. We say that a function uε ∈ H1(Ωε) is a critical point of
F(·,Ωε) if it is a weak solution to the system




∆uε = W ′(uε) in Ωε,

∂uε

∂ν
= 0 on ∂Ωε.

Definition 27. For ε > 0, let uε ∈ H1(Ωε) be a critical point of F(·,Ωε).
We say that the family (uε)ε is an admissible family of nearly locally
constant critical points if

(a) there exists ε̄ > 0 such that sup

∥uε∥∞ : ε ∈ (0, ε̄]


=: M < +∞;

(b) ∥uε − α∥L1(Ωℓ
ε)
→ 0 and ∥uε − β∥L1(Ωr

ε)
→ 0 with α < β, as ε → 0.

Moreover, we say that (uε)ε ⊂ H1(Ωε) is an admissible family of local
minimisers if it satisfies, additionally,

(c) there exist ε0 > 0 and θ0 > 0 such that for ε ∈ (0, ε0] we have

F(v,Ωε) ⩾ F(uε,Ωε),

for all v ∈ H1(Ωε) such that 0 < ∥v − uε∥L1(Ωε) ⩽ θ0.

Regarding the existence of minimisers, [52, Theorem 3.1] can easily
be adapted to our setting.

Theorem 26. For ε > 0, let u0,ε : Ωε → R be defined as

u0,ε(x) :=




α if x ∈ Ωℓ
ε ,

α + β

2
if x ∈ Nε ,

β if x ∈ Ωr
ε .

If uε ∈ H1(Ωε) is such that F(uε,Ωε) ⩽ F(v,Ωε) for every v ∈ Bε, where

Bε := {u ∈ H1(Ωε) : ||u− u0,ε||L2(Ωε) ⩽ d, ∥u∥L∞(Ωε) < ∞}, (151)

with d < min{|α| |Ωℓ|1/2, |β| |Ωr|1/2}, then the family (uε)ε is an admis-
sible family of local minimisers according to Definition 27, and ∥uε −
u0,ε∥L2(Ωε) → 0, as ε → 0.
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Unlike [52], we do not assume axial symmetry of the domain and this
results in a richer variety of regimes. In particular, we find that some
of these regimes admit sub-regimes, as was discovered for magnetic thin
films in [59, 60]. We discuss all the possible cases in the next section.

Heuristics

In this section, we show how to heuristically guess where the main part of
the energy concentrates, just by looking at the asymptotic relationships
between the three geometric parameters ε, δ, η.

First of all, we note that, given the privileged role of the parameter ε,
it is trivial to see that the roles of δ and η can be interchanged upon
switching the coordinate axes y and z. The regimes investigated in [52]
corresponds to the cases where δ ∼ η. Therefore, here we limit ourselves
to consider the other following regimes:

(i) Super thin: ε ≫ δ ≫ η;

(ii) Flat thin: ε ≈ δ ≫ η;

(iii) Window thick : δ ≫ η ≫ ε;

(iv) Narrow thick : δ ≫ ε ≈ η;

(v) Letter-box : δ ≫ ε ≫ η.

We now want to guess where the transition will happen: completely
inside, completely outside, or in both regions. To understand this, we
reason as follows. First of all, we expect the main part of the energy to
be the Dirichlet integral. Therefore, we consider two harmonic functions
that play the role of competitors for the minimisation problem

min{F(v,Ωε) : v ∈ Bε};

one where the transition from α to β happens inside the neck, and the
other one where it happens only outside (and the competitor is constant
inside the neck). We then compare their energies (whose computations
will be carried out in Section 3.2) to get a guess of where the transition
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will occur. The first harmonic function will be referred to as the affine
competitor, and has energy of order

Energy of the affine competitor =
δη

ε
.

The second harmonic function will be referred to as the elliptical com-
petitor, and has energy of order

Energy of the elliptical competitor =
δ

|ln(η/δ)|
.

When one of the two energies is dominant with respect to the other,
it is clear where we expect the transition to happen. In the case they
are of the same order, we guess that the transition is both inside and
outside the neck. This will be later confirmed by rigorous analysis. The
comparison of the energies of the two harmonic competitors leads to the
following heuristics:

(i) Super thin neck : In this case, we have

δη

ε

| ln(η/δ)|
δ

=
δ

ε

(η
δ
|ln(η/δ)|

)
→ 0,

as ε → 0. Then we expect the transition to happen inside Nε.

(ii) Flat thin neck : In this case, we obtain

δη

ε

| ln(η/δ)|
δ

≈ η

δ
|ln(η/δ)| → 0,

thus the transition is occurring inside Nε.

(iii) Window thick neck : The comparison of the energies of the harmonic
competitors gives

δη

ε

|ln(η/δ)|
δ

=
η

ε
|ln(η/δ)| → +∞,

as ε → 0. The transition is expected to happen entirely outside the
neck.
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(iv) Narrow thick neck : In this case, we have

δη

ε

|ln(η/δ)|
δ

≈ |ln(η/δ)| → +∞,

as ε → 0. Therefore, we expect the transition to happen outside
the neck.

(v) Letter-box neck : In this case, we have the presence of sub-regimes.
Indeed, the comparison of the orders of the energies of the harmonic
competitors gives

δη

ε

|ln(η/δ)|
δ

=
η

ε
|ln(η/δ)| ,

whose asymptotic behaviour is not clear. Therefore, we have to
consider the following sub-regimes:

(a) Sub-critical letter box neck, when

δη

ε

|ln(η/δ)|
δ

→ 0,

as ε → 0. In such a case, we expect the transition happens
inside the neck.

(b) Critical letter box neck, when

δη

ε

|ln(η/δ)|
δ

→ ℓ ∈ (0,+∞),

as ε → 0. In this case, we expect the transition happens both
inside and outside the neck.

(c) Super critical letter box neck, when

δη

ε

|ln(η/δ)|
δ

→ +∞,

as ε → 0. Here, the transition is expected to happen outside
the neck.
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ε
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δ
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ε
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δ
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Main results

We study the full three-dimensional case of the problem with no sym-
metry assumption on the shape of the neck: it will be a parallelepiped
as in (148) with all three dimensions independent from one another and
all vanishing to zero as ε → 0. When considering the mutual rate of
convergence to zero of the three parameters ε, δ, η, we single out five
regimes that do not emerge in the analysis of Kohn and Slastikov, and
for each of them we study the energy scaling. We notice that in our three-
dimensional setting the scale-invariant Poincaré inequality is not always
available in the various regimes. This makes our analysis different from
the one proposed in [52]. The mismatch between the parameters δ and
η leads to an inequality that is meaningless. This inequality ensures
that, given an open, bounded and connected set A ⊂ R3, there exists a
constant C > 0 such that

(∫

λA

∣∣∣u
(x
λ

)
− uA

∣∣∣
6

dx

) 1
6

⩽ C

(∫

λA

∣∣∣∇u
(x
λ

)∣∣∣
2

dx

) 1
2

,

for all λ > 0, and all u ∈ H1(A). Here, uA denotes the average of u in
A. Note that the argument to get such inequality is the same to guess
the conjugate exponent in the Gagliardo-Nierenberg inequality. Despite
that, we are able to investigate the behaviour of local minimisers and
the associated rescaled limiting problem, which possesses a variational
structure in every regime.

Due to the peculiar geometry of our problem induced by the mis-
match between η and δ, namely η ≪ δ, the cross section of the junction
of the neck with the bulks is a rectangle with a very large aspect ra-
tio; this allows us to find an ellipsoidal competitor carrying less energy
than the spherical one proposed in the previous works. As it depends on
|ln(η/δ)|, the energy scaling turns out to exhibit sub-regimes in some of
these cases, as described in Section 3.1.

For all of the above-mentioned regimes, we identify where the tran-
sition happens. In particular, we rigorously justify the expectations de-
rived from the above heuristics. We identify a proper rescaling of the
independent variables that allow us to prove that such rescaled profile
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converges to a solution of a Dirichlet energy in a limiting domain with
suitable boundary conditions. Only in the critical letter box regime, we
need to assume convergence to a limiting profile, and we prove that the
latter solves a minimisation problem (see Remark 17). In all cases, local
minimisers will converge to a constant in the region where the transition
does not happen.

We refer the reader to Section 3.3 for the precise statements and
proofs of these results.

Remark 17. The reason why in the critical letter box regime we cannot
prove compactness of a sequence of local minimisers, is the following.
We do expect to see part of the transition inside the neck. Therefore, we
rescale the local minimiser uε as vε(x, y, z) := uε(εx, δy, ηz). In such a
way, we get that

ε

2δη

∫

Nε

|∇uε|2 dx =
1

2

∫

[−1,1]3

(
(∂xvε)

2 +
ε2

δ2
(∂yvε)

2 +
ε2

η2
(∂zvε)

2
)
dx.

The left-hand side is bounded thanks to the energy of the affine com-
petitor. Unfortunately, since in this regime ε ≪ δ, we do not get a lower
bound of the y-derivative of the function vε, even if we prove that each
limit of the sequence (vε)ε will only depend on the first variable.

3.2 Competitors

The goal of this section is to build two harmonic competitors and to
compute the order of their energies. For clarity, we present the affine
and elliptic competitors separately. However, at the end of the section,
they are mixed together in a more general way.
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Affine competitor

Here we build the affine competitor inside the neck and we compute its
energy. Let A,B ∈ R, and define the affine function ξε : R3 → R as

ξε(x) :=





A if x ∈ Ωℓ
ε ,

B − A

2ε
x+

B + A

2
if x ∈ Nε ,

B if x ∈ Ωr
ε .

(152)

Then, we have that

1

2



Nε

|∇ξε|2dx =
δη

ε
(B − A)2. (153)

Elliptic competitor

In [52], the authors built a harmonic competitor by imposing boundary
conditions on half-spheres centred at the edges of the neck. The choice of
the spherical geometry was dictated by the fact that the authors required
δ = η. In our case, the geometry will be that of an ellipsoid, suggested
by the fact that one of the parameters δ and η is larger than the other.

