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2 Introduction

Medical images enable medical experts to spot abnormalities in the body that are oth-
erwise invisible to the naked eye. Interpreting these images involves classification,
i.e. sorting them into distinct categories, and regression, i.e. estimating or predict-
ing continuous metrics from them. Three-dimensional (3D) medical images, such
as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI), are espe-
cially detailed and time-consuming to interpret. The production of medical imaging
data is increasing. In the Netherlands for example, this trend can be observed from
the number of CT and MRI studies conducted [1, 2]. With the increased produc-
tion of imaging data, a shortage of medical experts to interpret medical images has
emerged. This shortage is only expected to keep growing in the coming years [3].
The aid of automated systems may help reduce the workload and improve the accu-
racy of medical professionals for several medical image analysis processing tasks.

This thesis focuses on the development of automated classification and regres-
sion methods from 3D medical images. The developed methods may be useful for
various purposes, including diagnosis, monitoring, and assessing the risk associated
with interventions and surgical procedures.

1.1 3D image classification and regression

1.1.1 Deep learning

Deep Learning (DL) [4] models have achieved human-level performance for various
image processing tasks [5–7]. Applying a DL model to an image consists of perform-
ing a sequence of simple processing steps, which are often referred to as layers. Each
of these processing steps involves a collection of parameters.

Changing the parameters of a layer changes the operation that it performs. Train-
ing a DL model involves adjusting the parameters in such a way that the model
performs a specific task. This training process requires data that describe the task of
interest to guide how to adjust the parameters. Each individual layer in a DL model
can only learn to extract simple features from its input. However, by optimizing the
parameters of all the layers together, the model can learn complicated concepts, built
up from the simple features learned by the individual layers.

Different training methods can be used to train DL models. A DL training method
defines which model configuration, also referred to as architecture, is used, and how
the training data is used to adjust the model parameters.
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1.1.2 Two dimensional image processing

Most applications that require natural images to be processed are aimed at process-
ing two-dimensional (2D) photographs. Because of this, most of the existing com-
puter vision systems are designed to handle 2D natural images only. Research to
build such systems well has resulted in a large body of literature focused on DL sys-
tems for processing these 2D images [5, 8–11]. This research has led to easy-to-use
DL platforms for computer vision, the widespread adoption of convolutional neu-
ral networks (CNNs) [8], and more recently to the adoption of Visual Transformers
(ViTs) for image processing as well [11, 12].

CNNs and transformers are both types of DL models, each defined by the differ-
ent types of layers that they consist of. In CNNs, most of the processing power is
allocated to convolutional layers, which extract features from their input by apply-
ing filters. Filters in early layers detect simple features such as edges, while later
layers combine simpler features to detect complex shapes and structures. CNNs are
used in every chapter of this thesis.

The heavy lifting in ViTs is performed by self-attention layers that weigh the im-
portance of different parts of the input data, regardless of their positions in the im-
age. In order to focus on any relevant parts of the input, self-attention layers require
a large memory footprint. ViTs were employed in Chapter 5 of this thesis.

1.1.3 3D image processing

Most of the research done in the 2D image domain transfers well to 3D image process-
ing. However, with respect to 2D, 3D volumes do pose some additional challenges
for effectively processing images with DL, namely handling the additional spatial di-
mension and with this, dealing with the larger memory footprint that 3D DL models
have with respect to their 2D counterparts.

The first approach for handling the extra spatial dimension involves viewing the
3D image as a collection of 2D images. This is a common approach in the multiple
instance learning paradigm [13]. With the multiple instance learning approach, 2D
DL models are used to extract features from each of these images separately. The
extracted 2D features are aggregated along the third dimension to obtain a 3D rep-
resentation, which in turn is used to make predictions about the complete image
volume. The aggregation step can be implemented in multiple ways. One straight-
forward implementation is to simply obtain the 3D image representation by taking
a sum or average of the extracted 2D features [14]. This approach has a downside in
that it regards the 2D images that make up the 3D volume as an unordered set, result-
ing in the loss of structural information along the third dimension. This 3D structure
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can be helpful for evaluating and classifying 3D medical images [15]. DL systems
that can utilize 3D information well may thus ultimately result in better patient care.
Regardless of how the aggregation step is implemented, first extracting features in
2D and subsequently aggregating them to get a 3D representation may be inefficient
for obtaining a representation that captures information about 3D structures well
and may be suboptimal for model accuracy and throughput.

Another way to handle the extra spatial dimension is to view the 3D volume as
a sequence of 2D images. Methods that are well-suited for processing sequences of
data, such as recurrent neural networks, can therefore also be used for processing
3D image volumes. Contrary to the approach described above where 2D models
first extract features that are then aggregated along the third dimension, sequence
processing models can aggregate features along the third dimension throughout the
feature extraction process. This allows the extracted features to capture and repre-
sent structural information in the third dimension.

3D volumes can also be processed with approaches that handle all three spatial
dimensions equally. Many medical image volumes, such as spiral CT and MRI im-
ages are acquired as a collection of 2D slices. Sequence modeling approaches treat
the first two dimensions that make up these 2D slices differently than the third di-
mension along which the volume is divided into slices. Such an approach does not
recognize that the imaged structures are inherently three-dimensional by treating
the three dimensions equally. An alternative approach that can treat all three dimen-
sions equally is the 3D CNNs [16]. A 3D CNN is a conventional 2D CNN where
the convolution kernel which is usually two-dimensional has been extended into the
third dimension.

Some applications of 3D medical image processing require large volumes high
resolution 3D images to be processed. In such applications, the file sizes of the 3D
images are significantly larger than the file sizes of 2D images typically encountered
for main-stream AI applications. This in turn increases the memory requirements of
the processing methods. ViTs have gained much popularity during the preparation
of this thesis, especially for 2D image processing. Their larger memory footprint with
respect to CNNs magnifies their memory requirements for 3D image processing with
respect to 2D image processing even more.

1.2 Applications

The applications of regression and classification that this thesis mainly focuses on
are processing thoracic CT scans for automatic Pulmonary Function Test (PFT) esti-
mation and COVID-19 classification. CT scans are three-dimensional images of the
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Figure 1.1: Sagittal, coronal, and axial cross-sections of a CT scan imaging a patient

with RT-PCR confirmed COVID-19 from the STOIC2021 public training dataset [17].

inside of the body. They consist of a series of axial cross-sectional images, each of
which is reconstructed from multiple X-ray measurements taken from different an-
gles. Figure 1.1 shows an example of a thoracic CT scan.

1.2.1 Pulmonary function test result estimation

PFTs produce measurements of how well the lungs are functioning. They are useful
for gaining valuable insights relevant for many purposes, including the diagnosis
and staging of respiratory diseases [18–20] and risk assessment of bronchoscopic and
surgical lung volume reduction [21, 22]. Two types of PFT that are often performed
for these purposes are spirometry testing and single breath Diffusion Capacity for
carbon monoxide (DLCO).

Spirometry

Spirometry tests measure the volume of air a patient exhales or inhales as a function
of time [19]. Two key measurements performed during spirometry testing are the
volume of air the patient can expel from their lungs in a set time, denoted as Forced
Expiratory Volume in one second (FEV1), and the volume of air that the patient can
expel from their lungs in total, denoted as the Forced Vital Capacity (FVC).

DLCO

DLCO tests measure how well the lungs can transfer oxygen from the alveolar gas
into the bloodstream, by using the uptake of carbon monoxide (CO) as a proxy [20].
During a DLCO test, a patient fully exhales, then inhales a mixture of CO and tracer
gas (usually helium) to full inflation, holds their breath for ten seconds, and then
exhales. DLCO is computed by analyzing the exhaled CO and tracer gas concentra-
tions. The DLCO measurement depends on the the rate of uptake of CO by the lungs
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from the alveolar gas and as well as the total volume of the alveoli.

PFT variability

Regarding PFT estimation from CT, it may be noted that the reliability of PFT re-
sults depends on the consistency of the testing procedure, which relies on effective
patient coaching. Test quality is controlled by assessing whether repeated tests fall
within guideline boundaries [19, 20]. During the acquisition of CT scans, patients
are instructed to perform full inspiration and expiration, but they are generally not
coached during this process. Because of this, PFTs involve more extreme levels of
inspiration and expiration than inspiratory and expiratory CT scans.

1.2.2 COVID-19 classification

During the COVID-19 pandemic that began in late 2019, Reverse Transcription Poly-
merase Chain Reaction (RT-PCR) tests for the detection of COVID-19 were not yet
widely available. Researchers around the globe investigated the use of CT for com-
bating the disease. This led to the development of the CO-RADS scoring system
[15], which is a standardized reporting system that indicates the level of suspicion
of a COVID-19 infection. Research to combat the pandemic also included the de-
velopment of automatic COVID-19 classification from CT [14, 23–44], often aimed
at patient triaging and reducing the workload of medical professionals. Challenges
that remained included how to leverage these methods in such a way that they can
be used for effective communication within hospitals, and performing fair compar-
isons between different methodologies.

1.3 Grand challenges

Competitions for developing systems that automatically analyze medical images
have shown to be useful for obtaining high-performance solutions to medical image
analysis problems. Although medical image analysis challenges are widely applica-
ble to many tasks, individual challenges often focus on narrow tasks [6, 17, 45–53].
They often revolve around obtaining a high-performance solution for the specific
task at hand with a data set specifically collected for the event. It is often not pos-
sible to retrain the resulting solutions on new data and the possibility of translating
lessons learned from these challenges to new problems is limited. Recently, chal-
lenges have emerged that focus on the development of general algorithms that can
solve a wide variety of similar tasks [54]. Solutions to a more general set of problems
can provide out-of-the-box methods that are applicable to many tasks [55–57]. Such
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solutions may furthermore accelerate the progress of the field by providing baselines
to compare novel methodologies to.

1.4 Outline

This thesis discusses methods for automated classification and regression from 3D
medical images, as well as ways to accelerate the development of such methods.

• Chapter 2 describes a method for estimating PFT results from inspiration CT
scans. This method was developed to also estimate the contribution of each
lobe to the total patient-level lung function. It is aimed at improving the assess-
ments of restrictive pulmonary diseases as well as risk assessments of broncho-
scopic and surgical lung volume reduction.

• Chapter 3 provides a systematic comparison of automatic methods for COVID-
19 classification from CT scans and provides insights into the added value of
individual algorithm components to accelerate the creation of tools for accurate
COVID-19 grading. It furthermore proposes adherence of automated systems
to the CO-RADS reporting format to increase compatibility with clinical work-
flow.

• Chapter 4 describes a challenge format for training solutions on private data
that guarantees reusable training methodologies of challenge solutions. It ap-
plies this format to a medical image analysis challenge aimed at identifying
severe COVID-19 infections from thoracic CT scans. Severe COVID-19 was de-
fined as death or intubation within one month after the CT scan was made.

• Chapter 5 describes a database that can be used for the development of a
general-purpose automatic 3D medical image classifier to accelerate future re-
search on 3D medical image classification and regression.

Finally, Chapter 6 summarizes the methodologies, results, and findings presented
in this thesis. It furthermore indicates possible directions for future research.
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10 Estimating lung function at the patient and lobe level

Abstract

Background: Automated estimation of Pulmonary function test (PFT) results from
Computed Tomography (CT) could advance the use of CT in screening, diagnosis,
and staging of restrictive pulmonary diseases. Estimating lung function per lobe,
which cannot be done with PFTs, would be helpful for risk assessment for pulmonary
resection surgery and bronchoscopic lung volume reduction.
Purpose: To automatically estimate PFT results from CT and furthermore disentan-
gle the individual contribution of pulmonary lobes to a patient’s lung function.
Methods: We propose I3Dr, a deep learning architecture for estimating global mea-
sures from an image that can also estimate the contributions of individual parts of
the image to this global measure. We apply it to estimate the separate contribu-
tions of each pulmonary lobe to a patient’s total lung function from CT, while requir-
ing only CT scans and patient level lung function measurements for training. I3Dr
consists of a lobe-level and a patient-level model. The lobe-level model extracts all
anatomical pulmonary lobes from a CT scan and processes them in parallel to pro-
duce lobe level lung function estimates that sum up to a patient level estimate. The
patient-level model directly estimates patient level lung function from a CT scan and
is used to re-scale the output of the lobe-level model to increase performance. After
demonstrating the viability of the proposed approach, the I3Dr model is trained and
evaluated for PFT result estimation using a large data set of 8 433 CT volumes for
training, 1 775 CT volumes for validation, and 1 873 CT volumes for testing.
Results: First, we demonstrate the viability of our approach by showing that a model
trained with a collection of digit images to estimate their sum implicitly learns to as-
sign correct values to individual digits. Next, we show that our models can estimate
lobe-level quantities, such as COVID-19 severity scores, pulmonary volume, and
functional pulmonary volume from CT while only provided with patient-level quan-
tities during training. Lastly, we train and evaluate models for producing spirometry
and diffusion capacity of carbon mono-oxide estimates at the patient and lobe level.
For producing FEV1, FVC, and DLCO estimates, I3Dr obtains mean absolute errors
of 0.377 L, 0.297 L, and 2.800 mL/min/mm Hg respectively. We release the result-
ing algorithms for lung function estimation to the research community at https:
//grand-challenge.org/algorithms/lobe-wise-lung-function-estimation/

Conclusions: I3Dr can estimate global measures from an image, as well as the contri-
butions of individual parts of the image to this global measure. It offers a promising
approach for estimating PFT results from CT scans and disentangling the individual
contribution of pulmonary lobes to a patient’s lung function. The findings presented
in this work may advance the use of CT in screening, diagnosis, and staging of re-
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strictive pulmonary diseases as well as in risk assessment for pulmonary resection
surgery and bronchoscopic lung volume reduction.
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2.1 Introduction

Pulmonary function tests (PFTs) are widely used to assess the respiratory health of
a patient, with spirometry and Diffusion Capacity of Carbon mono-Oxide (DLCO)
measurements being particularly useful for this purpose [18–20]. Spirometry as-
sesses how a person inhales or exhales a given volume of air over time [19], while
DLCO measures the rate of oxygen uptake in the lungs [20].

In this pilot study, we present a machine learning method that automatically es-
timates spirometry and DLCO test results from Computed Tomography (CT). Our
method also estimates the contribution of each pulmonary lobe to a patient’s lung
function, providing clinically relevant information that is impossible to obtain from
PFTs.

Methods for accurate automatic lung function prediction from CT have the po-
tential to replace PFTs when CT scans are already available. This would make them
useful for the many purposes that PFTs are used for today, such as diagnosing [18,
19] and determining the efficacy of treatment [18] of astma, and the diagnosis [19]
and staging [18, 58] of Chronic Obstructive Pulmonary Disease (COPD).

In order to determine operability of patients with an early stage lung cancer, clin-
icians largely depend on the prediction of post-operative pulmonary function (ppo)
based on calculation of the effect of the number of segments that will be removed
upon surgery [59] . These estimations are relatively crude, are based on a homo-
geneous perfusion of each lobe and do not compensate for the changes in volume
of the remaining pulmonary tissue in the operated hemi-thorax [60]. More precise
lobe level lung function estimates could improve the risk assessment of pulmonary
resection surgery.

Both spirometry and DLCO measurements are currently used for the risk assess-
ment for [21] and advocated to be used in the inclusion criteria for bronchoscopic
lung volume reduction [22]. Access to lobe level lung function estimates could im-
prove the accuracy of these assessments.

In this work, we utilized an Inflated 3D ConvNet (I3D) [16] backbone to construct
the regional I3D (I3Dr) model for estimating lung function at the patient level and
at the lobe level. I3Dr was trained and evaluated for estimating spirometry, namely
Forced Expiratory Volume in one second (FEV1) and Forced Vital Capacity (FVC),
as well as DLCO measurement outcomes using a large dataset of 12 045 CT volumes.
It was designed to estimate the separate contributions of each pulmonary lobe to a
patient’s total lung function, while requiring only CT scans and patient level lung
function measurements for training.

We validated I3Dr through several experiments. We first explored the viability
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of the I3Dr model in a toy experiment by showing that, when only presented with
a collection of digit images and their sum, it learned to assign correct values to indi-
vidual digits. Next, we validated its ability to estimate lobe level quantities from CT
while only training with patient level labels through estimating lobe level COVID-19
severity scores, Pulmonary Volume (PV), and Functional PV (FPV). Finally, we used
the I3Dr model to estimate lobe level lung function quantities that sum up to patient
level PFT estimates. The presented methods outperformed using FPV for PFT result
estimation.

The main contributions of this work are as follows:

• We show that FEV1, FVC, and, as a first to the best of our knowledge, DLCO
measurement outcomes can be estimated from CT using machine learning.

• We proposed and validated the I3Dr model for disentangling regional contri-
butions from a patient level label and applied this model to estimate lobe level
lung function.

• We made our models for PFT result estimation at the patient and lobe level
publicly available to the research community.

2.2 Related work

2.2.1 Estimating regional contributions using machine learning

The presented method for lobe level lung function estimation was inspired by class
activation maps (CAMs) [61] and in particular by the Bag-of-local-Features (BagNet)
model [62]. Like most deep learning classification models, BagNet consists of a series
of feature-extracting convolution layers followed by global average pooling and a
linear layer that outputs the logits used for classification. By swapping the final
pooling layer and the final linear layer of the model at test time, which does not
change the model output [61, 62], BagNet can produce interpretable heat maps. After
swapping, each activation value produced by the linear layer can be interpreted as a
regional output for the receptive field patch of the corresponding neuron.

BagNet has been used for a variety of medical image processing tasks in various
modalities. It was deployed for sex and age prediction to generate heat maps for
brain MRI volumes [63] and retinal images [64, 65]. In other work, BagNet was
extended with a MIL branch and trained to generate interpretable heat maps for
histology images describing malignant and benign regions [66].

In our work, we exploited the principle of swapping the final pooling layer and
linear layer of a model to produce lung function estimations at the pulmonary lobe
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level. Instead of producing heat maps, we designed a model in which the receptive
fields of the output neurons of the final linear layer each contain one pulmonary lobe.
Our method assigns lung function estimates to each pulmonary lobe, such that they
sum up to an image level estimate.

2.2.2 PFT prediction

Earlier work has shown promising results for producing PFT results at a patient
level using convolutional neural networks. For example, total lung volume has been
estimated from chest radiographs [67] and CT scans have been used for estimating
spirometry test results [68]. These methods did not produce lobe level estimates.

Various methods for lobe level lung function estimation that do not make use
of the complex features in a CT scan have been introduced in previous works. The
risk assessment guidelines for pulmonary resection surgery advise to estimating the
residual lung function of a patient with a simple calculation using pulmonary seg-
ment counting [59]. Lobe level lung function has furthermore been estimated us-
ing Pulmonary Volume (PV) as obtained from a lung segmentation [69], as well as
through Functional Pulmonary Volume (FPV) [70–74]. Here, after obtaining the lobe
level PV, dual thresholding operations on the CT scan are applied to acquire an esti-
mation of the volume of functional parenchyma. These methods have been shown to
outperform the segment counting method for the task of predicting PFT results after
lung resection surgery [69, 72]. Post-operative PFT results have also been predicted
using an estimation of lobar collapsibility [71], which is computed as the fraction of
change in FPV between an inspiration and an expiration CT scan. Lastly, SPECT/CT
images have been used to determine the lobe level FEV1 of a patient [75] by com-
puting the proportion of radioactivity in the lobe of interest with respect to the total
radioactivity.

To the best of our knowledge, we are the first to propose a method for lobe level
lung function estimation that makes use of the detailed information available in a
CT scan and that does not require the patient to undergo additional imaging.

2.3 Methods

2.3.1 I3Dr

Fig. 2.1 shows the training and inference pipelines of the regional I3D (I3Dr) model
proposed in this work, which consists of patient level model A and a lobe level model
B.
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Patient level model

First, we trained model A to map a CT scan x to a corresponding PFT result vector y.
Model A consisted of a feature extractor fA(·) followed by a linear fully connected
layer rA(·):

ŷA = WAfA(x) + bA.

Here, the linear fully connected layer rA(·) is parameterized by weight matrix WA

and bias bA. Fig. 2.1a schematically presents this conventional approach.

Lobe level model

Next, we trained a model B that processed images of all anatomical pulmonary lobes
of a patient in parallel to produce a patient level PFT result estimate. The model was
designed so that it could produce meaningful lobe level lung function estimates dur-
ing inference. More specifically, the training and evaluation pipelines were altered to
force the model to output lobe level lung function estimates that sum up to a patient
level estimate. Fig. 2.1b and Fig. 2.1c shows these modifications.

Training To extract feature vectors per lobe, the lobes were segmented from the
input CT scan and presented individually to feature extractor fB(·). The resulting
feature vectors were aggregated and presented to the final linear layer rB(·). This
process can be described as:

ŷB = WB

(
L∑
l=1

fB(xl)

)
+ bB.

Here, a linear fully connected layer rB(·) is parameterized by a weight matrix WB

and bias bB. L is the number of regions for which the model produced estimates at
test time. For the task of PFT result estimation, L = 5, as it represents the number of
anatomical pulmonary lobes. Each xl is a separate input region for which the model
produces estimates. For PFT result estimation, xl is the image of a pulmonary lobe l

of CT scan x.
Only a single feature extractor fB(·) was used for processing all five lobes. This

sharing of weights allows fB(·) to take advantage of the common features of interest
across different anatomical lobes.

Inference At test time, the summation operation and final linear layer rB(·) of
model B are swapped, which does not change the model’s output [61, 62]. After
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Figure 2.1: Schematic representations of the training and evaluation pipelines for the

I3Dr model, which combines two distinct machine learning models. a) Training proce-

dure for the model that learned to produce patient level lung function estimates from

a CT scan (model A). First, a lung mask was applied to the CT scan. Next, features

were extracted by the feature extractor fA(·). The linear layer rA(·) was applied to

obtain a patient level estimate. Loss was computed by comparing this estimate with

the patient level reference to update fA(·) and rA(·). b) Training procedure for the

model that learned to produce lobe level estimates (model B). First, a lobe mask was

applied to the input CT scan. The segmented lobes were processed by the feature ex-

tractor fB(·) individually. During training, the feature vectors corresponding to each

lobe were summed together. The resulting feature vector was presented to the linear

layer rB(·) to produce a patient level estimate. Only a patient level reference was

used to compute the loss and update fB(·) and rB(·). c) Inference pipeline for model

B. During inference, the feature vectors corresponding to each lobe were not aggre-

gated. Instead, they were presented to linear layer rB(·) individually to produce lobe

level estimates that sum up to a patient level estimate. d) To increase performance,

the output of model A, that learned to produce patient level lung function estimates

from a CT scan, was used to rescale the lobe level estimates produced by model B.
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swapping, each of the activation values produced by the final linear layer had a
receptive field containing one pulmonary lobe. These values could therefore be in-
terpreted as lobe level lung function estimates that sum up to a patient level PFT
result estimate. Fig. 2.1c shows this inference pipeline.

For an image of pulmonary lobe l of CT scan x, a lobe level estimate was obtained
as follows:

ŷl
B = WBfB(xl) +

bB

L
.

These lobe level estimates could be aggregated again by the summation operation
to produce the patient level estimate that the model produced before swapping the
summation operation and final linear layer rB(·):

ŷB =
L∑
l=1

ŷl
B.

Combined model

We found in our experiments that model A (see section 2.3.1) regularly outperformed
model B (see section 2.3.1) on the patient level. We therefore combined models A

and B into one model that we refer to throughout this work as the I3Dr model. The
output of this model was obtained by simply rescaling the output of model A with
the output of model B as follows:

ŷl = ŷBl
ŷA

ŷB
.

Fig. 2.1d shows the complete inference pipeline for the I3Dr model.

2.4 Experiments

Since PFTs do not describe lobe level lung function, the approach described in sec-
tion 2.3.1 for lobe level lung function estimation cannot be validated directly. We
therefore designed and performed several experiments where we do have access
to local and global measurements to validate whether our models can actually pro-
duce meaningful regional (lobe level) output when only receiving feedback based
on global (patient level) measurements during training. In our final and most com-
prehensive experiment, we trained a model with patient level PFT results to produce
lobe level lung function estimates.
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2.4.1 Summing digits

In this proof-of-concept experiment, we used 2D images of digits instead of images
of pulmonary lobes, and sums of digits instead of patient level PFT results.

Dataset

We conducted this experiment with the MNIST dataset [8], which contains a training
set of 60 000 and a test set of 10 000 images of digits of 28× 28 pixels each.

Experiment design

For each of the models, the training set of digit images was randomly divided into
collections or ‘bags’ of images prior to training. We used the bag sizes of 2i with
i ∈ [0..8]. Each bag was labeled with the sum of all the digits it contained. Fig. 2.2a
shows some input-label example pairs for a bag size of 8.

The models were trained with the methodology described in section 2.3.1 to pro-
duce these bag level sums in a regression setting using 85% of the 60 000 MNIST
training images. A validation set to monitor the performance on this task was con-
structed with the remaining 15%. No individual digit labels were presented to pro-
vide feedback to the model during training, except when training the model with a
bag size of one. After training, the models were evaluated on their performance for
estimating individual digit labels using the 10 000 test images. For this experiment,
the rescaling described in section 2.3.1 was not performed.

2.4.2 COVID-19 severity scoring

Subsequently, to validate whether our approach could be used for estimating mean-
ingful lobe level quantities using only patient level labels, we trained two models to
estimate COVID-19 CT Severity Scores (CTSSs) [76]. The CTSS indicates the sever-
ity of a COVID-19 infection for individual lobes. In clinical practice, these lobe-wise
scores are summed up to a patient-level CTSS. This summing is analogous to how
many patient-level Pulmonary Function Test (PFT) results are the sum of the contri-
butions of lobe level quantities.

Dataset

To develop and test models for CTSS estimation, we adopted the internal dataset
from [33]. This dataset contains 482 CT scans for which each of the pulmonary lobes
were scored with a CTSS by a radiologist. The dataset was split at the patient level
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ŷA
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Figure 2.2: MNIST experiment to validate whether a model can implicitly learn the

contribution of individual images to a collection level label. a) Three examples of

input-label pairs for this experiment. During training, the machine learning model is

presented with a collection (bag) of images and a bag level label. Each bag is labeled

with the sum of all the labels of the digits in that bag. The model only receives feed-

back based on these bag labels during training, and not based on the individual digit

labels. b) Performance on the test set of models trained to predict the sum of a bag

of digits, evaluated on the task of predicting the value of a single digit for different

bag sizes. c) Individual digits from the test set were presented to the model trained

for estimating the sum of a bag of 8 MNIST digits. The model was evaluated for the

task of predicting the individual label of each digit. Each row shows a histogram of

the continuous model output for all images depicting a single target digit.
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into a training set (293 scans) validation set (84 scans) and test set (105 scans). The
test set used in this work was identical to the test set used by N. Lessmann et al [33].

