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Chapter 1

Introduction

1.1 General Introduction

Speech is a fundamental aspect of human communication, serving as a primary
means for conveying thoughts, emotions, and information within society. Its signifi-
cance lies in its ability to facilitate interpersonal relationships, share knowledge, and
contribute to social cohesion. Effective speech communication plays a crucial role
in education, business, healthcare, and other domains, underscoring its importance
in human interaction. What’s truly remarkable is that the act of speaking becomes
so automatic that it often escapes conscious thought. Nonetheless, the sheer intri-
cacy and complexity of speech sets it apart from all other human movements. The
generation of an utterance entails the careful selection, sequencing, and articula-
tion of pertinent information in a highly time-sensitive manner. Furthermore, as
these sequential processes unfold, the system integrates sensory feedback, which is
essential for the execution of a skilled task, such as speech production (Asan et al.,
2022) [8].

Speech production constitutes an intricately complex motor activity wherein
respiratory, laryngeal, and supraglottal vocal tract articulators collaborate in a
highly synchronized manner. Typically, every speech outcome involves the coor-
dinated movement of multiple articulators. The production of an isolated vowel
necessitates a seamless interaction of the jaw, tongue, lips, larynx, and respiratory
system. The foundation of this intricate motor process lies in the speech motor
control system. This system adeptly integrates auditory, somatosensory, and motor
information, which is represented in the temporal, parietal, and frontal cortex, re-
spectively, along with associated sub-cortical structures. This integration allows for
the production of fluid and comprehensible speech, whether the task involves gener-
ating a simple nonsense syllable or pronouncing a single meaningful word (Kotz &
Schwartze, 2016; Kearney & Guenther, 2019) [111, 89]. Kearney & Guenther (2019)
[89] present a historical view describing the neural mechanisms of speech-motor con-
trol. The initiation of a speech sound, whether it be a commonly produced phoneme,
syllable, or word, commences with the activation of its neural representation within
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Figure 1.1: Neurological and anatomical foundations of speech [184]

a hypothesized speech sound map located in the left ventral premotor cortex. Figure
1.1, from a more recent study by Silva et al. (2022) [184] emphasizes the neuro-
logical and anatomical foundations of speech. It shows the various brain regions
involved in the planning, formulation, and execution of speech, along with the vocal
tract organs responsible for shaping sounds like the larynx, tongue, and lips. The
study challenges the classic language model that posits that a single frontal region,
Broca’s area, is responsible for speech motor planning and proposes that the middle
precentral gyrus (midPrCG), is crucial for speech production, bridging hand and
orofacial cortical regions. These studies highlight the complexity of the speech pro-
duction mechanism, damage to which can significantly impact human interactions
and communication and, in turn, the quality of life of the person affected.

Motor speech disorders refer to disruptions in the systems and mechanisms
governing the movements essential for speech production. These disorders arise
from disturbances in muscular control, manifesting as weaknesses, slowness, or in-
coordination in the speech mechanism due to central nervous system damage. This
term encompasses concurrent neurogenic disorders affecting various or all the funda-
mental processes of speech production, including respiration, phonation, resonance,
articulation, and prosody.
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1. Introduction

Dysarthria, stemming primarily from brain damage, often due to conditions
like stroke, is a group of disorders that hinder speech intelligibility. It is charac-
terized by weakness, slowness, lack of coordination, and imprecise movements in
the speech muscles. Dysarthria is categorized into progressive and non-progressive
types. Progressive dysarthrias are observed in conditions such as Parkinson’s dis-
ease, Huntington’s disease, multiple sclerosis, motor neuron disease, etc. While
some cases may exhibit delayed decline, individuals with progressive dysarthria typ-
ically experience a gradual decrease in muscle function over time. Conversely, non-
progressive dysarthrias resulting from conditions like stroke and traumatic brain
injury (TBI) may show improvement in muscle function with appropriate treat-
ment (Qualls, 2012) [160]. More than 80% of people with motor neuron disorders
(MND) experience dysarthria. The exact incidence of dysarthria remains uncertain
and varies depending on the underlying cause. Approximately 90% of individuals
with Parkinson’s disease (PD) experience dysarthria at some point during the ill-
ness. In patients with amyotrophic lateral sclerosis (ALS), dysarthria may precede
limb weakness by 3 to 5 years and affects around 70% of those with limb weakness.
In a study involving stroke patients, 28% were found to have both aphasia and
dysarthria, while 24% had dysarthria alone. Among children with neuromuscular
diseases, the prevalence of dysarthria was reported to be 31.5%. Additionally, it is
estimated that 10% to 60% of individuals with traumatic brain injury (TBI) de-
velop dysarthria. The statistics reported here are based on a study by Jayaraman
& Das (2023) [78]. Typically, 25-30% of people with MND have dysarthria as a
first or predominant sign in the early stage of the disease [1]. A detailed study on
dysarthric speech and research on speech technology for dysarthric speech is pre-
sented in Chapter 2. The sheer number of people affected by dysarthria indicate
that Artificial Intelligence (AI)-based objective and automatic systems for assessing
and recognizing dysarthric speech would go a long way in integrating persons with
dysarthria into society by addressing the therapy and assisted living needs.

Our research aims to explore the new horizons and applications of speech tech-
nology, enabling people with dysarthria to avail themselves of the same opportuni-
ties accorded to persons with normal speech, thereby improving their quality of life.
The following sections in this chapter briefly outline the research work incorporated
into this thesis, with a focus on research questions that form the basis of this work.

1.2 The Present Research: Objective Assessment

and Recognition – System

In this thesis, we explore two different aspects of the application of speech tech-
nology to dysarthric speech, namely (1) Automatic intelligibility assessment and
(2) Automatic recognition of dysarthric speech. These aspects find applications in
assisted speech therapy, serving as a second opinion to speech pathologists and en-
abling them in therapy planning. Secondly, efficient automatic speech recognition
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Figure 1.2: An Intelligent System for Automatic Intelligibility and Speech Recog-
nition of Dysarthric Speech

is aimed at building systems for assisted living. We believe that intelligibility as-
sessment has the potential to aid in the automatic recognition of dysarthric speech.
Figure 1.2 depicts a system that can be built using this research work. Figure 1.2 is
representative of the components of the research work conducted and described in
this thesis. An extensive survey of the research carried out in the interdisciplinary
area of speech technology and dysarthric speech is presented in Chapter 2. Start-
ing with a nominal amount of dysarthric speech and healthy speech data, which is
essential to benchmark the performance of the ASR systems in various scenarios,
we design modules for Automatic Intelligibility Assessment (AIA) and Recognition
of dysarthric speech. The intelligibility information from the AIA module acts as
an important input in designing the ASR modules. Four different techniques for
improving ASR performance for dysarthric speech have been explored as a part of
this thesis, namely 1. Time domain adaptation, 2. Harnessing acoustic parameters,
3. Speech enhancement and, 4. Data augmentation. Each of these techniques was
explored in terms of their applicability to dysarthric speech.

As is common with AI research involving pathological speech, the availability of
valid speech data restricts the application of Deep Neural Network-based techniques
to evaluate or recognize dysarthric speech. Through this work, we explore mech-
anisms to overcome this limitation and significantly improve the state-of-the-art
(SOTA) for automatic assessment and recognition of dysarthric speech.

1.3 Research Questions and Outline

This dissertation attempts to gain insights into the development of techniques for
objective measurement of the intelligibility of dysarthric speech and automatic
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recognition of dysarthric speech. To this end, this dissertation evaluates both auto-
matic assessment and recognition of dysarthric speech by addressing three research
questions:

1. RQ1: What is the status of research into the interdisciplinary area of dysarthric
speech and speech technology and which knowledge gaps should be addressed?
Chapter 2

2. RQ2: How can we efficiently and automatically assess the intelligibility of
dysarthric speech? Chapter 3

3. RQ3: How can we improve the automatic recognition of dysarthric data in
terms of word error rate? Chapter 4, 4 and, 6.

Additionally, building a dysarthric speech corpus is challenging. Therefore,
speech researchers are limited by data availability to implement the latest
machine learning techniques for automatic recognition of dysarthric speech.
Considering this challenge, how can we adopt the latest techniques in speech
technology for automatic recognition of dysarthric speech?

To address the first research question, we carry out an extensive literature sur-
vey of speech technology that has been developed for dysarthric speech in Chapter
2, starting with the dysarthric speech corpora chronicled, acoustic studies that are
critical in understanding the characteristics of dysarthric speech, followed by auto-
matic intelligibility assessments and finally research work that outlines Automatic
Speech Recognition (ASR) systems. This survey highlights the development of the
interdisciplinary research area of speech technology and dysarthric speech over the
last two decades. It aims to serve as a basis for future research work in this area.

Note: Chapters 3 to 6 each contain two published research papers. These papers
have been categorized as part of the same chapter because they address the same
research question by applying similar techniques; i.e. research question 2 in Chapter
3, and research question 3 in Chapters 4, 5, and 6, respectively.

In Chapter 3, we present two studies that delve into automatic intelligibility
assessment of dysarthric speech. Speech intelligibility is considered to be an indi-
cator of the severity of dysarthria. The objective is to enable a speech pathologist
to understand the patient’s status, especially in case of a progressive neuromotor
disease. The outcome of objective assessment methods also serves as an electronic
medical record (ERM). The first study by Bhat et al. (2017) [15] uses an Artificial
Neural network (ANN)-based classification of dysarthric speech with a high correla-
tion with subjective assessment. The second study by Bhat & Strik (2020) [12] uses
a sophisticated Bidirectional Long-short Term Memory (BLSTM)-based system and
Transfer Learning to classify sentence-level dysarthric speech into intelligible and
non-intelligible categories.

In Chapters 4, 5, and 6, we explore various mechanisms of improving ASR
performance in terms of word error rate (WER). The literature review in Chapter
2 suggests that our research is pioneering in the application of these techniques.
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We present two studies inChapter 4, (1) Multi-tapered spectral representations
of dysarthric speech along with specific voice parameters were used in a DNN-HMM
framework (Bhat et al., 2016a) [13] (2) A mechanism to adapt the tempo of the
sonorant part of dysarthric speech to match that of normal speech. We leverage the
knowledge of the severity of dysarthria to design a system for this purpose (Bhat
et al., 2016b) [14]. In both the above studies we harness an understanding of the
acoustic characteristics of dysarthric speech to improve the ASR performance.

In Chapter 5, we discuss feature-domain enhancement of dysarthric speech
using auto-encoders. The objective of both the studies is to enhance dysarthric
speech in such a way, as to be able to use an ASR, trained mainly on healthy data for
automatic recognition of dysarthric speech. Two different designs of autoencoders
are presented; the first one by Vachhani et al. (2017) [195] uses only healthy
speech to generate the bottleneck layer, whereas the second one (Bhat et al., 2018)
[16] is a Time-delay Neural Network autoencoder that is modeled on a denoising
autoencoder with healthy speech representing clean speech and dysarthric speech
representing noisy speech. We analyze severity-based tempo adaptation followed
by autoencoder-based speech feature enhancement. ASR performance in speaker-
dependent and speaker-independent training scenarios was examined.

In Chapter 6, we address the dearth of speech data for dysarthric speech.
We propose the use of traditional data augmentation techniques along with data
augmentation specifically designed to emulate dysarthric speech. These techniques
are applied to healthy speech. While the ASR performance showed improvements
for the speaker-independent scenarios, maximum improvements were observed when
speaker adaptation was used. Two studies (Vachhani et al., 2018; Bhat et al., 2022)
[196, 17] have been presented in this chapter. In Vachhani et al. (2018)[196], we
discuss augmentation techniques using only healthy speech data transformed in the
time domain. In Bhat et al. (2022) [17], we design an end-to-end DNN-based
system trained on augmented dysarthric data, with augmentation techniques that
specifically use the characteristics of dysarthric speech for augmentation.

It is to be noted that Chapters 2 to 6 are each a compilation of peer-reviewed
publications in related areas co-authored by the author of the current thesis. All
research papers were published as self-contained publications. This indicates that
there is an overlap in information about the research area (particularly in the intro-
duction) and the data and techniques used. We decided not to edit these aspects
to maintain the integrity of the original publications. In Chapter 7, we discuss our
contributions and the impact of our research on the research questions raised in
Section 1.3.
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medical record (ERM). The first study by Bhat et al. (2017) [15] uses an Artificial
Neural network (ANN)-based classification of dysarthric speech with a high correla-
tion with subjective assessment. The second study by Bhat & Strik (2020) [12] uses
a sophisticated Bidirectional Long-short Term Memory (BLSTM)-based system and
Transfer Learning to classify sentence-level dysarthric speech into intelligible and
non-intelligible categories.

In Chapters 4, 5, and 6, we explore various mechanisms of improving ASR
performance in terms of word error rate (WER). The literature review in Chapter
2 suggests that our research is pioneering in the application of these techniques.
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We present two studies inChapter 4, (1) Multi-tapered spectral representations
of dysarthric speech along with specific voice parameters were used in a DNN-HMM
framework (Bhat et al., 2016a) [13] (2) A mechanism to adapt the tempo of the
sonorant part of dysarthric speech to match that of normal speech. We leverage the
knowledge of the severity of dysarthria to design a system for this purpose (Bhat
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acoustic characteristics of dysarthric speech to improve the ASR performance.
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are presented; the first one by Vachhani et al. (2017) [195] uses only healthy
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representing noisy speech. We analyze severity-based tempo adaptation followed
by autoencoder-based speech feature enhancement. ASR performance in speaker-
dependent and speaker-independent training scenarios was examined.

In Chapter 6, we address the dearth of speech data for dysarthric speech.
We propose the use of traditional data augmentation techniques along with data
augmentation specifically designed to emulate dysarthric speech. These techniques
are applied to healthy speech. While the ASR performance showed improvements
for the speaker-independent scenarios, maximum improvements were observed when
speaker adaptation was used. Two studies (Vachhani et al., 2018; Bhat et al., 2022)
[196, 17] have been presented in this chapter. In Vachhani et al. (2018)[196], we
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It is to be noted that Chapters 2 to 6 are each a compilation of peer-reviewed
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research papers were published as self-contained publications. This indicates that
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contributions and the impact of our research on the research questions raised in
Section 1.3.
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2. Speech Technology for Automatic Recognition and Assessment of
Dysarthric Speech: An Overview

Purpose: In this chapter, we present an extensive overview of recent developments
in the area of dysarthric speech research. One of the key objectives of speech tech-
nology research is to improve the quality of life of its users, as evidenced by the focus
of current research trends on creating inclusive conversational interfaces that cater
to pathological speech, out of which dysarthric speech is an important example.
Applications of speech technology research for dysarthric speech demand a clear
understanding of the acoustics of dysarthric speech as well as of speech technolo-
gies, including machine learning and deep neural networks for speech processing.
Method: We review studies pertaining to speech technology and dysarthric speech.
Specifically, we discuss dysarthric speech corpora, acoustic analysis, intelligibility
assessment, and automatic speech recognition. We also delve into deep learning
approaches for automatic assessment and recognition of dysarthric speech.
Ethics Committee or Institutional Review Board did not apply to this study.
Conclusion: Overcoming the challenge of limited data and exploring new avenues
in data collection, AI-powered analysis, and teletherapy hold immense potential for
significant advancements in dysarthria research. To make longer and faster strides,
researchers typically rely on existing research and data on a global scale. Therefore,
it is imperative to consolidate the existing research and present it in a form that can
serve as a basis for future work. In this chapter, we have reviewed the contributions
of speech technologists to the area of dysarthric speech with a focus on acoustic
analysis, speech features, and techniques used. By focusing on the existing research
and future directions, researchers can develop more effective tools and interventions
to improve communication, quality of life, and overall well-being for people with
dysarthria.

Keywords: Dysarthric speech, speech corpora, acoustics characteristics, Intelli-
gibility, ASR

2.1 Introduction

Speech production is one of the most complex human motor skills and involves
both linguistic units and acoustic events. Motor speech problems caused by neu-
rological difficulties can be congenital or acquired, impacting one or several speech
subsystems, namely, respiratory, phonatory, and articulatory. For intelligible speech
production, the muscles and muscle groups in these subsystems must be well co-
ordinated in time and space. Manifestations of dysarthria may include restricted
lip, tongue, and jaw movement, abnormal speech rate or volume, breathy or hoarse
voice, drooling, and swallowing difficulty. Congenital dysarthria can be caused
by an inherited condition, such as cerebral palsy (CP), which affects the mus-
cles used for speech production. Dysarthria acquired later in life may result from
stroke, brain injury, tumors, infection, or progressive neurological diseases such as
amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), or Parkinson’s disease
(PD). An overview study by Poole & Vogel (2020) [154] lists the following six types
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2. Speech Technology for Automatic Recognition and Assessment of
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of dysarthria.

• Flaccid dysarthria: damage to the cranial nerves or regions of the brainstem
and midbrain. Distinguishing features include breathy voices, short phrases,
increased nasal resonance, and imprecise articulation.

• Spastic dysarthria: damage to the motor regions in the cortex on both sides of
the brain; distinguishing features are strained voice, monotonicity, and slow
rate.

• Ataxic dysarthria: damage to pathways connecting the cerebellum and other
brain regions. Distinguishing features include irregular articulatory errors,
equal and excessive stress on syllables, and inappropriate pitch and loudness
variations.

• Hypokinetic dysarthria: rigidity and bradykinesia resulting from impairment
of the basal ganglia control circuit. The distinguishing features include re-
duced loudness, rapid speech rate, sound repetition, and reduced stress.

• Hyperkinetic dysarthria: involuntary movements associated with impairment
of the basal ganglia control circuit. It is characterized by unpredictable speech
mechanism movements.

• Unilateral upper motor neuron (UUMN) dysarthria is caused by unilateral
damage to UMNs. Distinguishing features include a hoarse voice, imprecise
articulation, and slow rate.

The factors causing dysarthria as well as the characteristics of dysarthria vary
and extend across a wide range of possibilities, posing challenges to machine-
based objective assessments and analyses of dysarthric speech. Furthermore, mixed
dysarthria, which involves the features of two or more types of dysarthria, and co-
morbidities make it more complex. Recently, we have witnessed an increase in the
availability, adaptation, and popularity of speech-enabled interfaces, especially in
the assisted and smart living domains. Speech is a more convenient alternative to
other machine interfaces, such as remote controls, keyboards, or PC mice, given that
persons with dysarthria are often faced with physical inabilities too (Rudzicz, 2010)
[165]. While traditional off-the-shelf automatic speech recognition (ASR) systems
perform well for unimpaired speech, this is not the case with atypical dysarthric
speech owing to the inter-speaker and intra-speaker deviations in the acoustic space
as well as the sparseness of speech data that can be used for training the ASR
algorithms. However, we want persons suffering from dysarthria to benefit as much
as possible from current technological advances in automatic speech processing. A
plethora of studies and research work on dysarthric speech from a speech signal
processing technology perspective have paved the way for techniques that have im-
proved automatic and objective assessments, such as the automatic intelligibility
assessment (AIA) and ASR for dysarthric speech.
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2. Speech Technology for Automatic Recognition and Assessment of
Dysarthric Speech: An Overview

This review article examines how speech technology can aid individuals with
dysarthria. We focus on speech corpora, acoustic analysis, AIA, and ASR for
dysarthric speech. The objective is to provide an extensive overview of what has
been done so far to pave the way for future work on the automatic assessment
of dysarthric speech. A search was carried out on Google Scholar, ScienceDirect,
IEEE Xplore, SCOPUS, and ACM using keywords specific to the topic discussed
in each section of the current review article. The Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) flowchart for the selection of
review literature is shown in 2.1. The studies reported were chosen based on their
relevance from a speech technology perspective. In the case of similar studies by
the same authors/group of researchers, preference was given to the most recently
published article. The availability of well-documented speech corpora is crucial for
speech technology-based research. In the Dysarthric Speech Corpora section, we
present an overview of the existing dysarthric speech corpora that are available and
have been used for the development of speech technologies for dysarthric speech.
We have also described the clinical evaluation criteria typically used for dysarthria
evaluation within these corpora. Keywords used were: ‘dysarthric speech corpus’,
‘dysarthric speech database’, and ‘dysarthric speech data’. The acoustic analysis
of speech signals is a valuable tool for understanding the complex processes under-
lying speech production and can provide important insights into speech disorders.
Understanding the acoustic characteristics of dysarthric speech is crucial in the de-
sign of automatic speech processing techniques. Therefore, we delve into studies
of the acoustic analysis of dysarthric speech in Section 2.3. Keywords used (not
limited to) were: ‘dysarthric speech acoustics’, ‘dysarthric speech acoustic studies’,
‘dysarthric speech acoustic characteristics’, ‘dysarthric speech acoustic analysis’,
and ‘dysarthric speech characteristics’. Traditionally, the severity of dysarthria has
been evaluated through perceptual evaluations by human experts such as speech-
language pathologists. However, such evaluations can be subject to inter- and
intra-rater variability, which can affect the reliability and validity of assessments.
In Section 2.4, we discuss research on the features and techniques used for the
automatic severity level assessment of dysarthric speech. Keywords used (not lim-
ited to) were: ‘dysarthric speech intelligibility/severity’, ‘automatic assessment of
dysarthria intelligibility/severity’, and ‘automatic assessment of dysarthric speech
intelligibility/severity’. An overview of the research trends in ASR for dysarthric
speech is discussed in Section 2.5. Keywords used (not limited to) were: ‘dysarthric
speech recognition’, ‘automatic recognition of dysarthric speech’, and ‘automatic
speech recognition for dysarthric speech’.

Each section comprises subsections that are categorized based on the techniques
used to achieve the objective described in that section. Within the sections, we
mainly present the studies in chronological order. Finally, in Section 2.6, we look
into the various possibilities of research avenues for dysarthric speech.
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Figure 2.1: PRISMA flowchart for the selection of review literature

2.2 Dysarthric Speech Corpora

To build a high-performance speech technology-based system, suitable data are im-
perative. However, owing to muscle weakness and fatigue in dysarthric speakers,
collecting speech from these subjects can be time-consuming and tedious, especially
for speakers with severe dysarthria. Additionally, since dysarthria can stem from
a variety of neurological disorders including mixed dysarthria caused by multiple
comorbidities, the characterization of dysarthric speech is complex. This com-
plexity translates into challenges during the design of a data collection process.
Speech corpora typically include acoustic data as well as transcriptions. In addi-
tion, dysarthric speech corpora often provide speaker information, such as gender,
age, and dysarthria severity level or speech intelligibility. This section explores
dysarthric speech corpora, which are valuable resources used extensively for de-
veloping ASR and assessment techniques for dysarthric speech. Details regarding
speakers, cause of dysarthria, clinical evaluation criteria used wherever applica-
ble, severity levels, and speech material for the databases described are outlined
in Table 2.1. A brief description of the clinical evaluation criteria typically used
for dysarthria evaluation within these corpora has been provided in the Clinical
Evaluation Scales for Dysarthric Speech section.
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2.2.1 Dysarthric Speech Corpora

The Whitaker Database of Dysarthric (Cerebral Palsy) Speech, which comprises
the speech of six speakers with CP and one healthy speaker, is an earlier and rela-
tively small collection of dysarthric speech (Deller et al., 1993) [33]. The Nemours
database (Menendez-Pidal et al.,1996) [126] comprises the Frenchay Dysarthria As-
sessment (FDA) [37] of each speaker given by a speech pathologist, perception data
for each sentence from listening tests by five listeners, and audio data. The corpus
also provides word- and phoneme-level transcription for each sentence. The univer-
sal access (UA) dysarthric speech corpus (Kim et al., 2008) [95] comprises video
data in addition to audio data to allow the exploration of multimodal dysarthric
speech signals. Speaker-wise speech intelligibility provided in this corpus was com-
puted using word transcription tasks performed by untrained human listeners. The
TORGO (Rudzicz et al., 2011) [168] database of dysarthric articulation consists of
aligned acoustics and measured three-dimensional articulatory features from speak-
ers’ dysarthria, as well as matched controls. A three-dimensional electromagnetic
articulograph (EMA) was used to analyze speech production. The EMA system fea-
tures automatic calibration and allows for high-precision, three-dimensional record-
ings of articulatory movements, both within the vocal tract and externally, providing
a comprehensive view of speech-related activity. Detailed physiological information
is expected to enable the explicit learning of hidden articulatory parameters auto-
matically via statistical pattern recognition. The above databases are most com-
monly used for dysarthric speech research in American English. Dysarthric speech
corpora have been created to study dysarthria in languages other than English as
well. Two French corpora, namely, the Dr. Claude Chevrie- Muller corpus and
the Aix-Neurology-Hospital corpus, were described by Fougeron et al. (2010) [44].
A Korean dysarthric speech corpus was built as part of the Quality of Life Tech-
nology (QoLT) project that focuses on developing speech technologies for people
with articulation disabilities (Choi et al., 2011) [25]. A Cantonese corpus focusing
on the investigation of the articulatory and prosodic characteristics of Cantonese
dysarthric speech is presented by Wong et al. (2015) [205]. Yılmaz et al. (2016)
[213] describe a Dutch dysarthric speech database containing mildly to moderately
dysarthric speech from patients with PD, traumatic brain injury (TBI), or cere-
brovascular accidents. To study dysarthric speech in the Indian context, a Tamil
dysarthric speech corpus of 22 speakers across age groups was created (Celin et
al., 2016) [2]. Spanish (Orozco-Arroyave et al., 2014) [141], Czech (Rusz et al.,
2011) [169] and German (Skodda et al., 2011) [185] corpora were collected to study
dysarthric speech in patients with PD. EasyCall corpus (Turrisi et al., 2021) [194] is
a dysarthric speech corpus in Italian compiled with the primary objective of serving
as a valuable resource for the advancement of assistive technologies based on Au-
tomatic Speech Recognition (ASR) for individuals with dysarthria. The article by
Marini et al. (2021) [122] describes IDEA, a database of Italian dysarthric speech
produced by 45 speakers affected by eight different pathologies such as ALS, MS,
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PD, TBI, and stroke as can be seen in Figure 2.2. While most corpora comprise
data collected in clinical settings, Nicolao et al. (2016) [138] describe the home-
Service corpus, a British English corpus of realistic dysarthric data collected over
time, in the home environment. This corpus showcases speech data collected from
five speakers with severe dysarthria as part of their daily interactions with their
devices. Each of the above databases was designed for a specific purpose with a
broad perspective on improving the lives of people with dysarthria. Speech tasks
used to assess dysarthric speech play a significant role in the outcome of analysis
and recognition of dysarthric speech. From Table 2.1 it can be observed that some
datasets use sustained phonation, reading, monologue, or diadochokinetic (DDK)
evaluation, but some others include only sustained phonation or reading of a short
text. Different speech tasks can challenge people with dysarthria to varying degrees.
Reading simple sentences might be easier than carrying out a conversation or de-
livering a monologue. The type of speech task selected for research on automatic
dysarthria analysis plays a dual role. Firstly, the task complexity can influence
how clearly the characteristics of dysarthria manifest themselves in the speech sam-
ples. Secondly, the chosen task determines the kind of speech data collected, which
subsequently shapes the development and training of automatic analysis models.

Figure 2.2: Percentage of pathologies present in IDEA database

2.2.2 Clinical Evaluation Scales for Dysarthric Speech

Clinicians rely on standardized evaluation scales to assess dysarthria. These scales
go beyond simple perception of speech difficulties. Some provide a detailed break-
down of speech intelligibility, articulation, voice quality, and other aspects, while
others focus on the functional impact of dysarthria. These scales are crucial for
accurate diagnosis, planning treatment, and monitoring progress. The clinical eval-
uation scales used in the corpora mentioned in Table 2.1 are discussed below.
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2.2.2.1 FDA:

The Frenchay Dysarthria Assessment (Enderby, 1983) [37] is a standardized test
used by speech therapists to diagnose dysarthria. It assesses 28 key speech aspects
categorized into 8 areas, including reflexes, breathing, and tongue movement, and
assigns scores to provide a detailed picture of the type and severity of dysarthria.
This detailed evaluation helps therapists pinpoint the specific type and severity of
dysarthria for each patient and develop targeted treatment plans.

2.2.2.2 UPDRS:

The Unified Parkinson’s Disease Rating Scale (Stebbins & Goetz, 1998) [186] is a
multi-part tool that goes beyond simply assessing speech. While not a dedicated
dysarthria evaluation, it offers valuable insights into speech problems commonly
seen in PD. Divided into four sections, Part III, the clinician-scored motor examina-
tion, holds particular importance for speech. This section evaluates various aspects
of movement, including a sub-section focused on speech characteristics like initia-
tion, loudness, voice quality, articulation, and fluency. The UPDRS Part III score,
also known as UPDRS III, ranges from 0 to 108, with 0 indicating a symptom-free
state and higher scores reflecting increasing motor impairment. Within this score,
speech is ranked from 0 to 4, with 0 indicating no speech problems and 4 represent-
ing complete unintelligibility. Although the UPDRS does not provide a detailed
dysarthria analysis, it serves as a helpful tool for clinicians to identify and monitor
speech difficulties in PD patients.

2.2.2.3 H&Y:

The Hoehn & Yahr scale (Hoehn & Yahr, 1967) [65] focuses specifically on the
staging of PD, categorizing patients based on the severity of their motor symptoms.
The scale assigns stages ranging from 1 (minimal symptoms) to 5 (advanced disease
with dependence on a caregiver). While the H&Y scale does not directly assess
speech, it can provide a general indication of the potential for speech difficulties
based on the overall disease severity. Clinicians may choose to use the H&Y stage
alongside other speech-specific assessments like the UPDRS or FDA for a more
comprehensive picture.

2.2.2.4 APAC:

The Assessment of Phonology and Articulation for Children (M. J. Kim et al., 2007)
[99] differs from the previously discussed scales (FDA, UPDRS, H&Y) in its target
population and focus. Unlike those designed for adults with neurological conditions,
the APAC is specifically tailored for assessing speech sound production (phonology
and articulation) in young children. This clinician-administered tool evaluates a
child’s ability to produce individual sounds, syllables, words, and sentences. It helps
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identify any developmental delays or disorders affecting a child’s speech clarity. The
APAC provides valuable information for speech-language pathologists to diagnose
specific speech sound errors and guide appropriate therapy approaches for improving
a child’s communication skills.

2.2.2.5 NIEPMD scale:

National Institute of Empowerment of Persons with Multiple Disabilities (Celin et
al., 2016) [2], an institute for students with multiple disorders run by the Govern-
ment of India. The scale is as described below:

• 0- Normal

• 1- Can understand with difficulty, however the clinician/listener feels the
speech is not normal

• 2- Can understand with difficulty, occasionally needs repetitions

• 3- Can understand with concentration but a sympathetic listener needs two
or three repetitions

• 4 -Can understand with difficulty

• 5- Can understand with effort if the context is known

• 6- Cannot understand at all even if the context is known

2.2.2.6 TOM:

The Therapy Outcome Measure (Enderby & John, 1999) [38] is designed to track
progress and measure the effectiveness of therapy interventions. This clinician-
administered tool assesses a patient’s abilities and limitations across four key do-
mains: impairment, activity, participation, and well-being. The TOM’s strength
lies in its ability to be used throughout the course of therapy. By periodically re-
assessing these four domains, clinicians can monitor a patient’s progress, identify
areas needing further intervention, and demonstrate the effectiveness of the chosen
treatment approach.

To summarize Section 2.2, it is visible from Table 2.1 that dysarthric speech data,
irrespective of the corpus, have generally been collected from very few speakers. The
distribution of speakers and speech data across severity levels is often skewed, with
large amounts of data tending to be speech with a lower dysarthria severity. This
calls for more inclusive speech corpora. However, collecting data from speakers
with severe dysarthria is a challenging task. In addition, a longitudinal study
conducted over several years is needed to observe the changes in speech quality and
intelligibility, along with their correlation to disease progression, medication, and
therapy in order to identify requirements and build suitable technology that can
help people suffering from dysarthria.

20

2. Speech Technology for Automatic Recognition and Assessment of
Dysarthric Speech: An Overview

2.3 Acoustic Studies of Dysarthric Speech

Acoustic assessment of speech has often been recommended to supplement percep-
tual methods, considering that these methods are more objective than the more
subjective perceptual assessments performed by different experts (Kent, 1996) [91].
Acoustic analyses of speech signals can potentially describe the speech subsystem
and the correlates of the perceptual evaluation of speech. Typically, an acoustic
study of dysarthria aims to understand and quantify the acoustic characteristics
of dysarthric speech and their correspondence to dysarthria type, as mentioned in
Section 2.1, dysarthria severity, and the underlying cause. Careful examination of
the qualitative features of dysarthric speech may reveal a phenomenon that would
eventually lead to the formulation of a hypothesis that can be tested using more
standard quantitative techniques. However, acoustic studies of dysarthric speech are
challenging, considering the complexity of neuromotor disruption occurring across
the speech subsystem. In this section, we present studies that explore the key
acoustic aspects of speech, such as loudness, pitch, duration, and speech rate, and
their nature with respect to dysarthric speech. Typically, a study on acoustic pa-
rameters of dysarthria explains aspects such as perceptual speech intelligibility and
dysarthria severity, type, or compares and contrasts with unimpaired speech. The
following subsections present acoustic studies that address these aspects.

2.3.1 Dysarthria Intelligibility

Speech intelligibility is used as an indication of the severity of a speech disorder
(Maier et al., 2009) [120], making this an important aspect of the study. The
studies presented in this subsection explore the acoustic characteristics of speech
related to intelligibility, specifically for dysarthric speech.

The study (Liu & Tseng, 1996) [118] used minimal phonetic contrasts and found
that aspiration-unaspiration, affricate-fricative, and vowel frontness contrasts ac-
counted for 99% of the variance in intelligibility judgments. The analysis focused
on several acoustic features, of which first formant (F1), difference in first and sec-
ond formant (F2−F1), voice onset time (VOT), nasality, and burst spectrum, were
identified as effective in differentiating dysarthric from normal speech. A statistical
model built using these features achieved an impressive 74.8% accuracy in predict-
ing speech intelligibility. In the study of Bunton et al. (2001), [19], the relationship
between fundamental frequency (F0) variability and speech intelligibility in per-
sons with dysarthria of two different types was explored. The results indicated
a strong correlation between sentence-level F0 variations and speech intelligibil-
ity and suggested that the type of dysarthria was significant when estimating the
contribution of F0 to intelligibility. Prosodic features in severe dysarthric speech
were examined by Patel (2002) [148] to understand prosodic control and its usage
by dysarthric speakers to communicate intentions, thereby providing insights into
speech intelligibility. The authors found that F0 contour and, to a lesser extent,
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syllable duration were responsible for encoding prosodic information in dysarthric
speech. An exploration by De Bodt et al. (2002) [32] to understand the effects
of four main dimensions of speech production, namely voice quality, articulation,
nasality, and prosody, as well as overall intelligibility employing perceptual judg-
ments revealed that intelligibility can be expressed as a linear combination of these
weighted perceptual dimensions and that articulation was the strongest contribu-
tor to intelligibility. In the study by Tjaden and Wilding (2004), [190], acoustic
measures such as articulatory rate, sound pressure level, vowel space area (VSA),
first-moment difference measures, and second formant (F2) trajectory characteris-
tics for diphthongs were examined as indicators of dysarthric speech intelligibility
by analyzing dysarthric speech with reduced articulatory rate (slow) and increased
loudness. Intelligibility estimates for dysarthric speech were found to be correlated
with articulatory rate and in turn with VSA, first-moment difference measures, and
loudness, but with no consistent correlation to F2 slope measures for diphthongs
or the acoustic measures of supraglottal behavior. In contrast, the study by Y.
Kim et al. (2009) [106] examined the relationship between dysarthric speech in-
telligibility and F2 slope and reported significantly reduced F2 slopes compared
to healthy speakers for almost all words, recommending F2 slope as a quantita-
tive metric for dysarthric speech intelligibility prediction. The research work by
Ijitona et al. (2017) [70] examined the relationship between acoustic and perceptive
cues indicative of intelligibility such as pitch, intensity, and duration by modifying
these parameters. A perceptual evaluation of the modified dysarthric speech indi-
cated that amplification of any of the three stress markers improved the perceptual
outcome significantly.

2.3.2 Type of Dysarthria

Acoustic metrics have also been used to investigate the nature of specific types
of dysarthria. Ataxic dysarthria has been characterized by a slow speaking rate,
relatively great variability in VOT, a tendency toward equalized vowel/syllable du-
ration within utterances, and an unusually large F0 range across utterances (Kent
et al., 2000) [215]. Hypo-kinetic dysarthria displays normal or faster-than-normal
speaking rates, relatively high mean F0, decreased F2 extents and slopes and de-
creased F0 variability (Goberman et al., 2005) [54]. In yet another work (Y. Kim
et al., 2011) [107], the authors discussed the individual acoustic variables that con-
tribute to the identification of dysarthria type, severity, and the underlying cause.
Articulation rate, voiceless interval duration, and intensity range contributed to eti-
ology classification. In contrast, articulation rate and F0 range contributed to type
classification. F2 slope, F0 range, and vowel space made significant contributions
to severity classification. The articulatory implementation of dysarthria types has
an impact on the emergent flow of the syllable stream and consequently on the per-
ceived rhythm of speech, allowing quantification of rhythmic patterns as a means to
classify the various types of dysarthria. Liss et al. (2009) [116] examined traditional
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rhythm metrics, along with novel metrics that combined successive vocalic and con-
sonant segments, which emerged as an important predictor to classify dysarthrias.
Liss et al. (2010) [117] demonstrated the potential of envelope modulation spectra
(EMS) for differentiating dysarthric from healthy speech. EMS is used to quantify
rhythmic problems in dysarthria and can be computed automatically, enabling the
objective classification of speakers. The study showed good accuracy in distinguish-
ing control groups, different dysarthria subtypes, and healthy speakers while being
able to capture temporal irregularities independent of linguistics.

2.3.3 Comparative Studies (Dysarthric and Healthy Speech)

Comparative studies play a key role in understanding the typical characteristics of
dysarthric speech and its deviation from unimpaired speech. An extensive study
on the acoustics of dysarthric speech has been presented by Kent et al. (1999) [93].
The authors examined various aspects of acoustic analysis such as the acoustic
measures, acoustic–articulatory relationship, and their applicability to dysarthric
speech. Special attention was given to describing phonation, voice quality, vocal
tract function for vowel and consonant articulation, velopharyngeal function, laryn-
geal and supralaryngeal activity, sound segment timing, prosody, and paralinguistic
variables using various measures of F0, formant frequencies F1, F2 and F3, VOT,
spectral variations; duration of syllables and other sound segments; intensity/en-
ergy; and speaking rate. Dorze et al. (1994) [35] is a comparative study on the
intonation and speech rate of dysarthric and non-dysarthric speakers, using declar-
ative and interrogative sentences. The average difference in F0 between the last
syllables of interrogative and declarative sentences was used as a metric for intona-
tion measurement. It was found that this intonation measure of dysarthric speech
was significantly lower for dysarthric speech, while speech rate was dependent on
the subject group, sentence type, and sentence set. Acoustic features that con-
tribute to sentence accent production in dysarthric speech and healthy speech were
explored (Mendoza Ramos et al., 2020) [125]. Accent production was attributed to
the duration parameters and the contrast in frequency and intensity between the
target syllable and the previous syllable, rather than to the contrast with the rest
of the sentence.

More recently, the effects of compression on various acoustic aspects of dysarthric
speech such as mean harmonic-to-noise ratio, voiced and unvoiced frames, statis-
tics of pitch, VSA, jitter, shimmer, cepstral peak prominence, and goodness of
pronunciation were studied in the context of speech degradation on telepractice
platforms (Tran et al., 2022) [192]. This article highlights the importance of study-
ing dysarthric speech from a speech technology perspective. Such advancements
can lead to improved speech recognition and communication assistance, ultimately
empowering people with dysarthria.

Summarizing Section 2.3, acoustic analyses can complement perceptual evalua-
tions and are particularly valuable as sources of quantitative assessment for clinical

23



2. Speech Technology for Automatic Recognition and Assessment of
Dysarthric Speech: An Overview

syllable duration were responsible for encoding prosodic information in dysarthric
speech. An exploration by De Bodt et al. (2002) [32] to understand the effects
of four main dimensions of speech production, namely voice quality, articulation,
nasality, and prosody, as well as overall intelligibility employing perceptual judg-
ments revealed that intelligibility can be expressed as a linear combination of these
weighted perceptual dimensions and that articulation was the strongest contribu-
tor to intelligibility. In the study by Tjaden and Wilding (2004), [190], acoustic
measures such as articulatory rate, sound pressure level, vowel space area (VSA),
first-moment difference measures, and second formant (F2) trajectory characteris-
tics for diphthongs were examined as indicators of dysarthric speech intelligibility
by analyzing dysarthric speech with reduced articulatory rate (slow) and increased
loudness. Intelligibility estimates for dysarthric speech were found to be correlated
with articulatory rate and in turn with VSA, first-moment difference measures, and
loudness, but with no consistent correlation to F2 slope measures for diphthongs
or the acoustic measures of supraglottal behavior. In contrast, the study by Y.
Kim et al. (2009) [106] examined the relationship between dysarthric speech in-
telligibility and F2 slope and reported significantly reduced F2 slopes compared
to healthy speakers for almost all words, recommending F2 slope as a quantita-
tive metric for dysarthric speech intelligibility prediction. The research work by
Ijitona et al. (2017) [70] examined the relationship between acoustic and perceptive
cues indicative of intelligibility such as pitch, intensity, and duration by modifying
these parameters. A perceptual evaluation of the modified dysarthric speech indi-
cated that amplification of any of the three stress markers improved the perceptual
outcome significantly.

2.3.2 Type of Dysarthria

Acoustic metrics have also been used to investigate the nature of specific types
of dysarthria. Ataxic dysarthria has been characterized by a slow speaking rate,
relatively great variability in VOT, a tendency toward equalized vowel/syllable du-
ration within utterances, and an unusually large F0 range across utterances (Kent
et al., 2000) [215]. Hypo-kinetic dysarthria displays normal or faster-than-normal
speaking rates, relatively high mean F0, decreased F2 extents and slopes and de-
creased F0 variability (Goberman et al., 2005) [54]. In yet another work (Y. Kim
et al., 2011) [107], the authors discussed the individual acoustic variables that con-
tribute to the identification of dysarthria type, severity, and the underlying cause.
Articulation rate, voiceless interval duration, and intensity range contributed to eti-
ology classification. In contrast, articulation rate and F0 range contributed to type
classification. F2 slope, F0 range, and vowel space made significant contributions
to severity classification. The articulatory implementation of dysarthria types has
an impact on the emergent flow of the syllable stream and consequently on the per-
ceived rhythm of speech, allowing quantification of rhythmic patterns as a means to
classify the various types of dysarthria. Liss et al. (2009) [116] examined traditional

22

2. Speech Technology for Automatic Recognition and Assessment of
Dysarthric Speech: An Overview

rhythm metrics, along with novel metrics that combined successive vocalic and con-
sonant segments, which emerged as an important predictor to classify dysarthrias.
Liss et al. (2010) [117] demonstrated the potential of envelope modulation spectra
(EMS) for differentiating dysarthric from healthy speech. EMS is used to quantify
rhythmic problems in dysarthria and can be computed automatically, enabling the
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the subject group, sentence type, and sentence set. Acoustic features that con-
tribute to sentence accent production in dysarthric speech and healthy speech were
explored (Mendoza Ramos et al., 2020) [125]. Accent production was attributed to
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pronunciation were studied in the context of speech degradation on telepractice
platforms (Tran et al., 2022) [192]. This article highlights the importance of study-
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evaluations of dysarthria as well as for therapy planning and tracking. Additionally,
an in-depth acoustic study on dysarthria types will enable researchers to apply their
understanding of the latest technological advances in speech processing to dysarthric
speech processing. However, there is a lacuna in the area of acoustic studies per-
taining to the automatic identification of the underlying cause of dysarthria since it
is an extremely complex challenge compounded by mixed dysarthria. The reviewed
studies from this section are presented in Table 2.2

2.4 Dysarthria Severity-level Identification

Identification of dysarthria type and severity level is the first step to planning speech
therapy or interventions for the rehabilitation of a person exhibiting dysarthria.
Objective assessment of dysarthria severity helps identify the bias in perceptual
evaluations, which tend to be subjective and are also time-consuming and expen-
sive. Furthermore, an understanding of severity has contributed to improved ASR
performance for dysarthric speech as seen in the works of M. J. Kim et al. (2013)
[102] and Mustafa et al. (2015) [133]. Xue (2023) [211] makes a clear distinction
between comprehensibility and intelligibility of speech. Comprehensibility is as-
sessed by considering contextual and context-independent information derived from
speech and language, whereas speech intelligibility is evaluated from the acoustics
of speech alone without taking context into account. This study delved into the
development of valid subjective and objective procedures for measuring the intel-
ligibility of dysarthric speech. Speech intelligibility has been used as an indicator
of the severity of speech disorders in general (Maier et al., 2009) [120]. Although
there is no standard measure of speech severity in dysarthria, estimates of speech
intelligibility are often used to index the extent to which the speech mechanism
gets impacted by the neuromotor disease (Kent et al., 1989) [90]. Intelligibility and
speaking rate are the key quantitative measures used to identify dysarthria severity
levels (Dahmani, et al., 2013) [31]. Assessment of the severity level of dysarthric
speech is crucial to analyze the outcome of a surgical procedure or to determine the
patient’s status in disease progression (e.g., PD) or in clinical decision-making.

In recent decades, research has shifted toward computer-based dysarthria as-
sessment, aiming for repeatable, reliable evaluations at minimal cost. Two main
approaches are at the forefront:

1. Non-reference-based assessment: This approach analyzes various speech fea-
tures independent of the intended message as well as without using healthy
speech data for machine learning (ML).

2. Reference-based intelligibility estimation: These methods compare dysarthric
speech to a healthy speech reference signal to quantify deviations. These
algorithms use healthy speech to train models and to measure the error rate
on dysarthric speech as an indirect indicator of intelligibility decline, utilizing
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both non–deep learning and deep learning techniques and various feature sets
and classifiers.

