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Chapter 1

Introduction

吀栀is chapter is in part adapted from:
吀栀e search for the neural correlate of consciousness: Progress and challenges. (2021), 
Philosophy and the Mind Sciences 2. doi: https://doi.org/10.33735/phimisci.2021.87

Alex Lepauvre, Lucia Melloni
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When first encountering the images produced by scanning a human brain using 

magnetic resonance imaging (MRI), one might assume that these machines can 

“see” through tissues and bones to observe the brain lying underneath. A better 

understanding of how an MRI scanner works reveals that this is not quite true. 

An MRI scanner operates by generating a strong magnetic field to align hydrogen 

atoms in the tissue to be imaged and then disrupting this alignment with radio 

pulses 1. As the atoms realign, they release energy, the amount of which depends on 

the concentration of hydrogen atoms present in different tissues. These variations 

are then processed by computer algorithms to reconstruct an image. This process 

appears far removed from the intuitive and immediate notion of “seeing”; the MRI is 

using tricks.

Now, consider what happens when we are presented with a picture: photons emitted 

by a light source meet the image; some are absorbed while others bounce off, 

depending on the frequency of their oscillations. Photons that bounce off the image 

travel to our eyes and are absorbed by photoreceptors in the retina, resulting in 

electrical signals. These signals are processed and integrated along the visual system, 

to construct a representation of the outside world 2. Both in the case of the MRI and 

the visual system, certain physical properties of the outside world are measured by 

specialized sensors, and the information they gather is integrated to construct a 

representation of what was measured.

This analogy illustrates that while it is true MRI measurements are very indirect, 

the same can be said for the human visual system. Yet despite the similarities, a key 

difference remains between the scanner and a human. For all the complex processing 

involved in constructing an image from the MRI scanner sensors’ measurements, 

the scanner arguably does not “see” the tissue being imaged in the way we see the 

reconstructed image. In our case, somewhere along the way, we become conscious 

of this reconstructed image. There is something it is like for us to “see” something 
3; there is nothing it is like for the MRI to reconstruct the images from its sensors’ 

measurements. This fundamental difference constitutes the very basis of our 

existence. Without it, there would be no reality to speak of—the color blue would not 

exist, nor would the smell of coffee in the morning.

Something special must be happening in the human brain to give rise to conscious 

experience, and since the time of Hippocrates, mankind has sought to understand 

what consciousness is, what it does, and how physical systems such as the brain  

—but not others like the heart—can instantiate it 4,5. David Chalmers famously 

referred to the latter aspect as “The Hard Problem” 6: why does matter, such as the 
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brain, give rise to perceptions and emotions that have subjective, phenomenological 

qualities? Solving this problem is not only a matter of philosophical intrigue; it has 

profound medical, societal, and moral implications 7–11.

Studying consciousness scientifically poses a unique challenge, due to the inherent 

subjective nature of the phenomenon 8, which historically placed it outside the 

scope of empirical science. However, this changed when Crick and Koch proposed 

a narrow and tractable framework to attack consciousness, suggesting to focus 

on identifying the neural mechanisms present during conscious states and absent 

during unconscious ones 12,13. By pinpointing such mechanisms, known as the 

neural correlates of consciousness (NCC) 14, scientists hope to reveal the common 

denominator of these processes, to eventually formulate theories to answer the hard 

questions of consciousness 6.

For the past thirty years, this bottom-up agenda has dominated the 昀椀eld, producing 
a detailed cartography of brain areas and re昀椀ned spatio-temporal patterns of brain 
activity thought to be associated with conscious experience. 吀栀e question is then, are 
we closer to 昀椀nding the mechanism(s) responsible for subjective, phenomenal qualities 
than we were thirty years ago? Empirical 昀椀ndings have been vastly inconsistent, with 
different studies proposing different spatiotemporal neural activation patterns to 
constitute the NCCs 15–19. 吀栀ese inconsistencies relate to the controversies regarding 
which experimental conditions truly allow to capture consciousness, leading to 

debates over which of these 昀椀ndings revealed the true NCCs—and the conclusions 
differ depending on underlying theoretical commitments. Consequently, the 
supposedly theory neutral bottom-up approach has resulted the proliferation theories 

of consciousness, each shaped by the speci昀椀c biases inherent to the experimental 
paradigms used to test them 20. 吀栀ese theories are pursued in parallel and seldom 
converge or challenge one another, dismissing each other’s evidence on methodological 

grounds. 吀栀is situation highlights that this agenda, while helpful, has signi昀椀cant 
limitations in its ability to provide a uni昀椀ed scienti昀椀c explanation of consciousness.

In my research, I propose that it is time to move beyond this bottom-up approach 

and instead focus on rigorous testing of existing theories of consciousness. By 

concentrating on finding dissociations between conscious experience and the 

mechanisms proposed by different theories, we can overcome the limitations 

associated with the NCC debates. In this thesis, I will demonstrate that this approach 

leads to the refinement of theoretical models and to a better characterization of 

consciousness itself, uncovering novel empirical avenues to progress toward a unified 

scientific account of consciousness.
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The contrastive method to identify the NCCs:  
a bottom-up agenda

The NCCs are formally defined as the minimal set of neural activities that are jointly 

sufficient to give rise to consciousness 14. In any given conscious state—whether it is a 

general state such as wakefulness versus dreamless sleep, or the experience of specific 

content such as seeing a red ball or smelling coffee—a subset of the brain's ongoing 

neural activity is directly responsible for consciousness, while the rest is associated 

with unconscious processes. If we were to disrupt or prevent the neural activation 

responsible for the experience of the content, then the experience of that content 

would cease. In contrast, if neural activity associated with unconscious processes 

were disrupted without affecting the content-NCCs (as opposed to state-NCCs, which 

are linked to overall states of consciousness, such as being in dreamless sleep or fully 

awake and alert 14,18,19), consciousness would remain unaffected. Identifying these 

mechanisms should reveal how they differ from those associated with unconscious 

processes and reveal what the neural underpinnings of consciousness are.

Isolating the NCC requires modulating the content of experience while keeping 

other parameters constant, such as the sensory input 12,13. This is not an easy feat, 

as there is a tight association between what is presented to our sensorium and the 

content of our experience; we tend to see what is in front of our eyes. Over the years, 

psychophysicists have developed several methods to achieve a dissociation between 

sensory input and conscious experience, rendering the same stimuli either visible or 

invisible 21 (see box 1a-d). Under such conditions, as external factors are maintained 

constant, contrasting the neural activity between the “seen” and “unseen trials” 

removes any neural activation associated with unconscious sensory processing and 

should in principle yield the NCC (see Figure 1.1).

However, this raises another issue. If different conscious experiences can occur 

under matched sensory input, how can we know which content is experienced by 

a participant at a given moment? Subjective experiences are by definition private 

and cannot be measured from a third person’s perspective. Instead, experimenters 

must infer participants' experience indirectly, relying on overt or covert markers 

of conscious experience. The most common way to do so is to rely on participants' 

introspective reports of their subjective experiences. In other words, we can simply 

ask participants which stimulus they saw and which one they did not and compare 

brain activity based on these subjective reports.
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In summary, isolating the content-NCCs requires relating subjective experience with 

the underlying neural activity, while keeping all other factors constant. Provided that 

the only difference between conditions is the perceptual states themselves, the isolated 
neural activity should be the one that is minimally suf昀椀cient for consciousness to arise, 
thus constituting a NCC (see Figure 1.1). 吀栀is approach of comparing neural activity 
between conscious states is referred to as the contrastive method and according to 

some constitutes a gold standard in consciousness research 12,13,22.

Box 1.1. Example of experimental paradigms to manipulate conscious experience independently of 

sensory input

Box b is adapted from 23
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Figure 1.1. 吀栀e contrastive method
By recording the neural activity of participants when presented with a sensory input that participants only sometimes 

see, the recorded activity can be sorted into “seen” and “unseen” groups. As the sensory input is the same across both 

conditions, sensory encoding should be present in both conditions (depicted in blue on the schematic brains), while 

some activity should be unique to the seen condition (depicted in red). When subtracting the neural activation between 

seen and unseen conditions, sensory encoding is removed and the neural activation that is unique to the conscious 

condition remains, i.e. the Neural Correlate of Consciousness (NCC).

Empirical attempts to isolate the NCCs

Equipped with experimental methodologies to contrast consciousness under matched 

sensory conditions, many studies have attempted to isolate the content NCC 17–20,24. 

These efforts were fueled by both the development of new experimental methods as 

well as advances in human and animal brain recording and analysis technologies.

Unfortunately, no unique and consistent neural correlate of conscious vision was 

identified 17,18,20,25,26. Some studies using various experimental paradigms (some 

described in box 1) and recording techniques such as electroencephalography (EEG), 

functional MRI (fMRI), and single neuron recordings in humans and animal models, 

showed that activation in sensory cortex start to differ between the seen and unseen 

conditions as early as 100ms after stimulus onset, suggesting that these activations 

constitute NCCs 27–34. In contrast, other studies suggested that while activation in 

sensory cortices is necessary for consciousness to emerge, it is not sufficient; it cannot 

alone give rise to conscious experience. These studies found that cortical regions 

associated with visual processing were similarly activated by seen and unseen trials 

but that a fronto-parietal network was uniquely activated when participants reported 

seeing the stimulus later than 250 to 300ms from stimulus onset onward 35,35–41.
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These discrepancies can be partly attributed to the methodological shortcomings 

of the contrastive method. The core assumption of the contrastive method is that 

when comparing between conditions in which the external input is controlled for 

and only perception varies, the resulting difference directly reflects neural activity 

involved in consciousness. However, this strategy is too simplistic. When comparing 

neural responses associated with two perceptual states, as the contrastive method 

does, two other families of internal processes co-occur with the ones directly 

reflecting consciousness: the NCC-precursors (NCC-pr) and the NCC-consequences  

(NCC-co) 42,43. NCC-pr refers to processes that precede the NCC proper. They might 

enable a given stimulus to reach consciousness but are not conscious themselves. 

The NCC-co refer to processes that might follow the NCC proper. They result from 

consciousness but are not conscious either.

A typical example of NCC-pr is attention. While the role of attention in consciousness 

is still being debated 26,42,44,45, it is now widely agreed that they are indeed two 

different mechanisms. In classical contrastive paradigms, covert shifts of attention 

may explain why some stimuli are seen while others are not. For example, in masking 

paradigms, differential engagement of attention across trials might well explain 

why an otherwise identical physical stimulus is perceived in some trials but missed 

in others. The NCC-co are processes triggered by conscious experience but not 

responsible for it. Some theories of consciousness assign consciousness a function. 

Therefore, the fact that a critical stimulus was perceived entails that additional 

processes will follow it. Such processes include encoding in working memory 46 and/

or episodic memory, reflecting about the perceived stimulus, and in the case of most 

experimental paradigms employing the contrastive method, reporting about it 47. 

Therefore, the NCCs discovered across studies may have been inflated by these two 

types of processes.
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Figure 1.2 吀栀e three NCCs problem
吀栀e contrastive method was argued to be insuf昀椀cient to isolate the so-called NCC-proper (2). 吀栀e results of the 
subtraction between seen and unseen conditions are confounded by the occurrence of temporally flanked mechanisms, 
termed NCC-pr (1) and NCC-co (3) (see 48,49). 吀栀e former refers to the mechanisms enabling a stimulus to reach 
consciousness without directly accounting for consciousness itself (yellow in the 昀椀gure), while the latter refers to 
mechanisms that are consequences of the conscious perception of a stimulus but need not be conscious themselves  

(red in the plot). Examples of NCC-pr are attention and prior expectations 48,50,51. As most theories of consciousness 

assign a function to consciousness, typical NCC-co accompanies it: encoding in memory, decision making to name 
a few. Additionally, as many contrastive studies rely on reports to differentiate conscious versus non-conscious 
conditions, motor responses and planning, as well as self-monitoring, often confound the NCC-proper 47.

Following the acknowledgment of the 3-NCC problem, report and the associated 

task-relevance confounds have received the most attention. No-report studies were 

designed in which the content of consciousness is inferred without overt-report 47. 

This can be achieved by relying on eye movements to classify trials as seen or unseen, 

or on-task instructions to manipulate the visibility of stimuli. Several no-report 

studies suggest that late activation over the fronto-parietal relates to report-related 

cognitive processes rather than consciousness, as such effects are only present when 

seen stimuli have to be reported, not when seen stimuli do not have to be reported 52–58. 

These studies further show that mid-latency activation over posterior brain regions 

seems to track closely conscious perception, both when participants report and do 

not report the content of their experience.
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While these studies seem to relegate late, frontal activation to post-perceptual 

processes only, several studies have highlighted that even though frontal activation 

is reduced in the absence of a report, it is not absent 54,59–63. Thus, while some of the 

previously observed prefrontal activation might index confounding factors such as 

report, leading to an exacerbated prefrontal cortex activation, a selective portion 

might still correspond to the NCC proper and the question as to whether the front or 

the back of the brain constitutes the best candidate NCC remains open 64–67.

The limitations of the bottom-up approach

Despite significant advancements in the empirical investigation of consciousness 

over the past 30 years, the bottom-up approach has failed to identify a unified NCC. 

While no-report paradigms can help eliminate post-perceptual processes, not all 

confounds are related to report. For example, prior expectations also influence 

conscious perception of stimuli and modulate associated neural responses and might 

confound the search for the NCC 50,51,68–70. In paradigms with passive viewing, such 

as in the experiment by Cohen et al. 52, encoding in working memory occurs in the 

seen but not in the unseen condition, also confounding the empirical findings. Thus, 

there are a number of confounds, some already known: report, prior expectations, 

working memory, episodic memory, task demands, attention, decision making, and 

neuromodulatory states. This list is not exhaustive, and as our understanding of the 

processes related to consciousness is improved, this list is likely to be expanded. 

Aru and colleagues  48 have proposed that isolating the NCC proper will require 

controlling for all these potential confounds—a task that could prove to be a century-

long enterprise.

Though time-consuming, this perspective seems pragmatic: by carefully designing 

experiments accounting for all possible confounds, the NCC proper will eventually 

be identified. However, I argue that this approach overlooks a more fundamental 

limitation of the bottom-up agenda related to the measurement problem 71,72. A 

perfect experiment (or series of experiments) to isolate the NCC would require 

two components: first, a valid measure of consciousness that accurately and 

reliably reflects a person’s subjective experience; second, experimental designs that 

manipulates consciousness independently of all other cognitive processes 48,49.

However, we cannot achieve the first requirement, because consciousness can never 

be measured directly due to its subjective nature. Instead, we must rely on proxies–

such as subjective reports, behavioral measurements, or physiological indicators–
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that are assumed to track consciousness. Testing the validity of such proxies would 

require measuring them alongside the phenomenon they are supposed to capture to 

test how tightly they are associated. As subjective experience can never be directly 

measured, we can never establish with certainty that these proxies are tracking 

consciousness rather than an associated phenomenon 72.

In other words, we can never establish with certainty that the proxy we have chosen 

accurately measures participant’s experience. Because we can never be sure that 

our proxy is valid, we also cannot be sure that our experimental manipulations are 

affecting consciousness itself rather than other cognitive processes that our measure 

might inadvertently be tracking. Even if we meticulously design experiments to 

control for known confounds, we have no definitive way to confirm that consciousness 

is manipulated independently of those confounds and that our results reflect the 

NCC proper. Researchers may consider different proxies as the most appropriate 

measures of consciousness, but without the ability to validate these proxies, there is 

no objective way to determine whose measure is most accurate 73–75. Thus, the lack of 

convergence in empirical findings may not reflect the complexity of consciousness 

itself, but rather the fact that different paradigms and their associated measures are 

tracking non-overlapping concepts 73,76,77.

Based on the findings of experiments aiming to isolate the NCCs, theories of 

consciousness were formulated. However, the empirical basis on which each of 

these research programs were developed depends on unverified commitments 

regarding which experimental conditions are adequate to isolate the NCCs. Different 

programs may therefore have studied different phenomena labeled by each theory as 

“consciousness” 73. This fragmentation creates a situation where findings from one 

research program may not be comparable to those from another, allowing theories to 

progress in parallel without ever converging or challenging each other and resulting 

in a proliferation of theories 78–81. This view has recently been substantiated in a study 

by Yaron and colleagues 15 who further exposed a strong validation bias in the field. 

Their extensive literature review showed that the outcome of experiments is heavily 

dependent on the chosen set of experimental parameters and that the alignment of 

empirical results with theoretical framework was could be accurately predicted from 

the experimental parameters alone.

Ultimately, we cannot determine which research program, if any, is truly tracking 

consciousness as opposed to related phenomena. Because we cannot establish which 

paradigm and measures track consciousness, there is no convincing proponents 

of different theories that they are studying different phenomena. Designing 
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increasingly sophisticated experiments will not resolve the discord in the field, 

as researchers will likely continue exploring their own version of 'consciousness', 

disregarding the foundational assumptions of other programs, making convergence 

or meaningful challenges between research programs unlikely. Combined, these 

limitations indicate that the bottom-up approach, while providing valuable data 

on neural processes correlated with consciousness, is insufficient for developing a 

unified theory of consciousness.

Dissociating experience from its hypothesized mechanisms

Acknowledging the limitations of the traditional bottom-up approach, I have instead 

applied a top-down strategy in my research. An abundance of theories propose 

different and incompatible neural underpinnings of conscious experience 22,79,81,82. 

Provided that consciousness is a unified phenomenon, these theories cannot all be 

true at the same time 78. I therefore aimed to test existing theories of consciousness 

rigorously, to challenge and refine them.

Testing the necessity of proposed mechanisms to escape the validation bias
At first, adopting a top-down approach may not seem to resolve the issues that  

I have described. There are many different ways to operationalize consciousness and 

we cannot a priori know which is the most appropriate. If we want to test a given 

theory, we need to adopt an operationalization that is compatible with the theory 

being tested. Otherwise, evidence can be discarded by arguing that the experimental 

conditions did not allow to measure consciousness appropriately. However, this 

introduces a bias, as adopting the operationalization of a given theory can skew 

findings toward what the theory predicts 20. This raises a critical question: How can 

we test theories of consciousness if the operationalization we have to adopt is biased 

in favor of the theory being tested?

Before answering this question, I need to introduce what testing a theory of 

consciousness entails and how it can be achieved. Falsifying a theory of consciousness 

(or at least its predictions) requires finding a dissociation between the content 

of consciousness inferred by a theory and the neural mechanisms proposed to 

instantiate it by that same theory 83.

One way to test a theory of consciousness is through the problematic contrastive 

method: if the mechanism proposed by a theory appears in both the seen and 

unseen conditions, then it cannot be sufficient to give rise to consciousness, thus 
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challenging the theory. There is however another way in which a theory can be 

falsified. As highlighted by Chalmers 14, a NCC need not to be necessary for conscious 

experience, as there may be several neural correlates of a conscious state. Theories 

of consciousness however aim to provide a mechanistic explanation of the target 

phenomenon they claim to explain (consciousness). If the proposed mechanisms is 

present without the target phenomenon, the proposed mechanism is not sufficient 

to give rise to that target phenomenon. If the target phenomenon occurs without the 

proposed mechanism, then that mechanism is not necessary. Either cases constitute 

a dissociation between the proposed mechanism and the target phenomenon, 

challenging the theory.

Accordingly, we can test a theory of consciousness by seeking conditions in which 

consciousness (as defined by the theory being tested) occurs without the mechanism(s) 

proposed to give rise to it, showing that the proposed mechanism(s) is not necessary 

for consciousness. I will refer to this as the necessity dissociation approach. Unlike 

the contrastive method, this approach does not require an unconscious condition, 

as it suffices to find one conscious condition where the proposed mechanism fails to 

occur. This allows theories to be tested under a broader range of conditions, reducing 

the validation bias by enabling to test theories regarding novel aspects of conscious 

experience and push the field forward 20.

Going beyond seen and unseen contrast by investigating the temporal 
dynamics of conscious experience
One aspect of consciousness that has remained underexplored due to the limitation 

of the contrastive method is the temporal dynamics of conscious experience. Most 

studies have focused on the entry of content into awareness 16 by relying on brief 

stimulus presentation, typically under 500ms 23,28,32,35,36,41,55,56,58,84, as it is difficult 

to render sustained stimuli unconscious. One exception is binocular rivalry (and 

binocular flash suppression 85) where participants' experience typically oscillates 

between the percept of one or the other eyes with the interval between reported 

switches typically of the order of a couple of seconds 29,34,37,60,86. Surprisingly, these 

studies focused primarily on identifying the brain regions that are selectively 

activated at the moment of the switch, without further investigation of the neural 

mechanisms associated with the persistence of contents in consciousness 29,30,61. This 

approach leaves significant gaps in our understanding, particularly regarding how 

conscious experience unfolds and persists over time.

In my thesis, I address this gap by applying the necessity dissociation approach to 

investigate the temporal dynamics of conscious experience. Speci昀椀cally, I investigated 
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whether the mechanisms proposed by theories of consciousness can account not only 

for the onset of experience but also for its persistence over longer durations. In the 

two empirical chapters of my thesis (Chapter 2 and Chapter 3), I relied on a simple 

experimental paradigm in which highly visible stimuli of different categories were 
presented for three distinct durations (0.5, 1.0, and 1.5s).

As we will see, under these conditions, theories of consciousness can a priori infer 

the expected temporal dynamics of conscious experience and, in turn, predict the 

corresponding neural activations that should give rise to them. If the predicted 

neural activation is not observed, the theory is challenged, in line with the necessity 

dissociation approach. Crucially, this method allows us to test theories without 

relying on an unconscious condition, which would be difficult to achieve when 

manipulating stimuli duration.

Obtaining theories predictions and testing them
Given the abundance of theories of consciousness, it was not feasible to test them all 

in my research. Therefore, my efforts focused on two prominent theories in the field: 

the integrated information theory (IIT) 87–92 and the global neuronal workspace theory 

(GNWT) 25,93,94; both of them are described in box 2. Both theories offer distinct and 

influential explanations of consciousness 20,79,81, and testing them is highly relevant 

for the field.
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Global neuronal workspace theory (GNWT)

Figure adapted from 81,94

The global neuronal workspace theory (GNWT) has received the most empirical 

attention over the past 30 years 20. This theory specifies the neural implementation 

of the previously formulated global workspace theory, which was only defined in 

cognitive terms 12. According to GNWT consciousness is the result of the broadcast 

of information through a fronto-parietal network of interconnected local processors 

to engage cognitive processes such as evaluative systems and working memory. 

The clearly stated explanatory target is access consciousness 25,93,94. GNWT assumes 

a functional role of conscious experience: rendering information available to many 

cognitive systems enables flexible processing and behavior that would not be possible 

under automatic, unconscious processing. This theory is deeply rooted in empirical 

studies highlighting the differential activation of the prefrontal cortex between seen 

and unseen stimuli 35,36,41. Within this framework, a marker of conscious experience 

is ignition (a non-linear, all or none increase) in the PFC. According to GNWT, the 

PFC plays a critical role in conscious perception, mediating conscious processing 

depending on a combination of signal intensity, attentional gain, and the current 

state of the workspace.
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Integrated information theory (IIT)

Figure adapted from 81,87

In contrast to GNWT (and other theories of consciousness), the integrated information 

theory IIT does not start from the brain but instead from phenomenology, by 

defining five axioms that are considered to be true to any conscious experience 87–92. 

IIT states that all experiences exist intrinsically, are structured, specific, unitary, and 

definite 92. Based on these axioms, physical properties were derived in mathematical 

terms (postulates) that a system must satisfy to instantiate these axioms. From this 

approach, they conclude that consciousness is identical to the cause-effect structure 

specified by a partition of a system (called a complex in IIT) which has the maximum 

integrated cause-effect power 87. In other words, for any system in which units have 

causal power over each other (such as the brain), partitions of that system have 

integrated cause-effect power (ɸ) if that subsystem has causal power over itself. The 

complex has borders: units are part of the system (or complex) if removing them 

decreases the amount of ɸ while other units are not part of it if removing them does 

not change ɸ. There can be many such complexes in the brain at any given time but 

the one with the highest ɸ is the conscious one. The experience itself is the unfolded 

cause-effect structure of this particular complex; its particular phenomenological 

properties are given by the form of that structure.

Due to its phenomenology-first approach, early empirical attempts at isolating the 

NCCs were not instrumental in the formulation of IIT. As such, these studies do 

not lend any direct support or challenge to the theory. Nonetheless, it is possible 

to derive predictions as to which brain regions are most propitious to allow for the 

highest levels of information integration in the brain. According to IIT, the neuro-
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architecture of the so-called posterior hot zone spread across parietal, temporal, and 

occipital areas is most favorable for high ɸ due to its organization in a ‘pyramid-of-

grids’-like structure and the theory predicts that the NCCs should be found within 

this zone 87. As such, IIT can accommodate the findings associating conscious 

experience with activation in sensory areas and as such is considered part of the ‘back 

of the brain’ camp in the ongoing debates.

Box 1.2: 吀栀eories of consciousness of interest for the thesis

For the necessity dissociation approach to work, two conditions must be met. 

First, theories of consciousness must state a priori their inference regarding the 

content of consciousness under the experimental conditions. This means that 

theories should explicitly define what they believe participants will consciously 

experience in those conditions, based on theoretical considerations alone (e.g., all 

attended stimuli should be experienced) or measurements (introspection, behavior, 

physiological measures). Second, the observation that is predicted by a given theory 

must accurately reflect the theory. Both conditions are difficult to meet when testing 

theories under novel conditions, as theories of consciousness are poorly defined 

beyond the confines of the restricted set of contrastive method parameters that they 

have adopted. Failure to meet either of these conditions will undermine the whole 

approach. If the criterion used to infer whether consciousness is present does not 

align with the theory, evidence can be discarded by arguing that the stimulus may not 

have been consciously experienced. If the predictions are not accurately related to the 

framework being tested, it can simply be argued that the predictions were wrong and 

that the theory is not challenged.

However, if both conditions are met and the predictions of a theory are falsified, 

the theory itself must be updated by either changing its mechanistic account 

for conscious experience to accommodate negative findings or by updating its 

assumptions as to which are the necessary conditions for a stimulus to be consciously 

experienced, which both constitutes a refinement of the theory. It is important to 

highlight that under this approach, a negative finding bears more significance than 

a positive one: validating a prediction does not necessarily imply that a theory as a 

whole is correct, but falsifying a prediction implies that there is something wrong 

with it (I will extend on this point in the discussion).

To ensure that both conditions are met, I have actively collaborated with key 

proponents of two previously described theories of consciousness, IIT and GNWT. 

In the work that I will present, theorists themselves were required to formulate their 
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predictions regarding experimental paradigms that were later conducted. Critically, 

these predictions were pre-registered before observing any data 95–97. This procedure 

limits hindsight bias and makes explicit which results were truly predicted and which 

had to be accommodated after the fact.

Outline

In my thesis, I will present the results of studies that go beyond the traditional 

bottom-up approach by rigorously evaluating theories of consciousness, investigating 

whether the mechanisms they propose are necessary for conscious experience.  

I investigated two theories, IIT and GNWT, in the context of sustained visual stimuli 

presentation. The experiments were designed to bring about novel predictions of the 

theories regarding an aspect of experience that they ought to be able to explain. Their 

failure to do so would imply that they need further refinements.

In Chapter 2, I will present the results of a large-scale adversarial collaboration 

between IIT and GNWT. This procedure consists of resolving debates between 

disagreeing scholars by testing their theory in a joint empirical effort 98 and it has 

been argued to constitute a gold standard to settle scientific disputes 99,100. In the 

case of consciousness research, this approach is particularly valuable, as it compels 

theories to agree on a common set of experimental conditions that all parties 

accept, preventing them from dismissing evidence due to disagreements over the 

measurement of consciousness. Furthermore, this process pushes theories to venture 

beyond the biased set of experimental conditions under which they are typically 

tested, leading to novel predictions that can be empirically tested. These novel 

predictions were tested on a large multi-modal dataset (intracranial EEG, fMRI, 

and magneto-encephalography (MEG)) and significant challenges to both theories 

were revealed.

In Chapter 3, I will present the results of a study investigating the temporal dynamics 

of conscious experience under similar presentation conditions as that of Chapter 2. 

In light of the evidence contradicting GNWT prediction in Chapter 3, the theory 

refined its inference regarding the temporal dynamics of conscious experience, 

leading to novel predictions regarding behavioral observations expected in such 

conditions. These predictions were tested and revealed that the temporal dynamics 

of conscious access may in fact become dissociated from sensory input, challenging 

initial assumptions regarding the temporal dynamics of conscious experience.
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In Chapter 4, I will provide an independent analysis of the results presented in 

Chapter 2 and discuss the broader implications of the results of both studies from 

a vision neuroscience and consciousness research perspective. I will explore how 

the findings contribute to our understanding of the neural dynamics underlying 

visual perception of persistent stimuli and propose that investigating the temporal 

dynamics of conscious experience may provide a way forward to dissociate access 

from phenomenal consciousness. Beyond the empirical results, I will engage in a 

critical discussion about the value of theory testing in consciousness research. I will 

emphasize that we should refrain from adopting extreme and naive falsificationist 

views on theory testing and instead consider theory testing as a tool for theoretical 

self-improvement. I will finish by providing recommendations for future top-down 

efforts in consciousness research to push us closer to a comprehensive understanding 

of consciousness through iterative refinement of theories of consciousness.
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Chapter 2

An adversarial collaboration to critically 

evalutate theories of consciousness

吀栀is chapter has been published as:
An adversarial collaboration to critically evaluate theories of consciousness, BioRxiv. 

doi: https://doi.org/10.1101/2023.06.23.546249

Cogitate Consortium, Oscar Ferrante1, Urszula Gorska-Klimowska1, Simon Henin1,  

Rony Hirschhorn1, Aya Khalaf1, Alex Lepauvre1, Ling Liu1, David Richter1, Yamil Vidal1, 

Niccolò Bonacchi, Tanya Brown, Praveen Sripad, Marcelo Armendariz, Katarina 

Bendtz, Tara Ghafari, Dorottya Hetenyi, Jay Jeschke, Csaba Kozma, David R Mazumder,  

Stephanie Montenegro, Alia Seedat, Abdelrahman Sharafeldin, Shujun Yang,  

Sylvain Baillet, David J Chalmers, Radoslaw M Cichy, Francis Fallon,  

吀栀eofanis I Panagiotaropoulos, Hal Blumenfeld, Floris P de Lange, Sasha Devore,  
Ole Jensen, Gabriel Kreiman, Huan Luo, Melanie Boly, Stanislas Dehaene, Christof Koch, 

Giulio Tononi, Michael Pitts, Liad Mudrik, Lucia Melloni;

1Shared 昀椀rst authorship. My contribution to this project entails Conceptualization, 
Data Curation, Data Quality, Formal analysis, Investigation, Methodology, Project 

Administration, Software, Validation, Visualization, Writing of the original draft, review 
and editing as de昀椀ned by the credit taxonomy (https://credit.niso.org/)

Speci昀椀cally, I contributed to the development of the experimental design (piloting); 
contributed to the deployment of experiments across sites; contributed to the data 

architecture of the platform for data sharing across sites for analysis; coordinated the 

collection of iEEG data across three data collection sites; conducted the iEEG data analysis 

of the project (including curation, validation, preprocessing, onset responsiveness, 

category selectivity, decoding analysis, duration analysis, representation similarity 

analysis) and contributed to data analysis of other recording modalities (principally MEG)
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Summary

Different theories explain how subjective experience arises from brain activity 79–81. 

These theories have independently accrued evidence, but confirmation bias and 

dependence on design choices hamper progress in the field 20. Here, we present 

an open science adversarial collaboration which directly juxtaposes Integrated 

Information Theory (IIT) 87,92 and Global Neuronal Workspace Theory (GNWT) 93,94,101–103, 

employing a theory-neutral consortium approach 78,97,104. We investigate neural 

correlates of the content and duration of visual experience. The theory proponents 

and the consortium developed and preregistered the experimental design, divergent 

predictions, expected outcomes, and interpretation thereof 97. 256 human subjects 

viewed suprathreshold stimuli for variable durations while neural activity was 

measured with functional magnetic resonance imaging, magnetoencephalography, 

and intracranial electroencephalography. We find information about conscious 

content in visual, ventro-temporal and inferior frontal cortex, with sustained 

responses in occipital and lateral temporal cortex reflecting stimulus duration, and 

content-specific synchronization between frontal and early visual areas. These results 

align with some predictions of IIT and GNWT, while substantially challenging key 

tenets of both theories. For IIT, a lack of sustained synchronization within posterior 

cortex contradicts the claim that network connectivity specifies consciousness. 

GNWT is challenged by the general lack of ignition at stimulus offset and limited 

representation of certain conscious dimensions in prefrontal cortex. These 

challenges extend to some first-order and higher-order theories of consciousness 

that share some of the predictions tested here 105–108. Beyond challenging the theories, 

we present an alternative approach to advance cognitive neuroscience through a 

principled, theory-driven, collaborative effort. We highlight the challenges to change 

people’s mind 109 and the need for a quantitative framework integrating evidence for 

systematic theory testing and building.

Main

Philosophers and scientists have sought to explain the subjective nature of 

consciousness (e.g., the feeling of pain or of seeing a colorful rainbow) and how 

it relates to physical processes in the brain 13,14. This ongoing endeavor has led to a 

number of theories of consciousness that have evolved in parallel 20,79,81. Those theories 

offer incompatible accounts of the neural basis of consciousness 79,81. Empirical 

support for a given theory is often highly dependent upon methodological choices, 

pointing towards a confirmation bias when testing these theories 20. Convergence 
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upon a broadly accepted neuroscientific theory of consciousness will have profound 

medical, societal, and ethical implications.

With this goal as a starting point, we make a concerted effort to test two theories 
of consciousness, among several widely discussed ones 81, through a large-scale, 

open science, adversarial collaboration 78,97,98,110,111 aimed at accelerating progress in 

consciousness research by building upon constructive disagreement. 吀栀is collaboration 
brings together proponents of Integrated Information 吀栀eory (IIT) 87,92 and Global 

Neuronal Workspace 吀栀eory (GNWT) 25,101, in addition to theory neutral researchers. 

Together, we identi昀椀ed divergent predictions of the theories and jointly developed 
an experimental design to test them (Figure 2.1a). We preregistered foundational and 

novel predictions from the two theories, including pass/fail criteria for each prediction, 

as well as expected outcomes and their interpretation ex-ante 78,97. We focus on GNWT 

and IIT, two theories of consciousness out of several others widely discussed e.g., 

Recurrent processing theory and Higher-order theories 79,81, since these theories 

feature prominently in the field of consciousness science as shown in a recent 

systematic review of the literature 20.

IIT and GNWT explain consciousness differently: IIT proposes that consciousness 

is the intrinsic ability of a neuronal network to influence itself, as determined by 

the amount of maximally irreducible integrated information (phi) supported by a 

network. According to proponents, theoretical and neuroanatomical considerations 

suggest that a complex of maximum phi likely resides primarily in the posterior 

cerebral cortex, in a temporo-parietal-occipital “hot zone” 18,87,92,112. GNWT instead 

posits that consciousness arises from global broadcasting and late amplification (or 

“ignition”) of information across interconnected networks of higher-order sensory, 

parietal, and especially prefrontal cortex (PFC) 25,101,102.