In order to define our competitor, we first need to introduce the so-
called prolate spheroidal coordinates. Consider, for a > 0, the change of
coordinates (x, y, z) = Ψ(µ, ν, φ), given by




x = a sinhµ sin ν cosφ,

y = a coshµ cos ν,

z = a sinhµ sin ν sinφ,

(154)

where (0,±a, 0) are the coordinates of the foci, φ ∈ [0, 2π] is the polar
angle, ν ∈ [0, π] is the azimuthal angle and a, µ > 0. For M > 0, define
the ellipsoid

E(a,M) := {Ψ(µ, ν, φ) : µ < 2M}. (155)

Moreover, we need consider the left and the right halves of the set
E(a,M) translated at the edges of the neck. Namely, we consider the
open sets

Eℓ
ε(a,M) := (E(a,M) ∩ {x < 0})− (ε, 0, 0),
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and

Er
ε(a,M) := (E(a,M) ∩ {x > 0}) + (ε, 0, 0).

Note that if a cosh(2M) < r0, where r0 > 0 is given by assumption (H3),
we get that Eℓ

ε(a,M) ⊂ Ωℓ
ε, and that Er

ε(a,M) ⊂ Ωr
ε. For 0 < m < M ,

we define the function ξε : R3 → R as

ξε(x, y, z) :=




α in Ωℓ
ε \ Eℓ

ε(a,M) ,

α + β

2
− h(x+ ε, y, z) in Eℓ

ε(a,M) ,

α + β

2
in Nε ,

α + β

2
+ h(x− ε, y, z) in Er

ε(a,M) ,

β in Ωr
ε \ Er

ε(a,M) ,

(156)

where h : E(a,M) \ E(a,m) → R is the solution to the problem




∆h = 0 in E(a,M) \ E(a,m) ,

h =
β − α

2
on ∂E(a,M) ,

h = 0 on ∂E(a,m) .

Now, our goal is to find the function h explicitly and to estimate, asymp-
totically, its Dirichlet energy. We look for the solution in the form
h = h(µ). Then the Laplacian in prolate spheroidal coordinates is given
by

∆h =
1

a2(sinh2 µ+ sin2 ν)
(hµµ + (cothµ)hµ) = 0,

or equivalently

(sinhµhµ)µ = 0.

It follows that

hµ =
c

sinhµ
,

and thus

h(µ) = c ln |k tanh(µ/2)|. (157)
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Enforcing the boundary conditions

h(2M) =
β − α

2
and h(2m) = 0

yields

k = cothm and c =
β − α

2 ln
(tanhM
tanhm

) . (158)

Hence, we can write

h(µ) =
(β − α)

2 ln
(tanhM
tanhm

) ln
(tanhµ/2

tanhm

)
.

We are now in position to compute the Dirichlet energy of the function
ξε. Indeed, by using changing variables and fact that the Jacobian deter-
minant of the transformation Ψ in (154) is a3 sinhµ sin ν(sinh2 µ+sin2 ν),
we obtain

1

2

∫

E(a,M)\E(a,m)

|∇ξε|2 dx =
1

2

∫

E(a,M)\E(a,m)

|∇h|2 dx

=c2a

∫ π

0

∫ 2π

0

∫ 2M

2m

sin ν

sinhµ
dνdφdµ

=
πa(β − α)2

ln

(
tanhM

tanhm

) . (159)

In the above expression, there are still two choices that we can make:
that of the parameters a and m. We now want to choose them in such a
way that

(Nε ∩ {x = ±ε})◦ ⊂ E(a,m) ∩ {x = 0} ± (ε, 0, 0), (160)

where (·)◦ denotes the internal part of a set.
To enforce (160), we note that (154) implies that, for all (x, y, z) ∈
∂E(a,m) such that x = 0, it holds

y2

a2 cosh2 m
+

z2

a2 sinh2 m
= 1. (161)
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Therefore, choosing a and m to satisfy

a sinhm =
√
2η, a coshm =

√
2δ

guarantees the validity of (160).

We now want to get an asymptotic estimate of (159), taking into
account the fact that all the regimes in this chapter consider the case in
which η ≪ δ. By definition a2 = δ2 − η2, and then a ≈ δ as ε → 0.
Moreover

tanhm =
η

δ
.

Observe that in our regimes, when δ ≫ η, then m ≪ 1 and

ln

(
tanhM

tanhm

)
= ln tanhM − ln tanhm ≈ − ln tanhm = − ln

η

δ
, (162)

for ε small enough. This, together with (159) implies that, for ε small
enough,

1

2

∫

E(a,M)\E(a,m)

|∇ξε|2 dx ≈ πδ(β − α)2

| ln η
δ
|

. (163)

Finally, we note that the elliptic competitor just built gives a better
upper bound on the energy of the minimiser uε than the one that could
be obtained in [52], with a spherical harmonic function. Indeed, in the
spherical harmonic case, they obtained an upper estimate with a term of
order δ. Therefore, we can notice that

δ

| ln(η/δ)|
≪ δ,

as ε → 0. Thus, we obtained a competitor whose order of energy is
asymptotically lower than the previous one. This is particularly relevant
since such a competitor follows the geometry of our problem, in which
the shape of the neck presents the y coordinate way smaller than the z
coordinate, ruled by δ and η respectively.

Mixed competitor

The idea now, is to mix the affine competitor in the neck, together with
the ellipsoidal just built. The purpose of this new competitor, is to
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describe whenever the transition happens simultaneously inside and out-
side the neck. Consider A,B ∈ R such that α ⩽ A ⩽ B ⩽ β. Let
h : Eℓ(a,M) \ Eℓ(a,m) → R be the solution to





∆w = 0 in Eℓ(a,M) \ Eℓ(a,m),

w = α on ∂Eℓ(a,M),

w = A on ∂Eℓ(a,m).

and g : Er(a,M) \ Er(a,m) → R the solution to



∆w = 0 in Er(a,M) \ Er(a,m),

w = β on ∂Er(a,M),

w = B on ∂Er(a,m).

Recalling (156) and (154), we define the function ξε : R3 → R as

ξε(x) :=




α in Ωℓ
ε \ Eℓ

ε(a,M),

h(x+ ε, y, z) in Eℓ
ε(a,M) \ Eℓ

ε(a,m),

A in Eℓ
ε(a,m),

B − A

2ε
x+

B + A

2
in Nε,

B in Er
ε(a,m),

g(x− ε, y, z) in Er
ε(a,M) \ Er

ε(a,m),

β in Ωr
ε \ Er

ε(a,M).

(164)

We now want to estimate, asymptotically, its energy. Using the same
argument used to obtain (157), we can write the explicit solution of the
problems above as

h(µ) = cℓ ln |kℓ tanh(µ/2)|, and g(µ) = cr ln |kr tanh(µ/2)|.

We can explicitly obtain cℓ, kℓ, cr, kr ∈ R by imposing the boundary con-
ditions and we get

cℓ =
α− A

ln
tanhM
tanhm

 , cr =
β − B

ln
tanhM
tanhm


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and

kℓ =

exp

ln


tanhM

tanhm


A

α− A



tanhM
kr =

exp

ln


tanhM

tanhm


B

β − B



tanhM
.

Let hε be the solution of the problem




α in Ωℓ
ε \ Eℓ

ε(a,M),

h(x+ ε, y, z) in Eℓ
ε(a,M) \ Eℓ

ε(a,m),

A in Eℓ
ε(a,m).

Arguing like in (159), we get that

1

2



Eℓ
ε(a,M)\Eℓ(a,m)

|∇hε|2 dx =
πa(A− α)2

|ln(η/δ)|
. (165)

Similarly, if gε is the solution of the problem




B in Er
ε(a,m),

g(x− ε, y, z) in Er
ε(a,M) \ Er

ε(a,m),

β in Ωr
ε \ Er

ε(a,M),

we have

1

2



Er
ε(a,M)\Er(a,m)

|∇gε|2 dx =
πa(B − β)2

| ln(η/δ)|
, (166)

as ε → 0. Therefore, from (153), (165), and (166), we obtain

F(ξε,Ωε) =
πa

| ln(η/δ)|

(A− α)2 + (B − β)2


+

δη

ε
(B − A)2.

Since η ≪ δ, we have that a ≈ δ. Thus, for ε small enough, we can write

F(ξε,Ωε) ≈
πδ

| ln(η/δ)|

(A− α)2 + (B − β)2


+

δη

ε
(B − A)2. (167)

Now we compute the minimum of the right-hand of (167) under the
constraint that α ⩽ A ⩽ B ⩽ β. It is possible to see that a solution is in
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Now we compute the minimum of the right-hand of (167) under the
constraint that α ⩽ A ⩽ B ⩽ β. It is possible to see that a solution is in
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the interior of the admissible region, and thus the optimal A and B are
given by the solution of the system





π

| ln(η/δ)|
(A− α)− η

ε
(B − A) = 0,

π

| ln(η/δ)|
(B − β) +

η

ε
(B − A) = 0,

which are

A =

πα

|ln(η/δ)|
+

η

ε
(α + β)

π

|ln(η/δ)|
+

2η

ε

and B =

πβ

|ln(η/δ)|
+

η

ε
(α + β)

π

|ln(η/δ)|
+

2η

ε

. (168)

The choice of A and B in (168) will be crucial in the various regimes when
we will need to infer the boundary conditions of the rescaled profile at
the edge of the neck. In conclusion, from (167), if uε is a local minimiser,
we then have

F(uε,Ωε) ⩽
πδ

| ln(η/δ)|

(A− α)2 + (B − β)2


+

δη

ε
(B − A)2. (169)

Finally, notice that the right-hand side of (169) has a clear separation
between the energetic contribution of the competitor inside and outside
the neck, as well as their orders of the energy.