Experiment design

First, a baseline model was trained for the task of producing lobe level CTSS esti-
mates from images of individual pulmonary lobes to obtain a performance limit for
lobe level CTSS estimation. This model was trained in a fully supervised fashion
using the conventional methodology described in section 2.3.1.

Furthermore, we trained an I3Dr model using the methodology described in sec-
tion 2.3.1. Only patient level CTSS labels were used for training this model.

Both models were evaluated on the task of producing lobe level CTSS labels.

2.4.3 Lung function estimation

Lastly, we trained an I3Dr model to jointly produce patient level Pulmonary Volume
(PV), Functional Pulmonary Volume (FPV), and PFT results from CT scans.

The PV was estimated by taking the volume of a lung mask. The FPV is the
PV from which emphysematous regions, large blood vessels and airways, and dense
lesions such as fibrosis are excluded, so that only the functional parenchyma remains.
It was computed as the volume of a CT scan within the lung mask where only voxels
with HU in the range [-950, -500] HU were included. The resulting subject level PV
and FPV measures were used as reference targets for training the I3Dr model.

Lobe level PV and FPV values were computed in a similar fashion, but using
segmentations of individual lobes instead of lung masks. These lobe level PV and
FPV measures were not used during training. They were only used as ground truth
for evaluating the model.

The PFT results that the model was trained to estimate were Diffusion capacity
of the Lungs for Carbon monOxide (DLCO) as well as spirometry measurements,
namely Forced Expiratory Volume in one second (FEV1) and Forced Vital Capacity
(FVC). In this work, spirometry measurements that were performed pre- and post-
bronchodilator are indicated with superscripts ‘pre’ and ‘post’ respectively.

After training, the performance of the I3Dr model for predicting PFT results was
compared to using FPV for PFT result estimation.

Dataset

For this experiment, we used inspiration CT scans from the COPDGene study [77].
Data for this clinical trial was collected from 21 imaging centers in the United States.
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Table 2.1: Number of CT Images (and Subjects) in the COPDGene Dataset used for

the lung function estimation. In this dataset, DLCO measurements were not available

as often as spirometry measurements.

Train Val Test Total

Total 8 433 (6 023) 1 775 (1 271) 1 837 (1 304) 12 045 (8 598)
FEV1pre 8 415 (6 020) 1 772 (1 271) 1 831 (1 304) 12 018 (8 595)
FEV1post 8 356 (5 987) 1 760 (1 262) 1 819 (1 298) 11 935 (8 547)
FVCpre 8 414 (6 020) 1 772 (1 271) 1 831 (1 304) 12 017 (8 595)
FVCpost 8 355 (5 987) 1 760 (1 262) 1 819 (1 298) 11 934 (8 547)
DLCO 2 350 (2 350) 496 (496) 500 (500) 3 346 (3 346)

The COPDGene dataset was divided randomly into separate sets for training,
validation, and testing. This split was performed at a subject level to ensure that the
model performance on the test set is not tainted due to overfitting on subject-specific
information. An overview of the numbers of CT scans, patients, and measurements
used in this work can be found in Table 2.1.

The PV and FPV reference were computed using the lung masks available in this
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Table 2.1) to produce patient level PV, FPV, FEV1pre, FEV1post, FVCpre, FVCpost, and
DLCO estimates. The performance of the model for producing these patient level
labels was evaluated, as well as its performance for producing lobe level PV and
FPV.

2.4.4 CT scan preprocessing

Prior to presenting the CT scans to a model, they were clipped between -1100 and 300
HU and the voxel values were scaled to the range [0,1]. After this, the CT scans were
isotropically resampled to 1.6 mm3 with linear interpolation. A lobe segmentation
was used to mask out all voxels outside of the region of interest. This region was
either a lung mask or a mask of a single lobe, depending on the model being trained.
The resulting volumes were centered around the region of interest and cropped to
240×240×240 voxels.

For the COPDGene dataset, the lobe segmentations that were provided with this

22 Estimating lung function at the patient and lobe level

into a training set (293 scans) validation set (84 scans) and test set (105 scans). The
test set used in this work was identical to the test set used by N. Lessmann et al [33].
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First, a baseline model was trained for the task of producing lobe level CTSS esti-
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lobe level CTSS estimation. This model was trained in a fully supervised fashion
using the conventional methodology described in section 2.3.1.

Furthermore, we trained an I3Dr model using the methodology described in sec-
tion 2.3.1. Only patient level CTSS labels were used for training this model.

Both models were evaluated on the task of producing lobe level CTSS labels.

2.4.3 Lung function estimation

Lastly, we trained an I3Dr model to jointly produce patient level Pulmonary Volume
(PV), Functional Pulmonary Volume (FPV), and PFT results from CT scans.

The PV was estimated by taking the volume of a lung mask. The FPV is the
PV from which emphysematous regions, large blood vessels and airways, and dense
lesions such as fibrosis are excluded, so that only the functional parenchyma remains.
It was computed as the volume of a CT scan within the lung mask where only voxels
with HU in the range [-950, -500] HU were included. The resulting subject level PV
and FPV measures were used as reference targets for training the I3Dr model.

Lobe level PV and FPV values were computed in a similar fashion, but using
segmentations of individual lobes instead of lung masks. These lobe level PV and
FPV measures were not used during training. They were only used as ground truth
for evaluating the model.

The PFT results that the model was trained to estimate were Diffusion capacity
of the Lungs for Carbon monOxide (DLCO) as well as spirometry measurements,
namely Forced Expiratory Volume in one second (FEV1) and Forced Vital Capacity
(FVC). In this work, spirometry measurements that were performed pre- and post-
bronchodilator are indicated with superscripts ‘pre’ and ‘post’ respectively.

After training, the performance of the I3Dr model for predicting PFT results was
compared to using FPV for PFT result estimation.

Dataset

For this experiment, we used inspiration CT scans from the COPDGene study [77].
Data for this clinical trial was collected from 21 imaging centers in the United States.
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dataset were used for masking and cropping the CT scans. These lobe segmentations
had been automatically generated by a commercialized software (LungQ, Thirona,
Nijmegen, The Netherlands), and were manually corrected by trained analysts that
had at least one year experience in annotating pulmonary structures on CT.

RTSU-Net [78], was used to obtain lobe segmentations for masking and cropping
the CT scans of the CTSS dataset from N. Lessmann et al [33].

2.4.5 Training details

Training models for this work was done on a single GPU, using NVIDIA GeForce
GTX TITAN X, GeForce GTX 1080, GeForce GTX 1080 Ti, GeForce RTX 2080 Ti, and
TITAN Xp graphics cards.

Summing digits

For the experiments conducted with the MNIST dataset, the images were resized to
33×33 pixels, and the BagNet-33 architecture [62] was used as a feature extractor.
The models were trained to minimize the L1 loss between their bag level predictions
and the bag level labels using the Adam optimizer (β1=0.9, β2=0.999) with a learning
rate of 0.001 and a batch size of 512 divided by the bag size. The models were trained
for 1 000 epochs and performance on the validation set was monitored after each
epoch. The model weights with the best performance on the validation set were
used for evaluation.

CTSS and PFT result estimation

For CTSS and PFT result estimation, we modeled the feature extractors fA(·) and
fB(·) with the Inflated 3D ConvNet (I3D) [16], without its final layer. Because pre-
training has been shown to be advantageous for processing medical images with
convolutional neural networks [79], we initialized our model with publicly available
weights trained for RGB video classification [16].

All models were trained using the Adam optimizer (β1=0.9, β2=0.999) to mini-
mize the L1 loss with a learning rate of 1 × 10−4, weight decay of 1 × 10−2, and a
batch size of 2. Early stopping was used with a patience of 15 epochs.

Data augmentation was used to increase training data diversity without altering
relevant image features. The augmentations consisted of rotation, translation, and
shearing in the axial plane, elastic deformation, and adding Gaussian noise. To ac-
commodate the RGB input format of the I3D model, the CT scans were copied along
the channel dimension after applying data augmentation.
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All CT scan labels were divided by their mean standard deviation in the training
set before computing loss. This was done to avoid unbalanced penalties due to the
differences in magnitude distributions of different measurement types. For input CT
scans for which not all labels were available, the loss was computed using only the
available labels.

To compute the loss for a single CT scan when training a model with the method-
ology presented in section 2.3.1, the feature extractor fB(·) would conventionally pro-
cess a minimal batch size equal to the number of lobes in a CT scan. This minimum
batch size of five was too large to fit on a 12GB GPU. To circumvent this problem,
we applied the gradient checkpointing method described in Algorithm 1. We did
not pass a full batch of lobe images through fB(·) when training these models. In-
stead, we further divided the training batch X comprised of lobe images xi into a set
of virtual mini-batches M , such that each virtual mini-batch m ∈ M contained two
lobe images. These virtual mini-batches were passed through the feature extractor
separately without gradient computation (lines 1-3). Subsequently, for each CT scan
s from the set S of CT scans with which the training batch X was constructed, the
features extracted from the lobes of that CT scan were aggregated and cached (line
4). The aggregated features were processed by final linear layer rB(·) (line 5) and the
gradient for rB(·) was computed (line 6). Lastly, the gradient fB(·) was aggregated
by computing it for each virtual mini-batch separately (lines 7-12). More specifically,
for each virtual mini-batch, the features extracted by fB(·) were re-computed, this
time storing the computational graph (line 9). The features for this virtual mini-
batch were aggregated with the features cached in the original forward pass (line 10)
in order to continue back-propagation through fB(·) (line 11).

2.4.6 Evaluation

The correlation between FPV and PFT measurements and between model output
and PFT measurements was computed on the test set using the Pearson correlation
coefficient.

Following [33], the agreement between the CTSS labels and the output of the
trained models was evaluated in terms of linearly weighted κ.

The performance of the models trained in this work were additionally evaluated
in terms of Mean Absolute Error (MAE). 95% confidence intervals for performance
measures were computed as the interval between the 2.5% and 97.5% percentiles of
a bootstrap distribution generated with 1 000 iterations [80].

All p-values were obtained using standard permutation tests for matched pairs
[80] with 10 000 iterations.
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Algorithm 1 Gradient computation with checkpointing
Input: Set of lobe images in training batch X := {xi}N1 , set of virtual mini-batches

M that is a partition of the indices of X , set of CT scans S that is a partition of the
indices of X , loss function L(·), feature extractor fB(·) with learnable parameters ϕ,
linear function rB(·) with learnable parameters θ, mapping Q(i) that maps an index
i of a lobe image to the CT scan s ∈ S that contains it.

Output: ∇r, ∇f

1: for all m ∈ M do
2: hi ← fB(xi) for all i ∈ m {Without gradient computation}
3: end for
4: zs ←

∑
i∈s hi for all s ∈ S

5: os ← rB(zs) for all s ∈ S

6: ∇rB ←
∑

s∈S
∂L(os)
∂θ

7: ∇fB ← 0

8: for all m ∈ M do
9: h̃i ← fB(xi) for all i ∈ m

10: z̃i ← h̃i +
∑

j∈Q(i),j ̸=i hi for all i ∈ m

11: ∇fB ← ∇fB +
∑

i∈m
∂L(oQ(i))

∂zQ(i)

∗ ∂z̃i
∂ϕ

12: end for
13: return ∇rB,∇fB

2.5 Results

2.5.1 Summing digits

The models trained to predict the sum of a bag of MNIST digits using the method-
ology described in section 2.3.1 were evaluated for the task of predicting the value
of a single digit. Fig. 2.2b shows that when increasing the bag size, performance
decreased slowly in terms of MAE and accuracy for bag sizes up to 16. For larger
bag sizes, performance decreased more rapidly. For small bag sizes, the models gen-
erally produced output within a narrow band around the target quantity. Fig. 2.2c
shows this for a bag size of 8.

2.5.2 CTSS scoring

The I3D model that was trained to produce lobe level CTSS labels from individual
lobe images was evaluated for this task. It obtained a linearly weighted κ of 0.565,
95% CI: (0.520, 0.609), indicating moderate agreement, which was similar to the lin-
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early weighted κ of 0.54 reported by N. Lessmann et al [33].
The I3Dr model had a more challenging task. It was evaluated for predicting

these same lobe-level CTSS labels, but was trained using only patient level CTSS
scores. It obtained a linearly weighted κ of 0.491, 95% CI: (0.448, 0.534), which indi-
cates moderate agreement with the CTSS labels from the test set.

2.5.3 Lung function estimation

Table 2.2 shows the performance of the I3Dr model with and without the rescaling
step (see section 2.3.1) at the patient level and for the different anatomical lobes,
namely the left upper lobe (LUL), left lower lobe (LLL), right upper lobe (RUL), right
lower lobe (RLL) and the right middle lobe (RML).

For both PV and FPV, the I3Dr model was able to produce meaningful lobe level
estimates, even though it was only trained with patient level labels. The rescaling
step in the I3Dr model increased performance.

Table 2.2: Model performance in Mean Absolute Error (in mL/min/mm Hg for

DLCO and in L for other measures) at the patient level and for each of the anatomical

pulmonary lobes: Left Upper Lobe (LUL), Left Lower Lobe (LLL), Right Upper Lobe

(RUL), Right Lower Lobe (RLL), Right Middle Lobe (RML).

Model Level PV FPV

I3Dr (no rescaling)

LUL 0.055 0.063
LLL 0.059 0.055
RUL 0.057 0.065
RLL 0.060 0.058

RML 0.037 0.041
Patient 0.124 0.133

I3Dr

LUL 0.053 0.053
LLL 0.045 0.051
RUL 0.065 0.078
RLL 0.046 0.054

RML 0.032 0.037
Patient 0.053 0.118

Table 2.3 shows the MAE of the I3D model for the task of PFT result estima-
tion. Fig. 2.3 shows the correlation between the I3Dr output and PFT results for
the COPDGene test set. In terms of the Pearson correlation coefficient, the correla-
tion between the I3Dr output and PFT test results was substantially better for all PFT
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Table 2.3: Model performance in Mean Absolute Error (in mL/min/mm Hg for

DLCO and in L for other measures) at the patient level.

Model FVCpre FVCpost FEV1pre FEV1post DLCO

I3Dr (no rescaling) 0.423 0.411 0.357 0.347 3.336

I3Dr 0.388 0.377 0.307 0.297 2.800

types than the correlation between functional lung volume and PFT test results. The
PFT measurements were better correlated with the rescaled I3Dr output than with
the I3Dr output before the rescaling step (p < 0.001 for all PFT types). Fig. 2.4 shows
representative qualitative PFT estimation results of the I3Dr model.

2.6 Discussion

In this paper, we introduced a method that can estimate global measures (lung func-
tion) and can also estimate the contributions of individual parts to this global mea-
sure (in this case lobar contributions to lung function). Especially for DLCO, the
results are promising. Recommendations state that when measuring DLCO, there
should be at least two acceptable tests that meet the repeatability requirement of ei-
ther being within 3 mL CO (STPD)/min/mm Hg (or 1 mmol/min-1/kPa) of each
other or within 10% of the highest value [20]. When regarding the ground truth PFT
measurement and the corresponding output of the I3Dr model as the two acceptable
tests, the I3Dr model meets this repeatability requirement in 64% of the cases in the
test set.

In our evaluation of the I3Dr model, we found that the PFT results correlated
substantially better with the output of the I3Dr model than with PFV. The latter has
been used as a proxy for lobe level PFT results in previous research [70–74]. The I3Dr
model may be viable for directly producing lobe level lung function estimations from
CT.

The I3Dr model presented in this work has some limitations. Firstly, the I3Dr
model was both trained and evaluated with CT scans and PFT results from the
COPDGene study [77]. Despite the scope of the COPDGene study, encompassing
data from 21 imaging centers in the United States, this training data may not be
representative for patients with different pathologies and/or demographics. Conse-
quently, this could affect the efficacy of the I3Dr model when applied to populations
outside the study’s demographic or those with different lung pathologies. The gen-
eralization ability of our model may be quantified in future work through external
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Figure 2.3: Correlation between PFT results from the test set and functional pul-

monary volume (top row), the corresponding output of the I3D model (middle row),

and the corresponding output of the I3Dr model (bottom row). Pearson correlation co-

efficients with 95% confidence intervals are shown above each plot. DLCO is shown

in mL/min/mm Hg. All other measures are shown in L.
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Figure 2.4: Qualitative results of the I3Dr model for four randomly selected CT scans

from the test set. The left images show central, evenly spaced coronal slices of the in-

put CT scan cropped to the lobes, as well as a voxel-wise annotation of the pulmonary

lobes. The bar plots on the right show the corresponding PFT measurement values in

gray and the lobar lung function estimations in the colors corresponding to the lobe

segmentation. DLCO is shown in mL/min/mm Hg. All other PFT measurement

values are shown in L.
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validation of the publicly available algorithm.
Furthermore, a direct lobe level evaluation for spirometry and DLCO results was

not possible, since these measurements can only be performed at a subject level. The
I3Dr’s ability to produce lobe-level CTSS scores, PV, and FPV, coupled with its per-
formance in predicting subject level spirometry and DLCO results, suggests that it is
a promising approach for estimating lobe-level lung function measures.

Lastly, we only trained the I3Dr model with inspiratory CT scans, since expiratory
CT scans are not always available in clinical practice. Presenting both inspiratory
and expiratory CT scans as input may increase performance for spirometry test result
estimation. This might also allow the I3Dr model to indirectly capture interplay
between lobes, such as the decreased inflation of one lobe due to the hyperinflation
of another.

Incorporating a patient level model in the I3Dr inference pipeline as described in
section 2.3.1 increased patient level performance. A reason for this increase could
be that the patient level model can model interactions between lobes, which is not
possible when processing the images of each anatomical lobe separately.

In our work, the I3Dr model was applied for lobe level lung function estima-
tion. It could trivially be extended to estimate lung function per pulmonary segment
when a segment segmentation is available. The I3Dr model might also be applied for
determining functional measures of other organs that can be divided into separate
regions with similar functionality such as the liver.

2.7 Conclusion

In this work, we conducted several experiments to validate the ability of the pre-
sented I3Dr model to produce meaningful regional labels, while being trained with
only patient level labels.

Firstly, we performed a proof of concept to test whether a model could accurately
predict the label of individual 2D digit images when trained with a set of images and
its sum. We showed that up to sets of 32 digits, the results were nearly flawless.

Our next experiments showed that our methodology for implicitly learning re-
gional quantities can also be applied to regression from CT scans. We trained I3Dr
models to produce meaningful lobe level quantities from CT, while only using pa-
tient level labels during training. In this setting, the I3Dr model was able to estimate
a lobe level CT Severity Score (CTSS), Pulmonary Volume (PV), and Functional Pul-
monary Volume (FPV) from CT.

After validating that the I3Dr model could estimate meaningful lobar quantities
from CT, we found that it is able to also estimate patient level PFT results. Over-
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all, we found that I3Dr can estimate global measures from an image, as well as the
contributions of individual parts of the image to this global measure. I3Dr offers a
promising approach for estimating PFT results from CT scans and disentangling the
individual contribution of pulmonary lobes to a patient’s lung function.

We hope that the findings presented in this work may advance the use of CT
in screening, diagnosis, and staging of restrictive pulmonary diseases as well as in
risk assessment for pulmonary resection surgery and bronchoscopic lung volume
reduction.
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Abstract

Applied artificial intelligence (AI) research focuses disproportionately on novel ar-
chitecture modifications that do not necessarily generalize to other datasets, while
neglecting systematic comparisons between commonly used algorithm components.
This inhibits the deployment of AI for real-world applications. For automatic
COVID-19 grading specifically, attention for compatibility of AI with clinical work-
flow is lacking. This paper presents a systematic investigation of COVID-19 grading
algorithm components using a large publicly available dataset. The results are pub-
lished in an online challenge. These contributions speed up the development of AI
applications for COVID-19 grading by establishing insights into the components of
such applications and by allowing applications produced by future research to be
compared in a fair manner. The adherence to a standardized COVID-19 grading sys-
tem may increase the compatibility between AI and clinical workflow. Altogether,
this work may increase the efficiency and accuracy of radiologists when reading CT
scans during this pandemic.
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3.1 Introduction

Imaging of COVID-19 with chest computed tomography (CT) has been found to be
helpful for diagnosis of this disease in the current pandemic [81]. With the aim to
reduce the workload of radiologists, various machine learning techniques have been
proposed to automatically grade and classify the presence of COVID-19 in CT images
[14, 23–38, 40, 82–85]. Automatic COVID-19 classification methods have already
been deployed in several medical centers [24].

By far the most common technique for automatic COVID-19 classification from
CT images is the Convolutional Neural Network (CNN) [86, 87], which is the current
state-of-the-art for image classification [88]. The works that use this approach can be
divided into those that use 2D CNNs [14, 23, 25–28, 30, 40, 83, 84] and those that
use 3D CNNs [31–38, 84]. While 3D CNNs are directly capable of exploiting 3D in-
formation present in CT volumes, 2D CNNs can only indirectly use 3D information
by aggregating their output for individual slices of the image to produce an image
level prediction. 3D CNNs are typically more memory intensive than 2D CNNs, but
Graphics Processing Units (GPUs) with sufficient memory to train 3D models are be-
coming increasingly available. Moreover, radiologists are specifically instructed to
take 3D information into account by inspecting different orthogonal views for assess-
ing the suspicion of COVID-19 in CT scans [15]. This indicates that 3D information
is essential for radiologists in assessing the patterns indicative for COVID-19. Addi-
tionally, the slice thickness of CT scans are increasingly becoming smaller [89] so that
the scans contain more detailed 3D information. We therefore hypothesize that 3D
CNNs are more suitable for COVID-19 classification from CT scans than 2D CNNs.

A major issue that inhibits the utilization of artificial intelligence in real-world ap-
plications, such as COVID-19 diagnosis from CT, is the excessive focus of research on
novel architectures, while scientifically sound comparisons and proper evaluations
on external datasets are lacking. Often, small additions and adaptations to model ar-
chitectures for incremental improvements on specific datasets are proposed that do
not generalize well to other datasets. This issue is increasingly being recognized and
simple baselines have been proposed which perform comparably to or better than
over-engineered solutions [55, 90].

The goal of this paper is therefore not to introduce novel architectural tweaks,
but instead to perform a comparative study that evaluates existing approaches.
To indicate the generalization capabilities of automatic COVID-19 classification
systems, some methods have been validated on data from different centers than the
data that were used for training [31, 33]. Also, the same validation methods, such
as receiver operating characteristic (ROC) curves and the area under the ROC curve
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Figure 3.1: Schematic representation of the different components used for CO-RADS

grading from CT scans using convolutional neural networks in patients suspected

with COVID-19. This processing pipeline was used in all experiments of this work.

(a) The input CT scan is fed into a lesion segmentation network. The CT and the le-

sion segmentation are used as separate input channels to the classification network

as described in Section 3.3.3. In one of the ablation study experiments, this lesion

segmentation input was left out. (b) We compared a variety of 3D (top) and 2D ar-

chitectures (bottom) as described in Section 3.3.3. The 3D architectures take as input

the full volume. The 2D architectures use individual slices as input. (c) We compared

a continuous output to a categorical output in the ablation study. Section 3.3.3 de-

scribes the continuous output in detail. The dashed line indicates that the categorical

output replaces the continuous output in one of the models in the ablation study and

all models in the architecture search, but it is not incorporated in the main approach.

(AUC), have been reported across different studies [14, 23–28, 30–36, 40, 84]. How-
ever, since each study used different datasets for training and for validation, the
need for fair, direct comparisons of the performance of these algorithms remains
unsatisfied. Recently, the “CT images and clinical features for COVID-19" (iCTCF)
dataset was made publicly available [91], enabling a fair comparison of COVID-19
classification methods.

This paper compares a variety of 2D and 3D CNN architectures for COVID-19
classification. We trained and evaluated the approaches on the same internal dataset.
Moreover, in an ablation study, we investigated performance changes due to 1) using
transfer learning for 2D and 3D COVID-19 classification models, 2) using prior infor-
mation in the form of COVID-19 related lesion segmentations as additional input to
the network, 3) replacing the categorical output with a continuous output.

We furthermore created a public challenge [92] for evaluating and comparing dif-
ferent COVID-19 classification algorithms. Algorithms can be submitted to the chal-
lenge as Docker containers and are evaluated on the iCTCF dataset that we used in
this paper. This allows their performance to be compared to the methods presented
in this paper, as well as to other COVID-19 grading and classification algorithms that
are submitted to the challenge.

3.2 Background

3D CNNs were initially proposed for processing video data [87], where the third
dimension of the convolutional layers dealt with the temporal dimension. In later
works, 3D CNN architectures were derived from 2D CNN architectures by expand-
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ing the 2D filters into 3D [16]. Methods based on these inflated 3D CNNs, in particu-
lar the Inflated Inception-v1 (I3D) model, have recently been successfully employed
for lung nodule detection and scan-level classification tasks from thorax CT scans
[93, 94].

The large majority of the architectures used for COVID-19 classification from CT
scans in previous works [14, 23–40] are heavily or completely based on the ResNet
[95], DenseNet [96], or Inception [9] architecture families. Especially ResNet archi-
tectures have been used frequently [14, 23–28, 35–39]. Some works did not use a full
ResNet architecture, but did incorporate residual blocks into their model [29, 30]. Ar-
chitectures from the DenseNet [27, 31, 32] and Inception [33, 40] families have been
used less frequently. Other architectures such as VGG-19 [97], Inception-ResNet-v2
[98], NASNet [99], and EfficientNet [100] have also been used in research for COVID-
19 classification from CT scans [39, 41–44]. Due to the lack of standardized data for
testing across different works, previous research does not identify which architecture
produces the best performance for COVID-19 classification from CT.

Fine-tuning is a widely used technique in research on deep learning in medical
imaging [101] and COVID-19 classification specifically [102]. With fine-tuning, mod-
els are initialized with pre-trained weights from models trained on a different task or
dataset. They are commonly pre-trained on the ImageNet [103] dataset that contains
a large variety of 2D natural images. Afterwards, the models are trained for the task
at hand. Pre-training speeds up training and can offer performance gains for large
models [101]. It has been used in several 2D CNN COVID-19 classification methods
[14, 23, 26, 28, 40]. Pre-trained weights have also been used for 3D CNN-based meth-
ods. Wang et al. [31] pre-trained their model for COVID-19 classification on a large
number of CT scans from lung cancer patients. Inflated 3D CNNs can conveniently
be initialized by inflating 2D weights. 2D weights have been used to pre-train I3D
models for video classification [16] and chest CT classification [93] tasks.