2.4.1 Non-reference-based Approaches

Hummel (2011) [68] applied the P.563 standard for blind speech quality assessment
to dysarthric speech. In addition, speech features related to perceptual qualities of
dysarthric speech were explored, and it was shown that kurtosis of the spectral flat-
ness of the linear prediction (LP) filter performed well in both speaker-dependent
(SD) and speaker-independent (SI) evaluations. Falk et al. (2012) [41] investigated
the kurtosis of the LP residual, long- and short-term temporal dynamics, nasality,
and prosody features as predictors of intelligibility. A composite measure, which
is a weighted linear combination of the above measures, was designed for intelli-
gibility prediction. In this measure, different weights were found to be beneficial
for different dysarthria severity classes. The algorithm proposed by Berisha et al.
(2013) [11] used acoustic cues at different time scales at phonetic, segmental, and
suprasegmental levels, resulting in features that represent the distorted rate and
timing of speech, unnatural loudness variation, unnatural pitch or formant varia-
tion, articulatory imprecision, and omissions or distortions of specific consonants
and vowels. Support vector machine (SVM) classifiers were trained using dysarthric
speech features that were extracted at sentence and vowel or consonant levels, fol-
lowed by an ensemble learning technique to decide the intelligibility and thereby
the severity level.

In summary, these studies applied different speech quality assessment standards
and explored various speech features for the prediction of dysarthria severity level
using intelligibility prediction in dysarthric speech. The studies showed that kur-
tosis of spectral flatness, LP residual, temporal dynamics, nasality, prosody, and
acoustic cues at different time scales were some of the useful features for intelli-
gibility prediction. Some studies have also proposed composite measures and ML
algorithms for improved prediction.

2.4.2 Reference-based Approaches

In the recent scientific literature, we observe a trend toward moving away from
language-specific methods and prioritizing language-independent AIA. Initial works
on automatic intelligibility prediction focused on appropriate acoustic representa-
tions of dysarthric speech followed by the application of classifiers. Most of the
recent works use deep learning–based intelligibility prediction. The subsections be-
low present studies using non-deep learning– and deep learning–based intelligibility
prediction.
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approaches are at the forefront:

1. Non-reference-based assessment: This approach analyzes various speech fea-
tures independent of the intended message as well as without using healthy
speech data for machine learning (ML).

2. Reference-based intelligibility estimation: These methods compare dysarthric
speech to a healthy speech reference signal to quantify deviations. These
algorithms use healthy speech to train models and to measure the error rate
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both non–deep learning and deep learning techniques and various feature sets
and classifiers.

2.4.1 Non-reference-based Approaches

Hummel (2011) [68] applied the P.563 standard for blind speech quality assessment
to dysarthric speech. In addition, speech features related to perceptual qualities of
dysarthric speech were explored, and it was shown that kurtosis of the spectral flat-
ness of the linear prediction (LP) filter performed well in both speaker-dependent
(SD) and speaker-independent (SI) evaluations. Falk et al. (2012) [41] investigated
the kurtosis of the LP residual, long- and short-term temporal dynamics, nasality,
and prosody features as predictors of intelligibility. A composite measure, which
is a weighted linear combination of the above measures, was designed for intelli-
gibility prediction. In this measure, different weights were found to be beneficial
for different dysarthria severity classes. The algorithm proposed by Berisha et al.
(2013) [11] used acoustic cues at different time scales at phonetic, segmental, and
suprasegmental levels, resulting in features that represent the distorted rate and
timing of speech, unnatural loudness variation, unnatural pitch or formant varia-
tion, articulatory imprecision, and omissions or distortions of specific consonants
and vowels. Support vector machine (SVM) classifiers were trained using dysarthric
speech features that were extracted at sentence and vowel or consonant levels, fol-
lowed by an ensemble learning technique to decide the intelligibility and thereby
the severity level.

In summary, these studies applied different speech quality assessment standards
and explored various speech features for the prediction of dysarthria severity level
using intelligibility prediction in dysarthric speech. The studies showed that kur-
tosis of spectral flatness, LP residual, temporal dynamics, nasality, prosody, and
acoustic cues at different time scales were some of the useful features for intelli-
gibility prediction. Some studies have also proposed composite measures and ML
algorithms for improved prediction.

2.4.2 Reference-based Approaches

In the recent scientific literature, we observe a trend toward moving away from
language-specific methods and prioritizing language-independent AIA. Initial works
on automatic intelligibility prediction focused on appropriate acoustic representa-
tions of dysarthric speech followed by the application of classifiers. Most of the
recent works use deep learning–based intelligibility prediction. The subsections be-
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2.4.2.1 Non-Deep Learning Methods

In the study of Middag et al. (2011) [130], a combination of two approaches was used
to predict the intelligibility of speakers from the Flemish pathological speech corpus
containing 48 dysarthric speakers’ data. A speaker verification-based approach
in which a Gaussian mixture model (GMM-based) super-vector in combination
with a phonological feature set that related directly to the articulatory dimensions
of speech was used. Intelligibility prediction models built using support vector
regression (SVR) and late fusion resulted in the best outcome. Dysarthria severity
was quantified by computing the distance between the speaker-specific GMM and
the SI universal background model (UBM). The speaker GMM is derived from the
speaker’s Mel-frequency cepstral coefficient (MFCC) feature vectors, while the UBM
is trained on a large data set of speech from healthy individuals. Dysarthria severity
is typically calculated as the distance metric between individual dysarthric speaker
models and reference models constructed from healthy speech data. In the study
of M. J. Kim and Kim (2012) [101], severity classification of dysarthric speech from
the QoLT database was performed using a subset of features related to phonetic
quality, prosody, and voice quality using a linear-kernel SVM classifier.

The research work by Dahmani et al. Dahmani et al. [31] explored the Gaus-
sian–Bayes classification technique to classify dysarthric speech from the Nemours
database into three classes using rhythm metrics based on acoustic measures of
the duration of vocalic and consonant intervals in continuous speech. In the work
of Mart́ınez et al. (2013) [124], a feature set of i-vectors derived from perceptual
linear predictors (PLPs) comprising a T matrix spanning a space trained on the
main variabilities of dysarthric speech was assumed to contain information about
the speech intelligibility. These features were used to predict speech intelligibility
using SVR predictors and are evaluated on the UA dysarthric speech corpus. A set
of prosodic features selected using a linear discrimination analysis (LDA) and an
SVM classifier was used to classify dysarthric speech from the Nemours database
into four classes (Kadi et al., 2013) [80]. Prosodic, voice quality, and pronunciation
aspects at the sentence level were used as features, followed by a post-classification
posterior smoothing scheme to evaluate the TORGO dysarthric speech into binary
intelligibility labels (intelligible and not intelligible) in the study of J. Kim et al.
(2015) [97]. Furthermore, feature-level fusions and subsystem decision fusion were
used to arrive at a final intelligibility decision. The work by Nerendra and Alku
(2018) [134] presents a binary classification of dysarthric speech, carried out using
glottal parameters, and acoustic features as well as a combination of the two feature
sets at word level, sentence level, and nonword level using dysarthric speech from
the TORGO database and SVM classifiers. Although the latter combination frame-
work performed the best overall, glottal features performed the best for nonword
utterances indicating that glottal features contain relevant information related to
speech disorder classification. In the study of Wang et al. (2018) [202], the effec-
tiveness of acoustic and articulatory speech features from patients with ALS and
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healthy controls was used to automatically predict intelligible speaking rate, which
is a multiplication product of speech intelligibility and speaking rate, using ML.
The model achieved good accuracy with high R2 and low root-mean-square error
using a feature selection method and SVM regression. The selected features in-
cluded both acoustic and articulatory measures, with a higher proportion from the
articulatory system. The results supported the effectiveness of this approach, with
tongue movement data yielding the best individual performance. The model was
theoretically content-independent due to its reliance on low-level features. In the
study of Hernandez, Kim, and Chung (2020) [62], the authors explored prosody,
voice quality, and MFCC features separately as well as in combination. Several
classifiers such as Random Forest (RF), SVM, and neural network–based were em-
ployed for the classification of dysarthric speech from the TORGO and the QoLT
databases. It was observed that while a combination of MFCC and prosody fea-
tures, along with neural network classifiers, performed best overall for high-severity
dysarthric speech, MFCC features provided the best accuracy for both the English
and Korean databases. A subsequent study by Hernandez, Yeo, et al. (2020) [63]
investigated the efficacy of incorporating rhythm-based metrics into dysarthria de-
tection and severity assessment in addition to prosodic features. RF, SVM, and
feed-forward multilayer perceptron (MLP) classifiers were employed. The findings
revealed a significant improvement in accuracy with the inclusion of rhythm met-
rics for both detection and severity assessment. This improvement was observed
in both Korean and English data sets, with a larger relative increase in accuracy
for the Korean QoLT data set compared to the English TORGO data set. The
study by Janbakhshi et al. (2020) [73] proposed using spectrotemporal subspaces,
extracted from speech recordings. Spectral subspaces were based on the frequency
content of the speech, while temporal subspaces were based on how the speech signal
changed over time. Grassmann discriminant analysis (GDA) was used to classify
the speech recordings as healthy or dysarthric. GDA is an ML algorithm that is
specifically designed to work with data that lie on a manifold, which is a curved
space that cannot be flattened out into an Euclidean plane. The results showed
that the method using temporal subspaces achieved significantly better accuracy
than the method using spectral subspaces. This method also outperformed other
state-of-the-art methods for automatic dysarthric speech detection. Neumann et al.
(2021) [136] proposed a cloud-based platform for remotely assessing and monitor-
ing ALS progression through speech and video analysis. Acoustic metrics included
timing and frequency aspects, along with conversation-specific measures such as
syllable rate and speaking rate variability. Visual metrics were centered on facial
features and were calculated using a three-step process involving face detection,
landmark extraction, and metric computation based on specific landmarks. A non-
parametric Kruskal–Wallis evaluation with healthy controls and patients with ALS
revealed statistically significant differences in both acoustic and visual features be-
tween the groups. Least absolute shrinkage and selection operator–based regression
analysis to investigate the predictive power of the extracted acoustic and visual
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2.4.2.1 Non-Deep Learning Methods
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in which a Gaussian mixture model (GMM-based) super-vector in combination
with a phonological feature set that related directly to the articulatory dimensions
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quality, prosody, and voice quality using a linear-kernel SVM classifier.

The research work by Dahmani et al. Dahmani et al. [31] explored the Gaus-
sian–Bayes classification technique to classify dysarthric speech from the Nemours
database into three classes using rhythm metrics based on acoustic measures of
the duration of vocalic and consonant intervals in continuous speech. In the work
of Mart́ınez et al. (2013) [124], a feature set of i-vectors derived from perceptual
linear predictors (PLPs) comprising a T matrix spanning a space trained on the
main variabilities of dysarthric speech was assumed to contain information about
the speech intelligibility. These features were used to predict speech intelligibility
using SVR predictors and are evaluated on the UA dysarthric speech corpus. A set
of prosodic features selected using a linear discrimination analysis (LDA) and an
SVM classifier was used to classify dysarthric speech from the Nemours database
into four classes (Kadi et al., 2013) [80]. Prosodic, voice quality, and pronunciation
aspects at the sentence level were used as features, followed by a post-classification
posterior smoothing scheme to evaluate the TORGO dysarthric speech into binary
intelligibility labels (intelligible and not intelligible) in the study of J. Kim et al.
(2015) [97]. Furthermore, feature-level fusions and subsystem decision fusion were
used to arrive at a final intelligibility decision. The work by Nerendra and Alku
(2018) [134] presents a binary classification of dysarthric speech, carried out using
glottal parameters, and acoustic features as well as a combination of the two feature
sets at word level, sentence level, and nonword level using dysarthric speech from
the TORGO database and SVM classifiers. Although the latter combination frame-
work performed the best overall, glottal features performed the best for nonword
utterances indicating that glottal features contain relevant information related to
speech disorder classification. In the study of Wang et al. (2018) [202], the effec-
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healthy controls was used to automatically predict intelligible speaking rate, which
is a multiplication product of speech intelligibility and speaking rate, using ML.
The model achieved good accuracy with high R2 and low root-mean-square error
using a feature selection method and SVM regression. The selected features in-
cluded both acoustic and articulatory measures, with a higher proportion from the
articulatory system. The results supported the effectiveness of this approach, with
tongue movement data yielding the best individual performance. The model was
theoretically content-independent due to its reliance on low-level features. In the
study of Hernandez, Kim, and Chung (2020) [62], the authors explored prosody,
voice quality, and MFCC features separately as well as in combination. Several
classifiers such as Random Forest (RF), SVM, and neural network–based were em-
ployed for the classification of dysarthric speech from the TORGO and the QoLT
databases. It was observed that while a combination of MFCC and prosody fea-
tures, along with neural network classifiers, performed best overall for high-severity
dysarthric speech, MFCC features provided the best accuracy for both the English
and Korean databases. A subsequent study by Hernandez, Yeo, et al. (2020) [63]
investigated the efficacy of incorporating rhythm-based metrics into dysarthria de-
tection and severity assessment in addition to prosodic features. RF, SVM, and
feed-forward multilayer perceptron (MLP) classifiers were employed. The findings
revealed a significant improvement in accuracy with the inclusion of rhythm met-
rics for both detection and severity assessment. This improvement was observed
in both Korean and English data sets, with a larger relative increase in accuracy
for the Korean QoLT data set compared to the English TORGO data set. The
study by Janbakhshi et al. (2020) [73] proposed using spectrotemporal subspaces,
extracted from speech recordings. Spectral subspaces were based on the frequency
content of the speech, while temporal subspaces were based on how the speech signal
changed over time. Grassmann discriminant analysis (GDA) was used to classify
the speech recordings as healthy or dysarthric. GDA is an ML algorithm that is
specifically designed to work with data that lie on a manifold, which is a curved
space that cannot be flattened out into an Euclidean plane. The results showed
that the method using temporal subspaces achieved significantly better accuracy
than the method using spectral subspaces. This method also outperformed other
state-of-the-art methods for automatic dysarthric speech detection. Neumann et al.
(2021) [136] proposed a cloud-based platform for remotely assessing and monitor-
ing ALS progression through speech and video analysis. Acoustic metrics included
timing and frequency aspects, along with conversation-specific measures such as
syllable rate and speaking rate variability. Visual metrics were centered on facial
features and were calculated using a three-step process involving face detection,
landmark extraction, and metric computation based on specific landmarks. A non-
parametric Kruskal–Wallis evaluation with healthy controls and patients with ALS
revealed statistically significant differences in both acoustic and visual features be-
tween the groups. Least absolute shrinkage and selection operator–based regression
analysis to investigate the predictive power of the extracted acoustic and visual
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metrics further emphasized the multimodal approach. The study by Al-Qatab et
al. (2021) [3] investigated the potential of acoustic features and feature selection
for a severity-based classification of dysarthric speech. Four acoustic features such
as prosody, spectral, cepstral, and voice quality were investigated, along with seven
feature selection methods, namely, interaction capping, conditional information fea-
ture extraction, conditional mutual information maximization, double input sym-
metrical relevance, joint mutual information, conditional redundancy, and relief.
Additionally, six classification algorithms such as SVM, LDA, artificial neural net-
work (ANN), classification and regression tree, naive Bayes, and RF were examined.
Although the study concluded that there is no best method for improving the clas-
sification accuracy of an ASR system, they highlighted the effectiveness of prosody
features for the classification of dysarthric speech.

The cited research works above aim to predict the intelligibility or classify the
severity of dysarthric speech using various feature sets such as phonological features,
prosodic features, voice quality features, glottal parameters, and acoustic features.
The studies used different ML algorithms such as SVM, SVR, Gaussian–Bayes, and
LDA for the prediction. The best results in each study were achieved by using
a combination of different feature sets and decision fusion techniques as shown in
Table 2.2.

2.4.2.2 Neural-network-based Intelligibility Prediction

Wang et al. (2016) [201] explored the feasibility of automatically detecting ALS
from presymptomatic speech samples using ML. They investigated two ML ap-
proaches, namely, SVM and deep neural network (DNN) on a data set combining
speech acoustics and articulatory data from patients with ALS and healthy con-
trols. The results using leave-one-out cross-validation indicated the promise of this
approach, with further improvement observed when incorporating articulatory mo-
tion information, with DNN outperforming SVM in all configurations. Tu et al.
(2017) [193] proposed a DNN-based interpretable model for objective assessment of
dysarthric speech that provided users with an estimate of severity as well as a set of
explanatory features. Bhat et al. (2017) explored a nonlinguistic approach to the
automatic assessment of severity levels of dysarthric speech, using audio descrip-
tors that are traditionally used to define the timbre of musical instruments, along
with multitapered spectral estimation for classification. An ANN was trained to
classify speech into various severity levels within the UA dysarthric speech corpus
and the TORGO database. The study by An et al. (2018) [6] investigated the
feasibility of automatically detecting ALS from speech samples using convolutional
neural networks (CNNs). In addition to predefined, hand-crafted features and ANN,
CNN-based representation learning has been used. Time-domain CNNs achieved
the best performance at the sample level, while frequency-domain CNNs achieved
the best performance at the person level (when considering multiple speech samples
from the same person). In the study of Chandrashekar et al. (2020a) [23], joint
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spectrotemporal features from the mel-scale spectrogram were used for dysarthria
severity estimation. Intelligibility estimation was carried out using ANN and CNN.
The performance of the time-frequency CNN configuration proved to be the best,
as they captured both spectral and temporal variations in the audio signal. The
authors demonstrated that the time-frequency CNN that jointly captured spectral
as well as temporal information was superior to the time or frequency CNN that
captured either temporal or spectral information and not both. In yet another work,
authors explored the use of perceptually enhanced Fourier transform spectrograms
and constant Q transform spectrograms using CNN classifiers to assess word-level
and sentence-level intelligibility of dysarthric speech from the UA Speech and the
TORGO databases (Chandrashekar et al., 2020b) [22].

In the work of Bhat and Strik (2020) [12], bidirectional long short-term memory
(BLSTM) networks are used for binary classification of intelligibility of dysarthric
speech. The performance of the classifier using speech parameters such as MFCC,
log filter banks, and i-vectors has been compared. Furthermore, a transfer learn-
ing (TL) approach was investigated, in which dysarthria intelligibility level was
predicted using acoustic models that were pre-trained on unimpaired speech giv-
ing the best performance for dysarthria intelligibility prediction. In the study
of Joshy and Rajan (2022) [77], authors compared the performances of various
DNN architectures along with generic speech features as well as dysarthria-specific
speech features to classify dysarthric speech based on the severity from the UA
Speech and the TORGO databases. Architectural choices such as DNN, CNN,
gated recurrent units, and long short-term memory (LSTM) networks were ex-
plored. Speech features such as (a) MFCCs and constant Q cepstral coefficients;
(b) speech disorder-specific features computed from prosody, articulation, phona-
tion, and glottal functioning; and (c) low-dimensional speech representation such
as i-vectors are investigated. It was found that the DNN classifier using MFCC-
based i-vectors outperformed other systems. In the study of Hall et al. (2022)
[59], the performance of deep learning–based automatic dysarthric intelligibility as-
sessment models was explored, with the objective to generalize to new speakers
and arrive at the optimal setup by identifying the acoustic features useful for this
purpose such as MFCC and spectral representations along with their various config-
urations. Xu et al. (2023) [209] investigated the application of DNNs for classifying
dysarthric speakers. While DNNs are promising for dysarthria classification, they
lack clinical interpretability. To address this, they proposed a DNN model with a
bottleneck layer that was trained to jointly classify dysarthria and extract clinically
relevant acoustic features. This method allowed researchers to balance classifica-
tion accuracy with interpretability. The model was evaluated on two dysarthria
subtypes and achieved good performance. Additionally, the Shapley additive ex-
planation was employed to analyze the contribution of each interpretable feature
to the classification decisions. The results demonstrated that the proposed model
could be tuned to prioritize either classification accuracy or clinical interpretability.
In a more recent study, the potential of leveraging dysarthric speech data sets in
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metrics further emphasized the multimodal approach. The study by Al-Qatab et
al. (2021) [3] investigated the potential of acoustic features and feature selection
for a severity-based classification of dysarthric speech. Four acoustic features such
as prosody, spectral, cepstral, and voice quality were investigated, along with seven
feature selection methods, namely, interaction capping, conditional information fea-
ture extraction, conditional mutual information maximization, double input sym-
metrical relevance, joint mutual information, conditional redundancy, and relief.
Additionally, six classification algorithms such as SVM, LDA, artificial neural net-
work (ANN), classification and regression tree, naive Bayes, and RF were examined.
Although the study concluded that there is no best method for improving the clas-
sification accuracy of an ASR system, they highlighted the effectiveness of prosody
features for the classification of dysarthric speech.

The cited research works above aim to predict the intelligibility or classify the
severity of dysarthric speech using various feature sets such as phonological features,
prosodic features, voice quality features, glottal parameters, and acoustic features.
The studies used different ML algorithms such as SVM, SVR, Gaussian–Bayes, and
LDA for the prediction. The best results in each study were achieved by using
a combination of different feature sets and decision fusion techniques as shown in
Table 2.2.

2.4.2.2 Neural-network-based Intelligibility Prediction

Wang et al. (2016) [201] explored the feasibility of automatically detecting ALS
from presymptomatic speech samples using ML. They investigated two ML ap-
proaches, namely, SVM and deep neural network (DNN) on a data set combining
speech acoustics and articulatory data from patients with ALS and healthy con-
trols. The results using leave-one-out cross-validation indicated the promise of this
approach, with further improvement observed when incorporating articulatory mo-
tion information, with DNN outperforming SVM in all configurations. Tu et al.
(2017) [193] proposed a DNN-based interpretable model for objective assessment of
dysarthric speech that provided users with an estimate of severity as well as a set of
explanatory features. Bhat et al. (2017) explored a nonlinguistic approach to the
automatic assessment of severity levels of dysarthric speech, using audio descrip-
tors that are traditionally used to define the timbre of musical instruments, along
with multitapered spectral estimation for classification. An ANN was trained to
classify speech into various severity levels within the UA dysarthric speech corpus
and the TORGO database. The study by An et al. (2018) [6] investigated the
feasibility of automatically detecting ALS from speech samples using convolutional
neural networks (CNNs). In addition to predefined, hand-crafted features and ANN,
CNN-based representation learning has been used. Time-domain CNNs achieved
the best performance at the sample level, while frequency-domain CNNs achieved
the best performance at the person level (when considering multiple speech samples
from the same person). In the study of Chandrashekar et al. (2020a) [23], joint
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spectrotemporal features from the mel-scale spectrogram were used for dysarthria
severity estimation. Intelligibility estimation was carried out using ANN and CNN.
The performance of the time-frequency CNN configuration proved to be the best,
as they captured both spectral and temporal variations in the audio signal. The
authors demonstrated that the time-frequency CNN that jointly captured spectral
as well as temporal information was superior to the time or frequency CNN that
captured either temporal or spectral information and not both. In yet another work,
authors explored the use of perceptually enhanced Fourier transform spectrograms
and constant Q transform spectrograms using CNN classifiers to assess word-level
and sentence-level intelligibility of dysarthric speech from the UA Speech and the
TORGO databases (Chandrashekar et al., 2020b) [22].

In the work of Bhat and Strik (2020) [12], bidirectional long short-term memory
(BLSTM) networks are used for binary classification of intelligibility of dysarthric
speech. The performance of the classifier using speech parameters such as MFCC,
log filter banks, and i-vectors has been compared. Furthermore, a transfer learn-
ing (TL) approach was investigated, in which dysarthria intelligibility level was
predicted using acoustic models that were pre-trained on unimpaired speech giv-
ing the best performance for dysarthria intelligibility prediction. In the study
of Joshy and Rajan (2022) [77], authors compared the performances of various
DNN architectures along with generic speech features as well as dysarthria-specific
speech features to classify dysarthric speech based on the severity from the UA
Speech and the TORGO databases. Architectural choices such as DNN, CNN,
gated recurrent units, and long short-term memory (LSTM) networks were ex-
plored. Speech features such as (a) MFCCs and constant Q cepstral coefficients;
(b) speech disorder-specific features computed from prosody, articulation, phona-
tion, and glottal functioning; and (c) low-dimensional speech representation such
as i-vectors are investigated. It was found that the DNN classifier using MFCC-
based i-vectors outperformed other systems. In the study of Hall et al. (2022)
[59], the performance of deep learning–based automatic dysarthric intelligibility as-
sessment models was explored, with the objective to generalize to new speakers
and arrive at the optimal setup by identifying the acoustic features useful for this
purpose such as MFCC and spectral representations along with their various config-
urations. Xu et al. (2023) [209] investigated the application of DNNs for classifying
dysarthric speakers. While DNNs are promising for dysarthria classification, they
lack clinical interpretability. To address this, they proposed a DNN model with a
bottleneck layer that was trained to jointly classify dysarthria and extract clinically
relevant acoustic features. This method allowed researchers to balance classifica-
tion accuracy with interpretability. The model was evaluated on two dysarthria
subtypes and achieved good performance. Additionally, the Shapley additive ex-
planation was employed to analyze the contribution of each interpretable feature
to the classification decisions. The results demonstrated that the proposed model
could be tuned to prioritize either classification accuracy or clinical interpretability.
In a more recent study, the potential of leveraging dysarthric speech data sets in
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Netherlandic Dutch to enhance the efficacy of ASR systems for dysarthric speech
in Flemish Dutch was explored (Xue et al., 2023) [212], Flemish Dutch and Nether-
landic Dutch were treated as the dominant and nondominant variants of the same
pluricentric language, namely, Dutch. The evaluation of ASR models involved the
utilization of two distinct intelligibility metrics: orthographic transcriptions and
overall intelligibility assessments.

Potential bias in automatic dysarthria classification due to recording environ-
ment characteristics using the UA Speech and the TORGO databases was in-
vestigated by Schu et al. (2023) [173]. They hypothesized that the classifica-
tion tasks conducted on these databases rely more on environmental noise rather
than dysarthric speech features. To test this hypothesis, utterance-level signal-to-
noise ratios were estimated, and state-of-the-art dysarthria classifiers such as SVM,
CNN, speech representation learning, and MLP were trained and validated on both
speech and nonspeech segments. Several classifiers achieved comparable or superior
dysarthria classification performance using only nonspeech segments compared to
speech segments. These findings highlight the importance of recording quality in
developing and evaluating dysarthria classification methods. Additionally, these re-
sults encourage the development of novel classification approaches robust to adverse
recording conditions.

Table 2.3 provides a summary of the studies reviewed in the section. In con-
clusion, a common approach in research on dysarthric speech intelligibility is to
extract and analyze relevant acoustic features, through which researchers aim to
gain insights into the speech patterns of individuals with dysarthria and to develop
methods for improving automatic speech intelligibility estimation. It can be noted
that while the earlier works involved extensive feature engineering, representing
prosodic, voice quality, phonological, and articulatory aspects of speech followed
by feature selection and classified using a classifier such as SVM/SVR, recent ex-
plorations involve the speech features such as MFCC, log filter banks, i-vectors,
and spectrotemporal features being used in a neural network framework. While the
performance of DNN-based speech intelligibility prediction of dysarthric speech is
good, they are demanding in terms of data availability, tuning of the network, and
computing requirements.

2.5 Automatic Speech Recognition

The neurological damage affecting speech-motor functions also impacts physical ac-
tivities associated with the motor neurons. Typical human interaction with gadgets
and devices involves typing into a keyboard. Keyboard input using hand movements
is slowed down by a factor of 150–300 in severe cases of dysarthria in comparison
with regular users (Hosom et al., 2003) [66]. However, dysarthric speech is slow by
a factor of 10–17 as compared to regular speech, at about 15 words per minute in
the most severe cases (Rudzicz, 2010) [165]. Also, it has been found that dysarthric
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speakers exhibit good prosodic control, which in turn aids communication efficiency
(Patel, 2002) [148]. However, due to the atypical nature of speech, traditional tech-
niques and off-the-shelf ASR become unusable for persons with dysarthria. This
indicates the need for research into techniques and speech features that provide
improved performance for ASR for dysarthric speech, which we will discuss in this
section.

Several techniques have been employed to improve ASR performance for dysarthric
speech such as speaker adaptation, lexical model adaptation, feature engineering,
acoustic space enhancement, and DNN—either individually or in combination. At-
tempts have been made to synthesize dysarthric speech data to be able to augment
the existing data and avail the benefits of advanced neural network architectures for
ASR. Table 2.4 outlines the studies reviewed in this section, along with the research
outcomes in terms of performance metrics.

2.5.1 Speaker Adaptation-based ASR

Speaker adaptation involves using dysarthric speech from individual speakers dur-
ing the training process. It has been seen that speaker adaptation yields good ASR
performance, the caveat being that a specific speaker’s speech needs to be a part
of the training data. Initial investigations into ASR for dysarthric speech involved
applying the techniques traditionally used for improving ASR performance such as
maximum likelihood linear regression (MLLR) and maximum a posteriori (MAP)
adaptation to arrive at an SD ASR with a limited amount of dysarthric speech
data (Christensen et al., 2012; Mengistu & Rudzicz, 2011; Sehgal & Cunningham,
2015; Sharma & Hasegawa-Johnson, 2010) [180, 128, 27, 174]. A hidden Markov
model (HMM-based) ASR along with MLLR and MAP adaptation was used to
build SD acoustic models using the TORGO corpus (Mengistu & Rudzicz, 2011)
[128]. PLP features along with lexical model adaptation achieved the best per-
formance in terms of word recognition accuracy. The SD pronunciation lexicons
consisted of multiple pronunciations for some words that reflect the particular pro-
nunciation deviation of each dysarthric subject from the canonical forms. In the
study of Christensen et al. (2012) [27], authors explored strategies such as MLLR
and MAP adaptation. They used speech data from the dysarthric domain for MAP
adaptation of a typical speech acoustic model. In addition, they also examined SI
and SD systems. PLP features with first and second derivatives were used. The
evaluation of these systems was carried out on the UA Speech corpus and showed
that significant improvement in dysarthric speech recognition was achieved using
MAP adaptation for most speakers with low to moderate severity levels. In the
study of Sharma and Hasegawa-Johnson (2013) [181], a background model of the
general speech characteristics of a particular dysarthric speaker was used to select a
suitable acoustic model from unimpaired speakers using an interpolation-based tech-
nique to maximize the matching between the dysarthric speaker’s acoustic model
and unimpaired speaker models. Prior knowledge of the dysarthric speaker’s sever-
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Netherlandic Dutch to enhance the efficacy of ASR systems for dysarthric speech
in Flemish Dutch was explored (Xue et al., 2023) [212], Flemish Dutch and Nether-
landic Dutch were treated as the dominant and nondominant variants of the same
pluricentric language, namely, Dutch. The evaluation of ASR models involved the
utilization of two distinct intelligibility metrics: orthographic transcriptions and
overall intelligibility assessments.

Potential bias in automatic dysarthria classification due to recording environ-
ment characteristics using the UA Speech and the TORGO databases was in-
vestigated by Schu et al. (2023) [173]. They hypothesized that the classifica-
tion tasks conducted on these databases rely more on environmental noise rather
than dysarthric speech features. To test this hypothesis, utterance-level signal-to-
noise ratios were estimated, and state-of-the-art dysarthria classifiers such as SVM,
CNN, speech representation learning, and MLP were trained and validated on both
speech and nonspeech segments. Several classifiers achieved comparable or superior
dysarthria classification performance using only nonspeech segments compared to
speech segments. These findings highlight the importance of recording quality in
developing and evaluating dysarthria classification methods. Additionally, these re-
sults encourage the development of novel classification approaches robust to adverse
recording conditions.

Table 2.3 provides a summary of the studies reviewed in the section. In con-
clusion, a common approach in research on dysarthric speech intelligibility is to
extract and analyze relevant acoustic features, through which researchers aim to
gain insights into the speech patterns of individuals with dysarthria and to develop
methods for improving automatic speech intelligibility estimation. It can be noted
that while the earlier works involved extensive feature engineering, representing
prosodic, voice quality, phonological, and articulatory aspects of speech followed
by feature selection and classified using a classifier such as SVM/SVR, recent ex-
plorations involve the speech features such as MFCC, log filter banks, i-vectors,
and spectrotemporal features being used in a neural network framework. While the
performance of DNN-based speech intelligibility prediction of dysarthric speech is
good, they are demanding in terms of data availability, tuning of the network, and
computing requirements.

2.5 Automatic Speech Recognition

The neurological damage affecting speech-motor functions also impacts physical ac-
tivities associated with the motor neurons. Typical human interaction with gadgets
and devices involves typing into a keyboard. Keyboard input using hand movements
is slowed down by a factor of 150–300 in severe cases of dysarthria in comparison
with regular users (Hosom et al., 2003) [66]. However, dysarthric speech is slow by
a factor of 10–17 as compared to regular speech, at about 15 words per minute in
the most severe cases (Rudzicz, 2010) [165]. Also, it has been found that dysarthric
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speakers exhibit good prosodic control, which in turn aids communication efficiency
(Patel, 2002) [148]. However, due to the atypical nature of speech, traditional tech-
niques and off-the-shelf ASR become unusable for persons with dysarthria. This
indicates the need for research into techniques and speech features that provide
improved performance for ASR for dysarthric speech, which we will discuss in this
section.

Several techniques have been employed to improve ASR performance for dysarthric
speech such as speaker adaptation, lexical model adaptation, feature engineering,
acoustic space enhancement, and DNN—either individually or in combination. At-
tempts have been made to synthesize dysarthric speech data to be able to augment
the existing data and avail the benefits of advanced neural network architectures for
ASR. Table 2.4 outlines the studies reviewed in this section, along with the research
outcomes in terms of performance metrics.

2.5.1 Speaker Adaptation-based ASR

Speaker adaptation involves using dysarthric speech from individual speakers dur-
ing the training process. It has been seen that speaker adaptation yields good ASR
performance, the caveat being that a specific speaker’s speech needs to be a part
of the training data. Initial investigations into ASR for dysarthric speech involved
applying the techniques traditionally used for improving ASR performance such as
maximum likelihood linear regression (MLLR) and maximum a posteriori (MAP)
adaptation to arrive at an SD ASR with a limited amount of dysarthric speech
data (Christensen et al., 2012; Mengistu & Rudzicz, 2011; Sehgal & Cunningham,
2015; Sharma & Hasegawa-Johnson, 2010) [180, 128, 27, 174]. A hidden Markov
model (HMM-based) ASR along with MLLR and MAP adaptation was used to
build SD acoustic models using the TORGO corpus (Mengistu & Rudzicz, 2011)
[128]. PLP features along with lexical model adaptation achieved the best per-
formance in terms of word recognition accuracy. The SD pronunciation lexicons
consisted of multiple pronunciations for some words that reflect the particular pro-
nunciation deviation of each dysarthric subject from the canonical forms. In the
study of Christensen et al. (2012) [27], authors explored strategies such as MLLR
and MAP adaptation. They used speech data from the dysarthric domain for MAP
adaptation of a typical speech acoustic model. In addition, they also examined SI
and SD systems. PLP features with first and second derivatives were used. The
evaluation of these systems was carried out on the UA Speech corpus and showed
that significant improvement in dysarthric speech recognition was achieved using
MAP adaptation for most speakers with low to moderate severity levels. In the
study of Sharma and Hasegawa-Johnson (2013) [181], a background model of the
general speech characteristics of a particular dysarthric speaker was used to select a
suitable acoustic model from unimpaired speakers using an interpolation-based tech-
nique to maximize the matching between the dysarthric speaker’s acoustic model
and unimpaired speaker models. Prior knowledge of the dysarthric speaker’s sever-
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ity level was used to select an initial model for adaptation followed by traditional
adaptation methods, thereby reducing the word error rate (WER) for the QoLT
dysarthric speech data (M. J. Kim et al., 2013) [102]. Authors explored the fac-
tors that influence ASR performance for dysarthric speech, concluding that factors
specific to dysarthria such as intelligibility and severity had a significant influence
on recognition accuracy (Mustafa et al., 2014) [132]. An exploration of various
combinations of MFCC features was conducted and narrowed down to the con-
ventional 12 coefficients MFCC features without the use of delta and acceleration
features, which were used, along with an ANN, to build an SI ASR (Shahamiri &
Binti Salim, 2014) [177]. Authors concluded that building acoustic models using
only a select set of speakers for the training process based on acoustic closeness
to the target speaker, rather than the entire speaker pool data, provided better
ASR performance (Christensen et al., 2014) Christensen et al. [26]. A convolutive
bottleneck network (CBN) was used for dysarthric speech feature extraction. The
pooling operations of the CBN resulted in features that were more robust toward
the small local fluctuations in dysarthric speech and that outperformed the tra-
ditional MFCC feature–based recognition (Nakashika et al., 2014) [135]. Authors
used voice parameters such as jitter and shimmer, along with multitaper MFCC
followed by feature space MLLR (fMLLR)–based speaker adaptation, to reduce the
WER for the UA dysarthric speech data (Bhat et al., 2016b) [13]. They also ana-
lyzed the ASR performance from the perspective of speaker severity. M. J. Kim et
al. (2017) [103]proposed a Kullback–Leibler divergence-based HMM (KL-HMM) ap-
proach to capture these variations. Phoneme posteriors from a DNN acoustic model
inform the emission probabilities in the KL-HMM states. A novel speaker adapta-
tion method, combining L2 (L2 norm or Euclidean norm) and confusion-reducing
regularization, further enhanced discriminability. Evaluations on a dysarthric/non-
dysarthric speaker data set demonstrated significant performance improvements
over conventional DNN speaker adaptation. In the study by Yılmaz et al. [220],
a multistage DNN training scheme is used to model dysarthric speech. Only a
small amount of in-domain training data showed considerable improvement in the
recognition of dysarthric speech. In the study of Takashima et al. (2020) [187],
authors proposed a two-step model adaptation approach, in which an ASR model
was first adapted to the general speaking style of multiple dysarthric speakers, and
then the adapted model was further adapted for the target speaker, demonstrating
a better performance in ASR than a conventional one-step adaptation approach.
A novel adaptation network specifically designed to fine-tune Wav2Vec2 models
using fMLLR features was proposed by Baskar et al. (2022) [10]. This network
exhibited flexibility, allowing it to handle other speaker-adaptive features such as
x-vectors as well. A comprehensive experimental analysis demonstrated consistent
improvements across all dysarthria severity levels in the UA Speech data set, with
a WER of 57.72% for high-severity cases. Furthermore, experiments on a German
data set substantiated the generalizability of this approach across diverse linguistic
domains. Deep embedding features derived from a spectrotemporal subspace analy-

32

2. Speech Technology for Automatic Recognition and Assessment of
Dysarthric Speech: An Overview

sis using singular value decomposition of the speech spectrum were used to improve
ASR performance based on speaker adaptation (Geng et al., 2022) [52]. These facili-
tated auxiliary feature-based adaptation for hybrid DNN/time delay neural network
(TDNN) and end-to-end Conformer architectures achieving a WER of 25.05% on
the UA Speech test set. The intention was to address the spectrotemporal variations
observed in dysarthric and elderly speech, characterized by articulatory imprecision,
reduced volume/ clarity, slower speaking rates, and increased dysfluencies

To summarize, speaker adaptation for dysarthric speech has been shown to
improve ASR performance. Factors such as intelligibility and severity of dysarthria
have a significant impact on recognition accuracy. Initial work in this area applied
traditional techniques such as MLLR and MAP adaptation to limited amounts of
dysarthric speech data. The studies explored various feature extraction techniques,
such as PLP features, MFCC features, and voice parameters such as jitter and
shimmer. SD and SI ASRs were also built using HMM-based ASRs and ANNs.
Interpolation-based techniques and fMLLR-based speaker adaptation were also used
to improve performance based on speaker severity.

2.5.2 Enhancement of Dysarthric Speech

Enhancement of dysarthric speech either in the time domain or feature domain is
yet another mechanism used to improve ASR performance. Acoustic space modifi-
cation carried out through temporal and frequency morphing improved automatic
dysarthric speech recognition and subjective evaluation (Rudzicz, 2013) [167]. An
investigation of the relationship between durations of the voiced sections within
dysarthric speech utterances and dysarthria severity level revealed that temporal
manipulations of dysarthric data would lead to improved intelligibility. Leveraging
this insight, Bhat et al. (2016a) [14]applied temporal adaptation of dysarthric
speech based on severity level. This approach improved ASR performance for
dysarthric speech at each severity level. Recent studies leverage the latest DNN ar-
chitectures to improve ASR performance. Feature-level enhancement of dysarthric
speech was carried out (Bhat et al., 2018; Vachhani et al., 2017) [195, 16]. Deep
autoencoder (DAE) was trained with only unimpaired speech data and the bottle-
neck layer was used to enhance dysarthric speech data from the UA speech corpus.
Deep autoencoder (DAE) was trained with only unimpaired speech data, and the
bottleneck layer was used to enhance dysarthric speech data from the UA Speech
corpus (Vachhani et al., 2017) [195]. A TDNN denoising autoencoder (TDNN-
DAE) was used to enhance the dysarthric speech features. Unimpaired speech
and the corresponding tempo-adapted dysarthric speech were used to train the
TDNN-DAE. This methodology showed significant improvement in ASR perfor-
mance when evaluated for both SI and speaker adaptation–based ASR systems
(Bhat et al., 2018) [16]. The study by M. J. Kim, Cao, and Wang (2018) [104]
investigated the effectiveness of multiview representation learning using canonical
correlation analysis (CCA) for dysarthric speech recognition. A representation of
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ity level was used to select an initial model for adaptation followed by traditional
adaptation methods, thereby reducing the word error rate (WER) for the QoLT
dysarthric speech data (M. J. Kim et al., 2013) [102]. Authors explored the fac-
tors that influence ASR performance for dysarthric speech, concluding that factors
specific to dysarthria such as intelligibility and severity had a significant influence
on recognition accuracy (Mustafa et al., 2014) [132]. An exploration of various
combinations of MFCC features was conducted and narrowed down to the con-
ventional 12 coefficients MFCC features without the use of delta and acceleration
features, which were used, along with an ANN, to build an SI ASR (Shahamiri &
Binti Salim, 2014) [177]. Authors concluded that building acoustic models using
only a select set of speakers for the training process based on acoustic closeness
to the target speaker, rather than the entire speaker pool data, provided better
ASR performance (Christensen et al., 2014) Christensen et al. [26]. A convolutive
bottleneck network (CBN) was used for dysarthric speech feature extraction. The
pooling operations of the CBN resulted in features that were more robust toward
the small local fluctuations in dysarthric speech and that outperformed the tra-
ditional MFCC feature–based recognition (Nakashika et al., 2014) [135]. Authors
used voice parameters such as jitter and shimmer, along with multitaper MFCC
followed by feature space MLLR (fMLLR)–based speaker adaptation, to reduce the
WER for the UA dysarthric speech data (Bhat et al., 2016b) [13]. They also ana-
lyzed the ASR performance from the perspective of speaker severity. M. J. Kim et
al. (2017) [103]proposed a Kullback–Leibler divergence-based HMM (KL-HMM) ap-
proach to capture these variations. Phoneme posteriors from a DNN acoustic model
inform the emission probabilities in the KL-HMM states. A novel speaker adapta-
tion method, combining L2 (L2 norm or Euclidean norm) and confusion-reducing
regularization, further enhanced discriminability. Evaluations on a dysarthric/non-
dysarthric speaker data set demonstrated significant performance improvements
over conventional DNN speaker adaptation. In the study by Yılmaz et al. [220],
a multistage DNN training scheme is used to model dysarthric speech. Only a
small amount of in-domain training data showed considerable improvement in the
recognition of dysarthric speech. In the study of Takashima et al. (2020) [187],
authors proposed a two-step model adaptation approach, in which an ASR model
was first adapted to the general speaking style of multiple dysarthric speakers, and
then the adapted model was further adapted for the target speaker, demonstrating
a better performance in ASR than a conventional one-step adaptation approach.
A novel adaptation network specifically designed to fine-tune Wav2Vec2 models
using fMLLR features was proposed by Baskar et al. (2022) [10]. This network
exhibited flexibility, allowing it to handle other speaker-adaptive features such as
x-vectors as well. A comprehensive experimental analysis demonstrated consistent
improvements across all dysarthria severity levels in the UA Speech data set, with
a WER of 57.72% for high-severity cases. Furthermore, experiments on a German
data set substantiated the generalizability of this approach across diverse linguistic
domains. Deep embedding features derived from a spectrotemporal subspace analy-
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sis using singular value decomposition of the speech spectrum were used to improve
ASR performance based on speaker adaptation (Geng et al., 2022) [52]. These facili-
tated auxiliary feature-based adaptation for hybrid DNN/time delay neural network
(TDNN) and end-to-end Conformer architectures achieving a WER of 25.05% on
the UA Speech test set. The intention was to address the spectrotemporal variations
observed in dysarthric and elderly speech, characterized by articulatory imprecision,
reduced volume/ clarity, slower speaking rates, and increased dysfluencies

To summarize, speaker adaptation for dysarthric speech has been shown to
improve ASR performance. Factors such as intelligibility and severity of dysarthria
have a significant impact on recognition accuracy. Initial work in this area applied
traditional techniques such as MLLR and MAP adaptation to limited amounts of
dysarthric speech data. The studies explored various feature extraction techniques,
such as PLP features, MFCC features, and voice parameters such as jitter and
shimmer. SD and SI ASRs were also built using HMM-based ASRs and ANNs.
Interpolation-based techniques and fMLLR-based speaker adaptation were also used
to improve performance based on speaker severity.