3.3 Analysis of the problem in the several

regimes

In this section we carry out the rigorous analysis of the asymptotic be-
haviour of the solution, obtaining information on its energy and its be-
haviour inside and close to the neck. To this aim, define

N := [−1, 1]3,

which is the neck Nε rescaled to size of order 1, that is, under the change
of coordinates (x, y, z) → (x/ε, y/δ, z/η). In the following subsections,

we will perform various rescalings and we will always denote by Ωε the
corresponding rescaled domains.
We also recall the definition of Hausdorff convergence of sets.
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Definition 28. We say that a sequence of closed sets (An)n ⊂ R3 con-
verges in the Hausdoff metric to a closed set A if

lim
n→∞

max

{
sup
x∈A

d(x, An), sup
y∈An

d(y, A)

}
= 0.

Here, d(x, A) denotes the distance between the point x ∈ R3 and the set

A. We denote this convergence by An
H→ A.

3.3.1 Super-thin neck

In this regime the parameters are ordered as ε ≫ δ ≫ η. Namely, we
have

lim
ε→0

δ

ε
= 0 and lim

ε→0

η

δ
= 0.

According to the heuristics in Section 3.1, we expect the transition to
happen entirely inside the neck. If uε is a local minimiser of the functional
(150), the convenient rescaling that works is

vε(x, y, z) := uε(εx, δy, ηz).

Define Ω̃ε, Ω̃
ℓ
ε, and Ω̃r

ε as the rescaled domain Ωε, Ω
ℓ
ε, and Ωr

ε, respectively.
Note that, as ε → 0,

R3 \ Ω̃ε
H→ R3 \ Ω∞ ,

where
Ω∞ := Ωℓ

∞ ∪N ∪ Ωr
∞,

with Ωℓ
∞ := {x < −1} and Ωr

∞ := {x > 1}.

Theorem 27. Let (uε)ε ⊂ H1(Ωε) be an admissible family of local min-
imisers as in Definition 27. Assume ε ≫ δ ≫ η. Then,

lim
ε→0

ε

δη
F(uε,Ωε) = lim

ε→0

ε

δη
F(uε, Nε) = (β − α)2.

Moreover, for ε > 0 let vε : Ω̃ε → R be defined as

vε(x, y, z) := uε(εx, δy, ηz).

Then, the following hold:
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Then, the following hold:
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(i) vεχΩ̃ℓ
ε
− αχΩ̃ℓ

ε
→ 0 in L6(R3) and vεχΩ̃r

ε
− βχΩ̃r

ε
→ 0 in L6(R3), as

ε → 0;

(ii) There exists v̂ ∈ H1(N) such that vε ⇀ v̂ weakly in H1(N), as
ε → 0;

(iii) It holds that v̂(x, y, z) = v(x), where v ∈ H1(−1, 1) is the unique
minimiser of the variational problem

min

{
1

2

∫ 1

−1

|v′|2 dx : v ∈ H1(−1, 1), v(−1) = α, v(1) = β

}
.

In particular, v(x) =
β − α

2
x+

α + β

2
.

Proof. Step 1: existence of v̂. Note that, using assumption (H3), for
ε > 0 sufficiently small, it holds that

2N ∩ Ω∞ ⊂ Ω̃ε.

The reason why we take 2N and not only N is because we need the
boundary conditions to converge. We claim that

sup
ε>0

∥vε∥H1(2N∩Ω∞) < ∞.

First of all, using the fact that ε ≫ δ ≫ η, we get that

∥∇vε∥2L2(2N∩Ω∞) =
ε

δη

∫

2N∩Ω∞

(
(∂xuε)

2 +
δ2

ε2
(∂yuε)

2 +
η2

ε2
(∂zuε)

2
)
dx

⩽
ε

δη
F(uε,Ωε) ⩽ C < ∞, (170)

where the first step follows by using a change of variable, while the second
one from (153) with A = α and B = β. Moreover,

∫

2N∩Ω∞

|vε|2 dx =
1

εδη

∫

2Nε∩Ωε

|uε|2 dx ⩽

(
supx∈2Nε∩Ωε

|uε|2
)
|2Nε ∩ Ωε|

εδη

< +∞.
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Thus, we get that, up to a subsequence, vε converges weakly in H1(N) to
a function v̂ ∈ H1(N). The independence of the subsequence will follow
from Step 2, where we show that the limit is the unique solution to a
variational problem.

Step 2: limiting problem and behavior inside the neck. We now want
to characterize the function v as the unique solution to a variational
problem. We do this in two steps: first, we identify a functional that will
be minimized, and then we identify the boundary conditions.
We have that

lim inf
ε→0

ε

δη
F(uε,Ωε) ⩾ lim inf

ε→0

ε

δη

(1
2

∫

Nε

|∇uε|2 dx+

∫

Nε

W (uε) dx
)

= lim inf
ε→0

(1
2

∫

N

(
(∂xvε)

2 +
ε2

δ2
(∂yvε)

2 +
ε2

η2
(∂zvε)

2
)
dx

+ ε2
∫

N

W (vε) dx
)

⩾ lim inf
ε→0

1

2

∫

N

|∇vε|2 dx ⩾
1

2

∫

N

|∇v|2 dx, (171)

where in the last step we used the fact that ε ≫ δ ≫ η. Notice that, from
the bound (170) and the fact that ε/η → ∞ and ε/δ → ∞, we necessarily
have that v does not depend on y and z. Namely, vε converges to a
function v̂ ∈ H1(N), of the form v̂(x, y, z) = v(x), where v ∈ H1(−1, 1).
Therefore, from (171), we can write

1

2

∫

N

|∇v|2 dx = 2

∫ 1

−1

(v̂′)2 dx

⩾ 2min
{∫ 1

−1

(w′)2 dx : w ∈ H1(−1, 1), w(±1) = v̂(±1)
}

= (v̂(1)− v̂(−1)
)2
, (172)

where last step follows by an explicit minimisation.

Now we claim that v̂(−1) = α and v̂(1) = β. We prove the former,
since the latter follows by using a similar argument. The idea (introduced
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in [52]) is to use the scale-invariant Poincaré inequality

(∫

Ωℓ
ε

|uε − ūε|6 dx
) 1

6
⩽ C

(∫

Ωℓ
ε

|∇uε|2 dx
) 1

2
, (173)

where C > 0 and ūε is the average on Ωℓ
ε of uε. Using a change of

variable, we estimate (by neglecting the potential term as in (171)) the
right-hand side of (173) as

εδη

∫

Ω̃ℓ
ε

|vε − v̄ε|6 dx ⩽ C
(δη
ε

∫

Ω̃ℓ
ε

(∂xvε)
2 +

ε2

δ2
(∂yvε)

2 +
ε2

η2
(∂zvε)

2 dx
)3

⩽ C
(δη
ε

)3
(

ε

δη
F(uε,Ωε)

)3

.

Now, using the fact that δη/ε2 → 0 as ε → 0 together with (170), we get
that

∫

Ω̃ℓ
ε

|vε − v̄ε|6 dx ⩽ C
(δη
ε2

)2
(

ε

δη
F(uε,Ωε)

)3

→ 0, (174)

as ε → 0. Therefore, vεχΩ̃ℓ
ε
− v̄εχΩ̃ℓ

ε
→ 0 in L6(R3), as ε → 0. We now

claim that v̄εχΩ̃ℓ
ε
− αχΩ̃ℓ

ε
→ 0 in L6(R3), as ε → 0. Indeed, by definition

of local minimiser we have that

||uε − α||L1(Ωℓ
ε)
→ 0,

as ε → 0. Therefore, ūεχΩℓ
ε
− αχΩℓ

ε
→ 0 in L6(R3), which yields that

v̄εχΩ̃ℓ
ε
−αχΩ̃ℓ

ε
→ 0 in L6(R3). Thus, since vε → v̂ strongly in L2(2N∩Ω∞)

as ε → 0, we get that v̂(−1) = α.

Step 3: asymptotic behaviour of the energy. From (171) and (172) we
can conclude that

lim inf
ε→0

ε

δη
F(uε,Ωε) ⩾ (β − α)2. (175)

On the other hand, denoting by ξε the affine competitor in (152), we have
that

lim sup
ε→0

ε

δη
F(uε,Ωε) ⩽ lim sup

ε→0

ε

δη
F(ξε, Nε) = (β − α)2. (176)
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Thus, from (175), and (176), we get

lim
ε→0

ε

δη
F(uε,Ωε) = (β − α)2.

In particular, we get that all inequalities in (171) are equalities, proving
that

lim
ε→0

ε

δη
F(uε,Ωε) = lim

ε→0

ε

δη
F(uε, Nε).

This concludes the proof.

3.3.2 Flat-thin neck

In this regime the parameters are ordered as ε ≈ δ ≫ η. Namely, we
have

lim
ε→0

δ

ε
= m ∈ (0,+∞) and lim

ε→0

η

ε
= 0.

In this case, the behaviour of an admissible family of local minimisers is
similar to the super-thin regime and strategy of the proof is similar to
that of Theorem 27. Therefore, we only highlight the main differences.
Without loss of generality, we assume m = 1. Since we expect the
transition to happen entirely inside the neck, we would like to use a
rescaling for which the neck Nε transforms in N := [−1, 1]3. Given a
local minimizer uε of the functional (150), the convenient rescaling that
works is

vε(x, y, z) := uε(εx, εy, ηz).

If we rescale in this way, the limiting domain becomes

Ω∞ = Ωℓ
∞ ∪N ∪ Ωr

∞,

where Ωℓ
∞ = {x < −1} and Ωr

∞ = {x > 1}.