Before presenting CT images to the CNN, they are often pre-processed by extract-
ing the lung region using lung or lobe segmentation algorithms. These lung regions
are then used either for cropping around and centering to the lungs [23, 26, 31, 33, 37]
and/or by suppressing non-lung tissue [14, 23–25, 31, 34–36, 38]. Yang et al. [27] used
a lung segmentation as an additional input channel and used lesion masks as extra
information by training their model to perform lesion segmentation and COVID-19
classification simultaneously. Lessmann et al. [33] also added a lesion segmentation
to the input of their model.

Most studies on automated detection of COVID-19 employ a categorical classifi-
cation output format that uses a softmax or sigmoid activation [102]. Previous works
have trained models to discern between COVID-19 positive and negative patients
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[23, 25–30, 32, 34, 37, 82], COVID-19 positive patients and patients with other types
of pneumonia [31, 35, 40], and between all three [14, 36, 38]. In this work, we fol-
lowed Lessmann et al. [33] and trained our models to produce CO-RADS [15] scores
on chest CT scans of suspected COVID-19 patients. The CO-RADS score denotes
the suspicion of COVID-19 on a scale from 1 to 5 and was developed to standardize
reporting of CT scans of patients suspected with COVID-19 [15]. Scoring systems,
like CO-RADS, have been advocated for better communication between radiologists
and other healthcare providers [15, 33].

3.3 Methodology

3.3.1 Data

Training and internal test data

The internal dataset contained CT scans from consecutive patients who presented at
the emergency wards of the Radboud University Medical Center, the Netherlands in
March, April and May 2020 and were referred for CT imaging because of moderate
to severe COVID-19 suspicion. The retrospective and anonymous collection of this
data was approved by the ethical review board of Radboudumc (CMO2016-3045,
Project 20027) prior to the study. Further details such as imaging parameters can be
found elsewhere [33].

CO-RADS scores were reported by a radiologist as part of routine interpretation
of the scans. CO-RADS 1 was used for normal or non-infectious etiologies, having
a very low level of suspicion. CO-RADS 2 was used if the CT-scan was typical for
other infections than COVID-19, indicating a low level of COVID-19 suspicion. CO-
RADS 3 implies equivocal findings and features compatible with COVID-19, but
characteristics of other diseases are also found. CO-RADS 4 and 5 indicate a high
and very high level of COVID-19 suspicion, respectively.

We randomly split the dataset into a development set with 616 patients and an in-
ternal test set of 105 patients. The patients in the development set were split into 75%
for training and 25% for validation using data stratification based on the CO-RADS
scores. The distribution of CO-RADS scores over the different splits is displayed in
Table 3.1. All data splits were made such that all scans from a patient with multiple
visits ended up in the same split.
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Table 3.1: Number of CT Images in Internal Dataset.

CO-RADS

1 2 3 4 5 Total Neg Pos

Development set
Training 253 71 78 37 73 512 324 188
Validation 81 24 26 11 23 165 105 60

Internal test set 20 10 19 17 39 105 30 75

Total 354 105 123 65 135 782 459 323

Table 3.2: Number of CT Images in External Dataset.

Grade [84]

Control Mild Regular Severe Critically ill Total Neg Pos

207 23 363 117 32 742 207 535

External test data

For external evaluation, we used the publicly available CT images and clinical fea-
tures for COVID-19 dataset (iCTCF) dataset [84, 91]. Since we focused on comparing
architectures for CT image processing for COVID-19 classification, we did not in-
corporate the clinical features from this dataset into the input for our models. In
iCTCF, patients were categorized with a Chinese grading system that distinguishes
the classes as Control, Mild, Regular, Severe, Critically ill and Suspected. Since there
was no etiological evidence available for the presence of COVID-19 in Suspected
cases [84], we did not use them for testing our models. The distribution of the other
classes is displayed in Table 3.2. The grading system uses etiological laboratory con-
firmation and other factors such as clinical features and CT imaging [84]. The control
cases include both healthy patients and patients with community acquired pneumo-
nia. Most of the iCTCF data has been made publicly available, but some CT scans
were not available at the time of conducting this study. We validated our models
with all available data from the first iCTCF cohort for which etiological evidence for
the presence of COVID-19 was available [91].
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3.3.2 2D and 3D architectures

We compared the performance of a variety of popular 2D and 3D CNN architec-
tures for the task of COVID-19 classification from CT. More specifically, we com-
pared vanilla 2D and 3D versions of DenseNet-121, DenseNet-169, DenseNet-201,
Inception-v1, ResNet-18, ResNet-34, and ResNet-50. Section 3.2 describes previous
works that have used many of these architectures.

Since we used scan-level labels for training and testing these models, the 2D ar-
chitectures required the integration of a slice-wise reduction step, while the 3D ar-
chitecture did not. For the 2D architectures, we therefore integrated the slice-wise
reduction step presented by Li et al. [14]. First, the 2D CNN extracts features of indi-
vidual axial slices. A global max pooling step reduces these features to a 1D vector,
to which a fully connected layer is applied with an output size equal to the number
of classes.

3.3.3 Ablation study

We investigated whether additional model components had an effect on COVID-19
classification performance in an ablation study. Fig. 3.1 shows a summary of the
processing pipeline that was used.

Since performing the ablation study for all 2D and 3D architectures would re-
quire a large quantity of computational resources, the ablation study was instead
performed with only the best performing architecture in terms of quadratic weighted
kappa (QWK).

Lesion map as prior information

To aid the model in localizing COVID-19 related parenchymal lesions, we provided
a lesion segmentation map as additional input in a separate input channel. More
specifically, the CT image was fed into the first input channel, the lesion segmenta-
tion into the second channel, and the third channel was presented with zeros. When
training models without the additional lesion segmentation input, the CT image was
fed into all three input channels.

A 3D nnU-Net [55] trained by Lessmann et al. [33], which segments ground-glass
opacities (GGOs) and consolidations, provided the lesion segmentations. GGOs and
consolidations are biomarkers with major importance in diagnosing COVID-19 [15].
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Dimensionality

Since various components were added to the models in the ablation study, we
trained both the 2D and 3D variants of the best performing architecture. This al-
lows for an analysis of the performance difference solely due to the dimensionality
of the model in our complete processing pipeline.

Pre-training

We investigated the performance changes due to pre-training on a natural image
classification task. The 2D models were initialized with weights pre-trained on Im-
ageNet. The 3D models were initialized with the same weights by inflating the pre-
trained 2D convolution kernels to 3D.

Continuous output

The standard output format of CNNs used for categorical classification does not
capture the ordinal nature of the CO-RADS scoring system. Furthermore, although
the CO-RADS scoring system allows for a higher level of interpretability than a bi-
nary system, the fact that a CO-RADS suspicion score of 3 indicates that it is unclear
whether COVID-19 is present makes it difficult to decide on the onset of the posi-
tive class for the predicted scores in ROC analyses. For these reasons, we considered
the CO-RADS classification to be a regression task. Hence, the model had one output
node that was forced to the range (0, 1) using the sigmoid function. CO-RADS scores
were mapped to target values in the range [0, 1] with a uniform spacing between CO-
RADS classes such that CO-RADS scores of 1 and 5 were assigned target values of
0 and 1, respectively. As the network had one output node, binary cross-entropy
was used as loss function. With this method, unlike a standard categorical approach
with a softmax layer and categorical cross-entropy loss, predictions that are further
off from the target are penalized more heavily than predictions that are closer. To
obtain a CO-RADS score during inference, the sigmoid output was multiplied by 4,
rounded to the nearest integer and added to 1. De Vente et al. [104] explored this ap-
proach for prostate cancer grading and found that it outperformed other regression
and categorical output methods.

3.3.4 Pre-processing

The CT scans were clipped between -1100 and 300 Hounsfield units, normalized
between 0 and 1, and resampled to a voxel spacing of 1.5 mm3 using linear interpo-
lation. The scans were further pre-processed using a lung segmentation algorithm
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that was trained on data from patients with and without COVID-19 [78]. More specif-
ically, any slices with a distance of 10 mm or more to the lung mask were discarded
and the remaining slices were cropped to 240 × 240 pixels around the center of the
mask. Following previous research with I3D models [16, 93, 94], we trained our mod-
els with a fixed 3D input size. To achieve this without adding extra slices that do not
contain information regarding the presence of COVID-19, we uniformly sampled 128
axial slices along the z-axis.

3.3.5 Training

We trained all networks with a batch size of 2, the Adam optimizer with β1 = 0.9, β2 =
0.999, and a learning rate of 10−4. Data augmentation consisted of random zooming
between -20% and +20%, rotation between -15% and +15%, shearing between -10%
and +10% and elastic deformations in the axial plane, translation between -2 and +2
voxels in the z-direction, -20 and +20 voxels in both the x- and y-direction, and addi-
tive Gaussian noise with a mean of 0 and a standard deviation between between 0
and 0.01 (after intensity normalization between 0 and 1). To correct for the class im-
balance, we monitored the performance on the validation data in the development
set during training with balanced samples based on the distribution of CO-RADS
classes in the training set. We used early stopping with a patience of 10 000 train-
ing batches and the QWK on the validation set for the stopping criterion. Gradient
checkpointing [105] reduces GPU memory requirements for training deep neural net-
works without affecting performance. This technique was used when necessary to
enable a batch size of 2 for the 2D models.

To rule out the possibility that performance differences between the 3D and 2D
approach were due to other factors such as pre-processing or data augmentation, we
kept all hyperparameters the same during training.

Each model was trained on a single GPU, using NVIDIA GeForce GTX TITAN
X, GeForce GTX 1080, GeForce GTX 1080 Ti, GeForce RTX 2080 Ti, TITAN Xp, and
A100 SXM4 cards.

3.3.6 Ensembling

The models were sensitive to the randomness of the training process introduced by
initialization of weights without pre-training, sample selection, and data augmen-
tation. In order to enable stable comparisons, we obtained ensembles by training
10 instances of the same model with different random seeds. The ensemble output
was obtained by simply taking the mean of the individual model outputs. For cate-
gorical model ensembles, the output was the mean of the probability output vectors
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of the individual models. All results presented in Section 3.4 were obtained from
ensembles unless stated otherwise.

3.3.7 Evaluation

We evaluated the CO-RADS scoring performance using the QWK score. This mea-
sure accounts for the ordinal nature of the CO-RADS score by weighting mismatches
between true and predicted labels differently based on the magnitude of the error.
Following previous works on COVID-19 classification and grading [14, 23, 24, 31, 33–
36, 40, 84], diagnostic performance was evaluated using the AUC and ROC curves.

We calculated 95% confidence intervals (CIs) with non-parametric bootstrapping
and 1000 iterations [106]. Statistical significance was computed with the same boot-
strapping method [107].

The AUCs that our models achieved on the external test set are additionally listed
on the Grand Challenge platform [92] to allow for a direct comparison between our
and future COVID-19 grading and classification solutions.

Inference duration was calculated on the same machine for each architecture, us-
ing a GeForce RTX 2080 Ti card. The reported durations were averaged over 50
forward passes of a batch with one sample.

3.4 Results

3.4.1 Architecture selection

Fig. 3.2 shows the QWK and AUC for the different 2D and 3D architectures. Table 3.3
shows the number of trainable parameters, single-model inference time for one sam-
ple and FLOP count for each architecture. All 2D architectures were outperformed
by their 3D counterparts both in terms of QWK and AUC. The 3D DenseNet-201
architecture performed best in terms of QWK, followed by the 3D Inception-v1 ar-
chitecture. In terms of AUC, the Densenet-169 obtained the best performance, again
followed by the 3D Inception-v1 architecture.

In the architecture selection, on average, training of the individual 3D models
required approximately 26 700 iterations, while it required about 29 800 iterations
for the 2D models.

Since the QWK takes into account the ordinal nature of the CO-RADS score, this
metric was used to select the architecture to execute the ablation study with. In the
rest of this section, we refer to the 3D DenseNet-201 ensemble as the 3D model and
to the 2D Densenet-201 ensemble as the 2D model.
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Figure 3.2: Performance of 2D and 3D CNN architectures on the internal test set for

the task of CO-RADS grading from CT images is shown in QWK and AUC, respec-

tively. The error bars indicate the 95% CIs. The AUC was computed with CO-RADS

1-2 as the negative class (30 scans) and CO-RADS 3-5 as the positive class (75 scans).

44 A systematic comparison of automated COVID-19 grading algorithms

of the individual models. All results presented in Section 3.4 were obtained from
ensembles unless stated otherwise.

3.3.7 Evaluation

We evaluated the CO-RADS scoring performance using the QWK score. This mea-
sure accounts for the ordinal nature of the CO-RADS score by weighting mismatches
between true and predicted labels differently based on the magnitude of the error.
Following previous works on COVID-19 classification and grading [14, 23, 24, 31, 33–
36, 40, 84], diagnostic performance was evaluated using the AUC and ROC curves.

We calculated 95% confidence intervals (CIs) with non-parametric bootstrapping
and 1000 iterations [106]. Statistical significance was computed with the same boot-
strapping method [107].

The AUCs that our models achieved on the external test set are additionally listed
on the Grand Challenge platform [92] to allow for a direct comparison between our
and future COVID-19 grading and classification solutions.

Inference duration was calculated on the same machine for each architecture, us-
ing a GeForce RTX 2080 Ti card. The reported durations were averaged over 50
forward passes of a batch with one sample.

3.4 Results

3.4.1 Architecture selection

Fig. 3.2 shows the QWK and AUC for the different 2D and 3D architectures. Table 3.3
shows the number of trainable parameters, single-model inference time for one sam-
ple and FLOP count for each architecture. All 2D architectures were outperformed
by their 3D counterparts both in terms of QWK and AUC. The 3D DenseNet-201
architecture performed best in terms of QWK, followed by the 3D Inception-v1 ar-
chitecture. In terms of AUC, the Densenet-169 obtained the best performance, again
followed by the 3D Inception-v1 architecture.

In the architecture selection, on average, training of the individual 3D models
required approximately 26 700 iterations, while it required about 29 800 iterations
for the 2D models.

Since the QWK takes into account the ordinal nature of the CO-RADS score, this
metric was used to select the architecture to execute the ablation study with. In the
rest of this section, we refer to the 3D DenseNet-201 ensemble as the 3D model and
to the 2D Densenet-201 ensemble as the 2D model.
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Figure 3.3: Comparison of 2D and 3D Densenet-201 models and ablation study with

this architecture for the task of CO-RADS grading from CT images. The analysis was

performed on the internal test set. The error bars indicate the 95% CIs. The AUC was

computed with CO-RADS 1-2 as the negative class (30 scans) and CO-RADS 3-5 as

the positive class (75 scans).
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Table 3.3: Architecture properties

Dim. Architecture
Parameter Inference time FLOP count

count (×106) (ms) (×1011)

DenseNet-121 6.88 151.09 ± 8.76 8.43
DenseNet-169 12.33 255.21 ± 17.47 9.93
DenseNet-201 17.87 326.30 ± 3.81 12.70

2D Inception-v1 5.59 40.92 ± 10.16 4.47
ResNet-18 11.17 8.95 ± 1.25 5.52
ResNet-34 21.27 13.53 ± 1.42 11.06
ResNet-50 23.47 35.91 ± 10.50 12.39

DenseNet-121 11.24 25.07 ± 8.49 10.88
DenseNet-169 18.54 31.49 ± 11.48 11.30
DenseNet-201 25.33 38.48 ± 15.65 12.14

3D Inception-v1 12.29 36.74 ± 16.75 5.13
ResNet-18 33.21 28.33 ± 31.31 6.08
ResNet-34 63.52 22.56 ± 14.37 9.29
ResNet-50 46.21 31.09 ± 8.49 7.39

3.4.2 2D vs. 3D CNNs

On the internal dataset, both the AUC and the QWK scores were significantly higher
for the full 3D model (with transfer learning, lesion maps and continuous output)
than for the full 2D model (p = .006 for AUC and p = .007 for QWK). Figures 3.3
and 3.6 show the corresponding CIs and ROC analyses respectively. Fig. 3.4 shows
prediction examples from the full 3D, full 2D and ablated 3D models in blue, yellow,
and black respectively.

We also trained an ensemble with the COVNet pipeline from Li et al. [14], which
contains a ResNet-50 backbone that was pre-trained on ImageNet. With COVNet,
we obtained a lower performance on the internal test set than when we applied the
3D model in our own pipeline. COVNet obtained a QWK of 0.567 (95% CI: 0.411-
0.703, p = .004) and a lower AUC of 0.828 (95% CI: 0.741-0.906, p = .017) Our 2D
model also outperformed COVNet in terms of both the QWK (p = .074) and AUC
(p = .179).

Fig. 3.5 shows confusion matrices for the two dimensionalities. For 13 scans, the
full 3D approach had predictions that were more than one CO-RADS category off.
For the full 2D approach this was the case for 19 scans. Furthermore, the full 3D ap-
proach and 2D approach both had two cases that were further off than 2 categories.

46 A systematic comparison of automated COVID-19 grading algorithms

Figure 3.3: Comparison of 2D and 3D Densenet-201 models and ablation study with

this architecture for the task of CO-RADS grading from CT images. The analysis was

performed on the internal test set. The error bars indicate the 95% CIs. The AUC was

computed with CO-RADS 1-2 as the negative class (30 scans) and CO-RADS 3-5 as

the positive class (75 scans).
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Figure 3.4: Example input-output pairs for the task of CO-RADS grading on the inter-

nal test set for the trained DenseNet-201 ensembles. Input examples are shown on the

left. Top row: Coronal slices of an input CT scan. Bottom row: Lung segmentation

used for centering and cropping are displayed with colored overlays. Delineations

of the lesion masks that were used as a separate input channel are depicted as black

lines. Output examples of the ensembles (wide, light bars) as well as the individual

models these ensembles are composed of (narrow, dark bars) are shown on the right.

(a) Radiology report: "GGO and consolidations especially lower lobes and posterior.

Has had prior lung carcinoma. COVID-19 is probable, but other infection intrapul-

monal is also possible." (b) Radiology report: "COVID-19 not probable, but also not

ruled out. Known post-traumatic thorax, persistent pleura fluid, slice pneumothorax.

Small amount of GGO and consolidation (left). Some pneumonia at thorax trauma,

post-traumatic deviations." (c) Consolidation and GGO in all lobes. According to ra-

diologist: "Very suggestive for COVID. Also positive PCR. Proven comorbidity."

3.4.3 Ablation study

The results of an ablation study to investigate the effect of each of the additional
components added to the 3D CNN are shown in Fig. 3.3. The 3D model without
ablations obtained an AUC of 0.930 (95% CI: 0.872-0.971) and a QWK of 0.785 (95%
CI: 0.705-0.852). Removing any of the additions had a smaller effect on these perfor-

Figure 3.5: Confusion matrices for CO-RADS grading of the 2D and 3D DenseNet-201

model predictions on the internal test set. These models were trained with transfer

learning, lesion maps and produced continuous output. The true label reference is

from the radiology report. Cells contain the number of CT scans.
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Figure 3.6: ROC analysis for the 2D and 3D Densenet-201 models on the internal test

set from Radboudumc (105 CT scans) for the task of CO-RADS grading. The analysis

was performed with CO-RADS 1 and 2 as the negative class (30 scans) and CO-RADS

3-5 as the positive class (75 scans). It was performed for the full 2D and 3D models

trained with transfer learning, lesion maps and continuous output.

mance metrics than changing the dimensionality of the architecture to 2D. Removing
pre-training reduced the QWK to 0.770 (95% CI: 0.682-0.789, p = .278), but increased
the AUC to 0.932 (95% CI: 0.857-0.977, p = .428). When the lesion segmentation input
was removed from the model, the QWK was increased to 0.812 (95% CI: 0.738-0.875,
p = .091) and the AUC was reduced to 0.920 (95% CI: 0.859-0.969, p = .292). Replac-
ing the regression approach with a categorical target had a negative effect on both
metrics, reducing the QWK to 0.799 (95% CI: 0.680-0.863, p = .421) and the AUC to
0.919 (95% CI: 0.868-0.964, p = .324). Fig. 3.4 shows prediction examples from the
ablation study models in black.

The 3D model required 31 550 iterations for training on average. The 2D model,
the network without pre-training, and the model without categorical output all re-
quired less iterations (25 650, 31 000 and 22 450, respectively). The model without
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Figure 3.7: ROC analysis for the 2D and 3D Densenet-201 models on the external

iCTCF test set (742 CT scans) for the task of COVID-19 classification. The analysis

was performed with 207 COVID-19 negative (Control) cases and 535 positive (Mild,

Regular, Severe, Critically ill) cases.

lesion input required more iterations (32 750).

3.4.4 External evaluation

Fig. 3.7 shows the ROC curves of the full 3D and the full 2D model for the external
iCTCF test set.

The 3D approach obtained an AUC of 0.919 (95% CI: 0.898-0.938) and outper-
formed the 2D approach that obtained an AUC of 0.915 (95% CI: 0.893-0.934, p =

.215).
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3.4.5 Lesion segmentation model

For a single patch the lesion segmentation model inference time was 178.66 ms ±
14.56 ms, using 9.41 × 1011 FLOPs. The CT scans in the test set contained 12.8 patches
on average. The model had 29.69 × 106 parameters. Performance metrics for this
model were reported by Lessmann et al. [33].

3.5 Discussion

In this paper, we identified and tested components of CNN based automated
COVID-19 grading models. More specifically, we investigated how the performance
of such models is affected by using different 2D and 3D CNN architectures, adopt-
ing pre-trained weights, using automatically computed lesion maps as additional
network input, and predicting a continuous output instead of a categorical output.
We evaluated all models with the same datasets to allow for a fair comparison be-
tween models.

Based on the architectures used in earlier automated COVID-19 classification re-
search, we selected and compared the performance of the 2D and 3D variants of 7
CNN architectures for this task. We found that for all architecture types, the 2D mod-
els were outperformed by their 3D counterparts. The best performing model was a
3D DenseNet-201. In the rest of this section, we refer to the 3D DenseNet-201 as the
3D model and to the 2D Densenet-201 as the 2D model.

The full 3D model (with transfer learning, lesion maps and continuous output)
outperformed the full 2D model in terms of AUC and QWK score on the internal
test set for COVID-19 classification and CO-RADS grading.

We compared our 2D model with COVNet, an architecture previously used in a
similar COVID-19 classification task in CT [14], for which the authors reported an
AUC of 0.96 for differentiating between COVID-19 positive and negative patients.
The substantial difference between this result and our observations with COVNet
illustrates the importance of using the same dataset when comparing different ap-
proaches.

We also observed a better diagnostic performance for COVID-19 classification by
the 3D model on the external test set, although this performance increase was not
statistically significant for a significance level of 0.05. AUC was 0.919 for the full
3D model, while it was 0.915 for the full 2D model. Ning et al. [84] developed a
2D model with slice-level annotations indicating if the slice was COVID-19 positive,
negative or non-informative. Using a superset of the external set used in this paper
for evaluation an AUC of 0.919 was obtained, which is the same as the AUC of our
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3D model, even though our 3D model was trained with weaker labels and on data
from a different population. This further emphasizes the importance of using 3D
rather than 2D models.

The internal test set was comprised of data from the same population as the data
the model was trained on, while the external test set was comprised of data from a
different population. For the full 2D model, a lower AUC was obtained on the inter-
nal test set than on the external test set. This difference might be due to population
differences between the internal and external test set, or due to the different defini-
tions of the positive class, which were presence of COVID-19 and high suspicion of
COVID-19 for the internal and external test sets respectively.

On the external test set, the full 3D model outperformed the full 2D model by a
smaller margin in terms of AUC than on the internal dataset. This difference could
be partly due to the different definitions of the positive class. However, we also
found that it partly arises from the larger overall slice thickness in the external test
set. All scans in the internal test set had a slice thickness of 0.5 mm. In contrast, 207
scans (40 COVID-19 positive, 167 negative scans) in the external test set had a slice
thickness larger than 1.5 mm, which was the input resolution in our training and
testing pipeline. When evaluating only on these scans, we obtained an AUC of 0.885
(95% CI: 0.835-0.931) for the full 3D model and an AUC of 0.891 (95% CI: 0.843-0.932)
for the full 2D model. The external test set contained 535 scans (167 COVID-19 pos-
itive, 368 negative) with a slice thickness smaller than or equal to 1.5 mm. On these
scans we obtained an AUC of 0.926 (95% CI: 0.902-0.947) for the full 3D model and
an AUC of 0.918 (95% CI: 0.892-0.941) for the full 2D model. The performance of
both models is lower for scans with a large slice thickness, but this effect is more ap-
parent for the 3D model. Taking into account the increasingly smaller slice thickness
of CT scans [89], this observation further supports our hypothesis that 3D models
are better suited for COVID-19 grading applications than 2D models.

A possible explanation for why adding the extra dimension to the convolutions
improves the performance is that it allows the CNN to take into account the 3D
structure and full volume of individual lesions. This explanation is in line with the
fact that radiologists typically use both the axial and coronal views to visualize the
spread of COVID-19 related lesions across the lungs in CT scans, such as GGOs [15].

We could not directly compare the CO-RADS classification performance on the
external set, since CO-RADS labels were not available. Moreover, the CO-RADS
grading cannot be directly translated to the system used in the iCTCF dataset, since
the former measures the probability of COVID-19 presence, while the latter quanti-
fies the severity of the disease.

The ablation study on the internal test set showed that the further additions to
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model were reported by Lessmann et al. [33].

3.5 Discussion
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The substantial difference between this result and our observations with COVNet
illustrates the importance of using the same dataset when comparing different ap-
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3D model, while it was 0.915 for the full 2D model. Ning et al. [84] developed a
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negative or non-informative. Using a superset of the external set used in this paper
for evaluation an AUC of 0.919 was obtained, which is the same as the AUC of our
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the network and training procedure did not have a significant effect on the perfor-
mance. Regardless of performance increases, using a continuous output removes the
disadvantage of having to decide on the onset of the positive class for the predicted
CO-RADS scores. Adding lesion maps as input and using inflated ImageNet weights
for pre-training might both be ineffective for 3D automated CNN based COVID-19
grading methods.

The full 2D DenseNet-201 model managed to obtain a better performance than
the 2D DenseNet-201 model without pre-training, additional lesion map input, and
continuous output. This indicates that some of these additional components posi-
tively affected the performance of the 2D model. However, even with all additional
components, it was still outperformed by the vanilla 3D DenseNet-201.