2.5.2 Enhancement of Dysarthric Speech

Enhancement of dysarthric speech either in the time domain or feature domain is
yet another mechanism used to improve ASR performance. Acoustic space modifi-
cation carried out through temporal and frequency morphing improved automatic
dysarthric speech recognition and subjective evaluation (Rudzicz, 2013) [167]. An
investigation of the relationship between durations of the voiced sections within
dysarthric speech utterances and dysarthria severity level revealed that temporal
manipulations of dysarthric data would lead to improved intelligibility. Leveraging
this insight, Bhat et al. (2016a) [14]applied temporal adaptation of dysarthric
speech based on severity level. This approach improved ASR performance for
dysarthric speech at each severity level. Recent studies leverage the latest DNN ar-
chitectures to improve ASR performance. Feature-level enhancement of dysarthric
speech was carried out (Bhat et al., 2018; Vachhani et al., 2017) [195, 16]. Deep
autoencoder (DAE) was trained with only unimpaired speech data and the bottle-
neck layer was used to enhance dysarthric speech data from the UA speech corpus.
Deep autoencoder (DAE) was trained with only unimpaired speech data, and the
bottleneck layer was used to enhance dysarthric speech data from the UA Speech
corpus (Vachhani et al., 2017) [195]. A TDNN denoising autoencoder (TDNN-
DAE) was used to enhance the dysarthric speech features. Unimpaired speech
and the corresponding tempo-adapted dysarthric speech were used to train the
TDNN-DAE. This methodology showed significant improvement in ASR perfor-
mance when evaluated for both SI and speaker adaptation–based ASR systems
(Bhat et al., 2018) [16]. The study by M. J. Kim, Cao, and Wang (2018) [104]
investigated the effectiveness of multiview representation learning using canonical
correlation analysis (CCA) for dysarthric speech recognition. A representation of
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acoustic data was learned using CCA from the multiview data, namely, acous-
tic and articulatory. The findings demonstrated that incorporating articulatory
information through CCA improves dysarthric speech recognition. The improve-
ment applied to various speech recognizers including GMM-HMM, DNN-HMM, and
LSTM-HMM, with LSTM-HMM achieving the overall best performance. Prananta
et al. (2022) [157] explored a novel approach for enhancing dysarthric speech recog-
nition by leveraging MaskCycleGAN methods, typically used for voice conversion.
This technique involves applying MaskCycleGAN to modify dysarthric speech fea-
tures, followed by dysarthric speech recognition. The performance was compared
with time stretching–based enhancement alone and showed marginal improvements
for mid- and high-severity dysarthric speech with high dependency on the temporal
structure of dysarthric speech, indicating that research efforts should be focused on
sequence-to-sequence–based architectures. In the study of Hernandez et al. (2022)
[64], the authors used various self-supervised acoustic representation learning tech-
niques such as speech features extracted from Wav2Vec2.0 (Baevski et al., 2020)
[9], Hubert (Hsu et al., 2021) [67], and the multi-lingual speech representation
(XLSR) models (Conneau et al., 2021) [29], to evaluate ASR performance for En-
glish, Spanish, and Italian dysarthric speech with the XLSR models performing the
best, indicating that the multilingual data that contained more variations of similar
phonemes could be a closer representation of dysarthric speech.

There have been various studies on improving the recognition of dysarthric
speech using different methods such as formant resynthesis, acoustic space mod-
ification, temporal adaptation, and DNN architectures. Some of the studies showed
significant improvement in the recognition of dysarthric speech using feature-level
enhancement using DAE and TDNN-DAE, and MaskCycleGAN-based methods.
The most recent studies also show the potential of self-supervised acoustic repre-
sentation learning techniques such as speech features extracted from Wav2Vec2.0
and XLSR models for improving the recognition of dysarthric speech across different
languages.

2.5.3 Data Augmentation

Data augmentation is yet another methodology that has gained popularity for
improving dysarthric speech recognition. Time and tempo-stretching of healthy
speech-based data augmentation for improving speech recognition were investigated
(Vachhani et al., 2018) [196]. In order to address ASR performance on severe
dysarthric speech, SD acoustic models based on phoneme-level speech tempo ratio
between typical and speaker-specific dysarthric speech were created to augment ex-
isting dysarthric speech (Xiong et al., 2019) [207]. Two separate augmentation poli-
cies involving speed, tempo, and vocal tract length perturbation applied on healthy
and dysarthric speech showed significant improvement in ASR performance (Geng
et al., 2020) [51]. Both speed perturbation and tempo modification involve altering
the speed of dysarthric speech. However, while speed perturbation affects the pitch
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of the speech, tempo modification maintains the original pitch. A transformation of
healthy speech to dysarthric speech using voice conversion–based techniques involv-
ing speaking rate modification, pitch modification, and spectral feature transforma-
tion using adversarial training has been employed to simulate training data using
healthy speech (Celin et al., 2020) [21]. Speech vision is a dysarthria-specific ASR
system that uses visual speech features combined with data augmentation with syn-
thetic dysarthric acoustic visuals and leveraging TL for improved ASR performance
(Shahamiri, 2021). In the study of Yue et al. (2022) [176], the authors explored
raw-waveform acoustic modeling to overcome any loss of information that happened
due to hand-crafted features for dysarthric speech recognition. Parametric CNNs
along with data augmentation were used to address the data sparseness issue. Sig-
nificant improvement in ASR performance for the TORGO data was achieved using
parametric CNNs and multistream acoustic modeling. Two-stage data augmenta-
tion comprising traditional static data augmentation, a TDNN-DAE–based and a
dynamic data augmentation scheme using modifications specifically designed for
dysarthric speech were used to improve ASR performance in the study of Bhat et
al. (2022) [17]. A deep convolution–based generative adversarial network (DC-
GAN) was used for tempo and speed perturbations in addition to learning hidden
unit contribution–based speaker adaptation (Jin et al., 2023). [76].

In summary, various data augmentation techniques have been proposed and ap-
plied to improve ASR performance for dysarthric speech. These techniques include
vocal tract length, speed, and tempo perturbations; DCGAN; SD acoustic models;
voice conversion–based techniques; visual speech features; raw-waveform acoustic
modeling; and parametric CNNs. These techniques have shown significant improve-
ment in ASR performance for dysarthric speech. Additionally, multistage data aug-
mentation techniques, including traditional data augmentation, TDNN-DAE–based
data augmentation, and dynamic data augmentation, have been proposed to im-
prove ASR performance further.

2.5.4 Transfer Learning

Traditional ASR models necessitate vast quantities of training data specific to the
target domain. In the case of dysarthric speech, collecting such extensive data
sets proves challenging due to cost and logistical constraints. TL emerges as an
effective strategy. In this approach, a model trained on one task (source domain)
is leveraged to improve performance on a related task (target domain) (Pan &
Yang, 2009) [143]. This proves particularly beneficial when acquiring data for the
target domain is expensive, time-consuming, or limited. TL enables researchers to
leverage knowledge acquired from a source domain rich in data (e.g., typical speech)
and strategically apply it to the target domain with limited data (e.g., dysarthric
speech). We present recent studies that leverage the TL technique to improve the
ASR performance for dysarthric speech.

Xiong et al. (2020) [208] have highlighted the importance of selecting an ap-
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acoustic data was learned using CCA from the multiview data, namely, acous-
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(XLSR) models (Conneau et al., 2021) [29], to evaluate ASR performance for En-
glish, Spanish, and Italian dysarthric speech with the XLSR models performing the
best, indicating that the multilingual data that contained more variations of similar
phonemes could be a closer representation of dysarthric speech.

There have been various studies on improving the recognition of dysarthric
speech using different methods such as formant resynthesis, acoustic space mod-
ification, temporal adaptation, and DNN architectures. Some of the studies showed
significant improvement in the recognition of dysarthric speech using feature-level
enhancement using DAE and TDNN-DAE, and MaskCycleGAN-based methods.
The most recent studies also show the potential of self-supervised acoustic repre-
sentation learning techniques such as speech features extracted from Wav2Vec2.0
and XLSR models for improving the recognition of dysarthric speech across different
languages.

2.5.3 Data Augmentation

Data augmentation is yet another methodology that has gained popularity for
improving dysarthric speech recognition. Time and tempo-stretching of healthy
speech-based data augmentation for improving speech recognition were investigated
(Vachhani et al., 2018) [196]. In order to address ASR performance on severe
dysarthric speech, SD acoustic models based on phoneme-level speech tempo ratio
between typical and speaker-specific dysarthric speech were created to augment ex-
isting dysarthric speech (Xiong et al., 2019) [207]. Two separate augmentation poli-
cies involving speed, tempo, and vocal tract length perturbation applied on healthy
and dysarthric speech showed significant improvement in ASR performance (Geng
et al., 2020) [51]. Both speed perturbation and tempo modification involve altering
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prove ASR performance further.
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Traditional ASR models necessitate vast quantities of training data specific to the
target domain. In the case of dysarthric speech, collecting such extensive data
sets proves challenging due to cost and logistical constraints. TL emerges as an
effective strategy. In this approach, a model trained on one task (source domain)
is leveraged to improve performance on a related task (target domain) (Pan &
Yang, 2009) [143]. This proves particularly beneficial when acquiring data for the
target domain is expensive, time-consuming, or limited. TL enables researchers to
leverage knowledge acquired from a source domain rich in data (e.g., typical speech)
and strategically apply it to the target domain with limited data (e.g., dysarthric
speech). We present recent studies that leverage the TL technique to improve the
ASR performance for dysarthric speech.

Xiong et al. (2020) [208] have highlighted the importance of selecting an ap-

35



2. Speech Technology for Automatic Recognition and Assessment of
Dysarthric Speech: An Overview

propriate source domain for TL in dysarthric speech recognition. The proposed
approach leveraged a pretrained, state-of-the-art CNN-TDNN-F ASR model, ini-
tially trained on a vast data set of typical speech (source domain). This model
served as a foundation for personalized recognition. To adapt it to the specificities
of dysarthric speech (target domain), the study employed neural network weight
adaptation with limited data from each individual speaker. Compared to conven-
tional SD training and data combination methods, this approach yielded an average
improvement of 11.6% and a relative improvement of 7.6%, as evaluated using the
UA Speech corpus. The study by Celin et al. (2023) [123] investigated data aug-
mentation for TL in ASR for continuous dysarthric speech. To bridge vocabulary
gaps, it augmented dysarthric speech with speed/volume variations, virtual micro-
phone arrays, and multiresolution features before transferring knowledge from a
pretrained normal speech model. This approach, evaluated on isolated and contin-
uous speech data sets, tackled out-of-vocabulary challenges, with an improvement
of 7.11% in WER for very low intelligibility categories. The authors proposed a
TL approach for dysarthric speech recognition using Whisper, a pretrained model
for various speech tasks (Rathod et al., 2023) [162]. Whisper’s transformer en-
coder module was used to extract relevant features for dysarthric word recognition.
This approach achieved an average accuracy of 59.78% on the UA Speech corpus
(155 words) using a BLSTM classifier. The authors hypothesized that the Whis-
per encoder effectively captures necessary speech information into a fixed-length
vector representation, termed “Whisper encoder features.” In summary, TL is a
valuable tool for improving dysarthric speech recognition systems and has been
shown to significantly reduce WER. Exploring different source domains, using data
augmentation techniques, and fine-tuning pretrained models are promising avenues
for further research in this area.

To summarize, ASR for dysarthric speech has seen advancements through var-
ious techniques such as speaker adaptation, speech enhancement, data augmenta-
tion, and TL. These approaches address challenges like limited data and achieve sig-
nificant improvements in recognition accuracy. A recurring issue in all the investiga-
tions pertaining to ASR for dysarthric speech is the limited availability of dysarthric
speech data for speaker adaptation. Substantial improvements were achieved with
some form of speaker adaptation in every study. However, we must acknowledge
that the performance of an ASR in an SI scenario is crucial for practical pur-
poses M. J. Kim et al. (2018) [104], demonstrate the effectiveness of convolutional
LSTM recurrent neural networks (CLSTM-RNNs) for recognizing dysarthric speech
in an SI manner. The authors hypothesized that CLSTM-RNNs could capture the
unique characteristics of dysarthric speech due to the combination of CNNs for ex-
tracting local features and LSTM-RNN temporal dependencies. The experiments
involved phoneme recognition of dysarthric speech from a data set collected from
nine patients. The results showed that CLSTM-RNNs outperformed both stan-
dard CNN and LSTM–RNN–based recognizers, with time-frequency convolutional
LSTM-RNNs achieving the best performance.
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2.6 Discussion and Conclusions

The objective of our research is to improve the quality of life for persons with
dysarthria through research into speech technology that will allow conversational
interactions for people with dysarthria. A clear understanding of the characteris-
tics of dysarthric speech is extremely important for this purpose. To make longer
and faster strides, researchers typically rely on existing research and data on a
global scale. Therefore, it is imperative to consolidate the existing research and
present it in a form that can serve as a basis for future work. In this review ar-
ticle, we review the contributions of speech technologists to the area of dysarthric
speech with a focus on acoustic analysis, speech features, and techniques used. It
can be observed that researchers have used various low-level as well as high-level
(derived) speech features such as prosodic, phonetic, articulatory, MFCC and its
variants, PLP, Teager energy, glottal pulses, and neural network–based features, of-
ten in combination. They have explored several classifiers and ASR configurations
to identify intelligibility as well as improve the performance of ASR. We note that
with the introduction of DNNs for speech processing, there has been a tremendous
effort to exploit these techniques for improving ASR and classifier performance for
dysarthric speech. However, researchers are limited by the availability of dysarthric
speech data, which in turn paves the way to research into data augmentation tech-
niques. It is also worth noting that most evaluations have been done on data col-
lected in a clinical setup. Trends from published research indicate that future work
in this area will be focused on the usability of DNN and novel speech features for
existing databases in languages such as English as well as low-resource languages.
Another avenue worth exploring would be capturing longitudinal dysarthric speech
data in real environments using non-intrusive data collection methods as conducted
in the Neurospeech project (Orozco-Arroyave et al., 2018) [142] and the homeService
corpus (Nicolao et al., 2016) [138].

Some of the challenges that are evident for research on dysarthric speech are:

• Limited data availability: This is a major hurdle across all areas of dysarthria
research. Collecting data, especially longitudinal data in natural environ-
ments, is expensive, time-consuming, and requires collaboration with special-
ists, specifically for clinical evaluation.

• Variability of dysarthria: Dysarthria manifests differently depending on the
underlying neurological condition. This variability makes it difficult to develop
one-size-fits-all solutions.

• Evaluation metrics: There is a lack of standardized metrics to objectively
assess dysarthria severity and treatment efficacy. This makes it challenging
to compare research findings across different studies.

• Clinical versus real-world use: Many studies evaluate interventions in con-
trolled clinical settings
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LSTM recurrent neural networks (CLSTM-RNNs) for recognizing dysarthric speech
in an SI manner. The authors hypothesized that CLSTM-RNNs could capture the
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tracting local features and LSTM-RNN temporal dependencies. The experiments
involved phoneme recognition of dysarthric speech from a data set collected from
nine patients. The results showed that CLSTM-RNNs outperformed both stan-
dard CNN and LSTM–RNN–based recognizers, with time-frequency convolutional
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However, these settings may not reflect the complexities of everyday communi-
cation.

Significant progress has been made in understanding and addressing dysarthria
through advancements in speech analysis, speech recognition, and assistive tech-
nologies. However, there is still a great deal of potential for improvement. To
further enhance communication accessibility and quality of life for individuals with
dysarthria, future research should focus on standardization of data collection: Es-
tablishing standardized protocols for collecting dysarthric speech data across dif-
ferent labs and languages would facilitate collaboration and development of more
generalizable models.

• Multimodal assessment: Integrating speech analysis with other modalities
such as facial expressions, electromyography, and brain imaging can provide a
more comprehensive understanding of dysarthria and inform treatment strate-
gies.

• Artificial intelligence (AI)–powered speech analysis: Deep learning techniques
hold promise for developing automated tools for dysarthria assessment, offer-
ing objective and efficient evaluations.

• Natural language processing (NLP) for augmentative and alternative com-
munication (AAC): NLP can be used to create more intuitive and user-
friendly AAC systems that can adapt to the specific needs of individuals with
dysarthria.

• Teletherapy and remote monitoring: Teletherapy using video conferencing
and remote monitoring with wearable sensors can improve access to care and
enable personalized interventions for dysarthria.

• Focus on low-resource languages and cultural considerations: Research should
be directed toward developing dysarthria assessment and communication tools
that cater to diverse languages and cultural contexts.

In conclusion, overcoming the challenge of limited data and exploring new av-
enues in data collection, AI-powered analysis, and teletherapy hold immense poten-
tial for significant advancements in dysarthria research. By focusing on these future
directions, researchers can develop more effective tools and interventions to improve
communication, quality of life, and overall well-being for people with dysarthria.

2.7 Data Availability Statement

This is a review article; hence, we do not have ownership of the data on which the
results are reported. The References section provides links to access the articles
reviewed.
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Table 2.1: Dysarthric Speech Corpora
Database Ctrl Dys Language Speech Type of Cause Severity Clinical

Spkr Spkr Material data & Type Intelligibility Eval
Whitaker
[33]

1 6 American
English • Alphabet letters, sin-

gle digits, Passage

• 10 control words and

• 36 words from Grand-
father passage

Audio CP, Spas-
tic • Mild -1

• Mild to moder-
ate -1

• Moderate -1

• Moderate to se-
vere -1

• Severe - 2

Nemours
[126]

- 11 American
English • 74 nonsense sentences

per speaker

• “Grandfather” pas-
sage and

• the “Rainbow” pas-
sage

Audio CP, Spas-
tic • I > 90 - 2

• 80 < I < 90 – 2

• 70 < I < 80 – 2

• 60 < I < 70 – 1

• 50 < I < 60 – 3

• missing info - 1

FDA

Universal
Access [95]

13 16 American
English • Digits (10 words X 3

reps)

• Letters (26 words X 3
reps)

• Computer Commands
(19 words X 3 reps)

• Common Words (100
words X 3 reps)

• Uncommon Words
(300 words X 1 rep)

Audio,
Video

CP, Spas-
tic • I > 85 - 5

• 55 < I < 85 – 3

• 25 < I < 45 – 4

• 0 < I < 25 – 4

TORGO
[168]

7 8 American
English • Non-words eg. repeti-

tions of /iy-p-ah/

• Short words

• Restricted sentences

• Unrestricted sen-
tences

Audio,
Video,
EMA

CP, ALS,
Spastic,
Mixed

• a – 3

• c– 2

• d/e – 3

FDA

ANH Cor-
pus [44]

160 601 French

• Sustained vowels

• Maximal phonation
time

• Airway interrupted
sentences to estimate

• Special sentences to
estimate velar leakage

• Text reading with sev-
eral speed instructions

• Spontaneous descrip-
tion of a picture

• DDK task

Audio,
Clinical,
Metadata

PD, Hy-
pokinetic

- UPDRS
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tablishing standardized protocols for collecting dysarthric speech data across dif-
ferent labs and languages would facilitate collaboration and development of more
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• Multimodal assessment: Integrating speech analysis with other modalities
such as facial expressions, electromyography, and brain imaging can provide a
more comprehensive understanding of dysarthria and inform treatment strate-
gies.

• Artificial intelligence (AI)–powered speech analysis: Deep learning techniques
hold promise for developing automated tools for dysarthria assessment, offer-
ing objective and efficient evaluations.

• Natural language processing (NLP) for augmentative and alternative com-
munication (AAC): NLP can be used to create more intuitive and user-
friendly AAC systems that can adapt to the specific needs of individuals with
dysarthria.

• Teletherapy and remote monitoring: Teletherapy using video conferencing
and remote monitoring with wearable sensors can improve access to care and
enable personalized interventions for dysarthria.

• Focus on low-resource languages and cultural considerations: Research should
be directed toward developing dysarthria assessment and communication tools
that cater to diverse languages and cultural contexts.

In conclusion, overcoming the challenge of limited data and exploring new av-
enues in data collection, AI-powered analysis, and teletherapy hold immense poten-
tial for significant advancements in dysarthria research. By focusing on these future
directions, researchers can develop more effective tools and interventions to improve
communication, quality of life, and overall well-being for people with dysarthria.
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Table 2.1: Dysarthric Speech Corpora
Database Ctrl Dys Language Speech Type of Cause Severity Clinical

Spkr Spkr Material data & Type Intelligibility Eval
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1 6 American
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gle digits, Passage

• 10 control words and

• 36 words from Grand-
father passage
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per speaker

• “Grandfather” pas-
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• the “Rainbow” pas-
sage

Audio CP, Spas-
tic • I > 90 - 2

• 80 < I < 90 – 2

• 70 < I < 80 – 2

• 60 < I < 70 – 1

• 50 < I < 60 – 3

• missing info - 1

FDA

Universal
Access [95]

13 16 American
English • Digits (10 words X 3

reps)

• Letters (26 words X 3
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• Computer Commands
(19 words X 3 reps)

• Common Words (100
words X 3 reps)

• Uncommon Words
(300 words X 1 rep)

Audio,
Video

CP, Spas-
tic • I > 85 - 5

• 55 < I < 85 – 3

• 25 < I < 45 – 4

• 0 < I < 25 – 4

TORGO
[168]

7 8 American
English • Non-words eg. repeti-

tions of /iy-p-ah/

• Short words

• Restricted sentences

• Unrestricted sen-
tences

Audio,
Video,
EMA

CP, ALS,
Spastic,
Mixed

• a – 3

• c– 2

• d/e – 3

FDA
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pus [44]

160 601 French

• Sustained vowels

• Maximal phonation
time

• Airway interrupted
sentences to estimate

• Special sentences to
estimate velar leakage

• Text reading with sev-
eral speed instructions

• Spontaneous descrip-
tion of a picture
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Audio,
Clinical,
Metadata

PD, Hy-
pokinetic

- UPDRS
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QoLT [25] 30 100 Korean

• 37 APAC words

• 100 machine com-
mands

• 36 Korean phonetic
alphabets

• Phonetically Bal-
anced Words

Audio CP, Spas-
tic • Mild -65

• Mild to moder-
ate - 23

• Moderate to se-
vere - 8

• Severe - 4

APAC

Cantonese
[205]

5 11 Cantonese

• 61 Word-level stimuli
23 short sentences

• Phonetically rich pas-
sage

• 5-minute conversation

Audio,
Video

CD,
Ataxic

- -

EST
Dutch
[213]

- 16 Dutch

• Dutch numbers

• 10 phonetically rich
sentences

• Plomp and Mimpen
sentences

• 50 most frequent ut-
terances

• from the Dutch Poly-
phone database

• 12 semantically un-
predictable sentences

• 12 interrogative sen-
tences

• 5 short texts

• 30 sentences with /t/,
/p/ and /k/

• in the initial position
and unstressed sylla-
ble

• 15 sentences with /a/,
/e/ and /o/

• in unstressed syllables

• 3 individual vowels
/a/, /e/ and /o/

• 15 bi-syllabic words

Audio PD CVA3
TBI Con-
genital

• Mild – 7

• Moderate – 8

• Moderate to se-
vere – 1

-

Tamil [2] 10 22 Tamil

• 103 isolated words

• 262 sentences

Audio CP, Spas-
tic • 1 – 3

• 2 – 5

• 3 – 7

• 4 – 3

• 5 – 2

• 6 – 2

·

NIEPMD
[0 to 6]
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Spanish
[141]

50 50 Spanish

• Sustained Spanish
vowels

• Spanish vowels with
changing tones

• DDK task

• Word-level stimuli

Audio PD, Hy-
pokinetic

- UPDRS,
Hoehn &
Yahr scale

Czech
[169]

23 23 Czech

• Isolated vowels

• Short sentences

• Short and Sponta-
neous monologue

Audio,
Video

PD, Hy-
pokinetic

- UPDRS
III, Hoehn
& Yahr
scale

German
[185]

40 138 German Complex sentences Audio PD, Hy-
pokinetic

- UPDRS
III, Hoehn
& Yahr
scale

EasyCall
[194]

24 31 Italian

• 37 commands

• 30 non-commands

Audio PD, Hunt-
ington’s,
ALS

• Mild – 16

• Mild to moder-
ate – 1

• Moderate – 7

• Moderate to se-
vere – 3

• Severe – 3

• Unknown – 1

TOM score
[1-5]

IDEA cor-
pus [122]

- 45 Italian 211 isolated words Audio 8 patholo-
gies

- -
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• 10 phonetically rich
sentences

• Plomp and Mimpen
sentences

• 50 most frequent ut-
terances

• from the Dutch Poly-
phone database

• 12 semantically un-
predictable sentences

• 12 interrogative sen-
tences

• 5 short texts

• 30 sentences with /t/,
/p/ and /k/

• in the initial position
and unstressed sylla-
ble

• 15 sentences with /a/,
/e/ and /o/

• in unstressed syllables

• 3 individual vowels
/a/, /e/ and /o/

• 15 bi-syllabic words

Audio PD CVA3
TBI Con-
genital

• Mild – 7

• Moderate – 8

• Moderate to se-
vere – 1

-

Tamil [2] 10 22 Tamil

• 103 isolated words

• 262 sentences

Audio CP, Spas-
tic • 1 – 3

• 2 – 5

• 3 – 7

• 4 – 3

• 5 – 2

• 6 – 2

·

NIEPMD
[0 to 6]
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Spanish
[141]

50 50 Spanish

• Sustained Spanish
vowels

• Spanish vowels with
changing tones

• DDK task

• Word-level stimuli

Audio PD, Hy-
pokinetic

- UPDRS,
Hoehn &
Yahr scale

Czech
[169]

23 23 Czech

• Isolated vowels

• Short sentences

• Short and Sponta-
neous monologue

Audio,
Video

PD, Hy-
pokinetic

- UPDRS
III, Hoehn
& Yahr
scale

German
[185]

40 138 German Complex sentences Audio PD, Hy-
pokinetic

- UPDRS
III, Hoehn
& Yahr
scale

EasyCall
[194]

24 31 Italian

• 37 commands

• 30 non-commands

Audio PD, Hunt-
ington’s,
ALS

• Mild – 16

• Mild to moder-
ate – 1

• Moderate – 7

• Moderate to se-
vere – 3

• Severe – 3

• Unknown – 1

TOM score
[1-5]

IDEA cor-
pus [122]

- 45 Italian 211 isolated words Audio 8 patholo-
gies

- -
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Table 2.2: Acoustic studies of dysarthric speech corpora
Task Speech Outcome

Features
Intelligibility Predic-
tion

F1 , F2 − F1, VOT, Nasality, Burst Spec-
trum, Voice Quality, Articulation, Prosody,
VSA, first-moment difference measures and
F2 trajectory characteristics for diphthongs

• Identified effective features for differentiating dysarthric
from normal speech with 74.8% accuracy [118]

• Established that intelligibility can be predicted by a
combination of these features, with articulation being
the strongest contributor and 75% agreement with hu-
man judgments of intelligibility (within a 95% confi-
dence range) [32]

• Intelligibility estimates were found to be correlated with
VSA, first-moment difference measures but not with F2
slope measures for diphthongs, and acoustic measures
of supraglottal behavior [190]

• Regression analysis for six words revealed that F2 slope
for only the words ‘shoot’ and ‘wax’ with r2 values
of 14.3% and 13.9% respectively, was significantly re-
gressed against scaled speech intelligibility [106].

• Listening tests by untrained listeners indicated that 50%
increments in duration and intensity are significantly
sufficient for improving listener accuracy. However, a
100% increment in F0 is necessary to significantly im-
prove the listener accuracy in a stress modification task
to improve the intelligibility of dysarthric speech [70]

Understanding
Prosody

F0 contour, Syllable Duration

• Revealed F0 contour’s role in prosody for dysarthric
speech [149]

Dysarthria Classifica-
tion

Voice Quality, Articulation, Nasality,
Prosody, Articulation Rate, Voiceless Inter-
val Duration, Intensity Range, F0 Range,
Vowel Space, Traditional Rhythm Metrics,
Novel Combined Segment Metrics, EMS

• Identified potential acoustic measures for different
dysarthria types and classification of type, severity, and
cause. Accuracy of 68.6% by disease (etiology), 31.7%
by type, and 54.9% by severity [107].

• Demonstrated rhythmic patterns for dysarthric classifi-
cation. Most classification methods achieved 80% accu-
racy, and even with stricter cross-validation techniques,
the accuracy remained above 70% [116].

• An automated analysis of speech EMS, which quanti-
fies the rhythmicity of speech within specified frequency
bands achieved 84%–100% classification accuracy for
group membership [117].

Comparative Analysis F0, F1, F2, F3, VOT, Spectral Varia-
tions, Duration, Intensity, Speaking Rate
(Dysarthric vs Normal Speech), F0 (Declar-
ative vs Interrogative Sentences), Frequency,
Intensity Contrasts (Sentence Accent)

• Compared various acoustic features of dysarthric and
normal speech [93].

• Found reduced difference in intonation range of 25Hz for
dysarthric speech versus 83Hz for healthy speech in the
last syllables of interrogative and declarative sentences.
Reduced speech rate variability in dysarthric speech was
also observed [35].

• Identified different strategies for sentence accent pro-
duction. Both healthy and dysarthric speaker groups
use F0 and intensity changes within the target syllable,
as well as the contrast of the maximum F0 with the
previous syllable and an intensity contrast with the rest
of the sentence and the percentage of correct classifi-
cation between accented and unaccented syllables can
reach values above 78.8% [125]

Impact of Speech
Compression

Mean HNR, Voiced/Unvoiced Frames, Pitch
Statistics, VSA, Jitter, Shimmer, CPP, GoP

Analyzed effects of compression on various acoustic features
of dysarthric speech [192].
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Table 2.3: Dysarthria severity level Identification
Task Database Features Classifier/technique Outcome (Accuracy)

Non-reference based Approaches
Intelligibility
Prediction [68]

UA Speech P.563, delta Energy
Features, LP features,
Kurtosis of spectral
flatness

P.563 standard for
blind speech quality
assessment, Linear
regression

Kurtosis of spectral flatness
ranked best among all the
features explored. RMSE
for the baseline P.563 fea-
tures was 18.3%, for pro-
posed features SD classifi-
cation 14% and SI scenario
14.3%.

Intelligibility
Prediction [41]

UA Speech Kurtosis of the LP
residual, long and
short-term temporal
dynamics, nasality,
and prosody features

RMSE of the proposed
composite measure

A composite measure was
developed based on linearly
combining a salient subset
of the proposed measures
and conventional prosody-
related measures. A corre-
lation of 97% was achieved
using the proposed compos-
ite measure.

Intelligibility as-
sessment [11]

NKI CCRT Acoustic cues at
different time scales
(phonetic, segmental,
suprasegmental)

SVM classifiers, en-
semble learning

Highest recall rate of 84.8%
for ensemble learning versus
the baseline of 65.1%.

Reference-Based using Non-Deep Learning
Intelligibility
Prediction [130]

Flemish patho-
logical speech

GMM-based super-
vector, phonological
features

SVR and late fusion A drop of the RMSE by
about 8% relative as com-
pared to the baseline

Intelligibility as-
sessment [96]

QoLT Phonetic quality,
prosody, voice quality
features

Feature selection,
SVR

RMSE of 8.1 with subjec-
tively rated scores

Dysarthria Clas-
sification [31]

Nemours Rhythm metrics based
on vocalic/consonant
intervals

Gaussian-Bayes classi-
fication

Rhythm metrics based on
durational characteristics
of vocalic and intervocalic
intervals and Pairwise
Variability Index using
both their raw and nor-
malized measures are not
very promising to express
the severity level of the
dysarthria impairment.

Intelligibility
Prediction [124]

UA Speech i-vectors derived from
PLP features

SVR Minimum RMSE of 0.2728

Dysarthria
severity Classifi-
cation [80]

Nemours Jitter, Shimmer,
mean Pitch, the
standard deviation
of Pitch, number of
Periods, standard de-
viation of Period, the
proportion of the Vo-
calic duration (%V),
HNR (dB), Noise to
Harmonics Ratio (%),
Articulation Rate,
and degree of voice
breaks followed by
LDA

SVM Best classification rate with
LDA/SVM system of 93%
that was achieved over four
severity levels of dysarthria
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• Found reduced difference in intonation range of 25Hz for
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last syllables of interrogative and declarative sentences.
Reduced speech rate variability in dysarthric speech was
also observed [35].

• Identified different strategies for sentence accent pro-
duction. Both healthy and dysarthric speaker groups
use F0 and intensity changes within the target syllable,
as well as the contrast of the maximum F0 with the
previous syllable and an intensity contrast with the rest
of the sentence and the percentage of correct classifi-
cation between accented and unaccented syllables can
reach values above 78.8% [125]

Impact of Speech
Compression
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Statistics, VSA, Jitter, Shimmer, CPP, GoP

Analyzed effects of compression on various acoustic features
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that was achieved over four
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Intelligibility
Classification
[97]

• NKI
CCRT

• TORGO

Prosodic (pitch re-
lated), voice quality
(HNR), jitter and
shimmer), pronuncia-
tion features (MFCC
and phone duration)

LDA, SVM, k-nearest
neighbor (KNN) • NKI CCRT: 73.5%

for unweighted, and
72.8% for weighted
average recalls of the
binary classes using
SVM.

• TORGO: 94.1% accu-
racy with pronuncia-
tion feature set with
an LDA classifier.

Dysarthric
Speech Classifi-
cation [134]

TORGO Glottal parameters,
acoustic features us-
ing OpenSMILE

SVM 70% accuracy using glot-
tal features and a small
improvement of 0.5% by
adding OpenSMILE fea-
tures

Intelligible
Speaking rate
[202]

12 participants
with ALS and 2
normal subjects

Acoustic, lip move-
ment, and tongue
movement

SVM R²: 0.712, RMSE: 37.562
WPM

Dysarthria Clas-
sification [62] • TORGO

• QoLT

Prosody, voice quality,
MFCC features

Random Forest, SVM,
Neural Network • TORGO: An accuracy

of 75.63% using a neu-
ral network classifier,
a relative accuracy in-
crease of 18.13% in
comparison to base-
line MFCC features.

• QoLT: RF classifier
trained on all acous-
tic features leads to
the highest accuracy
of 70.10%, a relative
accuracy increase of
16.83% compared to
baseline

Dysarthria
Severity Assess-
ment [63]

• TORGO

• QoLT

Standard prosodic fea-
tures, Rhythm-based
features

RF, SVM, ANN

• TORGO: Increase of
4.1% and 3% in detec-
tion and severity task
respectively.

• QoLT: 7.5% and
15% in detection and
severity assessment
respectively

Dysarthria de-
tection [73] • PC-GITA

• MoSpeeDi

• UA-
Speech

Spectral Subspaces,
Temporal Subspaces,
MFCC

SVM, GDA Best performance with tem-
poral GDA

• PC-GITA: 82.0 ± 3.5

• MoSpeeDi: 80.5 ± 4.7

• UA-Speech: 96.3
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ALS Severity
Prediction[136]

Data col-
lected between
September 2020
and March 2021
in cooperation
with Everything
ALS and the
Peter Cohen
Foundation

Acoustic: rate, dura-
tion, voicing, Visual:
jaw & lip statistics
(higher-order)

Statistical Analysis,
LASSO-LARS Re-
gression

Mean Receiver operat-
ing characteristics (ROC)
curves for the classification
experiments encapsulating
sensitivities and specifici-
ties:

• Bulbar vs Control:
0.92± 0.6

• Bulbar vs pre-bulbar:
0.81± 0.12

• Pre-bulbar vs Con-
trol: 0.62± 0.14

Dysarthria
severity Classifi-
cation [3]

Nemours Prosody, spectral,
cepstral, and voice
quality features fol-
lowed by seven feature
selection methods

Six classifiers: SVM,
LDA, ANN, CART,
NB, and RF

The classification accuracy
ranges from 40.41% to
95.80%,

Reference-Based using Deep Learning
ALS detection
[201]

Unpublished MFCC, formant cen-
tralization ratio, VSA,
intonation, prosody,
Articulatory (lip &
tongue motion)

SVM, DNN Leave-one-subject-out:

• SVM: 80.91%

• DNN: 96.57%

Severity predic-
tion [193]

Arizona State
University

Envelope modula-
tion spectrum, The
long-term average
spectrum features
and MFCC statistics,
Dysphonia features,
Correlation structure
features and MFCC

DNN and an interme-
diate DAB (seminal
work of Darley, Aron-
son, and Brown)
representation in-
terpretable to most
clinicians that work
with pathological
speech

Joint training strategy
yields the best performance
and provides the best pre-
dictive ability

Severity Level
Classification
[15]

• UA Speech

• TORGO

Audio descriptors,
multi-tapered spectral
estimation

ANN

• UA Speech: 96.44%

• TORGO: 98.7%

ALS detection
[6]

Unpublished 7755 acoustic features
using OpenSMILE
such as MFCC, and
the quartile of the F0
contour, filter-bank
for CNN representa-
tion learning

ANN with statistical
features, Time-CNN,
Frequency-CNN

The best actual person-level
performances are

• ANN:74.6% (baseline)

• Frequency-
CNN:84.6%

• Time-CNN:80.8%

Intelligibility Es-
timation [23] • UA Speech

• TORGO

Joint spectro-
temporal features
from the Mel-scale
spectrogram

ANN, CNN Time-Frequency CNN per-
formed best (captured spec-
tral & temporal variations)
with an accuracy of 98.3%
for known and 54% for un-
known speakers.
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The best actual person-level
performances are

• ANN:74.6% (baseline)
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• Time-CNN:80.8%

Intelligibility Es-
timation [23] • UA Speech
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Intelligibility
Classification
[12]

TORGO MFCC, log filter
banks, i-vectors

BLSTM networks, TL TL with pre-trained mod-
els yielded best results with
98.2% accuracy

Intelligibility
Assessment [22] • UA Speech

• TORGO

STFT, Single fre-
quency filtered (SFF),
Perceptually en-
hanced spectrograms,
Constant-Q spectro-
grams

CNN

• UA Speech: CQT rep-
resentation performs
best with an accuracy
of 98% and 95.8%
for female and male
speakers respectively

• TORGO: CQT-
SPEC12-24-48 per-
formed best with
72.6% average RMS
for word-level and
78.5% for sentence-
level

Dysarthria
Severity Classi-
fication [77]

· UA Speech MFCCs, constant-Q
cepstral coefficients,
speech disorder fea-
tures, i-vectors

DNN, CNN, GRU,
LSTM

DNN using MFCC-based i-
vectors outperformed oth-
ers with a 93.97% accuracy
under the SD scenario and
49.22% under the SI sce-
nario for the UA Speech
database.

· TORGO
Dysarthria De-
tection [209]

Collected at Ari-
zona State Uni-
versity

Mel-spectrogram, Ar-
ticulatory Precision,
Consonant-Vowel
(CV) Transition Pre-
cision, Hypernasality,
Vocal Quality

DNN with inter-
pretable bottleneck
layer

• Sample Level: 83.97±
4.4%

• Speaker Level:
94.71± 5.15%

Generalizable
Intelligibility
Assessment
[211]

Not specified MFCC, spectral repre-
sentations

Deep Learning models Doctoral thesis
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Table 2.4: ASR for dysarthric speech
Database Features Speech Tech Accuracy/WER

Speaker Adaptation

TORGO MFCC features, lexical
model adaptation

HMM-based ASR, MLLR,
MAP adaptation

Significant improvement for low-moderate severity
speakers with an average accuracy of mean word recog-
nition accuracy of the speaker-adapted ASR systems
68.39% [128]

UA Speech PLP features, MFCC HMM-GMM based ASR,
MLLR, MAP adaptation

Improved recognition for low-moderate severity with an
average of best accuracy of 54.1% [27]

UA Speech PLP coefficients Background interpolated
MAP (BI-MAP), HMM-
GMM based ASR. Several
BI-MAPs were investigated.

8% absolute and up to 40% relative, over the standard
MAP adapted baseline [181]

QoLT MFCC features, dysarthric
speaker severity level

HMM-GMM based ASR,
MLLR, MAP adaptation

For mild speakers 13.9% relative WER reduction were
obtained when using 100 adaptation data. [102]

TIMIT (source
model) TORGO
(source model)
Nemours(target
model)

MFCC HMM-GMM based ASR,
MLLR, constrained MLLR
(CMLLR)

The WERs of the two source models are different,
with the TORGO being better for recognizing severe
dysarthric speech while TIMIT is better for recognizing
mild dysarthric speech. [133]

UA Speech MFCC- 12 coefficients, their
first and second derivatives,
and all the acoustic features

ANN The word recognition rate (WRR) SI ASR model: aver-
age of 68.38%. The highest WRR of speaker-dependent
ASR models was 95% [177].

UA Speech MFCC HMM-GMM based ASR,
maximum likelihood, MAP
adaptation, background
model

11.5% relative improvement compared to the baseline
[26]

ATR Japanese Short-term Mel spectra,
Convolutive Bottleneck
Network (CBN) features

HMM-GMM based ASR,
CBN

Word recognition accuracy Baseline (MFCCs): 84.3%
CBN: 88.0% [135]

UA Speech Jitter, shimmer, multi-
taper MFCC features

GMM-HMM-based ASR,
DNN-HMM-based ASR,
fMLLR speaker adaptation

Fusion of MT-MFCC, jitter and shimmer (VPJitShim)
features show a relative improvement of 8.4% in GMM-
HMM-based system and 10.7% in DNN-HMM-based
system over the baseline MFCC features [13]

QoLT DNN posteriors HMM with KL-divergence
based emission probabili-
ties, Bayesian estimation,
L2 and lexical regulariza-
tion

Baseline DNN-HMM: 15.6% KL-HMM: 8.8% [103]

EST Dutch MFCC Multi-stage DNN training,
fMLLR

An absolute improvement of WER of 6.3% using 2 stage
training as compared to the baseline of single stage
training with dysarthric data alone [220]

Unpublished (4
speakers)

MFCC, i-vectors Kaldi ASR, Lattice-free
maximum mutual informa-
tion (LF-MMI) model

Average absolute improvement in WER of 15.7% across
4 speakers [187]

UA Speech fMLLR adaptation network
for Wav2Vec2

Wav2Vec2 with adaptation
network for feature fine-
tuning

57.72% WER (high severity), improved across all sever-
ity levels [10]

UA Speech Spectral and temporal fea-
tures

Deep Embedding Features
with DNN/TDNN & Con-
former

25.05% WER (test set) [52]

Speech Enhancement

TORGO Filter bank GMM based resynthesis,
Acoustic space modification
(temporal & frequency mor-
phing)

The proportion of words correctly recognized increased
up to 121% from 72.7% to 87.9% relative to the orig-
inal speech, across various parameterizations of the
recognizer[167]

UA Speech (par-
tial)

MFCC Temporal adaptation,
GMM-HMM & DNN-
HMM-based ASR, MLLT
and fMLLR

DNN-HMM: Highest relative WER improvement of
48.44 % for SI scenario, 20.48% for SA and 17.65% for
unseen data [14]

UA speech (par-
tial)

MFCC, temporal adapta-
tion, DAE bottleneck fea-
tures

DNN-HMM-based ASR,
DAE

An overall absolute improvement of 16% was achieved
using tempo adaptation followed by autoencoder-based
speech front-end representation for DNN-HMM-based
dysarthric speech recognition [195].

Unpublished

• Acoustic: MFCCs
with derivatives.

• Articulatory: Co-
ordinates of tongue
and lip sensors (after
Procrustes normaliza-
tion).

• CCA-transformed
acoustic features.

GMM-HMM, DNN-HMM,
and LSTM-HMM speech
recognizers. 6-fold SI cross-
validation

PER (Acoustic+ 50 dimensional CCA):

• GMM-HMM: 42.1

• DNN-HMM: 36.2

• LSTM-RNN-HMM:34.8

[105]
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Intelligibility
Classification
[12]

TORGO MFCC, log filter
banks, i-vectors

BLSTM networks, TL TL with pre-trained mod-
els yielded best results with
98.2% accuracy

Intelligibility
Assessment [22] • UA Speech

• TORGO

STFT, Single fre-
quency filtered (SFF),
Perceptually en-
hanced spectrograms,
Constant-Q spectro-
grams

CNN

• UA Speech: CQT rep-
resentation performs
best with an accuracy
of 98% and 95.8%
for female and male
speakers respectively

• TORGO: CQT-
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72.6% average RMS
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78.5% for sentence-
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Dysarthria
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cepstral coefficients,
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Table 2.4: ASR for dysarthric speech
Database Features Speech Tech Accuracy/WER
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Unpublished Log Mel-filterbank energy
and its derivatives

GMM-HMM (baseline),
DNN-HMM, CNN-HMM
(different types: F-CNN,
T-CNN, TF-CNN, PTF-
CNN), and CLSTM-RNN.
Used leave-one-subject-out
cross-validation for SI
recognition

TF-CLSTM-RNN achieved the best overall accuracy
PER:

• Session wise: 30.6%

• Across intelligibility: 35.4%

[104]

UA speech (par-
tial)

MFCC, temporal adapta-
tion, bottleneck features

DNN-HMM-based ASR,
Time-Delay Neural Net-
work Denoising Autoen-
coder (TDNN-DAE)

Absolute improvements of 13% and 3% were observed
in the ASR performance for SI and SA systems respec-
tively as compared with unenhanced dysarthric speech
recognition [16].

UA Speech Mel-generalised cepstrum
(MCEP), F0 features,
Mel-spectrogram features
from MelGAN

MaskCycleGAN, MelGAN,
Fill-in-the-frame data aug-
mentation (FIF DA)

4.8% absolute improvement in the case of the male
speakers, and 10.8% absolute improvement in the case
of the female speakers [157].