IIT and GNWT both have a mathematical or computational core (concerning 

integrated information and the global workspace respectively) and a proposed 

biological implementation (primarily in posterior cortex vs. in prefrontal cortex 

and associated areas respectively). It is difficult to test the mathematical or 

computational core of these theories directly, so in this project we instead test their 

proposed biological implementations. The two proposed biological implementations 

are competing and incompatible proposals, and testing them is empirically tractable 

with current methods, enabling scientific progress. In the case of GNWT, we focus 

especially on PFC rather than the associated areas in higher-order sensory and 

parietal cortex, because this is where GNWT and IIT pose the most incompatible 

and hence maximally diagnostic predictions, enabling differential testing of the 
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theories. One consequence of this biological focus is that theorists could respond 

to challenging data by retaining the mathematical/computational core of a theory 

and changing the proposed biological implementation. Another consequence is that 

some predictions (and the associated consequences from testing these predictions) 

may be shared by other theories of consciousness with a similar proposed biological 

implementation, such as higher-order theories 107,108 implemented in prefrontal 

cortex, and local recurrency theories 23,105 implemented in visual cortex. These are 

natural features of a project designed to test theoretical proposals about the neural 

mechanisms of consciousness. For an extensive explanation and rationale, refer to 

our preregistration document (https://osf.io/92tbg/).

We scrutinize three preregistered, peer-reviewed predictions of IIT and GNWT 

for how the brain enables conscious experience 97: Prediction #1 pertains to which 

cortical areas hold information about different aspects of conscious content. 

IIT predicts that conscious content is maximal in posterior brain areas, while 

GNWT predicts a necessary role for PFC. Prediction #2 pertains to how conscious 

percepts are maintained over time 113–115: IIT predicts that conscious content is 

actively maintained by neural activity in the posterior ‘hot zone’ (PHZ) throughout 

the duration of a conscious experience. GNWT predicts, instead, that an ignition 

in PFC at stimulus onset, and at offset, updates the workspace, with activity-silent 

maintenance of information in between 116. Prediction #3 pertains to interareal 

connectivity between cortical regions during conscious perception. IIT predicts 

short-range connectivity within posterior cortex, including lower-level sensory  

(V1/V2) and high-level category-selective areas (e.g., fusiform face area, lateral 

occipital cortex). In contrast, GNWT predicts long-range connectivity between high-

level category-selective areas and PFC. The combination of predictions places a high 

bar for either theory to pass considering the highly powered and multimodal studies 

we conducted. Predictions received differential weighting with respect to challenging 

the theories based on the centrality to the theory and methodological limitations 

(Extended Table 2.1). In addition to testing specific predictions of the theories, we 

also used this rich dataset for an exploratory analysis aimed at delineating cortical 

areas potentially participating in consciousness after excluding confounding factors 

related to cognitive/task-related processes (putative Neural Correlates Consciousness 

(NCC) analysis in the supplementary section).

To empirically test these predictions, we investigated the content and temporal extent 

of conscious visual experiences that are phenomenologically multifaceted and rich, 

even for a single stimulus. For example, when viewing the Mona Lisa (Figure 2.1b), 

one experiences it as located in a portion of visual space, having a specific identity, a 
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specific orientation, and for as long as one looks at the painting. To approximate this 

multifaceted aspect of consciousness, we manipulated several attributes of conscious 

content. Specifically, we presented suprathreshold stimuli belonging to four different 

categories (faces, objects, letters, false fonts), with each category containing twenty 

individual identities presented in three different orientations (front, left, right view) 

for three different durations (0.5, 1.0, 1.5 s) (Figure 2.1c). Participants viewed the 

stimuli while searching for two infrequent targets, making some stimuli task relevant 

and others task irrelevant (Figure 2.1d; See supplementary video depicting the task). 

This paradigm offers several advantages: first, it provides robust conditions to test 

the theories’ predictions as it focuses on clearly experienced conscious content, 

studied through high signal-to-noise, suprathreshold, fully attended single stimulus 

at fixation, making any challenges of the theories’ predictions more significant, 

thereby aligning with Lakatos's sophisticated falsification approach 117. Second, it 

minimizes task and report confounds, thereby isolating neural activity specifically 

related to consciousness. Third, it allowed us to test novel predictions about 

questions previously unaddressed by the theories, contributing to theory refinement 

and advancing the field more broadly. For example, it diverges from the usual 

testing grounds of these theories to explore new predictions about how experience 

is maintained over time, thereby yielding more informative results. Additionally, this 

adversarial collaboration has prompted more specific predictions for existing claims, 

particularly regarding specific regions of interest, enhancing the detail of these 

theories in the process.

All research was conducted by theory-neutral teams to minimize confirmatory bias. 

We evaluated the theories’ predictions in 256 subjects who performed the same 

behavioral task in three different neuroimaging modalities: functional magnetic 

resonance imaging (fMRI, N=120), magnetoencephalography (MEG, N=102), and 

intracranial electroencephalography (iEEG, N=34). Given the limitations of current 

methods for measuring and recording human brain activity, such as varying 

strengths in spatial or temporal resolution, we intentionally employed a combination 

of techniques to mitigate these shortcomings. The integration of whole-brain, 

non-invasive fMRI and MEG with invasive iEEG recordings maximizes sensitivity, 

spatiotemporal resolution, and spatial coverage, thereby providing stringent and 

comprehensive tests of the theories in humans. This approach, combined with the 

use of large sample sizes, reduces the likelihood that negative results are due to 

methodological or sensitivity issues. The selection of methods was pre-approved by 

the adversaries before the study was conducted and results were known, ensuring 

the entire protocol was deemed suitable for assessing their theories. Furthermore, 

each data type was collected by two (or three) independent laboratories to ensure 
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generalization across populations, recording systems, and experimenters. Altogether, 

we aimed at fostering informativeness, reproducibility, and robustness of the results 

by (1) dissociating theory leaders from researchers involved in data acquisition/

analysis to minimize biases and post hoc interpretation, (2) using a multimodal 

approach to test theories with enough and adequate temporal and spatial precision 

in humans, (3) acquiring data in a large sample of subjects to increase statistical 

power, (4) using standardized 118 and preregistered protocols 97 to evaluate theories 

under the same experimental framework and further minimize confirmatory bias 110, 

and finally (5) combining an analysis optimization phase with a final testing 

phase using independent parts of our dataset to corroborate the robustness of the 

results 119. Consequently, we present a large-scale international effort to evaluate 

two widely discussed theories of consciousness under an integrated, rigorous and 

comprehensive adversarial collaboration framework, setting a precedent for theory 

testing and proving the concept for an alternative scientific model aimed at reducing 

bias and enhancing scientific rigor in the bio-medical sciences.

We 昀椀rst established that our task manipulations were effective and comparable 
behaviorally across data modalities and experimental sites (see supplementary  

section 1-2 for the full set of results). Subjects’ performance in the task was excellent, 

with high hit rates (M=96.84%, SD=4.19%), low false alarm rates (M=1.45%, SD=4.30%), 

and high 昀椀xation stability (mean accuracy <2°=89.62%, SD=10.61%; Figure 2.1e-g). 
Subjects’ performance across laboratories within each data modality was similar  

(all p=1.000 after multiple comparison correction, BF<0.12). Epilepsy patients showed 
slightly lower behavioral performance compared to neurotypical subjects, yet, behavior 

was still comparatively high (hit rate 93.90%, SD=12.29; false alarm rate M=4.25%, 

SD=20.17). We con昀椀rmed that subjects were conscious of the stimuli both in the task 
relevant and irrelevant trials in a separate experiment which included a surprise 

memory test (see supplementary section 3).

As part of our testing framework, after excluding a limited number of subjects due 
to data quality checks, we conducted an initial optimization phase on 1/3 of the MEG 

(N=32) and fMRI (N=35) datasets to evaluate data quality across sites and to optimize 

analysis pipelines. Following the optimization phase, pipelines were preregistered 

(https://osf.io/92tbg/), and applied to the novel datasets containing twice as much data 

(MEG, N=65 and fMRI, N=73). In what follows we report results obtained on the novel, 

previously unexamined datasets (see methods for the strategy used for iEEG and text 

for numbers of subjects that entered in each analysis). Results from the optimization 

phase and preregistered replication phase were subsequently compared and deemed to 

be largely compatible, with some minor exceptions (see supplementary section 4).
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Figure 2.1: GNWT and IIT predictions tested in an adversarial collaboration

a.  吀栀ree key contrasting predictions of Integrated Information 吀栀eory (IIT) and Global Neuronal Workspace 吀栀eory 
(GNWT) tested in an adversarial collaboration framework. Prediction #1: Decoding of conscious content, 

evaluating which cortical areas hold information about different aspects of conscious content. IIT predicts that 
conscious content is maximal in posterior brain areas, while GNWT predicts a necessary role for PFC. Prediction #2: 

Maintenance of conscious content over time, evaluating the temporal dynamics by which the temporal extent of 

the conscious content is instantiated. IIT predicts that conscious content is actively maintained in posterior cortex 
throughout the extent of a conscious experience; while GNWT predicts brief content-speci昀椀c ignition in PFC ~0.3-
0.5 s after stimulus onset and offset (when the workspace is updated), with content stored in a non-conscious silent 
state resembling activity-silent working memory in between. Waveforms and temporal generalization matrices 
depict the amplitude- and information-based temporal pro昀椀les predicted by the theories, respectively (left: colored 
rectangles indicate the three different stimulus durations, GNWT predicted waveforms pertain to PFC, IIT 
predictions to posterior cortex; right: brown arrows indicate stimulus onset, red arrows stimulus offset, green and 
blue colors reflect the predicted patterns of temporal generalization of conscious content according to each theory in 
PFC and posterior cortex for GNWT and IIT, respectively). Prediction #3: Interareal communication, evaluating 
the topological and temporal patterns of interareal connectivity subserving consciousness. 吀栀e stars and arrows on 
the brain (left) depict the different predictions about the expected synchrony patterns (green: GNWT; blue: IIT). 

b.  Conscious experience is multifaceted in content. Looking at the image of Mona Lisa by Leonardo da Vinci 
underscores the fact that conscious experiences are rich: 吀栀e painting is experienced as occupying a location in 
space, pertaining to a given category (i.e., a face and not an object, or any other category), specifying an identify 

(i.e., Mona Lisa and not any other face), and a particular orientation (i.e., leftward oriented and not rightward or 
any other orientation). Moreover, the conscious experience is maintained over time for as long as one appreciates the 

painting, endowing it with a temporal extent (i.e., it feels extended in time). 

c.  To experimentally capture the multifaceted aspect of phenomenological experience, we manipulated the content of 
consciousness by varying stimuli along four dimensions: category (faces, objects, letters and false fonts), identity 
(each category contained different exemplar), orientation (left, right, and front view), and duration (stimuli were 
presented for three durations i.e., 0.5 s, 1.0 s, and 1.5 s). Example stimuli used in the study are shown for reference. 

d.  Overview of the experimental paradigm: At any one point in time, no more than one high-contrast, stimulus 
was present at 昀椀xation. In each trial, subjects were asked to detect target stimuli: either a face and an object or 
a letter and a false font in any of the three different orientations. 吀栀us, each trial contained three stimuli types: 
targets (depicted in red), task relevant stimuli (belonging to the same categories as the targets, depicted in orange-
red), and task irrelevant stimuli (belonging to the two other categories, depicted in purple). 吀栀e pictorial stimuli  
(faces/objects) were task relevant in half of the trial blocks, while the symbolic stimuli (letters/false fonts) were 
relevant in the other half of the blocks. For illustration purposes only, a color line was added to depict the different 
trial types. Blank intervals between stimuli are not depicted here. 

e.  Distribution of behavioral sensitivity scores (d’) separate per data modality and acquisition site. Crossing lines 

depict average d’ per site/modality. Dots depict individual participants d’s. Colors depict data modality: MEG N=65 
(orange), fMRI N=73 (red), and iEEG N=32 (green), while the hue depicts each site within a modality. 

f.  Distributions of false alarm (FA) rates per site and data modality, separated by task condition: Orange-red depicts 
task relevant stimuli. Purple depicts task irrelevant stimuli. Dots are individual participants FA rates. Other 
conventions as in f. 

g.  Top row: Average 昀椀xations heatmaps computed over a 0.5 s window after stimulus onset. Heatmaps are displayed 
per data modality, zoomed into the stimulus area. Bottom row: Average saccadic direction maps per data modality. 
吀栀e three stimulus durations are shown separately.
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Prediction #1: Decoding of conscious content

According to IIT, PFC is not necessary for consciousness. Consequently, proponents 

of IIT predict that decoding of conscious content should be maximal from the 

posterior cortex, and should not increase when PFC is added. According to GNWT, 

PFC is necessary for consciousness and consequently predicts that every content 

of consciousness should be decodable from the PFC. IIT’s prediction of maximal 

decoding in the posterior cortex was regarded as a non-core test of the theory 

because, for IIT, what matters is not how much information can be decoded from 

the extrinsic perspective of an observer, but how much information is available to 

a neural substrate from its intrinsic, causal perspective. IIT and GNWT further 

specify that brain areas evidencing conscious content should do so irrespective of 

other cognitive processes, e.g., report. This implies that conscious content should 

be present irrespective of task manipulations 61,86. To empirically test prediction #1, 

we measured multivariate decoding of stimulus category (pictorial: faces/objects 

and symbolic: letters/false fonts), and orientation (left/right/front facing). In each 

block, the subjects’ task was to identify two stimuli belonging to either the pictorial 

or the symbolic group of stimulus categories, e.g., a specific face and a specific 

object (Figure 2.1d), making these two categories task relevant in that block. Hence, 

all categories were task relevant and task irrelevant in different blocks. Stimulus 

orientation was orthogonal to the task, and thus task irrelevant in all blocks.

Based on our preregistered predictions and pre-approved interpretations (Extended 

Table 2.1, and https://osf.io/92tbg/), the theories would be challenged if we observe 

decoding of one stimulus category pairing (e.g., faces/objects or letters/false fonts) 

but not decoding of orientation (or vice versa) in at least one of the four categories, in 

the relevant brain regions and time windows. Thus, the theories would pass this test 

if decoding is possible for both category and orientation, but would fail otherwise. 

Testing for decoding of both category and orientation constitutes a more stringent 

test of the theories as it requires two conditions to be satisfied, making it more likely 

for the test to fail 120, while also capturing a critical aspect of conscious content, i.e., 

its multidimensionality, or phenomenological richness (Figure2.1b). For decoding of 

category, we also sought to demonstrate that information is present in the relevant 

regions irrespective of the task by training a classifier in one task and evaluating 

whether it generalizes to the other task condition, i.e., cross-task generalization.

Here, we report the most robust results for decoding of category (faces/objects) 

and orientation (left/right/front views of faces). Qualitatively similar results were 

observed for decoding of letters/false fonts (Extended Data Figure 2.2a-d). Results for 
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orientation decoding were consistent across stimulus categories and data modalities 

in posterior cortex, yet mostly absent in PFC (see supplementary section 5.1.2).

In the iEEG data, we trained pattern classifiers on high gamma frequency band 

activity (70-150 Hz) at each time-point in the task irrelevant condition and tested 

across all time-points in the task relevant condition, for each stimulus duration, 

category, and across all electrodes within the theory-relevant ROIs (Figure 2.2a for 

a visualization of ROIs and methods section for a list of anatomical ROIs). In the 

posterior ROIs, face/object decoding showed significant cross-task generalization 

(>95% accuracy) for the approximate duration of the stimulus (Figure 2.2b, top row). 

In the PFC ROIs, significant cross-task face/object decoding accuracy (~70%) was also 

evident, but the temporal generalization of this decoding was restricted to ~0.2-0.4 

s (Figure 2.2b, bottom row). Training on task relevant and testing on task irrelevant 

trials showed similar results (Extended Data Figure 2.2e; within-task decoding 

provided in Extended Data Figure 2.3). The sustained (posterior) and phasic (PFC) 

patterns of cross-task temporal generalization of decoding thus matched both IIT’s 

and GNWT’s predictions, respectively.

While electrode coverage across our sample of iEEG patients (N=29 for the decoding 

analyses) was exceptional in the relevant brain regions (Figure 2.2a, PFC ROIs 

N
electrodes

=576, Posterior ROIs N
electrodes

=583), we also evaluated these predictions in 

a larger population of healthy subjects (N=65) in MEG. Results from the cross-task 

decoding of stimulus categories using the MEG cortical time series (see methods 

section) combining all parcels within the theory-relevant ROIs were consistent 

with the iEEG observations. Cross-task generalization of face/object decoding was 

significant in both posterior and prefrontal ROIs (Figure 2.2c) within the theory-

predicted time-windows. The extent of cross-temporal generalization of decoding in 

MEG was sustained in posterior ROIs. In PFC ROIs, decoding was brief for all three 

stimulus durations (see supplementary section 5.1.1.2).

A limitation of MEG is its spatial imprecision, which can impact source localization. 

We thus also tested the theories’ predictions in a large sample of healthy subjects 

(N=73) exploiting the high spatial resolution of fMRI. Using a searchlight approach 

(see methods section), we found distributed and robust cross-task generalization 

(~75%) in striate and extrastriate, ventral temporal, and intraparietal cortex (Figure 

2.2d; see Extended Data Table 2.4 for anatomical details). Generalization in 

prefrontal cortex had lower accuracy (~60%), and was spatially restricted to middle 

and inferior frontal cortex regions (Figure 2.2d). We obtained similar results with 

a decoding approach using theory-relevant ROIs defined in the Destrieux atlas  
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(see supplementary section 5.1.1.3). These results also closely matched a theory-

relevant ROIs analysis in the iEEG data restricted to the time windows specified by 

the theories (Figure 2.2e). Hence, across recording modalities, we observed that face/

object decoding was present both in the posterior and the prefrontal ROI, in line with 

IIT and GNWT predictions.

As the representation of conscious content is rich and multidimensional including 

features beyond category, we turned to decoding of stimulus orientation (which was 

always task irrelevant). Here, we found divergent results for the predictions of IIT and 

GNWT: decoding of face orientation (left/right/front views) was found in posterior 

ROIs but not in prefrontal ROIs, both in the iEEG theory-relevant ROIs decoding 

approach (Figure 2.2f, h; accuracy improved to ~95% with pseudotrial aggregation 

as shown in Extended Data Figure 2.5a) and in the fMRI searchlight approach  

(Figure 2.2g, ~45%). From the MEG cortical time series, decoding of face orientation 

was robust in posterior ROIs (~75% with pseudotrial aggregation), and reached above 

chance levels, albeit weakly (35%) in prefrontal ROIs (Figure 2.2i). Notably though, 

control analyses could not conclusively rule out that MEG decoding in the PFC ROIs 

stemmed from signal leakage from posterior regions (Extended Data Figure 2.5b). 

Decoding of orientation for the other stimulus categories (letters and false fonts but 

not for objects) was observed in posterior ROIs but not in the prefrontal ones across 

the three data modalities (see supplementary section 5.1.2).

Finally, we tested the preregistered prediction by IIT that prefrontal regions do 

not contribute further information beyond that specified by posterior areas (or 

may even degrade performance as it could introduce noise into the classifiers) 121. 

The results of this test would challenge IIT if the inclusion of PFC was found to 

increase decoding accuracy, while a lack of an increase would be consistent with 

both theories as GNWT holds that workspace neurons in PFC broadcast information 

from posterior processors rather than adding information. We compared decoding 

performance from classifiers exclusively trained on posterior ROIs with classifiers 

trained on posterior and prefrontal ROIs together (Extended Data Figure 2.5c)  

(see methods section). The results across all critical data modalities for testing 

(iEEG, MEG) indicate that neither category nor orientation decoding improves, and 

in some cases decreases, when adding prefrontal ROIs to posterior ROIs (Extended 

Data Figure 2.5d-e). These results are robust to the selection of ROIs, as a control 

analysis using a broader definition of prefrontal cortex, yielded comparable results 

(see supplementary section 5.1.3).
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Prediction#1 is a central prediction for GNWT, while it is subsidiary for IIT. 

Considering the primary preregistered tests, and their implications for both theories: 

for prediction #1, we found mixed results for GNWT. On the one hand, we found 

robust decoding of category in PFC across all three imaging modalities. However, for 

decoding of orientation, results differed across modalities: only for MEG did cortical 

activity show decoding of orientation for faces but not for any other stimulus category 

in PFC. Yet, possible signal leakage from posterior sources could not be conclusively 

ruled-out. Considering the negative decoding results for orientation from fMRI 

and iEEG, which provide higher spatial resolution than MEG, this overall pattern 

of results challenges one of GNWT’s predictions. For IIT’s predictions, decoding of 

conscious content (both category and orientation) was robust in posterior cortex, 

independent of the task manipulation, and consistent across data modalities (iEEG, 

MEG and fMRI). Also, decoding of category and orientation was found to be the 

same, or to decrease, when adding PFC to posterior regions.
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Figure 2.2: Prediction #1-Decoding of conscious content

a.  Spatial coverage of intracranial electrodes across all patients included in the decoding analysis (N
subjects

=29), 
displayed on a standard inflated cortical surface map (top), and within the regions of interest (ROIs) for the two 
theories (bottom): posterior (blue, N

electrodes
=583), prefrontal (green, N

electrodes
=576).

b.  Cross-task temporal generalization of decoding of high gamma signal in iEEG in which pattern classi昀椀ers were 
trained to discriminate stimulus category (faces vs. objects) in the task irrelevant condition at each time-point and 
tested in the task relevant condition across all time-points. 吀栀e three stimulus durations are plotted in columns 
(left: 0.5 s; center: 1.0 s; right: 1.5 s) and the two theory ROIs in rows (top: posterior ROIs; bottom: prefrontal 
ROIs). Signi昀椀cantly above-chance (50%) decoding is indicated by the outlined pink-red regions in the temporal 
generalization matrices. Contours indicate statistically signi昀椀cant decoding evaluated through a cluster-based 
permutation test.

c.  Cross-task decoding of stimulus category (faces vs. objects) in MEG cortical time series (N=65) when classi昀椀ers 
were trained on relevant stimuli and tested on irrelevant stimuli (purple); or trained on irrelevant stimuli and 

tested on relevant stimuli (red). Decoding was done separately within the whole posterior ROIs (top) and prefrontal 
ROIs (bottom). 吀栀e inset shows inflated cortical surfaces depicting the two ROIs used for theory testing (posterior: 
blue; prefrontal: green) in the decoding. 吀栀ese decoding results combine data across the three stimulus durations, 
and used pseudotrial aggregation. 吀栀e purple and red lines underneath the decoding functions indicate time-
periods showing signi昀椀cantly above-chance (50%) decoding as assessed by cluster-based permutation test. Error 
bars depict 95% CI estimated across subjects. 

d.  Cross-task decoding of stimulus category (faces vs. objects) in fMRI (N=73) using a searchlight approach, collapsed 
across the three stimulus durations. Left panel (purple): Pattern classi昀椀ers trained on relevant stimuli and tested 
on irrelevant stimuli. Right panel (orange-red): Pattern classi昀椀ers trained on irrelevant stimuli and tested on 
relevant stimuli. Regions showing signi昀椀cantly above-chance (50%) decoding, evaluated through a cluster-based 
permutation test, are indicated by the outlined colored regions on the inflated cortical surfaces (top: left/right 
lateral views; bottom: right/left medial views). 

e.  Cross-task decoding of stimulus category (faces vs. objects) in iEEG within the theory-speci昀椀c ROIs, collapsed 
across stimulus duration. Decoding accuracies are indicated in purple for classi昀椀ers trained on relevant stimuli 
and tested on irrelevant stimuli, and in orange-red when trained on irrelevant stimuli and tested on relevant 
stimuli, and are displayed on inflated surface maps from a left lateral view (top left), posterior view (top right) and 
left medial view (bottom). 

f.  Decoding of stimulus orientation (left vs. right vs. front view faces) which was always task irrelevant, in single 
trial iEEG data, within posterior ROIs (top) and prefrontal ROIs (bottom), collapsed across the three stimulus 
durations. Lines under the decoding functions indicate time-points showing above chance (33%) decoding from a 
cluster-permutation test. Decoding using pseudotrial aggregation is shown in Extended Data Figure 2.5a. Error 
bars depict 95% CI estimated across cross-validation folds.

g.  Decoding of orientation (left vs. right vs. front view faces) in fMRI using the searchlight approach. Regions with 
signi昀椀cantly above-chance (33%) decoding accuracies are indicated in outlined blue on the inflated cortical surface 
maps (top: left/right lateral views; bottom: right/left medial views). 

h.  Decoding of orientation (left vs. right vs. front view faces) in iEEG within the ROIs. Regions with electrodes 
showing above-chance (33%) accuracies are indicated in outlined blue on the inflated surfaces (top left: left lateral 
view; top right: posterior view; bottom: left medial view). 

i.  Decoding of orientation (left vs. right vs. front view faces) in MEG cortical time series within the ROIs (top: 
posterior; bottom: prefrontal). Time-points showing signi昀椀cantly above-chance (33%) decoding are indicated by 
lines below the decoding functions. Error bars depict 95% CI estimated across subjects.
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Prediction #2: Maintenance of conscious content 
over time

According to IIT, the state of the network that specifies the content of consciousness 

in posterior cortex is actively maintained for the duration of the conscious experience 

(manipulated here via different stimulus durations). In contrast, GNWT predicts 

brief content-specific ignition in PFC ~0.3-0.5s after stimulus onset, when the 

workspace is updated 97. Then, activity decays to baseline, with information being 

maintained in an latent state, until another ignition marks the offset of the current 

percept and the onset of a new percept (in our paradigm, the fixation screen following 

stimulus offset). Thus, while the underlying brain response (the workspace update) is 

temporally discrete (i.e., an onset and an offset response), the conscious experience 

can be temporally continuous (lasting from one workspace update to the next).

Based on our preregistered predictions and interpretations (Extended Table 2.1, 

and https://osf.io/92tbg/), the theories would be challenged unless we observe the 

predicted temporal dynamics for maintenance of conscious content, i.e., sustained 

vs. phasic for IIT and GNWT (Figure 2.1a), respectively, for a minimum of one 

conscious feature (category, identity or orientation), in the relevant brain regions and 

time windows. Specifically, IIT would be challenged if we failed to observe sustained 

content-specific information and activation tracking stimulus duration in posterior 

cortex for the above-mentioned features. GNWT would be challenged if prefrontal 

phasic activation (at onset and offset) associated with the maintenance of conscious 

content over time was absent for those features. We tested those predictions by 

evaluating both the strength of activation as a function of stimulus duration, and 

the informational content of that activation in each of the theory-relevant ROIs. 

Here, both activation and information content were deemed central predictions 

for IIT, such that they jointly determine the overall interpretation of results. For 

GNWT, activation alone was considered essential for theory evaluation due to the 

challenges in precisely measuring the reinstatement of content specificity at the time 

of stimulus offset.

We focused on the task irrelevant condition as it is most diagnostic for neural 

activity related to consciousness, minimizing the contribution of other, potentially 

confounding, cognitive processes (see supplementary sections 6.1 and 6.2.9 for 

results on the task relevant condition). Due to the temporal nature of the predictions, 

they were tested on the two data modalities with millisecond temporal resolution, 

iEEG and MEG.
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First, we tested the theories’ predictions investigating neural activation as a function 

of stimulus duration. In the iEEG data, we used linear mixed models (LMMs, see 

methods section) to model the time course of neural activity in the high gamma (HG) 

frequency band (70-150 Hz), which correlates with spiking activity 122,123, per electrode 

and theory-relevant ROI as a function of the theories’ predicted temporal models 

(Figure 2.1a. middle panel) and stimulus duration (LMMs, see methods section). To 

increase sensitivity and to accommodate the (category) selective responses expected 

in higher-order sensory areas, we included an interaction term with category.

Although we lacked control over the placement of electrodes, the sampling density 

of electrodes in both the posterior cortex and the prefrontal cortex (PFC) was 

consistently high and evenly distributed across ROIs pertinent to the theories. This 

enabled us to fairly and exhaustively test theories’ predictions directly in the human 

brain. Across the 31 epilepsy patients in this analysis, 194 of 657 (29.5%) posterior ROI 

electrodes and 123 of 655 (18.7%) PFC ROI electrodes exhibited HG activity in response 

to the stimuli (see supplementary section 6.1.2).

In posterior cortex ROIs, the results of the LMMs revealed a total of 25 electrodes (out 

of 657) that exhibited sustained activity that tracked stimulus duration (Extended 

Data Table 2.6 for electrode localization and supplementary section 6.1.1 for results 

of the full model), in line with IIT’s prediction (Figure 2.3a). A subset of 12 electrodes 

showed sustained duration tracking irrespective of stimulus category predominantly 

in early visual areas (Figure 2.3b for an example electrode in occipital pole). The 

remaining 13 electrodes showed category-selective tracking (mostly to face stimuli) 

localized to the ventral temporal cortex (Figure 2.3b for an example electrode in 

lateral fusiform gyrus). Overall, the proportion of electrodes showing category-

specificity and duration tracking was rather small, e.g., only 15% (8/53) of face 

selective electrodes showed sustained duration tracking as predicted by IIT, pointing 

to a rather sparse underlying neural substrate. These responses mostly localized to 

the lateral fusiform gyrus. The remaining majority face selective electrodes exhibited 

transient activations at stimulus onset, localized across striate, extrastriate and 

ventral areas (see supplementary section 6.1.2).

In PFC ROIs, 99 and 24 electrodes showed non-selective and category-selective onset 

responses, respectively (Figure 2.3d). Yet, none of the 655 electrodes tested matched 

the temporal profile predicted by GNWT (i.e., onset and offset). This null result was 

not due to the analysis approach, as the LMM was indeed sensitive to picking up the 

pattern predicted by GNWT in 10 electrodes outside the predicted ROI, i.e., in striate/

extrastriate cortex (Figure 2.3b). An exploratory analysis to decode stimulus duration 
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with unrestricted temporal profiles and time windows revealed a single electrode 

in the inferior frontal sulcus showing the GNWT-predicted pattern, yet earlier than 

expected (0.15 s post-onset and post-offset) (Figure 2.3d). The very same electrode 

exhibited a biphasic event-related potential with a positive deflection early on (0.15 s) 

and a negative deflection at a later latency (see supplementary section 6.1.1). 

Additional control analyses, including time-locking the analyses to stimulus offset to 

increase statistical sensitivity, corroborated the temporal profile predicted by IIT in 

posterior ROIs, and the absence of the temporal profile predicted by GNWT in PFC 

ROIs (see supplementary sections 6.2.1-6.2.3).

For MEG, we used LMMs to investigate the temporal patterns of gamma frequency 

band power within the posterior (15 parcels) and the PFC (11 parcels) ROIs. Although 

gamma frequency band activity was strong in posterior areas, none of the theory-

based models provided a good fit to the data (see supplementary section 6.1.3.1). We 

also examined activity in the alpha band, recognizing its potential as a surrogate 

for neuronal spiking. This is based on its well-documented inverse relationship 

with neural spiking activity 124,125. Results on alpha frequency in iEEG and MEG were 

inconclusive and did not provide strong support for either of the theories. In iEEG, 

none of the prefrontal electrodes showed the predicted combination of an onset 

and offset response, but instead this pattern was found in some posterior sites. In 

MEG, temporal profiles consistent with GNWT were found in most areas in posterior 

cortex and in the anterior cingulate cortex, but those results were highly dependent 

on parameter choices and contamination from posterior sites could not be ruled-out 

(see supplementary sections 6.1.1 and 6.1.3.2).

Together, the results from the temporal activation analysis are compatible with IIT’s 

predictions of sustained activation within posterior cortex. In contrast, we found no 

evidence in iEEG for GNWT’s prediction concerning late phasic ignition of PFC at 

both stimulus onset and offset. MEG evidence in the alpha band was inconclusive, 

and not supported by iEEG despite the ample coverage of PFC. These patterns of 

results accordingly challenges GNWT’s predictions.

After analyzing the temporal profile of brain activity, we used cross-temporal 

Representational Similarity Analysis (RSA) both in the iEEG and MEG source data 

to test in which time windows the content of consciousness was represented  

(Figure 2.1a. middle panel). For IIT, a critical prediction is that conscious content 

should be maintained as long as the conscious experience lasts. GNWT instead 

predicts a phasic ignition of the workspace at stimulus onset with no active 

representation of the conscious content until another ignition marks the offset of 
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the percept. This prediction was tested, but it was classified as non-essential for 

the evaluation of GNWT. Within each of the theory-relevant ROIs, we performed 

cross-temporal RSA for each stimulus dimension (category, identity, orientation) 

and correlated them with the temporal models predicted by the theories (Figure 2.1a, 

right panel). Here, we report the results for face and object stimuli. Qualitatively 

similar results were observed for letters/false fonts (Extended Data Figure 2.7).

In iEEG, we calculated the correlation distance between the patterns of HG activity 

across  583  electrodes in posterior (N
subjects

=28)  and  576  electrodes in PFC ROIs 
(N

subjects
=28), separately. Then, we applied principal component analysis (PCA) 

to visualize the similarity structure (see methods section). We investigated the  

1.5 s duration trials only, because they enable the best contrast between the temporal 

profiles predicted by the theories.

In posterior cortex ROIs, the cross-temporal RSA revealed sustained face/object 

categorical representation, with larger correlation distances between categories  

(face/objects) than within category (face, object) (compare Figure 2.3e left with 

the predicted pattern in Figure 2.1a). The RSA matrix significantly correlated 

with the temporal model predicted by IIT, and outperformed the GNWT model  

(see supplementary section 6.3 for results of all contrasts).

In PFC ROIs, the cross-temporal RSA revealed transient face/object categorical 

representation at stimulus onset, but not at stimulus offset. In line with this 

observation, we did not find any significant correlation with the GNWT onset & 

offset model (compare Figure 2.3f left with the predicted pattern in Figure 2.1a). This 

was also the case for the task relevant condition, where face/object information was 

stronger, more stable and longer lasting. Further evidence for the absence of GNWT 

predicted patterns in PFC ROIs was found in three control analyses using (a) feature 

selection, which improved RSA in PFC; (b) modified time-windows to investigate 

the possibility of an earlier ignition at stimulus offset; and (c) a decoding analysis 

time-locking trials to stimulus offset to maximize sensitivity (see supplementary  

section 6.4). None of these control analyses changed the overall results. These results 

nicely align with two independent studies using comparable methods 126,127, attesting 

to their robustness.

It has been argued that because conscious experiences are specific, the representation 

of identity and orientation are more stringent tests of the neural substrate of 

conscious experience 128, than category. We thus also evaluated whether information 

about stimulus identity (and orientation) matched the theories’ predictions.
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In posterior ROIs, object identity information was sustained throughout the 

stimulus duration, with objects of the same identity showing smaller distances than 

different object identities (Figure 2.3e, middle right). The IIT model significantly 

correlated with the observed RSA matrix, and also better explained the data 

compared to the GNWT model. Comparable results were found for letter and false-

font identity, but not for face identity (Extended Data Figure 2.7). For the PFC ROIs, 

identity information was absent for all categories, both at stimulus onset, offset, 

and generally throughout the time windows (for objects, see Figure 2.3f, middle 

right). Finally, we tested for the presence of orientation information. In posterior 

cortex ROIs, information about face orientation was weakly present at stimulus 

onset, yet was not sustained, decaying after 0.5 s (Figure 2.3e, right), contrary to  

IIT’s predictions. In PFC ROIs, no information about face orientation was found 

(Figure 2.3f right). MEG time series were inconclusive, as none of the theories’ 

predictions were borne out when testing information about category, identity, or 

orientation (see supplementary section 6.5).