We did not use clinical features available for the external dataset as input to the
models trained in this work, since the main goal of this paper was to demonstrate the
effect on performance of different COVID-19 grading and classification algorithm
components.

3.6 Conclusion and Future Work

We compared a variety of 2D and 3D Convolutional Neural Network (CNN) architec-
tures for COVID-19 classification from computed tomography scans and found that
for all architectures considered, the 3D variants outperformed their 2D counterparts.
We investigated how the performances of the best performing architecture and its
2D counterpart were affected by including COVID-19 related lesion segmentations
as additional input, using pre-trained weights, and replacing the categorical output
with a scalar continuous output.

We intentionally did not develop novel non-trivial architectural tweaks for small
performance improvements, as many of them have been shown to be unnecessary
and to not generalize well to other datasets and tasks [55, 90]. We leave systematic
comparisons that explore other transfer learning schemes, make use of slice-level
annotations, and use clinical features as model input for future work.

Radiologists can be aided in assessing CT scans on the presence of COVID-19 by
automatic COVID-19 grading systems. This paper advances and speeds up the de-
velopment of such systems in the following ways. Firstly, our findings aid in advanc-
ing the performance of automated COVID-19 grading systems and provide insight
into the performance benefits of several of their components. These insights pri-
marily indicate that future research and clinical applications should move towards
using 3D CNNs for COVID-19 grading in CT scans. Secondly, the models and the
automatic evaluation method used in this paper have been made available on the on-
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line Grand Challenge platform [92]. This allows researchers to obtain and compare
the performance of their COVID-19 grading and classification solutions to other so-
lutions on the platform. Thirdly, the output of all models used in this paper adheres
to the standardized CO-RADS reporting system to facilitate easier integration into
clinical workflow.
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Abstract

Challenges drive the state-of-the-art of automated medical image analysis. The quan-
tity of public training data that they provide can limit the performance of their so-
lutions. Public access to the training methodology for these solutions remains ab-
sent. This study implements the Type Three (T3) challenge format, which allows
for training solutions on private data and guarantees reusable training methodolo-
gies. With T3, challenge organizers train a codebase provided by the participants on
sequestered training data. T3 was implemented in the STOIC2021 challenge, with
the goal of predicting from a computed tomography (CT) scan whether subjects
had a severe COVID-19 infection, defined as intubation or death within one month.
STOIC2021 consisted of a Qualification phase, where participants developed chal-
lenge solutions using 2 000 publicly available CT scans, and a Final phase, where par-
ticipants submitted their training methodologies with which solutions were trained
on CT scans of 9 724 subjects. The organizers successfully trained six of the eight Fi-
nal phase submissions. The submitted codebases for training and running inference
were released publicly. The winning solution obtained an area under the receiver op-
erating characteristic curve for discerning between severe and non-severe COVID-19
of 0.815. The Final phase solutions of all finalists improved upon their Qualification
phase solutions.
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Figure 4.1: Schematic representation of the submission pipeline of challenges of Type

One (T1), Type Two (T2), and Type Three (T3). a) A challenge solution is trained

by applying a participants’ codebase to images and labels provided by the challenge

organizers. With T1 and T2, participants perform this step. With T3, the challenge

organizers perform training. b) The solution is applied to test images, producing pre-

dictions. The introduction of the T2 format allowed challenge organizers to perform

this step. c) The resulting predictions are compared with test labels to compute the

submission’s performance. Participants are ranked based on their performance. In all

challenge types, the performance is computed by the organizers.

4.1 Introduction

Grand challenges for medical image analysis aim to provide the best solutions to
clinical problems that the field of artificial intelligence has to offer. The sensitive na-
ture of medical images can limit the quantity of data for model development that
challenge organizers release publicly, which can in turn limit the performance of
challenge solutions. Although some recent challenges ensured that the winning solu-
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tions were readily available after the challenge had completed, [6, 108–111] reusabil-
ity of the methods with which these solutions were trained was not enforced.

This work implements a challenge format that allows for training submissions on
private data. This ensures that the winning solutions can easily be retrained on new
datasets after the challenge has concluded. We aim to demonstrate the effectiveness
of this challenge format in the STOIC2021 challenge, available at https://stoic202
1.grand-challenge.org.

CT scans of COVID-19 patients can be used in the diagnostic process, as they
can show clear indicators of the disease, including ground-grass opacities, typically
distributed bilaterally, with or without consolidations [15]. Automatic algorithms
that analyze CT scans of COVID-19 patients have the potential to aid healthcare
professionals in the diagnostic process [112]. The focus of STOIC2021 was to produce
fully automatic methods for discriminating between severe and non-severe COVID-
19 subjects, with severe COVID-19 defined as death or intubation after one month.
The challenge was organized with data from the STOIC project, [48] a multi-center
dataset that comprises CT scans of 10 735 subjects. The STOIC project protocol can
be accessed via ClinicalTrials.gov with identifier NCT04355507.

Through STOIC2021, this study provides the public release of CT scans of 2 000
subjects suspected for COVID-19, along with RT-PCR results, disease severity at one
month follow-up, age, and sex labels under a CC-BY-NC 4.0 licence.

The submission pipeline of a challenge generally consists of training a challenge
solution, running inference with it on a test set, and using the resulting predictions
to compute the submission’s performance. In this work, we define different chal-
lenge types by considering which steps are performed by challenge participants,
and which steps are performed by challenge organizers. Figure 4.1 describes the
challenge submission pipeline, previously used challenge formats that are referred
to in this work as Type One (T1) and Type Two (T2), as well as the Type Three (T3)
challenge format.

In T1 challenges, [54, 111, 113–149] participants perform inference on a publicly
released test set themselves, which does not preclude them from meddling with their
predictions, compromising the integrity of their submission’s performance. T2 chal-
lenges [6, 108–110, 150, 151] solve this issue by requiring participants to submit func-
tional algorithms. These can be made easily accessible to third parties [6, 108–110],
and generate reproducible results [6, 150].

We implement the Type Three (T3) challenge structure, which has only seen lim-
ited use in medical image analysis research [152]. With T3, participants do not sub-
mit an algorithm for inference, but they instead submit an uncompiled codebase for
training and inference. The challenge organizers apply the codebase to the training
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set, generating the corresponding challenge solution. This allows for training on a
combination of public and sensitive private training data. It guarantees that not only
inference methods, but also training methods work out-of-the-box for third parties.

4.2 Materials and methods

4.2.1 Materials

Data from the STOIC study [48] was used to construct the database used for the
STOIC2021 challenge. For each subject in the database, the initial CT examination,
performed at presentation, was selected. The subjects were represented by one tho-
racic CT scan when available, or otherwise by one CT scan that imaged more of the
body. Slices more than 80 mm above and 110 mm below the lungs were discarded
based on corrected lung masks produced by RTSU-Net [78], as they were considered
outside the typical scope of a thoracic CT scan. For all subjects, sex and age labels,
binned into ten year ranges, were provided as optional additional model input. RT-
PCR results, and outcome, defined as death or intubation at one month, were used as
ground truth for COVID-19 infection and severity respectively. Figure 4.2a depicts
how the preprocessed database was split into training and evaluation sets for the
Qualification and Final phases of STOIC2021.

4.2.2 Performance metric

Performance on all leaderboards was measured in terms of Area Under the receiver
operating characteristics Curve (AUC) to reflect class imbalance [153]. Participants
were ranked based on AUC for classifying COVID-19 severity, computed over cases
with a positive COVID-19 RT-PCR result. AUC for COVID-19 presence, computed
over all cases, was used solely as additional feedback for participants and did not
directly influence ranking. Submissions with missing results on any of the test cases
were regarded as invalid.

4.2.3 Study design

STOIC2021 was organized on the grand-challenge.org platform. It consisted of a
Qualification phase followed by a Final phase as shown in Figure 4.2. These phases
respectively followed the T2 and T3 format illustrated in Figure 4.1. Anyone with
a verified, authentic user account on grand-challenge.org platform could join the
challenge. Participants had the option to collaborate by forming non-overlapping
teams.
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Figure 4.2: Schematic overview of the STOIC2021 challenge. Each patient was rep-

resented by a single CT scan. a) Schematic overview showing how many CT scans

were used for what purpose, how many of them showed patients with a positive RT-

PCR result, and how many of those patients suffered from severe COVID-19. The

CT scans in the STOIC database were discarded when severe motion artifacts that af-

fected the entire scan were present, and preprocessed otherwise. From this processed

database, training set A, and test sets A1, A2 and B were randomly sampled without

replacement. Training set A, and test sets A1 and A2 were used in the Qualification

phase. All processed data not present in test set B, including the 6 724 CT scans not

used in the Qualification phase, were used to form training set B. Training set B and

test set B were used in the Final phase. All data except for the public training set A

was kept secure on the grand-challenge.org platform at all times and could not be

downloaded by participants at any point. The large sizes of test sets A2 and B were

chosen to obtain accurate performance measures despite the class imbalance. Test set

A1 was deliberately chosen to be smaller to lower the challenge organization costs of

rolling submissions. b) In the T2 Qualification phase, participating teams trained chal-

lenge solutions on training set A and submitted them in a rolling fashion. They could

view their performance on test set A1 through a public leaderboard. At the end of

the Qualification phase a single submission for evaluation on test set A2 determined

which teams were invited to join the Final phase. c) The T3 Final phase started with

a first training round in which participants made a single codebase submission. The

challenge organizers applied these codebases to training set B. The submitting teams

received any training errors that their codebase generated. Subsequently, the final-

ist teams could make a Feedback codebase submission to resolve these errors. This

codebase was applied to public training set A so that each finalist could inspect all

results of their Feedback run. Lastly, finalists could submit their revised codebases to

training set B, forfeiting their first training round submission. The models trained in

the Final phase on training set B were evaluated on test set B.
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Qualification phase

During the Qualification phase, participating teams submitted solutions in the form
of containerized algorithms trained on the publicly available training set A (see Fig-
ure 4.2a), which was publicly released on December 6th, 2021.

Rolling submissions On December 23rd, a submission tutorial accompanied by
a baseline system was released and rolling submissions were opened. The rolling
submissions were evaluated on test set A1 (see Figure 4.2a). This tutorial and source
code is available on https://github.com/luukboulogne/stoic2021-baseline. Test
set A1 consisted of only 200 subjects to limit the computational costs of the rolling
submissions. Teams could view their performance on a public leaderboard. A count-
down time between submissions of seven days was enforced. Violating this rule
resulted in a submission time-out with a duration equal to the ignored count-down
time.

Last submission Teams submitted to test set A2 to qualify for the Final phase. To
prevent the performance on the corresponding leaderboard to be tainted by over-
fitting, there existed no overlap between test set A1 and A2, and each team could
submit their solution to be evaluated on test set A2 only once. Participants had a
total of four months for developing their solutions. Submissions to both test set A1
and A2 were closed on April 13th, 2022.

Final phase

The finalists were the 10 best performing teams that accepted an invitation to the
Final Phase. Of these teams, the teams that ranked 1st, 2nd, 4th to 8th, and 14th
in the Qualification phase submitted code bases for performing training and infer-
ence with their solution. A codebase for training and performing inference with
the baseline system along with submission instructions for the Final phase was
released on February 23rd, 2022. This tutorial and source code is available on
https://github.com/luukboulogne/stoic2021-baseline-finalphase. These
instructions ensured that the winning solutions could be used out-of-the-box by the
challenge organizers and by third parties after the challenge had completed.

The Final phase initially consisted of a single round in which the challenge or-
ganizers used the finalists’ training code bases to train solutions. Since not all sub-
missions completed training successfully during this first training round, the Final
phase was extended with a feedback round and a second training round.
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Participating teams’ members qualified as author when submitting a codebase
for training their solution to the Final Phase. Participating teams could publish their
own results separately, without embargo.

Training environment The training environment for the Final phase was drafted
on March 17th based on resource requests and discussion with the Qualification
phase participants, and was finalized on April 29th. Final phase training was per-
formed on an Amazon EC2 p3dn.24xlarge instance. Each submission was allowed
training for a maximum of 120 hours with access to two Tesla V100 GPUs with 32 GB
vRAM each, 16 cpus with a total of 128G RAM, and 2 000 GB of Elastic Block Storage
for storing intermediate results such as preprocessed data.

First training round Finalists could submit a single code base for training and in-
ference with their solution in the form of a GitHub repository until May 12th. The
challenge organizers generated training algorithms in the form of Docker [154] con-
tainer images from the submitted code bases and applied these to training set B (see
Figure 4.2). Each finalist obtained any error messages that their training algorithm
generated in the first training round. These error messages were first scrutinized by
the challenge organizers to ensure no leakage of sensitive information from training
set B and to confirm the absence of indications of model performance.

Feedback round To acquire additional feedback about running their code base in
the training environment, finalists could submit any code base before July 17th fol-
lowing the final submission guidelines. These codebases were applied to the training
environment and participants received the complete training logs and the resulting
trained model. For the Feedback round only, two modifications were made to the
training environment. Firstly, to ensure that training set B was kept secure, training
set B was swapped out for the public training set A. Secondly, run time was limited
to 24 hours to keep down computational costs.

Second training round Finalists were given the opportunity to make a second sub-
mission to the Final phase until July 27th. They could update their codebases to make
their resulting training and inference containers run and complete successfully. For
this update, methodological changes with respect to the first training round submis-
sion were not allowed. The codebases were checked for adherence to this rule by
the challenge organizers and no violations were found. Finalists that chose to sub-
mit to the second training round were required to renounce their first training round
submission.
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Prizes

Prizes in Amazon Web Services (AWS) credits were awarded to the best performing
teams of the Final phase with values of $10 000, $6 000, and $4 000 for 1st, 2nd, and
3rd place respectively. The winners were announced during a public webinar on
October 18th, 2022.

Future submissions

After STOIC2021 had concluded, rolling submissions to test set A1 were re-opened.
Submissions to the leaderboard corresponding to test set A2 have been made avail-
able for submission upon request to the challenge organizers.

4.2.4 Statistical tests

The DeLong [155, 156] test is widely used for comparing AUCs and was also adopted
for the statistical analysis in this work. 95% confidence intervals were computed
as the interval between the 2.5% and 97.5% percentiles of a bootstrap distribution
generated with 1 000 iterations [157].

4.2.5 Baseline method

The baseline for STOIC2021 implemented a simple training and evaluation pipeline
for an Inflated 3D convnet (I3D) [16].

Preprocessing strategy The input CT scans were resampled to an isotropic spacing
of 1.6 mm3. A center crop of 240*240*240 voxels was extracted from the CT, using
zero padding when necessary. The voxel values were clipped between -1100 and 300
HU and rescaled to the range [0,1].

Training strategy A single I3D model [16], initialized with publicly available
weights trained for RGB video classification, was trained to estimate both COVID-19
presence and severity. The model was trained on all training data for 40 epochs us-
ing the AdamW optimizer [158] with a learning rate of 10, momentum parameters
β1 = 0.9, β2 = 0.99, and a weight decay of 0.01. Data augmentation was employed in
the form of zoom, rotation, translation, and adding gaussian noise. Patient age and
sex information were not incorporated as input to the model.
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Figure 4.3: Performance distribution of the rolling submissions to test set A1 during

the Qualification phase. The performance of the baseline is represented by an ‘x’.

Submissions by the eight finalist teams are represented by colored circles. All other

submissions are represented by white circles. Details about the metrics used are de-

scribed in section 4.2.2.

Table 4.1: Performance on test set B. Solutions trained on training set A and B respec-

tively are printed in regular and bold text. The top three ensemble was obtained by

averaging the predictions of the best performing solutions, the AUCs of which are

marked with ‘*’. Details about the metrics used are described in section 4.2.2.

Team name AUC severe COVID-19 AUC COVID-19 presence

Top three ensemble 0.817 0.849
Code 1055 0.815* 0.616

simon.j 0.810* 0.845*
Flying Bird 0.794* 0.838*

hal9000 0.788 0.829*
uaux2 0.787 0.825

baseline 0.775 0.818
etro 0.763 0.677

deakin_team 0.741 0.820
SYNLAB-SDN 0.722 0.789

66 Reusable methods for training COVID-19 classifiers

Prizes

Prizes in Amazon Web Services (AWS) credits were awarded to the best performing
teams of the Final phase with values of $10 000, $6 000, and $4 000 for 1st, 2nd, and
3rd place respectively. The winners were announced during a public webinar on
October 18th, 2022.

Future submissions

After STOIC2021 had concluded, rolling submissions to test set A1 were re-opened.
Submissions to the leaderboard corresponding to test set A2 have been made avail-
able for submission upon request to the challenge organizers.

4.2.4 Statistical tests

The DeLong [155, 156] test is widely used for comparing AUCs and was also adopted
for the statistical analysis in this work. 95% confidence intervals were computed
as the interval between the 2.5% and 97.5% percentiles of a bootstrap distribution
generated with 1 000 iterations [157].

4.2.5 Baseline method

The baseline for STOIC2021 implemented a simple training and evaluation pipeline
for an Inflated 3D convnet (I3D) [16].

Preprocessing strategy The input CT scans were resampled to an isotropic spacing
of 1.6 mm3. A center crop of 240*240*240 voxels was extracted from the CT, using
zero padding when necessary. The voxel values were clipped between -1100 and 300
HU and rescaled to the range [0,1].

Training strategy A single I3D model [16], initialized with publicly available
weights trained for RGB video classification, was trained to estimate both COVID-19
presence and severity. The model was trained on all training data for 40 epochs us-
ing the AdamW optimizer [158] with a learning rate of 10, momentum parameters
β1 = 0.9, β2 = 0.99, and a weight decay of 0.01. Data augmentation was employed in
the form of zoom, rotation, translation, and adding gaussian noise. Patient age and
sex information were not incorporated as input to the model.



68 Reusable methods for training COVID-19 classifiers

Figure 4.4: ROC curves with confidence intervals (CIs) for discriminating between se-

vere and non-severe COVID-19 on test set B. The curves for the codebase submissions

in the Final phase that completed training on training set B successfully are shown in

blue. The ROC curves of the submissions that represented these teams in the Quali-

fication phase, trained on training set A, are shown in orange. DeLong p-values are

shown in the top left. AUCs with CIs are shown in the legends.
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Figure 4.5: Ranked predictions for the subjects with severe COVID-19. Ranks were

computed over all subjects from test set B with a positive RT-PCR test for COVID-

19. Each column shows the ranked predictions of all finalist teams for one subject.

The subjects are ordered by the average rank of all corresponding finalist predictions.

Figure 4.7 shows the CT scans corresponding to the columns that are outlined in black

and annotated with age and sex.

4.3 Results

4.3.1 Qualification phase

413 participants registered to STOIC2021. During the rolling submissions, 30 teams,
comprising 68 participants developed and successfully submitted 119 solutions to
test set A1. Figure 4.3 shows an overview of the performance of these submissions.
20 teams competed for admission to the Final phase by successfully submitting to
test set A2. The best performing teams on test set A2 were selected to advance to the
Final phase, with invitations extended to the top ten teams that accepted.

4.3.2 Final phase

First training round

Eight of the ten Finalist teams submitted a codebase for training their solution on
training set B. These eight teams are highlighted with unique colors in Figure 4.3. In
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Figure 4.6: Ranked predictions for severe COVID-19 for subjects with non-severe

COVID-19. Ranks were computed over all subjects from test set B with a positive

RT-PCR test for COVID-19. Each column shows the ranked predictions of all finalist

teams for one subject. The subjects are ordered by the average rank of all correspond-

ing finalist predictions. Figure 4.8 shows the CT scans corresponding to the columns

that are outlined in black and annotated with age and sex.
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Figure 4.7: Subjects from test set B with severe COVID-19 that were highlighted in

Figure 4.5. For each subject, three axial slices of a CT scan are shown on the left. The

right shows how each finalist ranked the subject for presence of severe COVID-19.

These ranks were computed over all subjects from test set B with a positive RT-PCR

test for COVID-19.
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Figure 4.8: Subjects from test set B with non-severe COVID-19 that were highlighted

in Figure 4.6. For each subject, three axial slices of a CT scan are shown on the left.

The right shows how each finalist ranked the subject for presence of severe COVID-19.

These ranks were computed over all subjects from test set B with a positive RT-PCR

test for COVID-19.
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the first training round, the codebases submitted by the teams simon.j, Flying Bird,
and etro completed successfully. All other codebases exited training with an error.

Feedback round and second training round

The teams Code1055, uaux2, and hal9000 submitted codebases to the feedback round
and to the second training round. All three submissions to the second training round
completed successfully, resulting in a total of six successful Final phase submissions.

Performance

Table 4.1 shows the AUC on test set B for COVID-19 presence and severity of the
teams that submitted to the Final phase. Figure 4.4 shows Receiving Operating
Characteristics (ROC) curves of the six successful Final phase submissions for dis-
criminating between severe and non-severe COVID-19 subjects from test set B. Fig-
ures 4.5 and 4.6 show how the finalists ranked the subjects from test set B with severe
and non-severe COVID-19 respectively for presence of severe COVID-19. Figures 4.7
and 4.8 highlight some individual cases from test set B. During the original STOIC
project [48], a logistic regression model was developed to predict severe COVID-19
using clinical variables and CT annotations by radiologists. It was developed and
evaluated using the patients from the STOIC who were COVID-19 positive for both
RT-PCR and CT, and had unenhanced CT. Of these 4238 patients, 1000 developed se-
vere COVID-19. Revel and colleagues 6 reported an AUC for this model of 0.69 (CI:
0.67-0.71). To compare this model against the results from STOIC2021, an ensemble
of the top three solutions for severe COVID-19 prediction was evaluated on the 367
patients from test set B who were COVID-19 positive for both RT-PCR and CT, and
had unenhanced CT. 97 of these patients developed severe COVID-19. The top three
ensemble achieved an AUC of 0.783 (CI: 0.706-0.848).

4.3.3 Solution methodology overview

Most finalists used lung and/or lesion segmentation methods [159, 160] to extract
relevant features or to preprocess the input CT scan. Other preprocessing methods
used were combinations of resampling, cropping, clipping, and normalizing or stan-
dardizing the image. End-to-end deep learning was the most common approach.
The teams trained 2D or 3D versions of varying convolutional neural network archi-
tectures, [10, 96, 161, 162] often starting from pre-trained weights, and using varying
data augmentation methods. The finalists that did not employ end-to-end learning
employed logistic regression on top of either processed features extracted by vision
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transformers [11] (simon.j) or features designed based on generated lung [159] and
lesion masks [163] (etro and SYNLAB-SDN). Compared to the end-to-end deep learn-
ing methods, these methods consumed less time and memory during training. Most
teams used an ensemble of classifiers. The rest of this section contains a detailed
overview of the methods that were successfully submitted to the Final Phase. Table
4.2 presents URLs to the finalist codebases and the corresponding licences.

Team Repository on https://github.com/DIAGNijmegen/ Licence

Code 1055 stoic2021-finalphase-submission-code1055 GPL-3.0

simon.j stoic2021-finalphase-submission-simonj MIT

Flying Bird stoic2021-finalphase-submission-flyingbird MIT

hal9000 stoic2021-finalphase-submission-hal9000 MIT

uaux2 stoic2021-finalphase-submission-uaux2 GPL-3.0

etro stoic2021-finalphase-submission-etro Apache-2.0

Table 4.2: Codebases and licences of finalist teams with successful submissions to the

Final Phase.

Code 1055

Figure 4.9: The pretraining pipeline is depicted. If segmentation data (ISeg) is used as

input, the features of each stage are upsampled, concatenated and the segmentation

map is calculated with a segmentation head. If the classification data (ICls) is used as

input, the severity prediction is obtained with a classification head using the features

of the last stage. The overall loss is calculated as L = LCls + LSeg

.
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Severity classification using CT data is very similar to classical image classifica-
tion apart from dealing with 3D tensors instead of 2D images. This allows us to em-
ploy the pre-existing techniques used in image classification. The ConvNeXt model
[161] combines the benefits of the modern Vision Transformers [11] with Convolu-
tional Neural Networks (CNN) and thus reaches state-of-the-art ImageNet results.
We implement – to the best of our knowledge – the first 3D version of this architec-
ture and, thus, boost the performance for severity classification in contrast to con-
ventional CNNs.

Preprocessing strategy The input CT scans were resized to 256 × 256 × 256voxels.
Their intensity values were clipped between -1100 and 300 HU and normalized
around zero with a standard deviation of one.

Training strategy Even though the STOIC project [48] is a comparably large
database of CT scans, it is exceedingly small in contrast to ImageNet [164]. Nev-
ertheless, we are able to use a network with a large number of parameters and still
prevent overfitting. For that purpose, we employ pretrained weights, a cosine learn-
ing rate scheduler, an early stopping strategy, an exponential moving average of the
network parameters and efficient online data augmentation. Moreover, we balance
our dataset in order to avoid learning a bias in the label distribution induced by the
small number of severe cases.

In order to initialize our model with useful weights, we pretrain our network on
two additional datasets. First, we train a 2D ConvNeXt on grayscale images from
ImageNet. We calculate a superposition of gaussian inflated 2D weights to obtain
3D ImageNet weights. To further adjust these inflated ImageNet weights to our
three dimensional task, we perform an additional multitask-pretraining using a seg-
mentation [165–167] and classification [168] dataset. We use an architecture inspired
by UPerNet [169] to concurrently perform segmentation of the lung region showing
signs of COVID-19 infection for the segmentation data and prediction of severity for
the classification data. This pre-training scheme is depicted in Figure 4.9. We are
able to increase the performance of our model significantly with this additional pre-
training in contrast to randomly initialized weights or inflated ImageNet weights.

In order to prevent overfitting and achieve greater generalization we use online
data augmentation to virtually increase the dataset size. Besides using standard
transforms like flipping, rotation or cropping, we apply a novel implementation of
elastic deformations. By separating the gaussian kernels and utilizing GPU hard-
ware, we are able to perform extremely fast elastic deformations. Consequently, we
can augment our data with almost no additional cost. Furthermore, we perform
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transformers [11] (simon.j) or features designed based on generated lung [159] and
lesion masks [163] (etro and SYNLAB-SDN). Compared to the end-to-end deep learn-
ing methods, these methods consumed less time and memory during training. Most
teams used an ensemble of classifiers. The rest of this section contains a detailed
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input, the severity prediction is obtained with a classification head using the features

of the last stage. The overall loss is calculated as L = LCls + LSeg
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5-fold cross-validation during training.

Follow-up work is published by Kienzle et al. [170].

Inference strategy We average the outputs of the 5 networks trained in the cross
validation. Therefore, we are able to train with the complete dataset and still gener-
alize very well.