UA Speech, PC-
GITA, EasyCall

Wav2Vec2.0, Hubert, XLSR
features

Self-supervised acoustic
representation learning,
End-to-end ASR (ESPnet)

XLSR models performed best for all 3 databases. WER

UA speech: 26.1% with SA, PC-GITA-PD: 12.9% with
EasyCall-PD: 16.5% [64]

Data Augmentation

UA Speech (par-
tial)

MFCC Time/tempo stretching,
DNN-HMM-based ASR,
fMLLR

Absolute improvement in WER

· Tempo based DA: 4.24%
· Speed based DA: 2% [196]

UA Speech MFCC Interpolation followed by
downsampling for tempo
adjustment, DNN-HMM-
based ASR with TDNN

Best overall WER of 27.88% [207]

UA Speech MFCC Speed, tempo, and VTLP-
based augmentation.
(LHUC) based speaker
adaptive and multi-task
learning (MTL)-based
training for DNN

2.92% absolute (9.3% relative) word error rate (WER)
reduction over the baseline system without data aug-
mentation, and gave an overall WER of 26.37% [51]

UA Speech,
Tamil dysarthric
speech corpus

MFCC Virtual linear microphone
array-based synthesis fol-
lowed by multi-resolution
feature extraction (MRFE),
DNN-HMM-based ASR sys-
tem

A reduced WER of up to 32.79% and 35.75% for low
and very low intelligible speakers [21]

UA Speech Voice grams Visual data augmentation,
Speech vision ASR using
Spatial Convolutional Neu-
ral Network (S-CNN)

Absolute average WRAs of 64.71% with DA [176]

TORGO Raw waveform features,
data augmentation

Parametric CNNs, multi-
stream acoustic modelling

WER:

Parametric CNN: 36.2% (3.4% absolute error reduction)
Multi-stream acoustic modelling: 33.2% [218]

UA Speech Mel filter bank, TDNN-DAE, speed, tempo,
and loudness based DA,
specialized Spec Augment.
End-to-end ASR (ESPnet)

WER:

An absolute improvement of 16% with a final WER of
20.6% with DA [17]

UA Speech Wav2vec 2.0 embedding fea-
tures

Variational auto-encoder
generative adversarial net-
work (VAE-GAN)-based
DA, LF-MMI factored
TDNN, LHUC-SAT, ESP-
net toolkit

WER:

27.78%, with 57.31% on the subset of speakers with
“Very Low” intelligibility [76]

Transfer Learning

UA Speech CNN-TDNN-F features DNN 11.6% average improvement [208]
Various Speed/volume variations,

VM-MRFE
DNN Improved performance for low intelligibility [123]

UA Speech (155
words)

Whisper features, BLSTM DNN 59.78% average accuracy [162]
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3. Automatic Assessment of Intelligibility of Dysarthric Speech

3.1 Automatic Assessment Of Dysarthria Sever-

ity Level Using Audio Descriptors

Dysarthria is a motor-speech impairment, often characterized by speech that is
generally indiscernible by human listeners. Assessment of the severity level of
dysarthria provides an understanding of the patient’s progression in the under-
lying cause and is essential for planning therapy, as well as improving automatic
dysarthric speech recognition. In this chapter, we propose a non-linguistic manner
of automatic assessment of severity levels using audio descriptors or a set of features
traditionally used to define timbre of musical instruments and have been modified
to suit this purpose. Multi-tapered spectral estimation-based features were com-
puted and used for classification, in addition to the audio descriptors for timbre. An
Artificial Neural Network (ANN) was trained to classify speech into various sever-
ity levels within the Universal Access dysarthric speech corpus and the TORGO
database. An average classification accuracy of 96.44% and 98.7% was obtained for
the UA Speech corpus and the TORGO database, respectively.

3.1.1 Introduction

Dysarthria is a motor speech impairment, often characterized by speech that is
indiscernible by human listeners. Dysarthria is generally caused by neurological
diseases such as amyotrophic lateral sclerosis, PD, cerebral palsy, or neurological
trauma, manifesting as weakness, paralysis, or a lack of coordination of the motor-
speech system, resulting in a reduction in intelligibility, audibility, naturalness, and
efficiency of vocal communication. Assessment of the severity level of dysarthria
could be treated as a diagnostic step and is crucial to understanding the patient’s
progression in the underlying cause, to make clinical decisions regarding the course
of therapy or medication, as well as to plan speech therapy sessions whenever ap-
plicable. Severity assessment is generally conducted by trained speech-language
pathologists, but it can be expensive and may vary between practitioners due to the
use of a combination of standardized and non-standardized methods during therapy
[94, 60]. On the other hand, an objective severity assessment has the advantage
of being cost-effective, repeatable, and paves the way for further automation such
as improved speech recognition of dysarthric speech. An understanding of sever-
ity has contributed to improved speech recognition of dysarthric speech as seen
in [102, 174, 132]. In general, speech intelligibility has been used as an indicator
of the severity of speech disorders [120]. Automatic intelligibility assessment of
pathological speech has been carried out broadly by either (a) Automatic Speech
Recognition (ASR) based methods that require reference data as well linguistic
know-how [129, 120, 36] or (b) blind intelligibility assessment [11, 100, 69]. In [130],
authors discuss the applicability of acoustic and phonological ASR-free features
for intelligibility assessment. The authors discuss the classification of pathologi-
cal speech as intelligible or non-intelligible using scores from the fusion of multiple
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subsystems addressing various aspects of speech such as phonological, intonation,
etc. in [96]. Literature indicates that research is trending toward moving away
from language-specific ASR-based methods to language-independent automatic in-
telligibility assessment. While speech quality and intelligibility are closely related,
their relationship is not trivial. Frenchay Dysarthria Assessment (FDA) [37] de-
fines several parameters that need to be considered for automatic assessment of
the severity level of dysarthria, of intelligibility is but one. For PD, voice quality
symptoms are visible earlier than intelligibility symptoms. Hence, it is desirable
to assess dysarthria severity level using the speech utterance at the voice quality
level, in addition to the granular level of articulatory accuracy. In this chapter,
we propose the applicability of a set of acoustic descriptors that have been used
to characterize the timbre of a musical instrument [152]. Timbre is the quality of
music or voice that renders each one distinct. We investigate the use of features
suggested in [152] for dysarthria severity classification. Additionally, we compute
the acoustic descriptors using a multi-taper-based spectral estimation [189] for im-
proved spectral resolution. Significant improvement in severity level assessment
was seen using the multi-taper-based timbre acoustic descriptors as compared to
the work in literature, wherein authors reported 95% classification accuracy using
feature fusion on the Universal Access (UA) Dysarthric Speech Corpus [69] and in
[79] authors reported 93.2% correct classification rate of dysarthria severity levels
on the TORGO and the Nemours database.

The rest of the chapter is organized as follows. Section 3.1.2 describes the audio
descriptors and their role in dysarthric speech severity classification, Section 3.1.3
discusses the severity classification methodology and a description of the data used,
Section 3.1.4 discusses the experimental setup used, Section 3.1.5 describes the
results and analysis and we conclude in Section 3.1.6.

3.1.2 Audio Descriptors

In this chapter, we use audio descriptors that have been designed for timbre charac-
terization of a musical instrument as a set of features for dysarthric speech severity
classification. Timbre is a multidimensional attribute encompassing a set of au-
ditory descriptors, in addition to pitch, loudness, duration, and spatial position
[152]. In [152], authors define a set of audio descriptors that can be categorized
into global descriptors, that are computed across the utterance and time-varying
descriptors, that are extracted within each frame of the utterance. Audio descrip-
tors are computed using various representations of the speech utterance such as (1)
Temporal Energy Envelope (2) Short-term Fourier transform (STFT) (3) Equiva-
lent rectangular Bandwidth (ERB) based auditory model and (4) Harmonics. For
each audio descriptor, as shown in Table 3.1, median and interquartile range have
been considered.
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3.1 Automatic Assessment Of Dysarthria Sever-
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subsystems addressing various aspects of speech such as phonological, intonation,
etc. in [96]. Literature indicates that research is trending toward moving away
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descriptors and their role in dysarthric speech severity classification, Section 3.1.3
discusses the severity classification methodology and a description of the data used,
Section 3.1.4 discusses the experimental setup used, Section 3.1.5 describes the
results and analysis and we conclude in Section 3.1.6.

3.1.2 Audio Descriptors

In this chapter, we use audio descriptors that have been designed for timbre charac-
terization of a musical instrument as a set of features for dysarthric speech severity
classification. Timbre is a multidimensional attribute encompassing a set of au-
ditory descriptors, in addition to pitch, loudness, duration, and spatial position
[152]. In [152], authors define a set of audio descriptors that can be categorized
into global descriptors, that are computed across the utterance and time-varying
descriptors, that are extracted within each frame of the utterance. Audio descrip-
tors are computed using various representations of the speech utterance such as (1)
Temporal Energy Envelope (2) Short-term Fourier transform (STFT) (3) Equiva-
lent rectangular Bandwidth (ERB) based auditory model and (4) Harmonics. For
each audio descriptor, as shown in Table 3.1, median and interquartile range have
been considered.
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Table 3.1: Audio descriptors used for severity classification
Serial Audio Serial Audio

Number Descriptor Number Descriptor
1 Attack 17 Spectral Slope
2 Decay 18 Spectral Decrease
3 Log-Attack time 19 Spectral Rolloff
4 Attack-slope 20 Spectro-temporal variation
5 Decrease slope 21 Frame energy
6 Temporal Centroid 22 Spectral Flatness
7 Effective Duration 23 Spectral Crest
8 Frequency of Energy Modulation 24 Harmonic Energy
9 Amplitude of Energy Modulation 25 Noise Energy
10 RMS-Energy Envelope 26 Noisiness
11 Autocorrelation-12 coefficients 27 Fundamental Frequency
12 Zero Crossing Rate 28 Inharmonicity
13 Spectral Centroid 29 Tristimulus (3 coefficients)
14 Spectral Spread 30 Harmonic Spectral Deviation
15 Spectral Skewness 31 Odd to Even Harmonic Ratio
16 Spectral Kurtosis

3.1.2.1 Multi-taper Spectral Estimation

In our work, we investigate the usage of multi-taper spectral estimation to compute
STFT and Harmonic-based features. Conventional spectral estimation of speech
uses a Hamming window or a single taper. Using a single taper windowing results
in a significant portion of the signal being discarded and the data points at the
extremes being down-weighted, giving a high variance for the direct spectral esti-
mate [158]. Hence, a multi-taper method is used so that the statistical information
lost by using just one taper is partially recovered by using multiple windows for
the same duration. The multi-taper spectrum is thus a weighted sum of the several
tapered periodograms. Spectral estimation of a signal S using multi-taper method
is as follows,

S(m, k) =
1

M

M−1∑
p=0

λ(p)
N−1∑
j=0

wp(j)s(m, j)e−i2π k
N
j (3.1)

where wp(j) is the pth data taper function, M is the number of tapers and λ(p) is
the weight corresponding to the pth taper, N is the speech frame length, s(m, j) is
the jth speech frame and k is the FFT points. In practice, weights are designed to
compensate for increased energy loss at higher-order tapers.

10 feature sets have been used for dysarthria severity classification is as shown
in Table 3.2.
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Table 3.2: Feature sets for severity classification
Feature Dimension Input Acoustic
Set Representation Descriptors
F1 22 Temporal Energy Envelope 1-10
F2 26 Audio Signal 11-12
F3 22 STFT – Magnitude 13-23
F4 22 STFT – Power 13-23
F5 22 ERB – FFT 13-23
F6 22 ERB – Gammatone 13-23
F7 38 Harmonic 15-31
F8 22 Multi-taper Magnitude 13-23
F9 22 Multi-taper Power 13-23
F10 38 Multi-taper Harmonic 15-31

3.1.3 Severity Classification

In this chapter, an Artificial Neural Network (ANN) has been used as a classifier
for dysarthria severity classification. The ANN consists of three layers: an input
layer, a hidden layer, and an output layer. The input layer comprises I nodes
equivalent to the dimension of the input feature set being used and the output
layer comprises K nodes, the number of classes into which dysarthria severity is
classified by the classifier. The number of nodes in the hidden layer J is varied
based on the dimension of the input feature set being used. ANN configuration is
as shown in the Figure 3.1.

3.1.3.1 Data

The proposed technique was validated using two different dysarthric databases, i.e.,
(a) the Universal Access (UA) Dysarthric Speech Corpus [95] and (b) the TORGO
database [168].

• The UA Dysarthric Speech Corpus:
The UA speech corpus comprises data from 13 healthy control (HC) speakers
and 15 dysarthric (DYS) speakers with cerebral palsy. The recording material
consisted of 455 distinct words with 10 digits, 26 international radio alphabet
letters, 19 computer commands, 100 common words and 300 uncommon words
that were distributed into three blocks. Three blocks of data were collected for
each speaker such that in each block, the speaker recorded the digits, radio
alphabets, computer commands, common words and 100 of the uncommon
words. Thus each speaker recorded 765 isolated words. Speech intelligibility
ratings for each dysarthric speaker, as assessed by five naive listeners are also
included in the corpus. Speakers were divided into four different categories
based on the intelligibility, namely high, mid, low, and very low. We use this
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layer comprises K nodes, the number of classes into which dysarthria severity is
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as shown in the Figure 3.1.
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The UA speech corpus comprises data from 13 healthy control (HC) speakers
and 15 dysarthric (DYS) speakers with cerebral palsy. The recording material
consisted of 455 distinct words with 10 digits, 26 international radio alphabet
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that were distributed into three blocks. Three blocks of data were collected for
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Figure 3.1: ANN configuration for severity classification

information to classify dysarthria severity levels.

• TORGO:
The TORGO database of dysarthric articulation consists of aligned acous-
tics and measured 3D articulatory features from speakers with either cerebral
palsy (CP) or amyotrophic lateral sclerosis (ALS). The TORGO database
consists of 8 dysarthric (DYS) speakers (three females and five males) and
seven non-dysarthric or healthy control (HC) speakers (three females and
four males) as a control group. The acoustic data were recorded through two
different microphones; an array microphone with eight recording elements
placed at a distance of 61 cm facing the speaker, and a head-mounted micro-
phone. The corpus consists of (1) non-words, (2) Short words such as digits,
international radio alphabet letters, (3) Restricted sentences, (4) Unrestricted
sentences. The motor functions of every subject were assessed according to
the standardized Frenchay Dysarthria Assessment (FDA) [37] by a speech-
language pathologist. FDA measures 28 relevant perceptual dimensions of
speech grouped into eight categories, namely reflex, respiration, lips, jaw, soft
palate, laryngeal, tongue, and intelligibility.

The speaker-wise severity classification for both the UA Speech and the TORGO
database is shown in Table 3.3. The severity classification for the UA speech
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database is based on intelligibility, whereas for the TORGO database, the over-
all FDA score for the dysarthric speakers as per [79] is used.

Table 3.3: Speaker-wise severity distribution for the UA Speech and the TORGO
database (F** for female speakers, M** for male speakers)

Severity UA Speech TORGO
Very Low F05, M08, M09, M10, M14 F03, F04, M03

Low F04, M05, M11 F01, M05
Medium F02, M07, M16 M01, M02, M04
High F03, M04, M12, M01 —–

3.1.4 Experimental Setup

3.1.4.1 Data

For the UA Speech corpus, a total of 2812 dysarthric utterances with utterances
corresponding to 10 digits and 19 computer commands from block B1 and B2 for
training and testing of the classifier has been used.

For the TORGO database, we have used a total of 1540 dysarthric utterances
for experimentation.

3.1.4.2 Multi-taper Spectral Estimation

Multi-taper spectral estimation was done using Discrete Prolate Spheroidal se-
quences (DPSS) or Thomson or Slepian tapers [189] with 6 orthonormal tapers.

wp(j) =
sin[ωcT (p− j)]

(p− j)
, j = 0, 1, . . . , N − 1 (3.2)

where N denotes the desired window length in samples, ωc is the desired main-
lobe cut-off frequency in radians per second, and T is the sampling period in sec-
onds. Twelve-dimensional MFCC features were computed using Thomson multi-
taper spectral estimation with a 30ms window and a 10ms shift rate.

3.1.4.3 ANN Configuration

The classification was carried out for 8 for different settings of hidden layer neu-
rons. For the hidden layer, the number of neurons J or nodes is varied based
on the dimension I of the input feature set, and is given as J = I ⋆ m, where
m ∈ {0.5, 0.66, 0.75, 0.8, 0.83, 1, 1.25, 1.5}. The number of output nodes K = 4 and
3 for the UA Speech and the the TORGO database, respectively. For both the UA
Speech and TORGO data, 70% of the data was used for training the network, 15%
was used for validation, and 15% was used for testing.
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Figure 3.1: ANN configuration for severity classification
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where N denotes the desired window length in samples, ωc is the desired main-
lobe cut-off frequency in radians per second, and T is the sampling period in sec-
onds. Twelve-dimensional MFCC features were computed using Thomson multi-
taper spectral estimation with a 30ms window and a 10ms shift rate.

3.1.4.3 ANN Configuration

The classification was carried out for 8 for different settings of hidden layer neu-
rons. For the hidden layer, the number of neurons J or nodes is varied based
on the dimension I of the input feature set, and is given as J = I ⋆ m, where
m ∈ {0.5, 0.66, 0.75, 0.8, 0.83, 1, 1.25, 1.5}. The number of output nodes K = 4 and
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Speech and TORGO data, 70% of the data was used for training the network, 15%
was used for validation, and 15% was used for testing.
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Figure 3.2: Feature-wise classification accuracy for varying hidden layer nodes

3.1.5 Results and Discussion

Severity classification was carried out using the experimental setup described in
Section 3.1.4. It was observed that feature set F1, corresponding to the Temporal
Energy Envelope, performed poorly compared to the other feature sets. Feature sets
STF magnitude(F3), ERB FFT(F4), ERB Gammatone(F5), Multi-taper Harmon-
ics (F10) performed well for all settings. This could be attributed to the fact that
this is a global measure and hence is unable to characterize the severity adequately.
Also, for each of the feature sets, similar accuracies were observed across validation
and training sets, indicating that there is no overfitting or underfitting. The classifi-
cation accuracy for individual feature sets F1-F10 across different numbers of hidden
nodes (varied as discussed in Section 3.1.4), is as seen in Figure 3.2. Multi-taper
spectral estimation(F10) outperformed the Hamming window-based Harmonics au-
dio descriptors (F7) in the severity classification accuracy. This could be attributed
to the inherent noise robustness of the multi-taper spectral estimation [108]. We
obtained the best classification accuracy when the fusion of all the features from
F1-F6 and F10 (Proposed) were used together to give a comprehensive feature of
dimension 164. Here we replace the Harmonic timbre feature set F7 with multi-
taper-based Harmonic feature set F10. Severity-wise classification accuracy for the
above fusion set is given in Table 3.4.
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Table 3.4: Severity-wise classification accuracy for the UA Speech and the TORGO
database

Severity UA Speech TORGO
Very Low 96.1 99.1

Low 95.1 98.4
Medium 96.7 97.0
High 95.7 —–

3.1.6 Conclusion

Dysarthria is a motor-speech impairment, often characterized by speech that is
generally indiscernible by human listeners. Assessment of the severity level of
dysarthria is essential for planning therapy, as well as improving automatic dysarthric
speech recognition. Objective assessment of the severity level or intelligibility of
dysarthric speech is essential with reliability, speed, and consistency in view. Lit-
erature suggests that automatic speech recognition of dysarthric speech can be im-
proved if prior knowledge of the severity of dysarthria is available. In this chapter,
we propose a non-linguistic technique for automatic assessment of severity levels
using audio descriptors or a set of features traditionally used to define the timbre
of musical instruments. Additionally, we use multi-taper-based spectral estimation
to compute the spectral and harmonic features. It was observed that classifica-
tion accuracies using multi-taper-based harmonics were higher than the Hamming
window-based harmonic features. An Artificial Neural Network (ANN) was trained
to classify speech into various severity levels within the Universal Access dysarthric
speech corpus and the TORGO database. A fusion of feature sets F1-F6 and F10
(proposed) to give a comprehensive feature set of dimension 164 provided an average
classification accuracy of 96.44% for the UA speech corpus 98.7% for the TORGO
database, respectively. For both the UA Speech and the TORGO databases, the
overall classification accuracy as well as classification accuracy at the feature level
outperforms the accuracies cited in one of the most recent works [69, 79] for these
dysarthric speech corpora.
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Figure 3.2: Feature-wise classification accuracy for varying hidden layer nodes
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3.2 Automatic Assessment of Sentence-Level

Dysarthria Intelligibility using BLSTM

Dysarthria is a motor speech impairment, often characterized by slow and slurred
speech that is generally incomprehensible by human listeners. An understanding
of the intelligibility level of the patient’s dysarthric speech can provide insight into
the progression/status of the underlying cause and is essential for planning therapy.
Automatic assessment of dysarthric speech intelligibility can be of immense value
and serve to assist speech-language pathologists in diagnosis and therapy. However,
this is a non-trivial problem due to the high intra and inter-speaker variability in
dysarthric speech. In this work, we propose a machine learning-based method to
automatically classify dysarthric speech into intelligible (I) and non-intelligible (NI)
using Bidirectional Long-Short Term Memory (BLSTM) Networks. We explored
the balancing of training data to represent both classes almost equally and its
implications on binary classification. Additionally, we present a mechanism to use
the available pre-trained acoustic models for transfer learning. It was observed that
the transfer learning method was able to handle channel noise. This technique
provided a significant improvement of roughly 6% as compared to the traditional
machine learning method.

3.2.1 Introduction

Human communication relies heavily on speech intelligibility with a significant im-
pact on quality of life, especially in the case of pathological speech. Speech produc-
tion is governed by two key events: linguistic and acoustic composition that demand
a seamless coordination of muscle groups driven by motor planning and motor pro-
gramming to ensure intelligible speech [92]. Dysarthria is a motor speech disorder
that results from neurological causes. This manifests as weakness, paralysis, or a
lack of coordination and imprecise movements of the muscles of the motor-speech
system, resulting in a reduction in intelligibility, audibility, naturalness, and effi-
ciency of vocal communication. Dysarthria can be categorized as either progressive
or non-progressive. Progressive dysarthrias are seen in patients with PD, Hunt-
ington’s disease, multiple sclerosis, motor neuron disease, and so forth. Although
the disease progression can be delayed, progressive dysarthria leads to a progressive
decline in muscle functioning over time [160].

Speech intelligibility has been used as an indicator of the severity of speech dis-
orders, in general, [120], including dysarthria [94]. Intelligibility and speaking rate
can be used as quantitative measures of dysarthria severity level [31]. Assessment
of the intelligibility of dysarthric speech may be considered as a diagnostic step to
assess the outcome of a surgical procedure, to understand the patient’s progres-
sion in the underlying cause, or to make clinical decisions regarding the course of
therapy or medication and speech therapy planning. Intelligibility assessment is
undertaken by a trained speech-language pathologist, which can be expensive and
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time-consuming. On the other hand, speech technology-based objective assessment
of intelligibility can support clinical decision-making while being accurate, cost-
effective, and robust. Further, it also paves the way for further automation, such
as improved speech recognition of dysarthric speech. An understanding of sever-
ity has contributed to improved speech recognition of dysarthric speech as seen in
[102, 174, 132, 14].

Automatic intelligibility assessment has been carried out broadly by either (a)
Model-based methods that require reference data as well as linguistic know-how
[120, 36] or (b) blind intelligibility assessment [11, 100, 69]. In [130], authors discuss
the applicability of acoustic and phonological ASR-free features for intelligibility as-
sessment. Authors discuss the classification of pathological speech as intelligible or
non-intelligible using scores from the fusion of multiple subsystems addressing var-
ious aspects of speech such as phonological, intonation, etc. in [96]. Literature
indicates that research is trending towards moving away from language-specific
ASR-based methods to language-independent automatic intelligibility assessment,
as seen by some of the recent works reviewed next. Dysarthric speech from the
Quality-of-Life Technology (QoLT) database in the Korean language was classified
using a subset of features from phonetic quality, prosody, and voice quality features
along with a linear-kernel support vector machine (SVM) classifier to yield a root
mean square error of 8.1 [101]. Gaussian Bayes classification technique was used
to classify dysarthric speech from the Nemours database into three classes using
rhythm metrics based on acoustic measures of the duration of vocalic and conso-
nantal intervals in continuous speech [31]. i-vectors modeled by factor analysis using
perceptual linear predictors (PLP) as acoustic features were used for intelligibility
prediction of the Universal Access dysarthric speech [124]. A set of prosodic fea-
tures selected using Linear Discrimination Analysis (LDA) and an SVM classifier
was used to classify dysarthric speech from the Nemours database into four classes
[80]. Abnormal variation in the prosodic, voice quality, and pronunciation aspects
at the sentence level are used as features, followed by a post-classification posterior
smoothing scheme to evaluate pathological speech into binary intelligibility labels
(intelligible and not-intelligible). Further, feature-level fusions and subsystem deci-
sion fusion are used for arriving at a final intelligibility decision [97]. The histograms
of the pronunciation mappings are generated by aligning the phone sequence ob-
tained from an ASR with the canonical phone sequence and used as features along
with a structured sparse linear model incorporated with phonological knowledge for
intelligibility prediction [98].

In this work, we explore the use of Bidirectional Long-Short Term Memory
(BLSTM) type of Recurrent Neural Networks (RNN) for binary intelligibility clas-
sification of dysarthric speech. The performance of the classifier using speech pa-
rameters such as Mel Frequency Cepstral Coefficients (MFCC), log filter banks,
and i-vectors has been compared. Further, a transfer learning approach is adopted
wherein dysarthria intelligibility level is predicted using acoustic models pre-trained
on normal speakers’ speech to improve the intelligibility classification. We also
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3.2 Automatic Assessment of Sentence-Level
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time-consuming. On the other hand, speech technology-based objective assessment
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(intelligible and not-intelligible). Further, feature-level fusions and subsystem deci-
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tained from an ASR with the canonical phone sequence and used as features along
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intelligibility prediction [98].

In this work, we explore the use of Bidirectional Long-Short Term Memory
(BLSTM) type of Recurrent Neural Networks (RNN) for binary intelligibility clas-
sification of dysarthric speech. The performance of the classifier using speech pa-
rameters such as Mel Frequency Cepstral Coefficients (MFCC), log filter banks,
and i-vectors has been compared. Further, a transfer learning approach is adopted
wherein dysarthria intelligibility level is predicted using acoustic models pre-trained
on normal speakers’ speech to improve the intelligibility classification. We also
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demonstrate that the transfer learning approach can be used to effectively clas-
sify the intelligibility of Dutch dysarthric speech, accommodating the differences in
language, recording environment, and speaker variations.

The rest of the chapter is organized as follows. In Section 3.2.2, we briefly
describe the TORGO and the Dutch dysarthric speech corpora. In Section 3.2.3,
we describe the classifier design and the features used. In Section 3.2.4, we provide
the details of the experimental setup and details on how the proposed system can be
used for transfer learning. In Section 3.2.5, we discuss the evaluation of the proposed
system and visualize the BLSTM network learning, followed by a conclusion in
Section 3.2.6.

3.2.2 Databases

3.2.2.1 TORGO Dysarthric Speech Corpus

The TORGO database [168] of dysarthric articulation consists of aligned acous-
tics and measured 3D articulatory features from speakers with either cerebral palsy
(CP) or amyotrophic lateral sclerosis (ALS). The TORGO database consists of 8
dysarthric (DYS) speakers (three females and five males) and seven non-dysarthric
or healthy control (HC) speakers (three females and four males) as a control group.
The age of the patients ranged from 16 to 50. The individuals selected for the
control group were matched according to age and gender with dysarthric subjects
so as to be able to compare acoustic and articulatory differences, as well as to an-
alyze their relationships mathematically and functionally. Speaker IDs beginning
with F represent female speakers, and ones that begin with M represent male
speakers. The acoustic data were recorded through two different microphones:
a microphone array with eight recording elements placed at a distance of 61 cm
facing the speaker and a head-mounted microphone. The corpus consists of (1)
non-words, (2) Short words such as digits in international radio alphabet letters,
(3) Restricted sentences, and (4) Unrestricted sentences. The motor functions of
each subject were assessed according to the standardized Frenchay Dysarthria As-
sessment (FDA) [37] by a speech-language pathologist. FDA measures 28 relevant
perceptual dimensions of speech grouped into eight categories, namely reflex, res-
piration, lips, jaw, soft palate, laryngeal, tongue, and intelligibility. Although this
database was recorded with various types of stimuli, the speech audio recordings
corresponding to restricted sentences are used in this study. The prompts used
for recording sentence-level speech audio comprise three pre-selected phoneme-rich
sentence sets: the “Grandfather passage”, 162 sentences from the sentence intelligi-
bility section of the Yorkston-Beukelman Assessment of Intelligibility of Dysarthric
Speech, 460 sentences from the MOCHA database, and spontaneously elicited de-
scriptive texts.

This database provides intelligibility labels in five categorical grades [a, b, c, d,
e], which were reduced from an initial 9-point scale, where ‘a’ is the label corre-
sponding to the best intelligibility and ‘e’ is the worst. The data was divided into
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Table 3.5: Speaker-level intelligibility for the TORGO sentences
Speaker Number of Dysarthria Category

Utterances Level
FC01 30
FC02 51
FC03 84 Control I
MC01 83
MC02 84
MC03 84
MC04 84
F03 92 a
F04 63 a I
M03 80 a
F01 24 d/e
M02 84 d/e NI
M04 91 d/e
M05 53 c

two classes: intelligible (I) and non-intelligible (NI). While the speakers with grades
a, b and control speakers were tagged with the category I, the speakers with grades
c, d or e were tagged with NI. Speaker-wise intelligibility for sentence-level record-
ings is shown in Table 3.5. Considering that the sentence-level data is unbalanced
with fewer utterances of dysarthric speech, only a subset of control speech sentences
that are available as dysarthric speech have been used, hence the lower number of
utterances.

3.2.2.2 Dutch Dysarthric Database

The speech material used in the study was selected from the recordings of dysarthric
speakers prior to speech therapy [49]. To avoid speaker familiarity influencing the
evaluation procedure, materials from seven different speakers were used, as shown in
Table 3.6. These were all male and suffered from hypokinetic dysarthria caused by
PD. To investigate the different levels of granularity in intelligibility evaluation for
a broad range of speech material, four different types of recordings were used: lists
of single words, declarative Semantically Unpredictable Sentences (SUS) sentences,
interrogative SUS sentences, and regular sentences. All samples consisted of existing
Dutch words. The word lists contained three or five words, the SUS sentences all
contained six words, and the length of the regular sentences varied between five
and eight words. Speech fragments with different levels of intelligibility, from low to
high, were selected based on annotations by two listeners who did not participate in
the current experiment. In this work, we assess the intelligibility of utterance-level
speech for six speakers. Utterance level intelligibility evaluations were obtained

61



3. Automatic Assessment of Intelligibility of Dysarthric Speech

demonstrate that the transfer learning approach can be used to effectively clas-
sify the intelligibility of Dutch dysarthric speech, accommodating the differences in
language, recording environment, and speaker variations.

The rest of the chapter is organized as follows. In Section 3.2.2, we briefly
describe the TORGO and the Dutch dysarthric speech corpora. In Section 3.2.3,
we describe the classifier design and the features used. In Section 3.2.4, we provide
the details of the experimental setup and details on how the proposed system can be
used for transfer learning. In Section 3.2.5, we discuss the evaluation of the proposed
system and visualize the BLSTM network learning, followed by a conclusion in
Section 3.2.6.

3.2.2 Databases

3.2.2.1 TORGO Dysarthric Speech Corpus

The TORGO database [168] of dysarthric articulation consists of aligned acous-
tics and measured 3D articulatory features from speakers with either cerebral palsy
(CP) or amyotrophic lateral sclerosis (ALS). The TORGO database consists of 8
dysarthric (DYS) speakers (three females and five males) and seven non-dysarthric
or healthy control (HC) speakers (three females and four males) as a control group.
The age of the patients ranged from 16 to 50. The individuals selected for the
control group were matched according to age and gender with dysarthric subjects
so as to be able to compare acoustic and articulatory differences, as well as to an-
alyze their relationships mathematically and functionally. Speaker IDs beginning
with F represent female speakers, and ones that begin with M represent male
speakers. The acoustic data were recorded through two different microphones:
a microphone array with eight recording elements placed at a distance of 61 cm
facing the speaker and a head-mounted microphone. The corpus consists of (1)
non-words, (2) Short words such as digits in international radio alphabet letters,
(3) Restricted sentences, and (4) Unrestricted sentences. The motor functions of
each subject were assessed according to the standardized Frenchay Dysarthria As-
sessment (FDA) [37] by a speech-language pathologist. FDA measures 28 relevant
perceptual dimensions of speech grouped into eight categories, namely reflex, res-
piration, lips, jaw, soft palate, laryngeal, tongue, and intelligibility. Although this
database was recorded with various types of stimuli, the speech audio recordings
corresponding to restricted sentences are used in this study. The prompts used
for recording sentence-level speech audio comprise three pre-selected phoneme-rich
sentence sets: the “Grandfather passage”, 162 sentences from the sentence intelligi-
bility section of the Yorkston-Beukelman Assessment of Intelligibility of Dysarthric
Speech, 460 sentences from the MOCHA database, and spontaneously elicited de-
scriptive texts.

This database provides intelligibility labels in five categorical grades [a, b, c, d,
e], which were reduced from an initial 9-point scale, where ‘a’ is the label corre-
sponding to the best intelligibility and ‘e’ is the worst. The data was divided into

60

3. Automatic Assessment of Intelligibility of Dysarthric Speech

Table 3.5: Speaker-level intelligibility for the TORGO sentences
Speaker Number of Dysarthria Category

Utterances Level
FC01 30
FC02 51
FC03 84 Control I
MC01 83
MC02 84
MC03 84
MC04 84
F03 92 a
F04 63 a I
M03 80 a
F01 24 d/e
M02 84 d/e NI
M04 91 d/e
M05 53 c

two classes: intelligible (I) and non-intelligible (NI). While the speakers with grades
a, b and control speakers were tagged with the category I, the speakers with grades
c, d or e were tagged with NI. Speaker-wise intelligibility for sentence-level record-
ings is shown in Table 3.5. Considering that the sentence-level data is unbalanced
with fewer utterances of dysarthric speech, only a subset of control speech sentences
that are available as dysarthric speech have been used, hence the lower number of
utterances.

3.2.2.2 Dutch Dysarthric Database

The speech material used in the study was selected from the recordings of dysarthric
speakers prior to speech therapy [49]. To avoid speaker familiarity influencing the
evaluation procedure, materials from seven different speakers were used, as shown in
Table 3.6. These were all male and suffered from hypokinetic dysarthria caused by
PD. To investigate the different levels of granularity in intelligibility evaluation for
a broad range of speech material, four different types of recordings were used: lists
of single words, declarative Semantically Unpredictable Sentences (SUS) sentences,
interrogative SUS sentences, and regular sentences. All samples consisted of existing
Dutch words. The word lists contained three or five words, the SUS sentences all
contained six words, and the length of the regular sentences varied between five
and eight words. Speech fragments with different levels of intelligibility, from low to
high, were selected based on annotations by two listeners who did not participate in
the current experiment. In this work, we assess the intelligibility of utterance-level
speech for six speakers. Utterance level intelligibility evaluations were obtained

61



3. Automatic Assessment of Intelligibility of Dysarthric Speech

Table 3.6: Overview of speech material used for Dutch dysarthric data
Type of speech Speaker Speech fragments

material
Word lists S1 5 word lists (5 words each)

S2 5 word lists (3 words each)
Declarative S3 6 sentences

SUS sentences S4 6 sentences
Interrogative S5 6 sentences
SUS sentences S6 6 sentences

Regular S7 8 sentences
sentences S1 8 sentences

using subjective rating scales, namely the Visual Analogue Scale (VAS) and the
Likert scale. The VAS intelligibility score for the six speakers ranged from 39% to
89%. Speakers (4) with scores less than 75% were considered non-intelligible, and
speakers (2) with scores above 75% were considered intelligible.

3.2.3 Classifier and Feature Design

3.2.3.1 Classifier Design

Traditional Artificial Neural Networks (ANN) use either time-aggregated or time-
sequence features as inputs. Time-aggregated features are typically a combina-
tion of the statistics of frame-wise features of a speech utterance and some meta-
information that is computed as one feature vector that represents an entire utter-
ance. Time-sequence features are computed frame-wise and used to train an ANN
over a fixed context of the right and left frames of the intended frame. This does not
ensure learning of the temporal development of the speech signal by the ANN. An
understanding of the temporal distance between events is essential for sequential
tasks such as motor control and rhythm detection [53]. HMMs also fail to learn this
information, whereas Recurrent neural networks (RNNs) can, in principle, learn
to make use of it. Particularly Long Short-Term Memory (LSTM) RNN-type net-
works have been shown to perform better than simple RNNs on tasks involving long
time lags. A deep LSTM-RNN architecture uses a combination of multiple levels
of representation of the speech utterance along with the flexible use of long-range
context to provide significant improvement in speech applications as shown in the
end-to-end phoneme recognition task [56].

The LSTM RNN comprises special units called memory blocks. The memory
blocks perform three crucial functions, namely (1) store the temporal state of the
network in the memory cells (2) control the flow of information using gates or special
multiplicative units, (3) appropriately handle the processing of continuous input
streams using forget gates [170]. Each memory block in the original architecture
contained an input gate and an output gate. The flow of input activations into
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the memory cell is controlled by the input gate, while the output gate controls the
output flow of cell activations into the rest of the network. The internal state of
the cell is scaled by the forget gate and then added to the cell through the self-
recurrent connection, whereby it adaptively resets the cell’s memory. The precise
timing of the outputs is learned using peephole connections from the internal cells
to the gates in the same cell. Figure 3.3 shows a building block of an LSTM-RNN.
Multiple LSTM layers are stacked to construct deep LSTM RNNs as seen in Figure
3.4. The input to the LSTM network at a given time step goes through multiple
LSTM layers in addition to propagation through time.

In our work, the network needs to learn the aspects of speech that define the
intelligibility of speech, which has possibly been afflicted with a motor-speech disor-
der (dysarthria). We choose to use a special type of LSTM called the Bidirectional
LSTM (BLSTM) network to address the long-range bidirectional interdependencies
within the speech data. BLSTM networks operate on the input sequence in both
directions in order to make a decision for the current input. Deep BLSTM-HMM
hybrid acoustic models have shown to perform well for TIMIT as well as Wall
Street Journal corpora [55]. Online speech recognition has also been achieved us-
ing latency-controlled BLSTM acoustic models [210]. Various training schemes and
parameter tuning aspects have been compared to provide an overview of the per-
formance of deep BLSTM-based ASRs [221]. In this work, we use BLSTM acoustic
models to classify dysarthric speech sequences into binary classes intelligible (I) and
non-intelligible (NI).

3.2.3.2 Feature Extraction

We use three different types of feature sets for the dysarthric speech classification
task. The objective is to be able to classify unseen speakers or speech utterances
with high reliability. This drives us to make use of the features that retain the
speech characteristics while masking the speaker and/or channel variations. We
use log filter banks, Mel-frequency Cepstral Coefficients (MFCC), and i-vectors as
features individually and in combination to learn the dysarthric speech classifica-
tion.

Log filter bank
Pre-emphasis filter is first applied to a speech signal to provide a smooth spectral
representation. The signal is then segmented into overlapping frames on which the
Hamming window function is applied. A short-term Fourier transform is then ap-
plied to each frame to calculate the power spectrum. Subsequently, the filter banks
are computed on the Mel scale to emulate human ear perception. At this point, we
extract the log filter bank features.

MFCC
The output of the log filter bank is further processed by applying Discrete Cosine
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Figure 3.3: LSTM building block [182]

Transform (DCT) to decorrelate the filter bank coefficients and yield a compressed
representation of the filter banks.

i-vector
The i-vector extraction is performed by a model-based cluster adaptive training
(CAT) estimation where the underlying models are Gaussian mixture models (GMM)
rather than Hidden Markov Models (HMMs) [84]. A GMM universal background
model (UBM) with M mixture components, denoted as M, is used to represent the
intrinsic variability of phonemes within the speech data. A mean super-vector of
component means µ0

(m) , diagonal component covariance matrices
∑(m) and mix-

ture coefficients ω(m) is used to define the UBM. The canonical model M is then
used to generate the input acoustic feature vectors xt ∈ RD.

All the speech data belonging to a particular speaker is used to generate an
i-vector for that speaker, which is used for training the classifier. This i-vector
represents all the utterances of that particular speaker. The i-vectors thus generated
span the speaker Eigenspace, and each speaker is represented by a point in this
speaker Eigenspace. For a Gaussian component m ∈ M , the linear dependence
between the speaker-adapted means and the canonical means is computed as

µ(sm) = µ
(m)
0 +M (m)λ(s) (3.3)

µ(sm) is the m-th component of speaker-dependent super-vector, M (m) is the
factor submatrix for component m of size D × P , representing P bases spanning
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Figure 3.4: (a) LSTM network (b) Deep LSTM network

the subspaces with the highest variability in the mean super-vector space and λ
(s)
iv

is the P -dimensional i-vector of speaker s.

The factor matrix M (m), when decomposed into two components, represents two
distinct acoustic factors, namely speaker and noise-dependent supervector. Each
factor is represented by a subspace of the i-vector space. For each speaker s and
noisy environment n, Equation 3.3 can be written as

µ(snm) = µ
(m)
0 +M (m)

s λ(s) +M (m)
n λ(n)

= µ
(m)
0 +M (m)

sn λ(sn)
(3.4)

where M
(m)
sn λ(sn) =

[
M

(m)
s M

(m)
n

] [λ(s)

λ(n)

]
This gives i-vectors an advantage in han-

dling the variations caused by noise and retaining the speech characteristics.

3.2.4 Experiments

Our experiments are designed to evaluate an unseen speaker for intelligibility. We
follow the leave-one-out (LOO) method for training and testing, i.e. the speaker
whose utterances are being tested is not available in the training data.
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3.2.4.1 Balancing Training Data

In order to exploit the machine learning techniques fully, suitable data to build
these systems is imperative. However, owing to speaker muscle weakness and fa-
tigue, the collection of dysarthric data is tedious, especially for speakers with severe
dysarthria. Additionally, since dysarthria can stem from a variety of neurological
disorders, the characterization of dysarthric speech is complex, which makes the
data collection process difficult. This is evident from the amount of sentence-level
data available for unintelligible dysarthric speech, intelligible dysarthric speech, and
healthy control speech in the TORGO database. In order for the BLSTM network
to learn the patterns in dysarthric speech for intelligibility classification, it is im-
portant that the training data represents the population appropriately. It is also
important to note that there are very few dysarthric unintelligible utterances for a
female speaker (F01), with only 24 utterances. The parameters considered for the
selection of training data for each speaker are gender, dysarthria status (dysarthric/-
control), intelligibility status (I/NI), and number of utterances available. Our focus
in this work is to balance the number of I and NI utterances in the training data
for each test speaker. Table 3.7 shows the distribution of data used for training and
testing the BLSTM. The cells in blue represent the test data, while the pink and
yellow background indicate NI and I speech, respectively. This scheme of training
and test data is well balanced for the task at hand, binary classification of speech
utterances. Figure 3.5 shows the distribution of data used for training each test
speaker as per Table 3.7, in terms of gender and dysarthria status. It can be seen
from Figure 3.5 that gender-based distribution is not very balanced, with fewer ut-
terances for female speakers. Dysarthria status-based distribution is fairly uniform
for male speakers.

Table 3.7: Test speaker-wise data distribution
Test F01 F03 F04 FC01 FC02 FC03 M01 M02 M03 M04 M05 MC01 MC02 MC03 MC04

Speaker

F01 24 51 84 84 84 91 53 84 84
F03 24 92 63 30 84 84 84 80 91 53 84
F04 24 92 63 30 51 84 84 91 53 84 84
FC01 24 63 30 51 84 84 84 91 53 83 84
FC02 24 63 30 51 84 84 84 91 53 83 84
FC03 24 92 30 51 84 84 84 91 53 84 84
M01 24 30 51 84 84 91 53 84 84
M02 24 30 51 84 84 91 53 84 84
M03 24 92 63 84 84 80 91 53 83 84
M04 24 30 51 84 84 91 53 83 84
M05 24 51 84 84 84 91 53 84 84
MC01 24 30 51 84 84 91 53 83 84 84 84
MC02 24 30 51 84 84 91 53 83 84 84 84
MC03 24 30 51 84 84 91 53 83 84 84 84
MC04 24 30 51 84 84 91 53 83 84 84 84
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Figure 3.5: Dysarthria status and gender-based Training data distribution.

3.2.4.2 Feature Extraction and BLSTM Classifier

The input utterance is represented by a sequence of frames, with an effective
frame rate of 10ms per frame. 26-dimensional log filter bank coefficients and 26-
dimensional MFCCs are computed for each frame and used as inputs to the encoder-
decoder framework of the BLSTM.

100-dimensional i-vectors were computed per frame and used along with the 26-
dimensional MFCCs as inputs to the BLSTM. The Kaldi speech processing toolkit
[156] was used to compute the i-vectors.

A BLSTM encoder-decoder model is trained for the binary classification of in-
telligibility. The encoder consists of a stack of 2 BLSTM layers with both layers
comprising 64 LSTM units each in the forward and backward LSTMs. Max-pooling
over time is used to obtain the encoder representation from the second BLSTM
layer. The decoder is a fully connected dense layer whose size is adjusted as per
the size of the encoder representation and the number of output labels (2 for binary
classification). The encoder input dimensionality depends on the feature set being
used: 26 for MFCC and log filter bank, 126 for concatenation of MFCC and i-vector,
and 1024 for transfer learning experiments discussed in Section 3.2.4.3. We use an
ADAM optimizer to train the model.

3.2.4.3 Transfer Learning (TL) using i-vectors

BLSTM encoder-decoder models trained using speech parameters like MFCC, log
filter bank, or i-vectors require large amounts of data, which in turn results in severe
degradation in performance in low resource speaker-independent scenarios such as
the task at hand [159]. We hypothesize that the BLSTM is unable to handle speaker
variability and learn the temporal context simultaneously with small amounts of
dysarthric speech. Hence, we adopt a transfer learning approach, wherein the in-
ternal representations are learned by DNN-based ASR models. The motivation is
that apart from handling speaker invariability, the pre-trained model should also
give us representations that capture the temporal context in the sequence of in-
put speech frames. We use the publicly available ASpIRE ASR DNN model [150]
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dimensional MFCCs are computed for each frame and used as inputs to the encoder-
decoder framework of the BLSTM.

100-dimensional i-vectors were computed per frame and used along with the 26-
dimensional MFCCs as inputs to the BLSTM. The Kaldi speech processing toolkit
[156] was used to compute the i-vectors.
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comprising 64 LSTM units each in the forward and backward LSTMs. Max-pooling
over time is used to obtain the encoder representation from the second BLSTM
layer. The decoder is a fully connected dense layer whose size is adjusted as per
the size of the encoder representation and the number of output labels (2 for binary
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and 1024 for transfer learning experiments discussed in Section 3.2.4.3. We use an
ADAM optimizer to train the model.