Considering the primary preregistered tests, their respective weight and 

interpretations for both theories (Extended Table 2.1), for prediction #2, results were 

in line with IIT’s prediction, as activation and representation of conscious content 

was sustained in posterior cortex, including representation of category and identity 

across multiple stimuli. Yet, sustained responses were rather rare in posterior cortex 

(found only in 3.8% of the electrodes in the iEEG data). Also, there was no sustained 

representation of orientation.

GNWT was challenged as we found no convincing evidence in iEEG or MEG for 

a late phasic ignition of PFC at stimulus offset, despite the presence of robust 

ignition at the onset of the stimuli. With regards to the information content, which 

was considered a non-critical prediction for GNW, the RSA analysis demonstrated 

category information in PFC, exclusively at stimulus onset and earlier than predicted; 

while information about stimulus identity and orientation was completely absent.
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Figure 2.3: Prediction #2-Maintenance of conscious content over time

a.  Intracranial electrodes in posterior ROIs, depicted in blue (N
subjects

=31, N
electrodes

=657)  showing the sustained 
duration pro昀椀le compatible with IIT’s predictions, found for category-selective electrodes (N=13, dark blue), 
speci昀椀cally for faces (N=8, purple), and non-category selective electrodes (N=12, light blue). Additionally, a small 
number of electrodes exhibited a biphasic duration pro昀椀le (11 electrodes, green). Although this biphasic pro昀椀le 
corresponds with the GNWT predictions, it was expected to appear in PFC, not in posterior regions. We present 
these 昀椀ndings to highlight the sensitivity of our analytical approach. However, this speci昀椀c observation does not 
directly support GNWT, as the original prediction pertained exclusively to the PFC.

b.  Top panels. Averaged waveforms in posterior ROIs for non-category selective (left) and face-selective (middle) 
sustained duration tracking electrodes, separately per stimulus duration, marked in shades of blue. Error bars 
depict standard error of the mean. (Right) Bar plot depicting mean high-gamma power averaged across all face-
selective electrodes for each stimulus category separate per stimulus duration (faces: dark blue, objects: orange, 
letters: turquoise, false fonts: dark red). Bottom panels. Raster plots of example electrodes depicting non-category 
selective sustained duration tracking (left), face-selective sustained duration tracking (middle), and phasic onset 
and offset duration tracking responses predicted by GNWT for PFC ROIs (right). Rows depict single trials, sorted 
per stimulus duration (from top: 0.5, 1.0, 1.5 s), and then category (from top: false fonts, letters, objects, faces). 

c.  Electrodes in PFC ROIs, depicted in green (N
subjects

=31, N
electrodes

= 655) exhibiting phasic onset responses only (gray, 
N=114), 1 electrode (black) exhibiting a phasic onset and offset response but signi昀椀cantly earlier (0.15s) than the 
time window predicted by GNWT (>0.3s). None of the 655 electrodes showed phasic onset and offset response (with 
activity silence in between) at the time windows predicted by GNWT.

d.  Top panels. Averaged waveforms in PFC ROIs for non-category selective (left) and face-selective (middle) onset only 
responsive electrodes, separately per stimulus duration, marked in shades of gray (as their pattern does not comply 
with any of the theory predictions). Error bars depict standard error of the mean. (Right) Averaged waveforms 

for the electrode showing an onset & offset response that occur earlier than the predicted time-window. Bottom 
panels: Raster plots for one example electrode exhibiting an onset response only (left), and the early onset and offset 
response (right). Y Axis labels as in b. 

e. �Cross-temporal representational dissimilarity matrices across all electrodes in posterior ROIs (N
subjects

=28, 
N

electrodes
=583)  for category (left and middle-left), identity (middle-right) and orientation (right). Sustained 

representation of category was found irrespective of task (compare task relevant and task irrelevant RSA matrices). 
Principal component analysis revealed the stable separability across faces and objects, again irrespective of task. 
Bar plots show the within class dissimilarly (distances within the face and object category) and between class 

dissimilarity (faces vs. object distances). Larger between than within class separation was observed, consistent with 

the presence of category information. Sustained information about object identity was observed in posterior cortex, 

with larger between identity distances and within identity distances. Information about face orientation was weak 
and not sustained across the stimulus duration in posterior cortex. 

f. �Cross-temporal representational dissimilarity matrices across all electrodes in PFC ROIs, as in Figure 2.3e. 
Transient representation of category was found irrespective of task (compare task relevant and task irrelevant RSA 
matrices). Principal component analysis revealed the stable separability across faces and objects, again irrespective 

of task. Bar plots as in Figure 2.3e. Larger between than within class separation was observed, consistent with the 
presence of category information. 吀栀ere was no identity nor orientation information in PFC ROIs in the relevant 
time windows predicted by GNWT, or at any other time point. 
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Prediction #3: Interareal communication

IIT predicts neural connectivity within the posterior cortex in the gamma band, i.e., 

between high-level and low-level sensory areas (V1/V2), throughout any conscious 

visual experience. In contrast, GNWT postulates a brief and late metastable state 

(>0.25 s) with information sharing between PFC and category-specific areas 

manifested in long-range synchronization in the gamma/beta band 129.

Based on our preregistered predictions and a-priori interpretations (Extended Table 2.1), 

the theories would be challenged if we fail to observe interareal connectivity between 

the cortical nodes specified by the theories in the relevant time windows. For IIT, 

this implies sustained content-specific synchronization between face/object selective 

areas and V1/V2; while for GNWT connectivity should be phasic (0.3-0.5 s) between 

the category selective areas and PFC. Due to the temporal nature of the predictions, 

iEEG and MEG provide the most informative test. We computed pairwise phase 

consistency (PPC) 130 between each category-selective time series (face- and object-

selective nodes) and either the V1/V2 or the PFC time series in the intermediate 

(1.0 s) and long-stimulus-duration (1.5 s), task irrelevant trials (see supplementary 

section 7.1.2 for task relevant trials). We focused on gamma activity, which is  

held to closely reflect neuronal spiking activity 131. Furthermore, within the framework 

of IIT, spiking activity is considered a constituent property of the physical substrate 

of consciousness 92.

For iEEG, we restricted analyses to electrodes showing face and object selectivity, 

using a different subset of electrodes to test connectivity with V1/V2 and PFC  

(see methods section, Figure 2.4a for ROIs and for examples of face and object 

selective electrodes). Due to the sparse coverage, the requirement to focus on 

‘activated’ electrodes (see methods section) was relaxed. However, restricting the 

analysis to only activated electrodes does not change the pattern of results. We found 

increased category selective, e.g., faces>objects synchrony between category-selective 

and V1/V2 electrodes (Figure 2.4b, top row). However, these effects were early and 

short-lived (e.g., <0.75 s), observed only at low frequencies, i.e., 2-25Hz, and mostly 
explained by the synchronous activity elicited by the stimulus evoked response 

(Extended Data Figure 2.8). Thus, the findings did not match IIT predictions, as 

the activity was not found in the gamma frequency predicted by IIT, and was not 

sustained. No content-selective PPC was found between face- and object-selective 

electrodes and PFC electrodes in the relevant time window, in contrast to GNWT’s 

prediction (Figure 2.4b, bottom row).
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For MEG, we used Generalized Eigenvalue Decomposition (GED) 132 to extract face- 

and object-selective components from ventral temporal areas (Figure 2.4c) and then 

computed PPC. We found selective synchronization between face-selective areas 

and both V1/V2 and PFC. However, these effects were early and restricted to low 

frequencies (2-25 Hz), which was inconsistent with both IIT and GNWT (Figure 2.4d) 

and mostly explained by stimulus evoked responses (Extended Data Figure 2.8).

The results of the preregistered PPC metric for prediction #3, which was critical 

for both theories, thus supported neither of them. PPC was chosen based on the 

theories’ mechanistic considerations, because it assesses oscillatory phase. However, 

phase estimation is challenging in neural signals due to noise. We thus relaxed 

the constraints and tested the theories exploring a connectivity metric sensitive to 

co-modulations of signal amplitude - dynamic functional connectivity (DFC; see 

methods section). We also removed the evoked responses given the observed impact 

in the PPC metric (Extended Data Figure 2.8 includes the evoked response).

In iEEG, we observed significant connectivity between object selective electrodes 

and V1/V2 (Figure 2.4e). Connectivity was evident in several frequency bands, 

most predominantly the gamma band. Yet, it was again brief, in contrast to IIT’s 

predictions. Connectivity between face selective electrodes and V1/V2 was scarce. 

Significant connectivity was observed between PFC and both the face and the object-

selective areas, in the frequency (gamma) and time range predicted by GNWT. For 

MEG, brief DFC in the alpha-beta frequency bands was found only between face-

selective nodes and both PFC and V1/V2 (Figure 2.4f).

Together, the results of the exploratory DFC metric in iEEG were in line with GNWT’s 

predictions, while challenging IIT’s predictions, as connectivity with V1/V2 was not 

sustained. V1/V2 were however sparsely sampled with iEEG in our population, with 

only 12 electrodes localized to V1/V2 in contrast to 472 localized in PFC.

Finally, we then moved to fMRI, to evaluate connectivity across the entire cortex 

with homogeneous sampling. We computed generalized psychophysiological 

interaction (gPPI), defining Fusiform Face Area (FFA) and Lateral Occipital Complex 

(LOC) as seed regions per subject based on an anatomically constrained functional 

contrast (see methods section) and combining task relevant and irrelevant trials (the 

preregistered analysis performed separately on each condition can be found in the 

supplemental section 7.1.1. Here, conditions were pulled to increase statistical power. 

See supplementary section 12.). FFA showed content selective (face>object stimuli) 

connectivity with V1/V2, Inferior Frontal Gyrus (IFG) and Intraparietal Sulcus (IPS), 
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consistent with the predictions of both IIT and GNWT (Figure 2.4g). No selective 

increases in interareal connectivity between object selective nodes and PFC or V1/V2 

was found in fMRI, also when separating task relevant and irrelevant trials (Extended 

Data Figure 2.8). To determine whether connectivity to PFC and V1/V2 might be 

driven by the task in gPPI, we explored the iEEG data separating trials by the task. We 

found task independent, selective DFC connectivity (face>objects) for face selective 

electrodes with both IFG and V1/V2 (Figure 2.4h).

The results for prediction #3, considering the preregistered hypotheses and their 

pre-approved interpretation, provided no evidence for IIT or GNWT. Neither the 

frequency band nor the temporal patterns of the PPC results were consistent with 

either theory. Yet, when exploring amplitude-based metrics of connectivity (DFC and 

gPPI), we did find support for GNWT predictions, as both in the iEEG and fMRI we 

observed connectivity with PFC, further matching the timing (~0.3 s) and spectral 

composition (gamma frequency) predicted by GNWT. For IIT, though connectivity 

with V1/V2 was present both in the iEEG and fMRI data, with the expected spectral 

signature (gamma frequency), it was not sustained throughout the duration of the 

stimulus, contrary to IIT’s prediction.
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Figure 2.4: Prediction #3-Interareal communication

a.  iEEG electrode coverage used to assess content-selective synchrony for IIT ROIs (top, N
subjects

=4) & GNWT ROIs 
(bottom, N

subjects
=21). Electrode coverage varied between ROIs as interareal connectivity was assessed between 

electrodes on a per-subject basis. In addition, two example category-selective electrodes are shown (right): one face-
selective, and one object-selective. Error bars depict standard error of the mean.

b.  iEEG Pairwise phase consistency (PPC) analysis of task irrelevant trials reveals signi昀椀cant content-selective 
synchrony (e.g. faces > objects for face-selective electrodes; objects > faces for object-selective electrodes) in V1/V2 
ROIs (top row), but not in PFC ROIs (bottom row).

c.  MEG cortical time series were extracted per participant from cortical parcels in V1/V2 (blue), PFC (green) and in 
a fusiform (red) ROIs. Category-selective signals were obtained by creating a category-selective GED 昀椀lter (i.e., 
contrasting face/object trials against any other stimulus category trials) on the activity extracted from the fusiform 
ROI. Face- (bottom left) and object-selective (bottom right) responses averaged across participants are shown at the 
bottom. Error bars depict 95% CI.

d.  MEG PPC analysis of task irrelevant trials (N=65) reveals signi昀椀cant category-selective synchrony below 25 Hz 
for the face-selective GED 昀椀lter (i.e., faces > objects for face-selective electrodes) in both V1/V2 (top row) and PFC 
ROIs (bottom row) and for the object-selective synchrony (objects > faces for object-selective electrodes) in the PFC 
ROI only.

e.  iEEG Dynamic functional connectivity (DFC) analysis of task irrelevant trials reveals signi昀椀cant content-selective 
synchrony only for object-selective electrodes in V1/V2 (e.g., top-right), but reveals signi昀椀cant content-selective 
synchrony for both categories in the PFC ROI (bottom row).

f.  MEG DFC analysis of task irrelevant trials (N=65) reveals signi昀椀cant content-selective synchrony below 25 Hz for 
the face-selective GED 昀椀lter in both V1/V2 (top left) and PFC (bottom left), but not for the object-selective GED 昀椀lter.

g.  fMRI gPPI (N=70) on task relevant and task irrelevant trials combined reveals signi昀椀cant content-selective 
connectivity when FFA is used as the analysis seed. A cluster-based permutation test was used to evaluate the 
statistical signi昀椀cance of the face > object contrast parameter estimates (p < 0.05). Various signi昀椀cant regions 
showing task related connectivity with the FFA seed were observed including V1/V2, right intraparietal sulcus 
(IPS), and right inferior frontal gyrus (IFG). 

h.  Analysis of face-selective DFC synchrony across tasks is shown at the single electrode level in PFC (top) & V1/V2 
(bottom) ROIs. Electrodes showing signi昀椀cant synchrony in relevant (orange-red), irrelevant (purple), or both 
relevant & irrelevant (black) task conditions combined are shown (averaged over 70-120 Hz and 0-0.5 s time 
window). DFC synchrony was observed in both tasks, but restricted to IFG for the GNWT analysis and V2 regions 
for IIT analysis, consistent with fMRI gPPI analysis shown in panel g. 
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Finally, as an additional goal, we used our rich fMRI dataset in a more exploratory 

manner to delineate the cortical areas presumably involved in (visual) consciousness 

(i.e., ‘putative NCCs’), after ruling out cortical areas that are only responsive to 

other, accompanying (but confounding) cognitive processes 48. This test, while 

being excessively broad and thus not critical for the theories, nonetheless carries 

implications for both theories, considering their distinct predictions regarding 

the NCC. IIT predicts that the cortical substrate of consciousness should include 

posterior areas while agreeing that certain PFC areas should be excluded due to task 

confounds. GNWT predicts an involvement of PFC even after ruling out task-based 

effects (see methods section for analysis strategy).

The full results of the pNCC analysis are described in the supplementary section 8.1; 

here we focus on the PFC given its relevance to the theories. In PFC, the observed 

pattern of candidate areas was more spatially restricted than anticipated by the 

rather extensive preregistered GNWT ROIs. Specifically, the MFG, IFG and orbital 

cortex might participate in consciousness, as predicted by GNWT. Furthermore, the 

scant activation patterns found in PFC compared to the widespread deactivations 

was surprising, and suggests a reconsideration of the strong focus on activations 

(relative to deactivations) when assessing this region’s role in conscious perception.

General Discussion

This adversarial collaboration was aimed at overcoming researchers’ confirmation 

biases, breaking theoretical echo chambers 20, identifying strengths and weaknesses 

of the theories 79,133 by forcing them to be explicit and committal about their respective 

empirical predictions, rigorously testing them on common methodological  

grounds 109,110, and providing the means for theorists to change their minds given 

conflicting results 109. In doing so, this approach enables progress in the field 

by catalyzing our ability to evaluate and arbitrate between current theories of 

consciousness. Embracing this spirit, we opted for a discussion in three voices 

because even if we provide a stringent test that brought together incompatible 

theoretical views, different interpretations of the same evidence still remain due 

to how observers differentially weigh evidence. In what follows, the theory-neutral 

consortium presents the main challenges our study poses to the theories, based on 

the predictions, methods and analysis that were preregistered, and agreed upon with 

the adversaries prior to conducting the study and the disclosure of its results. Then, 

the adversaries offer their interpretation to the results and future directions. This 

process follows the guidelines for structuring adversarial collaborations 111.
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Cogitate consortium
Figure 2.5 provides a detailed summary of the key results, including criteria for 

determining if the results support or contradict the theories being tested. This 

summary covers both the main findings and those less central to the theory 

evaluation. The consortium aimed to rigorously test these theories, adopting a 

Lakatos’s sophisticated falsificationist approach to the philosophy of science104,117. 

As such, challenged predictions are considered more informative than predictions 

that are borne out by the data. Predictions and outcomes are weighted differentially 

across the three predictions and so are the methodologies deemed pertinent for the 

interpretation of the outcome (Extended Table 2.1).

For IIT, the lack of sustained synchronization within posterior cortex represents 

the most direct challenge, based on our preregistration. Across several analyses, 

with various degrees of sensitivity, we only observed transient synchronization 

between category selective and early visual areas. This is incompatible with IIT’s 

claim that the state of the neural network, including its activity and connectivity, 

specifies the degree and content of consciousness 92. Although this null result could 

stem from methodological limitations (e.g., limited iEEG sampling of V1/V2 areas), 

our multimodal and highly powered study provided the best conditions so far for 

the predicted patterns to be found. We urge IIT proponents to direct future efforts 

to evaluate this prediction and to determine its significance and the extent of 

this failure.

More broadly, although IIT passed the predefined criteria for the duration prediction 

(#2), there was no evidence for a sustained representation of orientation, despite 

being a property of the consciously perceived stimuli, which should have accordingly 

showed sustained representation 112. This is an informative challenge for IIT, as 

orientation decoding was robust across all three data modalities, leaving open the 

question of whether and how information about orientation is maintained over time.

Finally, our pNCC analysis suggested that portions of PFC might be important for 

consciousness. While the most consistent activation and decodability of content was 

found in posterior cortex, IIT must explain the finding that the MFG and the IFG  

(for which we also found results in the decoding and synchrony analysis), were 

visually responsive and not ruled out as being task-related. This finding is particularly 

important to explain in the context of the current experiment where additional 

cognitive processing of the task irrelevant stimuli was minimized 65.
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For GNWT, the most significant challenge based on our preregistered criteria 

pertains to its account for the maintenance of a conscious percept over time; and 

in particular, the lack of ignition at stimulus offset. In most of our main tests and 

control analyses across data modalities (for details, see supplementary sections 5-6), 

we failed to reveal an offset response in PFC (both in activation which was a critical 

test, and also in reinstatement of decoded content of any type, which was predefined 

as non-critical). This result is less likely to stem from sensitivity limitations, since 

offset responses were robustly found elsewhere (e.g., visual areas); and in PFC, strong 

onset responses were found to the very same stimuli. The lack of ignition at stimulus 

offset is especially surprising given the change of conscious experience at the onset 

of the blank fixation screen. This clear update to the content of consciousness should 

have been represented somehow by the global workspace 97. Thus, as our results do 

not support GNWT’s predictions regarding the maintenance of conscious experience, 

that aspect of consciousness remains unexplained within the GNWT framework.

Another key challenge for GNWT pertains to representing the contents of experience: 

though we found representation of category in PFC irrespective of the task, hereby 

demonstrating the sensitivity of our methods, no representation of identity was 

found, and representation of orientation was only evident in MEG (without being 

able to exclude source leakage effects), although these dimensions were clearly a part 

of subjects’ conscious experience of the stimuli. This raises the question of whether 

PFC is involved in broadcasting all conscious content as predicted by GNWT 25 or 

only a subset (e.g., abstract concepts and categories, rather than low-level details), in 

which case the role of PFC in consciousness might need to be redefined.

Finally, the highly spatially restricted decoding of conscious content in PFC, alongside 

the restricted activations and deactivations in PFC observed in the pNCC analysis, 

point to a “localized spark” rather than the “wide-spread ignition” predicted by the 

theory, further challenging it 93.

Prior to the current study, the predictions from IIT and GNWT had mostly been tested 

with one data modality at a time 18,25, leaving interpretational freedom for negative 

results, which can easily be attributed to the limitations of a given modality 134. Here, 

the combination of techniques allowed us to cross-compensate for their respective 

limitations to thoroughly and systematically assess the theories’ predictions. This 

methodological approach was mutually agreed upon by the theory leaders prior to 

data collection and results disclosure as the most powerful and conclusive approach, 

making both positive and negative findings more meaningful.
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Although this study was designed around IIT and GNWT, the results may have 

implications for other theories of consciousness. For example, GNWT’s prediction 

#1 about PFC is shared by some (but not all) higher-order theories of consciousness 

that also give a central role for PFC 107. As a result, the challenges to this prediction 

challenge not only GNWT but also those higher-order theories. Predictions #2 and #3 

about timing and connectivity are more distinctive to GNWT but could also be shared 

by other theories in principle. Likewise, IIT’s non-core prediction #1 about posterior 

cortex is also shared by many other theories (e.g., recurrent processing theory 105), 

and its prediction #2 about timing may be shared by some posterior theories of 

consciousness, such as the local recurrency theory 106. Its prediction #3 about 

interareal connectivity is more distinctive to IIT (e.g., it is not shared by synchrony 

theory 135), so the challenge here is more specific as well.

All this highlights that our adversarial collaboration is designed more to challenge 

theories than to confirm them. Both theories have some predictions confirmed, 

but these predictions are also consistent with other theories, so the successful 

predictions cannot serve as evidence for IIT or GNWT specifically. However, the 

disconfirmed predictions are certainly challenges to both theories (and to others, 

as discussed above). These challenges can be met by altering the theories or their 

proposed biological implementation, but such alteration typically comes at some 

cost to the theoretical framework, because the relevant features of the theory or the 

implementation were motivated by the framework. In this respect, our adversarial 

collaboration approach subscribes to the approach advocated by Lakatos 117, a 

sophisticated version of Popper's falsificationism 136, whereby scientific knowledge 

advances through a process of conjectures and refutations. When a theory makes an 

unsuccessful prediction, the challenged theory can survive by refining its details. But 

if unsuccessful predictions continue, the theory can be deemed a degenerate rather 

than a progressive research program 104. This process is expected to be continued by 

the results of our second experiment (reported in a future manuscript), alongside 

those of a follow-up adversarial collaboration using a comparable experimental 

design in animal models (i.e., mice and non-human primates). With time, we hope 

that substantial evidence will be gathered, allowing the scientific community to form 

an informed judgment about both theories and possibly others (through the open 

data). This might be important, as some have proposed a theory-inspired approach 

to inferring consciousness in non-responsive populations such as unresponsive 

patients, infants, non-human animals and artificial systems 137–139.

Conceptually, our study focused on the mechanisms by which the content of the 

conscious experience of A differs from the experience of B (i.e., category, identity, 
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orientation and duration), which addresses how the link between brain activity 

and subjective phenomenology changes between distinct conscious experiences. As 

such, we departed from the mainstream contrastive method in which the presence 

of conscious experience is contrasted with its absence to study the neural differences 

between conscious and unconscious processing. Though widely used, the standard 

contrastive approach suffers from shortcomings which preclude it from directly 

revealing the processes related to consciousness, as it confounds consciousness with 

other cognitive processes such as decision-making, reporting, or the formation of 

episodic memory traces after a conscious experience 24,47,48. Studying the content of 

consciousness more directly links phenomenology to brain activity and overcomes 

several of the limitations of the contrastive method. Yet, some might argue that in 

doing so, we are tracking mere stimulus processing rather than consciousness per 

se. Within the framework of this adversarial collaboration, our aim is to challenge 

and potentially falsify 117,136 IIT and GNW, by examining where their predictions 

differ, rather than to discover the neural correlates of consciousness. In this context, 

what might seem like a weakness — focusing on the presence of fully attended, 

consciously experienced stimuli to test the theories' primary positive predictions 

and their failures — is actually beneficial. This approach effectively tests if the neural 

mechanisms suggested by these theories are indeed necessary for consciousness, 

since if they are, they must be found in such clear-cut cases, where the stimuli are 

undoubtedly experienced, and the evoked signal is strong (so null results cannot 

stem from noisy or weak signals). Therefore, our method provides a rigorous and 

principled examination of both IIT and GNWT.

Our study, while comprehensive, is not without its limitations. First, despite our 

best efforts to minimize the contribution of task relevance by making some stimulus 

features relevant on some trials and irrelevant in others, we cannot rule out some 

residual task engagement with respect to category. However, this potential bias is 

addressed by our deliberate choice to make features like orientation and duration 

always irrelevant to the task. This approach strengthens the test for the theories we are 

examining, as any detected effects on these features cannot be attributed to selective 

attention driven by task requirements, no matter how minimal. Second, although 

we made our best efforts to capture the richness of experience by investigating 

multiple dimensions of conscious experience (i.e., category, orientation, identity and 

duration), we acknowledge that our efforts are still far from measuring consciousness 

in a way that truly captures its apparent phenomenal richness (e.g., an object’s 

brightness and hue, its precise shape and location, the highly specific viewpoint 

from which an object is perceived, etc.). Future studies will be needed to address this 

further. Third, although our study offers superior spatial and temporal resolution 
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across the brain by integrating three distinct brain imaging techniques—fMRI, MEG, 

and iEEG—it falls short of incorporating single-unit recordings. Such recordings, 

typically reserved for a small subset of epilepsy patients and limited to certain brain 

areas like the Medial Temporal Lobe, are impractical for directly testing our theories. 

Studies in other animal models, including Neuropixels and causal manipulations, 

are underway as part of a different adversarial collaboration, and are expected to 

complement our findings. Despite the inherent challenges of using animal studies to 

probe consciousness (difficulty of measuring consciousness in non-human subjects 

and the limited spatial coverage of Neuropixels probes, and overtraining), we see 

these two adversarial collaborations as synergistic, providing a stronger test for the 

theories than either one alone.

Beyond the direct challenges to the theories, our study raises a number of important 

questions for theory testing and theory building, which apply broadly across most 

fields, e.g., how to weigh different theory predictions, and how to combine evidence 

across predictions, analyses and measures (in our case, fMRI, MEG and iEEG data). 

From the outset, we defined an independent set of predictions, setting criteria for 

failure to then weigh the results against these predictions. We opted for a lenient 

approach with respect to falsificationism, sufficing with some evidence for a 

prediction to pass (e.g., for decoding of category and orientation, we deemed a 

result in at least one of the tested features sufficient to rule out a failure, instead 

of requiring results to be seen across all tested categories and orientations). Yet, 

a formal framework that quantitatively integrates evidence by weighing and 

quantitatively integrating over passes and failures, accounting for the centrality of 

the predictions for the theory, measurement error, and consistency across samples 

and measurements is direly needed to enable systematic theory building in the era of 

accumulation of results 140.
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Figure 2.5: An overview of theoretical predictions, experimental outcomes and interpretations

On the left, the original predictions made by the IIT (top) and GNWT (bottom) that were preregistered  
(see also 97; Figure 2.1). 吀栀e table describes the key hypotheses (second column, ‘Key hypotheses’) made by the theories  
(see also Figure 2.1a), and probed in three different tests analyses (third column, ‘Test’; decoding (prediction #1;  
Figure 2.2), activation & RSA (prediction #2; Figure 2.3) and synchrony (prediction #3; Figure 2.4)). Next, we describe 
the possible outcomes of each of these analyses, and how they would inform the theoretical predictions (fourth column, 

‘Possible outcome and interpretation’). Outcomes that conform with the prediction are presented in a green frame 
(i.e., ‘pass’), outcomes that contradict the prediction are presented in a red frame (i.e., ‘fail’). Outcomes in a solid 
frame reflect critical predictions for the theories; dotted and grayed frames indicate non-critical predictions for the 
theories. 吀栀us, the left side of the table presents the a-priori predictions, expected outcomes and their centrality for the 
theory evaluation, prior to conducting the experiment. 吀栀e right side of the 昀椀gure presents the actual 昀椀ndings of this 
experiment, integrating over the three modalities and multiple tests. We 昀椀rst summarize the key 昀椀ndings with respect 
to each prediction (昀椀fth column; ‘Result’). Here, white indicates results that are aligned with the theories’ predictions, 
red indicates results that challenge them, the mixture of white/red indicates cases in which the combination of results 

yielded a mixture of a pass and a fail with the respective explanation for the failure. Yellow marks cases in which 
we considered that the results did not allow a strong interpretation. We integrate over these results to generate the 

昀椀nal conclusion based on the key hypotheses, with the same color coding. For IIT, our conclusion includes a mixture 
of a passed prediction (of content-speci昀椀c complex of neural units in posterior cortex, throughout the persistence of a 
percept, independent of the task) and a failure (of maximum of integrated information) and for GNWT, a mixture of 
a partly challenged prediction (of an all-or-none threshold and ampli昀椀cation of information updating the content of 
consciousness in PFC) and a partly supported one, given the inconclusive result for orientation (of global broadcasting 

of information in the PFC). See the main text for how these results might also challenge other theories of consciousness.
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Integrated Information Theory: Melanie Boly, Christof Koch, 
Giulio Tononi
The results corroborate IIT’s overall claim that posterior cortical areas are sufficient 

for consciousness, and neither the involvement of PFC nor global broadcasting 

are necessary. They support preregistered prediction #1, that decoding conscious 

contents is maximal from posterior regions but often unsuccessful from PFC, and 

prediction #2, that these regions are sustainedly activated while seeing a stimulus 

that persists in time. They do not support prediction #3 concerning sustained 

synchrony, although this negative finding is quite possibly the result of sparse 

electrode coverage  (see supplementary section 9). Below we illustrate how these 

predictions were motivated by IIT.

Posterior regions are often considered mere ‘information processors’; their 

activation, it is claimed, may be necessary but not sufficient for experiencing specific 

contents. For example, they may show activations during deep sleep or anesthesia 

and for unreported stimuli under contrastive, near-threshold paradigms 94. This 

seems to warrant the need for additional ingredients, such as ‘global broadcasting’ 94 

or ‘higher-order monitoring’ by PFC 103.

For IIT, however, posterior regions are sufficient for consciousness as long as they 

satisfy the requirements for maximal integrated information. Why this prediction? 

Unlike other approaches, IIT infers the essential, physical requirements for the 

substrate of consciousness from the essential properties of experience 87,92. This 

leads to the claim that the quality and quantity of an experience are accounted for 

by the ‘cause–effect structure’ specified by a substrate with maximal integrated 

information, called the ‘main complex’ 87,92. We conjectured that posterior cortical 

regions should provide an excellent substrate for the main complex owing to their 

dense local connections arranged topographically into a hierarchical, divergent–

convergent 3D lattice 92, leading to prediction #1. Nevertheless, by IIT, posterior 

regions can only support consciousness if their physiology ensures high integrated 

information—which indeed breaks down 141 due to bistability when consciousness is 

lost in deep sleep and anesthesia 142–144.

Much of PFC, in contrast, seems to be organized not as a grid but as a patchwork 

of segregated columns 145, unfavorable for high integrated information. Even so, any 

PFC region organized in a grid-like way with dense interconnections with posterior 

regions may well be part of the main complex. As previously emphasized 39, “…we 

bear no preconceived enmity to the prefrontal cortex. Indeed, searching for the NCC of specific 
aspects of experience…in certain anterior regions is an important task ahead.” For example, 
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parts of IFG might contribute to, say, an abstract/evaluative/actionable experiential 

aspect of faces, which could be consistent with some pNCC analysis results. However, 

IIT predicts that we would still experience faces (sans aspects contributed by PFC 

regions) if PFC were selectively inactivated.

For IIT, all quality is structure: all properties of an experience are accounted for 

by properties of the cause–effect structure specified by the main complex. Every 

conscious content (face, object, letter, blank screen) is thus a (sub)structure of 

integrated information (irreducible cause-effects and their overlaps 87); it is neither 

a message that is encoded and broadcasted globally 12,94,146, nor a distributed activity 

pattern, nor a neural process. Indeed, IIT’s research program aims to account for 

specific consciousness contents—why space feels extended, time feels flowing, and 

phenomenal objects feel like binding general concepts (invariants) with particular 

features—all exclusively in terms of their corresponding cause–effect structures 87,112. 

As highlighted in the Introduction, when we see Mona Lisa, we see that it is a face, 

with her particular features, at a particular location on the canvas, and we see her 

for as long as we look at her. This is why we predicted (prediction #2) that the NCC 

in posterior cortex would last for the duration of the percept, notwithstanding 

the widespread evidence for neural adaptation and onset/offset neural responses 

(probably due to transient excitation/inhibition imbalance), and (prediction #3) that 

synchrony would occur (reflecting causal binding) between units in higher and lower 

areas, supporting respectively invariant concepts and particular features.

To conclude, moving beyond the contrastive paradigm between seen and unseen 

stimuli and beginning to account for how experience feels is one key reason why 

the experiments reported in this adversarial collaboration mark an important 

development. Another is that they inaugurate a powerful new way of making progress 

on a problem often considered beyond the reach of science. The group that carried 

out this endeavor did so in a way that was explicit, open, and truly collaborative—in 

short, in a way that is paradigmatically scientific.

Global Neuronal Workspace Theory: Stanislas Dehaene
This unprecedented data collection effort brings several new insights relevant to our 

theory. Most importantly, the results confirm that PFC exhibits a metastable bout of 

activity (“ignition”) for about ~200 ms, in a content-specific manner, even for task 

irrelevant stimuli, irrespective of stimulus duration (Figures 2.2b, 2.3f, Supplementary 

Figure 2.23), and with a concomitant transient increase in long-distance dynamic 

functional connectivity with face- and object-selective posterior areas (Figure 2.4e-h). 

Those findings, unpredicted by IIT but predicted by GNWT, support previous findings 
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that PFC contains a detailed code for conscious visual contents 40,61,147–150. They also 

counter previous conclusions that were, in our opinion, too hastily drawn on the basis 

of insufficient evidence 86: with suitably sensitive experiments, content-specific PFC 

regions do show a transient ignition even for irrelevant stimuli. While agreeing with 

previous results 35,41,59,150,151, the convergence of iEEG, MEG and fMRI in the same task 

alleviates concerns associated with a possible mis-reconstruction of MEG sources. 

It also resolves a controversy related to the timing of conscious ignition, which was 

initially thought to be associated with the P300 ERP waveform 94, but can obviously 

arise earlier (~200 ms post-onset) 41,59. GNWT would further predict that this latency 

should vary depending on the strength of both bottom-up accumulating evidence 

(e.g., contrast 152) and top-down attention/distraction by other tasks 41,151,153.

While some results do challenge GNWT, they do not seem insurmountable given 

experimental limitations. First, note that there is a considerable asymmetry in the 

specificity of the theories’ predictions. None of the massive mathematical backbone 

of IIT, such as the φ measure of awareness, was tested in the present experiment. 
Instead, what are presented as unique predictions of IIT (posterior visual activation 

throughout stimulus duration) are just what any physiologist familiar with the 

bottom-up response properties of those regions would predict, since visual neurons 

still respond selectively during inattention or general anesthesia 154–156. Such posterior 

stimulus-specific, duration-dependent responses are equally predicted by GNWT, 

but attributed to non-conscious processing.