Public access Code for training and inference publicly available at https://gith
ub.com/DIAGNijmegen/stoic2021-finalphase-submission-code1055. Algorithm
available for public use at https://grand-challenge.org/algorithms/code-105
5-second-final-phase-submission/.

simon.j

Balaitous is an updated version of the AI-severity algorithm [171] implemented in
the scancovia repository [172]. Given an input CT scan, the model outputs a proba-
bility for COVID-19 disease and for severe outcome (intubation or death within one
month).

Preprocessing strategy The CT scan was rescaled to a resolution of 1.5 mm × 1.5
mm × 5 mm and reshaped to a shape of 224 × 224 × D, where D is the original
dimension of the rescaled image along the axis orthogonal to the axial plane. A
lung segmentation mask was computed using a 2D U-Net [159] and cleaned. The
scan was cropped to the slices containing the lungs. For each slice, a first feature
vector Xfull was extracted using a ViT-L model [173]. This model was pretrained
on ImageNet-22k using iBOT [173] and fine-tuned for 35 epochs on 165k CT scan
images from 4k patients and 7 datasets. Next, the lung mask was applied so that
only the lungs were visible and a second feature vector Xlung was extracted using
the same ViT-L model without fine-tuning. For both VIT-L models, the extracted
features of the individual slices were combined through pixel-wise average pooling.

Training strategy For the severe outcome two logistic regressions were applied to
[Xfull, age, sex] and [Xlung, age, sex]. The two predictions were aggregated through
a learned weighted average. For the COVID-19 presence two logistic regressions
were applied to Xfull and Xlung and the two predictions were aggregated through a
learned weighted average. Training was performed in 32 folds in the form of four
different eight-fold cross validations.
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Inference strategy The predictions were combined linearly with weights opti-
mized that maximize the performance on the 32 training folds.

Methods altered from Qualification phase to Final phase None.

Public access Code for training and inference publicly available at https://gith
ub.com/SimJeg/balaitous and https://github.com/DIAGNijmegen/stoic202

1-finalphase-submission-simonj. Algorithm available for public use at https:
//grand-challenge.org/algorithms/simonj-first-final-phase-submission/.

Flying Bird

The method employed was end-to-end deep learning with ResNet18 [10] models.

Preprocessing strategy In order to minimize image size and eliminate irrelevant
regions, an open source lung segmentation model [159] was employed. The lung
masks were used to crop the images, and were expanded by 6 mm to ensure com-
plete coverage. The resulting cropped images were rescaled to 256 × 256 × 256
voxels using trilinear interpolation. The voxel values were then clipped to the range
(-1024, 512), and standardized with a mean of -237 and a standard deviation of 404.

Training strategy Due to the substantial volume of data, training a 3D network
from scratch without a pre-trained model would be time-consuming. Regrettably,
there is no all-purpose pre-trained model suitable for 3D networks. As a result, our
approach involves initially training a pre-trained model via self-supervision [174],
followed by conducting classification tasks built upon the pre-trained model. We
used 5-fold cross validation. For training each fold, we appended a decoder to the
ResNet18 network. Then, following the method described in [10], we applied some
transformations to the input image and fed the transformed image into the network.
We trained the network to enable it to recover the original image from the trans-
formed image. After training, we obtained a pre-trained ResNet18 model. In the
subsequent COVID-19 classification task and severity task, we initialized our mod-
els using pre-trained ResNet18. For both the COVID-19 classification task and sever-
ity task, we employed the same data augmentation techniques, including rotation,
scaling, flipping, elastic transformation, Gaussian noise, and Gaussian smoothing.
We used cross-entropy loss function and AdamW [158] optimizer, along with a one-
cycle learning rate policy. For the severity task, we also incorporated age information
by concatenating the age, which was divided by 100, with the output of ResNet18,
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5-fold cross-validation during training.

Follow-up work is published by Kienzle et al. [170].

Inference strategy We average the outputs of the 5 networks trained in the cross
validation. Therefore, we are able to train with the complete dataset and still gener-
alize very well.

Public access Code for training and inference publicly available at https://gith
ub.com/DIAGNijmegen/stoic2021-finalphase-submission-code1055. Algorithm
available for public use at https://grand-challenge.org/algorithms/code-105
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Balaitous is an updated version of the AI-severity algorithm [171] implemented in
the scancovia repository [172]. Given an input CT scan, the model outputs a proba-
bility for COVID-19 disease and for severe outcome (intubation or death within one
month).

Preprocessing strategy The CT scan was rescaled to a resolution of 1.5 mm × 1.5
mm × 5 mm and reshaped to a shape of 224 × 224 × D, where D is the original
dimension of the rescaled image along the axis orthogonal to the axial plane. A
lung segmentation mask was computed using a 2D U-Net [159] and cleaned. The
scan was cropped to the slices containing the lungs. For each slice, a first feature
vector Xfull was extracted using a ViT-L model [173]. This model was pretrained
on ImageNet-22k using iBOT [173] and fine-tuned for 35 epochs on 165k CT scan
images from 4k patients and 7 datasets. Next, the lung mask was applied so that
only the lungs were visible and a second feature vector Xlung was extracted using
the same ViT-L model without fine-tuning. For both VIT-L models, the extracted
features of the individual slices were combined through pixel-wise average pooling.

Training strategy For the severe outcome two logistic regressions were applied to
[Xfull, age, sex] and [Xlung, age, sex]. The two predictions were aggregated through
a learned weighted average. For the COVID-19 presence two logistic regressions
were applied to Xfull and Xlung and the two predictions were aggregated through a
learned weighted average. Training was performed in 32 folds in the form of four
different eight-fold cross validations.
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thereby taking into account the influence of age on severity. Furthermore, the data
used in this task only consisted of COVID-19 positive cases.

Inference strategy For each model obtained through the cross-validation, test time
augmentations are applied. The original input image is passed through the model,
as well as variants of it obtained by flipping along each of the three axes, obtaining
four outputs per model. Finally, the outputs of all models are averaged to obtain the
final output.

Methods altered from Qualification phase to Final phase The data augmenta-
tion methods underwent minor modifications. The severity model was trained us-
ing both COVID-19 negative and positive images during the qualification phase,
whereas only COVID-19 positive images were utilized in the final phase. Combina-
torial image flipping was applied for test time augmentation during the qualification
phase, along each of the three axes, resulting in a total of 8 outputs per model (2 × 2
× 2). In the final phase, only 4 outputs were generated, including the original image
and those flipped along the x, y, and z axes.

Public access Code for training and inference publicly available at https://github
.com/DIAGNijmegen/stoic2021-finalphase-submission-flyingbird. Algorithm
available for public use at https://grand-challenge.org/algorithms/flying-bir
d-first-final-phase-submission/.

hal9000

We employed an ensemble of ResNet18 [10], and MoblieNetV3-Large [162] models
trained end to end to predict COVID-19 disease and severity. In each model, embed-
dings of all slices were averaged and passed through a classifier to get the disease
and severity probabilities. The ensemble of multiple models was used by averaging
the probabilities of each model.

Preprocessing strategy 32 equidistant slices were sampled from the input CT scan.
These slices were resampled to 224 × 224 pixels. The pixel values were clipped be-
tween -1350 and 150 HU. The images were normalized to a mean of 0.5 and a stan-
dard deviation of 0.5.

Training strategy The data for model development was split ten times into a train-
ing and validation set, such that the training set contained 85% of the data. A
ResNet18 [10] was trained on five of these splits, and a MobileNetV3-Large [162]



4.3 Results 79

was trained on the other five. Before presenting input data to a model, data augmen-
tations were applied in the form of resizing, horizontal flipping, random cropping,
gamma correction, color jitter, rotation, and blurring. The embeddings of all 32 slices
were averaged and passed through a classifier to get the disease and severity proba-
bilities. All models were trained using the Adam optimizer, with a learning rate of
0.0001 and weight regularization of 0.0005. The learning rate decayed by a factor of
0.1 every 40 epochs.

Inference strategy All model predictions were combined through averaging. We
employed extensive test time augmentations involving five different crops (four cor-
ner crops and the center crop), and three different rotations (minus five degrees, plus
five and plus ten degrees), and averaged the predictions for each augmentation. This
was done for all five models for each model class. The ensemble prediction was ob-
tained by averaging the probabilities.

Methods altered from Qualification phase to Final phase In the Qualification
phase, we trained an ensemble of only MobileNet V3 Large models.

Public access Code for training and inference publicly available at https://gith
ub.com/DIAGNijmegen/stoic2021-finalphase-submission-hal9000. Algorithm
available for public use at https://grand-challenge.org/algorithms/hal9000-s
econd-final-phase-submission/.

uaux2

To assess the severity of SARS-CoV-2 (COVID-19) based on Computed Tomography
(CT) scans of the lung, we apply an ensemble method approach, where we combine
meta-data and 3D-CNN predictions. In addition to the information on patient age
and sex already present in the data set, we rely on the respective Infection-Lung-
Ratio (ILR) to generate our predictions. For implementation, we used our in-house
developed framework AUCMEDI which is built on TensorFlow [175].

Preprocessing strategy For preprocessing, first, all data samples were resampled to
a voxel spacing of 1.48 × 1.48 × 2.10 and clipped to the range [-1024, 100] to exclude
irrelevant Hounsfield Unit areas [176]. Subsequently, the data was standardized to
grayscale. Training samples that might exceed the accepted input image size of 148
× 224 × 224 were either randomly cropped or zero-padded to match the required
size. For inference, center cropping was applied. To enable transfer learning, the
grayscale images were converted to RGB. The intensities were scaled to the range
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tween -1350 and 150 HU. The images were normalized to a mean of 0.5 and a stan-
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Figure 4.10: The MIScnn pipeline for SARS-CoV-2 segmentation to calculate the

Infection-Lung-Ratio [160]

of [0, 1]. Then, normalization was applied via the Z-Score normalization approach
based on the mean and standard deviation computed on the ImageNet dataset [103].

Training strategy In line with current state-of-the-art approaches, we applied sev-
eral augmentation methods on the dataset, including rotation, flipping, scaling,
gamma modification, and elastic deformations. Our main model for COVID-19
Severity prediction is based on a custom 3D version of the DenseNet121 architec-
ture. We modified the classification head to additionally take metadata into account,
which is described later on. For the training process, we applied transfer learning
on the classification head and a fine-tuning strategy on all layers. The transfer learn-
ing on the classification head is done for 10 epochs, using the Adam optimizer with
an initial learning rate of 1 × 10−4 and a batch size of 4. The fine-tuning runs for
a maximum of 240 epochs, using a dynamic learning rate starting from 1 × 10−5

to a maximum decrease to 1 × 10−7 (decreasing factor of 0.1 after 8 epochs with-
out improvement on the monitored validation loss). Furthermore, an early stopping
technique was utilized, stopping after 36 epochs without improvement. As a loss
function, we utilized the weighted Focal loss [177]. For inference, the model with the
best validation loss is used. For COVID-19 presence prediction, we utilize a model
based on the 3D ResNet34 architecture with the same hyperparameter settings as
described above, that predicts 3 classes (negative/positive/severe). COVID-19 pres-
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ence equals the sum of positive and severe cases. The metadata consists of three
parts: Patient age, sex, and the ILR of each sample. The latter describes the ratio be-
tween infected parts of the lung and healthy tissue. We calculate the ILR by feeding
the data into the MIScnn segmentation framework [160, 178], which utilizes a stan-
dard U-Net to predict infected areas Figure 4.10. For COVID-19 severity prediction,
we applied cross-validation with a dynamic number of folds as a bagging approach
for ensemble learning and monitored the outputs on the validation loss. We aimed
to create a variety of models which were trained on different subsets of the training
data.

Inference strategy Our final COVID-19 severity prediction comprises the averaged
sum of all predictions from the ensemble. This approach not only allows for a more
efficient usage of the available training data but also increases the reliability of the
prediction.

Methods altered from Qualification phase to Final phase In the Qualification
phase, cross-validation was done with five folds.

Public access Code for training and inference publicly available at https://gith
ub.com/DIAGNijmegen/stoic2021-finalphase-submission-uaux2. Algorithm
available for public use at https://grand-challenge.org/algorithms/uaux2-sec
ond-final-phase-submission/.

etro

A short-term COVID-19 severity classifier was developed through logistic regres-
sion considering age, sex, and several image-derived features. A previously trained
lung lesion segmentation model was used to extract volume fractions for ground
glass opacities and consolidations. The segmentations were used in combination
with the CT scan to derive mean intensities, kurtosis, and skewness for healthy lung
parenchyma and lesion tissue. The final severity prediction was made by an ensem-
ble of 20 models, trained on covid-positive samples selected through bootstrapping
with replacement.

Preprocessing strategy The lungs were segmented using an open-source segmen-
tation model [159]. A postprocessing step was added retaining only the 2 largest
components and setting a minimum size for the components to exclude any regions
outside the lungs that may have been segmented. CT scans were cropped to the lung
mask and resampled to an isotropic spacing of 1 mm. The intensities were clipped
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Figure 4.10: The MIScnn pipeline for SARS-CoV-2 segmentation to calculate the
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of [0, 1]. Then, normalization was applied via the Z-Score normalization approach
based on the mean and standard deviation computed on the ImageNet dataset [103].

Training strategy In line with current state-of-the-art approaches, we applied sev-
eral augmentation methods on the dataset, including rotation, flipping, scaling,
gamma modification, and elastic deformations. Our main model for COVID-19
Severity prediction is based on a custom 3D version of the DenseNet121 architec-
ture. We modified the classification head to additionally take metadata into account,
which is described later on. For the training process, we applied transfer learning
on the classification head and a fine-tuning strategy on all layers. The transfer learn-
ing on the classification head is done for 10 epochs, using the Adam optimizer with
an initial learning rate of 1 × 10−4 and a batch size of 4. The fine-tuning runs for
a maximum of 240 epochs, using a dynamic learning rate starting from 1 × 10−5

to a maximum decrease to 1 × 10−7 (decreasing factor of 0.1 after 8 epochs with-
out improvement on the monitored validation loss). Furthermore, an early stopping
technique was utilized, stopping after 36 epochs without improvement. As a loss
function, we utilized the weighted Focal loss [177]. For inference, the model with the
best validation loss is used. For COVID-19 presence prediction, we utilize a model
based on the 3D ResNet34 architecture with the same hyperparameter settings as
described above, that predicts 3 classes (negative/positive/severe). COVID-19 pres-
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to [-1000 HU, 100 HU] and scaled to [-1, 1]. Ground glass opacity and consolida-
tion patterns were segmented using a previously trained lung lesion segmentation
model. The nnU-Net implementation in Monai [179] was used. The hyperparame-
ters for this deep learning pipeline were determined automatically using the heuris-
tics developed in nnU-Net [180]. The network was trained using the sum of the
mean dice loss and the cross entropy, and deep supervision. Training data included
199 CT scans of the COVID-19 lesion segmentation challenge [181], 69 scans and
manual lung lesion segmentations from the icovid consortium [182], 70 scans from
the COPLENet public dataset [183] and 10 scans from the publicly available COVID-
19 CT Lung and Infection Segmentation Dataset [184]. From these lung and lesion
segmentations, the lesion volume fractions were calculated by dividing the lesion
volume by the total lung volume. Additionally, the mean intensity, kurtosis and
skewness were derived for each type of lesion and the healthy lung tissue.

Training strategy A logistic regression was trained for severity. Patient age and
sex categories were assigned numerical values and were complemented with several
image-derived features. Volume fractions of ground glass opacity and consolidation
were included, as well as the mean intensity, kurtosis and skewness for healthy lung
parenchyma and both lesion classes separately. For patients that were considered
lesion free, the intensities and textural features of the ground glass opacity and con-
solidation were given the values of the healthy tissue. All intensity features were
rescaled to [-1, 1]. To improve robustness, the severity classifier was built up by
bagging 20 models where each training set was composed using bootstrapping with
replacement on the covid-positive samples.

Inference strategy For inference, the intensity features were rescaled using the cor-
responding extrema from the training set. Final probabilities for severe COVID-19
were obtained by averaging the predictions of the 20 models. The probability of
COVID-19 was predicted by a previously trained 3D ConvNext [161] model.

Methods altered from Qualification phase to Final phase For the Qualification
phase, the model for severity was trained on both COVID-19 positive and negative
patients versus only positives for the Final phase. For COVID-19 presence detection,
the ConvNext model was added in the Final phase while a regression model similar
to the severity classifier was used for the Qualification.

Public access Code for training and inference publicly available at https://gith
ub.com/DIAGNijmegen/stoic2021-finalphase-submission-etro. Algorithm
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available for public use at https://grand-challenge.org/algorithms/etro-first
-final-phase-submission/.

deakin_team

The method employed was end-to-end deep learning with DenseNet-201 [96].

Preprocessing strategy The input CT scans were resampled to an isotropic spacing
of 1.6 mm3. A center crop of 240 × 240× 240 voxels was extracted from the CT, using
zero padding when necessary. The voxel values were clipped between -1100 and 300
HU and rescaled to the range [0,1].

Training strategy A 3D DenseNet-201 [96], initialized with weights trained on the
public STOIC2021 training set, was trained using the Adam optimizer with a learn-
ing rate of 0.00004, and a batch size of two for 15 epochs.

Inference strategy Inference was performed by a forward pass through the trained
DenseNet-201 model.

Methods altered from Qualification phase to Final phase An ensemble approach
incorporating multiple models, specifically DenseNet-201, -169, and -121, was ini-
tially proposed for this study. However, due to constraints related to computational
resources and time in the training environment, we were ultimately only able to train
a DenseNet-201 model.

Public access Algorithm available for public use at https://grand-challenge.o
rg/algorithms/baseline-13/ (Qualification phase submission).

SYNLAB-SDN

The method was based on logistic regression using patient age, sex and features
extracted from lesion masks.

Preprocessing strategy The CT voxel intensity values were clipped to the range
[-1000, 500]. Afterward, a pre-trained model for COVID-19 lesion segmentation by
Nvidia Clara (2) was used to obtain suitable masks representative of COVID-19 le-
sion burden. Furthermore, a lung mask was segmented from the input CT scan using
a U-Net [159]. From the lesion masks, the following features were extracted:

• Mean HU value,
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to [-1000 HU, 100 HU] and scaled to [-1, 1]. Ground glass opacity and consolida-
tion patterns were segmented using a previously trained lung lesion segmentation
model. The nnU-Net implementation in Monai [179] was used. The hyperparame-
ters for this deep learning pipeline were determined automatically using the heuris-
tics developed in nnU-Net [180]. The network was trained using the sum of the
mean dice loss and the cross entropy, and deep supervision. Training data included
199 CT scans of the COVID-19 lesion segmentation challenge [181], 69 scans and
manual lung lesion segmentations from the icovid consortium [182], 70 scans from
the COPLENet public dataset [183] and 10 scans from the publicly available COVID-
19 CT Lung and Infection Segmentation Dataset [184]. From these lung and lesion
segmentations, the lesion volume fractions were calculated by dividing the lesion
volume by the total lung volume. Additionally, the mean intensity, kurtosis and
skewness were derived for each type of lesion and the healthy lung tissue.

Training strategy A logistic regression was trained for severity. Patient age and
sex categories were assigned numerical values and were complemented with several
image-derived features. Volume fractions of ground glass opacity and consolidation
were included, as well as the mean intensity, kurtosis and skewness for healthy lung
parenchyma and both lesion classes separately. For patients that were considered
lesion free, the intensities and textural features of the ground glass opacity and con-
solidation were given the values of the healthy tissue. All intensity features were
rescaled to [-1, 1]. To improve robustness, the severity classifier was built up by
bagging 20 models where each training set was composed using bootstrapping with
replacement on the covid-positive samples.

Inference strategy For inference, the intensity features were rescaled using the cor-
responding extrema from the training set. Final probabilities for severe COVID-19
were obtained by averaging the predictions of the 20 models. The probability of
COVID-19 was predicted by a previously trained 3D ConvNext [161] model.

Methods altered from Qualification phase to Final phase For the Qualification
phase, the model for severity was trained on both COVID-19 positive and negative
patients versus only positives for the Final phase. For COVID-19 presence detection,
the ConvNext model was added in the Final phase while a regression model similar
to the severity classifier was used for the Qualification.

Public access Code for training and inference publicly available at https://gith
ub.com/DIAGNijmegen/stoic2021-finalphase-submission-etro. Algorithm
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• Standard deviation intensity,

• Percent of lesion volume, computed as lesion volume divided by lung volume,

• Number of connected components in the lesion mask.

In addition, patient age and sex were included as features.

Training strategy For the classification, the dataset was randomly split into a train-
ing/validation (80%) and testing set (20%). Z-normalization was applied to the fea-
tures constituting the training set, and the mean and standard deviation values cal-
culated on the training set were used on the validation and test set. A downsampling
strategy was applied to balance the dataset. We have trained logistic regression
to solve the tasks. K-Fold cross-validation with K = 5 was applied to the training
dataset for model selection in the form of hyperparameter tuning.

Inference strategy The trained logistic regression model was applied to perform
inference.

Methods altered from Qualification phase to Final phase None.

Public access Algorithm available for public use at https://grand-challenge.o
rg/algorithms/2steps-2/ (Qualification phase submission).

4.4 Discussion

The Type Three (T3) medical image analysis challenge format presented in this study
allows solutions to be trained on private data and that guarantees that their training
methodologies are reusable. T3 was implemented in the STOIC2021 challenge, in
which participants predicted from an initial CT scan, whether a COVID-19 patient
would be intubated or would die within one month.

To evaluate their solutions, challenges typically release test set images to enable
participants to run inference on them [54, 111, 113–149]. STOIC2021 consisted of
a Qualification phase that instead followed the structure implemented of some re-
cent challenges [6, 108–110, 150, 151] where participants submit solutions trained on
public data, and of a T3 Final phase. The Final phase solutions consistently outper-
formed the solutions submitted to the Qualification phase by the same participants.
This indicates that T3 may improve challenge solution performance through training
on a combination of public and private data.
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STOIC2021 resulted in six publicly available codebases through which the train-
ing and inference methods for the top performing solutions can be accessed. The
challenge organizers tested these codebases by training the corresponding solu-
tions without manual intervention by the participating teams. This guaranteed the
reusability by third parties of these publicly released training methodologies. Links
to these codebases can be found in section 4.3.3. Most finalists used sex and age in-
formation as additional input to their model. Advanced age and male sex are risk
factors for severe outcome of a COVID-19 infection [48]

The released codebases may be useful for the development of tools to assist in
the diagnostic process of COVID-19 infections in patients with suspected COVID-19.
The methods developed for the STOIC2021 challenge may be useful for triaging pa-
tients based on the severity of their infection, which could help with optimizing the
allocation of healthcare resources. This could be especially helpful in high-demand
situations, and/or in medical centers where access to specialized readers is limited.
Additionally, the released training methods may be useful for any 3D medical im-
age classification tasks. This versitality stems from the fact that, besides employing
a pre-trained segmentation model, most of the submitted solutions use 3D image
processing methods that are not specific to one task or image modality.

This work demonstrated through the STOIC2021 challenge that the T3 challenge
format allowed for training on private data and for the developed training methods
to be re-usable. This suggests that future challenges that implement the T3 format
may also reap these benefits. Future challenges may also benefit from incorporating
a T2 Qualification phase before a T3 Final phase. In STOIC2021, this set-up mini-
mized overhead during method development for the participating teams and kept
down costs for the challenge organizers.

STOIC2021 participants were not incentivized to focus on the confirmation
of COVID-19 presence, since this is possible with high sensitivity through RT-
PCR testing [185]. The absence of this incentive explains why team Code 1055,
which achieved the highest AUC for discriminating between severe and non-severe
COVID-19 in the Final phase, achieved the lowest AUC for detecting COVID-19
presence of all finalists. It also explains why, overall, the finalists’ performances on
the auxiliary metric of detecting COVID-19 presence did not align with the finalists’
ranks in the Final phase.

This study has limitations. Participants of STOIC2021 were not incentivized to
focus on the calibration or interpretability of their solutions. Also, datasets for ex-
ternally validating solutions on their ability of predicting intubation or death within
one month were not publicly available. This also prohibited directly comparing the
presented performances to the algorithms trained to predict severe COVID-19 out-
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come by [171]. However, the solution by simon.j was heavily based on this work.
Furthermore, T3 challenges are limited by the computational budget of the challenge
organizers. STOIC2021 therefore implemented a limit to the compute resources for
training the Final phase solutions, as detailed in section 4.2.3, and allowed for a lim-
ited number of finalists. Lastly, the maximum obtainable performance is limited by
imperfections in the COVID-19 severity and presence labels. Death at one month
follow-up could have resulted from any cause. RT-PCR is an imperfect ground truth
for infection. For the STOIC study, 39% of initially negative RT-PCR tests were found
to be positive when repeated in patients with typical clinical signs of COVID-19 [48].

Conclusion

This work showed the efficacy of the T3 medical image analysis challenge format.
T3 has two benefits with respect to previous challenge formats. Firstly, it allows chal-
lenge solutions to be trained on private data. This results in training on bigger data,
which can increase the performance of the resulting challenge solutions. Secondly, it
ensures that the training methods developed for the challenge can be used out-of-the
box by third parties.
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Abstract

Automatic medical image classification methods are valuable in various clinical ap-
plications, but application-specific solutions are often outperformed by generally
applicable methods. This work presents a comprehensive database for the devel-
opment of accessible and universally applicable 3D medical image classification al-
gorithms. These datasets cover a broad spectrum of classification tasks containing
images from multiple modalities and body parts. Each dataset is divided into a train-
ing and test set. The training sets are publicly released in a standardized format to
foster algorithm development. Automatic evaluation of developed solutions on the
test data is offered on the grand-challenge.org platform to ensure fair comparisons
between methods. To validate the readiness of the database for algorithm develop-
ment, a baseline system was trained and tested successfully across all datasets. The
baseline codebase is made publicly available along with a detailed tutorial on using
the database for development and utilizing the automatic evaluation. This database
release is aimed to improve healthcare outcomes by spurring the development of
universally applicable and publicly accessible medical image classification tools.
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5.1 Background & Summary

Public benchmarks have played a crucial role in the progress of automated medical
image analysis by establishing clear goals and providing shared research agendas.[6,
49, 51–54] These benchmarks offer standardized databases, allowing researchers to
compare their methods’ performance with others in the field, fostering collaboration,
and driving the development of robust and reusable algorithms.

In response to the growing demand for universally applicable and publicly acces-
sible methods for medical image analysis, we have created a comprehensive data-
base for the development of universal 3D medical image classification systems. The
database comprises a diverse range of 3D medical imaging datasets encompassing
various characteristics and classification tasks. Figure 5.1 depicts an overview of
these tasks.