3.2.4.3 Transfer Learning (TL) using i-vectors

BLSTM encoder-decoder models trained using speech parameters like MFCC, log
filter bank, or i-vectors require large amounts of data, which in turn results in severe
degradation in performance in low resource speaker-independent scenarios such as
the task at hand [159]. We hypothesize that the BLSTM is unable to handle speaker
variability and learn the temporal context simultaneously with small amounts of
dysarthric speech. Hence, we adopt a transfer learning approach, wherein the in-
ternal representations are learned by DNN-based ASR models. The motivation is
that apart from handling speaker invariability, the pre-trained model should also
give us representations that capture the temporal context in the sequence of in-
put speech frames. We use the publicly available ASpIRE ASR DNN model [150]
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which is pre-trained on the Fisher English corpus for this purpose. It consists of 6
layers of Time Delay Neural Networks (TDNNs), each with ReLU activations and
re-normalization, followed by two branches: one for sequence (Chain) training and
the other for cross-entropy (Xent) regularization. The input to the ASpIRE model
is a sequence of frames, with each frame comprising 26-dimensional MFCCs and
a 100-dimensional i-vector feature from the TORGO database. Each input frame
(along with its context) is transformed into an intermediate representation by each
of the layers of the ASpIRE model. In our experiments, we splice the model until
layer 3 and beyond to form the pre-trained layers. We skip the final outputs because
of their high dimensionality. We use the output of layer 3 of the TDNN as features
to train the BLSTM for binary classification of intelligibility. Speakers from the
TORGO database are evaluated for intelligibility using this BLSTM network.

Further, we use the BLSTM network and are thus trained to evaluate speakers
from the Dutch dysarthric database for intelligibility. We hypothesize that the
BLSTM encoder-decoder, along with the pre-trained framework outperforms the
BLSTM network that uses the TORGO training data alone.

3.2.5 Results and Discussion

In this section, we discuss the performance of the BLSTM network using vari-
ous different features for training the network. Table 3.8 shows the classification
performance for features such as MFCC, log filter bank, the two sets of features con-
catenated together, and for i-vector-based features. It can be seen that the overall
performance improved for balanced training data for each of the feature sets as well
as for a large majority of individual speakers across the features. The classification
for utterances corresponding to speaker F01 was consistently low owing to the fact
that this was the only female dysarthric non-intelligible speech available and was
not represented well during the training.

Table 3.8 also shows the performance of the BLSTM using the transfer learning
technique. The overall classification performance improved by approximately 6%
when TL was used. The improvement was significant for the utterances correspond-
ing to speaker F01, by roughly 37%. We hypothesize that the TL technique enabled
the BLSTM to learn the distinction between intelligible and non-intelligible speech
better since it was extracted from pre-trained models of normal English speech.

The speech audio of the TORGO database was recorded using a head-mounted
microphone and a microphone array as described in Section 3.2.2. The speech data
that was recorded using a head-mounted microphone often contained considerable
channel noise [97]. The results reported in Table 3.8 correspond to both head-
mounted and array microphone recordings of the TORGO dysarthric speech. Table
3.9 reports our observations when we examine the difference in accuracy for the two
types of recordings, namely head-mounted microphone and microphone array, using
MFCC features for RNN and TL technique. It is seen that across speakers, the ac-
curacy has significantly improved for head-mounted microphone audio when the TL
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Table 3.8: Speaker-wise classification accuracy(%) for unbalanced and balanced
data

Speaker
log filter MFCC MFCC+logf i-Vector TL

Unbal Bal Unbal Bal Unbal Bal Unbal Bal Unbal Bal
F01 50 83.33 29.17 45.83 45.83 58.33 23.47 41.67 66.67 83.33
F03 93.48 76.09 81.52 90.22 68.48 91.3 91.3 88.04 97.83 92.39
F04 61.9 76.19 100 98.41 100 79.37 100 98.41 100 98.41
FC01 100 100 100 100 100 100 100 100 100 100
FC02 100 100 100 100 100 100 100 100 100 100
FC03 89.29 100 100 98.81 100 97.62 100 100 100 100
M01 90.48 95.24 96.43 100 91.67 94.05 100 100 100 100
M02 70.24 89.29 70.24 98.81 73.81 94.05 70.24 95.24 97.62 100
M03 100 50 85 67.5 82.5 70 87.5 75 100 100
M04 62.64 56.04 47.25 91.21 68.13 89.01 67.03 87.91 82.42 100
M05 9.43 79.25 96.23 98.11 94.34 92.45 98.11 98.11 100 100
MC01 93.98 96.39 100 96.39 92.77 92.77 100 95.18 100 100
MC02 100 100 98.81 97.62 98.81 98.81 100 98.81 100 100
MC03 98.81 77.38 98.81 98.81 98.81 97.62 98.81 98.81 100 100
MC04 94.05 98.81 92.86 95.24 92.86 79.76 100 97.62 98.81 98.81
Average
accuracy 80.95 85.2 86.42 91.8 87.2 89.01 89.10 91.65 96.22 98.2

technique is used, especially for F01 and M03. F01 is the only female speaker with
non-intelligible speech, and M03 is the only male dysarthric speaker with intelligible
speech, making these speakers not very well represented in the training set. This
indicates that using the i-vector-based TL method performs well even for speech
riddled with channel noise. We would like to note that our approach yields higher
classification accuracy as compared to the results reported in [97] for the TORGO
database, wherein the best performance was obtained for the Pronunciation subsys-
tem at 94.1% for the Linear Discriminant Analysis (LDA) classifier. Some of the key
differences in our approaches are (1) In order to build a Pronunciation subsystem in
[97], it is crucial to identify the vowel segments accurately, making manual phonetic
transcription a necessity; in our approach, we do not need phonetic transcription of
the audio. (2) Pre-processing was applied on head-mounted microphone audio in
[97], compromising the speech characteristics, whereas we worked directly with the
noisy audio. (3) No data balancing was applied for the classification task in [97].

We also used the i-vector-based training and TL training to classify the Dutch
dysarthric speech described in Section 3.2.2. The objective was to assess if the
BLSTM-based encoder trained using speech features for English, a rich-resourced
language, the TORGO database of dysarthric speech can be used to decode dysarthric
speech in a less-resourced language like Dutch. The Dutch database used in this
study contains only 39 sentence-level utterances from 6 speakers. The TL-based
training improved the classification to an overall accuracy of 44% compared to the
i-vector-based classification of 28%. However, considering that the chance classifica-
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ous different features for training the network. Table 3.8 shows the classification
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catenated together, and for i-vector-based features. It can be seen that the overall
performance improved for balanced training data for each of the feature sets as well
as for a large majority of individual speakers across the features. The classification
for utterances corresponding to speaker F01 was consistently low owing to the fact
that this was the only female dysarthric non-intelligible speech available and was
not represented well during the training.

Table 3.8 also shows the performance of the BLSTM using the transfer learning
technique. The overall classification performance improved by approximately 6%
when TL was used. The improvement was significant for the utterances correspond-
ing to speaker F01, by roughly 37%. We hypothesize that the TL technique enabled
the BLSTM to learn the distinction between intelligible and non-intelligible speech
better since it was extracted from pre-trained models of normal English speech.

The speech audio of the TORGO database was recorded using a head-mounted
microphone and a microphone array as described in Section 3.2.2. The speech data
that was recorded using a head-mounted microphone often contained considerable
channel noise [97]. The results reported in Table 3.8 correspond to both head-
mounted and array microphone recordings of the TORGO dysarthric speech. Table
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Table 3.8: Speaker-wise classification accuracy(%) for unbalanced and balanced
data

Speaker
log filter MFCC MFCC+logf i-Vector TL
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technique is used, especially for F01 and M03. F01 is the only female speaker with
non-intelligible speech, and M03 is the only male dysarthric speaker with intelligible
speech, making these speakers not very well represented in the training set. This
indicates that using the i-vector-based TL method performs well even for speech
riddled with channel noise. We would like to note that our approach yields higher
classification accuracy as compared to the results reported in [97] for the TORGO
database, wherein the best performance was obtained for the Pronunciation subsys-
tem at 94.1% for the Linear Discriminant Analysis (LDA) classifier. Some of the key
differences in our approaches are (1) In order to build a Pronunciation subsystem in
[97], it is crucial to identify the vowel segments accurately, making manual phonetic
transcription a necessity; in our approach, we do not need phonetic transcription of
the audio. (2) Pre-processing was applied on head-mounted microphone audio in
[97], compromising the speech characteristics, whereas we worked directly with the
noisy audio. (3) No data balancing was applied for the classification task in [97].

We also used the i-vector-based training and TL training to classify the Dutch
dysarthric speech described in Section 3.2.2. The objective was to assess if the
BLSTM-based encoder trained using speech features for English, a rich-resourced
language, the TORGO database of dysarthric speech can be used to decode dysarthric
speech in a less-resourced language like Dutch. The Dutch database used in this
study contains only 39 sentence-level utterances from 6 speakers. The TL-based
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Table 3.9: Speaker-wise classification based on recording method

Speaker
MFCC TL

head mic mic array head mic mic array
F01 8.33 83.33 74.99 91.67
F03 86.96 93.48 86.95 97.83
F04 100 97.62 96.82 100
FC01 100 100 100 100
FC02 100 100 100 100
FC03 97.62 100 100 100
M01 100 100 100 100
M02 100 97.62 100 100
M03 45 90 100 100
M04 90 92.16 100 100
M05 97.62 100 100 100
MC01 92.68 100 100 100
MC02 95.24 100 100 100
MC03 97.62 100 100 100
MC04 90.48 100 97.62 100
Average 86.77 96.95 97.09 99.3
accuracy

tion accuracy is 50% for binary classification, we have to surmise that the BLSTM
was unsuccessful in decoding the Dutch dysarthric data classes. Transfer learning
using an existing English baseline for Dutch speech is not straightforward. This
could be attributed to the difference in language of the pre-trained models used in
the TL-based method. We will examine this further through visualizing the BLSTM
learning.

We examine the classification performance of the BLSTM network for two dif-
ferent training techniques, namely, MFCC-based and TL-based by visualizing the
network learning, using saliency maps extracted at the input layer of the BLSTM
network. Figure 3.6 shows a visualization of the feature vector, log filter bank,
saliency maps for ground truth, and predicted activations for two speech utter-
ances. Figures (a) and (b) are for the same utterance from speaker F01 (class=NI),
while (b) and (c) belong to speaker MC04 (class =I). BLSTM learning for MFCC
and TL are being shown, wherein the MFCC feature vector is 26 dimensions and
the TL feature vector is 1024 dimensions. The visualization was plotted using
the nipy spectral colormap provided in the python matplotlib library. It can be
seen from Figure 3.6, that when TL was used, the saliency maps corresponding to
network prediction and the ground truth are similar. Also, for speaker F01, the net-
work saliency maps at the input looked significantly different when MFCC features
were used as compared to when the TL-based learning was used. We note that the
activations of the correctly classified utterances correspond to vowel regions. The
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learning of the BLSTM is then comparable to the best-performing speech subsys-
tem, namely the Pronunciation subsystem described in [97], which is at 94.1% for
the TORGO dataset. We achieve a 4% absolute improvement as compared to this
system.

Figure 3.6: Visualization of the network learning for speakers F01 (class = NI) and
MC04 (class = I) for data trained using MFCC and Transfer learning (TL). (a)
F01-MFCC, (b) F01-TL, (c) MC04-MFCC, (d) MC04-TL

3.2.6 Conclusion

Dysarthria is a motor speech impairment, often characterized by slow and slurred
speech with reduced intelligibility. Automatic assessment of dysarthric speech intel-
ligibility can be of immense value and useful to assist speech-language pathologists
in diagnosis and therapy. In this work, we propose a machine learning-based method
to automatically classify dysarthric speech into intelligible (I) and non-intelligible
(NI) using Long-Short Term Memory Neural Networks. Bidirectional LSTM type
of RNNs were used to train and classify dysarthric speech. Speech parameters
were chosen in such a way as to retain the speech characteristics while normalizing
the speaker-specific nature of the speech. We adopt a transfer learning approach,
wherein the internal representations are learned by DNN-based ASR models. The
motivation is that apart from handling speaker invariability, the pre-trained model
should also give us representations that capture the temporal context in the se-
quence of input speech frames. We explored the balancing of training data to
represent both classes almost equally. The performance of the BLSTM was better
for balanced data across all features. BLSTM performance was lowest for log filter
bank features, while it was comparable for MFCC and i-vector and provided the best
results for TL-based features. This technique provided a significant improvement
of roughly 6% as compared to the traditional machine learning method. It was also
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Table 3.9: Speaker-wise classification based on recording method
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Average 86.77 96.95 97.09 99.3
accuracy
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learning of the BLSTM is then comparable to the best-performing speech subsys-
tem, namely the Pronunciation subsystem described in [97], which is at 94.1% for
the TORGO dataset. We achieve a 4% absolute improvement as compared to this
system.

Figure 3.6: Visualization of the network learning for speakers F01 (class = NI) and
MC04 (class = I) for data trained using MFCC and Transfer learning (TL). (a)
F01-MFCC, (b) F01-TL, (c) MC04-MFCC, (d) MC04-TL

3.2.6 Conclusion

Dysarthria is a motor speech impairment, often characterized by slow and slurred
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in diagnosis and therapy. In this work, we propose a machine learning-based method
to automatically classify dysarthric speech into intelligible (I) and non-intelligible
(NI) using Long-Short Term Memory Neural Networks. Bidirectional LSTM type
of RNNs were used to train and classify dysarthric speech. Speech parameters
were chosen in such a way as to retain the speech characteristics while normalizing
the speaker-specific nature of the speech. We adopt a transfer learning approach,
wherein the internal representations are learned by DNN-based ASR models. The
motivation is that apart from handling speaker invariability, the pre-trained model
should also give us representations that capture the temporal context in the se-
quence of input speech frames. We explored the balancing of training data to
represent both classes almost equally. The performance of the BLSTM was better
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bank features, while it was comparable for MFCC and i-vector and provided the best
results for TL-based features. This technique provided a significant improvement
of roughly 6% as compared to the traditional machine learning method. It was also
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observed that the transfer learning method was able to handle channel noise. The
visualization of the BLSTM network learning indicated that the network activations
corresponded to vowel regions of the dysarthric speech, which has been shown in
the literature. A deeper level of understanding of intelligibility will pave the way to
better systems for automatic assessment and recognition of dysarthric speech. The
direction of future work would be to be able to categorize dysarthric speech into
multiple categories instead of binary classification. Cross-language learning and
classification of dysarthric speech is another promising area that can be explored.
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observed that the transfer learning method was able to handle channel noise. The
visualization of the BLSTM network learning indicated that the network activations
corresponded to vowel regions of the dysarthric speech, which has been shown in
the literature. A deeper level of understanding of intelligibility will pave the way to
better systems for automatic assessment and recognition of dysarthric speech. The
direction of future work would be to be able to categorize dysarthric speech into
multiple categories instead of binary classification. Cross-language learning and
classification of dysarthric speech is another promising area that can be explored.
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4. Acoustic parameters and time domain adaptation of dysarthric speech

4.1 Recognition of Dysarthric Speech Using Voice

Parameters for Speaker Adaptation andMulti-

Taper Spectral Estimation

Dysarthria is a motor speech disorder resulting from impairment in muscles respon-
sible for speech production, often characterized by slurred or slow speech result-
ing in low intelligibility. With speech-based applications such as voice biometrics
and personal assistants are gaining popularity, automatic recognition of dysarthric
speech becomes imperative as a step towards including people with dysarthria in
the mainstream. In this chapter, we examine the applicability of voice parame-
ters that are traditionally used for pathological voice classification such as jitter,
shimmer, F0, and Noise Harmonic Ratio (NHR) contour, in addition to Mel Fre-
quency Cepstral Coefficients (MFCC) for dysarthric speech recognition. Addition-
ally, we show that multi-taper spectral estimation for computing MFCC improves
the unseen dysarthric speech recognition. A Deep neural network (DNN) - hidden
Markov model (HMM) recognition system fared better than a Gaussian Mixture
Model (GMM) - HMM-based system for dysarthric speech recognition. We pro-
pose a method to optimally use incremental dysarthric data to improve dysarthric
speech recognition for an ASR with DNN-HMM. All evaluations were done on the
Universal Access Speech Corpus.

4.1.1 Introduction

Dysarthria is a motor speech disorder resulting from impairment in muscles re-
sponsible for speech production. Neurological injury to the nervous system may
result in weakness, paralysis, or a lack of coordination of the motor-speech sys-
tem, resulting in a reduction in intelligibility, audibility, naturalness, and efficiency
of vocal communication. For dysarthric speakers, speech is a more efficient/con-
venient mode of communication with electronic devices as compared to keyboard
input [165]. Voice or speech as a computer interface for dysarthric speakers was
implemented as early as 1985 [46]. The authors designed an assistive device to
bypass the keyboard and activate the computer using voice control. Despite the
early start, automatic recognition of dysarthric speech is poorer as compared to
that of normal speech, owing to the inter-speaker and intra-speaker inconsistencies
in the acoustic space as well as the sparseness of data. As per the literature, the
work so far can be broadly classified into two types of research - (1) improving
intelligibility by modifying or enhancing the dysarthric speech and (2) ASR-based
speech recognition by the speaker adaptation. In [66], authors study the effect that
certain modifications have on the intelligibility of dysarthric speech and report that
by transforming the dysarthric speech at the short-term spectral levels, an increase
in intelligibility was attained. In the study [82], authors have achieved increased
intelligibility by transforming the vowels of a dysarthric speaker to more closely
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match the vowel space of a normal speaker. Features that provided optimum per-
formance were vowel duration and F1 - F3 (formant 1 - formant 3) stable points
that were computed using shape-constrained isotonic regression. In another study
[167], the author transforms various aspects of speech, such as the correction of
pronunciation errors, adjustment of the tempo and the frequency characteristics of
speech to obtain increased intelligibility. Yet another technique to increase both
the perceptual quality of the speech as well as intelligibility are transformations to
formant trajectories of dysarthric speech, to closely match that of a normal speaker
[81].

In [57], one of the earlier works in ASR-based dysarthric speech recognition,
the authors stress that the data insufficiency challenges and define confusability
and consistency measures to predict recognizer performance. Several works [145,
102] discuss the merits of selection of ASR type, namely - speaker-independent
(SI), speaker-dependent (SD) or speaker adapted (SA) by analyzing the correlation
between the severity of dysarthria and best performing ASR type (one of SA or
SD). In [26], authors have used a method of measuring similarity between dysarthric
speakers and select only the most similar speaker data for training rather than the
SI acoustic models, followed by maximum a posteriori (MAP) adaptation. Studies
[181] also suggest an improvement in recognition by using more suitable prior model
or background model for adaptation based on the dysarthric speaker’s acoustic
characteristics. Work pertaining to speaker-based lexical or pronunciation model
adaptation in addition to acoustic model adaptation, [131, 127, 206] have shown
improvement in the ASR performance. An understanding of the speech production
process through the articulatory models for speech has proven beneficial in improved
accuracy of the ASR, both conventional GMM-HMM and DNN-HMM [165, 166, 58].
More recently the application of neural network topologies [177, 135], feature space
maximum likelihood linear regression (fMLLR) transformation [58] and a hybrid
adaptation using maximum likelihood linear regression (MLLR) and MAP [174]
have been used to improve dysarthric speech recognition.

We believe that speech-based applications such as voice biometrics and personal
assistants can immensely benefit dysarthric speakers if designed well. Given the
challenges in collecting dysarthric data, the thrust is now on recognition of un-
seen speech utterances, i.e. recognition of dysarthric speech that is not a part of
the training set. In this chapter, we propose a method and examine a set of fea-
tures to improve speech recognition of unseen dysarthric speech. We incorporate
multi-taper MFCC (MT-MFCC), which has been proven to be effective in speaker
verification and speech recognition [5, 4] as well as voice disorder classification [39].
Additionally, we examine the voice parameters (VP), such as jitter, shimmer, F0
features, and noise-to-harmonics ratio (NHR), that have traditionally been used for
voice disorder classification [120, 188]. Some of these parameters have been used
to automatically assess the severity level of dysarthria [80]. The main contribu-
tion of this chapter is a framework for unseen dysarthric speech recognition using a
DNN-HMM SA-ASR system along with a combination of speaker-specific features.
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To the best of our knowledge no other work has examined the usefulness of voice
parameters such as jitter, shimmer F0 features and noise-to-harmonics ratio (NHR)
in the context of dysarthric speech recognition.

The rest of the chapter is organized as follows. Section 4.1.2 describes the fea-
tures and their role in dysarthric speech recognition, Section 4.1.3 discusses the
various experimental setups and a description of the data used, Section 4.1.4 de-
scribes the results and analysis, and we conclude in Section 4.1.5.

4.1.2 Features for Dysarthric Speech Recognition

4.1.2.1 Multi-taper Spectral Estimation

Conventional spectral estimation of speech uses a Hamming window or a single
taper. Using a single taper windowing results in a significant portion of the signal
being discarded and the data points at the extremes being down-weighted, giving a
high variance for the direct spectral estimate [158]. Hence, a multi-taper method is
used so that the statistical information lost by using just one taper is partially recov-
ered by using multiple windows for the same duration. The multi-taper spectrum
is thus a weighted sum of the several tapered periodograms. Spectral estimation of
a signal S using multi-taper method is as follows,

S(m, k) =
1

M

M−1∑
p=0

λ(p)
N−1∑
j=0

wp(j)s(m, j)e−i2π k
N
j (4.1)

where wp(j) is the pth data taper function, M is the number of tapers and λ(p) is
the weight corresponding to the pth taper, N is the speech frame length, s(m, j) is
the jth speech frame and k is the FFT points. In practice, weights are designed so
as to compensate for increased energy loss at higher-order tapers.

4.1.2.2 Jitter and Shimmer

Jitter and shimmer are characteristic of the speech of an individual and have been
beneficial in speaker recognition tasks [42]. Jitter represents the perturbations that
occur in the fundamental frequency F0 and can be interpreted as a modulation of
the periodicity of the voice signal. Reduced control of vocal fold vibration, as is the
case in dysarthria manifests as jitter. Pathological voices are generally characterized
by a high degree of jitter and are perceived as hoarse. Hence, an estimation of
jitter has been used in the classification of pathological speech. Absolute jitter is
computed as per Equation 4.2.

Jitter(absolute) =
1

N − 1

N−1∑
i=1

|Ti − Ti+1| (4.2)

where Ti = 1 / F0 and N is the number of F0 periods.
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Shimmer pertains to the amplitude variation of the sound wave and varies with
the glottal resistance and mass lesions in the vocal folds manifesting as the presence
of noise emission and breathiness in the voice [188]. Absolute shimmer is computed
as per Equation 4.3 and is expressed in decibels (dB).

Shimmer(absolute) =
1

N − 1

N−1∑
i=1

∣∣∣∣20 ∗ log
(
Ai+1

Ai

)∣∣∣∣ (4.3)

where Ai is the extracted peak-to-peak amplitude, and N is the number of F0
periods.

4.1.2.3 F0 Features

The role of fundamental frequency F0 in the intelligibility of speech has been studied
for both normal and dysarthric speech [149]. These studies suggest that a higher
variation in F0 contributes significantly to increased intelligibility. However, for
dysarthric speakers, the precision and flexibility of the vocal folds, articulators, and
other speech subsystems are lower, leading to reduced prosodic control, reflecting a
reduction in intelligibility. Additionally, studies show that the slower articulatory
rate tends to be associated with low values of mean, maximum, and variations of
F0 [191]. F0 measurements such as mean and variation are also indicative of the
vocal loudness of speech, which has a bearing on speech intelligibility.

4.1.2.4 Noise to Harmonic ratio (NHR)

Noise-to-Harmonics ratio (NHR) is indicative of the abnormal vibratory character-
istics of the vocal folds, manifesting as hoarseness in dysarthric speech. NHR is
measured in dB, calculated by the ratio of noise energy or the aperiodic part of a
sustained vowel to the energy of the periodic part. NHR can be used as a measure
of voice quality and is defined as below.

NHR(dB) = 10 ∗ log
(
En

Ep

)
(4.4)

where Ep is the energy of the periodic part, and En is the energy of the noise. NHR
has been used as one of the discriminative features to evaluate the degree or severity
of dysarthria in [80].

4.1.3 Speech Recognition Methodology

4.1.3.1 Data

Data from the Universal Access (UA) speech corpus [95] was used for both training
and testing of the two ASR systems discussed in this section. The UA speech corpus
comprises data from 13 healthy control (HC) speakers and 15 dysarthric (DYS)
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speakers with cerebral palsy. The recording material consisted of 455 distinct words
with 10 digits, 26 international radio alphabet letters, 19 computer commands, 100
common words, and 300 uncommon words that were distributed into three blocks.
Three blocks of data were collected for each speaker such that in each block, the
speaker recorded the digits, radio alphabets, computer commands, common words,
and 100 of the uncommon words. Thus, each speaker recorded 765 isolated words.
Data from all channels were used for this work. Speech intelligibility ratings for
each dysarthric speaker, as assessed by five naive listeners are also included in the
corpus. We use this information to analyze the performance of our recognition
systems at the dysarthria severity level.

The objective of this work is to recognize unseen dysarthric data, and explore the
applicability of voice parameters in recognition of dysarthric speech. The training
and testing corpus, as described in Table 4.1 allows us to compare and contrast
the performance of our recognition systems for seen and unseen testing data, i.e.,
DYS-computer command words (DYS-CC words).

Table 4.1: Training and testing corpus

Purpose Data Number of

Utterances

Training

HC-digits 800

HC-computer command words 1500

DYS - digits 800

Testing

HC-digits 110

HC - computer command words 229

DYS - digits 169

DYS - computer command words 361

4.1.3.2 ASR Systems and Experimental Setup

Feature extraction and normalization:
Multi-taper spectral estimation was done using Discrete Prolate Spheroidal se-

quences (DPSS) or Thomson or Slepian tapers [189] with 6 orthonormal tapers.

wp(j) =
sin[ωcT (p− j)]

(p− j)
, j = 0, 1, . . . , N − 1 (4.5)

where N denotes the desired window length in samples, ωc is the desired main-
lobe cut-off frequency in radians per second, and T is the sampling period in sec-
onds. Twelve-dimensional MFCC features were computed using Thomson multi-
taper spectral estimation with a 30ms window and a 10ms shift rate.
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All the voice parameters, such as the jitter, shimmer, F0, and NHR measures
were computed using the voice analysis software, PRAAT [18], wherein a cross-
correlation (cc) method was used for acoustic periodicity estimation, using a 30ms
window and a 10ms shift rate. PRAAT gives various measurements for each of the
above voice parameter. Based on experimental evidence and literature [42], features
as shown in Table 4.2 were chosen for speech recognition.

Table 4.2: Voice parameters extracted from PRAAT [18]

Feature PRAAT Measurement

Jitter Jitter(local, relative)

Shimmer Shimmer(local, dB)

Fundamental Frequency F0
Standard Deviation

Range (Maximum - Minimum)

Noise to Harmonic ratio
Standard Deviation

Mean

We have three sets of features, namely, MFCC, multi-taper MFCC (MT-MFCC),
and voice parameters (VP).

Speech recognition:
We use the Kaldi toolkit [156] for both GMM-HMM-based and DNN-HMM-based
dysarthric speech recognition. A 3-state HMM with a monophone or a triphone con-
text model is used. GMM-HMM system was trained using a maximum likelihood
estimation (MLE) training approach along with 100 senones and 8 Gaussian mix-
tures. Cepstral mean normalization (CMN) were applied to each of the above sets
of features. Dimensionality reduction was done using Linear Discriminant Analysis
(LDA), wherein LDA builds HMM states using feature vectors with a reduced fea-
ture space. We use the context of 6 frames (3 left and 3 right) to compute LDA.
The feature vector size post LDA is set to 40.

The input layer of DNN has 360 (40× 9frames) dimensions using a left and right
context of 4 frames. The output layer has a dimension of 96 (number of senones
available in the data). We used 2 hidden layers with 512 nodes in each layer.
Trigram language model was used, and the performance of each of the recognition
systems is reported in terms of word error rate (WER).

We explore the use of our feature sets - MFCC, MT-MFCC, and MT-MFCC-VP
for speech recognition with speaker adaptation(SA).

Speaker Adaptation:
Traditionally, speaker adaptation techniques such as MLLR, MAP are applied on
SI acoustic models at the time of decoding. We use Maximum Likelihood Linear
Transform (MLLT) for speaker normalization. MLLT derives a unique transforma-
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tures. Cepstral mean normalization (CMN) were applied to each of the above sets
of features. Dimensionality reduction was done using Linear Discriminant Analysis
(LDA), wherein LDA builds HMM states using feature vectors with a reduced fea-
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available in the data). We used 2 hidden layers with 512 nodes in each layer.
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for speech recognition with speaker adaptation(SA).

Speaker Adaptation:
Traditionally, speaker adaptation techniques such as MLLR, MAP are applied on
SI acoustic models at the time of decoding. We use Maximum Likelihood Linear
Transform (MLLT) for speaker normalization. MLLT derives a unique transforma-
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tion for each speaker using the reduced feature space from the LDA.
An inter-speaker feature space normalization technique, known as feature space

maximum likelihood linear regression (fMLLR) [48] is performed for each speaker,
wherein the acoustically transformed feature vector ô(t) is estimated using a trans-
formation matrix A and a bias vector b as ô(t) = Ao(t) + b, where ô(t) is obtained
by transforming input feature vector o(t) at frame t.

Speaker adaptive training (SAT) [7] is applied at the time of training the acous-
tic models and aims at eliminating the inter-speaker variation. fMLLR-based SAT
was applied to create speaker-adapted (SA) acoustic models; further, fMLLR was
applied to the features of the input utterances at the time of decoding. SAT using
fMLLR remains common to both the GMM-HMM and the DNN-HMM-based sys-
tems.

Incremental training of DNN:
Considering the application of a DNN-HMM-based speech recognizer for unseen
dysarthric speech, it is expected that there will be incremental data as the dysarthric
user uses the system. This data can be used to improve upon the existing acoustic
models and thereby improve the performance of the recognition engine. Two mech-
anisms of training the DNN-HMM were considered - (1) DNN weights built using
the original corpus, are updated by retraining, using the incremental data alone.
(2) The system is trained on the entire data (original + incremental).

Figure 4.1: WER for GMM-HMM-based and DNN-HMM-based recognition using
speaker adaptation

4.1.4 Results and Discussion

Speech recognition using the GMM-HMM system as well as the DNN-HMM sys-
tem was carried out using a set of features, namely MFCC, MT-MFCC, and VP,
individually as well as in fusion. Training and testing data setup was designed so as
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to understand the speech recognition performance for a set of words for which no
training has been done on dysarthric data such as dysarthric computer command
words (DYS-CC). The train and test for all other cases such as healthy control (HC)
and DYS-digits are disjoint or mutually exclusive. The word error rates (WER) for
Triphone GMM-HMM and DNN-HMM systems are as shown in Figure 4.1.

It can be seen that using MT-MFCC and VP - jitter and shimmer with speaker
adaptation, showed a reduction in WER for the DNN-HMM system, whereas adding
F0 features and NHR features had an adverse impact. It has been observed that jit-
ter and shimmer are not discernible perceptually by human listeners [113], whereas
any difference in fundamental frequency F0 or NHR is perceptually apparent [149].
Using CMN and SAT improved speech recognition using MT-MFCC-F0 features.
However, using F0 features in addition to MT-MFCC did not improve the overall
speech recognition for any of the SA or SI systems. It was seen that features that
have a clear bearing on speech perception adversely impacted the performance of
the recognizers.

Fusion of MT-MFCC, jitter, and shimmer (VPJitShim) feature shows a relative
improvement of 8.4% in GMM-HMM-based system and 10.7% in the DNN-HMM-
based system over the MFCC features alone.

Table 4.3 shows the recognition results based on speaker type for the DNN-
HMM using MT-MFCC-VPJitShim feature set. This indicates a correlation be-
tween severity of dysarthria and the accuracy of the recognition system. Similar
trend was seen for MT-MFCC, MT-MFCC-Jitter and MT-MFCC-Shimmer feature-
based recognition systems, wherein the WER increased with the increase in the
severity of dysarthria.

Table 4.3: Dysarthria severity wise accuracy for DNN-HMM system with original
training data and incremental training data for MT-MFCC-VPJitShim

Speaker %Accuracy-DNN-HMM %Accuracy-DNN-HMM

type Initial Incremental

Digits CC words Digits CC words

Healthy control 98.93 99.40 94.90 99.00

DYS – Very Low 94.66 91.47 94.70 98.66

DYS – Low 92.68 36.84 83.10 95.35

DYS – Medium 88.24 31.51 82.34 90.09

DYS – High 52.38 7.22 51.56 93.65

Experiments pertaining to incremental training were conducted for SA-based
DNN-HMM recognizer, using fusion MT-MFCC and VPJitShim features. The
DNN-HMM system was retrained using the initial weights from the training data
mentioned in Table 4.1 and a 10% additional DYS-CC word data. This system
performed poorly in comparison to the system-trained with original training, data.
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by transforming input feature vector o(t) at frame t.

Speaker adaptive training (SAT) [7] is applied at the time of training the acous-
tic models and aims at eliminating the inter-speaker variation. fMLLR-based SAT
was applied to create speaker-adapted (SA) acoustic models; further, fMLLR was
applied to the features of the input utterances at the time of decoding. SAT using
fMLLR remains common to both the GMM-HMM and the DNN-HMM-based sys-
tems.

Incremental training of DNN:
Considering the application of a DNN-HMM-based speech recognizer for unseen
dysarthric speech, it is expected that there will be incremental data as the dysarthric
user uses the system. This data can be used to improve upon the existing acoustic
models and thereby improve the performance of the recognition engine. Two mech-
anisms of training the DNN-HMM were considered - (1) DNN weights built using
the original corpus, are updated by retraining, using the incremental data alone.
(2) The system is trained on the entire data (original + incremental).

Figure 4.1: WER for GMM-HMM-based and DNN-HMM-based recognition using
speaker adaptation

4.1.4 Results and Discussion

Speech recognition using the GMM-HMM system as well as the DNN-HMM sys-
tem was carried out using a set of features, namely MFCC, MT-MFCC, and VP,
individually as well as in fusion. Training and testing data setup was designed so as

80

4. Acoustic parameters and time domain adaptation of dysarthric speech

to understand the speech recognition performance for a set of words for which no
training has been done on dysarthric data such as dysarthric computer command
words (DYS-CC). The train and test for all other cases such as healthy control (HC)
and DYS-digits are disjoint or mutually exclusive. The word error rates (WER) for
Triphone GMM-HMM and DNN-HMM systems are as shown in Figure 4.1.

It can be seen that using MT-MFCC and VP - jitter and shimmer with speaker
adaptation, showed a reduction in WER for the DNN-HMM system, whereas adding
F0 features and NHR features had an adverse impact. It has been observed that jit-
ter and shimmer are not discernible perceptually by human listeners [113], whereas
any difference in fundamental frequency F0 or NHR is perceptually apparent [149].
Using CMN and SAT improved speech recognition using MT-MFCC-F0 features.
However, using F0 features in addition to MT-MFCC did not improve the overall
speech recognition for any of the SA or SI systems. It was seen that features that
have a clear bearing on speech perception adversely impacted the performance of
the recognizers.

Fusion of MT-MFCC, jitter, and shimmer (VPJitShim) feature shows a relative
improvement of 8.4% in GMM-HMM-based system and 10.7% in the DNN-HMM-
based system over the MFCC features alone.

Table 4.3 shows the recognition results based on speaker type for the DNN-
HMM using MT-MFCC-VPJitShim feature set. This indicates a correlation be-
tween severity of dysarthria and the accuracy of the recognition system. Similar
trend was seen for MT-MFCC, MT-MFCC-Jitter and MT-MFCC-Shimmer feature-
based recognition systems, wherein the WER increased with the increase in the
severity of dysarthria.

Table 4.3: Dysarthria severity wise accuracy for DNN-HMM system with original
training data and incremental training data for MT-MFCC-VPJitShim

Speaker %Accuracy-DNN-HMM %Accuracy-DNN-HMM

type Initial Incremental

Digits CC words Digits CC words

Healthy control 98.93 99.40 94.90 99.00

DYS – Very Low 94.66 91.47 94.70 98.66

DYS – Low 92.68 36.84 83.10 95.35

DYS – Medium 88.24 31.51 82.34 90.09

DYS – High 52.38 7.22 51.56 93.65

Experiments pertaining to incremental training were conducted for SA-based
DNN-HMM recognizer, using fusion MT-MFCC and VPJitShim features. The
DNN-HMM system was retrained using the initial weights from the training data
mentioned in Table 4.1 and a 10% additional DYS-CC word data. This system
performed poorly in comparison to the system-trained with original training, data.

81



4. Acoustic parameters and time domain adaptation of dysarthric speech

This could be attributed to the updating of the neural network to a specific type
of data, namely dysarthric CC word data. As expected, training the DNN-HMM
system using the entire data (original data + incremental data) provided a signif-
icant improvement, especially in the recognition of DYS-CC words for dysarthric
speakers, as shown in Table 4.3. Recognition of digits deteriorated for both healthy
control and dysarthric data, owing to a higher number of digits being incorrectly
recognized as CC words, especially the confusable pairs like the digit ’nine’ and the
CC word ’line’.

4.1.5 Conclusions

In this chapter, we propose a method and examine a set of features to improve
speech recognition of unseen dysarthric speech. We incorporate multi-taper MFCC
(MT-MFCC) and examine the applicability of voice parameters (VP) such as jitter,
shimmer, F0 features and noise-to-harmonics ratio (NHR) in two types of recog-
nition systems, namely - GMM-HMM and DNN-HMM using a speaker adaptation
approach. For the MT-MFCC-VP(JitShim) fused feature set, a relative improve-
ment of 8.4% in GMM-HMM-based system and 10.7% in the DNN-HMM-based
system was seen over the MFCC features alone. This indicates that while using jit-
ter and shimmer voice parameters was beneficial in speaker adaptation-based speech
recognition, using F0 and NHR features added no advantage. This difference in the
behavior of both recognition systems could be understood from the perspective of
human listener perception of dysarthric speech. It has been observed that jitter and
shimmer are not discernible perceptually by human listeners, whereas any difference
in fundamental frequency F0 or NHR is perceptually apparent. An increment in the
training data clearly increased the recognition accuracy of the DNN-HMM-based
system using MT-MFCC-VPJitShim features for DYS-CC words. Our future work
would involve further improving the accuracy of dysarthric speech recognition un-
der the DNN-HMM architecture, exploring different topologies and network types
that would suit the best for dysarthric speech recognition.
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4.2 Improving Recognition of Dysarthric Speech

Using Severity Based Tempo Adaptation

Dysarthria is a motor speech disorder, characterized by slurred or slow speech re-
sulting in low intelligibility. Automatic recognition of dysarthric speech is beneficial
to enable people with dysarthria to use speech as a mode of interaction with elec-
tronic devices. In this chapter, we propose a mechanism to adapt the tempo of
the sonorant part of dysarthric speech to match that of normal speech, based on
the severity of dysarthria. We show a significant improvement in recognition of
tempo-adapted dysarthric speech, using a Gaussian Mixture Model (GMM) - Hid-
den Markov Model (HMM) recognition system, as well as a Deep neural network
(DNN) - HMM-based system. All evaluations were done on the Universal Access
Speech Corpus.

4.2.1 Introduction

Dysarthria is a motor speech disorder resulting from impairment in muscles respon-
sible for speech production. Neurological injury may result in weakness, paralysis,
or a lack of coordination of the motor-speech system, affecting speech subsystems,
and giving rise to a reduction in intelligibility, audibility, naturalness, and efficiency
of vocal communication. For dysarthric speakers, speech is a more efficient/con-
venient mode of communication with electronic devices as compared to keyboard
input [165]. Several techniques have been proposed to improve the performance of
automatic recognition of dysarthric speech, such as (1) enhancement of dysarthric
speech in the acoustic domain to match that of normal speakers. (2) Automatic
speech recognition (ASR) based speech recognition using speaker adaptation. Re-
search methods to improve the intelligibility of dysarthric speech by modifying
various aspects of speech, such as vowel space [82], energy, fundamental frequency,
formants and tempo of dysarthric speech[167] have been proposed. In [163], the
impact of manipulation of fundamental frequency on intelligibility has been stud-
ied, wherein intelligibility is reduced with reduction in variation in F0. Several
studies have been conducted to understand the ASR performance based on sever-
ity levels. Maximum likelihood and maximum a posteriori (MAP) adaptation has
been used for speaker adaptation in [27, 174, 102] wherein the authors analyze the
performance of different types of ASR systems such as speaker-independent (SI),
speaker-adapted (SA), and speaker-dependent (SD) for various severity levels. An
interpolation technique along with MAP adaptation on a speaker-wise background
model is used in [181] to provide improved ASR performance. In [164], the per-
formances of speaker-dependent and speaker-adaptive models have been compared,
where the speaker adaptive models performed better across various levels of severity
of dysarthria.

Automatic recognition of dysarthric speech is poorer as compared to that of
normal speech, owing to the inter-speaker and intra-speaker inconsistencies in the
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acoustic space as well as the sparseness of data. Thus far, three popular dysarthric
speech databases, namely the Universal Access (UA) speech corpus [95], Nemours
[126] and TORGO [168] exist for American English. No known dysarthric speech
database is available for Indian languages. The objective of our work is to build an
ASR for dysarthric speakers for resource-deficient Indian languages, using zero or
small amounts of dysarthric data for training the acoustic models of an automatic
speech recognizer (ASR).

In this chapter, we propose a mechanism to improve the recognition of dysarthric
speech using tempo adaptation of sonorants (vowels, glides, liquids, and nasals) in
dysarthric speech, by using acoustic models primarily built from healthy control
speakers. We show that the severity of dysarthria has a bearing on the duration
of sonorants and thereby, the degree of adaptation can be selected based on the
severity of dysarthria. Severity classification itself is beyond the scope of this work
and can be accomplished by employing techniques available in the literature [80].
We also compare the performance of speaker-independent (SI) and speaker-adapted
(SA) recognition systems when a small amount of dysarthric data is available and is
used for speaker adaptation. The experimental results show that speaker-adapted
dysarthric speech recognition further improved with tempo adaptation, indicating
that tempo adaptation supplements the speaker-adapted dysarthric speech recog-
nition. This improvement was seen across both Gaussian Mixture Model (GMM)
- Hidden Markov Model (HMM) and Deep neural network (DNN) - HMM-based
recognition system.

The rest of the chapter is organized as follows. Section 4.2.2 describes the tempo
adaptation and its impact on dysarthric speech recognition, Section 4.2.3 discusses
the various experimental setups and a description of the data used, in Section 4.2.4
we discuss the experimental results, and we conclude in Section 4.2.5.

4.2.2 Severity based Tempo Adaptation

Impairment of the motor nervous system impacts the articulator movements ad-
versely, causing the articulators to move slowly. This manifests as longer durations
for sonorants in dysarthric speech as compared to normal speech and tempo adapta-
tion of the sonorants of dysarthric speech leads to improvement in the performance
of ASRs [167]. Tempo adaptation involves temporal reduction of the sonorant re-
gions of an utterance using a pre-determined adaptation parameter α.

Tempo adaptation needs to be in a manner such that it does not impact the
pitch of the sonorant regions. Hence, a phase vocoder based on short-time Fourier
transform (STFT) is used [155]. Magnitude spectrum and phase of the STFTs
are either interpolated or decimated based on the adaptation parameter, where
the magnitude spectrum is directly used from the input magnitude spectrum and
phase values are chosen to ensure continuity. This ensures that the pitch of the
time-warped sonorant region is intact. For the frequency band at frequency F and
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frames i and j > i in the modified spectrogram, the phase θ is predicted as

θ′jF = θjF + 2πF · (i− j)

The modified spectrogram is then converted into a time-domain signal using inverse
Fourier transform, wherein the tempo of the sonorant regions are adapted with the
pitch unchanged.

4.2.2.1 Learning the Adaptation Parameter

We propose a scheme to adapt the tempo of dysarthric automatically speech based
on the severity of dysarthria. The adaptation parameter α, has been determined em-
pirically using healthy control speech data and dysarthric speech of various severity
levels. Both sets of data, healthy control and dysarthric comprise the same words.
Initially, tempo adaptation is done for the sonorants at the word level, wherein the
tempo of the dysarthric speech for the sonorant region in each word was adapted
to match the tempo of the sonorant region in the exact same word as spoken by
healthy control speakers. Consider the word W whose average sonorant duration
for healthy control speakers is dHC and that for a dysarthric utterance is ddys. The
tempo adaptation parameter for the word W is computed as

αinitial =
dHC

ddys

The sonorant region of the dysarthric utterance is adapted using αinital for each
dysarthric utterance. It was observed that the severity of the speakers had a clear
bearing on the αinital values, as shown in Figure 4.2, wherein the letters M and F in
the speaker code indicate a dysarthric speaker’s gender. The speaker-wise relative
improvement in recognition of dysarthric speech for both GMM and DNN systems
are as shown in the Figure 4.3. Also, for some speakers with high intelligibility,
the word error rate (WER) increased using tempo adaptation. This factor was
considered for setting the α parameter. It was also observed that the standard
deviation across words was low for a particular severity class, with the highest
standard deviation (0.82) being for low intelligibility.

Table 4.4: Tempo adaptation parameter α based on severity computed empirically.

Severity Very Low Low Mid High

α 1 0.6 0.5 0.4

Based on the above empirical evidence, the α parameters selected for different
severity levels are as shown in Table 4.4. Figure 4.4 shows the proposed system,
wherein tempo adaptation for a particular speaker is done based on the severity
level. Sonorant region in a speech utterance was identified using a three-class clas-
sification technique, wherein an utterance was classified into silence, non-sonorant
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wherein tempo adaptation for a particular speaker is done based on the severity
level. Sonorant region in a speech utterance was identified using a three-class clas-
sification technique, wherein an utterance was classified into silence, non-sonorant
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Figure 4.2: Variation in initial tempo adaptation parameter αinitial across various
severity levels of dysarthria

Figure 4.3: Relative improvement in WER across various severity levels of
dysarthria for GMM and DNN using αinitial

and sonorant regions using HTK 3.4 toolkit [216]. For this task, acoustic models
corresponding to the three classes were trained using the TIMIT [50] database.