Unfortunately, here, it is impossible to decide which of the activations reflected 

conscious versus non-conscious processing, because the experimental design did 

not contrast conscious versus non-conscious conditions (fortunately, a second 

experiment by the Cogitate consortium will include such a contrast). The present 

experiment relied on the seemingly innocuous hypothesis that stimuli were 

“indubitably consciously experienced” for their entire duration. However, it is well 

known that perfectly visible stimuli, depending on attention orientation, may fail to 

be seen (attentional blink, inattentional blindness) 157,158 or may become conscious at a 

time decoupled from stimulus presentation (psychological refractory period, retro-

cueing) 153,159–161. Here, it seems likely that subjects briefly gained awareness of all the 

images (since they remembered them later), but then reoriented their conscious 

thoughts to other topics, without waiting for image offset – and this interpretation 

perfectly fits the ignition profile that was found in PFC. It would be surprising 

if participants’ consciousness remained tied to each image for its full duration on 

every trial of this long experiment. It is also unclear whether participants were ever 

aware of stimulus orientation, which was always irrelevant. A new experiment, 
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using quantified introspection 153, will be needed to assess for how long participants 

maintained the visual image in consciousness.

For the same reason, the absence of decodable activation at stimulus offset, while 

challenging, may simply indicate that participants never consciously attended to that 

event, which was always uninformative and irrelevant. Making stimulus offset more 

attractive, for instance by turning it into an occlusion event where an object hides 

behind a screen, could yield different results.

For GNWT, the prefrontal code for a conscious mental object is thought to involve a 

vector code distributed over millions of neurons which, unlike in posterior regions, 

are not clustered but spatially intermingled 61,162. Thus, we are not surprised that 

PFC responses are hard to decode from the macro- or mesoscopic signals measured 

by fMRI, MEG, or large intracranial electrodes that pool over tens of thousands of 

neurons. Therefore, the present positive results, indicating transient PFC ignition 

and decoding of faces and objects, seem to us more important than the null ones, 

especially as there is already much single-neuron evidence that PFC contains even 

more precise stimulus-specific neural codes 40,61,147,148.

Finally, while the theories concern the necessary regions for conscious experience, the 

present methods are purely correlational and do not evaluate causality. This limitation 

is not unique to the present work, but applies to any brain-imaging experiment. 

While applauding the present efforts, we therefore eagerly await the results of other 

adversarial collaborations using causal manipulations in animal models.

Conclusion (Cogitate consortium)
At this point, the reader might expect the consortium to draw a final conclusion 

regarding the two theories we have evaluated. Instead, we invite readers to form 

their own conclusions, considering the relative evidence we presented for each 

of the preregistered predictions, the scope of the evidence and the sophisticated 

techniques, the role of hindsight bias, and the many challenges in changing people’s 

minds. Science is a social enterprise and evidence is interpreted based on prior 

beliefs and expectations. The reader is as much a part of this social enterprise as any 

of the authors from this consortium. We have aimed to present the evidence, and the 

adversaries’ reactions, as straightforwardly and openly as possible. This aligns with 

our belief that science needs openness to collectively converge to true explanations of 

complex phenomena in nature, such as consciousness.
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Methods

Preregistration and data availability
The full study protocol is available in the preregistration on the OSF webpage, 

including: (a) an exhaustive description of the experimental design, (b) the theories’ 

predictions and agreed upon interpretations of the results, (c) iEEG, MEG, and fMRI 

data acquisition details; (d) preprocessing pipelines; and (e) data analysis procedures. 

All data and code will be shared upon publication. Below, the main methods are 

concisely summarized. Deviations from the preregistration are noted throughout the 

manuscript and summarized in Section 12 of the supplementary materials.

Ethics Statement
The experiment was approved by the institutional ethics committees of each of 

the data-collecting labs (see supplementary 10 for details). All volunteers and 

patients provided oral and written informed consent before participating in the 

study. All study procedures were carried out in accordance with the Declaration of 

Helsinki. Epilepsy patients were also informed that clinical care was not affected by 

participation in the study.

Participants
Healthy volunteers and patients with pharmaco-resistant focal epilepsy participated 

in this study. The datasets reported here consist of: (1) Behaviour, eye tracking 

and invasive electroencephalogram (iEEG) data collected at the Comprehensive 

Epilepsy Center at New York University (NYU) Langone Health, Brigham and 

Women’s Hospital, Boston Children’s Hospital (Harvard), and University of 

Wisconsin School of Medicine and Public Health (WU). (2) Behaviour, eye tracking, 

magnetoencephalographic (MEG) and electroencephalographic (EEG) data collected 

at the Centre for Human Brain Health (CHBH) of the University of Birmingham (UB), 

and at the Center for MRI Research of Peking University (PKU). (3) Behaviour, eye 

tracking and functional magnetic resonance (fMRI) data collected at Yale Magnetic 

Resonance Research Center (MRRC) and at the Donders Centre for Cognitive 

Neuroimaging (DCCN), of Radboud University Nijmegen. For both the MEG and fMRI 

datasets, a 1/3 of the data that passed quality tests (henceforth, Optimization dataset; 

see preregistration for details about quality test criteria) were used to optimize 

the analysis methods, which were subsequently added to the preregistration as an 

additional amendment. These preregistered analyses were then run on the remaining 

2/3 of the data (henceforth, Replication dataset) and constitute the data reported in 

the main study. For comparison, results from the optimization phase are reported 

in the supplementary 4. This procedure was not used for the iEEG data due to the 

https://osf.io/92tbg/
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serendipitous nature of the recording and electrode placement, the rarity of this type 

of data and the increased difficulty of data collection due to the COVID-19 pandemic.

For the iEEG arm of the project, a total of 34 patients were recruited. Two patients 

were excluded due to incomplete data. Demographic, medical and neuropsychological 

scores for each patient, when available, are reported in Supplementary Table 2.25. 

Three iEEG patients whose behavior fell slightly short of the predefined behavioral 

criteria (i.e. hits < 70%, FA > 30%) were nonetheless included given the difficulty to 
obtain additional iEEG data (see supplementary section 12). A total of 97 healthy 

subjects were included in the MEG sample (mean age 22.79 ± 3.59 years, 54 females, 
all right-handed), 32 of those datasets were included in the optimization phase (mean 

age 22.50 ± 3.43 years, 19 females, all right-handed), and 65 in the replication sample 
(mean age = 22.93 ± 3.66, 35 females, all right-handed). Five additional subjects were 
excluded from the MEG dataset: two due to failure to meet predefined behavioral 

criteria (i.e., hits < 80%, and/or FA > 20%), two due to excessive noise from sensors, 
and one due to incorrect sensor reconstruction. A total of 108 healthy participants 

were included in the fMRI sample (mean age 23.28 ± 3.46 years, 70 females, 105 right-
handed), 35 of those datasets were included in the optimization sample (mean age 

23.26 ± 3.64 years, 21 females, 34 right-handed), and 73 in the replication sample 
(mean age = 23.29 ± 3.37, 49 females, 71 right-handed). Twelve additional subjects were 
excluded from the fMRI dataset: eight due to motion artifacts, two due to insufficient 
coverage, and two due to incomplete data (with respect to these last two subjects, see 

supplementary section 12. Deviations from the preregistration document).

Experimental procedure

Experimental design

To test critical predictions of the theories, five experimental manipulations were 

included in the experimental design: (1) four stimulus category (faces, objects, letters 

and false fonts), (2) twenty stimulus identity (20 different exemplars per stimulus 

category), (3) three stimulus orientation (front, left and right view), (4) three stimulus 

duration (0.5 s, 1.0 s, 1.5 s), and (5) task relevance (relevant targets, relevant non-

targets, irrelevant).

Stimulus category, stimulus identity and stimulus orientation served to test 

predictions about the representation of the content of consciousness in different 

brain areas by the theories. In addition, stimulus duration served to test predictions 

about the temporal dynamics of sustained conscious percepts and interareal 

synchronization between areas. Task relevance served to rule out the effect of task 
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demands, as opposed to conscious perception per se, on the observed effects 163. This 

aspect of the experimental design was inspired by Farooqui & Manly 53.

Stimuli

Four stimulus categories were used: faces, objects, letters and false fonts. These 

stimuli naturally fell into two clearly distinct groups: pictures (faces and objects) and 

symbols (letters and false fonts). These natural couplings were aimed at creating a 

clear difference between task relevant and task irrelevant stimuli in each trial block 

(see Procedure). All stimuli covered a squared aperture at an average visual angle  

of 6˚ by 6˚. Face stimuli were created with FaceGen Modeler 3.1; letter and false  
fonts stimuli were generated with MAXON CINEMA 4D Studio (RC - R20) 20.059; 

object stimuli were taken from the Object Databank 164. Stimuli were gray-scaled 

and equated for luminance and size. To facilitate face individuation, faces had 

different hairstyles and belonged to different ethnicities and genders. Equal 

proportion of male and female faces were presented. The orientation of the stimuli 

was manipulated, such that half of the stimuli from each category had a side view  

(30° and -30° horizontal viewing angle, left and right orientation) and the other half 
had a front view (0°).

Procedure

Subjects performed a non-speeded target detection task (see supplementary video). 

The experiment was divided into runs, with four blocks in each run (see Trial counts 

below). On a given block, subjects viewed a sequence of single, supra-threshold, 

foveally presented stimuli belonging to one of four stimulus categories and presented 

for one of three stimulus durations onto a fixation cross that was present throughout 

the experiment. Within each block, half of the stimuli were task relevant and half 

task irrelevant. To manipulate task relevance, at the beginning of each block subjects 

were instructed to detect the rare occurrences of two target stimulus identities, 

one from each relevant category (pictures: face/object or symbols: letter/false-font), 

irrespective of their orientation. This was specified by presenting the instruction 

“detect face A and object B” or “detect letter C and false-font D”, accompanied by 

images for each target (See Figure 2.1d). Targets did not repeat across blocks. Each 

run contained two blocks of the Face/Object task and two blocks of the Letter/False-

font task, with block order counterbalanced across runs.

Accordingly, each block contained three different trial types: i) Targets: the two 

stimuli being detected (e.g., the specific face and object identities); ii) Task Relevant 
Stimuli: all other stimuli from the task relevant categories (e.g., the non-target faces/

objects); and iii) Task Irrelevant Stimuli: all stimuli from the two other categories  
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(e.g., letters/false fonts). An advantage of this design is that the three trial types 

enabled a differentiation of neural responses related to task goal, task relevance, and 

simply consciously seeing a stimulus.

Stimuli were presented for one of three durations (0.5 s, 1.0 s or 1.5 s), followed by a 

blank period of a variable duration to complete an overall trial length fixed at 2.0 s. 

For the MEG and iEEG version, random jitter was added at the end of each trial (mean 

inter-trial interval of 0.4 s jittered 0.2-2.0 s, truncated exponential distribution) to 

avoid periodic presentation of the stimuli. The mean trial length was 2.4 s. For the 

fMRI protocol, timing was adjusted as follows: the random jitter between trials was 

increased (mean inter-trial interval of 3 s, jittered 2.5-10 s, with truncated exponential 

distribution), with each trial lasting approximately 5.5 s. This modification helped 

avoid non-linearities in BOLD signal which may impact fMRI decoding 165. Second, to 

increase detection efficacy for amplitude-based analyses, three additional baseline 

periods (blank screen) of 12 s each were included per run (total = 24). The identity 

of the stimuli was randomized with the constraint that they appeared equally across 

durations and tasks conditions.

Subjects were further instructed to maintain central fixation on a black circle 

with a white cross and another black circle in the middle throughout each trial  

(see Figure 2.1g).

Trial counts

The MEG study consisted of 10 runs containing 4 blocks each with 34-38 trials per 

block, 32 non-targets (8 per category) and 2-6 targets, for a total of 1,440 trials. 

The same design was used for iEEG, but with half the runs (5 runs total), resulting 

in a total of 720 trials. For fMRI, there were 8 runs containing 4 blocks each with  

17-19 trials per block, 16 non-targets (4 per category) and 1-3 targets, for a total of  

576 trials. Rest breaks between runs and blocks were included.

Data Acquisition

Behavioral data acquisition

The task was run on Matlab (PKU: R2018b; DCCN, UB and Yale: R2019b; Harvard: 

R2020b; NYU: R2020a, WU: 2021a) using Psychtoolbox v.3 166. The iEEG version of the 

task was run on a Dell Precision 5540 laptop, with a 15.6" Ultrasharp screen at NYU 

and Harvard and on a Dell D29M PC with an Acer 19.1" screen in WU. Participants 

responded using an 8-button response box (Millikey LH-8; response hand(s) varied 

based on the setting in the patient’s room). The MEG version was run on a custom PC 
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at UB and a Dell XPS desktop PC on PKU. Stimuli were displayed on a screen placed 

in front of the subjects with a PROPixx DLP LED projector (VPixx Technologies Inc.). 

Subjects responded with both hands using two 5-button response boxes (NAtA or 

SINORAD). The fMRI version was run on an MSI laptop at Yale and a Dell Desktop 

PC at DCCN. In DCCN, stimuli were presented on an MRI compatible Cambridge 

Research Systems BOLD screen 32” IPS LCD monitor, and in Yale they were presented 

on a Psychology Software Tools Hyperion projection system to project stimuli on 

the mirror fixed to the head coil. Subjects responded with their right hand using a 

2x2 Current Designs response box at Yale and a 1x4 Current Designs response box 

at DCCN.

Eye tracking data acquisition

For the iEEG setup, eye tracking and pupillometry data were collected using a 

EyeLink 1000 Plus in remote mode, sampled monocularly at 500 Hz (from the left 

eye at WU, and depending on the setup at Harvard), or on a Tobii-4C eye-tracker, 

sampled binocularly at 90 Hz (NYU). The MEG and fMRI labs used the MEG and fMRI 

compatible EyeLink 1000 Plus Eye-tracker system (SR Research Ltd., Ottawa, Canada) 

to collect data at 1000 Hz. For MEG, eye tracking data were acquired binocularly. For 

fMRI, data were acquired monocularly from either the left or the right eye, in DCCN 

and Yale, respectively. For all recordings, a nine-point calibration was performed 

(besides Harvard, where thirteen-point calibration was used) at the beginning of the 

experiment, and recalibrated as needed at the beginning of each block/run.

iEEG data acquisition

Brain activity was recorded with a combination of intracranially subdural 

platinum-iridium electrodes embedded in SILASTIC sheets (2.3 mm diameter 

contacts, Ad-Tech Medical Instrument and PMT Corporation) and/or depth 

stereo-electroencephalographic platinum-iridium electrodes (PMT Corporation;  

0.8-mm diameter, 2.0-mm length cylinders; separated from adjacent contacts by 

1.5 to 2.43 mm), or Behnke-Fried depth stereo-electroencephalographic platinum-

iridium electrodes (Ad-Tech Medical, BF08R-SP21X-0C2, 1.28 mm in diameter,  

1.57 mm in length, 3 to 5.5 mm spacing). Electrodes were arranged as grid arrays 

(either 8 × 8 with 10 mm center-to-center spacing, 8 x 16 contacts with 3 mm 

spacing, or hybrid macro/micro 8 x 8 contacts with 10 mm spacing and 64 integrated 

microcontacts with 5 mm spacing), linear strips (1 × 8/12 contacts), depth electrodes 

(1 × 8/12 contacts), or a combination thereof. Recordings from grid, strip and depth 

electrode arrays were done using a Natus Quantum amplifier (Pleasonton, CA) or 

a Neuralynx Atlas amplifier (Bozeman, MT). A total of 4057 electrodes (892 grids,  

346 strips, 2819 depths) were implanted across 32 patients with drug-resistant 
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focal epilepsy undergoing clinically motivated invasive monitoring. 3512 electrodes  

(780 grids, 307 strips, 2425 depths) that were unaffected by epileptic activity, artifacts, 

or electrical noise were used in subsequent analyses. To determine the electrode 

localization for each patient, a post-operative computed tomography scan and a pre-

operative T1 MRI were acquired and co-registered.

MEG data acquisition

MEG was acquired using a 306-sensor TRIUX MEGIN system, comprising 204 planar 

gradiometers and 102 magnetometers in a helmet-shaped array. The MEG gantry was 

positioned at 68 degrees for optimal coverage of frontal and posterior brain areas. 

Simultaneous EEG was recorded using an integrated EEG system and a 64-channel 

electrode cap (EEG data is not reported here, but is included in the shared dataset). 

During acquisition, MEG and EEG data were bandpass filtered (0.01 and 330 Hz) 

and sampled at 1000 Hz. The location of the head fiducials, the shape of the head, 

the positions of the 64 EEG electrodes and the head position indicator (HPI) coil 

locations relative to anatomical landmarks were collected with a 3-D digitizer system 

(Polhemus Isotrack). ECG was recorded with a set of bipolar electrodes placed on the 

subject’s chest. Two sets of bipolar electrodes were placed around the eyes (two at the 

outer canthi of the right/left eyes and two above/below the center of the right eye) 

to record eye movements and blinks (EOG). Ground and reference electrodes were 

placed on the back of the neck and on the right cheek, respectively. Subjects’ head 

position on the MEG system was measured at the beginning and end of each run, and 

also before and after each resting period, using four HPI coils placed on the EEG cap, 

next to the left and right mastoids and over left and right frontal areas.

Anatomical MRI data acquisition

For source localization of the MEG data with individual realistic head modeling, a 

high resolution T1-weighted (T1w) MRI volume (3T Siemens MRI Prisma scanner) 

was acquired per subject. Anatomical scans were acquired either with a 32-channel 

coil (TR/TE = 2000/2.03ms; TI = 880 ms; 8° flip angle; FOV = 256×256×208 mm; 
208 slices; 1 mm isotropic voxels, UB) or a 64-channel coil (TR/TE = 2530/2.98ms;  

TI = 1100 ms; 7° flip angle; FOV = 224*256*192mm, 192 slice, 0.5*0.5*1mm voxels, 
PKU). The FreeSurfer standard template was used (fsaverage) for participants lacking 

an anatomical scan (N=5).

fMRI data acquisition

MRI data were acquired using a 32-channel head coil on a 3T Prisma scanner. A session 

included high-resolution anatomical T1w MPRAGE images (GRAPPA acceleration 

factor = 2, TR/TE = 2300/3.03 ms, 8° flip angle, 192 slices, 1 mm isotropic voxels), and a 
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whole-brain T2*-weighted multiband-4 sequence (TR/TE = 1500/39.6 ms, 75° flip angle, 
68 slices, voxel size 2 mm isotropic, A/P phase encoding direction, FOV = 210 mm, 

BW = 2090 Hz/Px). A single band reference image was acquired before each run. To 

correct for susceptibility distortions, additional scans using the same T2*-weighted 
sequence, but with inverted phase encoding direction (inverted RO/PE polarity) were 

collected while the subject was resting at multiple points throughout the experiment.

Preprocessing and analysis details
For readability, we first detail the preprocessing protocols for each of the modalities 

(iEEG, MEG, and fMRI) separately. Then, we describe the different analyses, 

combining information across the modalities, while noting any differences 

between them.

iEEG preprocessing

Data were converted to BIDS 167 and preprocessed using MNE-Python version 0.24 168, 

and custom-written functions in Python and Matlab. Preprocessing steps included 

downsampling to 512 Hz, detrending, bad channel rejection, line noise and harmonic 

removal, and re-referencing. Electrodes were re-referenced to a Laplacian scheme 169 

while bipolar referencing was used for electrodes at the edge of a strip, grid or 

sEEG and the signal was localized at the midpoint (Euclidean distance) between the  

two electrodes. Electrodes with no direct neighbors were discarded. Seizure onset 

zone electrodes, those localized outside the brain, and/or containing no signal or 

high amplitude noise level were discarded. Line noise and harmonics were removed 

using a one pass, zero-phase non-causal band-stop FIR filter.

The high gamma power (HG, 70-150 Hz) was obtained by bandpass filtering the raw 

signal in 8 successive 10 Hz wide frequency bands, computing the envelope using a 

standard Hilbert transform, and normalizing it (dividing) by the mean power per 

frequency band across the entire recording. To produce a single HG envelope time-

series, all frequency bands were averaged together 170. Most analyses focused on the 

HG power as it closely correlated with neural spiking activity 171 and with the BOLD 

signal 122. To obtain the Event Related Potentials (ERPs), the raw signal was low pass 

filtered at 30 Hz with a one pass, zero-phase non causal low pass FIR filter. Epochs 

were segmented between 1 s pre-stimulus until 2.5 s post-stimulus of interest.

Surface reconstruction and electrode localization

Electrode positions were determined based on a computed tomography 

scan coregistered with a pre-implant T1 weighted MRI. A three-dimensional 

reconstruction of each patient’s brain was computed using FreeSurfer  
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(http://surfer.nmr.mgh.harvard.edu). For visualization, the individual subject’s 

electrode positions were converted to Montreal Neurological Institute (MNI)152 

space. As each theory specified a set of anatomical regions of interest (ROIs), after 

electrode localization, electrodes were labeled according to the Freesurfer based 

Destrieux atlas segmentation 172,173 and/or Wang atlas segmentation 174.

Identi昀椀cation of task responsive channels
To identify task responsive electrodes, we computed the Area Under the Curve (AUC) 

for the baseline (-0.3-0 s) and the stimulus-evoked period (0.05-0.35s) separately for 

the task relevant and irrelevant conditions, and compared them per electrode using 

a Wilcoxon sign-rank test, corrected for False Discovery Rate (FDR 175). A Bayesian 

t-test 176 was used to quantify evidence for non-responsiveness.

Identi昀椀cation of category selective channels
To determine category selectivity for faces, objects, letters and false fonts on the HG, 

we followed the method of Kadipasaoglu and colleagues 177. Per category, we computer 

a d’ (AUC, 0.05 -0.4 s) comparing the activation between the category-of-interest (u
j
) 

and each of the other categories (u
i
), normalized by the standard deviation of 

each category:

A permutation test (10,000 permutations) was used to evaluate significance. d’ was 

computed for the task relevant and irrelevant conditions, separately. An electrode 

was considered selective if it showed selectivity on both tasks.

Multivariate analysis electrodes combination

Due to the sparse and highly variable coverage of iEEG data, all collected electrodes 

were combined into a "super subject" multivariate analyses (RSA and decoding). To 

create a single trial matrix for the super subject, we equated the trial matrices of all 

our subjects by subsampling to the lowest number of trials in the relevant conditions. 

Subjects that did not complete the full experiment were discarded (N=3), resulting in 

a total of 29 subjects with 583 electrodes in posterior and 576 electrodes in prefrontal 

ROIs, respectively. In the case of analyses on stimuli identities, stimuli that were 

presented less than three times to any of the participants across intermediate and long 

trials in the task relevant and irrelevant trials were discarded. We then subsampled 

the trials for each identity to three trials per participant. The subsampling procedure 

끫殢′	 = 	 끫毄! 	− 	 1끫殂 ∑ 끫毄"#"*12 (끫欜!$ 	+ 	 1끫殂∑ 끫欜"$#" ) ; 	끫殬	 ≠ 	끫殮 
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was repeated 100 times to avoid random fluctuation induced by the subsampling. The 

analysis was computed for each repetition and average across repetitions.

MEG preprocessing

The MEG data were converted to BIDS 178 using MNE-BIDS 179, and preprocessed 

following the FLUX Pipeline 180 in MNE-Python v0.24.0 168. Preprocessing steps 

included MEG sensor reconstruction using a semi-automatic detection algorithm 

and Signal-Space Separation (SSS) 181 to reduce environmental artifacts. FastICA 182 

was used to detect and remove cardiac and ocular components from the data for each 

subject (M=2.90 components, SD=0.92). Prior to ICA, data were segmented, and 

segments containing muscle artifacts were removed. After preprocessing, data were 

epoched into a 3.5 s segment (1 s pre-stimulus to 2.5 s post-stimulus onset). Trials 

where gradiometers values exceeded 5000 f T/cm, magnetometers exceeded 5000 f T, 

and/or contained muscle artifacts were rejected from the MEG dataset. Finally, to be 

included in the analyses, participants should have a minimum of 30 clean trials per 

condition. No participants were excluded because of not meeting this criterion.

Source modeling

MEG source modeling was performed using the dynamic statistical parametric 

mapping (dSPM) method 183, based on depth-weighted minimum-norm estimates 

(MNE 184,185), on epoched and baseline (-0.5 s to 0 s prior to stimulus onset) corrected 

data. To build a forward model, the MRI images were manually aligned to the 

digitized head shape. A single shell Boundary Elements Model (BEM) was constructed 

in MNE-Python based on the inner skull surface derived from FreeSurfer 172,173, to 

create a volumetric forward model (5 mm grid) covering the full brain volume. The 

lead field matrix was then calculated according to the head-position with respect to 

the MEG sensor array. A noise covariance matrix for the baseline and a covariance 

matrix for the active time window were calculated and the combined (i.e., sum) 

covariance matrix was used with the forward model to create a common spatial filter. 

Data were spatially pre-whitened using the covariance matrix from the baseline 

interval to combine gradiometer and magnetometer data 186.

fMRI Preprocessing

Source DICOM data were converted to BIDS using BIDScoin v3.6.3 187. This includes 

converting DICOM data to NIf TI using dcm2niix 188 and creating event files using 

custom Python codes. BIDS compliance of the resulting dataset was controlled using 

BIDS-Validator. Subsequently, MRI data quality control was performed using MRIQC 189 

and custom scripts for data rejection. All (f)MRI data were preprocessed using 
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fMRIPrep 20.2.3 190, based on Nipype 1.6.1191. For further details on the fMRIprep 

pipeline, see preregistration.

Analysis-speci昀椀c functional preprocessing
Additional, analysis-specific, fMRI data preprocessing was performed using FSL 6.0.2 

(FMRIB Software Library; Oxford, UK 192), Statistical Parametric Mapping (SPM 12) 

software 193, and custom Python scripts after the above outlined general preprocessing. 

Functional data for univariate data analyses were spatially smoothed (Gaussian 

kernel with full-width at half-maximum of 5 mm), grand mean scaled, and temporal 

high-pass filtered (128 s). No spatial smoothing was applied for multivariate analyses.

Contrast of parameter estimates

We modeled BOLD signal responses to the experimental variables by fitting voxel-

wise General Linear Model (GLM) to the data of each run using FSL FEAT. The 

following regressors were modeled in an event-related approach, with event duration 

corresponding to the stimulus duration (i.e., 0.5, 1.0, 1.5 s), and convolved with a 

double gamma hemodynamic response function: 12 regressors of interest (Targets, 

task relevant and task irrelevant stimuli per stimulus category i.e., faces, objects, 

letters, false fonts; and a regressors of no interest i.e., target screen display). We 

included the first-order temporal derivatives of the regressors of interest, and a set 

of nuisance regressors: 24 motion regressors (FSL’s standard + extended set of motion 

parameters) plus a CSF and a WM tissue regressor.

Each of the 12 regressors of interest was contrasted against an implicit baseline 

(used in the putative NCC analysis). Additionally, we obtained contrast of parameter 

estimates for ‘relevant faces vs. relevant objects’, ‘relevant letters vs. relevant false 

fonts’, ‘irrelevant faces vs. irrelevant objects’, ‘irrelevant letters vs. irrelevant false 

fonts’ (used for the definition of decoding ROIs), ‘relevant and irrelevant faces vs. 

relevant and irrelevant objects’ and ‘all stimuli vs. baseline’ (used for the definition of 

seeds for the generalized psychophysiological interaction analysis).

Data were averaged across runs per subject using FSL’s fixed effects analysis and 

subsequently averaged across participants using FSL’s FLAME1 mixed effect analysis. 

Gaussian random-field cluster thresholding was used to correct for multiple 

comparisons, using the default settings of FSL, with a cluster formation threshold of 

one-sided p < 0.001 (z ≥ 3.1,) and a cluster significance threshold of p < 0.05.
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Anatomical Regions-of-interest (ROIs)

ROIs were defined a priori in consultation with the adversarial theories. They were 

determined per subject based on the Destrieux atlas 173 including both hemispheres, 

and then resampled to standard MNI space (see Supplementary Table 2.26). For 

the connectivity analysis, areas V1/V2 (combining dorsal and ventral) were defined 

based on the Wang cortical parcellation 174. For details on the process of selecting 

the ROIs and the justification of the ROIs selection in the context of this study, see 

supplemental section 11.

Behavioral analyses

Log-linear corrected d’prime 194, false alarms (FA) and reaction times (RT) were 

computed per category and stimulus duration, separately (FAs were also calculated 

per task relevance, without duration), and per modality (iEEG, MEG, fMRI). These 

measures were compared with Linear/Logistic mixed models, where appropriate. 

For the former, we report ANOVA omnibus F tests, and for the latter,   omnibus χ² 
test from an analysis of deviance. We approximated degrees of freedom using the 

Satterthwaite method 195. Pairwise t-tests following significant interactions were 

Bonferroni corrected. To estimate Bayesian Information Criterion (BIC) differences 

between the original and null logistic models, we used the p-values and sample  

size (196; p_to_bf package in R).

Eye-tracking analyses

For Eyelink, gaze and pupil data were segmented, and trials with missing data were 

excluded. Blinks were detected using the Hershman algorithm 197, and removed with 

200 ms padding 198. The Eyelink standard parser algorithm was used for saccade and 

fixation detection. Saccades were further corroborated using the Engbert & Kliegl 199 

algorithm. Fixations were baseline corrected (-0.25 s to 0 s). Mean fixation distance, 

mean blink rate, mean saccade amplitude and mean pupil size were compared in 

a Linear Mixed Model (LMM) with category and task relevance as fixed effects and 

subject and item as random effects. Separate analyses were carried out on the first 

0.5 s after stimulus onset including all trials; and on the 1.5 s trials including time 

window (0-0.5 s, 0.5-1.0 s, 1.0-1.5 s) as fixed effects. BIC was used to test the models 

against the null hypothesis models. For Tobii, gaze coordinate data was segmented, 

missing data were excluded, and coordinates were baseline corrected to depict 

heatmaps of patients’ gaze. Notably, the coordinate data was not added to the LMMs 

due to its poorer quality with respect to the EyeLink data.
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Decoding analysis

All decoding analyses were performed using a linear Support Vector Machine (SVM, 

scikit learn, https://scikit-learn.org/) classifier. Below we explain how this was done 

for each one of the predictions.

iEEG Decoding was done on the HG response, averaged over non-overlapping 

windows of 0.02 s separately for electrodes located in the GNWT and IIT ROIs. 

The top 200 electrodes (selectKbest 200), as determined by F-test within a given 

set of electrodes from the theory ROIs, were used as features for the classifier.  

200 features were selected to provide a balance between model optimization  

(e.g., feature selection) and subject representation (e.g., electrodes/features coming 

from multiple subjects). Statistical significance of decoding performance was 

assessed via permutation test, randomly permuting the sample labels and repeating 

the decoding analysis 1000 times, corrected for multiple comparisons using a 

cluster-based correction (cluster mass inference with cluster forming threshold at  

p < 0.05 201,202). Also, to assess the decoding accuracy within unique ROIs (e.g., 

S_temporal_sup of the Destrieux atlas), separate classifiers were trained using all 

electrodes in a given parcel. Each classifier was fitted using all electrodes in a parcel 

and time window (GNWT: 0.3-0.5 s, IIT: 0.3-1.5 s) as features, resulting in a single 

accuracy value per parcel. SelectKbest (200 features iEEG) feature selection and 5-fold 

cross-validation with 3 repetitions was used. To assess the statistical significance of 

the decoding accuracy within unique ROIs (so only one accuracy score is obtained 

per ROI), p-values obtained via permutation tests were corrected for multiple 

comparisons across all ROIs using FDR correction (q ≤ 0.05 175).

MEG Decoding was done on bandpass filtered (1-40 Hz) and downsampled 

(100 Hz) data. The reconstructed source-level MEG data within a subset of the 

predefined anatomical ROIs (GNWT: 'G_and_S_cingul-Ant','G_and_S_cingul-Mid-

Ant', 'G_and_S_cingul-Mid-Post', 'G_front_middle','S_front_inf ', 'S_front_sup', 

IIT: 'G_cuneus', 'G_oc-temp_lat-fusifor', 'G_oc-temp_med-Lingual','Pole_occipital',  

'S_calcarine','S_oc_sup_and_transversal', as they show high response to the stimulus 

on the optimization dataset) were extracted for further analysis (500 vertices and 

800 vertices per hemisphere for each of the anatomical ROI defined by the theories). 

We applied temporal smoothing (0.05 s window, 0.01 sliding window), computed 

pseudotrials 203, normalized the data, and selected the top 30 features within a given 

ROI as features for the different classifiers. A group-level one-sample t-test per 

time point was performed on the decoding accuracy results, corrected for multiple 

comparisons using a cluster-based correction 201.
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The overall decoding strategy for fMRI was similar to that used on the iEEG and MEG 

data, yet with some differences. A Multi-Variate Pattern Analysis (MVPA) approach 

was used on the pattern of BOLD activity over voxels. A non-spatially-smoothed 

parameter estimate map was obtained by fitting a GLM per event with that event as 

the regressor of interest and all the other remaining events as one regressor of no 

interest 204 as implemented in NiBetaSeries 0.6.0 package. The model also included 

the 24 nuisance regressors described in the fMRI preprocessing section.

Decoding was performed using a whole-brain approach and an ROI-based approach. 

The whole-brain analysis was performed using a searchlight approach with 4 mm 

radius. For ROI-based decoding, decoding ROIs were defined based on functional 

fMRI contrasts (see fMRI preprocessing section) and constrained with pre-defined 

anatomical ROIs (see Extended Data Table 2.2: Anatomical Regions-of-interest 

(ROIs)). One-sample permutation test was used to determine if decoding significantly 

exceeds chance level within each ROI. FDR was used to correct for multiple 

comparisons across ROIs. For whole-brain decoding, a cluster-based permutation 

test was used to evaluate the decoding statistical significance across subjects (p < 
0.05). Additionally, stimulus vs. baseline searchlight decoding was performed using 

leave-one-run out cross validation and the resultant decoding accuracy maps were 

used as input for the multivariate putative NCC analysis (see below). To perform 

stimulus vs. baseline decoding, we subsampled the stimuli trials to a 2:1 ratio with 

respect to baseline. The SVM cost function was weighted by the number of trials from 

each class.

Decoding schemes for the different predictions
To test GNWT and IIT decoding predictions, stimulus category (faces vs. objects and 

letters vs. false fonts) was decoded separately for the task relevant and task irrelevant 

conditions (within-task category decoding) while orientation (front view vs. left view 

vs. right view) was decoded on the combined data from the two task conditions. In 

addition, cross-task category decoding from task relevant to task irrelevant condition 

and vice versa was performed to test generalization by training classifiers on 

one condition and testing on the other condition. Both within-task category and 

orientation decoding were performed in a leave-one-run-out cross validation scheme 

for fMRI and in an k-fold cross validation scheme for MEG and iEEG.