The database includes seven datasets based on already publicly available data,
and features a unified structure accross these datasets. Each dataset describes a
different medical image classification task, including primary open-angle glaucoma
(POAG) classification from optical coherence tomography (OCT),[50] nodule false
positive reduction from computed tomography (CT),[49] molecular breast cancer
subtyping from subtraction MRI,[47] COVID-19 presence and severity classification
from CT,[17, 48] rib fracture type classification from CT,[46] and identifying clini-
cally significant prostate cancer (csPCa) from multi-parametric MRI.[45] For the task
of identifying abnormal kidneys, we publicly release CT images and abnormality la-
bels depicting kidneys [186] and combine these with other publicly available kidney
CT images.[51, 186]

Existing databases for 3D medical image classification typically focus on nar-
rowly defined tasks,[6, 17, 45–53] encouraging specialized solutions tailored to
each problem. Nevertheless, top-performing solutions on these benchmarks are fre-
quently based on generally applicable deep learning methods. In many domains,
task-specific customization of general deep learning methods is unnecessary to ob-
tain good performance.[12, 187–189] Our study aims to encourage the development
of approaches that are applicable and reusable for a broad range of applications in
the medical image analysis domain.

Current databases for 3D universal medical image classification are insufficient
for the development of real-world applications. For example, MedMNIST [190] is
a light-weight database that describes many different medical image classification
tasks involving a variety of imaging modalities. This database contains 2D images
of 28 × 28 pixels and 3D images of 28 × 28 × 28 voxels. Although this database
could support numerous research and educational purposes by quickly illustrating
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Figure 5.1: We have compiled seven medical image datasets, each describing a classi-

fication task where one or more labels are predicted from 3D input volumes [17, 45–

51, 186]. This figure shows a cross-sectional view of example input images for each

dataset, with the respective classification task noted above. Each image is marked

with the corresponding image acquisition method in white. For tasks that involve

input images of multiple acquisition techniques, only a part of each acquired image

from a single case is depicted. The tasks include primary open angle glaucoma de-

tection from an optical coherence tomography (OCT) image of the retina, lung nod-

ule false positive reduction (FPR) from computed tomography (CT), molecular breast

cancer subtyping from subtraction MRI, COVID-19 classification from CT, rib fracture

type classification from CT, kidney abnormality detection from CT, and clinically sig-

nificant prostate cancer (csPCa) grading from multi-parametric MRI.
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the behavior of different algorithms, its small image size makes MedMNIST not rep-
resentative for real-world medical image analysis applications. The RadImageNet
[191] database contains CT, MRI, and ultra-sound images and labels for a wide va-
riety of tasks. There is, however, no clearly structured set of tasks and access to the
data is only available upon request and limited to images with reduced resolution
and restricted labeling.

Although public databases for universal 3D medical image classification are lack-
ing, a database for universal medical image segmentation has successfully estab-
lished by the Medical Segmentation Decathlon,[54] a medical image analysis chal-
lenge. The winning solution of this challenge, nnU-Net,[189] is both publicly ac-
cessible and easy to use, addressing the growing demand for efficient and effective
medical image analysis tools. In the format we propose for our dataset, we were
inspired by design choices made by the nnU-Net [189].

We hope that the database released with this study will accelerate the develop-
ment of robust and universally applicable algorithms for 3D medical image classi-
fication by providing a clear and objective way to evaluate and compare their per-
formance across multiple tasks. This may contribute to the accessibility of univer-
sally applicable tools for developing medical image analysis solutions, resulting in
enhanced patient care and improved healthcare outcomes.

5.2 Methods

Seven 3D medical imaging datasets were collected, each describing a unique task
with varying characteristics, such as the image structure, imaging modality, number
of images, image size, spacing, and isotropy as shown in table 5.2. The primary
objective of our data collection was to maximize diversity between datasets so that
machine learning classifiers that can learn to perform well across all these datasets
would also generalize well to learning new classification tasks. Methods developed
using these data may thus be useful for a vast array of clinical scenarios, including
those that are not represented in our collected datasets.

Medical image classification algorithms are typically not utilized in isolation, but
rather as components of an image processing pipeline. To ensure their applicability
in real-world scenarios, the datasets in our database are designed to facilitate the
development of algorithms that can be employed not only in pure classification tasks
but also as part of such processing pipelines. More specifically, image classification is
frequently deployed to categorize structures identified by a detection algorithm [49,
93] and can receive additional input next to a medical image in the form of a semantic
segmentation of relevant structures [33]. Consequently, some datasets within the
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database contain image crops that simulate processing pipelines incorporating both
detection and classification components. To simulate the integration of classification
after semantic segmentation of relevant structures, region of interest (ROI) masks are
provided as supplementary input for certain datasets in our database.

To fairly compare automatic universal classifiers with each other, it is crucial that
each system is evaluated on identical data. To ensure this consistency, an evaluation
database was prepared separately from the database described in this Data Descrip-
tor. The sections below describe in detail which data were included in the training
database described in this Data Descriptor, and which data were reserved for the
purpose of automatic evaluation on https://auc23.grand-challenge.org/.

Detailed descriptions of each dataset are provided in the following sections. We
have followed all relevant ethical regulations for each dataset.

Primary open angle glaucoma classification from optical coherence

tomography

Motivation and task

Glaucoma is a chronic eye disease that affects the optic nerve and is one of the lead-
ing causes of irreversible blindness worldwide. Estimates indicate that by the year
2040, the number of individuals affected by glaucoma and experiencing different lev-
els of visual impairment will exceed 110 million [192]. Among this population, ap-
proximately 10% are expected to suffer from complete blindness in both eyes, while
around 25% may experience blindness in one eye [193]. These statistics highlight
the significant impact of glaucoma on global visual health and emphasize the urgent
need for effective diagnosis, intervention, and management strategies to mitigate
the burden of this disease. OCT imaging provides high-resolution cross-sectional
images of the retina, making it a valuable tool for glaucoma diagnosis and moni-
toring. Using artificial intelligence to automatically classify glaucoma, may be key
to achieve cost-effective of the screening of this disease. The feasibility of such ap-
proaches has been demonstrated before in literature [194]. The task associated with
this dataset is to develop an algorithm capable of classifying OCT images as either
normal or indicative of primary open-angle glaucoma (POAG).

Provenance

Our dataset for POAG classification is based on data described by Maetschke et al.
[195], which was made publicly available on Zenodo1. This dataset contained OCT

1https://zenodo.org/record/1481223
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scans centered on the optic nerve head (ONH) acquired from a total of 624 patients
using a Cirrus SD-OCT Scanner (Zeiss, Dublin, CA, USA) [195]. To ensure data qual-
ity, scans with a signal strength less than 7 were discarded, resulting in a total of
1,110 scans. The scans were maintained in their original laterality without flipping
left into right eye orientation. Among the 1,110 scans, 263 were diagnosed as healthy,
while 847 were diagnosed with primary open angle glaucoma. Eyes diagnosed as
glaucomatous were identified based on the presence of glaucomatous visual field
defects and the requirement of at least 2 consecutive abnormal test results. The orig-
inal scans had physical dimensions of 6 mm × 6 mm × 2 mm, consisting of 200 ×
200 × 1024 voxels per volume. However, for network training purposes, they were
downsampled to a size of 64 × 64 × 128 voxels.

On this dataset, the performance of a logistic regression model was compared
to that of a 3D convolutional neural network (CNN). The logistic regression model
used 22 outcome measures that were computed by the OCT scanner that was used
for acquisition. The CNN achieved an AUC of 0.94, which was higher than the per-
formance of the logistic regression model, which achieved an AUC of 0.89 [195].

Dataset preparation

The data described by Maetschke et al. [195] was used without any further pre-
processing than described in the previous section.

Training/test split

To our knowledge, there was no public training/test split available for this dataset.
Therefore, we split the dataset ourselves into 80% training and 20% testing on
patient-level. This resulted in a training set with 884 OCT volumes from 499 pa-
tients, of which 677 OCT volumes from 390 patients were positive for POAG and
207 OCT volumes from 109 were negative. The test set contained 226 OCT volumes
from 125 patients in total, of which 170 OCT volumes from 97 patients were positive
and 56 OCT volumes from 28 patients were negative.

Pulmonary nodule false positive reduction from computed tomogra-

phy

Motivation and task

Lung cancer is the most deadly cancer worldwide. Mortality can be reduced when
high-risk individuals undergo low-dose computed tomography (CT) screening, with
reported reductions of up to 26% [196, 197]. Early-stage lung cancer is visible on CT
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1https://zenodo.org/record/1481223
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as small pulmonary nodules, often measuring less than 1 cm in diameter. While
CT imaging exhibits high sensitivity in detecting true nodule candidates, it presents
a significant challenge in the form of also detecting false positive candidates. The
dataset presented here reflects the task of classifying a CT region around a candidate
as a nodule or a false positive, which was also a component of the LUNA16 challenge
[143].

Provenance

The dataset comprised 888 CT scans from the LUNA16 challenge dataset[143]. From
these scans, 1 186 candidates were identified as true nodules, based on consensus
from at least 3 out of 4 radiologists who annotated the nodules. To acquire false-
positive candidates, we utilized the CUMedVis system [143] with an operating
threshold of 8 false positives per scan, resulting in 7 156 false-positive candidates.
Together, the dataset comprises 8 342 candidates.

Dataset preparation

Following the approach of Venkadesh et al. [198], we extracted 3D cubes around
each candidate. These cubes were standardized to a size of 50 mm, encompassing 64
pixels in each direction.

Training/test split

We split the dataset into 80% training and 20% testing at a patient-level. This resulted
in 6 694 candidates (941 true nodules) for training and 1 648 candidates (245 true
nodules) for testing.

Molecular breast cancer type classification from subtraction mag-

netic resonance imaging

Motivation and task

Radiogenomic analysis of breast cancer aims to establish a relationship between tu-
mor imaging phenotypes and molecular markers, which could potentially provide
non-invasive genomic analysis methods [47]. The task that we included in our data-
base concerns classifying molecular breast cancer type from a breast subtraction MRI
image, based on the human epidermal growth factor receptor 2 (HER2), estrogen re-
ceptor (ER), and progesterone receptor (PR) status. More specifically, it involved
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discerning between the subtypes luminal A (ER and/or PR positive, HER2 nega-
tive), luminal B (ER and/or PR positive, HER2 positive), HER2 (ER and PR negative,
HER2 positive), and triple negative (ER, PR, and HER2 negative).

Provenance

The dataset comprised 922 subtraction breast MRI scans from a previous study by
Saha, A. et al..[47] In this study, multivariate models were developed based on ra-
diomics features, describing global, as well as localized image characteristics, includ-
ing features from the breast, fibroglandular tissue, and tumour. These models were
predictive of Luminal A subtype (AUC = 0.697) and triple negative breast cancer
(AUC = 0.654).

Dataset preparation

The breast MRI images from Saha, A. et al.[47] were used without additional pre-
processing.

Training/test split

The dataset was split randomly into a set of 737 cases for training (481 luminal A, 76
luminal B, 46 HER2, 134 tripple negative) and a set of 185 for testing (114 luminal A,
28 luminal B, 13 HER2, 30 triple negative).

COVID-19 presence and severity classification from computed to-

mography

Motivation and task

In response to the COVID-19 pandemic, extensive research has been conducted on
use of CT imaging to automatically diagnose and classify the disease [112]. CT scans,
providing high-resolution, three-dimensional views of the lungs, are able to capture
key indicators of a COVID-19 infection, including diffuse patterns of ground-glass
opacities in the lungs, with or without consolidations [15]. Leveraging artificial in-
telligence with CT imaging has the potential to assist in automating the diagnostic
process, possibly enhancing the workflow and practices of doctors and radiologists
[112]. Our database includes a public dataset that reflects the task of classifying from
a CT scan whether a patient has a COVID-19 infection, as well as the severity of this
infection.
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pixels in each direction.
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We split the dataset into 80% training and 20% testing at a patient-level. This resulted
in 6 694 candidates (941 true nodules) for training and 1 648 candidates (245 true
nodules) for testing.

Molecular breast cancer type classification from subtraction mag-

netic resonance imaging

Motivation and task

Radiogenomic analysis of breast cancer aims to establish a relationship between tu-
mor imaging phenotypes and molecular markers, which could potentially provide
non-invasive genomic analysis methods [47]. The task that we included in our data-
base concerns classifying molecular breast cancer type from a breast subtraction MRI
image, based on the human epidermal growth factor receptor 2 (HER2), estrogen re-
ceptor (ER), and progesterone receptor (PR) status. More specifically, it involved
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Provenance

We base our dataset for COVID-19 presence and severity classification from CT on
data from the Study of Thoracic CT in COVID-19 (STOIC) project [48]. This study
collected data from patients of 20 French university hospitals between March 1 and
April 30th, 2020. The STOIC study collected CT scans and reverse transcription-
polymerase chain reaction (RT-PCR) test results from over 10 000 patients. Addi-
tionally, a one-month follow up was conducted to assess the development of severe
COVID-19, which was defined as either death or intubation within the follow-up
period. The STOIC project protocol can be accessed via ClinicalTrials.gov with iden-
tifier NCT04355507.

The STOIC2021 COVID-19 challenge [17] was held using data from the STOIC
project. During this challenge, participants were tasked to develop fully automatic
algorithms to severe COVID-19 from CT. 2 000 CT sans with COVID-19 presence and
severity labels were publicly released on the Amazon Web Services (AWS) Registry
of Open Data [17] to serve as a public training set for STOIC2021. An ensemble of the
best performing solutions achieved an AUC of 0.849 for discerning between positive
RT-PCR result from CT for patients included in the STOIC study and and AUC of
0.817 for discerning between severe and non-severe COVID-19.

Dataset preparation

The thorax CT scan at presentation utilized for the STOIC2021 challenge were re-
used without additional processing. As additional input, pulmonary lobe and
COVID-19 lesion segmentations were generated using a relational two-stage U-Net
[78]. The existing RT-PCR test results for each patient and one-month follow-up out-
come were used as-is as COVID-19 presence and severity label respectively.

Training/test split

In accordance with the data split utilized in the STOIC2021 challenge [17], the train-
ing dataset comprises the CT scans of 2 000 patients that were publicly released [17].
The 200 CT scans for evaluating rolling submissions in the STOIC2021 challenge
were employed as the test set.

Rib fracture type classification from computed tomography

Motivation and task

Rib fractures are a crucial indicator of trauma severity and degree of disability [46].
While CT offers a more accurate assessment than standard chest radiographs, iden-
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tifying and diagnosing fractures in CT is a more complex and time-consuming task
[46]. The task associated with this dataset involves the classification of individual rib
fractures from CT into distinct types: buckle, displaced, non-displaced, or segmen-
tal.

Provenance

This dataset repurposes the 420 CT scans with rib fracture annotations that were pub-
licly released for the Rib Fracture Detection and Classification challenge (RibFrac)
[46]. The RibFrac dataset was originally collected for the development and valida-
tion of the FracNet model [46]. The annotation process of the rib fractures in the
training cohort of this dataset involved five radiologists with varying experience lev-
els. Two junior radiologists delineated the volume of interest of the traumatic rib
fractures using the diagnosis reports of two other radiologists, and 3D Slicer soft-
ware. A senior radiologist confirmed the volumes of interest.

Dataset preparation

This dataset has been derived from the publicly available RibFrac training dataset
[46]. Blocks of dimensions 150× 150× 150 mm, centered around each fracture, were
extracted. To emulate this classification as part of a processing pipeline that also
contains a segmentation step, the dataset also includes a segmentation mask of each
fracture of interest. These masks were also provided in the RibFrac dataset.

Training and evaluation split

We split the dataset into 80% training and 20% testing. This resulted 1 325 fractures
(of which 493 displaced, 460 non-displaced, 230 buckle, and 142 segmental fractures)
for training and 332 fractures (of which 125 displaced, 108 non-displaced, 61 buckle,
and 38 segmental fractures) for testing.

Kidney abnormality classification from computed tomography

Motivation and task

Kidney and renal pelvis cancer rank as the 6th most common and the 12th most
deadly form of cancer in the United States [199]. Partial or radical nephrectomy pro-
vide a solution to kidney tumors with a relatively high survival rate and quality of
life for a patient, but this requires the cancer to be found before metastasis can oc-
cur. CT scans allow for the differentiation of cysts, angiomyolipoma (benign kidney
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Provenance

We base our dataset for COVID-19 presence and severity classification from CT on
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RT-PCR result from CT for patients included in the STOIC study and and AUC of
0.817 for discerning between severe and non-severe COVID-19.
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used without additional processing. As additional input, pulmonary lobe and
COVID-19 lesion segmentations were generated using a relational two-stage U-Net
[78]. The existing RT-PCR test results for each patient and one-month follow-up out-
come were used as-is as COVID-19 presence and severity label respectively.
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In accordance with the data split utilized in the STOIC2021 challenge [17], the train-
ing dataset comprises the CT scans of 2 000 patients that were publicly released [17].
The 200 CT scans for evaluating rolling submissions in the STOIC2021 challenge
were employed as the test set.

Rib fracture type classification from computed tomography

Motivation and task

Rib fractures are a crucial indicator of trauma severity and degree of disability [46].
While CT offers a more accurate assessment than standard chest radiographs, iden-
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tumors) and renal cell carcinoma from normal tissue. The utilization of artificial in-
telligence to differentiate healthy from unhealthy kidneys in such images could both
the improve radiologist workflow and allow for potential higher detection rates of
renal cancer when the two parties work in tandem.

Provenance

The dataset for kidney abnormality classification can be subdivided into two parts.

KiTS21 Firstly, data from the KiTS21 challenge[51] was used. This study includes a
cohort of 300 patients who underwent nephrectomy for suspected renal malignancy
between 2010 and 2020 in one of two medical centers in the US. Their dataset in-
cludes both abdomen CT-scans and segmentation masks for kidneys and, when ap-
plicable, renal tumors and cysts. These annotations were made by a team of both
expert, trainees and laypeople in an iterative process. The KiTS challenges are bien-
nial challenges where participants are asked to develop an automatic segmentation
algorithm for kidney tumors using this dataset. We used the KiTS21 dataset in full
for this project.

Kidney Abnormality Segmentation project Secondly, data was used from the
"Kidney Abnormality Segmentation in Thorax-Abdomen CT Scans" project [186].
This study collected CT scans of patients at the Radboud University Medical Cen-
ter (Nijmegen, The Netherlands) who underwent a thorax-abdomen CT scan in 2015.
Approval of the medical ethical committee of the Radboud University Medical Cen-
ter was obtained prior to the study. The need for written informed consent was
waived, and data were collected and anonymized in accordance with local guide-
lines.

All CT scans were acquired with Toshiba (Aquilion One) or Siemens (Sensation
16, Sensation 64, and Somatom Definition AS) scanners, with FC09, FC09-H, B30f,
B30fs, or I30f reconstruction kernels. The slice thickness ranged from 0.5 to 3mm.

An initial selection of 1905 studies from 929 patients were retrieved. The corre-
sponding radiology reports were analyzed for sentences mentioning both the Dutch
word for kidney (’nier’ or ’nieren’, excluding ’bijnier’) and one or more abnormali-
ties, including cysts (‘cyste’ or ‘cysten’), lesions (‘laesie’ or ‘lesies’), masses (‘massa’),
metastases (‘metastase’ or ‘metastasen’), or tumors (‘tumor’). This analysis split the
cohort in 138 patients with one or more kidney abnormalities and 791 patients with-
out.

Six of the 138 patients with kidney abnormalities were excluded due to the pres-
ence of infrequent abnormalities. Specifically, three patients had undergone kidney
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transplants, two presented with irregular kidney sizes, and one had a horseshoe kid-
ney. From the initial 791 patients without kidney abnormalities, 133 patients were
selected, resulting in a total of 265 patients. For each of these patients, a single CT
scan was selected to represent them.

Segmentations for both kidneys and abnormalities were annotated by a team of
four medical students under supervision of an expert radiologist.

Dataset preparation

The data was further processed by extracting crops from the full CT images around
the kidneys using the provided kidney segmentation masks with an additional bor-
der of 2 cm in each direction. Some patients had already undergone a radical
nephrectomy at the moment that a scan was made, resulting in a total of 591 crops
from the KiTS data, and 486 from the Kidney Abnormality Segmentation project.

Training/test split

The KiTS dataset and 215 patients from the Kidney Abnormality Segmentation
project were included into our training database. This resulted in a training set with
a total of 986 kidneys. 91 kidneys of 50 patients from the Kidney Abnormality Seg-
mentation project were set aside for evaluation purposes and not included in the
training database described in this Data Descriptor.

Clinically significant prostate cancer classification from magnetic

resonance imaging

Motivation and task

Prostate cancer is one of the most prevalent cancers in men. One million men re-
ceive a diagnosis and 375,000 die from clinically significant cancer, each year, world-
wide[200]. MRI is playing an increasingly important role in the early diagnosis of
prostate cancer, and has been recommended by recent clinical guidelines in the Eu-
ropean Union, United Kingdom and the United States. Radiologists follow a semi-
quantitative assessment to read prostate MRI that mandates substantial expertise for
proper usage, leading to high inter-reader variability. Artificial intelligence-assisted
triaging or secondary reading can address the rising demand in prostate imaging,
improve diagnostic accuracy and reduce inter-reader variability.

100 A diverse multi-task database for universal 3D medical image classification

tumors) and renal cell carcinoma from normal tissue. The utilization of artificial in-
telligence to differentiate healthy from unhealthy kidneys in such images could both
the improve radiologist workflow and allow for potential higher detection rates of
renal cancer when the two parties work in tandem.

Provenance

The dataset for kidney abnormality classification can be subdivided into two parts.

KiTS21 Firstly, data from the KiTS21 challenge[51] was used. This study includes a
cohort of 300 patients who underwent nephrectomy for suspected renal malignancy
between 2010 and 2020 in one of two medical centers in the US. Their dataset in-
cludes both abdomen CT-scans and segmentation masks for kidneys and, when ap-
plicable, renal tumors and cysts. These annotations were made by a team of both
expert, trainees and laypeople in an iterative process. The KiTS challenges are bien-
nial challenges where participants are asked to develop an automatic segmentation
algorithm for kidney tumors using this dataset. We used the KiTS21 dataset in full
for this project.

Kidney Abnormality Segmentation project Secondly, data was used from the
"Kidney Abnormality Segmentation in Thorax-Abdomen CT Scans" project [186].
This study collected CT scans of patients at the Radboud University Medical Cen-
ter (Nijmegen, The Netherlands) who underwent a thorax-abdomen CT scan in 2015.
Approval of the medical ethical committee of the Radboud University Medical Cen-
ter was obtained prior to the study. The need for written informed consent was
waived, and data were collected and anonymized in accordance with local guide-
lines.

All CT scans were acquired with Toshiba (Aquilion One) or Siemens (Sensation
16, Sensation 64, and Somatom Definition AS) scanners, with FC09, FC09-H, B30f,
B30fs, or I30f reconstruction kernels. The slice thickness ranged from 0.5 to 3mm.

An initial selection of 1905 studies from 929 patients were retrieved. The corre-
sponding radiology reports were analyzed for sentences mentioning both the Dutch
word for kidney (’nier’ or ’nieren’, excluding ’bijnier’) and one or more abnormali-
ties, including cysts (‘cyste’ or ‘cysten’), lesions (‘laesie’ or ‘lesies’), masses (‘massa’),
metastases (‘metastase’ or ‘metastasen’), or tumors (‘tumor’). This analysis split the
cohort in 138 patients with one or more kidney abnormalities and 791 patients with-
out.

Six of the 138 patients with kidney abnormalities were excluded due to the pres-
ence of infrequent abnormalities. Specifically, three patients had undergone kidney
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Provenance

This dataset repurposes 2600 biparametric MRI scans with case-level annotations
for the presence or absence of clinically significant prostate cancer, from the PI-
CAI challenge[45]. As part of the PI-CAI study protocol (ClinicalTrials.gov identi-
fier NCT05489341), patient data from January 2012 through December 2021 were
retrospectively collected and deidentified from four European tertiary care centers.
All patients were adult men (23 to 92 years of age) suspected of harboring prostate
cancer, with elevated levels (≥ 3 ng/mL) of prostate-specific antigen, or an abnor-
mal digital rectal examination, or both. Insignificant cancer was defined as Gleason
grade group 1 (Gleason score 6; low risk), while clinically significant cancer was de-
fined as Gleason grade group 2 (Gleason score 3+4=7; favourable intermediate risk),
3 (Gleason score, 4+3=7; unfavourable intermediate risk), 4 (Gleason score 8; high
risk) or 5 (Gleason score 9 or 10; very high risk). Case-level outcomes were by trained
investigators, under the supervision of expert radiologists at each participating data
center. Annotations were independently reviewed by the steering committee at the
central coordinating center (Radboud University Medical Center) for quality control.

Dataset preparation

For each exam, all biparametric prostate MRI sequences (axial T2-weighted imaging,
high b-value diffusion weighted imaging, apparent diffusion coefficient maps) were
resampled to a common spatial resolution of 0.5× 0.5× 3.0 mm3 and center-cropped
to 256× 256× 20 voxels.

Training/test split

In accordance with the data split utilized in the PI-CAI challenge[45], the training
dataset comprises of the 1500 MRI scans (1476 patients) that were publicly released.
Similarly, 1100 unseen MRI scans (1100 patients) from the challenge are used for
validation/tuning (n=100) and testing (n=1000).

5.3 Data Records

The data associated with this work is available on Zenodo [201–212]. The record
consists of the training data for the eight tasks. The datasets’ URLs on Zenodo are
specified in Table 5.1. Each of these training datasets is uploaded to a separate Zen-
odo repository and follows a standardized structure to allow for easy development
of universally applicable classification methods. This format was heavily based on
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those introduced by the Medical Image Segmentation Decathlon [54] and nnUnet
[189].

Each repository includes a LICENSE.txt file that contains the license of the cor-
responding dataset, a dataset.json file that provides a detailed description of the
dataset, and input images which optionally include ROI segmentations.

The dataset.json file contains the following information:

• A short textual description of the dataset;

• References to earlier uses and releases of the data;

• The name of the license with which the data is released;

• References to earlier uses and/or releases of the data;

• The number of training images in the dataset;

• Descriptions of the different data acquisition methods used for collecting the
dataset that are used in the input image filenames and identification numbers
for each of these aquisition methods;

• Descriptions of the classification labels present in the dataset;

• Descriptions of Region of Interest (ROI) segmentation labels, when available;

• A list of all cases in the dataset, where each item describes relative paths to the
input image files and their related classification labels.