4.2.3 Experimental Setup

4.2.3.1 Data

Data from the Universal Access (UA) speech corpus [95] was used for both training
and testing of the two ASR systems discussed in this section. The UA speech corpus
comprises data from 13 healthy control (HC) speakers and 15 dysarthric (DYS)
speakers with cerebral palsy. The recording material consisted of 455 distinct words
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Figure 4.4: Proposed system for tempo-adapted dysarthric speech recognition

with 10 digits, 26 international radio alphabet letters, 19 computer commands, 100
common words and 300 uncommon words that were distributed into three blocks.
Three blocks of data were collected for each speaker such that in each block, the
speaker recorded the digits, radio alphabets, computer commands, common words
and 100 of the uncommon words. Thus each speaker recorded 765 isolated words.
Speech intelligibility ratings for each dysarthric speaker, as assessed by five naive
listeners are also included in the corpus. Speakers were divided into four different
categories based on intelligibility, namely high, mid, low, and very low. We use this
information to analyze the performance of our recognition systems at the dysarthria
severity level.

4.2.3.2 Speech Recognition

We use the Kaldi toolkit [156] for both GMM-HMM-based and DNN-HMM-based
dysarthric speech recognition. A 3-state HMM with a monophone or a triphone
context model is used. GMM-HMM system was trained using a maximum likeli-
hood estimation (MLE) training approach along with 100 senones and 8 Gaussian
mixtures. Cepstral mean and variance normalization (CMVN) was applied to each
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of the above sets of features. Dimensionality reduction was done using Linear Dis-
criminant Analysis (LDA), wherein LDA builds HMM states using feature vectors
with a reduced feature space. We use the context of 6 frames (3 left and 3 right)
to compute LDA. The feature vector size post LDA is set to 40.

The input layer of DNN has 360 (40 × nineframes) dimensions using a left
and right context of 4 frames. The output layer has a dimension of 96 (number of
senones available in the data). 2 hidden layers with 512 nodes in each layer were
used. The performance of each of the recognition systems is reported in terms of
word error rate (WER).

We use Maximum Likelihood Linear Transform (MLLT) for speaker normaliza-
tion. MLLT derives a unique transformation for each speaker using the reduced
feature space from the LDA. An inter-speaker feature space normalization tech-
nique known as feature space maximum likelihood linear regression (fMLLR) [48]
is performed for each speaker. Speaker adaptive training (SAT)[7] is applied at
the time of training the acoustic models and aims at eliminating the inter-speaker
variation. fMLLR-based SAT was applied to create speaker-adapted (SA) acoustic
models; further, fMLLR was applied to the features of the input utterances at the
time of decoding. SAT using fMLLR remains common to both the GMM-HMM
and the DNN-HMM-based systems.

A specific combination of healthy control (HC) and dysarthric data (DYS) from
each of the three blocks (B1, B2 and B3) of computer command (CC) words and
digits were used for various experiments as described in Table 4.5.

Table 4.5: Training and testing corpus

System Training Testing Purpose

SI-01 HC-CC DYS-CC (B1&B3) αinitial and α learning

SI-02 HC-CC DYS-CC (B2) α validation

SA-01 HC-CC, DYS-CC (B1&B3) DYS-CC (B2) α + Speaker adaptation

SA-02 HC-CC, HC-digits, DYS-CC (B1&B3) DYS-digits (B2) α validation for unseen data

The above experimental setup is used for both GMM-HMM and DNN-HMM
recognizers. System SA-02 specifically shows the performance obtained for the
recognition of unseen dysarthric data (which does not exist in the training set).
It is expected that this would be the typical scenario, considering the challenges
in collecting dysarthric data. The objective of our work is to be able to recog-
nize dysarthric speech when no or a small amount of dysarthric data is available
for training. To the best of our knowledge, no other work has reported speech
recognition for this specific combination of testing and training data.

4.2.4 Evaluation Results and Discussion
The tempo adaptation parameter α was learned for each severity level, as described
in Section 4.2.2. Experiments were conducted to understand the applicability of α
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Table 4.6: Relative improvement in WER using tempo-adaptation
System GMM-HMM GMM-HMM-TA %relative DNN-HMM DNN-HMM-TA %relative

%WER %WER improvement %WER %WER improvement

SI-01 77.21 40.84 47.11 75.88 39.12 48.44
SI-02 79.36 48.05 39.45 73.42 44.47 39.43
SA-01 49.59 34.12 31.2 34.67 27.57 20.48
SA-02 72.96 52.22 28.42 52.01 42.83 17.65

under various scenarios such as SI, SA, and SA with unseen data. The results indi-
cate that the recognition accuracy improved or the WER reduced when the tempo
was adapted. Acoustic models were trained using both monophone and triphone
contexts. It was observed that across all experimental setups, triphone models
showed higher relative improvement in recognition performance after tempo adap-
tation. This indicates that the tempo adaptation improves the triphone acoustic
model of a phone as well.

Table 4.7: Impact of tempo adaptation on WER for SA-01 based on severity

Severity GMM-HMM GMM-HMM-TA %relative DNN-HMM DNN-HMM-TA %relative

%WER %WER improvement %WER %WER improvement

Low 39.68 22.83 42.46 26.32 14.18 46.12
Medium 60.39 45.87 24.04 42.69 31.43 26.38
High 108.86 69.15 36.48 86.52 68.53 20.79

Further, it can be seen from Table 4.7, that the recognition performance of the
best-performing system SA-01 improved across all severity levels for both GMM-
based and DNN-based systems with tempo adaptation (TA). It was observed that
the reduction in WER was largely due to the decrease in the number of insertions
as compared to substitutions.

4.2.5 Conclusion
In this chapter, we propose a mechanism to improve the speech recognition of
dysarthric speech using tempo adaptation of sonorants in dysarthric speech. We
show that the severity of dysarthria has a bearing on the duration of sonorants and
thereby degree of adaptation can be selected based on the severity of dysarthria.
This mechanism is especially beneficial when no or less amount of dysarthric data
is available in a specific language (e.g., Indian Languages), for training the acoustic
models of an ASR. We compare the performance of speaker-independent (SI) and
Speaker-adapted (SA) recognition systems when a small amount of dysarthric data
is available and is used for speaker adaptation. The results show that speaker-
adapted dysarthric speech recognition further improved with tempo adaptation, in-
dicating that tempo adaptation supplements the speaker-adapted dysarthric speech
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recognition. This improvement was seen across both Gaussian Mixture Model
(GMM) - Hidden Markov Model (HMM) and Deep neural network (DNN) - HMM-
based recognition system. If we consider the system wherein only healthy controls
are used for training the acoustic models with no tempo adaptation as a base-
line, the proposed speaker-independent and speaker-adapted systems provide an im-
provement of 47.11% and 55.81% respectively, for GMM-HMM-TA and 48.44% and
63.67% for DNN-HMM-TA respectively. Severity-based tempo adaptation using
triphone-based acoustic models showed higher relative improvements than mono-
phone acoustic models across all systems mentioned in the Section 4.2.3. This
indicates that the tempo adaptation improves the acoustic phone model in the
triphone context as well.
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5. Autoencoder-based speech enhancement of dysarthric speech

5.1 Deep Autoencoder Based Speech Features for

Improved Dysarthric Speech Recognition

Dysarthria is a motor speech disorder, resulting in mumbled, slurred or slow speech
that is generally difficult to understand by both humans and machines. Traditional
Automatic Speech Recognizers (ASR) perform poorly on dysarthric speech recog-
nition tasks. In this chapter, we propose the use of deep autoencoders to enhance
the Mel Frequency Cepstral Coefficients (MFCC) based features in order to im-
prove dysarthric speech recognition. Speech from healthy control speakers is used
to train an autoencoder which is, in turn, used to obtain improved feature repre-
sentation for dysarthric speech. Additionally, we analyze the use of severity-based
tempo adaptation followed by autoencoder-based speech feature enhancement. All
evaluations were carried out on the Universal Access dysarthric speech corpus. An
overall absolute improvement of 16% was achieved using tempo adaptation fol-
lowed by autoencoder-based speech front-end representation for DNN-HMM-based
dysarthric speech recognition.

5.1.1 Introduction

Neurological injury or disease such as Amyotrophic lateral sclerosis (ALS), Parkin-
son’s disease (PD) or cerebral palsy resulting in weakness, paralysis, or a lack of
coordination of the motor-speech system manifests as a speech disorder known as
dysarthria. Dysarthria leads to a reduction in intelligibility, audibility, naturalness,
and efficiency of vocal communication. Owing to the motor impairment, interaction
with electronic devices using speech is more effective than through keyboard input
[165]. Inter-speaker and intra-speaker inconsistencies in the acoustic space, as well
as the sparseness of data poses a serious challenge in building automatic speech
recognition engine (ASR) system for dysarthric speech. Speaker adaptation-based
ASR systems and dysarthric speech enhancement to match the characteristics of
normal speech are two popular techniques that have been employed to address this
challenge.

In [26], a similarity measure between dysarthric speakers to select relevant
speaker data for training rather than speaker-independent acoustic models, followed
by maximum a posteriori (MAP) adaptation has been used. In [181] a more suitable
prior model for adaptation based on the dysarthric speaker’s acoustic characteristics
has been used to achieve improved recognition. ASR accuracy was shown to improve
by representing dysarthric speech in terms of articulatory models in [165, 166, 58].
In [177], a set of MFCC features that best represent dysarthric acoustic features
was selected to be used in Artificial Neural Network (ANN)-based ASR. A hybrid
adaptation using maximum likelihood linear regression (MLLR) and MAP [174]
have been used to improve dysarthric speech recognition. Voice parameters such as
jitter and shimmer features along with a multi-taper spectral estimation being used
along with feature space maximum likelihood linear regression (fMLLR) transfor-
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mation and speaker adaptation to obtain improved dysarthric speech recognition
[13].

In [66], the modifications to prosody, spectral content, regions of the signal con-
taining formants, and effects of signal processing on dysarthric speech have been
studied. Transformations of dysarthric speech in both the temporal as well as
spectral domain have been employed so as to match the characteristics of normal
speech. In another study [167], transformations in the temporal domain by ad-
justing the tempo of speech using phase vocoding, spectral domain transformation
using anchor-based morphing of the spectrum and phoneme level correction of pro-
nunciation were used to give improved intelligibility and were validated both by
human listeners and ASR-based recognition. In [82], vowel space transformations
by manipulating vowel duration and formants F1 - F3 stable points were shown
to improve the intelligibility of dysarthric speech. In their work [34], authors use
speech synthesis to produce utterances with improved intelligibility corresponding
to a dysarthric utterance using the dysarthric speaker characteristics. Yet another
aspect that has been used to improve ASR performance is based on the severity
of the Dysarthria. Traditionally, speech intelligibility has been an indicator of the
severity of the speech disorder [120]. An understanding of severity has contributed
to improved speech recognition of dysarthric speech as seen in [174, 132, 102].

Deep Autoencoder (DAE) based feature enhancement technique provides signif-
icant performance gain for speech recognition. A variant of basic DAE, deep de-
noising autoencoders (DDA), have been used to enhance speech features, especially
in noisy conditions [183, 119, 43]. DDAs are also efficiently used for reverberant
speech recognition [71]. In [43], a DDA is pre-trained as restricted Boltzmann ma-
chines (RBMs) and then a nonlinear mapping from noisy to clean features is learned
from the corresponding clean speech features. Generally, a DDA learns a stochastic
mapping from noisy to clean by using clean features for fine-tuning.

In this chapter, we train the deep autoencoder network using healthy control
speech, which is in turn used to enhance the speech features of dysarthric speech.
We propose a method to improve the recognition of dysarthric speech using en-
hanced speech features that have been extracted using a Deep Autoencoder (DAE).
Additionally, we extend our earlier work [14], wherein we transform the dysarthric
speech in the temporal domain using severity-based tempo adaptation (TA) and use
the tempo-adapted dysarthric speech prior to feature enhancement using a DAE.
We analyze the contribution of the individual techniques towards improvement in
speech recognition, as well as tempo adaptation and DAE-based feature enhance-
ment in tandem. To the best of our knowledge, autoencoder-based speech feature
enhancement for dysarthric speech has not been attempted so far and is the main
contribution of this chapter.

The rest of the chapter is organized as follows. Section 5.1.2 describes the
methodology employed to enhance speech features for dysarthric speech recognition,
Section 5.1.3 discusses the various experimental setups and a description of the data
used, Section 5.1.4 describes the results and analysis, and we conclude in Section
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5.1.5.

5.1.2 Speech Feature Enhancement

In this chapter, we propose (a) an improved front-end speech processing through
enhanced speech features using deep autoencoders (DAE) and (b) a combination
of dysarthric speech transformation in the temporal domain followed by feature
enhancement using DAE. Figure 5.1 shows an overview of the proposed setup for
improved dysarthric speech recognition.

Figure 5.1: Proposed setup for improved dysarthric speech recognition

5.1.2.1 Deep Autoencoder (DAE)

Traditionally, an autoencoder is a fully connected artificial neural network system
with a bottleneck layer as shown in Figure 5.2. In this chapter, we use deep autoen-
coder to enhance the Mel Frequency Cepstral Coefficients (MFCC) based features
of dysarthric speech.

An autoencoder comprises two blocks: the encoder and the decoder. The objec-
tive of the encoder is to transform a higher dimensional input feature vector into a
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Figure 5.2: Deep Autoencoder (DAE)

lower dimensional representation at the bottleneck layer. The bottleneck features
are then transformed into higher dimensional representation at the decoder end of
the autoencoder, the input and output features drive the learning of the autoencoder
to ensure that the bottleneck layer presents a lower dimensional representation of
the input features. Encoding operation can be represented as

y⃗ = f(θ; x⃗) = s(Wx⃗+ b⃗) (5.1)

where

• y⃗ is the bottleneck feature vector representation of the input feature vector x,
which propagates through hidden layers.

• θ = {W, b⃗},where W and b⃗ are the weights and biases of the network, respectively.

• s is an activation function, linear or non-linear.

At the decoder, the bottleneck feature vector y⃗ which propagates through hidden
layers is mapped to the higher dimensional representation z⃗ at the output stage as

z = g(θ′; y⃗) = s(W ′y⃗ + b⃗′) where θ′ = {W ′, b⃗′} (5.2)

Thus, the output of the DAE can be represented as a function of the weights
and biases of the encoder and decoder stages, namely {θ, θ′} and written as z⃗ =
g(θ′;(f(θ; x⃗)). DAE parameters θ and θ′ are optimized such that z⃗ is as close as
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5.1.5.

5.1.2 Speech Feature Enhancement

In this chapter, we propose (a) an improved front-end speech processing through
enhanced speech features using deep autoencoders (DAE) and (b) a combination
of dysarthric speech transformation in the temporal domain followed by feature
enhancement using DAE. Figure 5.1 shows an overview of the proposed setup for
improved dysarthric speech recognition.

Figure 5.1: Proposed setup for improved dysarthric speech recognition
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possible to input/target x⃗ and maximizes P (x⃗|z⃗). The autoencoder parameters are
optimized using mean square error (MSE) back-propagation between target x⃗ and
network output z⃗.

5.1.2.2 Unsupervised Feature Extraction using Modified DAE

Unsupervised feature learning is currently being used as an alternative to the con-
ventional MFCC features. In this chapter, we modify the DAE architecture to suit
the purpose of enhancing dysarthric speech features as shown in Figure 5.3. The
DAE parameters (θ1, θ2 and θ′) are learned from healthy control speech. We have
used MFCC features from healthy control speech as input and target, as shown in
Figure 5.3(a). Learned parameters (θ1, θ2 and θ′) represent the weights and biases
of the DAE, which provides the minimum MSE between the input and target at the
time of autoencoder training. θ1, θ2 are encoder parameters and θ′ is the decoder
parameter of the network where θ1 = {W1, b1}, θ2 = {W2, b2} and θ′ = {W ′, b′}.
We extract enhanced features from dysarthric speech using the trained autoencoder
parameters. We use these enhanced features as input to the decoding process.

Figure 5.3: (a) Modified DAE architecture for Training (learning parameter θ1,
θ2and θ′) (b) Feature extraction for dysarthric speech using learned DAE parame-
ters

96

5. Autoencoder-based speech enhancement of dysarthric speech

5.1.2.3 Severity-based Tempo Adaptation (TA)

We examined the improvement in dysarthric speech recognition using severity-based
tempo adaptation in one of our earlier works [14]. Dysarthric speech severity level
classification was carried out using techniques mentioned in [15]. Malfunctioning of
the motor nervous system impacts the precision and flexibility of the vocal folds,
articulators, and other speech subsystems, leading to reduced prosodic control. This
manifests as the longer duration for sonorants in dysarthric speech as compared to
normal healthy speech [167]. Temporal reduction of sonorant regions emerges as a
possible enhancement to dysarthric speech to provide improved intelligibility, both
to human listeners as well as the ASR systems. This process is referred to as
tempo adaptation. Tempo adaptation based on the knowledge of the severity of
the dysarthric speech was found to be beneficial since the adaptation parameter α
could be learned for a specific severity level, empirically using healthy control speech
data and dysarthric speech of various severity levels, where exactly the same words
are spoken by both healthy control speakers and dysarthric speakers. Consider a
spoken word whose average sonorant duration for healthy control speakers is dhc
and that for a dysarthric utterance is ddys. The tempo adaptation parameter for
each word is computed as

α =
dhc
ddys

(5.3)

An average tempo adaptation parameter was computed for each speaker and it
was found that tempo adaptation can be carried out by selecting an α value that
would suit all the speakers at a certain severity level. Tempo adaptation needs to
be carried out in a manner so as not to affect the pitch of the sonorant regions of
dysarthric speech. A phase vocoder based on short-time Fourier transform (STFT)
is used [155].

Let X(F ) be the Fourier transform of a speech signal x(t),

x(t)
F←→ |X(F )| · Θ, where |X(F )| is the magnitude and Θ = ∠X(F ) is the

phase. Magnitude spectrum and phase of the STFTs are either interpolated or
decimated based on the adaptation parameter (α), where the magnitude spectrum
is directly used from the input magnitude spectrum and phase values are chosen to
ensure continuity. This ensures that the pitch of the time-warped sonorant region
is intact. For the frequency band at frequency f and frames i and j > i in the
modified spectrogram, the phase Θ is predicted as

Θ′
jf = Θf

j + 2πf · (i− j) (5.4)

If the modified magnitude and phase spectrum are represented as |X ′(F )| and
∠Θ′, the spectrogram is then converted into a time-domain signal using inverse
Fourier transform, wherein the tempo of the sonorant regions are adapted with the

pitch unchanged as |X ′(F )| ·Θ′ F−1

←→ x′(t)
Additionally, we explore the possibility of using severity-based tempo adaptation

in tandem with DAE-based feature enhancement as shown in Figure 5.1.
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5.1.3 Experimental Setup

Data from the Universal Access (UA) speech corpus [95] was used for both train-
ing and testing. The UA dysarthric speech corpus comprises data from 13 healthy
control (HC) speakers and 15 dysarthric (DYS) speakers with cerebral palsy. Three
blocks of data were collected for each speaker such that in each block, a speaker
recorded 10 digits, 26 international radio alphabets, 19 computer commands, 100
common words and 100 uncommon words such that each speaker recorded 455 dis-
tinct words and a total of 765 isolated words. Speech intelligibility ratings for each
dysarthric speaker, as assessed by five naive listeners are also included in the corpus.
Based on this evaluation, speakers were divided into four different categories. We
have used this information to analyze the performance of our recognition systems
at different dysarthria severity levels.

Tempo adaptation parameters as shown in Table 5.1, were empirically deter-
mined for different severity levels in the UA speech corpus as described in [14].

Table 5.1: Tempo adaptation parameter α based on severity
Severity Very Low Low Mid High

α 1.0 0.6 0.5 0.4

We use the Kaldi [156] toolkit-based deep autoencoder for our experiments. The
architecture of deep autoencoder (DAE) was 143-200- 200-13, with 143 nodes in the
input layer, where 13-dimensional MFCC with a splicing of 11 contextual frames,
200 neurons in each hidden layer, and 13 nodes in the output layer. All neurons had
sigmoid activation in all the layers. To demonstrate the ability of the autoencoder
to capture general spectral information, the autoencoder was trained using training
data as mentioned in Table 5.2 for each of the four configurations.

5.1.3.1 Speech Recognition

The Kaldi toolkit [156] was used for DNN-HMM-based dysarthric speech recog-
nition. The system was trained using a maximum likelihood estimation (MLE)
training approach along with 100 senones and 8 Gaussian mixtures. Cepstral mean
and variance normalization (CMVN) was applied to each of the above sets of
features. Dimensionality reduction was done using Linear Discriminant Analysis
(LDA), wherein LDA builds HMM states using feature vectors with a reduced fea-
ture space. We use the context of 6 frames (3 left and 3 right) to compute LDA.
The feature vector size post LDA is set to 40.

The input layer of DNN has 360 (40 × 9 frames) dimensions using a left and
right context of 4 frames. The output layer has a dimension of 96 (number of
senones available in the data). Two hidden layers with 512 nodes in each layer were
used. Dysarthric speech recognition was carried out using a constrained language
model (LM), wherein we restricted the recognizer to give one word as output per
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utterance. The performance of each of the recognition systems is reported in terms
of word error rate (WER).

A specific combination of healthy control (HC) and dysarthric data (DYS) from
each of the three blocks (B1, B2 and B3) of computer command (CC) words, were
used for various experiments as described in Table 5.2 to prove the feasibility of the
proposed method.

Table 5.2: Training and testing setup
System Training Testing

S-1 HC-CC (B1, B3) HC-CC (B2)
S-2 HC-CC (B1, B3) DYS-CC (B2)
S-3 DYS-CC(B1, B3) DYS-CC (B2)
S-4 HC-CC(B1, B3) + DYS-CC(B1, B3) DYS-CC (B2)

5.1.4 Experimental Results

We examine the effectiveness of two types of enhancements to dysarthric speech for
automatic speech recognition purposes, namely (1) Tempo adaptation carried out
in the temporal domain (2) DAE-based MFCC feature enhancement. DNN-HMM-
based speech recognition was carried out for both the above scenarios individually
and in tandem. The DAE and DNN-HMM systems were configured and trained
as described in Section 5.1.3. ASR performance is reported in terms of word error
rates (WERs). The following four different front-end scenarios were considered for
our experiments :

• MFCC features

• Tempo adaptation followed by MFCC feature extraction.

• DAE enhanced MFCC features.

• Tempo adaptation followed by DAE enhanced MFCC features.

WERs for each configuration in Table 5.2 for the relevant front-end scenarios de-
scribed above can be seen in Table 5.3. The purpose of S-1 is to examine the impact
of DAE on clean or healthy control speech. The WERs for MFCC and MFCC-DAE
indicate that DAE-based speech feature enhancement has improved the recognition
performance even for healthy-control or clean speech. Significant improvements
were seen for all four configurations over the baseline MFCC-based ASR system
when enhancements were applied. Although the tandem system showed significant
improvement over the baseline (of the order of 16% for S-2) for all configurations,
for S-4 the MFCC-DAE seemed to perform the best. When additional dysarthric
data was included in the S-2 configuration for training the DAE and DNN-HMM
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systems, the performance (of S-4) significantly improved across all front-end scenar-
ios. However, the individual front-ends performed on par or slightly better than the
tandem front-end. In order to understand this better, we analyze the performances
of S-2 and S-4 by looking at the performances of individual and tandem scenarios
at dysarthria severity levels as shown in Table 5.4.

Table 5.3: WER for different Experimental setups
System MFCC TA-MFCC MFCC-DAE TA-MFCC

(Baseline) + DAE
S-1 2.26 - 0.00 -
S-2 46.89 44.25 34.51 30.71
S-3 32.80 - 27.85 -
S-4 31.59 21.30 20.14 20.69

Table 5.4: WER analysis at severity level
Sys- Severity MFCC TA- MFCC- TA-MFCC
tem (Baseline) MFCC DAE + DAE

S-2

Very-low 14.59 - 2.86 -
Low 43.79 39.27 14.41 15.54
Mid 67.63 60.53 60.00 48.16
High 82.06 80.38 78.71 71.29

S-4

Very-low 12.93 - 1.65 -
Low 22.60 16.95 13.56 17.23
Mid 34.47 15.79 14.47 15.79
High 66.27 61.24 60.29 58.61

The tempo adaptation parameter used for very low severity was 1, indicating
no adaptation is performed on this set of dysarthric speech. Hence we only report
the MFCC-DAE performance. The ASR performance across all front-end scenar-
ios reduces with the increase in severity. In the majority of the cases, MFCC-DAE
provided the best performance or the least WER. The addition of dysarthric speech
to the training data has given tremendous improvement in the overall performance
of S-2 configuration. However, the majority of the contribution to this spike in
performance comes from the performance improvement for mid and high-severity
dysarthric speech. Based on the severity level assessment, the tandem system per-
forms best for mid and high-severity dysarthric speech while MFCC-DAE gives sig-
nificant performance gains in cases of very low and low-severity dysarthric speech.
Several iterations with various combinations of data need to be conducted to arrive
at an exact recommendation regarding the choice of the front end. However, the
tandem system (TA-MFCC+DAE) performed the best or on par with MFCC-DAE
in most cases.
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5.1.5 Conclusions

The objective of this chapter was to improve dysarthric speech recognition by en-
hancing the MFCC-based speech front end. We used deep autoencoders to enhance
the Mel Frequency Cepstral Coefficients (MFCC) based features in order to im-
prove dysarthric speech recognition. Additionally, we analyzed the use of severity-
based tempo adaptation followed by autoencoder-based speech feature enhance-
ment. Tempo adaptation was done in the temporal domain using a severity-based
parameter to match the dysarthric speech to healthy-control speech. The perfor-
mance of a DNN-HMM speech recognizer for both the enhancement techniques
individually as well as in tandem was analyzed. It was observed that each tech-
nique provided significant improvement over the baseline recognition. All evalua-
tions were carried out on the Universal Access dysarthric speech corpus. An overall
absolute improvement of 16% was achieved using tempo adaptation followed by
autoencoder-based speech front-end representation. Further, severity level analysis
of the dysarthric recognition provided insights into the choice of front-end for each
severity level, wherein the tandem system (TA-MFCC+DAE) performed exception-
ally well for mid and high-severity levels of dysarthria. Future work could entail
optimizations of the DAE network to further improve dysarthric speech recognition.
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5.2 Dysarthric Speech Recognition using Time-

delay Neural Network based Denoising Au-

toencoder

Dysarthria is a manifestation of the disruption in the neuro-muscular physiology
resulting in uneven, slow, slurred, harsh, or quiet speech. Dysarthric speech poses
serious challenges to automatic speech recognition, considering this speech is diffi-
cult to decipher for both humans and machines. The objective of this work is to
enhance dysarthric speech features to match that of healthy control speech. We
use a Time-Delay Neural Network based Denoising Autoencoder (TDNN-DAE)
to enhance the dysarthric speech features. The dysarthric speech thus enhanced is
recognized using a DNN-HMM-based Automatic Speech Recognition (ASR) engine.
This methodology was evaluated for speaker-independent (SI) and speaker-adapted
(SA) systems. Absolute improvements of 13% and 3% were observed in the ASR
performance for SI and SA systems, respectively, as compared with unenhanced
dysarthric speech recognition.

5.2.1 Introduction

The speech production process comprises acoustic and linguistic events that occur
through the coordination of muscle groups and the neurological programming of
muscle activities to ensure fluent and accurate articulation. Acquired or develop-
mental dysarthria results from the impairment of the motor execution function and
affects the speech intelligibility of a person. Voice input-based interactions with
smart devices perform poorly for dysarthric speech. Research into automatic recog-
nition of dysarthric speech has garnered much interest due to the rising popularity
and possibility of voice inputs, especially since speech-based interaction is easier for
persons with neuro-motor disorders as compared to keypad inputs [165].

Several techniques are employed to improve ASR performance for dysarthric
speech: acoustic space enhancement, feature engineering, Deep Neural Networks
(DNN), speaker adaptation, and lexical model adaptation- individually or as a
combination thereof. Formant re-synthesis preceded by modifications of formant
trajectories and energy for dysarthric speech, vowels showed significant improve-
ment in perceptual evaluation of intelligibility of CVC utterances [82]. Acoustic
space modification carried out through temporal and frequency morphing improved
automatic dysarthric speech recognition, as well as subjective evaluation in [167].
It can be seen that temporal adaptation based on dysarthria severity level improved
the ASR performance for dysarthric speech recognition at each severity level, [14].
A Convolutive Bottleneck Network (CBN) was used for dysarthric speech feature
extraction wherein the pooling operations of the CBN resulted in features that were
more robust toward the small local fluctuations in dysarthric speech and outper-
formed the traditional MFCC feature-based recognition [135]. A comparative study
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of several types of ASR systems, including maximum likelihood and maximum a
posteriori (MAP) adaptation showed a significant improvement in dysarthric speech
recognition when speaker adaptation using MAP adaptation was applied [27]. The
word error rate for dysarthric speech was reduced using voice parameters such
as jitter and shimmer along with multi-taper Mel-frequency Cepstral Coefficients
(MFCC) followed by speaker adaptation [13], and using Elman back-propagation
network (EBN) which is a recurrent, self-supervised neural network along with glot-
tal features and MFCC in [175]. A multi-stage deep neural network (DNN) training
scheme is used to better model dysarthric speech, wherein only a small amount
of in-domain training data showed considerable improvement in the recognition
of dysarthric speech [219]. In [193], authors propose a DNN-based interpretable
model for objective assessment of dysarthric speech that provides users with an
estimate of the severity as well as a set of explanatory features. Speaker selection
and speaker adaptation techniques have been employed to improve ASR perfor-
mance for dysarthric speech in [26, 181]. ASR configurations have been designed
and optimized using dysarthria severity level cues in [174, 132, 102].

It has been observed that the subjective perception-based intelligibility perfor-
mance for noisy and dysarthric speech is correlated, indicating that there exists
similarity in the information processing of these two types of speech [214]. Extrap-
olating this to the objective assessment domain, we hypothesize that techniques
used for noisy speech may support dysarthric speech processing as well. In this
chapter, we explore the possibility of using a Time-Delay Neural Network Denois-
ing Autoencoder (DAE) for dysarthric speech feature enhancement. DAEs have
been used to enhance speech features, especially in noisy conditions [183, 119, 43].
The objective is for the network to learn a mapping between dysarthric speech
features and healthy control speech features. This network is then used to en-
hance the dysarthric speech features that are used in a DNN-HMM-based ASR
for improved dysarthric speech recognition. ASR performance indicates that the
enhanced dysarthric speech features are closer to healthy control speech features
rather than dysarthric speech features. Evaluation of our work is carried out on the
Universal Access Dysarthric Speech corpus [95]. In our earlier work [195], we used
a Deep Autoencoder to enhance dysarthric test speech features, wherein the DAE
was trained using only healthy control speech. This is different from our current
work in the DAE configuration and the training protocol followed.

The rest of the chapter is organized as follows. Section 5.2.2 describes the
methodology employed to enhance speech features for dysarthric speech recognition,
Section 5.2.3 discusses the experimental setup. In Section 5.2.4 we discuss the
results of our experiments, we conclude in Section 5.2.5.

5.2.2 Dysarthric Speech Feature Enhancement

The process and techniques used to enhance dysarthric speech features is described
in this Section.
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5.2.2.1 Time-Delay Neural Network

TDNN architecture is capable of representing relationships between events in time
using a feature space representation of these events [199]. Computation of the
relationship between current and past inputs is made possible by introducing delays
to the basic units of a traditional neural network as shown in Figure 5.4.

Figure 5.4: Time delay neural network unit [199]

The discovery of the acoustic features and the temporal relationship between
them independent of the position of time ensures that the dysarthric speech features
are not blurred by the inherent small local fluctuations. Shorter temporal contexts
are used to learn the initial transforms, whereas the hidden activations from longer
contexts are used to train the deeper layers. This enables the higher layers to learn
longer temporal relationships [151].

Back-propagation learning is used to train TDNN-DAE, wherein the input fea-
tures are extracted from noisy speech, and the target features are extracted from
the corresponding clean speech.

5.2.2.2 Methodology

In traditional DAE training, the number of frames in the input utterance must
necessarily be equal to the number of frames in the target utterance. This works well
for scenarios wherein noise-added clean speech is the input and the corresponding
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clean speech is the target. In this work, we intend to use dysarthric speech as
input and its healthy control counterpart as the target speech since the objective
is for the TDNN-DAE network to learn the mapping between the two. Typically,
dysarthric speech is slower than healthy control speech and, hence, has a longer
duration. One mechanism to match the number of frames is by using varying
frame lengths and frameshifts for dysarthric utterances to match the number of
frames in the corresponding healthy control utterance. However, the difference in
the durations between dysarthric utterances and healthy control utterances was too
high to achieve meaningful frame lengths and frameshifts.

Matching of the number of frames was done using the following two steps as
depicted in Figure 5.5.

• Majority of the silence portion at the beginning and end of both dysarthric
and healthy control utterances were eliminated retaining roughly 200 ms of
silence.

• In order to match the durations of the input dysarthric utterance and target
healthy control utterance, the dysarthric utterance was temporally adapted
using phase vocoder as described in [167]. Tempo adaptation is carried out
according to the adaptation parameter α given as α = dH

dD
where dD is the

duration of the dysarthric utterance and dH is the duration of healthy control
utterance. Tempo adaptation using phase vocoder based on short-time Fourier
transform (STFT) ensures that the pitch of the sonorant regions of dysarthric
speech is unaffected [155]. The magnitude spectrum and phase of the STFT
are either interpolated or decimated based on the adaptation parameter (α),
where the magnitude spectrum is directly used from the input magnitude
spectrum, and phase values are chosen to ensure continuity. This ensures
that the pitch of the time-warped sonorant region is intact. For the frequency
band at frequency f and frames i and j > i in the modified spectrogram, the
phase Θ is predicted as

Θf
j = Θf

i + 2πf · (i− j) (5.5)

The modified magnitude and phase spectrum are then converted into a time-
domain signal using inverse Fourier transform.

Figure 5.6 shows the proposed methodology for a TDNN-DAE-based dysarthric
speech feature enhancement and recognition.

5.2.3 Experimental Setup

TDNN-DAE as well as DNN-HMM based ASR were implemented using the Kaldi
speech recognition toolkit [156].
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Figure 5.5: Data Preparation for TDNN-DAE training for the word ’Paragraph’-
(a) Original dysarthric utterance (2.68s) (b) Dysarthric utterance after endpoint
silence removal (1.39s) (c) Original healthy control utterance of duration (1.66s)
(d) Healthy Control utterance after endpoint silence removal (0.91s) (e) Dysarthric
utterance after tempo adaptation (0.91s) to match (d)

5.2.3.1 Dysarthric Speech Corpus

Data from the Universal Access (UA) speech corpus [95] was used for training
the TDNN-DAE and DNN-HMM-based ASR systems. The UA dysarthric speech
corpus comprises data from 13 healthy control (HC) speakers and 15 dysarthric
(DYS) speakers with cerebral palsy. Data was collected in three separate sessions
for each speaker and categorized into three blocks B1, B2, and B3. In each block,
a speaker recorded 10 digits, 26 international radio alphabet letters, 19 computer
commands, 100 common words and 100 uncommon words such that each speaker
recorded 455 distinct words and a total of 765 isolated words. The corpus also
includes speech intelligibility rating for each dysarthric speaker, as assessed by five
naive listeners.

5.2.3.2 TDNN-DAE

23-dimensional Mel-frequency cepstral coefficients (MFCC) were used as input fea-
tures for all the experiments. TDNN-DAE architecture described in [151] was
followed. Contexts for the DAE network with 4 hidden layers are organized as
(-2,-1,0,1,2) (-1,2) (-3,3) (-7,2) (0) which is asymmetric in nature. Input temporal
context for the network is set to [-13,9]. It can be observed that a narrow context is
selected for the initial hidden layers, whereas higher contexts are for deeper layers.
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Figure 5.6: TDNN-DAE based dysarthric speech feature enhancement and recog-
nition

Each hidden layer comprises 1024 ReLU activation nodes. TDNN-DAE was trained
using training data described in Section 5.2.3.1.

Training data
In this work, we use 19 computer command (CC) words from blocks B1 and B3
of dysarthric speech and healthy control speech for TDNN-DAE training. Each
dysarthric utterance was temporally adapted with each of its corresponding healthy
control utterances. For example the dysarthric utterance F05 B1 C12 M2.wav (spo-
ken by speaker F05 recorded as block B1 on channel M2) corresponding to CC word
C12:Sentence was temporally adapted to match the duration of each of the healthy
control utterances corresponding to the CC word C12:Sentence. Thus generating
multiple dysarthric utterances from one single dysarthric utterance, as shown in the
equation given below.

Duij = f(Duij, ∀Hui
Hui

) (5.6)

where ui → CC utterances with i = 1 · · · 19
Duij → dysarthric utterance where j = 1 · · · 3511
Hui

→ healthy control CC utterances with i = 1 · · · 19
f → temporal adaptation(TA) function [14]

A total of 3511 dysarthric utterances were temporally adapted against their
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healthy control counterparts generating around 0.6 million temporally adapted
dysarthric utterances. The TDNN-DAE was trained using the temporally adapted
dysarthric speech utterances as input speech while their corresponding healthy con-
trol utterances comprised the target speech.

Testing data
TDNN-DAE trained as above was used to enhance the dysarthric speech features
corresponding to 1791 utterances i.e. computer command words from block B2.
These utterances were first temporally adapted, followed by enhancement of the
corresponding MFCC features using TDNN-DAE. These enhanced speech features
for dysarthric speech were used to evaluate ASR recognition performance.

5.2.3.3 DNN-HMM based ASR

The dysarthric speech was recognized using the same configuration of DNN-HMM
as in our previous work [195]. A maximum likelihood estimation (MLE) training
approach with 100 senones and 8 Gaussian mixtures was adopted. Cepstral mean
and variance normalization (CMVN) was followed by dimensionality reduction using
Linear Discriminant Analysis (LDA) with a context of 6 frames (3 left and 3 right)
to give a feature vector of size 40. The input layer of DNN has 360 (40× 9 frames)
dimensions. Two hidden layers with 512 nodes in each layer and an output layer of
dimension 96 were used. A constrained Language Model (LM), wherein we restrict
the recognizer to give one word as output per utterance, was used.

Healthy control (HC) and dysarthric (DYS) speech utterances from blocks B1
and B3 of computer command (CC) words were used for training the DNN-HMM
based ASR as shown in Table 5.5. Training configuration S-1 comprises only healthy
control (HC) speech. In the second training configuration S-2, we use dysarthric
(DYS) speech from blocks B1 and B3 in addition to HC speech. In S-3, ASR was
trained using HC speech and dysarthric speech from blocks B1 and B3 that were
enhanced using the TDNN-DAE models. Each training configuration was evaluated
using dysarthric speech features for computer command words (DYS) from block
B2. In Testing Configuration 1, the dysarthric speech features were temporally
adapted. In our earlier work [14], we show that temporal adaptation of the test
dysarthric speech significantly reduced the ASR word error rate (WER). Hence, this
chapter uses the WER corresponding to temporally adapted dysarthric speech as
the baseline. In Testing Configuration 2, the temporally adapted dysarthric speech
features were enhanced using the TDNN-DAE model and then evaluated. There is
no overlap in the training and testing data.

5.2.4 Results and Analysis

DNN-HMM ASR recognition is evaluated for speaker adaptation (SA) and speaker-
independent (SI) scenarios for the training and test configurations mentioned in
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Table 5.5: ASR Training and testing configurations
System Training Testing Testing

configuration configuration 1 configuration 2
(B1, B3) (B2) (B2)

S-1 HC Temporally Temporally adapted +
S-2 HC + DYS adapted TDNN-DAE enhanced
S-3 HC + TDNN-DAE DYS DYS

enhanced-DYS (MFCC-TA) (MFCC-TA+TDNN-DAE)

Table 5.5. Word error rates produced for the above scenarios are reported in Table
5.6. System S-1 does not use any dysarthric speech data for ASR training. An
absolute improvement of 13% was observed when the test dysarthric speech data
was enhanced using the TDNN-DAE. This indicates that the TDNN-DAE-based
enhancement of dysarthric speech features results in these features being closely
matched to healthy control speech features. Also, the drastic reduction in the
ASR performance for S-2 for TDNN-DAE enhanced data, specifically in the SA
scenario serves as additional confirmation that the enhanced dysarthric speech fea-
tures match more closely to healthy control than to dysarthric speech data. Training
configuration S-3 comprises healthy control and TDNN-DAE enhanced dysarthric
data (B1 and B3). Speaker adaptation-based ASR performance is higher by 3% for
TDNN-DAE enhanced dysarthric speech (B2) than SA recognition performance for
S-2. Both S-2 and S-3 contain the same amount of healthy control and dysarthric
speech data in the training process, except that the dysarthric speech used in S-3 is
enhanced using TDNN-DAE. ASR performance for the three different training con-
figurations indicates that using TDNN-DAE to enhance dysarthric speech features
results in dysarthric speech features matching closely to healthy control speech.

Table 5.6: WER for TDNN-DAE
Training Testing Testing

configuration configuration 1 configuration 2
SA SI SA SI

S-1 - 37.86 - 24.73
S-2 21.44 33.67 60.8 29.7
S-3 82.69 72.47 18.54 34.39

An analysis of ASR performance at dysarthria severity levels was done for the
two configurations that provide the best recognition, namely S-2-SA using unen-
hanced dysarthric training and test data and S-3-SA using enhanced dysarthric
training and test data. An improvement was seen across all dysarthria severity
levels as shown in 5.7.
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independent (SI) scenarios for the training and test configurations mentioned in
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Table 5.5: ASR Training and testing configurations
System Training Testing Testing

configuration configuration 1 configuration 2
(B1, B3) (B2) (B2)

S-1 HC Temporally Temporally adapted +
S-2 HC + DYS adapted TDNN-DAE enhanced
S-3 HC + TDNN-DAE DYS DYS

enhanced-DYS (MFCC-TA) (MFCC-TA+TDNN-DAE)

Table 5.5. Word error rates produced for the above scenarios are reported in Table
5.6. System S-1 does not use any dysarthric speech data for ASR training. An
absolute improvement of 13% was observed when the test dysarthric speech data
was enhanced using the TDNN-DAE. This indicates that the TDNN-DAE-based
enhancement of dysarthric speech features results in these features being closely
matched to healthy control speech features. Also, the drastic reduction in the
ASR performance for S-2 for TDNN-DAE enhanced data, specifically in the SA
scenario serves as additional confirmation that the enhanced dysarthric speech fea-
tures match more closely to healthy control than to dysarthric speech data. Training
configuration S-3 comprises healthy control and TDNN-DAE enhanced dysarthric
data (B1 and B3). Speaker adaptation-based ASR performance is higher by 3% for
TDNN-DAE enhanced dysarthric speech (B2) than SA recognition performance for
S-2. Both S-2 and S-3 contain the same amount of healthy control and dysarthric
speech data in the training process, except that the dysarthric speech used in S-3 is
enhanced using TDNN-DAE. ASR performance for the three different training con-
figurations indicates that using TDNN-DAE to enhance dysarthric speech features
results in dysarthric speech features matching closely to healthy control speech.

Table 5.6: WER for TDNN-DAE
Training Testing Testing

configuration configuration 1 configuration 2
SA SI SA SI

S-1 - 37.86 - 24.73
S-2 21.44 33.67 60.8 29.7
S-3 82.69 72.47 18.54 34.39

An analysis of ASR performance at dysarthria severity levels was done for the
two configurations that provide the best recognition, namely S-2-SA using unen-
hanced dysarthric training and test data and S-3-SA using enhanced dysarthric
training and test data. An improvement was seen across all dysarthria severity
levels as shown in 5.7.
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Table 5.7: Severity level analysis of WER
Severity S-2-SA S-3-SA Absolute

Testing Testing Improvement
configuration 1 configuration 2

Very Low 5.71 1.35 4.4
Low 11.39 9.4 1.99
Medium 22.67 19.46 3.2
High 57 52.5 4.5

5.2.5 Conclusion

In this chapter, we explain the process of enhancing dysarthric speech features using
a TDNN-DAE. The objective is to enhance the dysarthric speech features to match
that of healthy control speech. TDNN-DAE is trained using temporally adapted
dysarthric speech as input and healthy control speech as target speech. The training
process and the data used for TDNN-DAE need careful consideration to obtain op-
timal ASR performance. The dysarthric speech thus enhanced is recognized using
a DNN-HMM-based Automatic Speech Recognition (ASR). Speaker-independent
and speaker adaptation-based ASR configurations were evaluated using both un-
enhanced and enhanced dysarthric. An absolute improvement of 13% and 3% was
observed in ASR performance for SI and SA configurations, respectively when en-
hanced dysarthric speech features were used. ASR performance for each of the
training and testing configurations confirms that the dysarthric speech enhanced
using TDNN-DAE is matched more closely to healthy speech than to dysarthric
speech for the same speaker. An analysis of the two best-performing configurations
clearly indicate that the ASR performance significantly improves at all severity
levels of dysarthria.
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6.1 Data Augmentation Using Healthy Speech for

Dysarthric Speech Recognition

Dysarthria refers to a speech disorder caused by trauma to the brain areas con-
cerned with motor aspects of speech giving rise to effortful, slow, slurred or prosod-
ically abnormal speech. Traditional Automatic Speech Recognizers (ASR) per-
form poorly on dysarthric speech recognition tasks, owing mostly to insufficient
dysarthric speech data. Speaker-related challenges complicate the data collection
process for dysarthric speech. In this chapter, we explore data augmentation us-
ing temporal and speed modifications to healthy speech to simulate dysarthric
speech. DNN-HMM-based Automatic Speech Recognition (ASR) and Random
Forest-based classification was used for the evaluation of the proposed method.
Dysarthric speech, generated synthetically, is classified for severity level using a
Random Forest classifier that is trained on actual dysarthric speech. ASR trained
on healthy speech, augmented with simulated dysarthric speech, is evaluated for
dysarthric speech recognition. All evaluations were carried out using the Universal
Access dysarthric speech corpus. An absolute improvement of 4.24% and 2% were
achieved using tempo-based and speed-based data augmentation, respectively, as
compared to ASR performance using healthy speech alone for training.