For category decoding, trials from each task condition (i.e., task relevant, irrelevant) 

were extracted for each category comparison of interest: 160 face/160 objects 

classification, 160 letters/160 false fonts classification within each task relevance 

condition for MEG, and half the trials for iEEG. For fMRI, there were 64 trials for 
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each category in each task relevance condition. For orientation decoding, task relevant 

and task irrelevant trials were collapsed within category to increase Signal-to-Noise 

Ratio (SNR), resulting in 160 Front, 80 Left, and 80 Right trials per category for MEG, 

and half these numbers for iEEG. For fMRI, there were 64 Front, and 32 Left and 

Right trials per category. Decoding was evaluated using accuracy measures, tested 

against 50% chance level for category decoding (binary classification) and against 

33% chance level for orientation decoding (3-class classification). For orientation 

decoding, balanced accuracy was used due to the unbalanced number of trials for the 

different orientations. The SVM cost function was weighted by the number of trials 

per class to reduce bias to the class with the highest number.

For within-task decoding (e.g., classification of categories across time), a classifier at 

each time-point was trained and tested separately using a 5-fold cross-validation 

(with 3 separate repeats of cross-validation). For cross-task decoding (task relevant 

-> irrelevant & task irrelevant -> relevant), each SVM model was trained on one task 

(e.g., faces/objects in the task relevant condition) and tested on the second task (e.g., 

faces/objects in the task irrelevant one). As cross-decoding in iEEG data is performed 

across all pooled electrodes, an additional cross-validation step was performed on 

this modality data to provide a confidence metric (e.g., confidence intervals) using 

a 5-fold cross-validation with 3 repetitions (e.g. train on 80% of task 1, and test on 

held-out 20% of task 2).

Within-task temporal generalization was performed by training a classifier at each  

time-point (using selectKbest feature selection) and testing its performance across 

all time-points using the same set of selected features and 3 repetitions of 5-fold 

cross-validation. To generalize from one task to another across all time-points, 

cross-temporal generalization was used: a classifier was trained at each time-point 

in task 1 (e.g., task relevant) using selectKbest feature selection, and tested across all 

time-points in task 2 (e.g., task irrelevant) using the same set of selected features. 

Cross-validation was performed in the same fashion as in cross-decoding.

Additional decoding analyses were performed on all trials aligned to the stimulus 

onset (e.g. -0.2-2 s relative to stimulus onset), and stimulus offset (-0.5-0.5 s around 

stimulus offset). For the latter analysis, all trials from different durations were 

aligned to the stimulus offset.

To assess the specific IIT prediction that including prefrontal regions along with 

posterior regions to the decoding of categories will not significantly affect decoding 

accuracy, we performed two additional decoding analyses in which the decoding 
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performance of electrodes from the IIT region were compared with the decoding 

performance when electrodes from both the posterior + PFC ROIs are included. The 

PFC ROI included all PFC ROIs, except for inferior frontal sulcus, as it belongs to 

the IIT extended ROIs. Posterior ROI included all IIT ROIs shown in Extended Data 

Table 2.2. The first analysis compared the decoding accuracy for a model including all 

electrodes from posterior regions to a separate model in which electrodes (features) 

from posterior & PFC regions were combined (e.g., feature combination). In the 

second analysis, the decoding accuracy of the model including all electrodes from 

posterior regions was compared to a combined posterior + PFC model, in which 

two separate classifiers were trained and calibrated on posterior & PFC regions 

separately using isotonic calibration 205, and posterior probabilities from each 

classifier were combined using a softmax normalization 206. Training and testing of 

the individual models followed all previously described cross-validation procedures 

and model comparison was performed using a variance-corrected paired t-test 207 

and complemented with Bayesian analysis. Following Benavoli and colleagues 208, the 

prior distribution of the mean difference in decoding scores between two classifier 

models was modeled as a Normal-gamma distribution conjugate to a normal 

likelihood, and the posterior distribution was obtained as a normal distribution. This 

posterior distribution was utilized to calculate the probability of one classification 

model being better than, worse than, or equivalent to the other model. As this 

estimation approach is applied using resampled datasets (e.g., using 5-fold cross-

validation), the performance of the model becomes dependent on the folds, and thus 

a variance corrected t-distribution was used 207.

We also tested this prediction on the fMRI data. To select features to be used for both 

analyses, the face vs. object contrast for each subject was masked by a predefined 

anatomical posterior ROIs as well as a PFC anatomical ROIs, defined the same 

way as described above. Within each of the two ROIs, the 150 voxels that are most 

selective to each of the to-be-decoded stimuli were defined as the decoding ROIs  

(300 voxels total) for each subject. The first analysis compared the decoding  

accuracies for a model that included 300 voxels from the posterior ROIs as features 

to another model that included 600 voxels (300 features from each ROI). In the 

second analysis, two separate models were constructed, calibrated, and combined 

as described above. For the two analyses, model comparison was performed 

using a group-level one-sample permutation test to determine if accuracies 

obtained by combining posterior and PFC ROIs are significantly higher than the 

accuracies obtained based on posterior ROIs only. FDR was used to correct for 

multiple comparisons.
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Duration analysis

Neural responses were extracted from three windows of interest (WoI) (0.8-1.0 s,  

1.3-1.5 s, 1.8 -2.0 s) and compared using LMM. Four theory agnostic models were 

fitted: a null model, a duration model (3 durations), a WoI model, and a duration 

and WoI model. Two theory model were fitted: the GNWT model predicts activation 

(ignition) following stimulus offset (0.3-0.5 s) independent of duration, with virtually 

no response in between. The IIT model predicts sustained activation for the duration 

of the stimulus returning to baseline after stimulus offset. Both theoretical models 

were complemented with an interaction term between category (faces, objects, letters 

and false fonts) and the theories’ predictors, to account for regions showing selective 

responses to categories. Bayesian Integration Criterion (BIC) was used to define the 

winning model.

Models for iEEG were fitted per electrode on the predefined ROIs, using the HG 

(AUC), alpha (8-13 Hz, obtained through Morlet wavelets, f=8-13 Hz, in 1 Hz steps; 

f/2 cycles, AUC), and ERPs (peak to peak) as signal, separately for task relevant and 

irrelevant condition.

MEG models were fitted to source data on the predefined ROIs, using the gamma  

(60-90 Hz) and alpha band (8-13 Hz) as signal, separately for task relevant and 

irrelevant conditions. Time-frequency analyses were performed on source-data 

using Morlet wavelets (f=8-13 Hz, in 1 Hz steps; f/2 cycles; f=60-90 Hz, in 2 Hz steps,  

f/4 cycles), and were baseline corrected. Spectral activity was computed for each 

vertex, baseline corrected and then averaged across trials within each parcel included 

in the ROIs, yielding a unique time-course per ROI parcel. In addition, a single source 

time-course capturing the entire prefrontal ROI and the posterior ROI was computed 

by averaging the spectral activity within an ROI. Models were fitted on each parcel 

and ROI, as defined by the theories.

Representational Similarity Analysis (RSA)

To examine how the neural representations evolved over time in response to the 

different stimulus properties (i.e., category, orientation and identity representation), 

we performed cross-temporal RSA on source level MEG data and iEEG HG power 

within each of the theory-defined ROIs, using all trials (see supplementary section 12). 

Specifically, at each set of data points, we computed a Representational Dissimilarity 

Matrix (RDM) by calculating the correlation distance (1- Pearson’s r, Fisher corrected) 

between all pairs of stimuli (the preregistration document described a different 

method which was however updated to optimize trial numbers, see supplementary 

section 12 for a justification). Next, to quantify the representational space occupied 
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by one class vs. another, we computed the average within-class distances vs. the 

average between-class distances. This analysis was performed in a cross-temporal 

manner, in which RDMs were computed between all stimuli at time point t1 and the 

corresponding set of stimuli at time points t1,2,…n.

Long trials (1.5 s) were used to investigate category and orientation representation. 

Since specific identities were repeated a limited number of times per duration, both 

intermediate (1.0) and long (1.5 secs) trials were combined and equated in duration 

by cropping the 1-1.5s time interval for long trials. This was done to allow for the 

analysis of at least three (3) presentations of the same identity.

To evaluate the theoretical predictions about when signi昀椀cant content representation 
should occur, we subsampled the observed cross-temporal representational matrices 

in four time windows (0.3-0.5, 0.8-1.0, 1.3-1.5, 1.8-2.0 s). The subsampled matrices 

were correlated to the model matrices predicted by GNWT and IIT (see Figure 2.1a, 

right panel) using Kendall’s Tau correlation. If the correlation was significant 

(see below) for at least one of the predicted matrices, we computed the difference 

between the transformed correlation () to each theory; and compared this difference 

against a random distribution to obtain a p-value. If the correlation with the theory 

predicted pattern in the theory ROI was significantly higher than the other model, 

we considered the theory prediction to be fulfilled.

To generate a null distribution of cross-temporal RSA surrogate matrices, we 

repeated the procedure outlined above 1024 times, randomly shuffling the labels. 

Next, the observed RSA matrix was z-scored using the null distribution as:

Where is the observed within-vs.-between class difference at time points i and j, 

and,and are the mean and standard deviation of the surrogate representational 

similarity matrix at time points i and j, respectively. Cluster based permutation tests 209, 

z-score threshold of z = 1.5 for clustering, were used to evaluate significance. RSA 

surrogates were also used to assess the significance of the correlation between the 

observed matrices and the theories’ predicted matrices. First, a null distribution 

of possible correlations was generated for each of the theories by correlating each 

of the surrogate matrices to each of the theory predicted matrices. Next, a p-value 

was obtained for each theory predicted matrix, by locating its observed correlation 

끫毎!,#				 =	끫殸끫殸끫殸!,# −	끫欎%&''!,#끫欜%&''!,#  
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within the null correlation distribution. The same procedure was used to assess  

the significance of the difference in correlation to IIT and GNWT matrices (e.g., each  

of the surrogate matrices was correlated to each of the theory predicted  

matrices and the difference between the two was computed). P-values were FDR  

corrected (q ≤ 0.05) 175.

For iEEG, the HG power per electrode within the predefined anatomical ROI was 

averaged in 0.02s non-overlapping windows. Electrodes were used as features for 

the RDM. The data were vectorized across all electrodes within a ROI (e.g., samples 

x significant electrodes) to compute the RDMs. 576 and 583 electrodes entered this 

analysis for the prefrontal and posterior ROI, respectively. The resultant RDM was 

subjected to a principal component analysis and the first two dimensions were plotted 

against each other to produce a 2-dimensional projection of dissimilarity scores 

across all pairs for each of the 100 subsampling repetitions. The PCA components 

were aligned across repetitions using Procrustes alignment and averaged together 

for visualization purposes 210,211.

For MEG, the same analysis was run on the source reconstructed data within  

the predefined anatomical ROIs used for the Decoding analysis, bandpass filtered  

(1-40 Hz) and downsampled (100 Hz). For the category and orientation analysis, 

pseudo-trials and temporal moving-average methods were used to optimize the RSA 

analysis and improve the SNR. For identity, single trials were used. Vertices within 

the ROIs were used as features. The statistical testing differed from that conducted 

on the iEEG data, as it was performed at the subject level. Like the iEEG analysis, we 

first tested if the correlation between the data and the model predicted by each theory 

was greater than zero using the Kendall's tau measure, and then compared between 

the theories using the Mann-Whitney U rank test on two independent samples.

Functional Connectivity analysis

For both iEEG and MEG, pairwise phase consistency (PPC 130) was computed between 

each category-selective time series (face- and object-selective) and either the V1/V2 

or the PFC time series.

For iEEG, the PPC analysis included electrodes in V1/V2 visual areas, in PFC ROIs (see 

Extended Data Table 2.2), and face and object selective electrodes (see Identification of 
task responsive channels), as long as they were “active” during the task. As both theories 

predict different types of activation (e.g., ignition vs. sustained activation), channels 

were categorized as active if they showed an increase in HG power relative to baseline 

(-0.5 to -0.3 s, p<0.05, signed-rank test) evaluated across all trials (task relevant + 
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irrelevant, intermediate + long trials, combined across both categories), for the  

0.3-0.5 s window (GNWT), or in all time windows 0.3-0.5 s, 0.5-0.8 s, and  

1.3-1.5 s (IIT).

For MEG, the category-selective single-trial time courses used to define the ROIs for 

PPC analysis were extracted using the Generalized Eigenvalue Decomposition (GED) 

method 132. Two GED spatial filters were built by contrasting either faces or objects 

against all other categories during the first 0.5 s after stimulus onset. Single-trial 

covariance matrices were computed separately for signal and reference for all vertices 

within the fusiform ROI identified from the FreeSurfer parcellation using the Desikan 

atlas 212, and the Euclidean distance between them was z-scored. Trials exceeding  

3 z-scores were excluded. The reference covariance matrix was regularized to reduce 

overfitting and increase numerical stability. The GED was then performed on the 

two covariance matrices, resulting in N (= rank of the data) pairs of eigenvectors and 

eigenvalues. The eigenvector associated with the highest eigenvalue was selected as 

a GED spatial filter, which in turn was applied to the data to compute the single-

trial GED component time series. A GED spatial filter was extracted also for the PFC 

ROI, on parcels from the Destrieux atlas 173, to identify the distributed pattern of 

sources that are responsive to visually-presented stimuli. Specifically, a spatial filter 

was built by contrasting source-level frontal slow-frequency activity (30-Hz low-pass 

filter) after stimulus onset (0 to 0.5 s) against baseline (-0.5 to 0 s). V1/V2 areas were 

identified using the Wang Atlas 174 and a singular values-decomposition approach. 

For the GED, the 1.0 and 1.5 s duration trials were used to minimize overlap with the 

transient evoked at stimulus onset.

PPC was computed for each MEG time series/iEEG electrode pairing, for all face-

trials and object-trials separately. Analyses were performed on 1.0 and 1.5 duration 

trials, separately on task relevant and irrelevant trials and also combined to maximize 

statistical power. To compute synchrony, time-frequency analysis of the broadband 

MEG and LFP signal was performed using Morlet wavelets (f=2-30 Hz, in 1 Hz steps; 

4 cycles; f=30-180 Hz for iEEG or f=30-100 Hz for MEG, in 2 Hz steps, f/4 cycles), 

and PPC was then computed by taking the difference in phase angle between MEG 

time series/iEEG electrode at each time, t, and frequency f, for a specific trial and 

computing PPC across all trials in a category (e.g., faces) as:

, for all frequencies f, and at all times t.
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For iEEG, PPC for each category-selective site was then averaged across all its 

pairings (e.g., all PFC electrodes pairings or all V1/V2 pairings within that patient). 

The variability in electrode coverage across patients precluded a within-subjects 

analysis. Therefore, to achieve sufficient statistical power, we pooled all derived PPC 

values from one electrode pairing (e.g., face-selective to PFC) across all patients into 

one ROI specific analysis. A similar approach was used on the MEG parcels.

To quantify content-specific synchrony enhancement, the difference in PPC was 

computed between within-category and across-category trials (e.g., for face-selective 

sites, the change in PPC was computed between faces vs. objects trials) using a 

cluster-based permutation test 201. This was done for both modalities.

As an exploratory analysis, we also investigated dynamic functional connectivity 

using the Gaussian-Copula Mutual Information (GCMI 213) approach to evaluate the 

dependencies between time series. This power-based measure of connectivity was 

implemented using the conn_dfc method from the Frites Python package 214. We used 

the same parameters as for the PPC analysis, with the following exceptions: For both 

MEG and iEEG, power was estimated through a multitaper-based method (using a 

frequency dependent dynamic sliding window: 2-30 Hz, T= 4 cycles; 30-100 Hz, T4/f 

using a 0.25-s sliding window. For iEEG the high frequency range was extended 

from 30-180 Hz, T=4/f cycles). DFC was performed per frequency band, 0.1 s sliding 

window, 0.02s steps.

For fMRI, connectivity was assessed through generalized Psycho-Physiological 

Interaction (gPPI) implemented in SPM 215. The Fusiform Face Area (FFA) and 

Lateral occipital cortex (LOC) were defined as seed regions per subject based on 

an anatomically constrained functional contrast. Anatomically, FFA seeds were 

constrained to the “Inferior occipital gyrus (O3) and sulcus” and “Lateral occipito-

temporal gyrus (fusiform gyrus, O4-T4)”. LOC seeds were constrained to the “Middle 

occipital gyrus (O2, lateral occipital gyrus)” and the “Middle occipital sulcus and 

lunatus sulcus” (Destrieux ROIs 2 and 21 for FFA and ROIs 19 and 57 for LOC, see 

Anatomical Regions-of-interest (ROIs)).

Candidate seed voxels within the above-mentioned anatomical ROIs were defined 

as those with a z value > 1 in the contrast of parameter estimates of all stimuli vs. 

baseline. Three subjects with less than 300 candidate seed voxels were excluded 

from the analysis. This was done to ensure that the seed voxels were visually driven. 

Next, using an unthresholded contrast of parameter estimates between ‘relevant and 

irrelevant faces’ and ‘relevant and irrelevant objects’, the 300 voxels most responsive 
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to faces within the FFA anatomical ROIs were selected for the FFA seed, and the  

300 voxels most responsive to objects within the LOC anatomical ROIs were selected 

for the LOC seed.

gPPI analysis was performed per subject and seed region separately, including an 

interaction term between the seed time series regressor (physiological term) and 

the task regressor (psychological term) at the subject-level GLM 215, separately for 

task relevant and irrelevant conditions, and also combining across tasks to increase 

statistical power. For combined conditions, the model design matrix for each subject 

included regressors for task relevant and task irrelevant faces, objects, letters, 

and false fonts collapsed across conditions (four regressors) as well as a regressor 

for targets (irrespective of their category), yielding five regressors in total. As for 

separated conditions, the model design matrix included regressors for task relevant 

and task irrelevant faces, objects, letters, and falsefonts (eight regressors) as well as a 

regressor for targets (irrespective of their category), yielding nine regressors in total. 

For each seed, group level analysis was performed using a cluster-based permutation 

test (preferred over the preregistered FDR correction. See supplementary section 12 

for a justification of this change) to evaluate the statistical significance of face > 

object contrast parameter estimates across subjects (p < 0.05; see supplementary 
section 12).

Putative NCC analyses

A series of conjunction analyses were performed on the fMRI data to identify a)  

areas responsive to task goal, b) areas responsive to task relevance, and c) areas 

putatively involved in the neural correlate of consciousness. We note that the 

contrasts proposed below might overestimate the neural correlates of consciousness 

and that the fast event-related design adopted here might be suboptimal to detect 

activity changes in the salience network 216, i.e., potentially underestimating some 

regions that might be involved in conscious processing. We therefore have adopted 

a conservative approach that distinguishes between areas that might participate in 

consciousness vs. those that definitely do not.

吀栀e conjunction de昀椀ning areas responsive to task goals was de昀椀ned as [TaskRelTar > bsl] 

& [(TaskRelNonTar = bsl) & (TaskIrrel = bsl)]. This contrast captures areas that 
show an increase of BOLD signal for targets but not for other stimuli. The 

following conjunction identified areas responsive to task relevance: [(TaskRelTar > bsl) 
& (TaskRelNonTar ≠ bsl)] & [TaskIrrel = bsl]. This contrast identifies areas 
displaying differential activity for all task relevant stimuli, but are insensitive to 

non-task relevant ones. Finally, the following conjunction was used to identify the 
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putative NCC areas: [(TaskRelNonTar (stim id) > bsl) & (TaskIrrel (stim id) > bsl)] OR 
[(TaskRelNonTar (stim id) < bsl) & (TaskIrrel (stim id) < bsl)], critically detecting 
areas that responsive to any stimulus category irrespective of task, with consistent 

activation or deactivation. Thus, this analysis casts a wide net to identify areas that 

can potentially be the neural correlates of consciousness, while excluding areas that 

do not respond to task relevant/irrelevant stimuli (meaning that areas that respond 

both to the task and to the content of perception are still included).

To compute conjunctions, we first ran a GLM (see above) corrected for multiple 

comparisons (Gaussian random-field cluster-based inference). Equivalence to 

baseline was established using a JZS Bayes Factor test, with a Cauchy prior (r scale 

value of 0.707). Evidence maps were thresholded at BF01 > 3. The thresholded z maps 

and the Bayesian evidence maps on the group level were used for the conjunction 

analysis. For conjunctions including an ‘unequal to’, a ‘logical and’ operation was 

used between the directional z maps, after thresholded maps were binarized. For 

the putative NCC contrast, conjunctions were performed separately for activations 

and deactivations, using a ‘logical and’ operator for the task relevant and irrelevant 

z maps. The resulting maps were combined using a ‘logical or’ operation to discard 

areas showing effects of opposite direction for task relevant and task irrelevant 

stimuli. This analysis was also done at the subject level, masked using the anatomical 

ROIs, to account for inter-subject variability. For each ROI, the proportion of subjects 

with voxels included in the conjunction is reported. The multivariate version of the 

putative NCC analysis was done using the thresholded statistical maps obtained 

from the whole-brain searchlight decoding based on a subject-level stimulus vs. 

baseline decoding accuracy maps (for details regarding the decoding approach used, 

see Decoding Analysis).
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Extended Materials
GNWT predictions IIT predictions

Prediction #1: Decoding analyses

(A1)  Cross-task generalization of decoding of 
ANY CATEGORY that showed decoding in 
the TR1 condition in ANY PREFRONTAL 
areas from Task irrelevant (TI) to Task 
relevant (TR) OR from TR to TI,  
during 300-500 ms post-stimulus onset

data taken from any time window)

(A2)  Decoding of ORIENTATION for ANY 
category in ANY PREFRONTAL area,  
during 300-500 ms post-stimulus onset

(A2)  Decoding of ORIENTATION, for ANY 
category in ANY POSTERIOR areas  
(data taken from any time window)

(B1)  NO Increase in decoding accuracy6 for ANY 
CATEGORY that showed decoding in the 
TR condition when adding non-specialized 
frontal areas (only for task irrelevant, data 

taken from any time window for posterior ROI  
and from 300-500 ms post-stimulus onset for 
frontal areas)

(B2)  NO Increase in decoding accuracy1 of 
ORIENTATION for ANY category that 
showed decoding when adding non-
specialized frontal areas (only for task 
irrelevant), data taken from any time window  
for posterior ROI and from 300-500 ms post-
stimulus onset for frontal areas)

A1&A2 should be TRUE for MEG OR iEEG B1&B2 should be TRUE for MEG OR iEEG

Prediction #2: Activation and representational similarity analyses

(A)  Phasic ignition in ANY PREFRONTAL area 
at stimulus ONSET (300-500 post onset) AND 
OFFSET (300-500 post offset) in TI for ALL 
stimulus durations for at least ONE category 
in at least ONE measure of activation (ERP, 
High gamma, alpha)

(A)  Content-speci昀椀c sustained activation 
(from 300 ms until the offset) in TI for 
ALL durations for at least ONE category 
in posterior cortical areas in at least ONE 
measure of activation (increased gamma, 
decreased alpha)

(B)  Phasic RSA during ONSET and OFFSET (300-
500 ms post stimulus onset/offset) in TI for 
1.0 and 1.5 durations for at least ONE content 
(category OR orientation OR identity) in any 
PREFRONTAL area

(B)  Sustained RSA (from 300 ms until the offset) 
in TI for 1.0 and 1.5 durations for at least 
ONE content (category OR orientation OR 
identity) in any POSTERIOR area (contingent 
on results of the blink control analysis)
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A should be TRUE for MEG OR iEEG A&B should be TRUE for MEG OR iEEG

Prediction #3: Synchronization analyses

(A)  Stronger synchronization between PFC and 
FFA for faces vs. objects during the 300-
500ms time window in ANY technique2, AND 
the STIMULUS difference should be larger 
than the TASK difference

(B)  Stronger sustained (from 300 ms until the 
offset) synchronization between (activated) 
V1/V2 and FFA for faces vs. objects for ALL 
durations in MEG/iEEG, AND the difference 
in the pattern of synchronization should be 
more consistent with the STIMULUS than 
with the TASK

(C)  Stronger synchronization between PFC and 
LOC for objects vs. faces during the 300-
500ms time window in ANY technique, AND 
the STIMULUS difference should be larger 
than the TASK difference

(D)  Stronger sustained (from 300 ms until the 
offset) synchronization between (activated) 
V1/V2 and LOC for objects vs. faces for ALL 
durations in MEG/iEEG, AND the difference 
in the pattern of synchronization should be 
more consistent with the STIMULUS than 
with the TASK

A OR B A OR B

Integration across predictions: 
Prediction#1 (Decoding) AND 
Prediction#2 (Activation) AND 
Prediction#3 (Synchronization)

Integration across predictions: 
Prediction#2 (Activation) AND 
Prediction#2 (RSA)  AND 
Prediction#3 (Synchronization)

Extended Table 2.1: Key Predictions and Integration of Evidence across Planned analyses

Key predictions of each theory and plan for integrating outcomes across the different brain recording modalities and 
analyses. Each prediction (Bolded titles, light gray cells) is broken down to sub-predictions, which are then integrated 
together to provide the 昀椀nal conclusion per prediction (dark gray rows, appearing at the bottom for each prediction). 
Bolded predictions are the ones appearing on Figure 2.7 on the Preregistration, and are de昀椀ned as the critical 
predictions for evaluating the theories. Numbered sub-predictions are the ones considered when integrating across 
sub-predictions to reach the 昀椀nal conclusion of each prediction (black rows). Finally, light red row denotes vertical 
integration across all predictions, to form the 昀椀nal conclusion for each theory based on its critical predictions.
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Extended Data Figure 2.1: Prediction#1 Decoding of conscious content for letters, false fonts, faces 

and objects

a.  fMRI decoding accuracies (letters vs. false fonts) using a searchlight approach, collapsed across the three stimulus 
durations. Left: decoding for classi昀椀ers trained on task relevant and tested on task irrelevant stimuli (purple). 
Right: decoding for classi昀椀ers trained on task irrelevant and tested on task relevant stimuli (orange-red). Regions 
showing signi昀椀cantly above-chance (50%) decoding accuracies are indicated by the outlined colored regions on the 
inflated cortical surfaces (top: left/right lateral views; bottom: right/left medial views). 

b.  iEEG decoding accuracies (letters vs. false fonts) within the theory-relevant ROIs collapsed across stimulus 
duration. Left: decoding for classi昀椀ers trained on task relevant and tested on task irrelevant stimuli (purple). Right: 
decoding for classi昀椀ers trained on task irrelevant and tested on task relevant stimuli (orange-red). ROIs showing 
signi昀椀cantly above-chance (50%) decoding are displayed on inflated surface maps from a left lateral view (top left), 
posterior view (top right) and left medial view (bottom).

c.  MEG cross-task decoding of category for letter vs false font. (orange-red: train on test irrelevant, test on task 
relevant; purple: train on task relevant, test on task irrelevant). Left: results in posterior ROIs. Right: results in 
prefrontal ROIs. Error bars depict 95% CI estimated across subjects.

d.  iEEG cross-task temporal generalization of category decoding (letters vs. false fonts) classi昀椀ers trained on 
task relevant stimuli and tested on task irrelevant stimuli. 吀栀e three stimulus durations are plotted in columns 
(left: 0.5 s; center: 1.0 s; right: 1.5 s) and the two theory ROIs in rows (top: posterior ROIs; bottom: prefrontal 
ROIs). Signi昀椀cantly above-chance (50%) decoding is indicated by the outlined pink-red regions in the temporal 
generalization matrices.

e.  iEEG cross-task temporal generalization of category decoding (faces vs. objects) in the opposite direction as in 
Figure 2.2b (classi昀椀ers trained on task relevant stimuli and tested on task irrelevant stimuli). Conventions as in c.

f.  iEEG cross-task temporal generalization of category decoding (faces vs. objects), Classi昀椀ers are trained on task 
relevant and tested on task irrelevant stimuli. Pseudotrials are used to boost decoding accuracy. Conventions as in c.

g.  iEEG decoding accuracies within the theory-relevant ROIs using pseudotrial aggregation to boost decoding 
accuracies, collapsed across stimulus duration. Conventions as in b.
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Extended Data Figure 2.2: Within-task temporal generalization of decoding of stimulus category  

(faces vs. objects).

a.  iEEG decoding accuracies for pattern classi昀椀ers trained and tested on task relevant stimuli. As in Figure 2.2b, the 
three stimulus durations are plotted in columns (left: 0.5 s; center: 1.0 s; right: 1.5 s) and the two theory ROIs in 
rows (top: posterior ROIs; bottom: prefrontal ROIs). Signi昀椀cantly above-chance (50%) decoding is indicated by the 
outlined pink-red regions in the temporal generalization matrices.

b.  iEEG decoding accuracies for pattern classi昀椀ers trained and tested on task irrelevant stimuli. Same plotting 
conventions as in panel a.

c.  MEG within task decoding of category for faces vs objects (red-task relevant; purple-task irrelevant). Left: results in 
posterior ROIs. Right: results in prefrontal ROIs. 

d.  MEG within task decoding of category for letters vs false fonts (red-task relevant; purple-task irrelevant). 
Left: results in posterior ROIs. Right: results in prefrontal ROIs. Error bars in c and d depict 95% CI estimated 
across subjects.

e.  fMRI decoding using a searchlight approach, collapsed across the three stimulus durations. Left: decoding 
accuracies for pattern classi昀椀ers trained and tested on task relevant stimuli (orange-red). Right: decoding accuracies 
for pattern classi昀椀ers trained and tested on task irrelevant stimuli (purple). Regions showing signi昀椀cantly above-
chance (50%) decoding accuracies are indicated by the outlined colored regions on the inflated cortical surfaces  
(top: left/right lateral views; bottom: right/left medial views). 

f.  iEEG decoding accuracies within the theory-relevant ROIs, collapsed across stimulus duration. Left: decoding 
for classi昀椀ers trained and tested on task relevant stimuli (orange-red). Right: decoding for classi昀椀ers trained and 
tested on task irrelevant stimuli (purple). ROIs showing signi昀椀cant above-chance (50%) decoding are displayed on 
inflated surface maps from a left lateral view (top left), posterior view (top right) and left medial view (bottom).
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Anatomical ROIs 

(Destrieux atlas)

Irrelevant-

Relevant

Relevant-

irrelevant

Irrelevant Relevant

n voxels % voxels n voxels % voxels n voxels % voxels n voxels % voxels

Posterior ROI

G_and_S_
occipital_inf

1868 93 1866 93 1868 93 1876 93

G_oc-temp_lat-
fusifor

2549 98 2550 98 2542 98 2561 99

G_occipital_
middle

1979 80 1952 79 1909 76 2096 85

S_oc_middle_
and_Lunatus

1009 100 1008 100 1000 100 1010 100

G_cuneus 600 24 542 22 587 23 1233 49

G_occipital_sup 1351 69 1295 66 1299 66 1302 66

G_oc-temp_med-
Lingual

1403 47 1374 46 1375 46 1499 50

G_oc-temp_med-
Parahip

430 30 408 29 432 31 521 37

G_temporal_inf 686 47 692 47 756 52 859 59

Pole_occipital 1952 80 1934 80 1870 77 1968 81

Pole_temporal 0 0 0 0 0 0 15 2

S_calcarine 448 18 427 18 395 16 657 27

S_intrapariet_
and_P_trans

261 7 287 8 799 21 1670 44

S_oc_sup_and_
transversal

1163 82 1166 82 1225 87 1230 87

S_temporal_sup 1100 22 944 19 820 17 2264 46

PFC ROI

G_and_S_cingul-
Mid-Post

0 0 0 0 0 0 0 0

Lat_Fis-ant-
Horizont

0 0 0 0 0 0 1250 23

Lat_Fis-ant-
Vertical

6 1 1 0 3 1 36 8

G_and_S_cingul-
Ant

0 0 0 0 5 0 278 8

G_and_S_cingul-
Mid-Ant

0 0 0 0 0 0 200 1



| 101An adversarial collaboration to critically evalutate theories of consciousness

2

Anatomical ROIs 

(Destrieux atlas)

Irrelevant-

Relevant

Relevant-

irrelevant

Irrelevant Relevant

n voxels % voxels n voxels % voxels n voxels % voxels n voxels % voxels

G_front_inf-
Opercular

134 6 65 3 98 4 436 20

G_front_inf-
Orbital

0 0 0 0 0 0 34 5

G_front_inf-
Triangul

142 9 68 4 130 78 608 37

G_front_middle 50 1 15 0 154 3 1301 21

S_front_middle 0 0 4 0 29 1 86 4

S_front_sup 0 0 0 0 0 0 300 8

S_front_inf 164 8 89 4 184 9 1022 49

Extended Table 2.2: Decoding of faces vs. category in the theory-de昀椀ned ROIs

吀栀e table presents the number of voxels in each theory-de昀椀ned ROI that were detected in the searchlight decoding 
of category (faces vs. objects). 吀栀e results are presented separately for cross-task decoding (i.e., when classi昀椀ers are 
trained on the task irrelevant trials and tested on task relevant ones, or vice versa), as well as for within task decoding 
(irrelevant and relevant conditions). 
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Extended Data Figure 2.3: Control analyses for the decoding prediction.

a. Left panel: iEEG decoding results of orientation (left vs. right vs. front view faces) within the theory ROIs over 
time as in Figure 2.2, using pseudotrials akin to the MEG analysis. Right panel: Regions with electrodes showing 
above-chance (33%) accuracies are indicated in outlined blue on the inflated surfaces (left: left lateral view; middle: 
posterior view; right: left medial view). Error bars depict 95% CI.

b.  Two analyses were performed to evaluate potential leakage in the MEG decoding results. 吀栀ese analyses were 
conducted on independent data from the optimization phase (N=32). Top panel: Stimulus-evoked response in face 
task relevant trials combined across three stimulus durations were investigated at different latencies and projected 
on the inflated surfaces. Blue and green ellipses denote posterior and prefrontal areas, respectively. Activity in 
posterior areas showed the highest peak ~0.1-0.2 s while prefrontal areas showed the highest peak in a later time 
window ~0.2-0.3 s. 吀栀ese differential peak timings serve as evidence against the leakage interpretation. Bottom 
panels: Face vs. object decoding performance in task relevant trials combining trials across the three durations 
was investigated separately within parcels in parietal and PFC to evaluate the possibility of a posterior to anterior 

decoding gradient. Left panel: Average face vs. object decoding accuracy in an early time window (0.25-0.5 s) 
projected on two differently inflated surfaces to better depict gyri and sulci in parietal and prefrontal areas. Right 
panel: Time-resolved decoding performance in parietal and frontal parcels. Decoding performance is highest in 
posterior areas and lowest in anterior areas, with fairly similar time courses, consistent with the possibility of 

leakage in decoding from posterior to anterior areas. 吀栀is effect is better appreciated when considering the high 
decoding of faces vs. objects in motor related areas, with a gradient from postcentral to precentral sulcus. Error bars 

depict 95% CI estimated across participants.
c.  Region of interest used in the decoding analysis including and excluding PFC areas. 

d.  Decoding analysis including or excluding prefrontal areas alongside posterior areas to evaluate changes in 

decoding performance. IIT predicts that including PFC to posterior areas should have either no effect or decreased 
decoding performance (Posterior + Prefrontal: blue; posterior only: red). iEEG decoding of faces vs. objects (left), 
letters vs. false fonts (middle) and face orientation (right). Lines underneath the decoding functions indicate time-
periods showing signi昀椀cantly worse decoding accuracies when including PFC. Error bars depict 95% CI.