Theorem 28. Let (uε)ε ⊂ H1(Ωε) be an admissible family of local min-
imisers as in Definition 27. Assume ε ≈ δ ≫ η. Then,

lim
ε→0

1

η
F(uε,Ωε) = lim

ε→0

1

η
F(uε, Nε) = (β − α)2.
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Theorem 28. Let (uε)ε ⊂ H1(Ωε) be an admissible family of local min-
imisers as in Definition 27. Assume ε ≈ δ ≫ η. Then,

lim
ε→0

1

η
F(uε,Ωε) = lim

ε→0

1

η
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Moreover, for ε > 0 let vε : Ω̃ε → R be defined as

vε(x, y, z) := uε(εx, εy, ηz).

Then, the following hold:

(i) vεχΩ̃ℓ
ε
− αχΩ̃ℓ

ε
→ 0 in L6(R3) and vεχΩ̃r

ε
− βχΩ̃r

ε
→ 0 in L6(R3) as

ε → 0;

(ii) There exists a function v̂ ∈ H1(N) such that vε ⇀ v̂ weakly in
H1(N) as ε → 0;

(iii) It holds that v̂(x, y, z) = v(x), where v ∈ H1(−1, 1) is the unique
minimiser of the variational problem

min

{
1

2

∫ 1

−1

|v′|2 dx : v ∈ H1(−1, 1), v(−1) = α, v(1) = β

}
.

In particular, v(x) =
β − α

2
x+

α + β

2
.

Proof. In the same way as in Theorem 27, we can prove that

sup
ε>0

∥∇vε∥2L2(N) ⩽
ε

δη
F (uε,Ωε) ⩽ C < ∞. (177)

and

sup
ε>0

∥vε∥L2(N) < C.

Therefore, by compactness there exists v ∈ H1(N) such that, up to a
subsequence, vε ⇀ v in H1(N). The independence of the subsequence
will follow from the fact that the limit is the unique solution to a varia-
tional problem.
Thus, we can write

lim inf
ε→0

1

η
F(uε, Nε) = lim inf

ε→0

(1
2

∫

N

(
(∂xvε)

2 + (∂yvε)
2 +

ε2

η2
(∂zvε)

2
)
dx

+ ε2η

∫

N

W (vε) dx
)
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⩾
∫

[−1,1]2

(
(∂xv̂)

2 + (∂yv̂)
2
)
dxdy

⩾ min

{∫

[−1,1]2

(
(∂xw)

2 + (∂yw)
2
)
dxdy : w ∈ H1([−1, 1]2),

w(±1, y) = v̂(±1, y), ∀y ∈ [−1, 1]

}
, (178)

where in the previous to last step we used (177) and the fact that ε/η →
+∞. Then we necessarily have that v does not depend on z. Namely,
vε converges to a function v̂ ∈ H1(N), of the form v̂(x, y, z) = v(x, y),
where v ∈ H1([−1, 1]2).
Now, would like to show that the boundary conditions v̂(±1, y) are inde-
pendent from y. This is done by acting similarly as in (173) and (174).
Indeed by using the scale-invariant Poincaré inequality (173), we get

∫

Ωℓ
ε

|vε − v̄ε|6 dx ⩽ C
(η
ε

)2(1
η
F(vε,Ωε)

)3

.

From (177) and the fact that η/ε → 0 as ε → 0 we can conclude that
v = α on Ωℓ

∞ and v = β on Ωr
∞ , independently on y. Therefore, from

(178) we get

lim inf
ε→0

1

η
F(uε, Nε)

⩾ min

{∫

[−1,1]2

(
(∂xw)

2 + (∂yw)
2
)
dxdy : w ∈ H1([−1, 1]2),

w(−1, y) = α, w(1, y) = β, ∀y ∈ [−1, 1]

}

⩾ min

{∫

[−1,1]2
(∂xw)

2 dxdy : w ∈ H1([−1, 1]2),

w(−1, y) = α, w(1, y) = β, ∀y ∈ [−1, 1]

}

= (β − α)2, (179)

172



Chapter 3 - Domain Walls

⩾
∫

[−1,1]2

(
(∂xv̂)

2 + (∂yv̂)
2
)
dxdy

⩾ min

{∫

[−1,1]2

(
(∂xw)

2 + (∂yw)
2
)
dxdy : w ∈ H1([−1, 1]2),

w(±1, y) = v̂(±1, y), ∀y ∈ [−1, 1]

}
, (178)

where in the previous to last step we used (177) and the fact that ε/η →
+∞. Then we necessarily have that v does not depend on z. Namely,
vε converges to a function v̂ ∈ H1(N), of the form v̂(x, y, z) = v(x, y),
where v ∈ H1([−1, 1]2).
Now, would like to show that the boundary conditions v̂(±1, y) are inde-
pendent from y. This is done by acting similarly as in (173) and (174).
Indeed by using the scale-invariant Poincaré inequality (173), we get
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where the last step follows by an explicit computation. On the other
hand, denoting by ξε the affine competitor in (152), we have that

lim sup
ε→0

1

η
F(uε,Ωε) ⩽ lim sup

ε→0

1

η
F(ξε, Nε) = (β − α)2. (180)

Finally, using (179) (180), we get

lim
ε→0

1

η
F(uε,Ωε) = lim

ε→0

1

η
F(uε, Nε) = (β − α)2.

This concludes the proof.

Interlude: convergence of Neumann problems

In this short interlude, we recall a convergence result for solutions to
elliptic problems with Neumann boundary conditions that will be crucial
to carry out the analysis of the asymptotic behaviour of the rescaled
profiles outside the neck. The result is the following. For a proof, we
refer to [59, Proposition 6.2] (see also [22, 32]).

Theorem 29. Let (Ωε)ε ⊂ R3 be a sequence of open sets such that, as
ε → 0,

χΩε → χΩ∞ in L1(R3) and R3 \ Ωε
H→ R3 \ Ω∞ locally,

for some open set Ω∞. Let p > 2, and let (fε)ε ⊂ Lp
loc(R3) be such that,

as ε → 0,
fεχΩε → f∞χΩ∞ in Lp

loc(R
3),

for some f∞ ∈ Lp
loc(R3). Let (uε)ε ⊂ W 2,p(Ωε) be the weak solution to

{
△uε = fε in Ωε,

∂νuε = 0 on ∂Ωε.

Assume that (uεχΩε)ε is locally equi-bounded in L∞(Ωε). Then, up to a
subsequence,

vεχΩ̃ε
→ v̂χΩ∞ in Lq

loc(R
3) for all q ∈ [1,∞),
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as ε → 0, and

∇vεχΩε → ∇v̂χΩ∞ in L2
loc(R3;R3),

as ε → 0, where v̂ ∈ W 2,p(Ω∞) is the weak solution to
{

△û = f∞ in Ω∞,

∂ν û = 0 on ∂Ω∞.

Moreover, uε → û in W 2,p
loc (Ω∞), as ε → 0.

Remark 18. The reason why in the above result the convergence of
the complements of the open sets Ωε is required, and the fact that the
limiting set has to be open, is in order to ensure that at each point of the
limiting set there is only one side where the limiting set is. For instance,
we want to avoid situations of the type

Ωε := {(cos θ, sin θ) : θ ∈ (0, 2π − ε)},

or of the type
Ωε := (0, 1)2 ∪ ([1, 2)× (−ε, ε)) .

In both cases, the limiting set has part of the topological boundary that
creates troubles in defining the limiting PDE.

3.3.3 Window thick regime

Here we consider the scaling of the energy in the window thick regime
δ ≫ η ≫ ε, namely where

lim
ε→0

η

δ
= 0 and lim

ε→0

η

ε
= +∞.

Since the ellipsoidal competitor outside the neck provides an energy
whose order is lower than the energy of the affine competitor in the
neck, we expect the transition happening outside the neck. If uε is a
local minimiser of the functional (150), the convenient rescaling that al-
lows us to both see a nice limiting space, and to use the scale-invariant
Poincaré inequality (173) is

vε(x, y, z) := uε(δx, δy, δz).

174



Chapter 3 - Domain Walls

as ε → 0, and

∇vεχΩε → ∇v̂χΩ∞ in L2
loc(R3;R3),

as ε → 0, where v̂ ∈ W 2,p(Ω∞) is the weak solution to
{
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Using this rescaling, the limiting domain becomes

Ω̃∞ = {x < 0} ∪ ({0} × [−1, 1]× {0}) ∪ {x > 0}.

However, note that

R3 \ Ω̃ε
H→ R3 \ Ω∞ ,

where

Ω̃ε :=
1

δ
Ωε , Ω∞ := {x < 0} ∪ {x > 0}.

We are now in position to prove the main result of this section.

Theorem 30. Let (uε)ε ⊂ H1(Ωε) be an admissible family of local min-
imisers as in Definition 27. Assume that δ ≫ η ≫ ε. Then,

lim
ε→0

| ln(η/δ)|
δ

F(uε,Ωε) = lim
ε→0

| ln(η/δ)|
δ

F(uε,Ωε \Nε) = π(β − α)2.

Moreover, for ε > 0 let vε : Ω̃ε → R be defined as

vε(x, y, z) := uε(δx, δy, δz).