6.1.1 Introduction

Dysarthria is a speech disorder resulting from disruption in the execution of speech
movements due to neuro-muscular disturbances to muscle tone, reflexes, and kine-
matic aspects of movement. It could be either acquired or developmental. Dysarthric
speech is characterized by being slow, slurred, harsh or quiet, or uneven, depend-
ing on the type of dysarthria. Speech-enabled interfaces are gaining popularity,
especially in the assisted and smart living domains. Also, speech is a convenient
alternative to other machine interfaces such as remote controls, keyboards, or PC
mice given that persons with dysarthria are often faced with physical inabilities
as well [165]. While traditional, off-the-shelf Automatic Speech Recognition (ASR)
systems perform well for normal speech; this is not the case with atypical dysarthric
speech owing to the inter-speaker and intra-speaker inconsistencies in the acoustic
space as well as the sparseness of data. Several techniques are employed to im-
prove ASR performance for dysarthric speech: acoustic space enhancement, feature
engineering, Deep Neural Networks (DNN), speaker adaptation, and lexical model
adaptation- individually or as a combination thereof [167, 26, 135, 219, 195]. In
order to exploit the machine learning techniques for ASR fully, suitable data to
build these systems is imperative. However, owing to speaker muscle weakness and
fatigue, collecting dysarthric data is tedious, especially for speakers with severe
dysarthria. Additionally, since dysarthria can stem from a variety of neurological
disorders, the characterization of dysarthric speech is complex; this makes the de-
signing of a data collection process difficult. Thus far, three popular dysarthric
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speech databases, namely the Universal Access (UA) speech corpus [95], Nemours
[126] and TORGO [168] exist for American English. Two French corpora, namely
the CCM corpus collected by Dr Claude Chevrie-Muller and her team and the Aix-
Neurology-Hospital corpus (ANH) has been described in [44]. The authors describe
a Dutch dysarthric speech database containing mildly to moderately dysarthric
speech from patients with PD, traumatic brain injury, and cerebrovascular accident
[213]. A Korean dysarthric speech corpus was built as a part of the Quality-of-Life
technology (QoLT) project that focuses on the development of speech technologies
for people with articulation disabilities [25]. A Cantonese corpus with a focus on
the investigation of articulatory and prosodic characteristics of Cantonese dysarthric
speech is discussed in [205]. German [185], Spanish [141] and Czech [169] corpora
were collected with the intent of studying dysarthric speech in patients suffering
from PD. While most of the corpora comprise data collected under clinical set-
tings, [138] describes the homeService corpus, a British English corpus of realistic
dysarthric data collected in the home environment. Each of the above databases
was designed for a specific purpose with a broad perspective of improving the lives
of people with dysarthria. However, the amount of data is substantially lower than
in a speech corpus of normal speech used in training the state-of-the-art ASR sys-
tems that use machine learning. To overcome this issue of unavailability of suitable
speech data, we adopt data augmentation techniques.

Data augmentation is the process by which we create new synthetic training
samples by adding small perturbations to our initial training set. The objective is
to make the model invariant to perturbations and enhance its ability to generalize.
In [109], audio speed was modified using three-speed factors, and the effectiveness
was reported for large vocabulary continuous speech recognition (LVCSR). Different
audio data augmentation techniques such as time stretching, pitch shifting, dynamic
range compression, and mixing with background noise were used for environmen-
tal sound classification in a Convolutional Neural Network (CNN) based architec-
ture to significantly improve the classification accuracy [171]. Data augmentation
techniques have been used to improve classification tasks such as real-life sound
classification [153, 144]. In [139] Alzheimer’s disease (AD) data was augmented
using two normative data sets, through minority class oversampling with Adap-
tive Synthetic sampling (ADASYN), wherein the proposed technique outperformed
state-of-the-art results in the binary classification of speech with and without AD.

In this chapter, we explore how an understanding of the deficits in speech pro-
duction caused by dysarthria may be used to augment existing data. We present an
analysis of phone durations in dysarthric data with a bearing on dysarthria severity
level. Based on this information, we proceed with data augmentation using tem-
poral and speed modifications to healthy speech to generate synthetic speech that
matches the characteristics of dysarthric speech. Further, we classify this synthetic
dysarthric speech into four severity levels using a Random Forest classifier that is
trained on actual dysarthric speech so as to validate our understanding of the impact
of these modifications on healthy speech and how it simulates dysarthric speech. A
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DNN-HMM-based Automatic Speech Recognition (ASR) is trained using healthy
speech augmented with simulated dysarthric speech. This ASR system is evaluated
for dysarthric speech recognition using the Universal Access (UA) dysarthric speech
corpus.

The rest of the chapter is organized as follows. Section 6.1.2 presents an analysis
of phone durations in dysarthric speech, motivates the data augmentation process,
and discusses the augmentation techniques used, Section 6.1.3 describes the experi-
mental setup, In Section 6.1.4, we present the results and analysis, and we conclude
in Section 6.1.5.

6.1.2 Methodology

6.1.2.1 Phoneme duration analysis

In order to modify healthy control speech to emulate dysarthric speech character-
istics, we need to first understand the dysarthric speech itself. In our earlier work
[14], we modified the tempo of dysarthric speech based on severity to improve ASR
recognition. It was observed that the sonorant regions of dysarthric speech are
of longer durations as compared to that of healthy speech. In this work, we fur-
ther examine the relationship between phone durations of dysarthric speech and
dysarthria severity levels. The UA Speech corpus comprises dysarthric speech of 4
severity levels, namely S1, S2, S3, S4 in the increasing order of severity. A total
of 3534 utterances of dysarthric speech corresponding computer command words
were force-aligned at phone level using Sphinx3 toolkit [28], using Voxforge English
acoustic models trained on approximately 35 hours of speech data [198]. The align-
ment was then manually inspected and corrected for extraction of phone duration.
A similar exercise was carried out on the TORGO dysarthric speech corpus [168].
The TORGO dysarthric speech corpus comprises dysarthric speech of 3 severity
levels, namely S1, S2, and S3. A more accurate representation of the relationship
between phone durations and severity can be seen for this corpus since it comprises
manual annotation of utterances at the phone level. We observed that there is a
strong correlation between dysarthria severity and the average duration of a phone
as shown in Figure 6.1. It was found that the average phone duration is propor-
tional to the severity of dysarthric speech; the higher the severity, the longer the
phone duration.

Based on this analysis, we modify the phone durations of healthy control speech
to generate synthetic dysarthric speech data. We use this modified speech along
with the healthy control speech to augment the ASR training data.

6.1.2.2 Synthetic dysarthric data generation

Healthy control speech was modified using two different time domain perturbations,
namely (1) Time (Speed) perturbation and (2) Tempo perturbation. Rubberband –
an audio time-stretching and pitch-shifting utility program was used for this purpose
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Figure 6.1: (a) Average phone duration (ms) for the UA dysarthric speech Corpus
(b) Average phone duration (ms) for the TORGO dysarthric speech corpus

and is described below [20]. Healthy control speech modified in this manner amounts
to synthetically generated dysarthric speech data. To the best of our knowledge,
data augmentation in the context of dysarthric speech recognition has not been
reported in the literature previously.

6.1.2.3 Time (Speed) Perturbation-based Data Augmentation

Speed perturbation is achieved by re-sampling the input signal by a factor R1. If
R1 < 1, signal duration is reduced, and for R1 > 1, signal duration is increased. In
this work, we use different values of R1 as R1 ∈ {1.2, 1.4, 1.6, 1.8, 2.0, 2.2} to modify
the durations of healthy control speech. The below command will stretch the given
input signal duration to R1 times the original duration in the Rubberband toolkit.

rubberband − t R1 < infile.wav >< outfile.wav >

6.1.2.4 Tempo Perturbation-based Data Augmentation

The tempo of the signal is modified by factor R2 while ensuring that the pitch and
spectral envelope of the signal do not change. If R2 > 1, signal duration reduces
and R2 < 1 signal duration increases, making the healthy control speech slower. In
this work we use R2 as R2 ∈ {0.4, 0.6, 0.8} to modify the healthy control speech.
The below command will modify the given input signal duration to R2 times the
original duration.

rubberband − T R2 < infile.wav >< outfile.wav >

The parameters R1 and R2 were selected empirically based on the severity
classification provided by the Random Forest classifier for various values of R1 and
R2 as discussed in Section 6.1.3.2.
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6.1.3 Experimental setup

6.1.3.1 Database

Data from the Universal Access (UA) speech corpus [95] was used for both train-
ing and testing. The UA speech corpus comprises data from 13 healthy control
(HC) speakers and 15 dysarthric (DYS) speakers with cerebral palsy. The record-
ing material consisted of 455 distinct words with 10 digits, 26 international radio
alphabet letters, 19 computer commands, 100 common words and 300 uncommon
words that were distributed into three blocks. Audio data was recorded using a
7-channel microphone array, fitted to the top of a computer monitor. Speech in-
telligibility ratings for each dysarthric speaker, as assessed by five naive listeners
are also included in the corpus. Speakers were divided into four different categories
based on the intelligibility. We use this information to analyze the performance of
our recognition systems at different dysarthria severity levels. In this chapter, we
have used 19 computer command words from 13 healthy control (HC-CC) and 15
dysarthric (DYS-CC) speakers.

Long silence regions at the start and end of both the healthy control (HC)
data used for training and dysarthric speech (DYS) used for testing of the ASR
are trimmed using an energy-based method using the PRAAT tool [18]. Initial
experiments were conducted to understand the effect of silence removal at the start
and end of the HC and DYS speech. Traditional DNN-HMM-based system using
standard MFCC features as discussed in Section 6.1.3.3. Table 6.1 shows the ASR
performance in terms of word error rate (WER) for training and testing data with
and without silence pre-processing. An absolute improvement of 15% (48.47% to
33.11%) was achieved by using the fMLLR transform, and further improvement of
4% (33.11% to 29.06%) was achieved using silence pre-processing. We use the best
WER, wherein both training and test data were pre-processed with fMLLR-based
ASR configuration as the baseline for reporting our current work.

Table 6.1: Effect of data Pre-processing on WER
Training Testing WER

Total 3458 utt Total 3534 utt w/o fMLLR with fMLLR
HC-CC DYS-CC 48.47 33.11

SIL trimmed HC-CC SIL trimmed DYS-CC 37.32 29.06

6.1.3.2 Dysarthria Severity Classification on Augmented Data

The validity of using synthetically generated dysarthric speech to augment the ASR
training data for dysarthric speech recognition needs to be ascertained. Syntheti-
cally generated dysarthric speech is automatically classified using a Random Forest
classifier trained on actual dysarthric speech. Classifier was trained using the feature
set suggested by Interspeech 2009 emotion challenge, extracted using openSMILE
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toolkit [40]. A total of 3534 dysarthric utterances were used for training the classi-
fier using 5-fold cross-validation using WEKA toolkit [45]. An accuracy of 96% was
achieved for dysarthric speech classification into 4 classes based on the intelligibil-
ity score provided in the UA Speech corpus. A total of 3458 healthy control (HC)
utterances were modified using various tempo and speed perturbation parameters
described in Section 6.1.2 were classified using this framework into four severity
classes.

6.1.3.3 DNN-HMM-based ASR Framework

The Kaldi toolkit [156] was used for DNN-HMM-based dysarthric speech recog-
nition. GMM-HMM system was trained using a maximum likelihood estimation
(MLE) training approach along with 100 senones and 8 Gaussian mixtures. Cep-
stral mean and variance normalization (CMVN) was applied on 23 dimensions of
MFCC features. Dimensionality reduction was done using Linear Discriminant
Analysis (LDA), wherein LDA builds HMM states using feature vectors with a re-
duced feature space. We use the context of 6 frames (3 left and 3 right) to compute
LDA. The feature vector size post LDA is set to 40.

The input layer of DNN has 360 (40 × 9 frames) dimensions using a left and
right context of 4 frames. The output layer has a dimension of 96 (number of
senones available in the data). Two hidden layers with 512 nodes in each layer were
used. Feature-space Maximum Likelihood Linear Regression (fMLLR) transformed
features are used as input to the DNN training, making it a feature normalization
technique. In the decoding process, we use configurations with and without fM-
LLR transformed features as input [147]. DNN training was carried out using 15
epochs for all experiments. Dysarthric speech recognition was carried out using a
constrained language model (LM), wherein we restricted the recognizer to give one
word as output per utterance. The performance of each of the recognition systems
is reported in terms of word error rate (WER).

Training configurations for the DNN-HMM-based ASR are shown in Table 6.2.
A total of 3534 dysarthric speech utterances corresponding to 19 computer com-
mand words from blocks B1 and B3 have been used for testing purposes.

Table 6.2: Training data for different systems
Training Info Total no.utterances

Set
A No augmentation 3458
B Time stretching 24206

R1 ∈ {1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2}
C Tempo stretching 13832

R2 ∈ {0.4, 0.6, 0.8, 1.0}
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6.1.3 Experimental setup

6.1.3.1 Database
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6.1.3.2 Dysarthria Severity Classification on Augmented Data

The validity of using synthetically generated dysarthric speech to augment the ASR
training data for dysarthric speech recognition needs to be ascertained. Syntheti-
cally generated dysarthric speech is automatically classified using a Random Forest
classifier trained on actual dysarthric speech. Classifier was trained using the feature
set suggested by Interspeech 2009 emotion challenge, extracted using openSMILE
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6.1.4 Experimental Results and Analysis

The synthetically generated dysarthric speech was classified into four classes as dis-
cussed in Section 6.1.3. Table 6.3 shows the classification of 3458 healthy control
utterances modified into dysarthric utterances using various augmentation parame-
ters. Synthetically generated dysarthric speech is classified into four classes, namely
S1, S2, S3, and S4, in increasing order of severity. It can be seen for both speed and
tempo modifications that the synthetically generated dysarthric utterance classifi-
cation is closely correlated to the duration of the utterance. Table 6.4 shows the
performance of the ASR for training configurations mentioned in Table 6.2, exam-
ined at individual severity levels.

Table 6.3: Severity classification of synthetically generated dysarthric data - %Ac-
curacy

Classifier Augmentation S1 S2 S3 S4
System parameter

A None 93.97 4.29 1.74 0.00

B1 R1 = 1.2 88.35 8.00 3.30 0.35
B2 R1 = 1.4 81.05 12.51 4.98 1.45
B3 R1 = 1.6 65.24 21.55 9.79 3.42
B4 R1 = 1.8 46.87 33.43 14.83 4.87
B5 R1 = 2.0 33.72 39.86 21.15 5.27

C1 R2 = 0.4 4.06 39.98 38.18 17.79
C2 R2 = 0.6 59.62 23.99 12.05 4.35
C3 R2 = 0.8 86.96 8.98 3.48 0.58

Tempo-based and speed-based augmentation techniques give an absolute im-
provement of 4.24% and 2%, respectively. Higher improvement was observed for
higher severity (S4), approximately 3% and 12% absolute improvement over base-
line for systems speed and tempo augmentation, respectively. Table 6.5 shows the
effects of each data augmentation parameter on four different severity levels. It can
be seen that the proposed method gives improvement at all severity levels.

Table 6.4: Severity wise WER for testing data
Training S1 S2 S3 S4 Overall WER

Set
A 1.05 17.89 44.73 78.51 29.06
B 0.98 19.73 36.44 75.43 27.05
C 1.28 15.52 37.36 66.96 24.82

In order to attribute the improvement in the ASR performance to the syntheti-
cally generated dysarthric speech data, we look into the ASR performance for data
augmentation parameters R1 and R2 separately. 8 separate ASR systems were
trained as seen in Table 6.5, each with 3458 synthetically generated dysarthric ut-
terances. Table 6.5 shows the effect of individual augmentation parameters on ASR
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performance. No healthy control data was used in the ASR training. Correlation
between the ASR performance for actual dysarthric speech and the duration of the
synthetic dysarthric speech data is seen for both speed and tempo perturbations.
From Table 6.5 and Table 6.3, it is seen that increasing the phone durations using
augmentation degrades the ASR performance for low-severity dysarthric speech (S1
and S2).

Table 6.5: Effect of data augmentation on WER for individual severity level
Training Augementation S1 S2 S3 S4 Overall

Set parameter WER
A None 1.05 17.89 44.74 78.51 29.06

B1 R1=1.2 0.98 17.63 42.11 72.95 27.33
B2 R1=1.4 0.90 18.82 38.42 73.68 26.91
B3 R1=1.6 1.35 21.32 36.45 69.30 26.34
B4 R1=1.8 1.20 22.63 37.76 67.25 26.46
B5 R1=2.0 1.58 21.18 34.87 69.01 26.00

C1 R2=0.4 2.33 18.95 39.87 70.47 27.16
C2 R2=0.6 1.05 20.79 37.37 77.34 27.87
C3 R2=0.8 0.75 18.55 34.61 74.56 26.15

Based on the ASR performance for synthetically generated dysarthric data, op-
timal values of augmentation parameters R1 and R2 to generate dysarthric data of
different severity levels is as shown in Table 6.6.

Table 6.6: R1 and R2 recommendation for optimal ASR recognition
Severity R1 R2

S1 1.4 0.8
S2 1.2 0.8
S3 2 0.4
S4 1.8 0.4

6.1.5 Conclusions

Given that speech is an attractive interface to control the devices used in assisted
living and smart homes, it is imperative that we look into improving the ASR per-
formance for pathological speech. Due to a lack of suitable data to train the ASRs,
machine learning techniques are not fully exploited for pathological speech recogni-
tion. In this chapter, we address the data challenge for dysarthric speech using data
augmentation to synthetically generate dysarthric speech data using healthy con-
trol speech. An understanding of the deficits in speech production caused by speech
pathology has been used to augment existing data using speed and tempo modifica-
tions to the healthy control speech. A DNN-HMM-based Automatic Speech Recog-
nition (ASR) system and Random Forest-based classification system have been
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6.1.4 Experimental Results and Analysis
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In order to attribute the improvement in the ASR performance to the syntheti-
cally generated dysarthric speech data, we look into the ASR performance for data
augmentation parameters R1 and R2 separately. 8 separate ASR systems were
trained as seen in Table 6.5, each with 3458 synthetically generated dysarthric ut-
terances. Table 6.5 shows the effect of individual augmentation parameters on ASR
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performance. No healthy control data was used in the ASR training. Correlation
between the ASR performance for actual dysarthric speech and the duration of the
synthetic dysarthric speech data is seen for both speed and tempo perturbations.
From Table 6.5 and Table 6.3, it is seen that increasing the phone durations using
augmentation degrades the ASR performance for low-severity dysarthric speech (S1
and S2).
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different severity levels is as shown in Table 6.6.
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living and smart homes, it is imperative that we look into improving the ASR per-
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machine learning techniques are not fully exploited for pathological speech recogni-
tion. In this chapter, we address the data challenge for dysarthric speech using data
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trol speech. An understanding of the deficits in speech production caused by speech
pathology has been used to augment existing data using speed and tempo modifica-
tions to the healthy control speech. A DNN-HMM-based Automatic Speech Recog-
nition (ASR) system and Random Forest-based classification system have been
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used for the evaluation of the proposed method. Synthetically generated dysarthric
speech is classified into four different severity levels using a Random Forest classi-
fier trained on actual dysarthric speech. ASR system trained using healthy control
speech augmented using synthetically generated dysarthric speech is evaluated for
dysarthric speech utterances. All evaluations were carried out on the Universal Ac-
cess dysarthric speech corpus computer command words. An absolute improvement
of 15% was achieved by using fMLLR transform as compared to our previous work
[195]. Additionally, ASR performance improved by 4% using silence pre-processing.
We use this WER (29.06%) as a baseline to report our current work. An absolute
improvement of 4.24% and 2% was achieved using tempo-based and speed-based
data augmentation systems over the baseline system.

120

6. Data augmentation of dysarthric speech

6.2 Two-stage Data Augmentation for Improved

ASR Performance for Dysarthric Speech

Machine learning (ML) and Deep Neural Networks (DNN) have greatly aided the
problem of Automatic Speech Recognition (ASR). However, accurate ASR for
dysarthric speech remains a serious challenge. The dearth of usable data remains a
problem in applying ML and DNN techniques for dysarthric speech recognition. In
the current research, we address this challenge using a novel two-stage data augmen-
tation scheme, a combination of static and dynamic data augmentation techniques,
designed by leveraging an understanding of the characteristics of dysarthric speech.
We explore speaker-independent ASR using modifications to healthy speech us-
ing various perturbations, devoicing of consonants, and voice conversion, compris-
ing stage one or static augmentations. Subsequent to the first stage, a modified
SpecAugment algorithm tailored for dysarthric speech is employed. This variant,
termed Dysarthric SpecAugment, leverages the characteristics of dysarthric speech
and forms the second stage of the two-stage augmentation approach. This acoustic
model is used to pre-train a speaker-dependent ASR using dysarthric speech. The
objective of this work is to improve the ASR performance for dysarthric speech using
the two-stage data augmentation scheme. An end-to-end ASR using a Transformer
acoustic model is used to evaluate the data augmentation scheme on speech from
the UA dysarthric speech corpus. We achieve an absolute improvement of 10.7%
and a relative improvement of 29.2% in word error rate (WER) over a baseline with
no augmentation, with a final WER of 25.9% for the speaker-dependent system.

6.2.1 Introduction

Speech production is one of the most complex human motor skills and involves both
linguistic units and acoustic events. Motor speech problems caused by neurological
difficulties can be congenital or acquired, impacting one or several speech subsys-
tems, namely respiratory, phonatory, and articulatory. Congenital dysarthria can
be attributed to an inherited condition, such as Cerebellar Palsy, which affects the
muscles of speech production. Dysarthria acquired later in life may result from
stroke, traumatic brain injury (TBI), tumors, infection, or progressive neurologi-
cal diseases such as amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS),
or Parkinson’s disease (PD). Manifestations of dysarthria may include restricted
movement of the lip, tongue, and jaw; slurred speech; slow speech; rapid mum-
bled speech; soft or inaudible speech; breathiness; hoarseness; drooling; and diffi-
culty swallowing. For intelligible speech production, the muscles and muscle groups
in the speech subsystems must be well-coordinated in time and space, rendering
dysarthric speech generally unintelligible. The higher the severity of dysarthria,
the lower the intelligibility of dysarthric speech. The neurological damage that af-
fects speech-motor function impacts physical activities associated with the motor
neurons as well. Typical human interface with gadgets and devices involves typing
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used for the evaluation of the proposed method. Synthetically generated dysarthric
speech is classified into four different severity levels using a Random Forest classi-
fier trained on actual dysarthric speech. ASR system trained using healthy control
speech augmented using synthetically generated dysarthric speech is evaluated for
dysarthric speech utterances. All evaluations were carried out on the Universal Ac-
cess dysarthric speech corpus computer command words. An absolute improvement
of 15% was achieved by using fMLLR transform as compared to our previous work
[195]. Additionally, ASR performance improved by 4% using silence pre-processing.
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into a keyboard. Keyboard input using hand movements is slowed down by a factor
of 150 to 300 in severe cases of dysarthria in comparison with regular users [66].
However, dysarthric speech is slow by a factor of 10 to 17 as compared to regular
speech, at about 15 words per minute in the most severe cases [165]. Also, it has
been found that dysarthric speakers exhibit good prosodic control which in turn
aids communication efficiency [148]. Hence, persons with dysarthria may benefit
immensely from Automatic Speech Recognition (ASR)-based personal assistants.
ASR utilizes a combination of signal processing and machine learning techniques
to convert spoken language into text. Performance of ASR systems and personal
assistants has made great strides owing to the recent Machine learning (ML) and
Deep Neural Networks (DNN) techniques, albeit this is not the case with the atyp-
ical dysarthric speech due to the inter-speaker and intra-speaker inconsistencies in
the acoustic space as well as the sparseness of data. In order to capitalize on the
current research on ML techniques for ASRs, such as the End-to-End (E2E) ASR
systems, suitable and abundant data to build these systems is imperative. How-
ever, the collection of dysarthric data is tedious, especially for speakers with severe
dysarthria, on account of speaker muscle weakness and fatigue. Data augmenta-
tion policies designed specifically for dysarthric speech can act as a key factor in
improving dysarthric ASR with limited intrusion on the speakers for data collection.

Data augmentation (DA) is a common approach employed to increase the amount
of training data, especially for DNN training in order to avoid overfitting while gen-
erating robust DNN models. Several types of DA techniques have been employed to
vastly increase the quantity of matching training data [109, 137, 30], especially in
atypical scenarios such as reverberant speech [110], child speech [24] and dysarthric
speech [51, 74, 196]. Simple audio-level augmentations such as speed, pitch, tempo,
and volume perturbations applied directly on raw speech to increase the training
data multi-fold [109, 24] have proven to be extremely effective. SpecAugment [146]
and DA techniques inspired by SpecAugment such as frame level SpecAugment
[115] and usage of semantic masks [200] have been successful in improving ASR
performance through dynamic DA.

Research on DA in the context of dysarthric speech is sparse since this involves
a clear understanding of dysarthric speech patterns. Time and tempo-stretching
of healthy speech-based DA for improving speech recognition has been investi-
gated in [196]. In order to address ASR performance on severe dysarthric speech,
speaker-dependent acoustic models based on phoneme-level speech tempo ratio be-
tween typical and speaker-specific dysarthric speech have been created to augment
existing dysarthric speech [207]. Two separate augmentation policies involving
speed, tempo, and vocal tract length perturbation (VTLP) applied on healthy and
dysarthric speech showed significant improvement in the ASR performance [51]. A
transformation of healthy speech to dysarthric speech using voice conversion-based
techniques involving speaking rate modification, pitch modification, and spectral
feature transformation using adversarial training, have been employed to simulate
training data using healthy speech [21]. Visual DA techniques are applied to speech
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features that are extracted visually [176]. A Deep convolution-based generative
adversarial network (DCGAN) was used for tempo and speed perturbations in ad-
dition to learning hidden unit contributions (LHUC) based speaker adaptation in
[75]. The study [123] investigates DA for transfer learning in ASR for continuous
dysarthric speech. It augments dysarthric speech with speed/volume variations,
virtual microphone arrays, and multi-resolution features (VM-MRFE) to bridge
vocabulary gaps before transferring knowledge from a pre-trained normal speech
model. This approach, evaluated on isolated and continuous speech datasets, tack-
les out-of-vocabulary challenges. Table 6.7 summarizes the research work on DA
for dysarthric speech.

Through this chapter we extend the work presented in [17], which explored
various DA techniques using hand-crafted explainable features as well DNN-based
augmentations in order to achieve improved ASR performance for dysarthric speech
in terms of word error rate (WER). A two-stage DA process that involves a static
and dynamic augmentation of dysarthric speech data was used. We refer to the
process of DA prior to DNN training as static and DA as a part of the DNN train-
ing as dynamic. The features used for static DA are handcrafted and explainable,
whereas the dynamic augmentation is done in real-time, using features that are
generated as part of the neural network training ensuring that the DNN system
benefits from viewing diverse data at every epoch, which in turn strengthens the
training process. Since the features generated during the DNN training are in real-
time, we consider these features non-explainable. Our main contribution is the use
of various static augmentation policies and SpecAugment [146] in novel ways to
achieve dysarthric speech DA. In this chapter, we introduce two new concepts that
improve the performance of ASR for dysarthric speech. We leverage our knowl-
edge of dysarthric speech to design a dynamic DA method akin to SpecAugment,
which we call the Dysarthric SpecAugment (DSA) scheme. In DSA, we dynami-
cally introduce breathiness, stuttering, and hypernasality to healthy speech, thereby
increasing the diversity of the training data. We analyze the performance of an End-
to-End Transformer-based ASR in terms of WER for scenarios with no dysarthric
data being available for training, as well as when some dysarthric speech data is
available. Transformer-based neural network training was used because transform-
ers offer significant advantages in capturing long-range dependencies, faster train-
ing, and improved modeling of speech features. These advancements lead to more
robust, accurate, and versatile speech recognition systems that can power a wide
range of applications [85, 203]. We use the ESPnet toolkit [204] for all our ASR
experiments. ASR performance is evaluated on the UA dysarthric speech corpus.

We describe static and dynamic DA techniques in Section 6.2.2. We discuss
the experimental set-up in Section 6.2.3 and present the contributions of various
combinations of DA techniques on the WER in Section 6.2.4. Finally, we conclude
with our observations and recommendations in Section 6.2.5.
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into a keyboard. Keyboard input using hand movements is slowed down by a factor
of 150 to 300 in severe cases of dysarthria in comparison with regular users [66].
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speech, at about 15 words per minute in the most severe cases [165]. Also, it has
been found that dysarthric speakers exhibit good prosodic control which in turn
aids communication efficiency [148]. Hence, persons with dysarthria may benefit
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Deep Neural Networks (DNN) techniques, albeit this is not the case with the atyp-
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feature transformation using adversarial training, have been employed to simulate
training data using healthy speech [21]. Visual DA techniques are applied to speech
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features that are extracted visually [176]. A Deep convolution-based generative
adversarial network (DCGAN) was used for tempo and speed perturbations in ad-
dition to learning hidden unit contributions (LHUC) based speaker adaptation in
[75]. The study [123] investigates DA for transfer learning in ASR for continuous
dysarthric speech. It augments dysarthric speech with speed/volume variations,
virtual microphone arrays, and multi-resolution features (VM-MRFE) to bridge
vocabulary gaps before transferring knowledge from a pre-trained normal speech
model. This approach, evaluated on isolated and continuous speech datasets, tack-
les out-of-vocabulary challenges. Table 6.7 summarizes the research work on DA
for dysarthric speech.

Through this chapter we extend the work presented in [17], which explored
various DA techniques using hand-crafted explainable features as well DNN-based
augmentations in order to achieve improved ASR performance for dysarthric speech
in terms of word error rate (WER). A two-stage DA process that involves a static
and dynamic augmentation of dysarthric speech data was used. We refer to the
process of DA prior to DNN training as static and DA as a part of the DNN train-
ing as dynamic. The features used for static DA are handcrafted and explainable,
whereas the dynamic augmentation is done in real-time, using features that are
generated as part of the neural network training ensuring that the DNN system
benefits from viewing diverse data at every epoch, which in turn strengthens the
training process. Since the features generated during the DNN training are in real-
time, we consider these features non-explainable. Our main contribution is the use
of various static augmentation policies and SpecAugment [146] in novel ways to
achieve dysarthric speech DA. In this chapter, we introduce two new concepts that
improve the performance of ASR for dysarthric speech. We leverage our knowl-
edge of dysarthric speech to design a dynamic DA method akin to SpecAugment,
which we call the Dysarthric SpecAugment (DSA) scheme. In DSA, we dynami-
cally introduce breathiness, stuttering, and hypernasality to healthy speech, thereby
increasing the diversity of the training data. We analyze the performance of an End-
to-End Transformer-based ASR in terms of WER for scenarios with no dysarthric
data being available for training, as well as when some dysarthric speech data is
available. Transformer-based neural network training was used because transform-
ers offer significant advantages in capturing long-range dependencies, faster train-
ing, and improved modeling of speech features. These advancements lead to more
robust, accurate, and versatile speech recognition systems that can power a wide
range of applications [85, 203]. We use the ESPnet toolkit [204] for all our ASR
experiments. ASR performance is evaluated on the UA dysarthric speech corpus.

We describe static and dynamic DA techniques in Section 6.2.2. We discuss
the experimental set-up in Section 6.2.3 and present the contributions of various
combinations of DA techniques on the WER in Section 6.2.4. Finally, we conclude
with our observations and recommendations in Section 6.2.5.
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Table 6.7: Data Augmentation for dysarthric speech ASR in Literature
Study Database Features Speech Tech Accuracy/WER

Vachhani et al.,
2018 [196]

UA Speech (par-
tial)

MFCC Time/tempo stretch-
ing, DNN-HMM-
based ASR, fMLLR

Tempo-based:
24.82%

Speed-based:
27.05%

Xiong et al.,
2019 [208]

UA Speech MFCC Interpolation followed
by downsampling for
tempo adjustment,
DNN-HMM based
ASR with TDNN

27.88%.

Geng et al., 2020
[51]

UA Speech MFCC Speed, tempo, and
VTLP-based augmen-
tation. (LHUC) based
speaker adaptive and
multi-task learning
(MTL)-based training
for DNN

26.37%

Celin et al., 2020
[21]

UA Speech MFCC Virtual linear micro-
phone array-based
synthesis followed by
multi-resolution

32.79% - low

Tamil dysarthric
speech corpus

feature extraction
(MRFE), DNN-
HMM-based ASR
system

35.75% - very
low

Shahamiri, 2021
[176]

UA Speech Voice grams Visual DA, Speech
vision ASR using
Spatial Convolutional
Neural Network (S-
CNN)

Absolute aver-
age WRAs of
64.71%

Yue et al., 2022
[218]

TORGO Raw waveform
features, DA

Parametric CNNs,
multi-stream acoustic
modelling

Parametric
CNN: 36.2%

Multi-stream
acoustic mod-
elling: 33.2%

Bhat et al., 2022
[17]

UA Speech Mel filter bank, TDNN-DAE, speed,
tempo, and loudness
based DA, specialized
Spec Augment. End-
to-end ASR (ESPnet)

20.6%

Jin et al., 2023
[76]

UA Speech Wav2vec 2.0 em-
bedding features

Variational auto-
encoder generative
adversarial network
(VAE-GAN)-based
DA, LF-MMI factored
TDNN, LHUC-SAT,
ESPnet toolkit

27.78%

Celin et al., 2023
[123]

UA Speech Speed/volume
variations, VM-
MRFE

DNN 32.97% -low

Tamil dysarthric
speech corpus

63.38% - very
low category
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6.2.2 Two-stage Data Augmentation

Building a dysarthric speech corpus is challenging owing to the difficulties faced by
the patients. Our approach offers a significant advantage: it leverages readily avail-
able healthy speech data and transforms it to address the scarcity of dysarthric
speech data. The combined healthy speech, augmented speech, and dysarthric
speech data help ASR systems learn the nuances of dysarthric speech patterns,
leading to better recognition accuracy. Two-stage data augmentation involves DA
done in two steps. First, static DA (SDA) techniques described in Section 6.2.2.1 are
applied, followed by dynamic DA (Section 6.2.2.2) as the next step. The term Dy-
namic DA refers to a special technique applied during neural network training. It is
a variant of SpecAugment, which we call Dysarthric SpecAugment (DSA). DSA al-
gorithms aim to transform healthy speech features through specific manipulations to
create speech that acoustically resembles dysarthric speech. Therefore, both SDA,
using explainable speech features, and DSA which uses speech features generated
in real-time and hence non-explainable, are applied to healthy speech data. The
ASR models built using healthy speech and augmented speech are adapted using
dysarthric speech data to significantly improve the ASR performance in terms of
WER.

Figure 6.2: Two-stage DA for dysarthric speech recognition

6.2.2.1 Static Data Augmentation (SDA)

The DA techniques applied prior to DNN training augmented the dysarthric speech
data in a static manner. We have used two types of static augmentation as described
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6.2.2 Two-stage Data Augmentation

Building a dysarthric speech corpus is challenging owing to the difficulties faced by
the patients. Our approach offers a significant advantage: it leverages readily avail-
able healthy speech data and transforms it to address the scarcity of dysarthric
speech data. The combined healthy speech, augmented speech, and dysarthric
speech data help ASR systems learn the nuances of dysarthric speech patterns,
leading to better recognition accuracy. Two-stage data augmentation involves DA
done in two steps. First, static DA (SDA) techniques described in Section 6.2.2.1 are
applied, followed by dynamic DA (Section 6.2.2.2) as the next step. The term Dy-
namic DA refers to a special technique applied during neural network training. It is
a variant of SpecAugment, which we call Dysarthric SpecAugment (DSA). DSA al-
gorithms aim to transform healthy speech features through specific manipulations to
create speech that acoustically resembles dysarthric speech. Therefore, both SDA,
using explainable speech features, and DSA which uses speech features generated
in real-time and hence non-explainable, are applied to healthy speech data. The
ASR models built using healthy speech and augmented speech are adapted using
dysarthric speech data to significantly improve the ASR performance in terms of
WER.

Figure 6.2: Two-stage DA for dysarthric speech recognition

6.2.2.1 Static Data Augmentation (SDA)

The DA techniques applied prior to DNN training augmented the dysarthric speech
data in a static manner. We have used two types of static augmentation as described
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in the rest of this section.

Speed, tempo, volume, and pitch perturbation

A. Speed perturbation is a recommended method for DA since it has been known
to improve speech recognition as well as has a low implementation cost [109].
However, it is to be noted that speed perturbation affects both pitch and
tempo of the original speech since it involves resampling of the original speech
signal. In the current work, we have applied speed modifications to both
healthy speech as well as dysarthric speech to provide three different versions,
resulting in DA by a factor of three.

B. The relationship between the tempo of healthy speech and dysarthric speech
has been investigated and leveraged to improve dysarthric speech recognition
[14, 207, 51]. Typically, dysarthric speech is slow and slurred, indicating a
slower tempo as compared to healthy speech. We have applied three different
tempo modifications on healthy speech to match the severity levels in the
dysarthric speech corpus. Tempo perturbation does not alter the pitch of the
speech being modified.

C. Training dysarthric speakers to increase the loudness of speech to improve in-
telligibility is a known therapy technique that results in a higher articulatory-
acoustic working space as well as improved acoustic contrast for dysarthric
speakers[190]. In order to match the characteristics of dysarthric speech, we
have applied loudness modifications to healthy speech by reducing the loud-
ness. Two different loudness factors have been used to generate two distinct
versions of healthy speech.

D. It has been observed that the three popularly used English dysarthric speech
corpora, the UA Speech corpus, the TORGO, and the Nemours database have
fewer female speakers as compared to male speakers. The skewed represen-
tation of female speakers in the training data impacts the ASR performance
for female dysarthric speech. This article explores several techniques for aug-
menting female dysarthric speech.

• Pitch shifting-based DA has been applied to improve the ASR perfor-
mance [178] as well as in case of classification of noise [217]

• Vocal tract length perturbation (VTLP) has been applied in different
speech recognition tasks, especially with the limitations of low-resource
languages. Combined with Deep Neural Networks (DNN), VTLP-based
augmentation has proved beneficial in improving ASR performance [83,
109]

• Spectral warping: applied to the linear prediction (LP) spectrum of chil-
dren’s speech data, aims to increase spectral variability. The resulting
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modified features are expected to improve ASR performance through
enhanced spectral diversity [88].

• Voice conversion swaps a voice fingerprint, preserving words but changing
speaker, accent, or even emotion. It’s a voice mask for new applications
like speaking aids, personalized narration, or anonymizing recordings.
We use voice conversion to generate new female voices and use this data
for augmenting the UA Speech corpus[61, 222]

Devoicing of consonants

Devoicing of consonants is one of the possible characteristics of dysarthric speech.
Devoicing refers to the lack of vocal fold vibration during the production of voiced
consonant sounds. Normally, when voicing a consonant, such as b, d, or g, the vocal
folds vibrate, creating a voiced sound. However, in dysarthria, the coordination and
control of the muscles involved in vocal fold vibration may be impaired, leading to
inconsistent or absent voicing. In dysarthric speech, devoicing of consonants can
manifest in different ways [121]:

• Partial devoicing: The consonant may have reduced voicing, meaning that
the vocal folds do not fully vibrate, resulting in a weak or breathy sound. For
example, the b sound may be pronounced as a partially voiced p sound.

• Complete devoicing: The vocal folds may fail to vibrate altogether, resulting
in a voiceless sound. For instance, the d sound may be produced as a voiceless
t sound.

• Variable devoicing: The presence or absence of voicing may be inconsistent
and unpredictable. In some instances, the consonant may be voiced, while in
others, it may be devoiced. This variability can make speech sound unclear
or difficult to understand.

It is important to note that dysarthria can present in different forms and severity
levels, depending on the underlying cause and individual factors. Therefore, specific
characteristics of dysarthric speech, including the devoicing of consonants, can vary
from person to person. We, therefore, modify healthy speech data by introducing
the devoicing of consonants to different degrees, as mentioned above. We observe
the changes in the ASR performance for dysarthric speech at different intelligibility
levels corresponding to the devoicing method used.

6.2.2.2 Dynamic Data Augmentation

The term Dynamic DA refers to a DA technique applied during neural network
training. SpecAugment and variants of this algorithm, specifically designed to aug-
ment dysarthric speech (DSA), are applied to healthy speech data post the static
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DA process. DSA algorithms are designed to embed speech characteristics typical
of dysarthric speech into healthy speech data, transforming healthy speech features
to create speech that acoustically resembles dysarthric speech.

SpecAugment
SpecAugment is a DA technique that is directly applied to the spectral speech
features used for DNN training. The augmentation policy is designed to build a
robust ASR by allowing for the prediction of changes to data in the time direction,
partial loss of information in the frequency direction, as well as due to loss of small
segments of speech [146]. Towards this end, masks are constructed to dynamically
mask or modify the information in the time and frequency directions. The width
and location of the masks are determined randomly, ensuring that the DNN is ex-
posed to a different version of the input speech at every epoch of the training process.

Dysarthric SpecAugment (DSA)
We have leveraged our understanding of dysarthric speech to design three DSA poli-
cies specific to dysarthric speech. These masks have been applied only on healthy
speech in a manner similar to the SpecAugment process described above.

A. Stutter mask
Stuttering is a speech disorder that manifests as either the arrested articula-
tion of a syllable or clonic repetition of the same syllable [161]. Dysarthria is a
motor-speech disorder, and the resulting speech has some of the characteristics
of a stutter.

A mask was constructed along the time direction, wherein random and small
segments of speech were repeated to emulate stuttering. Stutter mask was
applied so that t consecutive time steps [t0, t0 + t) were repeated, where the
mask width t was randomly chosen from a uniform distribution such that
t ∼ U(0,T) where T is the stutter mask parameter and t0 is chosen from [0,
τ − t), where τ is the length of the utterance.

B. Hypernasal mask
Hypernasality is a consequence of velopharyngeal dysfunction (VPD) or velopha-
ryngeal incompetence (VPI), which manifests as excessive nasal resonance in
speech. It is the outcome of improper closure of the soft palate that regulates
the airflow between the oral and nasal cavities. Hypernasality is a common
occurrence in motor-speech disorders such as dysarthria [172]. Hypernasal
speech exhibits significantly higher energy levels at frequency bands centered
at 630, 800, and 1000 Hz and significantly lower amplitude for the band cen-
tered at 2500 Hz as compared to healthy speech [114, 112].
In order to simulate hypernasality in healthy speech, the SpecAugment was
modified along the frequency direction. Channels of the Mel filter bank cor-
responding to the frequency regions from 600 to 1600 Hz were identified as
the first region and the second region corresponding to the frequencies around
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2500 Hz. The energy level in f consecutive mel frequency channels around
the first region was increased by three times and the amplitude in the sec-
ond region was reduced by half. f consecutive Mel frequency channels for
modification [f0, f0 + f) were randomly chosen from a uniform distribution
such that f ∼ U(0,F) where F is the hypernasal mask parameter and f0 is
chosen from [ν1, ν2− f), where ν1 and ν2 correspond to the first and last Mel
channels of the corresponding region.

C. Breathiness (Noise) mask
Dysarthria is often associated with disturbances of respiration, laryngeal func-
tion, airflow direction, and articulation, resulting in breathy speech quality
and reduced intelligibility. Breathiness is typically caused by glottal air leak-
age, and acoustic measures related to breathiness are often used to distinguish
between different physiological phonation conditions for pathological speech
[47].
A scaled white noise mask was applied to healthy speech in order to replicate
the presence of breathiness along both the time and frequency directions. The
initial point and the width of the mask were chosen randomly as described in
the stutter and hypernasal sections.

6.2.2.3 Transformer Models for ASR

Researchers are increasingly turning to Transformer models for ASR tasks. These
models offer two key benefits: the ability to process information in parallel (paral-
lelization) and an internal mechanism for focusing on important parts of the input,
i.e., the attention mechanism. Unlike recurrent neural networks (RNNs), which
process information sequentially, Transformers can learn faster. End-to-end (E2E)
automatic speech recognition is a recent advancement in ASR that leverages the
power of neural networks. It utilizes a single, unified model trained at a lower
audio frame rate, significantly simplifying the training process. This translates to
faster learning times, quicker decoding, and the possibility of jointly optimizing the
system for tasks like natural language understanding after recognizing the speech.
Conventional E2E models for speech recognition rely on a simple setup: one en-
coder, one decoder, and an attention mechanism. The encoder transforms the raw
audio features (vectors) into a different format. The decoder then predicts the word
sequence based on this new representation. The attention mechanism helps the de-
coder focus on crucial parts of the encoded information for each word prediction. In
contrast, Transformer models are more complex. They can have multiple encoders
and decoders, each equipped with an internal attention mechanism. This allows the
model to capture relationships between different parts of the speech signal more ef-
fectively, leading to potentially better recognition accuracy [140] as shown in Figure
6.3.

129



6. Data augmentation of dysarthric speech

DA process. DSA algorithms are designed to embed speech characteristics typical
of dysarthric speech into healthy speech data, transforming healthy speech features
to create speech that acoustically resembles dysarthric speech.

SpecAugment
SpecAugment is a DA technique that is directly applied to the spectral speech
features used for DNN training. The augmentation policy is designed to build a
robust ASR by allowing for the prediction of changes to data in the time direction,
partial loss of information in the frequency direction, as well as due to loss of small
segments of speech [146]. Towards this end, masks are constructed to dynamically
mask or modify the information in the time and frequency directions. The width
and location of the masks are determined randomly, ensuring that the DNN is ex-
posed to a different version of the input speech at every epoch of the training process.

Dysarthric SpecAugment (DSA)
We have leveraged our understanding of dysarthric speech to design three DSA poli-
cies specific to dysarthric speech. These masks have been applied only on healthy
speech in a manner similar to the SpecAugment process described above.

A. Stutter mask
Stuttering is a speech disorder that manifests as either the arrested articula-
tion of a syllable or clonic repetition of the same syllable [161]. Dysarthria is a
motor-speech disorder, and the resulting speech has some of the characteristics
of a stutter.