All images and ROI segmentations are stored in the MetaImage format, with
the .mha file extension, which is widely used in medical imaging for the storage
and transfer of 2D and 3D images. Many of the datasets involved individual cases
corresponding to multiple input images obtained with different acquisition meth-
ods. Within each such case, input images were co-registered and processed to en-
sure consistent spacing. Filenames of the ROI segmentations follow the format
CaseID.mha and all otehr images follow the format CaseID_AcquisitionNumber.mha,
where CaseID is an identifier that is consistent among each input image that cor-
responds to a single case, and AcquisitionNumber is the identification number de-
scribed in the JSON file that corresponds to the data acquisition method with which
the image was obtained.

A summary of the datasets is available in Table 5.2.
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Provenance
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investigators, under the supervision of expert radiologists at each participating data
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For each exam, all biparametric prostate MRI sequences (axial T2-weighted imaging,
high b-value diffusion weighted imaging, apparent diffusion coefficient maps) were
resampled to a common spatial resolution of 0.5× 0.5× 3.0 mm3 and center-cropped
to 256× 256× 20 voxels.
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In accordance with the data split utilized in the PI-CAI challenge[45], the training
dataset comprises of the 1500 MRI scans (1476 patients) that were publicly released.
Similarly, 1100 unseen MRI scans (1100 patients) from the challenge are used for
validation/tuning (n=100) and testing (n=1000).

5.3 Data Records

The data associated with this work is available on Zenodo [201–212]. The record
consists of the training data for the eight tasks. The datasets’ URLs on Zenodo are
specified in Table 5.1. Each of these training datasets is uploaded to a separate Zen-
odo repository and follows a standardized structure to allow for easy development
of universally applicable classification methods. This format was heavily based on
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Classification Task Dataset URL Licence
Breast MRI molecular cancer subtype [201] CC BY-NC 4.0

Retina OCT glaucoma [202] CC BY-NC 4.0

Lung nodule CT false positive reduction [203] CC BY 4.0

Rib CT fracture [204] CC BY-NC 4.0

Clinically significant prostate cancer [205] CC BY-NC 4.0

Lung CT
COVID-19

[206] CC BY-NC 4.0
[207] CC BY-NC 4.0
[208] CC BY-NC 4.0
[209] CC BY-NC 4.0
[210] CC BY-NC 4.0
[211] CC BY-NC 4.0

Kidney CT Abnormality [212] CC BY-NC-SA 4.0

Table 5.1: Zenodo URL for each task’s publicly available data set. The full licences can

be found in these repositories. We strived to assemble a database from datasets that

allow distribution under lenient licenses to promote the creation of widely accessible

algorithms.

5.4 Technical Validation

To validate that all datasets are ready to be used for the development of general
medical image classification methods, we trained a baseline system on the seven
datasets and subsequently tested it against the corresponding test sets. The baseline
system and its comprehensive source code were made publicly available at https:
//github.com/DIAGNijmegen/auc23-baseline. By publicly releasing this example
codebase, we intent to reduce the technical complexity of using the released database
with the creation of new universal medical image classification systems.

The baseline codebase implements a data preprocessing step and a model train-
ing step, based heavily on the nnU-Net codebase [189]. Because the nnU-Net frame-
work was originally designed for semantic medical image segmentation, it was
adapted to facilitate training a classifier. Most notably it was altered to train an
Inflated 3D ConvNet model [16] instead of a U-Net [213]. To lower the memory foot-
print of training the baseline system, preprocessing was extended to include crop-
ping of input image volumes to ROI segmentations when such segmentations are
available.

For each of the seven training datasets, a single I3D model was trained for 50 000
iterations. Training completed successfully for all tasks. Figure 5.2 shows the perfor-
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Organ Kidney Prostate Retina Breast

Classification task
Abnormality Clinically

POAG
Molecular

(cyst or tumor) significant cancer cancer type

Provenance [51, 186] [45] [50] [47]

Total cases 586 1 500 884 737

Cases per class

46 HER2
176 Normal 1075 no csPCa 207 Normal 481 Luminal A
410 Abnormal 425 csPCa 677 POAG 76 Luminal B

134 TN

Acquisition methods CT
T2 MRI,

OCT Subtraction MRIHBV MRI,
ADC MRI

Shape
Axial 143.22± 54.76 20.00± 0.00 64.00± 0.00 168.26± 23.00

(voxels)
Sagittal 146.24± 12.59 256.00± 0.00 64.00± 0.00 486.75± 45.18

Coronal 150.27± 17.87 256.00± 0.00 128.00± 0.00 486.75± 45.18

Spacing
Axial 1.17± 0.38 3.00± 0.00 0.09± 0.00 1.07± 0.14

(mm)
Sagittal 0.76± 0.06 0.50± 0.00 0.09± 0.00 0.72± 0.11

Coronal 0.76± 0.06 0.50± 0.00 0.02± 0.00 0.72± 0.11

ROI mask input No No No No

Organ Rib Lung Lung

Classification task Fracture type
Nodule false

COVID-19
positive reduction

Provenance [46] [49] [17, 48]

Total cases 1 324 6 694 2 000

Cases per class

230 Buckle
795 Negative

493 Displaced 941 Nodule
904 Non-severe

460 Non-displaced 5753 No nodule
301 Severe

142 Segmental

Acquisition methods CT CT CT

Shape
Axial 133.60± 15.99 64.00± 0.00 442.62± 124.48

(voxels)
Sagittal 200.60± 20.17 64.00± 0.00 512.00± 0.00

Coronal 200.60± 20.17 64.00± 0.00 512.00± 0.00

Spacing
Axial 1.14± 0.13 0.78± 0.00 0.80± 0.32

(mm)
Sagittal 0.75± 0.08 0.78± 0.00 0.73± 0.09

Coronal 0.75± 0.08 0.78± 0.00 0.73± 0.09

ROI mask input Yes No Yes

Table 5.2: Characteristics of the training datasets.
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ing step, based heavily on the nnU-Net codebase [189]. Because the nnU-Net frame-
work was originally designed for semantic medical image segmentation, it was
adapted to facilitate training a classifier. Most notably it was altered to train an
Inflated 3D ConvNet model [16] instead of a U-Net [213]. To lower the memory foot-
print of training the baseline system, preprocessing was extended to include crop-
ping of input image volumes to ROI segmentations when such segmentations are
available.

For each of the seven training datasets, a single I3D model was trained for 50 000
iterations. Training completed successfully for all tasks. Figure 5.2 shows the perfor-
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mance of the resulting systems on the corresponding test sets.
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(a) Retina - OCT - Primary Open Angle Glau-
coma (POAG)

(b) Lung - CT - Nodule false positive reduc-
tion

(c) Breast - MRI - Molecular cancer type (d) Lung - CT - COVID-19 presence and
severity
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(e) Rib - CT - Fracture type (f) Kidney - CT - Abnormality (tumor or
cyst)

(g) Prostate - MRI - clinically significant
prostate cancer (csPCa)

Figure 5.2: Receiver Operating Characteristics (ROC) curves of the baseline system

for each of the tasks. Area under ROC curve (AUROC) values are computed sepa-

rately for each class label. This was done by treating the class under consideration as

the positive class and all other classes as negative.
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5.5 Usage Notes

A tutorial for using the released database was released together with the baseline
system. This tutorial includes an example of how to preprocess the training datasets
and how to train a universal classification systems with them. At https://auc23.gr
and-challenge.org/, universal 3D medical image classification methods trained on
each of the seven tasks can be evaluated.

For a fair comparison of universal 3D medical image classification systems, it is
essential that they are evaluated using the same data and under identical conditions.
With the release of our database, we therefore open a grand challenge with the goal
of maintaining an up-to-date overview of the state-of-the art of universal classifiers.

At https://auc23.grand-challenge.org/, universal 3D medical image classifi-
cation methods trained on each of the seven tasks can be freely evaluated. Trained
solutions can be submitted to each of the seven tasks by submitting GitHub reposi-
tories containing codebases. To submit a solution codebase, developers can initially
submit their trained models for evaluation on a select number of test cases from each
test set, serving to verify model validity. Once successful verification across all seven
tasks is achieved, users are then able to request the submission of their method for
evaluation on the full test sets for all tasks. To encourage collaborative progress in
the field, public release of the source code, under a permissive license, is a prerequi-
site before the final evaluation takes place.

For the grand challenge, metrics for each of the seven tasks are computed sepa-
rately for each of the seven tasks. The metrics computed are Area Under the Receiver
Operating Characteristic curve (AUROC), Cohen’s kappa, and also quadratic wsev-
ened kappa for classification tasks that contain ordinal output labels. For multi-class
and multi-label tasks, AUROC values are computed separately for each class label.
This is done by treating the class under consideration as the positive class and all
other classes as negative. To obtain a single AUROC score per task, class-specific
AUROC scores are aggregated through macro-averaging.

Code availability

Source code for reproducing all experiments in this data descriptor can be accessed
at https://github.com/DIAGNijmegen/auc23-baseline. This codebase addition-
ally contains a tutorial for submitting new universal 3D medical image classification
methods to https://auc23.grand-challenge.org.
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This thesis presents several new machine learning approaches and datasets for the
classification and regression from 3D medical image volumes. The corresponding
tasks include patient and lobe-level lung function estimation, grading and classifi-
cation of the likelihood and severity of COVID-19 infections, both using chest CT
scans as input. Throughout this thesis, machine learning methods that are not re-
stricted to specific 3D image modality and classification or regression tasks proved
most successful.

This final chapter first reflects on the preceding chapters by discussing the differ-
ent automation strategies, their clinical relevance, and implemented practices for ac-
celerating research, including the use of different medical image analysis challenges.
It concludes by discussing future research opportunities.

6.1 Automating classification and regression

This section describes different ways in which classification and regression were ap-
plied throughout this thesis, illustrated with examples from previous chapters. It
describes several advantages and disadvantages of the strategies we employed.

6.1.1 As part of a pipeline

Automatic classification and regression tasks in medical image analysis are often
components of a larger algorithm pipeline. More specifically, segmentation or de-
tection steps were used prior to classification or regression to improve the efficiency
and effectiveness of the presented methods in this thesis. Segmentation and detec-
tion require denser annotations than classification or regression tasks. Classification
or regression models can only benefit from detection and segmentation models when
relevant datasets with annotations are available to train such models, or when pre-
trained segmentation or detection models are available.

Segmentation and detection steps were employed for two purposes throughout
this thesis, namely for limiting the size of the input volume, and providing addi-
tional information as input.

Limiting input volume size

Firstly, segmentation and detection were used to limit the input of the models to
smaller regions of interest. This was done by cropping and/or masking the input
volume. Presenting the memory-hungry 3D models with smaller inputs allows for
more computationally efficient training and inference. Furthermore, excluding im-
age regions that are not of interest from the input of the classification or regression
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model may lead to better performance. This is firstly because of the increased signal-
to-noise ratio in the input. Secondly, it also ensures that the model does not take into
account nor becomes dependent on image features that the model should not focus
on outside the region of interest.

All chapters of this thesis describe methods that utilize segmentation or detec-
tion to limit the input. In Chapter 2, input volumes were cropped to the lungs, and
voxels outside of the lungs were masked out before presenting them to the models
for lung function prediction. In Chapter 3, the models for COVID-19 grading relied
on a lung segmentation for pre-processing. In Chapter 4, many challenge partici-
pants leveraged lung and segmentation algorithms in their training and inference
pipelines for the same purpose. Chapter 5 formulated many classification tasks as
part of a pipeline. The input volume for some tasks had already been cropped to the
region of interest through the use of preceding detection or segmentation steps.

It is not a priori clear what the best size is of the region in the input volume to crop
or mask to. This depends on how localized the information relevant for performing
the classification or regression task is. For example, the information lung nodule ma-
lignancy classification task in Chapter 5 is highly localized. Cropping is performed
to only a small area around the nodule. In contrast, the methodologies presented in
Chapter 3 and 4 classification focus on the complete lungs because COVID-19 grad-
ing and classification requires the analysis of diffuse patterns.

Focusing only on specific parts of the image is an integral part of the methodology
presented in Chapter 2. Here, the lobe level model relies heavily on a high-quality
segmentation of the individual lobes. When analyzing an individual lobe to compute
lobe-level lung function estimates, this allows the lobe-level model to ignore any
image features present in other lobes.

Additional input

Secondly, segmentation and detection were used to extract relevant information
from the input volumes. In Chapter 3, the added value of additional lesion segmen-
tation input was investigated. In Chapter 4, the methodology of many participants
relied on the output of a lesion segmentation. In Chapter 5, region of interest seg-
mentations were provided as additional input for many of the tasks.

6.1.2 End-to-end learning

Instead of preceding the classification or regression model with preprocessing steps
that extract the region of interest to be fed to the model, it is also possible to supply
the model directly with the complete image. An example of this is the molecular
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breast cancer type classification from Chapter 5. This approach is not possible when
the methodology heavily relies on the partitioning of the image in regions of interest,
as is the case with the lobe-level model presented in Chapter 2. Not using segmen-
tation or detection models earlier in the processing pipeline also does not make the
classification or regression model dependent on these preceding models. However,
this approach is less computationally efficient and does not withhold the model from
focusing on image features that are outside the region of interest.

6.1.3 Based on interpretable features

Classification or regression can also be performed by directly correlating the target
output with features that are interpretable by humans. Taking a more classic ap-
proach to computer vision, these features can be handcrafted. Functional Pulmonary
Volume (FPV) is an example of a highly interpretable hand-crafted feature that is pre-
dictive for lung function, as discussed in Chapter 2.

Another approach is to use interpretable image features extracted by (deep) learn-
ing algorithms. CORADS-AI [33] produced a COVID-19 CT severity score that was
computed directly as the percentage of abnormal lung tissue within automatically
generated lobe segmentation masks. Deep learning models can also be specifically
engineered to provide such features. An example of this is BagNet [62] and the lobe
level lung function prediction model presented in Chapter 2, where the architecture
of the model forces it to produce lobe level lung function estimates that sum up to a
patient level prediction.

A final approach for producing image-level output based on interpretable fea-
tures is to use a combination of both handcrafted and automatically extracted fea-
tures. In Chapter 4, the etro and uaux2 teams crafted features based on automatically
extracted lesion segmentations.

6.1.4 Which strategy to use?

Methods based on hand-crafted features and/or segmentation masks alone are more
interpretable than the output of current state-of-art machine learning models [214].
Current methods for improving the interpretability of machine learning models [214–
216] do not yet alleviate this issue. Because of this, machine learning based 3D image
classification and regression should be reserved for image assessment tasks where
the classification or regression output cannot be directly extracted with sufficient
accuracy from hand-crafted features or segmentation masks.

In general, when models for segmenting structures related to the task at hand
are available, using them as part of the classification or regression pipeline is worth
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considering. Automatically generated segmentation masks can be useful for crop-
ping away or masking out image features that are outside the region of interest. This
allows the classification or regression model to focus on the region of interest only.
Using the segmentation mask or and-crafted features as additional input to the clas-
sification or regression model may also be useful, but does not always provide per-
formance benefits.

Lastly, as also observed in preceding literature [55, 56, 217], a trend can be ob-
served throughout this thesis that more general methods can provide strong perfor-
mance. Task-specific algorithm improvements may in many cases only offer dimin-
ishing returns.

6.2 Clinical relevance

The methodology presented in this thesis may help healthcare professionals by sav-
ing them time and effort, as well as by providing them with additional insights that
could be useful for clinical decision making.

6.2.1 Extending restricted healthcare capacity

The methods presented in this thesis may be particularly beneficial in situations that
overload healthcare personnel and in a high-demand emergency situation like the
COVID-19 pandemic. Automated medical image analysis might also prove useful
for combating future large-scale disease outbreaks. Chapter 3 observed a lack of
coordination in computer vision research on COVID-19 classification. Following the
research practices described in section 6.3 may be vital for accelerating AI research
in such situations.

Chapters 3 and 4 present methods that may be useful for computer-aided triaging
of CT scans in the COVID-19 pandemic. These methods may be especially beneficial
for alleviating personnel shortages in high-demand situations. Fortunately, COVID-
19 infections have become much less prevalent and RT-PCR tests are available, pro-
viding an efficient and widespread means of diagnosing COVID-19.

Chapter 2 introduces a methodology for predicting lung function from CT scans,
which, with further refinement, could potentially save time by eliminating the need
for PFTs when a CT scan is readily available for a patient. Chapter 5 furthermore
includes glaucoma and lung nodule malignancy prediction tasks that could provide
aid in screening settings.
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6.2.2 Providing additional insights

Automated classification and regression might be useful for tasks that are clinically
relevant, but that medical professionals are not trained to perform. For such tasks,
computers may aid clinical decision-making by offering additional perspectives. As
for any machine learning problem, sufficient data that explicitly or implicitly de-
scribes the task is necessary for training such an algorithm.

In Chapter 2, machine learning models were tasked to extract information about
lobe-level lung function that was implicitly available in the training set. Medical
professionals are not trained to visually extract patient-level lung function estimates
from CT, and even less so to estimate lobe-level lung function. When trained with
sufficient data, machine learning models may be better suited than healthcare profes-
sionals to perform such a task. In such cases, a well-performing model could provide
healthcare professionals with additional insights.

In Chapter 4, models were trained to predict one-month mortality or intubation
risk for patients infected with COVID-19. Medical professionals are not explicitly
trained to perform this task. Machine learning models could offer a way to make
informed decisions in such a setting, such as prioritizing patients in saturated hospi-
tals.

6.3 Accelerating research

This section describes methodologies utilized in this thesis that speed up progress in
the field of computer-aided medical image analysis. These methodologies generalize
to other fields for which machine learning applications are being developed, both
related and unrelated to healthcare.

6.3.1 Open access

Providing open access to research artifacts increases transparency and accelerates
research by allowing other researchers to replicate results and build upon these ar-
tifacts. The preceding chapters describe the public sharing of various algorithms,
datasets, and codebases for these purposes.

All chapters of this thesis are linked to algorithms on grand-challenge.org that
are available for public use. This includes the lobe level lung function prediction
algorithm of Chapter 2, COVID-19 grading algorithms from Chapter 3, the baseline
and finalist solutions of the STOIC2021 challenge described in Chapter 4, and the
baseline algorithm from Chapter 5.
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With the publication of the research presented in chapters 4, a database contain-
ing 2000 CT scans of patients suspected of COVID-19 was publicly released. Chapter
5 describes the public release of a structured database, designed to facilitate future
research for developing universal classification methods. Furthermore, Chapter 3 re-
ports performance on a public dataset, which allows other research to directly com-
pare against the presented results

All code for training and running inference with the baseline and finalist solu-
tions presented in 4 and the baseline presented in Chapter 5 was made publicly
available.

6.3.2 Validation

Proper validation is crucial for the development of useful medical image analysis
algorithms. Some good practices for validating and comparing models that were
implemented in the preceding chapters are highlighted here.

Comparing methods on the same test set

For comparisons between different methods to be fair, they should be performed
using the same metrics acquired through evaluation on the same test sets. Chap-
ter 3 highlights that the research community cannot evaluate the performance of
methods or model components when their evaluation on public benchmarks is not
available. Chapters 3, 4, and 5 release or present public benchmarks with which the
performance of the presented machine learning models is computed. This allows
future research to compare newly developed methods directly against the methods
presented in those chapters.

Evaluation on external or multi-center data

The generalization capability of machine learning models to unseen data should be
evaluated as well for such models to be useful. Avoiding overlap of data from the
same scans or patients in development and testing data is a first step for doing so.
Overfitting models on other data specifics, such as scanner types, reconstruction ker-
nels, and patient population, should also be avoided. Two strategies for measuring
the generalization capabilities of machine learning models are evaluation on external
data, and development and evaluation with large, heterogeneous data sets. These
strategies were applied throughout this thesis where possible.

In Chapter 3, models were developed using data from the Radboud University
Medical Center and evaluated using the external iCTCF dataset from China. Several
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large databases containing data acquired from different scanners and medical cen-
ters were used in this thesis. COPDGene [77] were used for training and evaluating
the models in Chapters 2. The STOIC database [48] was used for the research per-
formed in Chapter 4, as well as for the COVID-19 classification task in Chapter 5.
Furthermore, the PI-CAI database [45] was used for the prostate cancer classification
task in Chapter 5. In all these applications, the databases were split into separate sets
for development and testing.

6.3.3 Grand Challenges

Medical image analysis challenges have the potential of encouraging participants to
follow the methodologies presented in the preceding sections 6.3.1 and 6.3.2. They
provide important benchmarks for the community, allowing future publications to
compare their approaches with other methodologies. Challenges furthermore pro-
vide clear directions through set objectives. Well-organized challenges can therefore
be a powerful accelerator of research.

Medical image analysis challenges, in particular of Type Two (T2) and Type Three
(T3), were used throughout this thesis to provide these benefits.

Type Two

In Chapter 3, a T2 challenge was opened for the systematic comparison between
different methods, as well as to allow other researchers to compare their methods to
the results in this chapter. In Chapter 4, the T2 challenge structure was used in the
Qualification phase of the STOIC2021 challenge instead of the T3 structure to reduce
the initial overhead for participants and to limit costs for the challenge organizers.

Type Three

This thesis does not only systematically compare different machine learning mod-
els but also discusses the evaluation of the methodologies for training such models
through the T3 challenge format. In Chapter 4, reusable methodologies for training
and inference are evaluated on their effectiveness in producing a well-performing
machine learning model, given a dataset with a predetermined structure. More
specifically, the finalists of the STOIC2021 challenge were evaluated on how well
their methodology was able to produce a machine learning model for the task of
COVID-19 severity classification. The T3 format requires that the codebase of partic-
ipants is reusable, in the sense that it can be applied to any new dataset that follows
the same predetermined dataset structure. This guarantees that the codebases can
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be used to train models on any dataset that follows this structure, including private
data sets and datasets constructed after the challenge has concluded.

The fact that the T3 challenge format requires participants to produce codebases
for training models on any dataset of a predefined structure, makes the T3 challenge
format well-suited for a head-to-head comparison of methods designed to work well
for a variety of tasks. Chapter 5 presents a benchmark and challenge to obtain a uni-
versally applicable 3D classification method that performs well across varying medi-
cal image classification tasks. Following the Medical Image Segmentation Decathlon
(MSD) [54], this chapter describes a diverse range of tasks, represented by medical
imaging datasets, emphasizing the variety in modalities, anatomical regions, and
diseases. A model that performs well on all of these tasks may also generalize to
new unseen tasks. To evaluate this generalization capability, the MSD contained an
evaluation phase after the development phase, in which datasets describing unseen
tasks were released. The participants applied their methods to these datasets, and
the predictions of the resulting models were evaluated.

Which challenge type to use?

Both T2 and T3 challenges were used throughout this thesis. The different challenge
types each have their own advantages and disadvantages.

T1 challenges are the cheapest type of challenge to perform for challenge orga-
nizers. However, they are the least transparent and produce the fewest reusable
research artifacts. T2 challenges produce more reusable research artifacts. They are
more transparent and a fair way to compare different machine learning solutions.
Because of this, it may benefit the research community when researchers adopt the
T2 challenge structure where T1 is still being used.

When specifically searching for the most effective model for a specific task, T2
challenges may be preferred over T3 challenges. This is because T3 challenges pro-
vide much additional overhead and substantially raise costs for challenge organiz-
ers. The latter is especially true when considering compute-hungry models and
large training datasets. To reduce costs, challenges may follow the hybrid format
presented in Chapter 5, where the T2 structure is used for model development and
the T3 structure is used to find the best-performing method.

T3 challenges should be used when the goal is to compare different training
methodologies. They are especially useful for finding training methods that can
be applied to a wide variety of tasks, including but not restricted to classification
and regression tasks. T3 challenges may accelerate the development of universally
applicable methodologies for computer-aided medical image analysis. T1 and T2
challenges have limitations for evaluating universally applicable methods because
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they allow participants to potentially manually intervene in the training process.

6.4 Future outlook

6.4.1 Clinical adoption

Before the models presented in this thesis can be used for clinical adoption, several
additional steps need to be taken.

Advancements in lobe level lung function prediction

The lung function and lobe level lung function prediction methods described in
Chapter 2 may need to be more accurate before they become a viable alternative,
or complementary to performing PFTs.

The methodology presented in Chapter 2 was initially developed for improved
estimation of the risk of pulmonary resection, which is currently often estimated
based on crude segment counting methods. This may be improved upon by utilizing
the detailed information present in CT scans as done in this chapter.

In their presented form, the models trained in Chapter 2 only receive inspiration
scans as input. As noted in Section 1.2.1, CT scans are often acquired at different in-
spiration and expiration levels than the levels achieved during PFTs. Providing mod-
els with CT scans taken at full inspiration with coaching similar to that applied dur-
ing PFT measurements, and a combination of inspiratory and expiratory CT scans
may also improve the accuracy of PFT estimation. A disadvantage of making the
model reliant on both inspiratory and expiratory CT is that this will make the model
inapplicable for patients where no expiratory CT scan is available.

PFTs are not perfectly reproducible, especially DLCO measurements [20]. To com-
plement PFTs, CT features might be useful for relevant diffusion capacity estimates,
and automatic medical image analysis could play a role in extracting such features.

It should be noted that post-operative PFT prediction may also never become per-
fectly accurate. This is firstly because PFTs themselves are not perfectly reproducible,
but also because the risk estimation needs to be performed without knowledge about
intra-operative decisions, complications during surgery, and patient recovery after
surgery.

Clinical validation

None of the methods presented in this thesis have been sufficiently validated to be
directly adopted in hospitals. Depending on the clinical setting in which the algo-
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rithms are to be used, CT scans may image different patient populations and patholo-
gies, and have different characteristics than those encountered in the training sets.
For example, the COVID-19 models presented in Chapters 4 and 5 were developed
on CT scans from patients suspected of an infection of COVID-19. If these models
were to be used for analyzing standard radiology CT scans, their performance might
potentially decline in such a different clinical context. Before any method can be
used for clinical adoption, it needs to be certified for clinical use.

6.4.2 Type three challenges

The main drawbacks of T3 challenges are that they add additional overhead for chal-
lenge participants and that they substantially raise costs for challenge organizers.
They furthermore separate the training data preparation process from the model de-
velopment process. The latter limits the refinement of the training data through the
use of model output. T2 challenges do not have these drawbacks and allow partici-
pants to provide feedback about the training data with challenge organizers.