Then, there exists R > 0 such that the following statements hold:

(i) vε → α+β
2

uniformly on BR, as ε → 0;

(ii) There exists v̂ ∈ H1
loc(Ω∞) such that vεχΩ̃ε

→ v̂χΩ∞ strongly in
H1

loc(R3), as ε → 0;

(iii) The function v̂ is the unique minimiser of the variational problem

min

{
1

2

∫

Ω∞

|∇v|2 dx : v ∈ A
}
,

where

A :=
{
v ∈ H1

loc(Ω∞), v − αχΩℓ
∞
− βχΩr

∞ ∈ L6(Ω∞),

v =
α + β

2
on BR ∩ Ω∞

}
, (181)

and Ωℓ
∞ := {x < 0}, and Ωr

∞ := {x > 0}.
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Proof. Step 1: lower bound of the energy outside the neck. We claim that
there exist m1,m2 ∈ R such that

lim inf
ε→0

| ln(η/δ)|
δ

F(uε,Ωε) ⩾ 2π
[
(m1 − α)2 + (m2 − β)2

]
. (182)

The idea is to bound from below the energy of uε with that of an harmonic
function defined in the region between two suitable ellipsoids, one on the
left and one of the right of the neck. For a, s > 0, consider the ellipsoid

E(a, s) := {Ψ(µ, ν, φ) : µ < s},

where Ψ denotes the prolate ellipsoidal coordinates defined in (154). We
define

Eℓ
ε(a, s) := (E(a, s) ∩ {x < 0}) + (0, 0,−ε),

Er
ε(a, s) := (E(a, s) ∩ {x > 0}) + (0, 0, ε).

We claim that it is possible to find m1,m2 ∈ R satisfying the following
property. Fix a and M such that E(a,M) ⊂ B2R, and define

aε := δa, Mε := δM.

Then, for any γ, µ > 0, there exists ε0 > 0 such that

m1 − µ ⩽ uε ⩽ m1 + µ on ∂Eℓ(aε,Mε), (183)

m2 − µ ⩽ uε ⩽ m2 + µ on ∂Er(aε,Mε), (184)

α− γ ⩽ uϵ ⩽ α + γ on ∂Eℓ(aε, ρ), (185)

β − γ ⩽ uε ⩽ β + γ on ∂Er(aε, ρ), (186)

and

Nε ∩ {x = −ε} ⊂ Eℓ(aε,Mε) ∩ {x = −ε},

Nε ∩ {x = ε} ⊂ Er(aε,Mε) ∩ {x = ε}. (187)

for all ε < ε0. The claims (183) and (184) will be proved in Step 1.1,
while (185) and (186) in Step 1.2.
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We now show how to conclude. Fix µ, γ > 0. Then, for ε < ε0, we
have that

F(uε,Ωε \Nε) ⩾
1

2

∫

Eℓ(aε,ρ)\Eℓ(aε,Mε)

|∇uε|2 dx

+
1

2

∫

Er(aε,ρ)\Er(aε,Mε)

|∇uε|2 dx

⩾ inf
{1

2

∫

Eℓ(aε,ρ)\Eℓ(aε,Mε)

|∇v|2 dx : v ∈ H1(Eℓ(aε, ρ) \ Eℓ(aε,Mε)),

v ⩽ m1 + µ on ∂Eℓ(aε,Mε), v ⩾ α− γ on ∂Eℓ(aε, ρ)
}

+ inf
{1

2

∫

Er(aε,ρ)\Er(aε,Mε)

|∇v|2 dx : v ∈ H1(Er(aε, ρ) \ Er(aε,Mε)),

v ⩽ m2 + µ on ∂Er(aε,Mε), v ⩾ β − γ on ∂Er(aε, ρ)
}

= inf
{1

2

∫

Eℓ(aε,ρ)\Eℓ(aε,Mε)

|∇v|2 dx : v ∈ H1(E(aε, ρ)
ℓ \ Eℓ(aε,Mε)),

v = m1 + µ on ∂Eℓ(aε,Mε), v = α− γ on ∂Eℓ(aε, ρ)
}

+ inf
{1

2

∫

Er(aε,ρ)\Er(aε,Mε)

|∇v|2 dx : v ∈ H1(E(aε, ρ)
r \ Er(aε,Mε)),

v = m2 + µ on ∂Er(aε,Mε), v = β − γ on ∂Er(aε, ρ)
}

=: Lε +Rε. (188)

We now want to compute Lε and Rε. We show the argument for Lε.
The result for Rε will follow by using the same reasoning. Arguing as in
Section 3.2, we get that the solution to the problem defining Lε is given,
in prolate coordinates, by

w(µ) = c ln |k tanh(µ/2)| ,
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where (see (158))

k = coth(Mε), c =
m1 + µ− α + γ

ln
( tanh(ρ)

tanh(Mε)

) .

In particular, (see (159)), we get that

Lε =
πaε(m1 + µ− α + γ)2

ln
( tanh(ρ)

tanh(Mε)

) . (189)

Now, we want to understand the asymptotic behaviour of Lε. First, we
want to compute the asymptotic behaviour of the denominator on the
right-hand side of (189). Let Mε, and aε be such that

aε sinhMε = 2η, aε coshMε = 2δ.

In such a way, we have that (187) holds. Note that on ∂Eℓ(aε,Mε)∩{x =
−ε} we have

y2

a2 cosh2(Mδ)
+

z2

a2 sinh2(Mδ)
= 1,

which yields that

tanhMε =
η

δ
, a2ε = 4δ2 − 4η2 ≈ 4δ2. (190)

As consequence, we get the following asymptotic estimate

1

aε
ln
( tanh(ρ)

tanh(Mδη)

)
=

1

aε

(
ln tanh ρ− ln tanhMδη

)
≈ |ln(δ/η)|

2δ
. (191)

Therefore, from (189), (191), since γℓ
ε → 0 and by arbitrariness of γ, we

get

lim inf
ε→0

|ln(δ/η)|
δ

Lε ⩾ 2π(m1 − α)2.

In a similar way, we obtain that

lim inf
ε→0

|ln(δ/η)|
δ

Rε ⩾ 2π(m2 − β)2.
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where (see (158))

k = coth(Mε), c =
m1 + µ− α + γ

ln
( tanh(ρ)

tanh(Mε)

) .

In particular, (see (159)), we get that

Lε =
πaε(m1 + µ− α + γ)2

ln
( tanh(ρ)

tanh(Mε)

) . (189)

Now, we want to understand the asymptotic behaviour of Lε. First, we
want to compute the asymptotic behaviour of the denominator on the
right-hand side of (189). Let Mε, and aε be such that

aε sinhMε = 2η, aε coshMε = 2δ.

In such a way, we have that (187) holds. Note that on ∂Eℓ(aε,Mε)∩{x =
−ε} we have

y2

a2 cosh2(Mδ)
+

z2

a2 sinh2(Mδ)
= 1,

which yields that

tanhMε =
η

δ
, a2ε = 4δ2 − 4η2 ≈ 4δ2. (190)

As consequence, we get the following asymptotic estimate

1
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1
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This proves the claim.

Step 1.1: boundary conditions on the internal ellipsoid. Here, we want
to prove the validity of (183) and of (184). We want to understand
the limiting behaviour of vε. The idea is to obtain such information by
looking at the limit of the PDE satisfied by the limit of the sequence
(vε)ε. First, we notice that since uε is a critical point of the energy Fε,
we have that uε satisfies the Euler-Lagrange equation



Ωε

∇uε · ∇φ dx−


Ωε

W ′(uε)φ dx = 0,

for all φ ∈ H1(Ωε). We claim that



Ω̃ε

∇vε · ∇ψ dx = δ2


Ω̃ε

W ′(vε)ψ dx, (192)

for every ψ ∈ H1(Ωε). Indeed, fix φ ∈ H1(Ωε). Using the change of
variable (δx′, δy′, δz′) = (x, y, z), we get



Ωε

∇uε · ∇φ dx = δ3


Ω̃ε

1

δ2
∇vε · ∇ψ dx′, (193)

where ψ(x, y, z) := φ(δx, δy, δz). Moreover,



Ωε

W ′(uε)φ dx = δ3


Ω̃ε

W ′(vε)ψ dx′.

This proves that vε is a weak solution to



∆vε = δ2W ′(vε) in Ωε ,

∂vε
∂ν

= 0 on ∂Ωε ,

as desired.

Now we want to obtain the limiting equation. Since, by assumption,
(uε)ε is uniformly bounded in L∞(Ωε), the sequence fε := δ2W ′(vε)χΩ̃ε

converges strongly in Lp
loc(R3) to f := 0, for all p ⩾ 1. Moreover,

R3 \ Ωε
H−→ R3 \ Ω∞ , as ε → 0.
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Thus, using Theorem 29, we get that there exists v̂ ∈ W 2,p(Ω∞), such
that, up to a subsequence, it holds

vεχΩ̃ε
→ v̂χΩ∞ in Lq

loc(R
3) for all q ∈ [1,∞),

and
∇vεχΩ̃ε

→ ∇v̂χΩ∞ in L2
loc(R3;R3),

as ε → 0. This proves (ii). In particular, if we fix R > 1, we get that


Ω∞∩B2R

|∇v̂|2 dx = lim
ε→0



Ω̃ε∩B2R

|∇vε|2 dx = 0, (194)

where we used (192) with vε as a test function, together with the fact
that ∥W ′(vε)vε∥L∞(Ω̃ε

is uniformly bounded in ε. Therefore, recalling
that Ω∞ has two disjoint connected components, we get that there exist
m1,m2 ∈ R such that

vε → m1 locally uniformly in Ω∞ ∩ B2R ∩ {x < 0},

and
vε → m2 locally uniformly in Ω∞ ∩ B2R ∩ {x > 0},

as ε → 0, Moreover, for any choice of a and M such that E(a,M) ⊂ B2R,
we get that

vε → m1 locally uniformly in Eℓ(a,M)

and
vε → m2 locally uniformly in Er(a,M),

as ε → 0, Going back to the original coordinates gives us the desired
result. Step 1.2: boundary conditions on the external ellipsoid. Note
that by assumption, we get that uε is a weak solution to



∆uε = W ′(uε) in Ωε ,

∂uε

∂ν
= 0 on ∂Ωε .