A mask was constructed along the time direction, wherein random and small
segments of speech were repeated to emulate stuttering. Stutter mask was
applied so that t consecutive time steps [t0, t0 + t) were repeated, where the
mask width t was randomly chosen from a uniform distribution such that
t ∼ U(0,T) where T is the stutter mask parameter and t0 is chosen from [0,
τ − t), where τ is the length of the utterance.

B. Hypernasal mask
Hypernasality is a consequence of velopharyngeal dysfunction (VPD) or velopha-
ryngeal incompetence (VPI), which manifests as excessive nasal resonance in
speech. It is the outcome of improper closure of the soft palate that regulates
the airflow between the oral and nasal cavities. Hypernasality is a common
occurrence in motor-speech disorders such as dysarthria [172]. Hypernasal
speech exhibits significantly higher energy levels at frequency bands centered
at 630, 800, and 1000 Hz and significantly lower amplitude for the band cen-
tered at 2500 Hz as compared to healthy speech [114, 112].
In order to simulate hypernasality in healthy speech, the SpecAugment was
modified along the frequency direction. Channels of the Mel filter bank cor-
responding to the frequency regions from 600 to 1600 Hz were identified as
the first region and the second region corresponding to the frequencies around

128

6. Data augmentation of dysarthric speech

2500 Hz. The energy level in f consecutive mel frequency channels around
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Figure 6.3: Transformer architecture [140]

6.2.3 Experimental setup

6.2.3.1 Data

Data from the Universal Access (UA) speech corpus [95] was used for training
the End-to-End(E2E) Transformer-based ASR. The UA dysarthric speech corpus
comprises data from 13 healthy control (HC) speakers and 15 dysarthric (DYS)
speakers with cerebral palsy. Data was collected in three separate sessions for each
speaker and categorized into three blocks B1, B2, and B3. The speech material
contains 155 words that are common to all three blocks and 100 words that are
distinct for each block. Blocks B1, B2, and B3 from healthy speakers and blocks
B1 and B3 from dysarthric speakers were treated as training sets, and block B2 from
dysarthric speakers was treated as the test set. We have not included uncommon
words in the test setup. The corpus also includes speech intelligibility ratings for
each dysarthric speaker, as assessed by five naive listeners.

6.2.3.2 Hardware and Training Configuration

The configuration used for ESPnet training is as shown in Figure 6.4. We use
12 encoder and 2 decoder layers. Details pertaining to attention, CTC as well
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optimization used are as seen in Figure 6.4.

Figure 6.4: ESPnet E2E training configuration

The experiments were conducted using a single NVIDIA GPU. CUDA, driver,
and other details regarding the GPU are provided in Figure 6.5.

Noam optimizer introduced in the article [197] was used during the training
phase as shown in the training configuration (Figure 6.4). Noam optimizer has
a warm-up period and then an exponentially decaying learning rate as shown in
Figure 6.6 1.

1https://nn.labml.ai/optimizers/noam.html
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Figure 6.5: NVIDIA GPU details

Figure 6.6: noam optimizer learning rate

6.2.3.3 Static Augmentation

ESPnet toolkit [204] was used as the E2E-Transformer-based [86] system to eval-
uate the ASR performance for DA of dysarthric speech, along with a word-based
language model. The training was conducted for 20 epochs.

SDA - SoX
SoX was used for speed, tempo, and loudness perturbations. The options and
factors are as mentioned below:

• speed option for speed perturbation with the factors 0.9, 1.0, and 1.1

• tempo option for tempo perturbation with the factors 0.7, 0.5, and 0.4 based
on the factors mentioned in [14]

• vol option for loudness perturbation with the factors 0.7, 0.5

SDA-female speech
It has been observed that the UA Speech corpus has fewer female speakers as
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compared to male speakers across intelligibility levels in both healthy control and
dysarthric speaker categories, as shown by Table 6.8. This skewness in data impacts
the ASR performance of female speakers. The DA techniques described in Section
6.2.2.1 have been applied to male speaker data to address this skewness.

Table 6.8: Gender-wise data distribution in the UA Speech Corpus
Category Female Male % Female

Speakers Utterances Speakers Utterances Speakers
Healthy 4 21440 9 48240 30.77
Dysarthric 4 21440 11 52585 26.66

• Pitch shifting: Pitch shifting of male speakers’ speech data was done, by a
factor of 2 and 4 semitones using the techniques mentioned in [87].

• VTLP: One way of perturbing data is to transform spectrograms, using a
randomly generated warp factor α to warp the frequency dimension, such
that a frequency f is mapped to a new frequency f′ via a function of α [72].
VTL perturbed data was created using the python toolkit nlpaug random
warp factor in the range of 0.9,1 was used.

• Spectral warping was applied using three parameters, 0.1, 0.15, and 02, based
on the study [88].

• Voice conversion of healthy female speakers was carried out using ESPnet-TTS
toolkit [61], which is an end-to-end text-to-speech (E2E-TTS) toolkit, which
is an extension of the open-source speech processing toolkit ESPnet [204].
The toolkit supports state-of-the-art E2E-TTS models, including Tacotron 2,
Transformer TTS, and FastSpeech. We have x-vector-based TTS for voice
conversion, using the libritts pre-trained model with the model tag kan-
bayashi/libritts xvector vits from the ESPnet model zoo. Voice conversion
was limited to two female speakers from the pre-trained models as target
speakers.

While the first three methods are algorithm-based, voice conversion uses DNNs
and pre-trained models of the target speakers and hence can be categorized as non-
explainable feature-based augmentation.

Devoicing of consonants
The distribution of each target voiced stop consonant as a percentage of the total
target consonants in the UA speech corpus is as shown in Table 6.9. The percent-
age of /b/ is lower as compared to the rest of the phonemes. Also, there are no
isolated words present in the database that comprise both /b/ and any of the other
consonants in Table 6.9. These two factors indicate that the majority of the audio
generated using mixed-devoicing will be the same as full-devoicing audio. Three
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Table 6.9: Distribution of target voiced stop consonants for devoicing
Phoneme % Occurrence

/b/ 21
/d/ 43
/dh/ 23
/g/ 11
/jh/ 2

different types of devoicing parameters, namely partial, full, and mixed, were ap-
plied to healthy control speaker data. The location of voiced stop consonants such
as /g/, /jh/, /d/, /D/, and /b/ within the audio was determined using AS R-based
forced alignment. The ASR used was trained on librispeech corpus.

• Full devoicing: Applied on all stop consonants by replacing the voicing prior
to the burst location of the voiced consonant with noise

• Partial devoicing: Applied on all stop consonants by replacing the reducing
the voicing prior to the burst location of the voiced consonant by a degree of
0.5

• Mixed devoicing: Partial devoicing was applied on /b/, whereas full devoicing
was applied on the rest of the voiced stops.

It was found that the UA speech corpus data considered in our experiments
did not comprise any isolated word that had the labial voiced consonant /b/ and
another voiced stop in the same word.

6.2.3.4 Dynamic Augmentation

SpecAugment is the baseline SpecAugment method as discussed in [146]. SpecAug-
ment was applied on both healthy as well as dysarthric speech. Three different
dysarthric SpecAugment (DSA) techniques were devised as discussed in Section
6.2.2.2. The details of the configurations for the DSA masks are provided in Table
6.10. Stutter, Hypernasal, and Breathiness masks were designed to augment healthy
speech to match dysarthric speech. Hence, they were applied only to healthy speech
as a part of the ASR training. This model was then used as a pre-trained ASR model
for adaptation using dysarthric speech to arrive at a final WER.

The DA sequence and manner of application can be visualized as shown in Figure
6.2. In order to demonstrate the benefits of SDA, and DSA to DA of dysarthric
speech, we have examined the performance of E2E ASR using each of the techniques
separately based on the set-ups discussed below:

• Healthy speech for scenarios of no augmentation, with SDA and DSA.
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Table 6.10: Masks used in Dynamic Data augmentation
System Mask type
SpecAugment time warp, time mask, freq mask
DSA-Stutter time warp, noise mask, stutter mask
DSA-Hypernasal time warp, time mask, hypernasal mask
DSA-Breathiness time warp, frequency mask, noise mask
DSA-All time warp, time mask, noise mask,

stutter mask, hypernasal mask

• SDA and SpecAugment applied to dysarthric speech using the pre-trained
acoustic model built using augmented healthy speech.

• Effect of different combinations of augmentation procedures along with model
adaptation using dysarthric speech.

6.2.4 Results and Discussion

6.2.4.1 Static Augmentation

The E2E-Transformer-based ASR was trained on a combination of augmented
healthy speech and dysarthric speech and evaluated on dysarthric speech. We
present the baseline WER wherein no augmentation techniques were applied. We
then proceed to present the ASR performance for static augmentation and dynamic
augmentations separately. Finally, the ASR is evaluated for the two-stage augmen-
tation.

Data augmentation-female speech
Several DA methods were looked into for augmenting female-speaker data as de-
scribed in Section 6.2.2.1. A comparison of the performance of each of these meth-
ods is shown in Table 6.11. It can be seen from the table that each augmentation
method leads to improved ASR performance. However, across all methods, the
best improvement in performance was obtained for speech with high intelligibility.
This can be attributed to the fact that only healthy control speech has been used
for augmentation at this stage. Also, the greatest improvement was achieved with
pitch shifting, across speakers with varying degrees of dysarthria severity, with an
absolute overall improvement of 10.7%. The VTLP-based method showed the least
improvement. It’s important to note that VTLP alone might not be sufficient to
convincingly convert a male voice to a female voice, as there are other factors in-
fluencing the perception of gender in speech. The pitch, or fundamental frequency
(F0), is a crucial factor in gender perception. In general, female voices tend to have
a higher pitch than male voices. This indicates that a combination of pitch-shifting
techniques with other voice transformation methods will be beneficial to create a
more convincing male-to-female voice conversion. Based on the ASR performance,
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Table 6.9: Distribution of target voiced stop consonants for devoicing
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Table 6.10: Masks used in Dynamic Data augmentation
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we proceed with pitch-shifting-based DA.

Devoicing of consonants
Devoicing of voiced stop consonants, such as b, d, or g was carried out as explained
in Section 6.2.2.1. The results indicate that mixed devoicing works best amongst
all three variations of devoicing. It can be noted that the WER for mixed devoicing
is not significantly better than full devoicing. This can be attributed to the fact
that the majority of the mixed-devoiced utterances are the same as fully-devoiced,
as explained in Section 6.2.3 A small improvement of 1.7% was achieved when this
method was used for augmentation as shown in Table 6.12.

Table 6.11: Impact of DA on the WER for female dysarthric speech
Speaker Intelligibility No Pitch VTLP Spectral Voice

Augmentation Shifting Warping Conversion
F02 Low 78.1 74.8 79.4 77.4 77.7
F03 Very low 97.4 96.8 96.8 95.8 96.1
F04 Mid 69.2 56.6 62.9 62.3 61.9
F05 High 48.1 21.9 49.7 23.2 24.8

Average 73.2 62.53 72.2 64.68 65.13

Table 6.12: Impact of Devoicing-Based DA on WER
Devoicing WER
No Augmentation 68.0
Partial 68.3
Full 66.7
Mixed 66.3

We summarize our findings for static DA (SDA) in Table 6.13. It is clearly vis-
ible from the table that both pitch-based and devoicing-based static augmentation
techniques contribute significantly to the reduction of the WER of the ASR for
dysarthric speech.

Table 6.13: Impact of Static DA on WER
Augmentation Overall Intelligibility

WER Very Low Low Mid High
No Augmentation 68.0 97.03 85.42 71.43 43.03
Speed, Tempo Volume 63.0 95.61 81.16 64.54 36.90
+Pitch 61.4 94.19 80.00 64.15 34.32
+Devoicing 60.1 94.06 78.58 62.32 32.84
Relative 11.6 3.06 8.0 12.8 23.7
Improvement
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6.2.4.2 Dynamic Augmentation

Further, as a part of the proposed approach of two-stage DA, DSA policies are
applied to the healthy speech data. Table 6.14 demonstrates the impact of DSA on
the performance of the ASR, wherein the highest reduction in WER can be seen
when all the DSA policies are applied.

Table 6.14: Impact of dysarthric SpecAugment on WER
System Speaker Speaker Intelligibility

Ind. dependent Very Low Mid High
Low

No Augmentation 68.0 36.6 78.9 40.8 36.1 16.1
SpecAugment 65.5 35.0 72.0 36.0 33.8 16.8
DSA-Stutter 64.6 32.9 75.8 35.5 29.9 14.0
DSA-Hypernasal 64.2 30.8 75.8 29.1 27.4 13.1
DSA-Breathiness 63.1 30.4 75.2 28.0 27.0 13.0
DSA-All 62.1 29.0 73.6 25.1 25.1 12.7
Relative 8.7 20.8 6.7 38.5 30.5 21.1
Improvement

As mentioned in Section 6.2.3, dynamic augmentations (DSA) specific to dysarthric
speech have been applied only on healthy speech data, in order to achieve maximum
matching between training and test data. The E2E-Transformer models are trained
using DSA-applied healthy speech followed by model adaptation using dysarthric
speech data. Tables 6.14 and 6.16 demonstrate that applying DSA improves the
ASR performance across all the DSA techniques. We achieve the lowest WER when
all the DSAs are applied together in the final DSA-All system. An absolute im-
provement of 5% is achieved for healthy data and 7.6% post-model adaptation. We
also examine the improvement in WER at dysarthria intelligibility levels, that the
UA dysarthric speech corpus has provided. While both SDA and DSA improve the
WER across intelligibility levels, we note that SDA gives higher improvement for
dysarthric speech. It can be observed from Tables 6.14 and 6.16 that each of the
augmentation techniques applied contributes to the matching of augmented healthy
speech to dysarthric speech.

The overall system comprises both static and dynamic augmentations in cascade,
as shown in the figure 6.2. For the final system, a combination of (1) as step 1,
healthy speech SDA followed by DSA-All and (2) adaptation of the model from
step 1 using dysarthric speech SDA followed by SpecAugment has been used to
improve the overall WER of the E2E-Transformer ASR. Table 6.15 highlights the
reduction WER for both speaker-independent and speaker-dependent systems when
DA policies are applied. It can also be observed from Tables 6.13, 6.14, and 6.16
that the improvement is across all intelligibility levels. Highest WER improvement
using SDA is achieved for high intelligibility dysarthric speech while DSA achieves
better ASR performance for low and mid intelligibility levels, the cascading effect
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we proceed with pitch-shifting-based DA.
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of which can be seen in 6.16. Please note that all the experimental results reported
in Tables 6.11, 6.9, 6.13, 6.14, 6.15 and 6.16 correspond to a training set-up of
20 epochs. While DA plays a key role in the ASR outcome, significant gains were
achieved using model adaptation using dysarthric speech. It can be seen from Table
6.16 that WER has improved at each of the four intelligibility levels provided by the
UA Speech corpus We achieve an absolute improvement of 10.7% in word error rate
(WER) over a baseline with no augmentation, with a final WER of 25.9%. These
results can be benchmarked against some of the recent studies that have used data
augmentation techniques to improve ASR performance and evaluated them on the
UA Speech corpus. Time and tempo-stretching of healthy speech was used for data
augmentation by [196] and achieved the best WER of 24.82% when evaluated on
a part of the UA speech corpus. Authors used speaker-dependent acoustic models
based on phoneme-level speech tempo ratio between typical and speaker-specific
dysarthric speech to augment existing dysarthric speech and achieved a WER of
27.88% [207]. Speed, tempo, and VTLP-based augmentation followed by LHUC-
based speaker adaptive and multi-task learning (MTL)-based training for DNN
carried out in [51] reported a WER of 26.37%. [75] achieve a WER of 27.78% using
Wav2vec 2.0 embedding features along with VAE-GAN and other techniques.

Table 6.15: Impact of two-stage DA on WER
System Speaker Speaker

Ind. Dependent
No Augmentation 68.0 36.6
SDA 60.1 28.0
DSA-All 62.1 29.0
SDA + DSA-all 55.4 25.9
Relative 18.5 29.2
Improvement

Table 6.16: Impact of two-stage DA on WER at 4 Intelligibility levels
System Overall Intelligibility

WER Very low Low Mid High
No Augmentation 36.6 78.9 40.8 36.1 16.1
SDA 28.0 67.0 28.5 21.5 11.3
DSA-All 29.0 73.6 25.1 25.1 12.7
SDA + DSA-all 25.9 60.5 24.4 21.0 11.5
Relative 29.2 23.3 40.2 41.8 28.6
Improvement

t-SNE, or t-Distributed Stochastic Neighbor Embedding, is a powerful technique
for visualizing high-dimensional data in a lower-dimensional space. By analyzing
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the t-SNE plots of transformer decoder output features at different epochs and
with/without data augmentation, we can gain insights into the model’s learning
process and the impact of data augmentation. Figure 6.7 t-SNE plots across 20
epochs for two different training configurations namely, (a) Only healthy data with
no augmentation (68% accuracy) and (b) Augmented healthy and dysarthric data
(accuracy 25.9%). The formation of distinct clusters in the t-SNE plots indicates
that the model has learned to distinguish between different categories or classes in
the data. The density of points in the feature space provides insights into the dis-
tribution of data points and the model’s ability to capture fine-grained distinctions.
Key Observations from the plots in Figure 6.7 are as below:

• Evolution of Feature Space with Epochs:

– Early Epochs (1): At the beginning of training, the feature space is more
dispersed and less structured. This indicates that the model has not yet
learned to represent the underlying data distribution effectively.

– Intermediate Epochs (10, 15): As the model trains, the feature space
becomes more compact and clusters start to emerge. This suggests that
the model is learning meaningful representations of the data.

– Later Epochs (20): In the later stages of training, the feature space
becomes even more structured, with distinct clusters forming, indicating
that the model has converged to a solution that captures the underlying
patterns in the data.

• Impact of Data Augmentation: Without data augmentation, the model strug-
gles to generalize to unseen data, leading to overfitting. This can be observed
in the t-SNE plots as a more tightly clustered feature space, indicating that
the model has learned specific patterns in the training data but may not be
able to recognize variations. Data augmentation introduces artificial diversity
into the training data, helping the model to learn more robust and generaliz-
able representations. In the t-SNE plots, this can be seen as a more dispersed
feature space with less distinct clusters. This suggests that the model has
learned to capture a wider range of variations in the data.

Figure 6.8 depicts the neural network training loss for the speaker-independent
(SI) and speaker-dependent (SD) systems with no augmentation policies applied and
after the application of both static and dynamic augmentation. The loss diagram
for each of the training cycles indicates a reduction in the training loss over the
subsequent epochs. It can be seen that the reduction in the training loss for SI
systems is slower as compared to the SD systems.
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Figure 6.7: t-SNE plots for visualizing transformer-decoder outputs

Figure 6.8: Training loss (a) No Augmentation SI (b) No Augmentation SD (c)
SDA-DSA SI (d) SDA-DSA SD
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6.2.5 Conclusion and Future work

This work proposes a novel two-stage DA scheme to improve ASR performance in
terms of WER. This approach tackles the challenge of limited dysarthric speech
data, significantly improving ASR performance for individuals with speech impair-
ments. The objective is to leverage healthy speech data, applying static augmen-
tations like speed, tempo, and pitch modifications alongside voice conversion tech-
niques to address the gender imbalance often present in dysarthric corpora. Addi-
tionally, dynamic augmentations are introduced through dysarthric-specific masks
like stutter and breathiness, incorporated during training with SpecAugment as the
baseline. This two-stage approach, coupled with efficient Transformer-based E2E
ASR models, significantly reduces word error rate compared to using unaugmented
data. Notably, the method demonstrates substantial improvement when further
fine-tuned on actual dysarthric speech. By augmenting training data with modi-
fied healthy speech to match the dysarthric speech characteristics, this technique
effectively addresses the data scarcity issue, paving the way for more accurate ASR
systems specifically designed for individuals with dysarthric speech. We observe
that augmenting female speech improves the ASR performance significantly while
devoicing of consonants provided marginal improvement. Both SDA and DSA con-
tribute to the improvement of ASR performance individually and when used in
a two-stage sequence across all intelligibility levels, for both speaker-independent
and speaker-dependent configurations with an absolute and relative improvement of
10.7% and 29.2% respectively for a speaker-dependent scenario. It may be worth ex-
ploring the concepts of Sequence-to-sequence learning (Seq2Seq) and Generative ad-
versarial networks (GAN) for DA, and thereby a robust ASR for dysarthric speech.
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Chapter 7

Conclusion and Discussion

This thesis has explored the application of speech technology for dysarthric speech,
focusing on two key aspects: automatic intelligibility assessment and automatic
speech recognition. These advancements have the potential to significantly improve
assisted speech therapy and develop assistive living technologies for individuals with
dysarthria.

The proposed system, as illustrated in Figure 1.2, integrates modules for Auto-
matic Intelligibility Assessment (AIA) and Automatic Speech Recognition (ASR)
for dysarthric speech. The intelligibility information obtained from the AIA module
serves as a crucial input for designing more efficient ASR systems.

7.1 Answering the Research Questions

We address the three key research questions raised in Chapter 1, section 1.3 through
our contributions to dysarthric speech analysis and recognition outlined in this
thesis.

7.1.1 State of the art (SOTA)

RQ1: What is the status of research into the interdisciplinary area of dysarthric
speech and speech technology and which knowledge gaps should be addressed?
In Chapter 2, we have presented an overview of the contributions of speech tech-
nologists to the area of dysarthric speech, focusing on acoustic analysis, speech
features, and techniques used. It also discusses the challenges of limited data avail-
ability, variability of dysarthria, and lack of standardized metrics. While there
has been significant progress in understanding and addressing dysarthria through
advancements in speech analysis, speech recognition, and assistive technologies,
there is still a great deal of potential for improvement. We recommend that future
research should focus on standardization of data collection to facilitate collabora-
tion and development of more generalizable models, and multi-modal assessment to
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provide a more comprehensive understanding of dysarthria and informed treatment
strategies. Additionally, some of the key contributions of the studies that have
been discussed have the potential to translate into AI-powered speech analysis for
developing automated tools for dysarthria assessment, natural language processing
(NLP) for augmentative and alternative communication (AAC) to create more intu-
itive and user-friendly AAC systems, teletherapy and remote monitoring to improve
access to care and enable personalized interventions for persons with dysarthria. To
make longer and faster strides, researchers typically rely on existing research and
data on a global scale. Therefore, it is imperative to consolidate the existing re-
search and present it in a form that can serve as a basis for future work. In this
chapter, we have reviewed the contributions of speech technologists to the area of
dysarthric speech with a focus on acoustic analysis, speech features, and techniques
used. By focusing on the existing research and future directions, researchers can
develop more effective tools and interventions to improve communication, quality
of life, and overall well-being for people with dysarthria

7.1.2 Automatic Intelligibility Assessment

RQ2: How can we efficiently and automatically assess the intelligibility of dysarthric
speech?
Chapter 3 comprises two parts, in which we have presented our research work

that delves into the automatic intelligibility assessment of dysarthric speech. In
the first part, we examined methods to identify the intelligibility of dysarthric
speech. We evaluated multiple feature sets and classification techniques and have
highlighted the effectiveness of multi-taper spectral estimation and neural network-
based approaches in improving classification accuracy. Unlike traditional methods
that rely on linguistic features, we use audio descriptors, which are more objective
and less language-dependent.

In the second part, we further explore efficient identification of intelligibility, fo-
cusing on BLSTM networks trained with various features and transfer learning tech-
niques. We address challenges such as noise in recordings and gender representation
in datasets. In this work, we have developed a robust model for the intelligibility
assessment of dysarthric speech, provided insights into the features that are impor-
tant for distinguishing intelligible and non-intelligible speech, and demonstrated the
potential of transfer learning for improving the performance of speech recognition
systems for dysarthric speakers. These studies demonstrate the effectiveness of us-
ing Artificial Neural Networks (ANN) and Bidirectional Long Short-Term Memory
(BLSTM) networks with transfer learning for classifying dysarthric speech intelligi-
bility. By accurately predicting intelligibility, researchers and clinicians can develop
targeted interventions to improve communication for individuals with dysarthria.
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7.1.3 Improved ASR Performance for Dysarthric Speech

RQ3: How can we improve the automatic recognition of dysarthric data in terms of
word error rate?
In Chapters 4, 5, and 6 we have presented various techniques to improve ASR per-
formance for dysarthric speech. These techniques address the challenges posed by
the unique acoustic characteristics of dysarthric speech. Each of the aforementioned
chapters consists of two peer-reviewed articles.

7.1.3.1 Acoustic Feature Exploitation

In Section 4.1, the impact of different feature sets (MFCC, MT-MFCC, jitter, shim-
mer) on speech recognition performance was investigated. GMM-HMM and DNN-
HMM systems were compared to evaluate their effectiveness for dysarthric speech.
Furthermore, we analyzed the relationship between feature sets, speech recognition
systems, and dysarthria severity. Key outcomes of this work were (1) Providing in-
sights into the optimal feature set for dysarthric speech recognition. (2) Comparing
the performance of different speech recognition systems for this challenging task.
(3) Identifying the impact of dysarthria severity on speech recognition accuracy.

In Section 4.2, we have described an innovative approach to address the chal-
lenges posed by varying speech rates in dysarthric individuals. We explored the
concept of adjusting the tempo of speech to improve recognition accuracy and in-
vestigated the impact of tempo adaptation on different speech recognition systems
such as GMM-HMM and DNN-HMM. We also analyzed the ASR performance at
dysarthria severity levels. We demonstrated how tempo adaptation can enhance the
performance of speech recognition systems, particularly for triphone models. By fo-
cusing on tempo adaptation, we have introduced a promising strategy for enhancing
communication capabilities for individuals with dysarthria. Collectively, the two ar-
ticles presented in Chapter 4 highlight the importance of both feature engineering
and speech processing techniques in developing effective speech recognition systems
for dysarthric individuals. The findings contribute to a deeper understanding of
the challenges and potential solutions for improving communication for people with
dysarthria.

7.1.3.2 Speech Feature Enhancement

Chapter 5 investigates the feature-domain enhancement of dysarthric speech using
autoencoders. Section 5.1 focuses on enhancing dysarthric speech through tempo
adaptation and DAE-based feature enhancement. This research work is significant
because we have addressed the challenge of improving speech intelligibility for in-
dividuals with dysarthria by transforming the speech signal. By modifying speech
characteristics of dysarthric speech, we aim to improve the raw input for speech
recognition systems. A comparison of the effectiveness of both techniques offers
valuable insights into their strengths and weaknesses, providing a foundation for
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further research into speech enhancement for individuals with dysarthria.

In section 5.2 the significance of using TDNN-DAE to enhance dysarthric speech
features, leading to substantial improvements in ASR accuracy, especially in recog-
nizing dysarthric speech more akin to healthy control speech patterns has been in-
vestigated. We focus on evaluating DNN-HMM ASR systems in speaker adaptation
(SA) and speaker-independent (SI) scenarios. The impact of TDNN-DAE-based en-
hancement of dysarthric speech features for ASR has been explored. A comparison
of the recognition performance, when dysarthric speech data is enhanced using
TDNN-DAE versus unenhanced data, has been presented. It was demonstrated
that TDNN-DAE enhancement aligns dysarthric speech features more closely with
healthy control speech features. This alignment resulted in improved ASR perfor-
mance. Different training configurations, including those using only healthy control
data, only dysarthric data, and a combination of both enhanced dysarthric data
and healthy control data were also investigated. An analysis of the ASR perfor-
mance across different severity levels of dysarthria showed consistent improvements
with TDNN-DAE enhancement. This analysis helps understand the effectiveness
of the enhancement technique across varying degrees of speech impairment. Based
on these findings, we suggest further exploration into optimizing front-end con-
figurations for ASR systems tailored to dysarthric speech, potentially leveraging
TDNN-DAE and other enhancement techniques.

7.1.3.3 Data Augmentation

In Chapter 6 we address the limited availability of dysarthric speech data by propos-
ing data augmentation techniques. These techniques involve transforming healthy
speech data in the time domain and frequency domain to mimic dysarthric speech
characteristics. The effectiveness of data augmentation is evaluated in both speaker-
dependent and speaker-independent scenarios. In Section 6.1, we have focused on
synthetic data generation for dysarthric speech using healthy speech. This was a
novel approach to address the critical issue of limited available dysarthric speech
data. We have explored tempo and speed modification techniques to generate arti-
ficial dysarthric speech samples that can be used to augment existing training data,
potentially improving model performance. The synthetically generated dysarthric
speech was classified into four severity classes based on modifications applied to
healthy control utterances using different augmentation parameters and demon-
strated that the severity of dysarthric speech correlates closely with the duration
of the utterance. We show that alterations in speed and tempo impact the severity
classification, with longer durations generally correlating with higher severity lev-
els. The results indicated improvements in ASR accuracy when using tempo-based
and speed-based augmentation techniques. Notably, higher severity levels showed
significant absolute improvements over baseline performance.

In Section 6.2 we introduce a novel two-stage data augmentation (DA) scheme
aimed at enhancing ASR performance, specifically leveraging the characteristics of
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strated that the severity of dysarthric speech correlates closely with the duration
of the utterance. We show that alterations in speed and tempo impact the severity
classification, with longer durations generally correlating with higher severity lev-
els. The results indicated improvements in ASR accuracy when using tempo-based
and speed-based augmentation techniques. Notably, higher severity levels showed
significant absolute improvements over baseline performance.

In Section 6.2 we introduce a novel two-stage data augmentation (DA) scheme
aimed at enhancing ASR performance, specifically leveraging the characteristics of
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dysarthric speech. The approach involves applying static augmentations like speed,
tempo, and pitch modifications and dynamic augmentations using dysarthric-specific
masks such as hypernasality, stutter, and breathiness. Dynamic augmentations are
incorporated during training using the SpecAugment baseline. We have applied
techniques to handle gender imbalances in dysarthric corpora since this is crucial
as dysarthric speech datasets often lack gender diversity. The two-stage DA ap-
proach, combined with efficient Transformer-based End-to-End (E2E) ASR models,
resulted in a significant reduction in Word Error Rate (WER) compared to unaug-
mented data. The method showed substantial gains when fine-tuned on actual
dysarthric speech, effectively overcoming data scarcity issues. Augmenting female
speech and introducing devoicing of consonants were noted to improve ASR perfor-
mance. Static and dynamic augmentations (SDA and DSA) individually contribute
to performance improvements, with a substantial absolute and relative improvement
observed in speaker-dependent scenarios.

Overall, in Chapter 6, we have presented two approaches to augmenting dysarthric
training data to better match dysarthric speech characteristics, thereby significantly
enhancing ASR accuracy and performance for individuals with dysarthria.

7.2 Limitations

While this research has made significant strides in improving speech technology
for dysarthric speech, there are limitations to consider. These limitations not only
acknowledge the current boundaries of this work but also pave the way for future
research directions.

7.2.1 Data Availability

7.2.1.1 Limited Dysarthric Speech Data

A major challenge is the limited availability of dysarthric speech data. This restricts
the ability to train and validate complex deep learning models, potentially hindering
performance compared to models trained on abundant healthy speech data. We
have presented the available dysarthric corpora in detail in Section 2.2. We discuss
the limitations and how it has been addressed.

• Limited Number of Speakers: Dysarthric speech corpora often include data
from a relatively small number of speakers, making it difficult to general-
ize findings across a broader population. Efforts have been made to include
diverse speakers from various backgrounds and severities of dysarthria. For
instance, the Universal Access (UA) dysarthric speech corpus includes data
from multiple speakers with different severity levels, and the IDEA database
includes 45 speakers affected by various pathologies.
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• Skewed Data Distribution: Data tends to be skewed towards speakers with
lower severity levels of dysarthria, with less representation of severe cases.
There is a call for more inclusive speech corpora that cover a broader range of
severity levels. Some corpora, like the homeService corpus, focus on collecting
realistic dysarthric data from speakers with severe dysarthria over time.

• Time-Consuming and Tedious Data Collection: Collecting speech from dysarthric
speakers, particularly those with severe dysarthria, is challenging and time-
intensive due to muscle weakness and fatigue. Longitudinal studies such as
the Neurospeech project [142] and the homeService corpus [138] are suggested
to observe changes in speech quality and intelligibility over time. This ap-
proach helps in understanding the progression of the disorder and the impact
of therapy and medication, which can inform the development of assistive
technologies.

• Complex Characterization of Dysarthric Speech: Dysarthria results from var-
ious neurological disorders, making it complex to characterize and collect con-
sistent data. Detailed databases like the TORGO include aligned acoustics
and 3D articulatory features, providing comprehensive data that aids in the
explicit learning of hidden articulatory parameters.

7.2.1.2 Speaker Variability

Dysarthria manifests differently depending on the underlying neurological condi-
tion and disease severity. The data used in our research might not fully cap-
ture this variability, potentially limiting the generalizability of our findings to a
broader dysarthric population. Dysarthria stems from a variety of neurological dis-
orders, including conditions like cerebral palsy, Parkinson’s disease, ALS, MS, and
TBI. This variability influences the speech patterns and characteristics observed
in different speakers. The type of speech task used in data collection (e.g., read-
ing, monologue, diadochokinetic evaluation) can also significantly affect the speech
data. Simple reading tasks might not fully capture the variability and challenges
faced by dysarthric speakers compared to more complex tasks like conversations or
monologues. While dysarthric speech corpora have been developed for multiple lan-
guages, including French, Korean, Cantonese, Dutch, Tamil, Spanish, Czech, and
German, the variability in dysarthric speech across different linguistic and cultural
contexts poses challenges in designing tools for automatic analysis of dysarthric
speech that can be applicable across these contexts.

7.2.2 Technical Limitations

• Accuracy of Automatic Techniques: While our research proposes methods to
improve automatic intelligibility assessment and ASR for dysarthric speech,
these techniques might not achieve perfect accuracy. Errors in these systems
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could lead to misinterpretations of dysarthric speech, hindering the effective-
ness of communication aids, and making it difficult for dysarthric speakers to
convey their intended messages. This can affect their ability to engage in ev-
eryday activities and interactions, impacting their quality of life. Continuous
improvement in machine learning models, particularly in handling variations
in speech due to different types and severities of dysarthria, is necessary.
Techniques such as transfer learning, where models trained on typical speech
are fine-tuned on dysarthric speech, and incorporating more robust feature
extraction methods can help enhance accuracy.

The limited amount of dysarthric speech data available for training ASR sys-
tems can constrain the performance of these models. Insufficient and imbal-
anced training data can result in models that are not generalizable, performing
poorly when encountering speech patterns that differ from those seen during
training. Increasing the size and diversity of dysarthric speech corpora, and
employing data augmentation techniques to create varied training examples,
can help mitigate this limitation.

• Real-world applicability: The controlled settings used in our research might
not fully translate to real-world scenarios, where background noise, varying
communication contexts, and environmental factors are present. Systems that
perform well in controlled settings may fail to maintain their performance in
real-world scenarios, reducing their practical utility for dysarthric speakers.
Testing and training systems in more diverse and realistic environments, in-
cluding home settings and public spaces, can help improve their robustness.
Incorporating noise reduction techniques and context-aware models can also
enhance real-world performance.

The high variability in dysarthric speech due to differences in the underlying
neurological conditions, severity levels, and individual speaker characteristics
poses a challenge for automatic systems. A system optimized for one type
or severity of dysarthria may not perform well for another, limiting its effec-
tiveness for a broader range of users. Developing adaptive models that can
dynamically adjust to different speakers and conditions, and using personal-
ized models trained on individual users’ speech data, can help address speaker
variability.

Further, real-time processing requirements for ASR and intelligibility assess-
ment systems necessitate low-latency responses, which can be computationally
intensive. High latency or computationally demanding systems may not be
feasible for real-time use, especially on resource-constrained devices like mobile
phones or wearable technologies. Optimizing algorithms for efficiency, using
lightweight models, and leveraging edge computing to distribute processing
tasks can help reduce latency and computational demands.

Lastly, the metrics used to evaluate the performance of ASR and intelligibility
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assessment systems may not fully capture the nuances of dysarthric speech.
Traditional metrics like word error rate (WER) may not adequately reflect the
intelligibility improvements needed for effective communication by dysarthric
speakers. Developing more comprehensive evaluation metrics that consider
the intelligibility, naturalness, and usability of the output, as well as user
satisfaction, can provide a better assessment of system performance.

Despite these limitations, the presented research offers a valuable contribution
to the field of speech technology for dysarthric speech. By addressing the research
questions and proposing innovative techniques, this work paves the way for further
advancements. As can be seen from Chapter 2, our article published in January
2025, very little has been done for dysarthric speech. Starting from 2016, our at-
tempt has been to apply the latest techniques in speech processing including the
leaps in AI to recognize and analyse dysarthric speech. We have explored multi-
ple strategies, including deep neural networks (DNN-HMM), time-delay neural net-
works (TDNN-DAE), and advanced data augmentation techniques to enhance ASR
performance for dysarthric speech. These approaches have demonstrated consistent
improvements in both AIA and ASR for dysarthric speech. While the foundational
studies in this thesis were conducted between 2016 and 2020, their relevance remains
strong because our findings provide a critical benchmark for future developments,
offering methodologies that continue to be applicable as AI models evolve. The
research bridges the gap between conventional ASR and the specialized needs of
dysarthric speakers, ensuring that advancements in deep learning and speech tech-
nology are inclusively designed to support those with speech impairments. While
AI research progresses rapidly, the novel contributions of this work remain highly
pertinent. This is borne out by the results presented in our 2025 overview (Chap-
ter 2). Future studies can build upon the methodologies presented here, including
the development of a unified system, incorporating additional information, explor-
ing advanced deep learning architectures, and pursuing real-world applications as
described in the following Section 7.3. Addressing the evolving landscape of AI
while maintaining a focus on dysarthric speech is crucial for ensuring that these
technological advancements translate into tangible societal benefits.

7.3 Future Directions

The advancements presented in this thesis lay the groundwork for a future where
speech technology empowers individuals with dysarthria to communicate effectively
and confidently. However, there remains significant potential for further exploration
and development. This Section outlines several avenues for future research that
can build upon this foundation and push the boundaries of speech technology for
dysarthric speech analysis and recognition.
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7.3.1 Development of a Unified System

• User-friendly Interface: The system envisioned in Figure 1.2 can be built into
a software application with an intuitive interface. This would allow speech
pathologists to easily access features like intelligibility assessment and ASR
for dysarthric speech. Additionally, the system could be adapted for use by
individuals with dysarthria, providing features like text-to-speech conversion
or speech output correction.

• Modularity and Customization: The system could be designed with modu-
lar components, allowing clinicians to choose the functionalities they need
(e.g., intelligibility assessment only, ASR with a specific output format). Cus-
tomization options could also be included, enabling adjustments for different
user preferences or dysarthria severities.

7.3.2 Incorporation of Additional Information

• Speaker Characteristics and meta information: By incorporating data on
speaker demographics (age, gender), the system could potentially account
for natural variations in speech patterns and improve accuracy. Additionally,
factoring in the type of dysarthria (spastic, flaccid, etc.) could allow for more
targeted analysis and recognition techniques.

• Emotional State Recognition: Integrating emotional recognition capabilities
would enhance the system’s understanding of the speaker’s intent and com-
munication style. This could be particularly valuable for individuals with
dysarthria who might struggle to convey emotions effectively due to their
speech impairment.

7.3.3 Exploration of Deep Learning Architectures

• Advanced Network Designs: As the amount of dysarthric speech data grows,
researchers can explore more sophisticated deep learning architectures specif-
ically tailored for this domain. These architectures could leverage techniques
like recurrent neural networks (RNNs) or transformers to capture the complex
temporal and sequential nature of dysarthric speech.

• Transfer Learning and Multi-modal Learning: Transfer learning from pre-
trained models on healthy speech data can be a powerful approach for dysarthric
speech analysis when limited data is available. Multi-modal learning, which
incorporates visual information alongside audio, could also be explored to
improve intelligibility assessment and recognition accuracy.
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7.3.4 Real-World Applications

While real-world applications are the end objective of the research work presented in
the current thesis, ethical and legal concerns regarding assistive technology (AT) for
dysarthric speakers need to be addressed. The study by Shanmugam & Marimuthu
(2021) [179] investigated the evolution of AT services, relevant laws, and their in-
fluence on the well-being of individuals with dysarthria. A comparative analysis
of legal frameworks and professional organizations in the United States, India, and
Europe has been presented. Additionally, the study also assessed the impact of AT
on the quality of life of dysarthric patients.

• Communication Aids: The developed techniques can be integrated into com-
munication aids for individuals with dysarthria. These aids could offer fea-
tures like real-time speech intelligibility feedback, word prediction, or alter-
native communication methods for situations where speech recognition fails.

• Speech Rehabilitation Systems: The system’s intelligibility assessment capa-
bilities could be used as a feedback mechanism in speech rehabilitation pro-
grams. By providing objective data on speech intelligibility, the system could
help individuals with dysarthria track their progress and tailor their therapy
exercises.

• Dysarthria Screening Tools: The automatic intelligibility assessment module
could be adapted for use as a dysarthria screening tool. This could allow
for early detection of dysarthria, particularly in populations where access to
speech pathologists might be limited.

By pursuing these future directions, speech technology has the potential to be-
come a transformative tool for individuals with dysarthria. Advancements in speech
technology hold immense promise for achieving a better quality of life for people
with dysarthria. Improved automatic speech recognition (ASR) will ensure their
words are understood, reducing frustration and fostering stronger social connec-
tions. Tools like real-time intelligibility feedback and alternative communication
methods will lessen the communication effort, empowering them to participate ac-
tively in all aspects of life. This newfound ability to communicate effectively will
translate to greater independence and participation. Individuals with dysarthria
will have access to a wider range of employment opportunities, engage more fully in
education and social interactions, and experience a significant improvement in their
overall quality of life. Speech technology has the power to break down communica-
tion barriers and empower individuals with dysarthria to live life to the fullest.
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Appendix B

Research Data Management

B.1 Datasets Overview

B.1.1 The Universal Access Dysarthric Speech Corpus

The UA Speech Corpus is a publicly available dataset designed for research on
dysarthric speech recognition. It contains recordings of speakers with varying levels
of dysarthria, providing word-level and sentence-level speech data. This corpus has
been widely used for Automatic Speech Recognition (ASR) research.

B.1.1.1 Access:

The UA Speech Corpus can be accessed from the University of Illinois at Urbana-
Champaign’s official repository. Access typically requires a request and approval
for research purposes.

B.1.1.2 Contact Information:

For access, visit the official website: http://www.isle.illinois.edu/sst/data/
ua-speech/

Alternatively, access can be requested via email to Prof. Hasegawa-Johnson (https:
//ece.illinois.edu/about/directory/faculty/jhasegaw)

B.1.2 The TORGO Dysarthric Speech Database

The TORGO database contains recordings of dysarthric and healthy control speak-
ers, offering detailed articulatory data alongside audio recordings. This corpus is
useful for both ASR and speech therapy research.
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B.1.2.1 Access:

TORGO database access requires submitting a formal request to the University of
Toronto. Approved researchers are granted access for non-commercial purposes.

B.1.2.2 Contact Information:

For access, visit: https://www.cs.toronto.edu/~complingweb/data/TORGO/torgo.
html

B.2 Modifications Made for Research

The following modifications and enhancements have been applied to the datasets
for experimental purposes in published studies:

B.2.1 Tempo-based Modification

• Reference: Bhat, C., Vachhani, B., & Kopparapu, S. (2016). Improving
Recognition of Dysarthric Speech using Severity-based Tempo Adaptation. In
Speech and Computer: 18th International Conference, SPECOM 2016, Bu-
dapest, Hungary, August 23-27, 2016, Proceedings 18 (pp. 370-377). Springer
International Publishing.

• Description: Tempo adaptation techniques were applied to dysarthric speech
to improve ASR performance.

• Tempo-based Modification Code: https://www.mathworks.com/matlabcentral/
fileexchange/45441-phase-vocoder

B.2.2 Feature-Level Enhancements

1. • Reference: Vachhani, B., Bhat, C., Das, B., & Kopparapu, S. K. (2017,
August). Deep Autoencoder Based Speech Features for Improved Dysarthric
Speech Recognition. In Interspeech (pp. 1854-1858)

• Description: Deep Autoencoders were used for feature enhancement, and
the Kaldi recipes were modified to integrate these enhancements.

2. • Reference: Bhat, C., Das, B., Vachhani, B., & Kopparapu, S. K. (2018).
Dysarthric Speech Recognition Using Time-delay Neural Network Based
Denoising Autoencoder. In Interspeech (pp. 451-455).

• Description: TDNN-based Deep Autoencoders were used for feature en-
hancement, and the Kaldi recipes were modified to integrate these en-
hancements.
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B.2.3 Data Augmentation

1. • Reference: Vachhani, B., Bhat, C., & Kopparapu, S. K. (2018, Septem-
ber). Data Augmentation Using Healthy Speech for Dysarthric Speech
Recognition. In Interspeech (pp. 471-475).

• Description: Healthy speech data was augmented by applying tempo and
time-stretching methods to simulate dysarthric speech patterns.

• Rubberband toolkit: https://breakfastquay.com/rubberband/#:~:

text=Rubber%20Band%20Library&text=It%20permits%20you%20to%20change,

any%20desktop%20or%20mobile%20platform

2. • Reference: Bhat, C., & Strik, H. (2024). Two-stage Data Augmentation
for Improved ASR Performance for Dysarthric Speech - submitted to
Computers in Biology and Medicine.

• Description: ESPNet-based code was used to implement a two-stage
augmentation pipeline.

B.3 Data Availability

The modified versions of the datasets, along with scripts and configurations used for
experimentation, are not publicly distributed due to restrictions from the original
dataset agreements. However, researchers can replicate the experiments by ac-
cessing the original datasets and applying the methods described in the respective
publications.

B.4 Ethical Considerations

All modifications and experiments comply with the ethical guidelines and licensing
agreements of the respective datasets. Data use is strictly for research purposes,
and no commercial applications have been developed.

Contact for Further Details
For queries regarding the modifications or access to experiment scripts, please con-
tact:
- Chitralekha Bhat: chitralekha.bhat@gmail.com
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Colazo Simon, Céline Delooze, Danielle Duez, Cédric Gendrot, Thierry Legou,
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