e.  MEG decoding results, same order as iEEG. Error bars depict 95% CI estimated across participants.
f.  fMRI decoding of faces vs. objects. Histogram shows the differences in classi昀椀cation including and excluding frontal 

areas. iEEG and MEG results consistently show similar (or worse) decoding performance when including prefrontal 
areas. fMRI accuracies of PFC + Posterior show slight increase of 1.2% on average compared to posterior accuracies, 
observed in 56% of the subjects. However, it is important to note that these increases are not considered robust due 
to several factors, including the small magnitude of the accuracy difference and the fact that this slight increase was 
observed only in the combined features analysis and not the combined models’ analysis (see Methods). 吀栀e negative 
outcomes observed in iEEG and MEG data support our interpretation of the fMRI results.
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Channel x y z Destrieux ROI

SE107-O2PH16 -0.03618 -0.08678 0.000733 S_oc_middle_and_Lunatus

SE120-T3bOT10 -0.05876 -0.06964 -0.02078 G_oc-temp_lat-fusifor

SE120-T3bOT9 -0.05712 -0.0689 -0.02016 G_oc-temp_lat-fusifor

SF102-LO1 -0.01976 -0.10359 0.001174 Pole_occipital

SF102-LO2 -0.02301 -0.09792 0.005426 Pole_occipital

SF103-PIT1 -0.04072 -0.06213 -0.02039 G_oc-temp_lat-fusifor

SF103-PIT2 -0.04156 -0.04393 -0.02499 G_oc-temp_lat-fusifor

SF104-LO1 -0.01396 -0.10275 0.008659 Pole_occipital

SF104-LO2 -0.01663 -0.10338 0.005258 Pole_occipital

SF109-IO3 0.006178 -0.07586 -0.00279 G_oc-temp_med-Lingual

SF109-IO4 0.005093 -0.07816 -0.0047 G_oc-temp_med-Lingual

SF113-RIT1 0.038119 -0.04974 -0.02225 G_oc-temp_lat-fusifor

SF113-RIT2 0.040545 -0.04845 -0.02346 G_oc-temp_lat-fusifor

SE107-O1b3 -0.01196 -0.06305 -0.00094 G_oc-temp_med-Lingual

SE107-O2PH14 -0.03383 -0.08203 6.93E-05 S_oc_middle_and_Lunatus

SE107-O2PH15 -0.0354 -0.08519 0.000512 S_oc_middle_and_Lunatus

SE108-O2b14 -0.0294 -0.09064 -0.00472 S_oc_middle_and_Lunatus

SE120-O2*5 -0.04225 -0.09646 -0.00451 G_and_S_occipital_inf

SE120-O2*6 -0.04354 -0.09769 -0.00357 G_and_S_occipital_inf

SE120-T3c6 -0.05264 -0.08681 0.025426 S_temporal_sup

SF104-LO3 -0.02255 -0.10253 0.000551 Pole_occipital

SF109-DL4 0.022039 -0.07051 0.008421 S_calcarine

SF109-DL5 0.02433 -0.07204 0.008081 S_calcarine

SF109-G45 0.04645 -0.08224 -0.00242 G_occipital_middle

SE108-O2b13 -0.02856 -0.08853 -0.00505 G_and_S_occipital_inf

SE110-O2*10 0.036288 -0.1042 -0.00079 G_and_S_occipital_inf

SE110-O2*7 0.031792 -0.09698 -0.00721 S_oc-temp_lat

SE110-O2*8 0.03359 -0.09987 -0.00464 G_and_S_occipital_inf

SE110-O2*9 0.035389 -0.10276 -0.00207 G_and_S_occipital_inf

SE120-O1b10 -0.02828 -0.11893 0.004408 Pole_occipital

SF102-LO3 -0.0356 -0.08904 -0.00424 G_occipital_middle

SF107-O1 0.024693 -0.10108 -0.00812 Pole_occipital

SF107-O2 0.027381 -0.09982 -0.00773 Pole_occipital

SF107-O3 0.042207 -0.08618 -0.00419 G_occipital_middle

SF113-RO1 0.034984 -0.08617 0.010333 G_occipital_middle

SF113-RO2 0.040244 -0.08034 0.011692 G_occipital_middle

Extended Table 2.3: Electrode locations found to be signi昀椀cant in the LMM analysis

Electrodes location in MNI coordinates, as well as in the corresponding parcellations of the Destrieux Atlas,  
Wang Atlas and Desikan Atlas.
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Wang ROI Desikan ROI Model

TO1 ctx-lh-lateraloccipital IIT x Cate

Unknown ctx-lh-fusiform IIT x Cate

Unknown ctx-lh-fusiform IIT x Cate

V2d ctx-lh-lateraloccipital IIT x Cate

V2d ctx-lh-lateraloccipital IIT x Cate

Unknown ctx-lh-fusiform IIT x Cate

Unknown ctx-lh-fusiform IIT x Cate

V2d ctx-lh-lateraloccipital IIT x Cate

V2d ctx-lh-lateraloccipital IIT x Cate

V2v ctx-rh-lingual IIT x Cate

V2v ctx-rh-lingual IIT x Cate

Unknown Cerebellum-Cortex IIT x Cate

Unknown Cerebellum-Cortex IIT x Cate

Unknown ctx-lh-lingual GNW

LO2 ctx-lh-lateraloccipital GNW

LO2 ctx-lh-lateraloccipital GNW

LO1 ctx-lh-lateraloccipital GNW

SE120-O2*5 Unknown ctx-lh-lateraloccipital GNW

SE120-O2*6 Unknown ctx-lh-lateraloccipital GNW

Unknown ctx-lh-inferiorparietal GNW

V2d ctx-lh-lateraloccipital GNW

Unknown ctx-rh-pericalcarine GNW

Unknown ctx-rh-pericalcarine GNW

Unknown ctx-rh-lateraloccipital GNW

Unknown ctx-lh-lateraloccipital IIT

SE110-O2*10 Unknown ctx-rh-lateraloccipital IIT

SE110-O2*7 Unknown ctx-rh-lateraloccipital IIT

SE110-O2*8 Unknown ctx-rh-lateraloccipital IIT

SE110-O2*9 Unknown ctx-rh-lateraloccipital IIT

V2d ctx-lh-lateraloccipital IIT

LO2 ctx-lh-lateraloccipital IIT

Unknown ctx-rh-lateraloccipital IIT

Unknown ctx-rh-lateraloccipital IIT

Unknown ctx-rh-lateraloccipital IIT

V3B ctx-rh-lateraloccipital IIT

LO2 ctx-rh-inferiorparietal IIT

 Electrode locations found to be signi昀椀cant in the LMM analysis

Electrodes location in MNI coordinates, as well as in the corresponding parcellations of the Destrieux Atlas, 
Wang Atlas and Desikan Atlas.
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Extended Data Figure 2.4: Maintenance of conscious content over time for stimulus categories, identity 

and orientation.

Cross temporal representational similarity matrices across all electrodes in posterior cortex for letters vs. false 

fonts (upper row), identity (middle) and orientation (bottom) for posterior (upper half) and PFC (lower half) ROI, 
respectively. Contours in the matrices represent statistical signi昀椀cance, established using cluster-based permutation 
tests (upper tail test at alpha=0.05). Clear separability between letters and false fonts in posterior cortex is illustrated 
using Principal Component Analysis at 0.3 s irrespective of the task (left – task relevant, right - task irrelevant). 
Separability was mostly sustained in the task relevant condition, but not from ~0.95 to 1.4 s. In the task irrelevant 
condition, however, separability was statistically signi昀椀cant for a brief period in the beginning. Identity information 
was statistically signi昀椀cant for letters and false fonts, but not faces. Identity information was not sustained for the 
entire stimulus duration (however, z-scores were elevated until 1 s, hinting at a limitation in statistical power). No 
statistically signi昀椀cant orientation information was evident for any of the categories. None of the contrasts yielded 
statistically signi昀椀cant results in the PFC ROI.
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Extended Data Figure 2.5: Control analysis for the interareal communication prediction

a.  iEEG Pairwise phase consistency (PPC) analysis of task irrelevant trials did not reveal any signi昀椀cant category-
selective synchrony cluster neither in the posterior ROI nor in the PFC ROI after removing the evoked response. 
Colorbars represent the change in PPC (face-object trials) for each node (face-selective, object-selective). Positive 
values reflect stronger connectivity for faces. Negative values reflect stronger connectivity for objects. 

b.  MEG PPC analysis of task irrelevant trials did not reveal any signi昀椀cant category-selective synchrony  
cluster neither in the posterior ROI nor in the PFC ROI after removing the evoked response. 吀栀e same conventions 
of Figure 2.8a are used here.

c.  iEEG Dynamic functional connectivity (DFC) analysis of task irrelevant trials without removing the evoked 
response reveals signi昀椀cant content-selective connectivity between object-selective electrodes and V1/V2 electrodes 
(top-right), reflected as broadband (25-125 Hz) decrease in the change in DFC (e.g., faces < objects). Similar 
broadband content-selective changes in DFC (faces > objects) were observed for face-selective electrodes in PFC 
(bottom-left). Smaller, yet signi昀椀cant effects, were detected for connectivity between face-selective electrodes and 
V1/V2 electrodes (top-left) and for object-selective electrodes and PFC electrodes (bottom-right). Conventions as in 
Figure 2.8a.

d.  MEG DFC analysis of task irrelevant trials without removing the evoked response reveal signi昀椀cant content-
selective synchrony between the face-selective GED 昀椀lter node and both V1/V2 (top-left) and PFC (bottom-left). 
吀栀is is reflected in an increase in low-frequency connectivity (<25 Hz) combined with a decrease in high-frequency 
connectivity (25-100 Hz). Smaller yet signi昀椀cant effects were detected for the object-selective GED 昀椀lter (right). 
Conventions as in Figure 2.8a.

e.  Generalized psychophysiological interactions (gPPI) task-related connectivity analysis of task irrelevant (left) 
and task relevant (right) conditions revealed weak clusters of content-selective connectivity when FFA is used as 
the analysis seed (p < 0.01, uncorrected). Common signi昀椀cant regions showing task related connectivity in task 
irrelevant, task relevant, and combined conditions (Figure 2.4) include V1/V2, right intraparietal sulcus (IPS), and 
right inferior frontal gyrus (IFG). 

f.  gPPI task-related connectivity analysis of task irrelevant (left), task relevant (middle), and combined conditions 
revealed weak clusters of content-selective connectivity when lateral occipital complex (LOC) is used as the analysis 
seed (p < 0.01, uncorrected). 吀栀e results of the gPPI showed that there are no common signi昀椀cant regions showing 
task related connectivity in task irrelevant, task relevant, and combined conditions.

 





Chapter 3

Investigating timing of conscious 

experience using a dual-task and 

quanti昀椀ed introspection
吀栀is chapter has been submitted to elife:
Investigating timing of conscious experience using a dual-task paradigm and quanti昀椀ed 
introspection

Alex Lepauvre1, Micha Engeser1, Stanislas Dehaene, Lucia Melloni

1 Shared 昀椀rst authorship. My contribution to this project entails Conceptualization, Data Curation, 

Formal analysis, Methodology, Project Administration, Software, Supervision, Validation, 

Visualization, Writing of the original draft, review and editing as de昀椀ned by the credit taxonomy 

(https://credit.niso.org/)

Speci昀椀cally, I designed the experiment together with M.E. under the supervision of S.D. and L.M., 

supervised M.E. for collection and analysis of behavioral data, curated and validated the behavioral 

and eyetracking data, conducted some of the behavioral data and all eyetracking and iEEG data and 

wrote the manuscript together with M.E.



112 | Chapter 3

Abstract

What are the temporal dynamics of conscious perception? Intuitively, we believe we 

continuously experience the external world. Competing theories attribute conscious 

experience to different neural mechanisms, some emphasizing the prefrontal 

cortex (PFC). However, recent studies have shown that PFC activation does not 

reflect stimulus duration, challenging theories that assign the PFC a central role in 

consciousness, given the assumption that longer stimulus duration corresponds to 

prolonged conscious experience. This study tests that assumption by evaluating the 

impact of visual stimuli on response times in a dual-task psychological refractory 

period (PRP) paradigm and subjective timing through introspection. We found that: 

(1) visual stimuli gained conscious access for a fixed duration, regardless of actual 

duration; (2) this access occurred even for task-irrelevant stimuli, though it was 

extended for task-relevant ones; and (3) at stimulus offset, conscious processing 

weakened. Additionally, participants drastically underestimated delays caused by the 

PRP effect, further suggesting that conscious experience does not directly need to 

track stimulus dynamics. A reanalysis of Cogitate consortium data revealed that PFC 

decoding dynamics followed similar time courses to those predicted by PRP measures. 

We propose that the PRP effect is a reliable tool to track conscious access without the 

need for overt reports, offering new insights into the timing of consciousness.
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Introduction

Do we always consciously perceive what is right in front of our eyes, at the moment 

when it occurs? Empirical evidence suggests that the answer is more complex than it 

might seem. For example, when we blink, visual stimulation is briefly interrupted by our 
eyelids, yet we are usually unaware of these interruptions unless we consciously focus on  

them 217. Conversely, during the attentional blink or inattentional blindness, high-contrast 

stimuli appear, but participants report not seeing them because they are distracted by 

another task 41,55,84,158,218–221. Conscious perception may also be severely delayed, as in the 

psychophysical refractory period 153,160,222,223, or it might be rescued by the presentation of a 

late attentional “retro-cue” 159. In general, the timing and even the occurrence of conscious 

experience may not coincide with the timing of external sensory stimulation.

These considerations are essential in interpreting the results of recent studies 

investigating the neural dynamics associated with sustained stimulus presentation. 

Several studies have shown that when highly visible stimuli are presented for varying 

durations (0.3 to 1.5 seconds), sensory areas track stimulus duration, while the 

prefrontal cortex (PFC) only shows transient activation following stimulus onset, with 

no further activation correlating with stimulus duration 113,127,224. Notably, one study 

found an activation increase following stimulus offset in fronto-parietal electrodes 126. 

However, the design of this study differed from the others as participants were 

required to memorize the presented stimuli, and all stimuli were presented for the 

same duration (1.5 s). Accordingly, the offset activation may reflect memory-related 

processes or the predictability of stimulus disappearance in that specific study.

Super昀椀cially, the absence of a consistent neural signature in the PFC that tracks 
the persistence of perceptual content challenges theories like the Global Neuronal 

Workspace 吀栀eory (GNWT), which assumes that consciousness arises from the 
broadcast of information in a globally accessible workspace located in a fronto-

parietal network 25. According to GNWT, the maintenance of conscious access 

depends on a non-linear, ignition-like activity in a fronto-parietal network signalling 

new information entering the workspace at stimulus onset and offset of stimuli  
(if this offset is consciously detected) 96. Critically, GNWT does not assume that the neural 

workspace remains active throughout a durable conscious experience, but at moments 

when conscious refreshes occur, thereby aligning to a reconstructive view of temporal 

experience 225. During stable or predictable periods, no further refresh is needed, allowing 

the workspace to be occupied by other contents. 吀栀is maintenance occurs in an activity-
silent state, supported by short-term synaptic changes, with only occasional bursts of 

reactivation for conscious retrieval.
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However, as noted earlier, evidence suggests that conscious access can be decoupled 

from stimulus timing, such that neither the onset nor the duration of this ignition 

have to be locked to stimulus properties. According to GNWT, the onset and duration 

of conscious experiences are dictated by the availability of the global neuronal 

workspace (GNW) rather than by external events. Furthermore, the persistence of a 

stimulus in consciousness does not necessarily mean that the activity is continuously 

sustained – it could simply be transiently activated to encode which stimulus was 

presented, together with a tag that encodes its onset and duration 225. While an 

ignition needs to occur when contents enter into consciousness, typically 200-300 

ms after stimulus onset, this activation (1) can be delayed when we are distracted 

by another task, and (2) may quickly return to baseline as the content is maintained 

in an activity-silent state. In other words, sustained activity is only optional: when 

watching a picture, we may effortfully continue to attend to it throughout its 

presentation duration, or we may simply encode its presence and timing, and let 

our thoughts wander elsewhere. In the latter case, when the stimulus disappears, 

if this disappearance is detected, the workspace would then have to refresh to 

change the temporal tag, leading to an ignition at stimulus offset. However, again, 

this would only occur if participants attend to stimulus duration and therefore to 

stimulus offset.

In summary, GNW theory does not predict persistence of GNW activation throughout 

a stimulus’ duration, as this would unnecessarily tie up the GNW bottleneck. Instead, 

it predicts an ignition of the fronto-parietal network at the onset of the conscious 

experience and at its offset if and only if this experience is attended to and accordingly 
refreshed. Previous studies did not explicitly measure the persistence of conscious 

experience to avoid introducing task demands and attention to the temporal aspect 

of the stimuli 113,126,127,224. 吀栀e default assumption was that stimuli were consciously 
experienced throughout their duration because they were suprathreshold, presented 

in isolation and 昀椀xated upon. However, since conscious access is heavily dependent on 
attention, conscious perception may have been only transient after stimulus onset. If 
so, the transient PFC activation as well as the lack of offset ignition observed in previous 
studies would still align with GNWT’s assertion that fronto-parietal ignition is necessary 

for consciousness. 吀栀us, rather than challenging GNWT, the lack of association between 
PFC activation and stimulus duration might suggest that conscious experience was 

decoupled from visual presentation, exactly as GNWT predicts 224.

Here, using behavioural experiments, we test the hypothesis that the PFC activation 

observed by the Cogitate Consortium to visual stimuli of variable duration may 

have reflected the timing of participants’ awareness. Using the very same stimuli, 
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our preregistered study aims to clarify this by directly measuring the duration of 

their conscious processing at stimulus onset and offset (https://osf.io/krjh7) – which 
according to GNWT is equivalent to the duration of their occupation of the Global 

Workspace. To do so, we relied on the psychological refractory period (PRP) effect 153. 

This effect occurs when two tasks are presented in rapid succession, leading to 

a delay in reaction time (RT) to the second stimulus (T2) with decreased interval 

between the first and second task, reflecting a bottleneck in cognitive processing 223. 

According to GNWT, this bottleneck is imposed by the GW, whereby the occupation 

of the workspace by a given conscious content prevents other contents from reaching 

consciousness 153,222,226 which implies that conscious access operates in a serial manner.

Evidence supporting this interpretation comes from time-resolved electrophysiological 

studies, which show that early sensory activation is unaffected by changes in stimulus 

onset asynchrony (SOA) between competing stimuli, while later processing stages are 

delayed when SOA is shorter 151,160,227–230. Similarly, fMRI studies reveal that frontal 

and parietal regions exhibit delayed activity as SOA decreases 160,229,231. These delays 

in PFC activation suggest that slower reaction times to the second task (RT2) occur 

because conscious access to the second stimulus is delayed due to the serial nature 

of conscious processing. This interpretation is supported by studies using quantified 

introspection, where participants provided subjective reports of when they became 

aware of stimuli. These studies show that while participants can accurately report 

their decision times, they are unaware of the large delays caused by the PRP  

effect 153,222, mistakenly believing they became conscious of the stimuli immediately. 

This introspective blindness supports the notion that the PRP effect reflects a delay in 

the conscious processing of the second stimulus, which in turn delays reaction time.

Building on the assumption that GW engagement imposes a cognitive bottleneck, 

we used the PRP effect as a time-resolved marker for conscious access to evaluate 

whether and when participants consciously experienced the onset, duration, and 

disappearance of a visual stimulus. We did this by measuring the response time to 

auditory stimuli presented at various SOAs relative to the onset and offset of visual 

stimuli. In line with Global Neuronal Workspace Theory (GNWT), we preregistered 

a series of hypotheses (https://osf.io/krjh7): (1) conscious access to an event should 

induce a PRP effect on a subsequent stimulus; (2) the duration of the PRP effect 

should be independent of the visual stimulus duration; and (3) there should be no 

PRP effect at the stimulus offset. Based on previous studies 113,126,127,224 showing a 

lack of prefrontal cortex (PFC) activation at stimulus offset, we hypothesized that 

participants might only experience the stimulus transiently and remain unaware of 

its disappearance, leading to a PRP effect at stimulus onset but not at offset.
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Figure 3.1: Overview of experimental design and predictions

a.  Timing of the task: Visual stimuli (T1) were always presented 昀椀rst, at one of three possible durations (500, 1000 
and 1500ms) followed by a 昀椀xation cross. Auditory stimuli (T2) were presented at four different stimulus onset 
asynchronies (SOA: 0, 116, 232, 466ms) relative either to T1 stimulus onset (red) or to its offset (blue). 

b.  Tasks: For the visual T1 task, at the beginning of each block, two targets were presented (a face and an object or a 
letter and a symbol). Participants were asked to press a button whenever that target appeared. Stimuli of the same 
category as targets are labelled as task-relevant (green), stimuli of a different category as task-irrelevant (brown). 
For the auditory T2 task, participants were asked to discriminate high and low tone using two distinct buttons.

c.  Predictions: RT to T2 stimuli (RT2) should decrease with increased SOA when T2 are presented following T1 onset 
(PRP effect, red) but not when following T1 offset (blue). 

d.  Introspective reports: In experiment 2, after each trial, introspection probes were also presented, asking participants 
to rate their decision time for T1 (left) and T2 (right).

Our experiment also allowed us to investigate whether a PRP effect occurs even when 

the first stimulus is task-irrelevant and does not require an overt report. According 

to GNWT, this effect would support the serial nature of conscious processing. Since 

participants do not actively respond to the task-irrelevant stimulus, the collision 

between tasks would primarily affect central cognitive resources rather than motor 

preparation. In this condition, the Cogitate Consortium observed a small but 

significant PFC ignition, of fixed duration unrelated to stimulus duration. We argue 

that this reflected a brief moment of conscious experience of the task-irrelevant 

stimulus, and therefore predict that those stimuli should impose a similar short-

lived, duration-independent PRP delay.
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Finally, using quantified introspective reports of decision time, we aimed to 

replicate previously observed introspective blindness to the PRP effect even when 

no overt report is required for the T1 task. This allowed us to assess whether dual-

task interference occurs without active task performance, reinforcing the GNWT 

hypothesis that the PRP effect represents a bottleneck of conscious processing. 

Additionally, the use of the PRP effect provided a means to probe the occupancy 

of the GW without drawing participants' attention to the temporal manipulation. 

This addresses critiques that PFC findings supporting GNWT may confound task 

demands and attention with consciousness itself.

Results

Experiment 1: visual events inducing a PRP effect
Our preregistered study builds on the experimental design and stimuli used by the 

Cogitate consortium, which demonstrated an absence of a neural offset response 

in the PFC using both invasive electrophysiology (iEEG) and source-localized 

magnetoencephalographic (MEG) signals. Our goal was to evaluate whether the 

appearance and disappearance of visual stimuli, presented for different durations, 

would lead to a PRP effect in the reaction time of a subsequent auditory stimulus. 

This allowed us to examine the relationship between conscious access to visual events 

and the PRP effect, particularly in relation to stimulus offset.

Our design consisted of a dual-task combining a visual go/no-go target detection 

task (Task 1, T1) and a pitch discrimination task (Task 2, T2). In T1, participants 

were shown visual stimuli (faces, objects, letters and false-fonts) for three durations  

(500, 1000, and 1500 ms, see fig. 3.1A). They were required to detect rare target 

stimuli (~11% of trials) from two categories (either a face and an object or a letter 

and a false-font) within each block. Non-target stimuli from the same category as 

the target were considered task-relevant (T1 relevant); while non-target stimuli from 

a different category were considered task-irrelevant (T1 irrelevant). In T2, high and 

low-pitch tones were presented at four different stimulus onset asynchrony (SOAs: 

0, 116, 232, 466 ms) relative to either the onset or the offset of T1 visual stimulus. This 

setup allowed us to determine whether either event (onset or offset) triggered a PRP 

effect. Throughout the experiment, we collected motor responses and eye-tracking 

data to monitor participants’ performance.

Following our preregistered protocols, we first confirmed that participants (N=21) 

performed well on both the visual (T1) and auditory tasks (T2). As expected, task 
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performance was high, with participants achieving 94.60% accuracy (SD = 3.00) in  

T1 and 94.64% accuracy (SD = 5.11) in T2 (see fig. 3.S1). No participant met our exclusion 

criterion (<80% hits or >20% false alarms in T1, <80% accuracy in T2). Eye-tracking 
data showed that participants consistently maintained fixation on the stimuli, 

spending 89% (± 15%) of their time within 6° of visual angle from its centre until  
2.0 seconds after stimulus onset (fig. 3.S1).

We aimed to test the GNWT prediction about which events should trigger a PRP 

effect. According to GNWT, the PRP effect reflects the serial nature of conscious 

processing and indicates whether an event was consciously accessed. Since all T1 

target stimuli required a button-press, we inferred that they were all consciously 

processed, predicting a PRP effect at T1 stimulus onset. This prediction aligns with 

previous findings of PFC ignition following the visual stimulus appearance 113,126,127,232.

We also predicted a PRP effect for non-target task-relevant stimuli, as the decision 

to withhold a button press still requires conscious processing. Furthermore, given 

that task demands likely maintain the workspace activated for a longer duration, 

we predicted a longer PRP effect for task-relevant stimuli compared to task-

irrelevant ones.

Additionally, we predicted no PRP effect at stimulus offset, as this event is 

uninformative and irrelevant, meaning that subjects would not need to attend to 

it or consciously register the stimulus disappearance. This prediction addresses a 

challenge to GNWT posed by earlier studies that did not observe PFC ignition during 

stimulus offset. Superficially, the absence of ignition at stimulus offset appears 

to contradict the GNWT claim that PFC ignition is necessary for conscious access. 

However, if in fact subjects were not consciously aware of the stimulus offset, the 

lack of ignition would be entirely consistent with GNWT. These predictions were 

preregistered before the study (https://osf.io/krjh7).

To evaluate whether visual events (T1) affected the processing of auditory stimuli 

(T2), we analysed participants’ reaction time to T2 (RT2) as a function of the interval 

between T1 and T2. We used a generalised linear mixed model (GLMM) to model 

participants' reaction times to T2 (RT2) as a function of the SOA, the relative timing 

of T2 (with respect to T1 onset and offset), and the relevance of T1 (task-relevant and 

task-irrelevant stimuli only). Due to the small number of T1 target trials (~11 %) and 

the requirement of an overt response in those cases; we excluded these trials from the 

main analysis and modelled them separately.
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In T1 target trials, we observed a typical PRP effect: reaction times to T2 (RT2) 

decreased sharply as a function of the SOA of T2, locked to T1 onset (χ²(3) = 362.47,  
p <.001, see fig. 3.2a, red lines in left panel, table 3.1, and 3.S7). This interference was 
so pronounced that the effect lasted longer than the duration of T1. A similar PRP-like 

slowing effect was present for T2 locked to T1 offset. Yet, the PRP effect significantly 

decreased in magnitude with longer T1 durations (500 ms offset locked: χ²(3) = 111.64, 
p <.001, 1000 ms: χ²(3) = 37.16, p <.001, 1500 ms: χ²(3) = 12.01, p =.007, see table 3.S7 

and fig. 3.2A). This suggests that for shorter T1 durations, the PRP effect at stimulus 

offset may be influenced by residual effects from T1 onset processing.

For non-target trials (T1 relevant and irrelevant), we also observed a typical PRP 

effect, with RTs to T2 being slower when T2 was presented closer to T1 onset  

(SOA main effect: χ²(3) = 735.95, p < 0.001, see table 3.S1 and fig. 3.2A). The magnitude 
of the PRP effect was strongly modulated by whether the auditory stimulus was 

locked to the appearance or disappearance of the T1 visual stimulus (SOA X onset/

offset, χ²(3)  =  462.82, p  < 0.001). To further explore these differences, we modeled  
RT2 separately for trials locked to stimulus onset versus offset.

T1 task relevance influences central stage processing at stimulus onset
When the visual stimulus (T1) appeared, participants were required to decide on the 

appropriate behavioral response - whether to press a button or not. Therefore, we 

predicted that a PRP effect would be observed even in the no-go trials, regardless 

of whether the T1 stimulus was relevant or irrelevant to the task. First, we analyzed 
RT2 for T1 target trials during image onset, which revealed a strong effect of SOA  

(see fig. 3.2A, red lines, left panel). More importantly, and in line with our 

preregistered prediction, modeling RT2 for non-targets at image onset also showed a 

clear PRP effect (SOA main effect: χ²(3) = 1109.31, p < 0.001, see table 3.S2 and fig 3.2A, 
red lines, middle and right panels). This PRP effect was further supported by pupil 

dilation measurements. In line with earlier studies 233, pupil-evoked responses peaked 

later (90% peak) at shorter SOAs relative to T2 onset (SOA main effect: χ²(3) = 15.78,  
p = 0.001, see table 3.S8 and fig. 3.S2). Furthermore, RT2 was significantly correlated 

with pupil peak latency (β = 0.24, p < 0.001)
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Figure 3.2 Experiment 1 Results: Modulation of the PRP effect by appearance and disappearance o T1 and 
T1 task-relevance

a.  Response time to the 昀椀rst (RT1, grey) and second task (RT2) as a function of SOA from T1 onset (x-axis). For RT2, 
trials in which T2 was presented following T1 onset are represented in red (collapsed across T1 duration), while 
trials in which T2 was presented following T1 offset are represented in blue. Grey boxes represent T1 stimuli 
durations. 吀栀e horizontal dashed line in the upper left panel marks the mean RT to targets in the Cogitate study. 

b.  Empirical cumulative distribution function (ECDF) of RT2 separately for T1 target trials, T1 task-relevant, and T1 
task-irrelevant trials. 吀栀e upper row displays T1 onset-locked trials; the lower rows display T1 offset-locked trials. 
For offset trials, each T1 duration is shown separately (second row: 0.5, third row: 1.0, 4th row: 1.5 s).
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The PRP effect reflects the interference between two stimuli, where the processing 

of the first stimulus delays the processing of the second. For short SOAs, a delay in 

RT2 is expected in every trial due to T1 processing. A bifurcation of RT2, where only 

some trials are delayed while others are not, would contradict a proper PRP effect. 

To rule this out and to further validate our GLM results, we examined the empirical 

cumulative distribution for each SOA condition.

As shown in Figure 3.2B (upper row), consistent with a true PRP effect, the entire 

RT2 distribution shifts towards shorter values as SOA increased. This shift effect 

was confirmed by a Kolmogorov-Smirnov test, revealing a significant shift in the 

empirical cumulative distribution function (ECDF) between SOA 0 and 466 ms, for 

both T1-relevant and T1-irrelevant trials (T1 relevant: D = 0.29, p < 0.001; T1 irrelevant: 
D = 0.29, p < 0.001; see Table 3.S6).

We predicted that the PRP effect would be influenced by task relevance, with  

T1-relevant non-target stimuli requiring longer central-stage processing due to the 

difficulty of discriminating targets from similar stimuli. This extended processing 

should increase RT2. Indeed, we found a significant interaction between SOA and  

T1 relevance (χ²(3) = 12.82, p =.005; see Table 3.S2), indicating that central-stage 
processing persisted beyond T1, interfering with subsequent T2 stimuli. We also 

observed larger pupil sizes for T1-relevant trials, suggesting increased cognitive 

load (see Fig. 3.S2). These findings support our prediction that stimuli that are more 

relevant involve prolonged central processing.

Stimulus disappearance delays RT2
Unlike the appearance of the visual stimuli, the disappearance of the T1 stimulus 

was completely task-free but still represented a significant visual change. This 

raises the question: does a task-irrelevant event, if consciously perceived, affect 

subsequent stimulus processing? We observed that the disappearance of the visual 

stimulus delayed RT2 at short SOAs (main effect of SOA, χ²(3) = 42.31, p < 0.001; 
see Table 3.S3 and Fig. 3.2A, blue lines), superficially consistent with a PRP effect. 

However, this delay might simply reflect extended T1 processing during stimulus 

onset, mistakenly interpreted as an effect at stimulus offset. If that were the case, 

the lingering T1 processing should diminish with longer T1 durations, leading to a 

smaller PRP effect. Instead, we found the opposite: a stronger SOA effect with longer 

T1 duration (interaction between T1 duration and SOA; χ²(6) = 35.44, p < 0.001). 
Separate modelling of RT2 for each T1 duration revealed no SOA effect for short trials  

(χ²(3) = 4.20, p = 0.240) but a significant effect for longer T1 durations (T1 1.0s: χ²(3) 
= 12.67, p = 0.005; T1 1.5s: χ²(3) = 69.644, p < 0.001; see Table 3.S4). This suggests that 
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the offset of longer visual stimuli, even when task-irrelevant, does impact subsequent 

stimulus processing, supporting the idea that it is consciously perceived.

An alternative explanation for the effect of T1 disappearance on RT2 could be that 

participants respond faster at longer SOAs, rather than slower at shorter SOAs. This 

speed-up might result from the increased temporal predictability of the tone at large 

SOAs, similar to the foreperiod effect observed in hazard rate studies 234. In our study, 

the offset may have acted as a cue, helping participants anticipate the tone and thus 

facilitating faster RT2 at longer SOAs.

To distinguish between interference and facilitation effects, we compared RT2 in 

offset trials for long T1 duration at SOA 0 ms (where the SOA effect is strongest) 

with RT2 in onset trials at SOA 466 ms (where interference with T1 is minimal). RT2 

was significantly longer in offset trials, by 30 ms, compared to onset trials (z = 6.22,  

p < 0.001), indicating that the disappearance of the visual stimulus indeed delayed RT2.

Overall, our findings suggest that the disappearance of the visual stimulus did 

trigger a PRP effect, but this effect was contingent on the duration of T1. Even in long 

T1 trials, where the SOA effect is strongest, the effect size was significantly smaller 

than the PRP effect induced by the appearance of the visual stimulus (see Table 3.1). 

When comparing RT2 empirical cumulative distribution functions (ECDFs) between 

the SOA 0 and 466 ms conditions, significant differences emerged only in long T1 

trials for both task-relevance conditions (T1 relevant: D = 0.11, p < 0.001; T1 irrelevant:  
D = 0.07, p = 0.038; see Table 3.S6). Additionally, intermediate T1 trials showed 

signi昀椀cant differences for the T1 relevant condition (D = 0.08, p = 0.010; see Table 3.S6), 
further supporting the reduced impact of stimulus offset compared to stimulus onset.

Visual inspection of the RT2 distribution in long T1 trials suggests that only a 

portion of trials were delayed by the disappearance (see Fig. 3.2b, bottom 3 rows). 

The difference in RT2 across durations emerged only when participants showed 

slower reaction times, indicating that in some trials, T2 processing was unaffected by  

T1 disappearance, while in others, RT2 was delayed.

These findings challenge the GNWT prediction that no PRP effect should occur 

at stimulus offset. However, the strong influence of task demands suggests that 

completely task-free events, like T1 disappearance, are processed only briefly and 

sporadically in the central stage. To further explore whether the PRP effect reflects 

a delay in conscious access to the T2 stimulus, we conducted a second study where 

participants provided introspective reports of their decision times.
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Table 3.1: Experiment 1 magnitude and effect size of the PRP effect in RT2

Condition PRP effect magnitude [s] Effect size [Cohen's d]

Targets 0.60 1.40

Onset - T1 relevant 0.12 0.47

Onset - T1 irrelevant 0.11 0.44

Offset - T1 500 ms 0.01 0.02

Offset - T1 1000 ms 0.02 0.07

Offset - T1 1500 ms 0.04 0.21

Differences in RT2 between the shortest and longest SOA are reported. Magnitude refers to the difference in ms, 
while Cohen’s d quanti昀椀es the effect size between these two SOAs. For non-targets, the PRP effect size was calculated 
separately for the visual stimulus onset (collapsed across the three visual stimulus durations) and offset (collapsed 
across task relevance). For targets, we focused on 1.5 sec visual stimulus and reported the difference between the 
shortest SOA locked to stimulus onset and the longest SOA to stimulus offset.