Moreover, W ′(uε)χΩε ∈ Lp
loc(R3) for all p ∈ [1,∞], since by assumption,

(uε)ε is uniformly bounded in L∞(Ωε). Therefore, arguing as in the pre-
vious step, and using Sobolev embeddings, we get that uεχΩℓ

ε
converges
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that, up to a subsequence, it holds

vεχΩ̃ε
→ v̂χΩ∞ in Lq

loc(R
3) for all q ∈ [1,∞),

and
∇vεχΩ̃ε

→ ∇v̂χΩ∞ in L2
loc(R3;R3),

as ε → 0. This proves (ii). In particular, if we fix R > 1, we get that


Ω∞∩B2R

|∇v̂|2 dx = lim
ε→0



Ω̃ε∩B2R

|∇vε|2 dx = 0, (194)

where we used (192) with vε as a test function, together with the fact
that ∥W ′(vε)vε∥L∞(Ω̃ε

is uniformly bounded in ε. Therefore, recalling
that Ω∞ has two disjoint connected components, we get that there exist
m1,m2 ∈ R such that

vε → m1 locally uniformly in Ω∞ ∩ B2R ∩ {x < 0},

and
vε → m2 locally uniformly in Ω∞ ∩ B2R ∩ {x > 0},

as ε → 0, Moreover, for any choice of a and M such that E(a,M) ⊂ B2R,
we get that

vε → m1 locally uniformly in Eℓ(a,M)

and
vε → m2 locally uniformly in Er(a,M),

as ε → 0, Going back to the original coordinates gives us the desired
result. Step 1.2: boundary conditions on the external ellipsoid. Note
that by assumption, we get that uε is a weak solution to



∆uε = W ′(uε) in Ωε ,

∂uε

∂ν
= 0 on ∂Ωε .

Moreover, W ′(uε)χΩε ∈ Lp
loc(R3) for all p ∈ [1,∞], since by assumption,

(uε)ε is uniformly bounded in L∞(Ωε). Therefore, arguing as in the pre-
vious step, and using Sobolev embeddings, we get that uεχΩℓ

ε
converges
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uniformly to α and uεχΩr
ε
converges uniformly to β. In particular, let

r0 > 0 be given by assumption (H3). Fix 0 < ρ < r0 and define

Eℓ
ε,ρ := Eρ ∩ {x < −ε} and Er

ε,ρ := Eρ ∩ {x > ε}.

Then, from the above argument, we get that

α− γℓ
ε <uε < α + γℓ

ε on ∂Eℓ
ε,ρ ,

β − γr
ε <uε < β + γr

ε on ∂Er
ε,ρ ,

as ε → 0, where

γℓ
ε := ||uε − α||L∞(Eℓ

ε,ρ)
→ 0 and γr

ε := ||uε − β||L∞(Er
ε,ρ) → 0.

Step 2: energy estimate outside the neck. Consider the function f : R×
R → R given by

f(s, t) := 2π[(s− α)2 + (t− β)2].

Then, the minimum of f over the set α ⩽ s ⩽ t ⩽ β is defined as

f

(
β + α

2
,
β + α

2

)
= π(β − α)2.

Thus, from (182), we obtain that

lim inf
ε→0

| ln(η/δ)|
δ

F(uε,Ωε \Nε) ⩾ π(β − α)2.

Let ξε be the function defined in (156). Then, by (158), we get that

lim sup
ε→0

| ln(η/δ)|
δ

F(ξε,Ωε \Nε) = π(β − α)2.

Thus, from we obtain that

lim
ε→0

|ln(δ/η)|
δ

F(uε,Ωε \Nε) = π(β − α)2.

In particular, this yields that m1 = m2, which proves (i). Moreover, by
noticing that all the inequalities in (188) are equalities, we get that

lim
ε→0

| ln(η/δ)|
δ

F(uε,Ωε) = lim
ε→0

| ln(η/δ)|
δ

F(uε,Ωε \Nε).
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Step 3: limiting problem. First, we prove that v̂ is an admissible com-
petitor for the problem in (iii). From (i), we know that

v̂ =
α + β

2
, on BR ∩ Ω∞ .

We now prove that it satisfies also the boundary conditions at infinity.
Using the scale-invariant Poincaré inequality (173), we get that

∥vε − vε∥L6(Ω̃ε)
⩽ C∥∇vε∥L2(Ω̃ε)

,

which, together with the fact that vε → αχΩℓ
∞
+ βχΩr

∞ ∈ L6(Ω∞), as
ε → 0, yields that v̂ is an admissible competitor for the problem in (iii).

Finally, we prove that v̂ solves the minimisation problem in (iii). The
argument is similar to that of Step 3 of the proof of [52, Theorem 4.1].
Fix M > |α|, |β|. We can assume, without loss of generality, that every
function φ ∈ A is such that ∥φ∥L∞(Ω∞) ⩽ M . Indeed, given φ ∈ A, by
considering the truncation φ̃ := (φ∧M)∨ (−M) we get that φ̃ ∈ A and

1

2

∫

Ω∞

|∇φ̃|2 dx ⩽
1

2

∫

Ω∞

|∇φ|2 dx.

Thus, let us take φ ∈ A with ∥φ∥L∞(Ω∞) ⩽ M . Define the function
φε : Ωε → R as

φε(x, y, z) := φ
(x
δ
,
y

δ
,
z

δ

)
.

Then, there exist constants C, C̃ > 0, such that, for all ε > 0 it holds

∥φε − u0,ε∥L2(Ωε) ⩽ C∥φε − u0,ε∥L6(Ωε) = C̃δ
1
2 .

Therefore, for ε sufficiently small, we get that φε is an admissible com-
petitor for the minimisation problem solved by uε. Thus,

F(uε,Ωε) ⩽ F(φε,Ωε). (195)

Note that

F(uε,Ωε) =
δ

2

∫

Ω̃ε

|∇vε|2 dx+

∫

Ωε

W (uε) dx,

182



Chapter 3 - Domain Walls
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2
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2 .

Therefore, for ε sufficiently small, we get that φε is an admissible com-
petitor for the minimisation problem solved by uε. Thus,

F(uε,Ωε) ⩽ F(φε,Ωε). (195)

Note that

F(uε,Ωε) =
δ

2

∫

Ω̃ε

|∇vε|2 dx+

∫

Ωε

W (uε) dx,
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and (recall that Ω̃ε ⊂ Ω∞)

F(φε,Ωε) =
δ

2

∫

Ω̃ε

|∇φ|2 dx+

∫

Ωε

W (φε) dx.

Thus, taking the liminf on both sides of (195), and using the fact that
φε, uε converges in L2 to zeros of W , we get

1

2

∫

Ω∞

|∇v̂|2 dx ⩽ lim inf
ε→0

F(uε,Ωε) ⩽ lim inf
ε→0

F(φε,Ωε) =
1

2

∫

Ω∞

|∇φ|2 dx,

proving that that v̂ solves the claimed minimisation problem. This con-
cludes the proof.

Remark 19. We highlight that, from Step 1.1 of the proof (see (194)),
it follows that the transition happens outside any ball of radius δ around
the neck.

3.3.4 Narrow thick regime

Here we consider the scaling of the energy in the narrow thick regime
δ ≫ ε ≈ η, namely when

lim
ε→0

η

δ
= 0 and lim

ε→0

η

ε
= l ∈ (0,+∞).

Since the ellipsoidal competitor outside the neck provides an energy
whose order is lower than the energy of the affine competitor in the
neck, we expect the transition happening outside the neck. Without loss
of generality, we assume l = 1. Denoting by uε a local minimiser of the
functional (150), the convenient rescaling that allows us to both see a
nice limiting space, and to use the rescaled Poincaré inequality is

vε(x, y, z) := uε(δx, δy, δz).

Using this rescaling, the limiting domain becomes

Ω̃∞ = {x < 0} ∪ ({0} × [−1, 1]× {0}) ∪ {x > 0}.

However, note that, as ε → 0,

R3 \ Ω̃ε
H→ R3 \ Ω∞ ,
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where

Ω̃ε :=
1

δ
Ωε, Ω∞ = {x < 0} ∪ {x > 0}.

The same argument used in the proof of Theorem 30 yields the following
result, therefore we omit the proof.

Theorem 31. Let (uε)ε ⊂ H1(Ωε) be an admissible family of local min-
imisers as in Definition 27. Assume that δ ≫ ε ≈ η. Then,

lim
ε→0

| ln(η/δ)|
δ

F(uε,Ωε) = lim
ε→0

| ln(η/δ)|
δ

F(uε,Ωε \Nε) = π(β − α)2.

Moreover, for ε > 0 let vε : Ω̃ε → R be defined as

vε(x, y, z) := uε(δx, δy, δz).

Then, there exists R > 0 such that the following hold:

(i) vε → α+β
2

uniformly on BR, as ε → 0;

(ii) There exists v̂ ∈ H1
loc(Ω∞) such that vεχΩ̃ε

→ v̂χΩ∞ strongly in
H1

loc(R3), as ε → 0;

(iii) The function v̂ is the unique minimiser of the variational problem

min

{
1

2

∫

Ω∞

|∇v|2 dx : v ∈ A
}
,

where A is defined in (181).

3.3.5 Letter-box regime

We now consider the regime in which δ ≫ ε ≫ η, namely when

lim
ε→0

δ

ε
= +∞ and lim

ε→0

η

δ
= 0.

In this regime, the transition will happen all inside, all outside, or every-
where, depending on the parameter

ℓ := lim
ε→0

δη

ε

|ln η/δ|
δ

. (196)

In particular, we will prove that if ℓ ∈ (0,+∞), then the transition
happens everywhere, while if ℓ = 0 then transition occurs all inside and
if ℓ = +∞ all outside.
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where

Ω̃ε :=
1

δ
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,
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δ
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= +∞ and lim
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η

δ
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Critical letter box regime

This sub-regime, corresponds to the case ℓ ∈ (0,+∞). We capture the
transition in the bulk by applying a similar argument to the one in Theo-
rem 30, in which around the neck, the rescaled profile vε converges to the
average of the two phases, namely (α + β)/2. In the critical letter box
regime we have instead that the rescaled profile converges to different
constants m1 on {x < 0} and m2 on {x > 0}. Once we have this infor-
mation, we can understand how to describe the transition in the neck,
by taking into account the fact that we know the boundary conditions.
Then, a similar technique used in Theorem 27 applies.