This limits the widespread adoption of T3 challenges for task-specific challenges.
In future endeavors, T3 challenges will shine where their benefits outweigh these
downsides. They will be used for obtaining task-specific models on large private
datasets, and for benchmarking the generalizability of universally applicable models
to unseen tasks.

6.4.3 Universally applicable methods

This thesis highlights a trend toward universally applicable methods for training 3D
medical image classification and regression models. The trend towards universally
applicable methods is a general trend in AI research and can also be observed for
medical image segmentation [54, 55]. The rise of universally applicable methods for
classification and regression will make task-specific algorithm improvements less
prevalent. Obtaining and refining datasets will remain important and may receive
more attention from researchers.

Current developments in AI research also show a trend toward the use of base
models [188, 218]. Base models are DL models that have been pretrained on vast
datasets that encompass a wide range of information and context. Future base mod-
els trained on medical images will have a broad understanding of anatomy and dis-
ease patterns, enabling them to assist in accurate and efficient interpretation across a
wide range of medical conditions and imaging modalities. Future universal methods
built upon such base models will need much less task-specific data than state-of-the-
art methods need now to achieve high performance on medical image classification

120 Discussion

they allow participants to potentially manually intervene in the training process.

6.4 Future outlook

6.4.1 Clinical adoption

Before the models presented in this thesis can be used for clinical adoption, several
additional steps need to be taken.

Advancements in lobe level lung function prediction

The lung function and lobe level lung function prediction methods described in
Chapter 2 may need to be more accurate before they become a viable alternative,
or complementary to performing PFTs.

The methodology presented in Chapter 2 was initially developed for improved
estimation of the risk of pulmonary resection, which is currently often estimated
based on crude segment counting methods. This may be improved upon by utilizing
the detailed information present in CT scans as done in this chapter.

In their presented form, the models trained in Chapter 2 only receive inspiration
scans as input. As noted in Section 1.2.1, CT scans are often acquired at different in-
spiration and expiration levels than the levels achieved during PFTs. Providing mod-
els with CT scans taken at full inspiration with coaching similar to that applied dur-
ing PFT measurements, and a combination of inspiratory and expiratory CT scans
may also improve the accuracy of PFT estimation. A disadvantage of making the
model reliant on both inspiratory and expiratory CT is that this will make the model
inapplicable for patients where no expiratory CT scan is available.

PFTs are not perfectly reproducible, especially DLCO measurements [20]. To com-
plement PFTs, CT features might be useful for relevant diffusion capacity estimates,
and automatic medical image analysis could play a role in extracting such features.

It should be noted that post-operative PFT prediction may also never become per-
fectly accurate. This is firstly because PFTs themselves are not perfectly reproducible,
but also because the risk estimation needs to be performed without knowledge about
intra-operative decisions, complications during surgery, and patient recovery after
surgery.

Clinical validation

None of the methods presented in this thesis have been sufficiently validated to be
directly adopted in hospitals. Depending on the clinical setting in which the algo-
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124 Summary

Chapter 1 introduces the most important concepts related to this thesis. It first
provides a background on Deep Learning (DL) and Three-dimensional (3D) medical
image processing. It then introduces the regression and classification applications
this thesis mainly focuses on, namely thoracic computed tomography (CT) scans for
automatic Pulmonary Function Test (PFT) estimation and COVID-19 classification.
Lastly, it briefly explains the role of grand challenges in medical image analysis
research.

In Chapter 2, a DL method is described for estimating global measures from an
image that can also estimate the contributions of individual parts of the image to
this global measure.

In an initial proof-of-concept, this chapter shows that a model trained with a col-
lection of digit images to estimate their sum implicitly learns to assign correct values
to individual digits. Next, it shows it is possible to estimate lobe-level quantities,
such as COVID-19 severity scores, pulmonary volume, and functional pulmonary
volume from CT while only provided with patient-level quantities during training.

Lastly, it is shown that the introduced DL approach can be used for estimating
spirometry and diffusion capacity of carbon monoxide (DLCO) results from CT
scans and disentangling the individual contribution of pulmonary lobes to a
patient’s lung function. The findings presented in this work may advance the use of
CT in screening, diagnosis, and staging of restrictive pulmonary diseases as well as
in risk assessment for pulmonary resection surgery and bronchoscopic lung volume
reduction.

In Chapter 3, it is observed that applied artificial intelligence (AI) research focuses
disproportionately on novel architecture modifications that do not necessarily ge-
neralize to other datasets, while neglecting systematic comparisons between com-
monly used algorithm components. This issue was especially prevalent in research
on automated applications of AI for COVID-19 classification and grading from CT
images with convolutional neural networks (CNNs).

Chapter 3 addresses this issue through a systematic investigation of COVID-19
grading algorithm components using a large publicly available dataset. The
results are published in an online challenge. These contributions speed up the
development of AI applications for COVID-19 grading by establishing insights into
the components of such applications and by allowing applications produced by
future research to be compared in a fair manner. The adherence to a standardized
COVID-19 grading system may increase the compatibility between AI and clinical
workflow.
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Chapter 4 implements the Type Three (T3) challenge format for medical image ana-
lysis challenges. This format allows for training solutions on private data and gua-
rantees that the training methods developed for the challenge can be used out-of-the
box by third parties.

The T3 format was implemented in the STOIC2021 challenge, to predict from a
CT scan whether subjects had a severe COVID-19 infection, defined as intubation or
death within one month. STOIC2021 was implemented in two phases. It consisted
of a Qualification phase, where participants developed challenge solutions using
2 000 publicly available CT scans, and a Final phase, where participants submitted
their training methodologies with which solutions were trained on CT scans of 9 724
subjects.

The challenge organizers successfully trained six of the eight Final phase submis-
sions. The submitted codebases for training and running inference were released
publicly. The best-performing solutions were generally applicable deep learning
approaches that made use of automatically generated segmentation masks.

Chapter 5 builds upon the observation made in the previous chapters that
application-specific medical image classification solutions are often outperformed
by generally applicable methods. To spur the development of universally applicable
and publicly accessible medical image classification tools, the chapter presents a com-
prehensive database for the development of accessible and universally applicable 3D
medical image classification algorithms. These datasets cover a broad spectrum of
classification tasks containing images from multiple modalities and body parts. Each
dataset is divided into a training and test set. The training sets are publicly released
in a standardized format to foster algorithm development. Automatic evaluation of
developed solutions on the test data is offered on the grand-challenge.org platform
to ensure fair comparisons between methods.

To validate the readiness of the database for algorithm development, a baseline
system was trained and tested successfully across all datasets. The baseline codebase
is made publicly available along with a detailed tutorial on using the database for
development and utilizing the automatic evaluation.

Chapter 6 first summarizes strategies for automating classification and regression
and highlights how its findings may aid clinical decision-making. It then reflects on
the practices employed in this thesis that are relevant for speeding up progress in the
field of computer-aided medical image analysis. Finally, it provides a future outlook
for research opportunities related to this thesis.
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Hoofdstuk 1 introduceert de concepten dit centraal staan in dit proefschrift. Het
biedt eerst een achtergrond over Deep Learning (DL) en automatische driedimen-
sionale (3D) medische beeldverwerking. Vervolgens introduceert het de regressie-
en classificatietoepassingen waarop deze thesis voornamelijk is gericht, namelijk
het verwerken van thoracale computertomografie (CT) scans om automatisch
Pulmonale Functie Test (PFT) uitkomsten te bepalen en om COVID-19 patienten te
classificeren. Tenslotte legt het kort de rol uit van competities in onderzoek over
medische beeldanalyse.

In Hoofdstuk 2 wordt een DL methode beschreven die zowel globale maten uit een
afbeelding kan bepalen, als de bijdragen van individuele delen van de afbeelding
aan deze globale maat kan bepalen.

Dit hoofdstuk toont eerst aan dat een model dat getraind om de som te bepalen
van verzameling van afbeeldingen van cijfers, impliciet leert om correcte waarden
toe te wijzen aan individuele cijfers. Vervolgens toont het aan dat het mogelijk is om
van CT op kwab-niveau kwantiteiten te bepalen, zoals de ernst van een COVID-19
infectie, longvolume en functioneel longvolume van CT, terwijl alleen patiënt-niveau
kwantiteiten worden gebruikt tijdens het trainen.

Ten slotte wordt aangetoond dat de geïntroduceerde DL methode kan worden
gebruikt voor het bepalen van spirometrie en diffusiecapaciteit van koolmonoxide
(DLCO) resultaten van CT-scans en het onderscheiden van de individuele bijdrage
van longkwabben aan de longfunctie van een patiënt. De bevindingen die in dit
werk worden gepresenteerd, kunnen het gebruik van CT bij screening, diagnose
en stadiëring van restrictieve longziekten bevorderen, evenals bij risicobeoordeling
voor longresectiechirurgie en bronchoscopische longvolumereductie.

In Hoofdstuk 3 wordt waargenomen dat toegepast kunstmatige intelligentie (AI) on-
derzoek onevenredig veel aandacht besteedt aan nieuwe architectuurwijzigingen die
niet noodzakelijkerwijs generaliseren naar andere datasets, terwijl systematische ver-
gelijkingen tussen veelgebruikte algoritmecomponenten worden verwaarloosd. Dit
probleem was vooral prevalent in onderzoek naar geautomatiseerde toepassingen
van AI voor COVID-19-classificatie en -gradatie van CT-beelden met convolutionele
neurale netwerken (CNNs).

Hoofdstuk 3 pakt dit probleem aan middels een systematisch onderzoek van
COVID-19 gradatie algoritmecomponenten met behulp van een grote publiek
beschikbare dataset. De resultaten van dit hoofdstuk zijn gepubliceerd in een online
competitie. Deze bijdragen versnellen de ontwikkeling van AI-toepassingen voor
COVID-19 gradatie door inzichten te verschaffen in de componenten van dergelijke
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toepassingen en door toepassingen geproduceerd door toekomstig onderzoek op
een eerlijke manier te kunnen vergelijken. Dit hoofdstuk gebruikt een gestandaar-
diseerd COVID-19 gradatiesysteem om de compatibiliteit tussen AI en klinische
workflow vergroten.

Hoofdstuk 4 implementeert het Type Drie (T3) competitieformaat voor medische
beeldanalyse uitdagingen. Dit formaat maakt training van oplossingen op privége-
gevens mogelijk en garandeert dat de trainingsmethoden ontwikkeld voor de com-
petitie direct kunnen worden gebruikt door derden.

Het T3-formaat werd geïmplementeerd in de STOIC2021 competitie, om te voor-
spellen of proefpersonen een ernstige COVID-19 infectie hadden (patienten die bin-
nen een maand moesten worden geintubeerd of overleden). De STOIC2021 competi-
tie werd in twee fasen geïmplementeerd. Het bestond uit een Kwalificatiefase, waar-
bij competitiedeelnemers modellen ontwikkelden met behulp van 2.000 publiekelijk
beschikbare CT-scans, en een Finale fase, waarbij deelnemers hun trainingsmetho-
dologieën indienden waarmee modellen werden getraind met behulp van CT-scans
van 9.724 patienten.

Zes van de acht inzendingen uit de Finale fase konden met succes worden
getraind door de organisatoren van de competitie. De ingediende codebases voor
training en het toepassen van de inzendingen op nieuwe CT scans werden publieke-
lijk vrijgegeven. De best presterende oplossingen waren algemeen toepasbare DL
methoden die gebruik maakten van automatisch gegenereerde segmentaties.

Hoofdstuk 5 bouwt voort op bevinding uit de voorgaande hoofdstukken dat spe-
cifiek voor medische beeldclassificatie ontwikkelde oplossingen vaak worden over-
troffen door algemeen toepasbare methoden. Om de ontwikkeling van universeel
toepasbare en publiekelijk toegankelijke medische beeldclassificatiemiddelen te sti-
muleren, presenteert dit hoofdstuk een uitgebreide database voor de ontwikkeling
van toegankelijke en universeel toepasbare 3D medische beeldclassificatie algorit-
men. Deze datasets beschrijven een breed spectrum van classificatietaken met af-
beeldingen van verschillende modaliteiten en lichaamsdelen. Elke dataset is ver-
deeld in een training- en testset. De trainingsets worden publiekelijk vrijgegeven in
een gestandaardiseerd formaat om de ontwikkeling van algoritmen te bevorderen.
Automatische evaluatie van ontwikkelde oplossingen op de evaluatie data wordt
aangeboden op het grand-challenge.org platform om eerlijke vergelijkingen tussen
methoden te verzekeren.

Om de gereedheid van de database voor algoritmeontwikkeling te valideren,
werd een basissysteem succesvol getraind en getest op alle datasets. De basis-

128 Samenvatting

Hoofdstuk 1 introduceert de concepten dit centraal staan in dit proefschrift. Het
biedt eerst een achtergrond over Deep Learning (DL) en automatische driedimen-
sionale (3D) medische beeldverwerking. Vervolgens introduceert het de regressie-
en classificatietoepassingen waarop deze thesis voornamelijk is gericht, namelijk
het verwerken van thoracale computertomografie (CT) scans om automatisch
Pulmonale Functie Test (PFT) uitkomsten te bepalen en om COVID-19 patienten te
classificeren. Tenslotte legt het kort de rol uit van competities in onderzoek over
medische beeldanalyse.

In Hoofdstuk 2 wordt een DL methode beschreven die zowel globale maten uit een
afbeelding kan bepalen, als de bijdragen van individuele delen van de afbeelding
aan deze globale maat kan bepalen.

Dit hoofdstuk toont eerst aan dat een model dat getraind om de som te bepalen
van verzameling van afbeeldingen van cijfers, impliciet leert om correcte waarden
toe te wijzen aan individuele cijfers. Vervolgens toont het aan dat het mogelijk is om
van CT op kwab-niveau kwantiteiten te bepalen, zoals de ernst van een COVID-19
infectie, longvolume en functioneel longvolume van CT, terwijl alleen patiënt-niveau
kwantiteiten worden gebruikt tijdens het trainen.

Ten slotte wordt aangetoond dat de geïntroduceerde DL methode kan worden
gebruikt voor het bepalen van spirometrie en diffusiecapaciteit van koolmonoxide
(DLCO) resultaten van CT-scans en het onderscheiden van de individuele bijdrage
van longkwabben aan de longfunctie van een patiënt. De bevindingen die in dit
werk worden gepresenteerd, kunnen het gebruik van CT bij screening, diagnose
en stadiëring van restrictieve longziekten bevorderen, evenals bij risicobeoordeling
voor longresectiechirurgie en bronchoscopische longvolumereductie.

In Hoofdstuk 3 wordt waargenomen dat toegepast kunstmatige intelligentie (AI) on-
derzoek onevenredig veel aandacht besteedt aan nieuwe architectuurwijzigingen die
niet noodzakelijkerwijs generaliseren naar andere datasets, terwijl systematische ver-
gelijkingen tussen veelgebruikte algoritmecomponenten worden verwaarloosd. Dit
probleem was vooral prevalent in onderzoek naar geautomatiseerde toepassingen
van AI voor COVID-19-classificatie en -gradatie van CT-beelden met convolutionele
neurale netwerken (CNNs).

Hoofdstuk 3 pakt dit probleem aan middels een systematisch onderzoek van
COVID-19 gradatie algoritmecomponenten met behulp van een grote publiek
beschikbare dataset. De resultaten van dit hoofdstuk zijn gepubliceerd in een online
competitie. Deze bijdragen versnellen de ontwikkeling van AI-toepassingen voor
COVID-19 gradatie door inzichten te verschaffen in de componenten van dergelijke



130 Samenvatting

systeemcode is publiekelijk beschikbaar gesteld samen met een gedetailleerde
handleiding over het gebruik van de database voor ontwikkeling en het benutten
van de automatische evaluatie.

Hoofdstuk 6 vat eerst strategieën samen voor het automatiseren van classificatie en
regressie en belicht hoe de bevindingen kunnen helpen bij klinische besluitvorming.
Vervolgens reflecteert het op de praktijken die in deze thesis zijn toegepast die re-
levant zijn voor het versnellen van de vooruitgang in het veld van computeronder-
steunde medische beeldanalyse. Tot slot biedt het een perspectief voor toekomstig
onderzoek gerelateerd aan dit proefschrift.
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Schmidhuber, D. Laptev, S. Dwivedi, J. M. Buhmann, T. Liu, M. Seyedhosseini, T. Tasdizen, L.
Kamentsky, R. Burget, V. Uher, X. Tan, C. Sun, T. Pham, and H. Seung. “Crowdsourcing the
creation of image segmentation algorithms for connectomics”. In: Frontiers in neuroanatomy 9
(2015), p. 142.

144 Bibliography

[115] H. Choi, H. Kim, K. Jin, Y. Jeong, K. Chae, K. Lee, H. S. Yong, B. Gil, H.-J. Lee, K. Lee, K.-N.
Jeon, J. Yi, S. Seo, C. Ahn, J. Lee, K. Oh, and J. M. Goo. “A challenge for emphysema quan-
tification using a deep learning algorithm with low-dose chest computed tomography”. In:
Journal of Thoracic Imaging 37.4 (2022), pp. 253–261.

[116] S. Halabi, L. Prevedello, J. Kalpathy-Cramer, A. Mamonov, A. Bilbily, M. Cicero, I. Pan, L.
Pereira, R. Sousa, N. Abdala, F. Kitamura, H. Thodberg, L. Chen, G. Shih, K. Andriole, M.
Kohli, B. Erickson, and A. Flanders. “The RSNA pediatric bone age machine learning chal-
lenge”. In: Radiology 290.2 (2019), pp. 498–503.

[117] S. Ali, M. Dmitrieva, N. Ghatwary, S. Bano, G. Polat, A. Temizel, A. Krenzer, A. Hekalo, Y.
Guo, B. Matuszewski, M. Gridach, I. Voiculescu, V. Yoganand, A. Chavan, A. Raj, N. Nguyen,
D. Tran, L. Huynh, N. Boutry, and J. Rittscher. “Deep learning for detection and segmentation
of artefact and disease instances in gastrointestinal endoscopy”. In: Medical image analysis 70
(2021), p. 102002.

[118] F. Knoll, T. Murrell, A. Sriram, N. Yakubova, J. Zbontar, M. Rabbat, A. Defazio, M. Muckley,
D. Sodickson, C. Zitnick, and M. Recht. “Advancing machine learning for MR image recon-
struction with an open competition: Overview of the 2019 fastMRI challenge”. In: Magnetic
resonance in medicine 84.6 (2020), pp. 3054–3070.

[119] P. Porwal, S. Pachade, M. Kokare, G. Deshmukh, J. Son, W. Bae, L. Liu, J. Wang, L. Xinhui,
L. Gao, T. Wu, J. Xiao, F. Wang, B. Yin, Y. Wang, G. Danala, L. He, Y. Choi, Y. C. Lee, and F.
Meriaudeau. “Idrid: Diabetic retinopathy–segmentation and grading challenge”. In: Medical
image analysis 59 (2020), p. 101561.

[120] Y. Kim, H. Jang, K. Lee, S. Park, S.-G. Min, C. Hong, J. Park, K. Lee, J. Kim, W. Hong, H. Jung,
Y. Liu, H. Rajkumar, M. Khened, G. Krishnamurthi, S. Yang, X. Wang, C. Han, J. T. Kwak,
and J. Choi. “PAIP 2019: Liver cancer segmentation challenge”. In: Medical Image Analysis 67
(2021), p. 101854.

[121] H. Fang, F. Li, H. Fu, X. Sun, X. Cao, F. Lin, J. Son, S. Kim, G. Quellec, S. Matta, S. M S, Y.-T.
Chen, C.-h. Wang, N. Shah, C.-Y. Lee, C.-C. Hsu, H. Xie, B. Lei, U. Baid, and Y. Xu. “ADAM
challenge: detecting age-related macular degeneration from fundus images”. In: IEEE Trans-
actions on Medical Imaging 41.10 (2022), pp. 2828–2847.

[122] Y. Sun, K. Gao, Z. Wu, G. Li, X. Zong, Z. Lei, Y. Wei, J. Ma, X. Yang, X. Feng, L. Zhao, T.
Phan, J. Shin, T. Zhong, Y. Zhang, L. Yu, C. Li, R. Basnet, M. O. Ahmad, and L. Wang. “Multi-
site infant brain segmentation algorithms: the iSeg-2019 challenge”. In: IEEE Transactions on
Medical Imaging 40.5 (2021), pp. 1363–1376.

[123] N. Sathianathen, N. Heller, R. Tejpaul, B. Stai, A. Kalapara, J. Rickman, J. Dean, M. Oestreich,
P. Blake, H. Kaluzniak, S. Raza, J. Rosenberg, K. Moore, E. Walczak, Z. Rengel, Z. Edgerton,
R. Vasdev, M. Peterson, S. McSweeney, and C. Weight. “Automatic Segmentation of Kidneys
and Kidney Tumors: The KiTS19 International Challenge”. In: Frontiers in Digital Health 3
(2022), p. 797607.

[124] M. Combalia, N. Codella, V. Rotemberg, C. Carrera, S. Dusza, D. Gutman, B. Helba, H. Kit-
tler, N. Kurtansky, K. Liopyris, M. Marchetti, S. Podlipnik, S. Puig, C. Rinner, P. Tschandl,
J. Weber, A. Halpern, and J. Malvehy. “Validation of artificial intelligence prediction mod-
els for skin cancer diagnosis using dermoscopy images: the 2019 International Skin Imaging
Collaboration Grand Challenge”. In: The Lancet Digital Health 4.5 (2022), e330–e339.



146 Bibliography

[133] M. Ivantsits, L. Goubergrits, J.-M. Kuhnigk, M. Huellebrand, J. Bruening, T. Kossen, B.
Pfahringer, J. Schaller, A. Spuler, T. Kuehne, Y. Jia, X. Li, S. Shit, B. Menze, Z. Su, J. Ma,
Z. Nie, K. Jain, Y. Liu, and A. Hennemuth. “Detection and analysis of cerebral aneurysms
based on X-ray rotational angiography-the CADA 2020 challenge”. In: Medical image analysis
77 (2022), p. 102333.

[134] J. C. Caicedo, A. Goodman, K. W. Karhohs, B. A. Cimini, J. Ackerman, M. Haghighi, C. Heng,
T. Becker, M. Doan, C. McQuin, M. H. Rohban, S. Singh, and A. Carpenter. “Nucleus segmen-
tation across imaging experiments: the 2018 Data Science Bowl”. In: Nature methods 16.12
(2019), pp. 1247–1253.

[135] M. Simões, D. Borra, E. Santamaría-Vázquez, GBT-UPM, M. Bittencourt-Villalpando, D.
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Ethics and privacy

This thesis is based on the results of research involving human participants and exist-
ing data from published papers, which were conducted in accordance with relevant
national and international legislation and regulations, guidelines, codes of conduct
and Radboudumc policy.

The institutional ethical review committee CMO Radboudumc, Nijmegen, the
Netherlands has given approval to conduct the studies for which data was col-
lected from Radboudumc (CMO2016-3045: Project 19049 for Chapter 2, Project 20027
for Chapter 3, Project 19010 for chapter 5). The protocol for the collection of the
data used in Chapter 4 can be accessed through ClinicalTrials.gov with identifier
NCT04355507. The rest of the data used to conduct the studies presented in this
thesis were collected from publicly available sources.

The privacy of all participants in these studies was warranted by the use of either
pseudonymization or full anonymization. In case of pseudonymization, the key was
stored on a secured network drive that was only accessible to members of the project
who needed access to it because of their role within the project. The pseudonymiza-
tion key was stored separately from the research data.

Data collection and storage

Diagnostic Image Analysis Group (DIAG) data managers and the DIAG data team
collected the Radboudumc data used for the studies described in Chapters 2, 3, and 5
from PACS and pseudonomyzed these data. The data from the COPDGene study for
Chapter 2 was obtained through a formal application process. The data for Chapter
4 was collected and pseudonymized by Assistance Publique – Hôpitaux de Paris
(AP-HP). All other data was collected from publicly available sources.

All data used for Chapters 2, 3, and 5 is securely stored within the Radboudumc
storage system. The data for Chapter 4 is stored at AP-HP. All scientific experiments
within the context of this thesis conducted on data that is not publicly available have
been executed exclusively either within the Radboudumc IT infrastructure or on se-
cure cloud computing platforms hosted by Amazon Web Services. These secure stor-
age options safeguard the availability, integrity and confidentiality of the data.

Data sharing according to the FAIR principles

Training set A described in chapter 4 has been made publicly available under a CC-
BY-NC 4.0 licence on the AWS registry of open data at https://registry.opendata.
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aws/stoic2021-training/. The training data for chapter 5 has been made publicly
available on Zenodo. The corresponding licences and URLs with DOIs can be found
in table 5.1. The interoperable MetaImage Header Archive and Comma Separated
Values file formats were used for sharing these data.

Radboudumc is the legal owner of the Radboudumc data used for the studies
described in Chapters 2, 3, and 5. These data are stored within the Radboudumc IT
infrastrucure. AP-HP de Paris is the legal owner of the STOIC data used for Chapter
4. These data are stored at AP-HP. Any collaborative research project led by an aca-
demic partner who requires access to the STOIC data shall be analyzed, validated,
and authorized by the Steering Committee of STOIC. To this end, the academic part-
ner shall send a document describing the research project to the Stoic Steering Com-
mittee at the following email address: marie-pierre.revel@aphp.fr, with the fol-
lowing subject: STOIC DATA ACCESS PERMISSION. After acceptance by the Steer-
ing Committee, the academic partner shall sign a specific agreement (Data Transfer
Agreement - DTA) with AP-HP, who is legally responsible for the STOIC data as
Sponsor of the STOIC research. Refer to the STOIC princeps paper [48] for more
information.

The model for patient and lobe level lung function estimation presented in chap-
ter 2 is publicly available for use on https://grand-challenge.org/algorithms/lo

be-wise-lung-function-estimation/.
For the purpose of fair comparison to new research, solutions to the challenges

presented in Chapters 3, 4, and 5 can be submitted to https://covid19.grand-cha

llenge.org/, https://stoic2021.grand-challenge.org/ and https://auc23.gr

and-challenge.org/ respectively.
Baseline codebases with submission tutorials for the challenge presented in Chap-

ter 4 were published at https://github.com/luukboulogne/stoic2021-baseline
and https://github.com/luukboulogne/stoic2021-baseline-finalphase under
the MIT license. Links to the codebases of the finalist solutions to this challenge and
their corresponding licences can be found in Table 4.2

A baseline codebase with a submission tutorial for the challenge presented in
Chapter 5 was published at https://github.com/DIAGNijmegen/auc23-baseline
under the Apache-2.0 license.
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