Experiment 2
In this experiment,  we aimed to validate the PRP effect as a marker for conscious 
access, building on prior findings that both the appearance and disappearance of 

visual stimuli induced a PRP effect. Prior studies have shown that participants are 

introspectively blind to the delay in RT2 associated with SOA, suggesting that the 

PRP reflects the serial nature of conscious access.

To replicate this, 11 participants from the previous study were reinvited for a 

second experiment. The experimental design remained largely the same, with two 

modifications: introspective ratings were added, and one SOA (116 ms) was removed 

to reduce the overall duration of the study. At the end of each trial, participants 

provided introspective ratings of their decision time for both the visual (iT1) and 

auditory stimuli (iT2) on a continuous scale from 0 to 1000 ms (see Fig. 3.1A). They 

were instructed to focus on their decision time rather than their reaction time, as no 

overt response was required for T1 non-target trials.

In line with previous studies 153,222, we predicted that iT1 and iT2 would correlate with 

RT1 and RT2, indicating that participants can reliably introspect on their decision 

time. We also expected participants to report longer iT1 for T1-relevant compared to 

T1-irrelevant trials, due to the increased difficulty of target discrimination. However, 

we predicted that iT2 would remain unaffected by SOA, despite the strong PRP effect, 

suggesting that the PRP reflects a delay in participants gaining awareness of T2.
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Additionally, following the central stage interference model, we anticipated that a 

significant portion of RT2 variance would be explained by iT1. Since the T1 and T2 tasks 

were identical to those in the first experiment, this allowed us to test the replicability 

of our previous findings (all predictions were preregistered, https://osf.io/krjh7).

Participants performed both tasks with high accuracy (T1: 95.86% accuracy, SD = 1.93; 

T2: 93.68% accuracy, SD = 5.86; see Fig. 3.S3). One participant was excluded for not 

meeting the preregistered accuracy criteria (<80% in the auditory task). Eye-tracking 
data showed that participants consistently maintained fixation, spending 94%  

(± 4%) of the time within 6° of visual angle from the stimuli until 2.0 seconds after 
stimulus onset (see Fig. 3.S3). These results indicate that participants were engaged 

and attentive throughout the experiment.

RT2 Experiment 1 replication

In the T1 onset trials, we successfully replicated the significant effect of SOA  

(χ²(2) = 368.03, p < 0.001; see Fig. 3.3A, red lines), but we did not replicate the 
interaction between T1 relevance and SOA (χ²(2) = 1.99, p = 0.370; see Table 3.S11). 
This lack of interaction might be due to the reduced power in our second study, 

as it involved only half the number of participants. Pupil size was larger in T1-

relevant compared to T1-irrelevant trials (see Fig. 3.S4a), and the pupil peak latency 

mirrored the PRP effect observed in RT2 (SOA main effect: χ²(3) = 9.24, p = 0.002; see  
Table 3.S27), replicating the findings from Study 1. Additionally, RT was again 

correlated with pupil peak latency (β = 0.40, p = 0.002).

In T1 offset trials, both the SOA effect (χ²(2) = 54.64, p < 0.001; see Table 3.S12) and 
the interaction between T1 duration and SOA (χ²(4) = 19.44, p = 0.001) were replicated. 
SOA had a significant effect on RT2 for all T1 durations (500 ms: χ²(2) = 6.46,  
p = 0.039; 1000 ms: χ²(2) = 42.82, p < 0.001; 1500 ms: χ²(2) = 30.73, p < 0.001;  
see Table 3.S13). In contrast to Study 1, where this effect was only observed at 1000 

and 1500 ms durations, here it was significant across all durations. As in Study 1, the 

SOA effect was much stronger in onset trials compared to offset trials (see Table 3.2).
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Figure 3.3: Experiment 2 results: Replication of study 1 and test of introspective awareness of the 

PRP effect

A.  Objective (solid lines) and introspective (dashed lines) response time to the 昀椀rst (RT1/iT1, grey) and second task 
(RT2/iT2) as a function of SOA from T1 onset (x-axis). For iT2 and RT2, trials in which T2 was presented following 
T1 onset are represented in red (collapsed across T1 duration), while trials in which T2 was presented following T1 
offset are represented in blue. Grey boxes represent T1 stimuli durations. 吀栀e horizontal dashed line in the upper 
left panel mark the mean RT to targets in the Cogitate study. 

B.  Empirical cumulative distribution function (ECDF) of RT2 and iT2 (solid and dashed lines respectively) separately 
for T1 target trials, T1 task-relevant, and T1 task-irrelevant trials. 吀栀e upper row shows T1 onset-locked trials; the 
lower rows display T1 offset-locked trials. For offset trials, each T1 duration is shown separately (second row: 0.5, 
third row: 1.0, 4th row: 1.5 s).
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Introspective awareness of the PRP effect

First, we validated participants' introspective duration judgments using a calibration 

task in which they estimated the length of a tone presented for a random duration 

(20 to 1000 ms) Consistent with previous studies 153,222, estimated tone duration 

was strongly correlated with actual duration (β = 0.91, p < 0.001). Similarly, in the 
main experiment, participants' introspective decision times for T2 (iT2) were well 

correlated with their reaction times (RT2) (iT2-RT2: r = 0.48, p < 0.001).

For T1, objective reaction times (RT1) were only available for a few target trials 

(~11% of the trials), but despite the limited data, we observed a strong correlation 

between iT1 and RT1 (iT1-RT1: r = 0.48, p < 0.001). Consistent with previous studies, 
participants underestimated their objective RT2 (β = 0.60, p < 0.001; see Fig. 3.3A), 
likely reflecting the delay between perceptual processing and conscious awareness 

(Marti et al., 2010). Participants were instructed to report their decision time rather 

than their motor response time, as no overt response was required for T1 non-target 

trials. This underestimation of RT2 can be partly attributed to the exclusion of the 

response execution stages and the delayed onset of conscious experience.

Contrary to our preregistered prediction, we observed a significant interaction 

between SOA and stimulus onset/offset (χ²(2) = 15.26, p < 0.001; see Table 3.S17). 
When analyzing onset and offset separately, this effect was significant only for onset 

trials (Onset: χ²(2) = 48.33, p < 0.001; Offset: χ²(2) = 3.83, p = 0.148; see Tables S18-19 
and Fig. 3.3). These findings suggest that participants were partially aware of the PRP 

effect at stimulus onset, but only when the effect was strong. However, as shown in  

Fig. 3.3A, participants significantly underestimated the slope of RT2 in their 

introspective reports. The effect size of SOA on iT2 was much smaller than on RT2 

(see Table 3.2).

To quantify this underestimation, we modeled iT2 as a function of the mean RT2 

(representing the SOA-related slope) and the trial-by-trial deviation from mean RT2 

(representing fluctuations in RT2). Variance partitioning revealed that the RT2 slope 

explained only 1.6% of the variance in iT2, while 21.5% was explained by trial-by-trial 

RT2 variance. This suggests that participants significantly underestimated the effect 

of SOA on their RT2, indicating partial introspective blindness to the PRP effect.

The effect of SOA on iT2 in onset trials appears primarily driven by a significant delay 

at SOA 0 ms. Comparing iT2 across SOAs in onset trials revealed delays only at short 

SOAs (0-232 ms: z = 6.10, p < 0.001; 0-466 ms: z = 5.95, p < 0.001), but no difference 
between 232 ms and 466 ms (z = -0.121, p = 1.000) was observed. In contrast, RT2 
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progressively decreased as a function of SOA (0-232 ms: z = 14.28, p < 0.001;  
0-466 ms: z = 18.72, p < 0.001; 232-466 ms: z = 4.67, p < 0.001). This dissociation 
suggests that the SOA effect on iT2 likely reflects participants' awareness of the 

simultaneous presentation of auditory and visual stimuli at SOA 0 ms.

Interestingly, iT1 was also affected by SOA in onset trials (χ²(2) = 30.02, p < 0.001; see 
Table 3.S21), despite the fact that RT1 is typically unaffected by SOA in classical PRP 
studies (Pashler, 1994). Although we lacked objective RT1 data for comparison, the iT1 

effect was driven by longer iT1 at SOA 0 ms (0-232 ms: z = 4.95, p < 0.001; 0-466 ms:  
z = 4.53, p < 0.001; 232-466 ms: z = -0.39, p = 1.000), further suggesting that 
simultaneous stimulus presentation at SOA 0 ms influenced introspective judgements.

Despite participants' relative blindness to the large SOA effect on their objective 

RT, they were aware of the smaller difference associated with T1 task relevance. 

As predicted, task relevance significantly affected iT1 in both onset (χ²(1) = 189.78,  
p < 0.001) and offset trials (χ²(2) = 7.25, p = 0.027; see Table 3.S21). Participants were 
aware of the increased difficulty in classifying T1 non-target task-relevant stimuli. 

Surprisingly, T1 task relevance also influenced iT2 in onset trials (onset: χ²(1) = 17.98, 
p < 0.001; offset: χ²(1) = 4.78, p = 0.092; see Table 3.S18), which contradicts the serial 
access hypothesis that predicts consistent introspection regardless of T1 processing 

duration. These results suggest that participants were indeed aware of some delay in 

RT2 caused by the interference regime from T1 processing.

Table 3.2: Experiment 2 magnitude and effect size of the PRP effect

RT2 iT1 iT2

Condition Magnitude [s] Cohen's d Magnitude [s] Cohen's d Magnitude [s] Cohen's d

Targets 0.69 1.41 0.14 0.55 0.07 0.39

Onset - T1 relevant 0.14 0.51 0.02 0.14 0.03 0.16

Onset - T1 irrelevant 0.15 0.61 0.02 0.14 0.04 0.24

Offset - T1 500 ms 0.02 0.08 0.00 0.00 -0.01 -0.03

Offset - T1 1000 ms 0.06 0.30 -0.02 -0.16 0.00 0.02

Offset - T1 1500 ms 0.05 0.31 0.01 0.04 0.01 0.07

Differences in RT2, iT1, and iT2 between the shortest and longest SOA. Magnitude indicates the difference in ms, 
while Cohen’s d quanti昀椀es the effect size between these two SOAs. For non-targets, the PRP effect size was calculated 
separately for the onset of the visual stimulus (collapsed across visual stimulus durations) and its offset (collapsed 
across task-relevance). For targets, the shortest SOA of the onset was compared to the longest SOA on the offset on the 
longest stimulus duration.
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Introspective report reliability can be assessed in the absence of overt report

In our experiment, T1 did not require an overt response on non-target trials, 

so iT1 could not be directly validated against an objective RT. According to the 

conscious access bottleneck model, participants' introspection of RT should reflect 

the combined duration of the central and motor stages. Since participants were 

instructed to report only their decision time, excluding the motor stage (which was 

absent for T1 non-targets), iT1 should approximate the central stage occupation.

The central stage interference model explains the RT2 delay at short SOA by the 

central stage being occupied by the T1 stimulus. A direct prediction of this model is 

that iT1 should predict trial-by-trial variability in RT2 during the interference period. 

Therefore, we expected the correlation between iT1 and RT2 to be strongest at short 

SOA and to weaken as SOA increased.

This prediction was only partially validated. In onset trials, we observed a significant 

correlation between iT1 and RT2 (χ²(1) = 614.01, p < 0.001; see Table 3.S24), but there 
was no significant interaction with SOA (χ²(2) = 1.34, p = 0.512), suggesting that the 
correlation did not decrease as SOA increased. We had predicted that this correlation 

would decrease once the interference period ended - when T1 central stage processing 

was complete. One possible explanation is that T1 processing lasted longer than 

0.466s in this study, which could explain the lack of interaction between iT1 and SOA 

in onset trials.

If T1 processing did exceed 0.466s, we would expect an interaction between iT1 and 

SOA in offset trials when T1 duration exceeded central stage processing. Consistent 

with this, we found a significant three-way interaction between iT1, SOA, and T1 

duration (χ²(2) = 13.13, p = 0.011; see Table 3.S25) in offset trials. To explore this, we 
modeled RT2 as a function of SOA and iT1 separately for each T1 duration in offset-

locked trials. Surprisingly, the interaction between iT1 and SOA was significant only 

for intermediate (1000 ms) trials (χ²(2) = 11.37, p = 0.003), but not for short (500 ms: 
χ²(2) = 2.60, p = 0.27) or long trials (1500 ms: χ²(2) = 0.45, p = 0.798; see Table 3.S26).

These results suggest that T1 processing may have ended between 1.0 and 1.466s. 

The absence of an interaction in short T1 trials might indicate that the interference 

period was still ongoing by 0.966s (the latest tone onset in offset-locked short trials), 

while the lack of interaction in long T1 trials suggests that the interference period 

had ended by 1.5s (the earliest tone onset in offset-locked long trials). However, it 

is unlikely that T1 processing lasted beyond 1s, as RT1 in target T1 trials averaged 

below 1s. These findings may instead reflect a conflation of the effects induced by the 
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T1 stimulus disappearance and T1 processing, which could not be separated in this 

study, presenting a potential confound in this analysis.

Overall, the introspective task results show that participants were largely unaware of 

the PRP effect, despite being sensitive to much smaller differences in their RT. This 

supports the idea that participants can only consciously access the T2 stimulus after 

completing their decision-making about T1. To further understand this cognitive 

bottleneck, we next explored the neural data to identify potential neural correlates of 

this cognitive bottleneck.

Neural Substrate of the cognitive bottleneck
Our novel application of the PRP paradigm provided detailed timing information 

on processing stages in our visual task, as indicated by its indirect effect on RT2, 

even though most T1 trials did not require an overt response. We leveraged findings 

from the Cogitate study, which used a similar T1 task and included high-resolution 

electrophysiological recordings from epilepsy patients (N=34), to identify potential 

brain regions involved in central stage processing 232.

In our dual-task paradigm, we found that non-target, task-relevant stimuli engaged 

central processing stages for a longer duration than non-target, task-irrelevant 

stimuli. This suggests that the stronger PRP effect observed for task-relevant stimuli 

is due to the increased difficulty in discriminating targets from similar non-targets, 

rather than simply being an artifact of the dual-task setup.

The original Cogitate study found decoding of T1 stimulus categories (faces/objects 

and letters/false-fonts) in brain regions such as the middle and inferior frontal 

gyri, under both task-relevant and task-irrelevant conditions. However, that study 

did not compare the duration of decoding between these conditions. Our findings, 

which showed a longer PRP effect for task-relevant conditions, suggest that central 

processing stages are 'occupied' for a longer period in these conditions. This extended 

processing likely correlates with longer decoding times for the stimulus category in 

the task relevant trials.

To identify brain regions involved in this extended processing, we re-analyzed the 

Cogitate data, focusing on differences in decoding duration between task-relevant 

and irrelevant conditions. We first confirmed that task relevance in the Cogitate 

study involved higher cognitive load by examining pupil dilation as a proxy 235, which 

was larger in task-relevant trials, consistent with our dual-task findings and other 

PRP studies (see Fig. 3.S6).
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Next, to assess the 'occupation' of brain regions by specific perceptual content, 

we focused on decoding faces vs. objects. We selected this contrast because it had 

the highest decoding accuracy in the Cogitate study, maximizing our ability to 

detect differences between task relevance conditions. We performed time-resolved 

decoding of the high-gamma band across channels within specific brain regions, 

comparing task-relevant and irrelevant trials. Using a cluster-based permutation 

test, we identified brain regions with sustained differences in decoding accuracy 

between conditions (see methods).

Decoding of faces and objects occurred in the occipital, temporal, parietal, and 

prefrontal cortices, in both task-relevant and irrelevant conditions (Fig. 3.S4), with 

peak decoding accuracy similar across tasks. Using a stringent statistical threshold 

(p < 0.01) when comparing the decoding AUC between task-relevant and irrelevant 
trials, decoding was sustained for longer in task-relevant conditions speci昀椀cally in the 
middle and inferior frontal gyri, inferior frontal sulci, and the fusiform gyrus (Fig. 3.4). 

Interestingly, extended decoding occurred earlier in frontal regions than in the 

fusiform gyrus. When applying a conventional threshold (p < 0.05), additional regions 
showed significant differences between task-relevant and irrelevant conditions, 

though most appeared in late time windows, beyond stimulus presentation (see 

Fig. 3.S8). Notably, at this threshold, the occipital pole exhibited more protruded 

representation of stimulus category for task-relevant stimuli following stimulus 

onset, although at a larger latency than what is observed in frontal regions. These 

findings suggest that the middle and inferior frontal gyri process sensory inputs 

for varying durations depending on the task context, highlighting their role in 

distinguishing targets from non-targets and in central-stage processing.
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Figure 3.4: Test of hypothesis that Global Workspace access exists for task-irrelevant stimuli, but lasts 

longer for task-relevant stimuli

Middle panel: Destrieux parcels showing a signi昀椀cant difference between the task-relevant and irrelevant 
conditions. 吀栀e colors indicate the duration of higher decoding in the task-relevant condition.
Outer panels: Time-resolved ROC-AUC values in the high gamma band for face/object classi昀椀cation in the task-
relevant (green) and task-irrelevant (brown) trials in regions of interest (ROI) showing signi昀椀cantly higher decoding 
in the task-relevant compared to the irrelevant condition (40ms uniform kernel smoothing, shading around curves: 
95% con昀椀dence intervals, red shadings; p < 0.01, cluster-based permutation test). "N" indicates the number of 
channels. Abbreviations: MFG (middle frontal gyrus), IFS (inferior frontal sulcus), IFG (inferior frontal gyrus), 
FG (fusiform gyrus).Upper middle panel: channel counts for each parcel of the Destrieux atlas (white 

represents parcels with fewer than 10 channels, which were excluded from the analysis).

Discussion

In the present study, we investigated the temporal dynamics of conscious experience 

by examining the Psychological Refractory Period (PRP) effect in response to visual 

stimuli. Previous studies have found transient activations only at stimulus onset 

in the PFC, but not at stimulus offset 113,126,127,224. While these results diverge from 

the original GNWT prediction that conscious refreshes of the workspace occur at 

both stimulus onset and offset, the lack of an offset response could be explained 

by participants not consciously attending to the disappearance of the stimuli. This 

hypothesis was not tested in earlier studies, as they did not assess subjects' awareness 

of stimulus offset. Here, we employed the PRP effect and quantified introspection 

to directly evaluate the timing of access consciousness with respect to both stimulus 

onset and offset.
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Our findings revealed a robust PRP effect at stimulus onset, supporting the GNWT 

prediction of conscious processing, even for task-irrelevant stimuli. While task 

relevance extended the duration of this processing, the effect remained transient, 

independent of stimulus duration, indicating that the workspace did not remain 

occupied for the entire duration of stimulus display. A small PRP effect was observed 

at stimulus offset, but it was not consistent, likely reflecting brief, occasional 

processing of that event. These results suggest that conscious processing can be 

transient and decoupled from visual presentation dynamics, aligning with previous 

findings of no sustained PFC activation or offset ignition 113,126,127,232.

Moreover, our findings reinforces the idea that the PRP represents a bottleneck 

in conscious processing, even for task-free events like stimulus disappearance, 

positioning the PRP effect as a powerful tool for studying conscious access without 

relying on overt reports, minimizing report-related confounds.

Transient conscious processing of visual stimuli
In our study, participants performed a go/no-go task with visual stimuli, and we 

observed a PRP effect in no-go trials (where no behavioural response is required), 

consistent with previous studies 236–238. This finding indicates that motor planning is 

not the sole source of the interference between T1 and T2. As expected, T1 relevance 

modulated the magnitude of the PRP effect, with higher task relevance leading 

to longer processing of the T1 stimulus. This effect aligns with the central stage 

interference model and previous studies showing that manipulations affecting 

central stage processing duration have an additive effect on response times at short 

SOAs 239–242.

Our re-analysis of the Cogitate iEEG data 224 revealed that task relevance extended 

processing duration in a few brain regions, particularly in the PFC, supporting 

the hypothesis that the PRP effect is influenced by task relevance. These findings 

are consistent with previous PRP studies that link central-stage processing to the  

PFC 160,229,231 and further highlight its role in conscious processing, as suggested by  

the GNWT 25.

Importantly, while the relevance of T1 stimulus influenced the magnitude of the 

PRP effect, the duration of T1 stimuli did not. This supports the GNWT prediction 

in the Cogitate study 224 that conscious experience is transient and not sustained 

for the entire stimulus duration when participants are not required to attend to 

it. The duration-invariant transient activation in the PFC observed in previous  

studies 113,126,127,224 may thus reflect the dynamics of conscious experience, further 
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suggesting that conscious processing is decoupled from the duration of visual 

stimulus presentation, as initially proposed by GNWT 224.

Conscious processing of visual stimuli disappearance
A key aspect of our design involved presenting T2 stimuli at varying SOAs relative to 

T1 disappearance (offset trials). Based on the absence of fronto-parietal ignition at 

visual stimulus offset in previous studies 113,126,127,224, we hypothesized that participants 

would not consciously process T1 disappearance, predicting no PRP effect. Contrary 

to our prediction, we found a significant decrease in RT2 with increasing SOA 

following T1 disappearance. Although this effect was much smaller than the PRP 

effect observed around T1 onset, it calls for an explanation.

One possible interpretation is that the shorter RT2 at longer SOAs does not reflect 

a delay in RT2 at short SOAs, as a genuine PRP effect would predict, but rather a 

speeding up of RT2 as SOA increases, due to the increased probability of T2 

appearance. Studies using a foreperiod design, where a target occurs at varying 

latencies from a cue, have shown that RT decreases with increased SOA, as the 

likelihood of the target appearing next increases 234,243. In our task, T1 offset might 

have acted as a cue, increasing preparedness and speeding RT2 at longer SOAs.

However, one observation contradicts this explanation: RT2 at short SOAs in offset 

trials with long T1 duration was slower than RT2 at large SOAs in onset trials. 

This observation suggests that T1 disappearance did delay the auditory stimulus 

processing, consistent with a PRP effect. It may imply that, contrary to our 

hypothesis, participants did consciously experience the disappearance of the visual 

stimulus in at least some trials. Interestingly, the impact on T2 processing caused 

by T1 disappearance depended on the duration of T1, with no effect observed when 

T1 lasted only 0.5 seconds. This may be due to differences in attention driven by how 

predictable T1's disappearance was based on its duration. We used three discrete 

durations for the T1 stimuli (0.5, 1, and 1.5 s), which implies that as time elapsed, 

T1 offset became increasingly likely. Under the predictive processing framework, 

predictable events benefit from strong endogenous attention 244,245 and previous 

studies have shown that increased expectations enhance neural representations 246 

and facilitate conscious perception 51,69. Therefore, the increased predictability of 

longer T1 stimuli may have made their disappearance more likely to be consciously 

experienced compared to shorter T1 stimuli.

If participants sometimes consciously experienced the offset of T1 stimuli, why did 

previous studies fail to detect fronto-parietal ignition for this event? One explanation 
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is that the auditory task in our study made T1 disappearance more relevant, possibly 

serving as a cue for T2 and drawing more attention. This, combined with the 

predictability of the offset in longer T1 trials, could have increased the likelihood of 

the event being consciously experienced compared to previous studies. Alternatively, 

the relatively small PRP effect observed at T1 offset suggests that conscious processing 

of stimulus disappearance was either brief and/or sporadic across trials. As a result, 

PFC ignition may have occurred in too few trials to be detectable in neural recordings 

averaged across all trials.

Introspective awareness of the PRP Effect
Previous studies suggest that participants are introspectively blind to the PRP  

effect 153,222 -- even though objective RT differences are in the hundreds of milliseconds, 

they are only aware of the duration of the central stage of conscious decision making, 

not of the delays due to stimuli waiting in a preconscious buffer. This has been 

interpreted as evidence in favor of the serial nature of conscious access, implying that 

participants only become aware of the second stimulus after completing the central 

stage processing of the first.

Our results differ, as we observed that a small significant decrease in both iT1 and 

iT2 as SOA increased. Note that this effect was driven primarily by the shortest SOA 

(0 ms). Participants reported longer decision times when T1 and T2 were presented 

simultaneously, with no significant differences in iT2 at later SOAs (232 and 466 ms). 

This suggests that the impact of SOA on iT1 and iT2 is limited to simultaneous 

presentation, an effect that may stem from increased central competition at short 

SOAs. A previous study showed that without specific instructions, when visual 

and auditory stimuli were presented simultaneously, participants suffer from an 

additional central-stage slowing down due to task setting factors, i.e. the difficulty 

of deciding which stimulus to respond to 247. Here, we explicitly instructed subjects to 

always respond to the visual stimulus first. That instruction could have been harder 

to maintain when a competing auditory stimulus was simultaneously presented. This 

effect may be compounded by the fact that auditory stimuli are typically processed 

faster than visual stimuli, especially in our task where visual stimuli were more 

complex and varied than the auditory stimuli, thereby increasing the competition for 

central resources.

Alternatively, the discrepancy may be related to task order. In several previous 

studies 153,222, T1 was auditory and T2 was visual, whereas in our study, T1 was visual 

and T2 was auditory. Several studies suggest that introspective blindness to the 

PRP effect occurs when T1 is auditory rather than visual 248–250. Bryce and Bratzke 250 
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suggest that auditory T2 allows participants to better introspect RT delays due to 

the sequence of sounds associated with the stimuli themselves but also the sounds 

elicited by button presses. In our task, non-target trials only involved the tone and 

the T2 response "click," which might have helped participants become aware of some 

delays in RT2 at short SOA. While our experiment cannot rule out this account, our 

findings, like others 249–251, indicate that despite a small effect of SOA on introspective 

time, participants still drastically underestimate the PRP effect, suggesting they have 

limited awareness of it.

PRP effect and conscious processing
Studies on the related phenomenon of the “attentional blink” (AB) have shown 

that merely consciously experiencing the first stimulus (T1) is sufficient to induce 

an attentional blink of a secondary stimulus. This finding indicates that the AB 

effect reflects a bottleneck in conscious processing 84 equivalent to the processing 

bottleneck in the PRP effect 151,226. When a second stimulus (T2) is presented while the 

first is still being processed, it is stored in a decaying sensory buffer. If T1 conscious 

processing finishes before T2 decays, T2 will be processed at a delay; otherwise, it 

will be missed (i.e. not consciously experienced) 242. In our studies, we observed that 

the PRP effect could be induced by events that are not associated with any tasks, 

such as the disappearance of the visual stimulus. This finding aligns with previous 

research showing that the PRP effect can occur when no task is associated with the T1  

stimulus 226. This further supports the interpretation that the PRP effect reflects the 

serial nature of conscious processing.

Some may argue that the PRP effect does not reflect the serial nature of conscious 

experience but instead, the cognitive processes associated with accessing the content 

of our conscious experience 252. Under this view, our results might indicate that 

participants briefly access the content of their consciousness following the onset 

of the stimulus, while their conscious experience may continue beyond this initial 

access. If this is the case, the period during which the stimulus remains on the 

screen after the content has been accessed could constitute a state of phenomenal 

consciousness devoid of cognitive confounds. The distinction between phenomenal 

and access consciousness remains highly debated, however, as does the issue of 

whether consciousness can occur in the absence of cognitive processes 253. The 

hypothesis that participants may have remained phenomenally conscious following 

conscious access, even in parallel to performing a secondary task, is untestable in the 

current study.
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On a more positive note, the use of the PRP effect as a marker for conscious access 

constitutes a useful methodology for probing conscious experience in a time-resolve 

manner. In recent years, the reliance on reports to infer whether a stimulus was 

consciously experienced has been criticized, as the act of reporting itself introduces 

cognitive confounds related to the need to report 18,47–49. Consequently, several no-

report paradigms have emerged to investigate the neural correlates of consciousness 

by relying on alternative markers of conscious experience such as eye movements or 

delayed reports 54,55,86,254. Such paradigms have however also received criticism, due 

to the difficulty of establishing whether content is experienced in the absence of a 

trial-by-trial report 74,75. The PRP effect might offer a solution to these controversies. 

If serial processing is unique to conscious access, the PRP effect may constitute 

a reliable marker for conscious access which can be applied on a trial-by-trial 

basis and in a fully time-resolved fashion, without inducing additional cognitive 

confounds regarding the stimulus of interest. As such, the novel application of the 

PRP as a marker for conscious access holds significant potential in advancing our 

understanding of the neural underpinning of consciousness.

Methods

The experimental procedure, selection criteria and main hypothesis were pre-

registered and can be accessed in OSF (https://osf.io/krjh7). Below we provide 

a summary of the experimental protocol. Further details are contained in 

the preregistration.

Study 1

Participants

Twenty-one adults (13 females, 25.18 ± 3.97 years old) with no hearing impairment 
(self-reported) and normal or corrected-to-normal vision participated in exchange 

for €14/hour. Experimental procedures were approved by the Ethics Council of the 

Max Planck Society and conducted in accordance with the Declaration of Helsinki. 

Participants provided written informed consent before the study. All subjects were 

included in the analysis, as none met the pre-registered exclusion criteria of low 

mean performance in the T1 visual task (<80% hits or >20% false alarms) or the T2 
auditory task (<80% accuracy).
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Dual task

Stimuli and procedure

To evaluate whether the appearance and disappearance of a visual stimulus perturb 

the processing of a subsequent auditory stimulus, subjects participated in a dual-

task paradigm (visual and auditory).

Task 1 (T1): We replicated the design from the 224. Grayscale images from four 

categories (faces, objects, letters, and false-fonts, referred to as T1 categories) 

were presented individually for three different durations (500, 1000, and 1500 ms, 

T1 duration), followed by a blank screen. Each trial lasted 2 seconds, with an added 

random jitter (mean of 1.0 seconds, range 0.7-2.0 seconds) to avoid periodic 

presentation. Half of the stimuli were displayed in side-view (+/-30° rotation), and 
half in front-view (T1 orientation). To manipulate task demands, participants were 

instructed to detect the rare occurrence of specific faces and objects or specific letters 

and false-fonts, depending on the experimental block, regardless of their orientation 

and duration. Within each block, stimuli were categorised into three task relevance 

conditions (T1 relevance): T1 target (stimuli to detect), T1 relevant (non-target stimuli 

of the same category as targets but different identity), and T1 irrelevant (non-target 

stimuli of a different category than targets). The task relevance manipulation was 

orthogonal to the stimulus category: in half the blocks, targets were faces and objects; 

in the other half, targets were letters and false-fonts.

Task 2 (T2): This consisted of a pitch discrimination task with high (1100 Hz) and low 

(1000 Hz) pitch tones (82 ms duration). These tones (T2 pitch) were presented at four 

stimulus onset asynchronies (SOA: 0, 116, 232, or 466ms) relative to the onset or offset 

of the T1 visual stimulus. Thus, offset T2 trials were presented at 12 different latencies 

from T1 onset, depending on T1 duration (500, 1000 and 1500 ms). Participants were 

instructed to respond as quickly and accurately as possible, making a decision on the 

T1 stimulus (go/no-go) before responding to the T2 task.

A total of 2,160 trials were presented, divided into 60 experimental blocks. At the 

beginning of each block, a target screen was shown displaying 2 target stimuli (a face 

and an object or a letter and a false-font) in three different orientations (fig. 3.1A, target 

screen). Each block consisted of 34-38 trials, including 2-6 targets. The remaining  

32 trials comprised 16 T1 relevant and 16 T1 irrelevant trials (eight per category). 

The trial order was randomised and balanced with respect to task relevance, visual 

stimulus duration, orientation, category, SOAs, onset/offset, and auditory stimulus 

pitch frequency. Each unique combination of visual stimulus duration, SOA, and 
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onset/offset was presented 10 times for target trials and 40 times for non-target task-

relevant and task-irrelevant trials.

Before the experiment, participants performed practice blocks: first only T2, then 

only T1, and finally both tasks together. Each practice block consisted of 40 trials. 

The entire experiment lasted roughly three hours, with participants completing it in 

a single session, including a mandatory break of at least 10 minutes halfway through. 

At the end of the experiment, participants filled a questionnaire asking participants 

if they noticed the various experimental manipulations and whether they experienced 

difficulty performing the task (see supplementary).

吀栀e experiment was programmed and controlled using Psychtoolbox-3 extensions 255, 

running in MATLAB 256 on Windows 10 Enterprise (64-bit). Visual stimuli were 

displayed on a BenQ XL2420Z 24-inch monitor at a 60Hz refresh rate, covering a 

6° x 6° visual angle. Tones were played on dual speakers (Neumann, KH 120 A) at a 
constant volume across participants (74 dB). Responses were collected using a Cedrus 

RB-844 response box (mean latency of 5.13 ms ± 0.7 ms, measured for 100 responses). 
Participants used the index finger of one hand to respond to T1 and the index and 

thumb of the other hand to respond to T2, with hand attribution counterbalanced 

across subjects. Reaction times to both T1 (RT1) and T2 (RT2) stimuli were recorded.

Throughout the experiment, pupil and gaze data were continuously acquired 

using a high-speed, video-based eye tracker (EyeLink 1000 Plus, SR Research), 

sampled binocularly at 500 Hz. Participants' heads were stabilised using a chin rest  

(70 cm from the display) to ensure a stable head position. A 13 points calibration was 

performed at the beginning of the study, after the break or whenever participants 

displaced their heads from the chin rest.

Trial exclusion

Following preregistered criteria (https://osf.io/krjh7), trials were excluded if: no 

responses or incorrect responses to T2 were logged, if reaction times (RT) to T2 were 

shorter than 100 ms, if a false alarm was recorded to T1 and/or if responses to T2 

preceded those to T1.

Reaction time predictions and analysis

Analyses were performed in R 257 using the lme4 extension 258. All predictions and 

analyses described below were pre-registered (https://osf.io/krjh7), except if stated 

otherwise. T1 Target trials were analysed and treated separately from non-target 
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T1 trials to prevent contamination of over motor responses, which would affect 

comparison between task relevant and task irrelevant conditions.