Theorem 32. Let (uε)ε ⊂ H1(Ωε) be an admissible family of local min-
imisers as in Definition 27. Assume that δ ≫ ε ≫ η, and that

ℓ := lim
ε→0

δη

ε

|ln(η/δ)|
δ

∈ (0,+∞).

Then,

lim
ε→0

ε

δη
F(uε,Ωε) =

|ln(η/δ)|
δℓ

F(uε,Ωε) =
π(β − α)2

π + ℓ
. (197)

In particular

lim
ε→0

ε

δη
F(uε, Nε) =

π2(β − α)2

(π + ℓ)2
,

and

lim
ε→0

|ln(η/δ)|
δ

F(uε,Ωε \Nε) =
πℓ2(β − α)2

(π + ℓ)2
.

Moreover:

(i) Consider the rescaled profile wε : Ωε → R defined as

wε(x, y, z) := uε(εx, δy, ηz), (198)

where Ωε is the rescaled domain of Ωε. Let us assume that wε ⇀ ŵ
in H1(N), for some ŵ ∈ H1(N). Then, ŵ(x, y, z) = w(x) where
w ∈ H1([−1, 1]) is the unique minimiser of the variational problem

min

{
1

2

∫ 1

−1

|v′|2 dx : v ∈ H1(−1, 1), v(−1) =
πα +

(α + β

2

)
ℓ

π + ℓ
,
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v(1) =
πβ +

(α + β

2

)
ℓ

π + ℓ

}
;

(ii) Let

Ω̃ε :=
1

δ
Ωε, Ω∞ := {x < 0} ∪ {x > 0}.

Define the rescaled profile vε ∈ H1(Ω̃ε) as

vε(x, y, z) := uε(δx, δy, δz). (199)

Then, there esists v̂ ∈ H1(Ω∞) such that vεχΩ̃ε
→ v̂χΩ∞ strongly

in H1
loc(R3) as ε → 0, where v̂ is the solution of the minimisation

problem

min

{
1

2

∫

Ω∞

|∇v|2 dx : v ∈ B
}
,

where,

B :=

{
v ∈ H1(Ω∞), v−αχ{x<0} − βχ{x>0} ∈ L6(Ω∞),

v =
πα +

(α + β

2

)
ℓ

π + ℓ
on BM ∩ {x < 0},

v =
πβ +

(α + β

2

)
ℓ

π + ℓ
on BM ∩ {x > 0}

}
,

for some M ⩾ 2.

Proof. First of all, note that, using (169) and (196), for any given con-
stants A,B ∈ R with A ⩽ B, we have

|ln(η/δ)|
δ

F(u,Ωε) ⩽ π
[
(A− α)2 + (B − β)2

]

+
δη

ε

|ln(η/δ)|
δ

(B − A)2. (200)
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v(1) =
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(α + β

2

)
ℓ

π + ℓ

}
;
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in H1
loc(R3) as ε → 0, where v̂ is the solution of the minimisation
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min
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1

2

∫

Ω∞
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,

where,

B :=

{
v ∈ H1(Ω∞), v−αχ{x<0} − βχ{x>0} ∈ L6(Ω∞),

v =
πα +

(α + β

2

)
ℓ

π + ℓ
on BM ∩ {x < 0},

v =
πβ +

(α + β

2

)
ℓ

π + ℓ
on BM ∩ {x > 0}

}
,

for some M ⩾ 2.

Proof. First of all, note that, using (169) and (196), for any given con-
stants A,B ∈ R with A ⩽ B, we have

|ln(η/δ)|
δ

F(u,Ωε) ⩽ π
[
(A− α)2 + (B − β)2

]

+
δη

ε

|ln(η/δ)|
δ

(B − A)2. (200)
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Therefore, for every λ > 0 there exists ε0 > 0 such that for every ε < ε0
we have

|ln(η/δ)|
δ

F(u,Ωε) ⩽ π
[
(A− α)2 + (B − β)2

]
+ (ℓ+ λ)(B − A)2. (201)

Step 1: lower bound of the energy in the bulk. The same strategy used in
Theorem 30, in which we obtained the boundary conditions at the edge
of the neck, applies.
Consider the rescaling vε ∈ H1(Ω̃ε) defined in (199) and the limiting
domain Ω∞. By following the strategy in Step 1 of Theorem 30 we
obtain that there is R > 0 and v̂ ∈ H1(Ω∞) such that vεχΩ̃ε

→ v̂χΩ∞ in
H1

loc(R3) and that v̂ is constant on each connected component of ({x <
0} ∪ {x > 0}) ∩ BR. In other words, there are m1,m2 ∈ R such that

v̂|BR
=

{
m1 if x < 0,

m2 if x > 0.

Therefore, we can show that the following lower bound estimate holds

lim inf
ε→0

|ln(η/δ)|
δ

F(uε,Ωε) ⩾ 2π
[
(m1 − α)2 + (m2 − β)2

]
. (202)

Step 2: lower bound of the energy in the neck. From the previous step,
we infer that for any µ > 0, there exists ε1 > 0 such that, for every
ε < ε1,

m1 − µ ⩽ uε ⩽ m1 + µ on ∂Eℓ(aε,Mε),

m2 − µ ⩽ uε ⩽ m2 + µ on ∂Er(aε,Mε),

for a suitable ellipsoid E(aε,Mε). From that, we obtain a lower bound
of the energy in the neck. Indeed,

ε

2δη

∫

Nε

|∇uε|2 dx ⩾ inf
{1

2

∫

Nε

|∇v|2 dx : v ∈ H1(Nε),

v ⩾ m1 − µ on {x = −ε} and v ⩽ m2 + µ on {x = ε}
}
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⩾ inf
{1

2

∫

Nε

|∇v|2 dx : v ∈ H1(Nε),

v = m1 − µ on {x = −ε} and v = m2 + µ on {x = ε}
}

=
(
m1 −m2 − 2µ

)2
, (203)

where in the last step we used the fact that the minimiser of the above
minimisation problem is given by the affine function.

Step 3: limit of the energy. By putting together (202), (203) and making
use of (196), we obtain

lim inf
ε→0

|ln(η/δ)|
2δ

∫

Ωε

|∇uε|2 dx ⩾ lim inf
ε→0

|ln(η/δ)|
2δ

∫

Ωℓ
ε∪Ωr

ε

|∇uε|2 dx

+ lim inf
ε→0

|ln(η/δ)|
2δ

∫

Nε

|∇uε|2 dx

⩾ 2π
[
(m1 − α)2 + (m2 − β)2

]

+ ℓ(m1 −m2 − 2µ)2. (204)

On the other hand, from (201), we have

2π
[
(m1 − α)2 + (m2 − β)2

]
+ (ℓ+ λ)

(
m1 −m2

)2

⩾ lim sup
ε→0

|ln(η/δ)|
2δ

∫

Ωε

|∇uε|2 dx.

By letting µ, λ → 0 in the above two inequalities, we obtain

lim
ε→0

|ln(η/δ)|
2δ

∫

Ωε

|∇uε|2 dx = 2π
[
(m1 − α)2 + (m2 − β)2

]

+ ℓ(m1 −m2)
2. (205)

The right-hand side is minimised for

m1 =
πα +

(α + β

2

)
ℓ

π + ℓ
and m2 =

πβ +
(α + β

2

)
ℓ

π + ℓ
, (206)
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⩾ inf
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2
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|ln(η/δ)|
2δ

∫
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ε

|∇uε|2 dx
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|ln(η/δ)|
2δ

∫
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2π
[
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|ln(η/δ)|
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|ln(η/δ)|
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∫
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2
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ℓ

π + ℓ
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2
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ℓ
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which gives

lim
ε→0

ε

δη
F(uε,Ωε) =

π(β − α)2

π + ℓ
.

In particular, by noticing that all the inequalities in (202), (203), and
(204) are equalities, we get

lim
ε→0

ε

δη
F(uε, Nε) =

π2(β − α)2

(π + ℓ)2
,

and

lim
ε→0

|ln(η/δ)|
δ

F(uε,Ωε \Nε) =
πℓ2(β − α)2

(π + ℓ)2
.

Step 4: limiting problems. Now we investigate the variational problem
that the rescalings vε, defined in (199), in the bulk and wε, defined in
(198), in the neck satisfy asymptotically.

Step 4.1: limiting problem in the neck. By acting like Step 1.1 of Theorem
30, let R > 0 be such that, [as ε → 0,]

uε → m1 uniformly on BδR ∩ {x ⩽ −ε},

uε → m2 uniformly on BδR ∩ {x ⩾ ε},

with m1,m2 defined in (206). In particular, uε has asymptotic boundary
conditions ad the edge of the neck m1 and m2 respectively. Using the
fact that δ ≫ ε ≫ η, it follows that, if we consider the rescaling (198),

wε → m1 uniformly on {x = −1} × [−1, 1]2,

wε → m2 uniformly on {x = 1} × [−1, 1]2,
(207)

as ε → 0, which gives us the asymptotic boundary conditions at the edge
of the neck satisfied by the limiting profile. By assumption, there exists
ŵ ∈ H1(N) such that wε ⇀ ŵ in H1(N) as ε → 0 and, from (207), ŵ is
an admissible competitor for the variational problem in (i). Moreover,

(m1 −m2)
2 ⩾

ε

2δη
lim inf
ε→0

∫

Nε

|∇uε|2 dx
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= lim inf
ε→0

1

2



N


(∂xwε)

2 +
ε2

δ2
(∂ywε)

2 +
ε2

η2
(∂zwε)

2

dx. (208)

Since ε/η → ∞, we have that ŵ do not depend on the variable z and
since we know that wε ⇀ ŵ we have, from (208), that

(m1 −m2)
2 ⩾ lim inf

ε→0

1

2



N

(∂xwε)
2 dx =



[−1,1]2
(∂xŵ(x, y))

2 dxdy

=

 1

−1

 1

−1

(∂xŵ(x, y))
2 dxdy ⩾

1

2

 1

−1


 1

−1

∂xŵ(x, y) dx


2

dy

=
1

2

 1

−1

ŵ(1, y)− ŵ(−1, y)
2dy

= (m1 −m2)
2,

where in the second inequality we used Jensen inequality. Therefore, we
conclude that ŵ(x, y, z) = w(x) for w ∈ H1([−1, 1]) and w solves the
variational problem in (i).

Step 4.2: limiting problem. We use a similar argument to the one em-
ployed in Step 3 of Theorem 30 applies. More specifically, v̂ is admissible
competitor for the problem in (ii) and

v̂|BR∩Ω∞ =




πα +
α + β

2


ℓ

π + ℓ
on {x < 0},

πβ +
α + β

2


ℓ

π + ℓ
on {x > 0}.

By using the rescaled Poincaré inequality, we get that

∥vε − vε∥L6(Ω̃ε)
⩽ C∥∇vε∥L2(Ω̃ε)

.

In analogy with Step 2 of Theorem 27 we get vε → αχΩℓ
∞
+ βχΩr

∞ ∈
L6(Ω∞), as ε → 0. Finally, by applying the last part of Step 3 of Theorem
30, we have that v̂ solves the variational problem in (ii).

Remark 20. Note that in this case, we do not have compactness of
the rescaled profile wε inside the neck. This is due to the fact that the
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(∂xŵ(x, y))
2 dxdy ⩾

1

2

 1

−1


 1

−1
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chosen rescaling that allows us to see the neck at scale one does not give
a uniform bound on the gradient of the rescaled profile (in particular,
the derivative with respect to the variable y cannot be bounded).

We now investigate the remaining two sub-regimes.

Super-critical Letter-box regime

In this sub-regime, we have

ℓ = lim
ε→0

δη

ε

|ln(η/δ)|
δ

= +∞. (209)

In this case, we recover the same result as in Theorem 30.

Theorem 33. Let (uε)ε ⊂ H1(Ωε) be an admissible family of local min-
imisers as in Definition 27. Assume that δ ≫ ε ≫ η and that ℓ = +∞.
Then,

lim
ε→0

| ln(η/δ)|
δ

F(uε,Ωε) = lim
ε→0

| ln(η/δ)|
δ

F(uε,Ωε \Nε) = π(β − α)2.

Moreover, let

Ω̃ε :=
1

δ
Ωε, Ω∞ := {x < 0} ∪ {x > 0}.

Define the rescaled profile vε : Ω̃ε → R be defined as

vε(x, y, z) := uε(δx, δy, δz).

Then, there exists R > 0 such that the following hold:

(i) vε → α+β
2

uniformly on BR, as ε → 0;

(ii) There exists v̂ ∈ H1
loc(Ω∞) such that vεχΩ̃ε

→ v̂χΩ∞ strongly in
H1

loc(R3), as ε → 0;

(iii) The function v̂ is the unique minimizer of the variational problem

min

{
1

2

∫

Ω∞

|∇v|2 dx : v ∈ A
}
,

where A is defined in (181).
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Proof. The proof follows the ones for Theorems 32 and 30.

Step 1: bound of the energy. For any given constants A,B > 0 with
A ⩽ B, we have

|ln(η/δ)|
δ

F(uε) ⩽ π
[
(A− α)2 + (B − β)2

]
+

δη

ε

|ln(η/δ)|
δ

(B − A)2.

Since

lim
ε→0

δη

ε

|ln(η/δ)|
δ

= +∞,

the only way to get that the right-hand side of the above inequality is
bounded uniformly in ε, is to choose A = B. This gives the estimate

|ln(η/δ)|
δ

F(uε) ⩽ π[(A− α)2 + (A− β)2].

Step 2. Lower bound of the energy. From (205), we get

lim inf
ε→0

|ln(η/δ)|
2δ

∫

Ωε

|∇uε|2 dx ⩾ lim inf
ε→0

|ln(η/δ)|
2δ

∫

Ωℓ
ε∪Ωr

ε

|∇uε|2 dx

+ lim inf
ε→0

|ln(η/δ)|
2δ

∫

Nε

|∇uε|2 dx

⩾ lim inf
ε→0

[
2π

[
(m1 − α)2 + (m2 − β)2

]

+
|ln(η/δ)|

δ

δη

ε
(m1 −m2)

2
]
.

Therefore, as in Theorem 30, we have an optimality condition on m1 and
m2, which, together with (209), leads to

A = m1 = m2 =
α + β

2
.

Therefore

lim
ε→0

|ln(η/δ)|
δ

F(uε,Ωε) = lim
ε→0

| ln(η/δ)|
δ

F(uε,Ωε \Nε) = π(β − α)2.

The rest of the proof is identical to the one in Theorems 30 and 32 and
we obtain the desired result.
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Sub-critical Letter-box regime

In this sub-regime, we have

ℓ = lim
ε→0

δη

ε

|ln(η/δ)|
δ

= 0. (210)

In this case, we recover the same result as in Theorem 27.

Theorem 34. Let (uε)ε ⊂ H1(Ωε) be an admissible family of local min-
imisers as in Definition 27. Assume that δ ≫ ε ≫ η and that ℓ = 0.
Then,

lim
ε→0

ε

δη
F(uε,Ωε) = lim

ε→0

ε

δη
F(uε, Nε) = (β − α)2.

Define the rescaled profile vε : Ωε → R as

vε(x, y, z) := uε(εx, δy, ηz),

where Ωε is the rescaled domain of Ωε. Then the following hold:

(i) vεχΩ̃ℓ
ε
− αχΩ̃ℓ

ε
→ 0 in L6(R3) and vεχΩ̃r

ε
− βχΩ̃r

ε
→ 0 in L6(R3), as

ε → 0;

(ii) There exists v̂ ∈ H1(N) such that vε ⇀ v̂ weakly in H1(N), as
ε → 0;

(iii) It holds that v̂(x, y, z) = v(x), where v ∈ H1(−1, 1) is the unique
minimizer of the variational problem

min

{
1

2

∫ 1

−1

|v′|2 dx : v ∈ H1(−1, 1), v(−1) = α, v(1) = β

}
,

In particular, v(x) =
β − α

2
x+

α + β

2
.

Proof. The proof is an adaptation of Theorem 33 and we remark only
the differences. Regarding the bound of the energy, we have that for any
given constants A,B > 0 with A ⩽ B, we have

ε

δη
F(uε,Ωε) ⩽ π

ε

δη

δ

|ln(η/δ)|
[
(A− α)2 + (B − β)2

]
+ (B − A)2.
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Since (210) holds, we obtain a bound for the energy which is compatible
with a transition inside the neck by choosing A = α and B = β.

By using the same techniques as in Theorems (30) and (32) we obtain
the desired result.
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Since (210) holds, we obtain a bound for the energy which is compatible
with a transition inside the neck by choosing A = α and B = β.

By using the same techniques as in Theorems (30) and (32) we obtain
the desired result.
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Summary

Materials science is a field that incorporates many branches of science,
such as physics, chemistry, engineering, and, last but not least, mathe-
matics. This dissertation specifically focuses on crystal growth and mag-
netism. We develop variational models to describe these two phenomena.

The first line of research concerns thin films, whose relevance and pro-
duction have been growing exponentially due to the increasing demand
from electronic devices and many other applications. Among the count-
less ways a crystal can form, we investigate the case in which a crystalline
material is deposited layer by layer onto a fixed crystalline substrate. If
the atoms of the substrate at the interface occupy the natural lattice
positions of the thin film, such crystal growth is called epitaxial.

The second topic of this research concerns magnetic domain walls, which
are regions where the magnetisation of a material transitions from one
orientation to another. In particular, we study changes in magnetisation
in domains with extreme geometries, such as dumbbell-shaped domains.
The analysis of magnetisation behaviour in such geometries is relevant in
micro- and nano-electronics applications, where the neck of the dumbbell
serves as a model for magnetic contact points.
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Samenvatting

Materiaalkunde is een vakgebied dat vele takken van de wetenschap
omvat, zoals natuurkunde, scheikunde, engineering en niet te vergeten
wiskunde. Dit proefschrift focust zich op kristalgroei en magnetisme.
We ontwikkelen variationele modellen die deze twee fenomenen beschri-
jven.
Het eerste deel van dit proefschrift betreft dunne films, waarvan het be-
lang en de productie exponentieel zijn toegenomen vanwege de hoge vraag
van elektronische apparaten en vele andere toepassingen. Onder de tal-
loze manieren waarop een kristal kan ontstaan, onderzoeken we het geval
waarbij een kristallijn materiaal laag voor laag wordt afgezet op een vast
kristallijn substraat. Als de atomen van het substraat op het grensvlak de
natuurlijke roosterposities van de dunne film innemen, wordt een dergeli-
jke kristalgroei epitaxiaal genoemd.
Het tweede onderwerp van het onderzoek betreft magnetische domein-
wanden. Dat zijn gebieden waarin de magnetisatie van een materiaal
verandert van de ene waarde naar een andere. We bestuderen in het bij-
zonder de verandering van magnetisatie in het geval dat het domein een
extreme meetkundige structuur heeft, zoals die van een halter. De anal-
yse van magnetisatie in zulke meetkundige structuren is relevant voor
micro- en nano-elektronische toepassingen, waarbij de nek van de halster
als een model voor magnetische puntcontacten dient.
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