We modelled reaction times to the auditory task (RT2) using a gamma distribution 

with an identity link function 259 in a generalised linear mixed model (GLMM). RT2 

was modelled as a function of SOA, onset/offset (whether the auditory stimuli was 

locked to the onset or offset of the T1 stimuli) and T1 relevance as fixed effects 

(including interaction terms). We modelled inter-individual and inter-duration 

differences in slope and intercept for each fixed effects and their interaction as 

random effects, resulting in the following model:

끫殊끫殊2	~	끫殌끫殌끫殌 × 끫殌끫殄끫殄끫殄끫殄끫殸끫殸끫殸끫殄끫殄끫殄 × 끫殊1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄											 
																																+	(끫殌끫殌끫殌 × 끫殌끫殄끫殄끫殄끫殄/끫殸끫殸끫殸끫殄끫殄끫殄 × 끫殊1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄	|	끫殌끫殌끫殌끫殌끫殄끫殾끫殄) 

 

 +	(끫殌끫殌끫殌 × 끫殌끫殄끫殄끫殄끫殄/끫殸끫殸끫殸끫殄끫殄끫殄 × 끫殊1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄|	끫歮끫殌끫殾끫殾끫殄끫歮끫殸끫殄) 
 

 끫殊끫殊2!""#$%	~	끫殌끫殌끫殌 × 끫殊1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄 × 끫殊1	끫歮끫殌끫殾끫殾끫殄끫歮끫殸끫殄	 + (끫殌끫殌끫殌 × 끫殊1	끫殊끫殾끫殄끫殎	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄	 × 끫殊1	끫歮끫殌끫殾끫殾끫殄끫歮끫殸끫殄	|	끫殌끫殌끫殌끫殌끫殄끫殾끫殄) 
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(1)

We hypothesised that the workspace was occupied only by the appearance of the 

visual stimulus, not by its disappearance (offset). Accordingly, we predicted a main 

effect of SOA in model (1), with an interaction between SOA and onset/offset factors, 

capturing the lack of PRP effect in offset trials.

To further test the prediction that the disappearance of the visual stimulus did not 

occupy the workspace, we modelled RT2 in offset trials separately, as a function of 

SOA, duration and T1 task relevance:
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(2)

We predicted that no effect of SOA on RT2 in offset trials. To account for T1 duration, 

which influences the latency of T2 presentation, we included it as a fixed effect in the 

model. In short T1 trials, offset T2 stimuli were presented at 500 ms after T1 onset. 

If the workspace remained occupied by T1 until 500 ms, delay in RT2 at short SOAs 

might reflect lingering of T1 processing rather than T2 disappearance. Therefore, we 

predicted that an interaction between SOA and T1 duration might be observed. If the 

effect of SOA reflects a lingering of T1 processing, the effect should decrease with 
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increased T1 duration. We tested this by performing post-hoc pairwise comparisons 

of estimated marginal means using the "emmeans" package with Bonferroni 

correction. Observing a significant interaction, we further modelled RT2 of offset 

trials separately for each T1 duration (exploratory).

Finally, we hypothesised that in onset trials, the workspace should be occupied by 

relevant T1 trials compared to the irrelevant ones, as task-relevant trials required 

more extensive processing to decide whether a response was needed. Thus, we 

predicted a larger SOA effect for task-relevant T1 trials. To test this, we modelled RT2 

in onset trials as a function of SOA and task relevance:
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(3)

We expected a significant main effect of T1 task relevance and/or a significant 

interaction between SOA and T1 relevance. For all models, p-values were obtained by 

likelihood-ratio chi square (χ²) tests of the full model against the model without the 

respective effect.

In addition to the modelling approach, we computed the PRP effect size using the 

Cohen’s d:
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where M1 and M2 are the mean RT2 for the short (0ms) and longest SOAs (466ms) 

respectively, Pooled SD is the standard deviation of the combined sample. Cohen's d 

was computed separately for onset and offset trials. For onset trials, effect size was 

computed across T1 durations separately for each T1 task relevance condition while 

for offset trials, effect sizes were computed across T1 task relevance conditions 

separately for each T1 duration. Moreover, for target trials, the interference regime 

seemed to persist beyond the visual stimulus duration; consequently, the shortest 

SOA of the onset was compared to the longest SOA and longest duration, time-locked 

to offset.
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Eye-tracking analysis

Preprocessing

The eye-tracking data were analysed using python v3.12 260 and the MNE toolbox v1.6.1 261. 

Blinks' periods were identified using the algorithm described in 197. This method 

detects the onset and offset of blinks based on stereotypical pupillometry patterns 

associated with the occlusion of the pupil by the eyelid preceding and following 

a blink. For blinked segments lasting 1.5s or less, pupil size and gaze position 

missing samples were reconstructed using linear interpolation (mne.preprocessing.

eyetracking.interpolate_blinks) with padding of 0.02 around blink event (remaining 

segments were discarded from further analysis). Interpolated data were epoched 

from -0.3 to 2.7s around the visual stimuli onsets. Epochs data were baseline 

corrected (divisive baseline). The same exclusion criterion as described for the 

reaction time data were applied. In addition, we removed trials in which the z-scored 

mean baseline amplitude (-0.2 to 0.0s) was superior to 2, as recommended by Mathôt 

and Vilotijevic 262 and trials in which participants spent less than 50% fixating within 

a 2° of visual angle from the centre of the screen. Two participants were removed 
from subsequent analysis as the total number of excluded trials exceeded 50%.

Task relevance and cognitive load

To test for an increase in cognitive load associated with the task relevance 

manipulation, we compared the pupil size between task relevant and irrelevant trials 

using a cluster-based permutation test 201. The comparison was performed separately 

for trials where the tone was presented relative to the onset and offset, across all 

stimuli durations. Importantly, because the relevance manipulation pertained to T1, 

the data were aligned to the onset of the T1 stimulus, both in trials where the tones 

were presented relative to the onset and offset. We predicted a larger pupil size 

for task relevant compared to task irrelevant trials in both onset and offset locked 

trials (exploratory).

PRP effect in the pupil response
To investigate the manifestation of a PRP effect in the pupil size, we computed 

the evoked pupil response of each subject by averaging the pupil size across trials 

separately for each SOA, T1 duration and onset/offset trials. We then extracted the 

latency () of the evoked pupil response 90% peak 233 relative to the auditory stimuli 

onsets. The extracted latencies were modelled using a linear mixed model:

끫殊끫殊2	~	끫殌끫殌끫殌 × 끫殌끫殄끫殄끫殄끫殄끫殸끫殸끫殸끫殄끫殄끫殄 × 끫殊1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄											 
																																+	(끫殌끫殌끫殌 × 끫殌끫殄끫殄끫殄끫殄/끫殸끫殸끫殸끫殄끫殄끫殄 × 끫殊1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄	|	끫殌끫殌끫殌끫殌끫殄끫殾끫殄) 

 

 +	(끫殌끫殌끫殌 × 끫殌끫殄끫殄끫殄끫殄/끫殸끫殸끫殸끫殄끫殄끫殄 × 끫殊1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄|	끫歮끫殌끫殾끫殾끫殄끫歮끫殸끫殄) 
 

 끫殊끫殊2!""#$%	~	끫殌끫殌끫殌 × 끫殊1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄 × 끫殊1	끫歮끫殌끫殾끫殾끫殄끫歮끫殸끫殄	 + (끫殌끫殌끫殌 × 끫殊1	끫殊끫殾끫殄끫殎	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄	 × 끫殊1	끫歮끫殌끫殾끫殾끫殄끫歮끫殸끫殄	|	끫殌끫殌끫殌끫殌끫殄끫殾끫殄) 
 

 

 끫殊끫殊2!&#$%	~	끫殌끫殌끫殌 × 끫殊1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄	 +	(끫殌끫殌끫殌 × 끫殊1	끫殊끫殾끫殄끫殎	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄	|	끫殌끫殌끫殌끫殌끫殄끫殾끫殄) 
 

 

 끫歬끫殸ℎ끫殄끫殄′끫殄	끫殢	 = 	 (()	+	(,).!!/$0	12  

 

 

 끫欞~	끫殌끫殌끫殌 × 끫殌끫殄끫殄끫殄끫殄/끫殸끫殸끫殸끫殄끫殄끫殄 × 끫殊끫殾끫殄끫殎	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄	 × 끫殢끫殌끫殾끫殾끫殄끫歮끫殸끫殄	 +	(1	|	끫殌끫殌끫殌끫殌끫殄끫殾끫殄) 
(5)
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The random slopes for each factor had to be removed due to convergence issues. The 

latencies were then modelled separately for the onset and offset locked trials. The 

expected outcome was the same as described in the behavioural data.

We pre-registered an attempt to deconvolve the pupil response into latent  

components associated with the fast-paced events in each trial, following the method 

proposed by 263. However, this analysis was unsuccessful since the events in our design 

occurred too closely in time, preventing the algorithm from accurately attributing 

the latent components to specific events. Consequently, we failed to resolve the 

deconvolved components, and thus the results are not reported.

Experiment 2

Participants

11 participants (6 females, aged 24.18 ± 2.17 years old) from the previous cohort were 
reinvited to participate for a compensation of €14/h. Experimental procedures were 

approved by the Ethics Council of the Max Planck Society and followed the guidelines 

from the declaration of Helsinki. Participants provided written informed consent 

before the study.

Stimuli and procedure

Stimuli, experimental procedure and apparatus were comparable to those used in 

study 1 with two exceptions: 1) three (0, 116, and 466ms) as opposed to four SOAs 

were used to decrease the overall duration of the experiment, 2) An introspective task 

was included in addition to a visual target detection task and a pitch discrimination 

task. Specifically, at the end of each trial, participants were prompted to report their 

introspective evaluation of their decision time to T1 and T2 i.e., estimate the time 

between the appearance of the stimulus and their decision to react rather than when 

a button press was executed as most trials did not require a response to T1. On each 

trial, shortened instructions were displayed to remind the participants of the task: 

(1) “Visual task duration?”, and (2) “Auditory task duration?”. Participants used a dial 

(Griffin PowerMate USB) to control a cursor on a linear scale (0-1s, fig. 3.1) presented 

in the middle of the screen. Subjects operated the dial with one hand, and used the 

other hand to respond to the visual T1 (ring finger), and auditory T2 (index finger 

for high pitch, and thumb for low pitch). The hand assignment was counterbalanced 

across participants.

Participants first conducted a duration estimation task whose purpose was to 

determine the fidelity of their duration estimation judgments. They were presented 
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binaurally with a single tone (800Hz) of variable duration (0.2 - 1s, 10ms interval), 

at the same loudness as during the main task, while fixating on a grey screen with a 

central fixation cross. At the end of each trial, subjects reported the duration of the 

tone on an analog scale using a response dial. Participants received visual feedback 

displaying their estimated duration against the true duration of the tone on the 

screen. They were also informed if their estimates were accurate (<20ms estimation 
error), too short or too long by displaying ‘Well done!’, ‘Your estimate was too short!’, 

‘Your estimate was too long!’ respectively. 100 stimuli of different durations were 

presented in random order.

A total of 972 were presented to avoid exhaustion due to addition of the introspective 

task. 24 trials were presented per unique combination of T1 duration, orientation, 

category, task relevance, SOA and onset/offset for the T1 relevant/irrelevant condition 

and 6 times for T1 target condition. Subjects performed 24 blocks. Each block 

consisted of 38-44 trials (2-6 targets, 18 T1 relevant, 18 T1 irrelevant trials). Participants 

were reminded of the T1 target identities midway in the block, to avoid forgetting 

due to the increased block length. The experiment was divided into 2 sessions of  

12 blocks each. A session lasted approximately 2h. A questionnaire was administered 

at the end of the second session asking participants whether they noticed the various 

experimental manipulations and whether they experienced difficulty performing the 

task (see supplementary).

Trial exclusion

Same exclusion criteria as in study 1 were used. One subject was excluded due to low 

T2 accuracy (<80%), resulting in a total sample of 10 subjects.

Reaction times (RT) and introspective Time (iT) analysis and predictions

The same modelling procedure as in the first study was applied to investigate 

the effect of SOA, task relevance and onset/offset on RT2, with the same expected 

outcome. These investigations constitute a replication of the first study, albeit with 

a lower sample size (N=10 instead of N=21). We therefore predicted (preregistered) 

that the analyses of RT2 in the second study should confirm the results of the first 

study. Two additional variables were measured in this experiment: the introspective 

decision time to the visual and auditory stimuli (iT1 and iT2, respectively). According 

to the GNWT, participants should only be able to introspect about the duration for 

which a given content was processed in the central stage. Accordingly, while iT should 

to some extent be sensitive to variation in RT, the delay in RT2 at short SOA should 

not be reflected in iT, as this delay reflects a delay in conscious processing of T2.
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To test this, we derived additional predictions of the iT1 and iT2 patterns based on 

our experimental design, which were tested using R 257 and the lme4 extension 258. 

All predictions and analyses described below were pre-registered, except if stated 

otherwise (https://osf.io/krjh7). As for previous models, both iT and RT data were 

modelled using a gamma distribution with an identity link function.

We investigated the correlation between iT and objective RT for each task separately. 

We z-scored RT and iT measures within subjects and then applied Pearson correlation 

coefficient (r) between iT1-RT1 and iT2-RT2, respectively. For iT1-RT1, the analysis was 

restricted to T1 target trials as only those required a response. In line with previous 

studies 153,222, we predicted that participants should accurately introspect on the time 

they required to reach a decision and therefore, iT should be strongly correlated 

with RT both for T1 and T2. However, if introspection is limited to the central stage, 

participants should underestimate RT due to the omission of sensory and motor 

stages in the introspective ratings, as shown by 153. To assess whether participants 

underestimated their objective reaction time, we modelled RT2 as a function of iT2 

(following centering of iT2 by the population mean) and investigated the significance 

of the intercept.

In addition, iT2 were modelled in the same fashion as RT2 to investigate the effects of 

our experimental manipulations on introspective rating of decision time:끫殬끫殬2	~	끫殌끫殌끫殌 × 끫殌끫殄끫殄끫殄끫殄/끫殸끫殸끫殸끫殄끫殄끫殄 × 끫殬1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄+	(끫殌끫殌끫殌 × 끫殌끫殄끫殄끫殄끫殄/끫殸끫殸끫殸끫殄끫殄끫殄 × 끫殬1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄	|	끫殌끫殌끫殌끫殌끫殄끫殾끫殄)	 +	(끫殌끫殌끫殌 × 끫殌끫殄끫殄끫殄끫殄/끫殸끫殸끫殸끫殄끫殄끫殄 × 끫殬1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄	|	끫歮끫殌끫殾끫殾끫殄끫殬끫殸끫殄)  
 

 

 끫殬끫殬2!"#$%	|	!((#$%	~	끫殌끫殌끫殌 × 끫歮끫殌끫殾끫殾끫殄끫殬끫殸끫殄 × 끫殬1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄	+	(끫殌끫殌끫殌 × 끫殢끫殌끫殾끫殾끫殄끫殬끫殸끫殄 × 끫殬1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄	|	끫殌끫殌끫殌끫殌끫殄끫殾끫殄)		
 

끫殬끫殬2	~	끫殌끫殌끫殌 × 끫殌끫殄끫殄끫殄끫殄/끫殸끫殸끫殸끫殄끫殄끫殄 × 끫殬1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄+	(끫殌끫殌끫殌 × 끫殌끫殄끫殄끫殄끫殄/끫殸끫殸끫殸끫殄끫殄끫殄 × 끫殬1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄	|	끫殌끫殌끫殌끫殌끫殄끫殾끫殄)	 +	(끫殌끫殌끫殌 × 끫殌끫殄끫殄끫殄끫殄/끫殸끫殸끫殸끫殄끫殄끫殄 × 끫殬1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄	|	끫歮끫殌끫殾끫殾끫殄끫殬끫殸끫殄)  
 

 

 끫殬끫殬2!"#$%	|	!((#$%	~	끫殌끫殌끫殌 × 끫歮끫殌끫殾끫殾끫殄끫殬끫殸끫殄 × 끫殬1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄	+	(끫殌끫殌끫殌 × 끫殢끫殌끫殾끫殾끫殄끫殬끫殸끫殄 × 끫殬1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄	|	끫殌끫殌끫殌끫殌끫殄끫殾끫殄)		
 

끫殬끫殬2	~	끫殌끫殌끫殌 × 끫殌끫殄끫殄끫殄끫殄/끫殸끫殸끫殸끫殄끫殄끫殄 × 끫殬1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄+	(끫殌끫殌끫殌 × 끫殌끫殄끫殄끫殄끫殄/끫殸끫殸끫殸끫殄끫殄끫殄 × 끫殬1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄	|	끫殌끫殌끫殌끫殌끫殄끫殾끫殄)	 +	(끫殌끫殌끫殌 × 끫殌끫殄끫殄끫殄끫殄/끫殸끫殸끫殸끫殄끫殄끫殄 × 끫殬1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄	|	끫歮끫殌끫殾끫殾끫殄끫殬끫殸끫殄)  
 

 

 끫殬끫殬2!"#$%	|	!((#$%	~	끫殌끫殌끫殌 × 끫歮끫殌끫殾끫殾끫殄끫殬끫殸끫殄 × 끫殬1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄	+	(끫殌끫殌끫殌 × 끫殢끫殌끫殾끫殾끫殄끫殬끫殸끫殄 × 끫殬1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄	|	끫殌끫殌끫殌끫殌끫殄끫殾끫殄)		
 

(6)

As the delay in RT2 is thought to reflect a delay in conscious processing of T2 

in consciousness and because participants can only introspect about conscious 

processes, we predicted that there will not be any effect of SOA on iT2. As the full 

model revealed a main effect of SOA on iT2, we investigated the effect of SOA 

separately for onset and offset trials separately:

끫殬끫殬2	~	끫殌끫殌끫殌 × 끫殌끫殄끫殄끫殄끫殄/끫殸끫殸끫殸끫殄끫殄끫殄 × 끫殬1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄+	(끫殌끫殌끫殌 × 끫殌끫殄끫殄끫殄끫殄/끫殸끫殸끫殸끫殄끫殄끫殄 × 끫殬1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄	|	끫殌끫殌끫殌끫殌끫殄끫殾끫殄)	 +	(끫殌끫殌끫殌 × 끫殌끫殄끫殄끫殄끫殄/끫殸끫殸끫殸끫殄끫殄끫殄 × 끫殬1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄	|	끫歮끫殌끫殾끫殾끫殄끫殬끫殸끫殄)  
 

 

 끫殬끫殬2!"#$%	|	!((#$%	~	끫殌끫殌끫殌 × 끫歮끫殌끫殾끫殾끫殄끫殬끫殸끫殄 × 끫殬1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄	+	(끫殌끫殌끫殌 × 끫殢끫殌끫殾끫殾끫殄끫殬끫殸끫殄 × 끫殬1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄	|	끫殌끫殌끫殌끫殌끫殄끫殾끫殄)		
 

(7)

끫殬끫殬2	~	끫殌끫殌끫殌 × 끫殌끫殄끫殄끫殄끫殄/끫殸끫殸끫殸끫殄끫殄끫殄 × 끫殬1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄+	(끫殌끫殌끫殌 × 끫殌끫殄끫殄끫殄끫殄/끫殸끫殸끫殸끫殄끫殄끫殄 × 끫殬1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄	|	끫殌끫殌끫殌끫殌끫殄끫殾끫殄)	 +	(끫殌끫殌끫殌 × 끫殌끫殄끫殄끫殄끫殄/끫殸끫殸끫殸끫殄끫殄끫殄 × 끫殬1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄	|	끫歮끫殌끫殾끫殾끫殄끫殬끫殸끫殄)  
 

 

 끫殬끫殬2!"#$%	|	!((#$%	~	끫殌끫殌끫殌 × 끫歮끫殌끫殾끫殾끫殄끫殬끫殸끫殄 × 끫殬1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄	+	(끫殌끫殌끫殌 × 끫殢끫殌끫殾끫殾끫殄끫殬끫殸끫殄 × 끫殬1	끫殾끫殄끫殾끫殄끫殾끫殾끫殄끫殾끫殄	|	끫殌끫殌끫殌끫殌끫殄끫殾끫殄)		
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iT1 was modelled in the same way. Typically, the PRP effect is characterised by a delay 

in RT2, while T1 processing remains constant across SOAs 223. In our experiment, 

participants did not provide an overt response to T1 in most of the trials. Nonetheless, 

participants should be able to report the time it took them to decide not to reply once 

they gain awareness of a new stimulus. We predicted that iT1 should not be impacted 

by SOA. Importantly, we further hypothesised that our manipulation of T1 task 

relevance should impact duration of conscious processing: a stimulus of the same 

category as the target must be processed for longer than a stimulus of a different 

condition. We therefore predicted that participants should be able to perceive a 

difference in their decision time between task relevance conditions and we expected 

a main effect of this factor.

Furthermore, according to GNWT, the delay in T2 processing at short latencies should 

be explained by a transient occupation of the global workspace by T1. On the other 

hand, introspective report of decision time for each content arguably constitutes a 

quantification of the workspace occupation by a given content. If that is the case, 

RT2 should be tightly correlated with iT1 at short SOAs. To test this hypothesis, we 

added iT1 as a predictor in the RT2 model described in Eq 1. We predicted that there 

should be an interaction between iT1 and SOA, reflecting a stronger effect of iT1 at 

short SOAs, decreasing with increased SOA. We further modelled RT2 as a function 

of iT1 separately for onset and offset trials.

Cogitate iEEG data
While we could not directly test the role of the PFC in the cognitive bottleneck 

associated with the PRP effect, we conducted a reanalysis of the Cogitate 224 

intracranial encephalography (iEEG) and eye tracking dataset. The similarity of 

their task with our T1 task allowed us to leverage this data to probe the neural 

underpinnings of our behavioural findings.

Participants

32 (18 females, aged 31.17 ± 13.45 years old) patients with pharmaco-resistant epilepsy 
who were monitored for epilepsy seizure localization were included in the analysis. 

Participants provided informed consent for their participation in the Cogitate study. 

iEEG data from a total of 4057 electrodes were collected across patients (1238 surface, 

2819 depths). Three subjects were excluded from the analysis as they did not complete 

the entire study, resulting in a total of 29 subjects and 3613 (1070 surface) electrodes.
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Stimuli and procedure

The experimental design of the original study was the same as our T1 task: grayscale 

images of 4 different categories (faces, objects, letters and false-fonts) presented 

for 3 durations (500, 1000 and 1500 ms) in 3 different orientations (half in centre 

orientation, quarter left, quarter right, ±30°). A blank screen was presented in 
between each stimulus, such that each trial lasted for 2s with a jittered inter-trial 

interval of 0.4s on average (truncated exponential distribution between 0.2 and 

2.0s) to avoid periodic stimulus onset. Participants had to detect infrequent target 

stimuli (~11%).

Specific targets (a face and an object, or a letter and false-font) were presented at 

the beginning of each block. A block included 32 non-target trials (8 per category) 

and 2-6 target trials. Non-target trials consisted of 16 task-relevant (same category 

as targets) and 16 task-irrelevant stimuli (different category from the targets). A total 

of 720 trials were presented divided across 20 blocks. Trials were balanced across 

category and task relevance conditions (80 trials per combination of task relevance 

and category).

Eye-tracking data

The eye-tracking data were collected using an Eyelink 1000+ or a Tobii 4C eye tracker. 

Due to the lower sampling rate (90Hz) and signal quality of the Tobii 4C, as well as 

technical issues leading to the lack of pupil data in some of the subjects whose data 

were collected using the Tobii, we only analysed the data collected using the Eyelink. 

Out of the 29 subjects, eye-tracking data were collected from 14 subjects using the 

Eyelink. Out of those, data from 2 subjects could not be recorded due to technical 

issues during recordings in the clinic. Additionally, data from 2 participants were 

rejected as the validation of the calibration was not performed and one due to 

loss of tracking during the recording, resulting in a total of 9 subjects. The same 

preprocessing pipeline was applied as for the PRP study. Finally, we investigated the 

difference in pupil dilation between the task relevant and irrelevant trials in a time-

resolved fashion using a cluster based permutation test as described in section task 

relevance and cognitive load.

iEEG preprocessing

We used the same preprocessing pipeline as described in 224. The scripts can be 

retrieved from https://github.com/Cogitate-consortium/iEEG-data-release. First, 

data were downsampled to 512Hz and detrended. Channels marked by the 

epileptologist as epileptic onset zones and channels showing no signal or high level of 

noise (characterised by visual inspection) were discarded from further analysis. The 



| 147Investigating timing of conscious experience using a dual-task and quantified introspection

3

remaining 3156 channels (981 surface) were notch filtered at 60Hz (and harmonics) 

using a one pass, zero phase non-causal band-stop FIR filter to remove line noise. 

Channels were then re-referenced using a Laplacian scheme, subtracting the average 

activation of the two nearest channels on both sides from each channel within the 

same implant 169,264. Contacts located at the edge of shafts, strips and grids were 

re-referenced using a bipolar scheme (subtracting the average of one neighbour 

only). The high gamma (HG) signal was then calculated as follows: the signal was 

bandpass filtered in 10 Hz frequency bins from 70 to 150 Hz (70-80 to 140-150Hz). 

For each frequency bin, the absolute of the Hilbert transform was computed to 

obtain the instantaneous amplitude and normalised by dividing each time point by 

the average across the entire recording to account for the 1/f power spectrum profile. 

The normalised envelopes were averaged across frequency bins to produce a single 

HG envelope time series. The signal was segmented in epochs from -1 to 2.5s from 

stimulus onset. Due to the variety in electrode coverage across participants, all 

channels were combined into a “super-subject”. To that end, we first ensured that the 

trial matrices were equated across subjects and then combined all collected channels 

in a single subject.

Category decoding analysis

We hypothesised that task-relevant tasks require deeper central stage processing to 

decide on the appropriate behavioural response, resulting in a protruded PRP effect. 

Previous studies suggest that central stage processing occurs in the PFC. Importantly, 

the difference in central stage processing duration between task relevance conditions 

is not exclusive to dual tasks; it should also be observed when the T1 task is performed 

in isolation, as is the case in the Cogitate study. To explore this possibility, we used 

time-resolved multivariate patterns decoding of face/object category as a proxy for 

the timespan for which a given brain region processes perceptual information.

Specifically, we use a support vector machine (SVM) classifier to decode faces from 

objects separately for task relevant and irrelevant trials. SVW was performed per 

cortical label of the Destrieux atlas 173. The following cortical labels contained less 

than 10 electrodes each and where omitted from the analysis: G_and_S_paracentral,  

G_cingul-Post-ventral, G_cuneus, Lat_Fis-ant-Horizont, Lat_Fis-ant-Vertical, 

S_cingul-Marginalis, S_collat_transv_post, S_interm_prim-Jensen, S_oc_middle_

and_Lunatus, S_oc_sup_and_transversal, S_pericallosal, S_precentral-sup-part,  

S_suborbital, S_temporal_transverse, G and_S_frontomargin, G_subcallosal (see 昀椀g 3.4, 
middle panel). We limited our analysis to faces/objects comparisons as these were 

found to show the highest decoding accuracy in the Cogitate across all regions 

investigated 224. After extracting trials in which either a face or an object were 
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presented (80 trials each), we first averaged the HG signal in 0.01s non-overlapping 

window to smooth the data. We then used a time-resolved support vector machine 

(SVM) classifier to decode faces from objects with 5 fold cross-validation. The 

decoding accuracy was averaged across folds. We repeated this procedure (pseudo 

trials computations and classification) 5 times to avoid any bias from random splits 

in the cross-fold validation. The average decoding accuracy in each condition was 

obtained by averaging across folds and iterations.

Statistical significance of the difference in accuracy between task-relevant and 

irrelevant trials was obtained using a permutation test by shuffling category labels 

10,000 times and repeating the decoding analysis. We corrected for multiple 

comparisons using cluster-based correction (cluster mass inference with cluster 

forming threshold as p < 0.05, 127,201,202
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Supplementary

Study 1

Behavioural results:

Supplementary 昀椀gure 3.S1: Study 1 behavioural performance and 昀椀xation

A.  Participants behavioural performance and reaction time to each task in the 昀椀rst experiment. 吀栀e left panel shows 
participants' behavioural performance in the 昀椀rst and second task. For T1, the d’ to each stimulus category is 
displayed. For T2, the d’ depicts the sensitivity in discrimination between high and low pitch sound and the β 
depicts whether participants' responses are biassed towards one or the other response (β=1 indicates no bias). 吀栀e 
right panel depicts the reaction time to the 昀椀rst and second task, for each of the visual stimulus categories and 
tones respectively.

B.  Fixation heatmap across all participants and experimental conditions. 吀栀e x and y axis represent the gaze position 
on the screen in pixel units and the colour represents the dwell time, i.e. the amount of time (in seconds) spent at 

a particular location during the trial (from -0.2 to 2.7 s from stimulus onset). 吀栀e red circle has a diameter of 6° 
of visual angle and the semi-transparent stimuli represent the stimuli in the dimension they were displayed on 
the screen.

Supplementary table 3.S1: Experiment 1 full model results

Chisq Df Pr(>Chisq)

SOA 735.95 3 < 0.001***

Onset/Offset 652.77 1 < 0.001***

T1 Task relevance 125.99 1 < 0.001***

SOA:Onset/Offset 462.82 3 < 0.001***

SOA:T1 Task relevance 10.00 3 0.02*

Onset/Offset:T1 Task relevance 83.86 1 < 0.001***

SOA:Onset/Offset:T1 Task relevance 4.11 3 0.250

RT2 ~ SOA×Onset/Offset×T1 Task relevance + (SOA×Onset/offset×T1 Task relevance | Subject)+ 
(SOA×Onset/offset×T1 Task relevance | Duration)
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Supplementary table 3.S2 Experiment 1 onset model results

Chisq Df Pr(>Chisq)

SOA 1109.31 3 < 0.001***

T1 Task relevance 192.37 1 < 0.001***

SOA:T1 Task relevance 12.82 3 0.005**

RT2* ~ SOA×T1 Task relevance+ (SOA×T1 Task relevance | Subject)+ (SOA×T1 Task relevance | Duration)
* Data restricted to onset-locked trials

Supplementary table 3.S3: Experiment 1 offset model results

Chisq Df Pr(>Chisq)

SOA 42.31 3 < 0.001***

T1 Duration 10.93 2 0.004**

T1 Task relevance 4.34 1 0.037*

SOA:T1 Duration 35.44 6 < 0.001***

SOA:T1 Task relevance 1.06 3 0.786

Duration:T1 Task relevance 1.62 2 0.444

SOA:T1 Duration:T1 Task relevance 4.49 6 0.611

RT2* ~ SOA×Duration× T1 Task relevance+ (SOA×Duration×T1 Task relevance | Subject)
* Data restricted to offset-locked trials

Supplementary table 3.S4: Experiment 1 offset model, separately for each T1 durations

T1 Duration Chisq Df Pr(>Chisq)

500 ms SOA 4.20 3 0.240

T1 Task relevance 0.19 1 0.659

SOA:T1 Task relevance 1.32 3 0.724

1000 ms SOA 12.67 3 0.005**

T1 Task relevance 4.95 1 0.026*

SOA:T1 Task relevance 0.50 3 0.919

1500 ms SOA 69.44 3 < 0.001***

T1 Task relevance 0.67 1 0.412

SOA:T1 Task relevance 4.01 3 0.260

RT2* ~ SOA×T1 Task relevance+ (SOA×T1 Task relevance | Subject)
* Data restricted to offset-locked trials of corresponding T1 duration.
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Supplementary table 3.S5: Pairwise comparison of RT2 between SOA 0 and 466 on offset trials separately 
for each T1 duration

T1 Duration Difference (s) z.ratio Pr(>Chisq)

500 ms 0.009 1.75 0.484

1000 ms 0.015 2.73 0.038*

1500 ms 0.036 6.40 < 0.001***

Supplementary table 3.S6: Comparison of RT2 empirical cumulative distribution of SOA 0ms against 0.466ms

Onset/offset T1 relevance Duration (s) D p

onset T1 relevant all 0.29 < 0.001***

T1 irrelevant all 0.29 < 0.001***

offset T1 relevant 500 ms 0.05 0.130

1000 ms 0.08 0.010*

1500 ms 0.11 < 0.001***

T1 irrelevant 500 ms 0.04 0.319

1000 ms 0.05 0.117

1500 ms 0.07 0.038*

Kilmogorov Smirnoff test separately for onset/offset T2 lock and T1 relevant/irrelevant trials. In the case 
of the offset trials, the test was conducted separately on each T1 durations.

Supplementary table 3.S7: Results of experiment 1 target only models

Duration (ms) Chisq Df Pr(>Chisq)

SOA Onset All 362.47 3 < 0.001***

Offset 500 111.64 3 < 0.001***

1000 37.16 3 < 0.001***

1500 12.01 3 0.007**

RT2* ~ SOA×T1 Task relevance+ (SOA×T1 Task relevance | Subject)
*RT2 was modelled as a function of SOA separately for onset and offset trials. In the case of the offset 
trials, RT2 was modelled as a function of SOA separately for each T1 duration.
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Eyetracker results:
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Supplementary 昀椀gure 3.S2: Pupil peak amplitude latency as a function of T1 stimulus appearance 

and disappearance.

a..  Average pupil size (y-axis) in T1 relevant (green), irrelevant (brown) and target (grey) conditions as a function of 
time (x-axis) relative to the onset of T1 stimuli, separately for onset (left) and offset trials (right). Shaded areas 
around the curve represent 95% con昀椀dence intervals computed across subjects. Vertical box shading represent 
segments in which the pupil size is signi昀椀cantly larger in T1 relevant compared to irrelevant trials determined 
using a cluster based permutation test (red α < 0.05, grey α < 0.1)

b.  Average pupil 90% peak latency as a function of SOA (x-axis) in auditory task time-locked to T1 onset (red) 
and offset (blue), separately for T1 target trials, and T1 non-target task relevant and task irrelevant trials.  
Upper, leftward panel displays peak latency for targets only (Go trials), red lines indicate peak latency per SOA  
(0, 116, 232, 466ms) locked to T1 onset.
 Below, average pupil size (y-axis) as a function of time separately for each SOA, onset/offset (red and blue 
respectively) and T1 duration conditions (each row). 吀栀e vertical dashed lines represent the average 90% peak 
latency. 吀栀e columns correspond to the T1 relevance conditions (left: T1 target, middle: T1 relevant, left: T1 
irrelevant). 吀栀e 昀椀rst rows display the results in onset locked trials and the 3 bottom row depict the pupil response in 
offset trials separately for each T1 duration, as indicated by the numbers in the margins.

Supplementary table 3.S8: Pupil peak latency onset

Chisq Df Pr(>Chisq)

SOA 15.78 3 0.001**

T1 Task relevance 1.70 1 0.192

SOA:T1 Task relevance 0.48 3 0.922

Supplementary table 3.S9: Pupil peak latency offset

Chisq Df Pr(>Chisq)

SOA 0.11 3 0.990

T1 Duration 2.03 2 0.362

T1 Task relevance 1.75 1 0.186

SOA:T1 Duration 4.30 6 0.636

SOA:T1 Task relevance 0.71 3 0.871

Duration:T1 Task relevance 0.52 2 0.771

SOA:T1 Duration:T1 Task relevance 0.40 6 0.999
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Study 2

Behavioral results:

Supplementary 昀椀gure 3.S3: Study 2 behavioural performance and 昀椀xation

a.  Participants behavioural performance and reaction time to each task in the 昀椀rst experiment. 吀栀e left panel shows 
participants' behavioural performance in the 昀椀rst and second task. For T1, the d’ to each stimulus category is 
displayed. For T2, the d’ depicts the sensitivity in discrimination between high and low pitch sound and the 
β depicts whether participants' responses are biassed towards one or the other response (β=1 indicates no bias). 
吀栀e right panel depicts the reaction time to the 昀椀rst and second task, for each of the visual stimulus categories and 
tones respectively.

b.  Fixation heatmap across all participants and experimental conditions. 吀栀e x and y axis represent the gaze position 
on the screen in pixel units and the colour represents the dwell time, i.e. the amount of time (in seconds) spent at 

a particular location during the trial (from -0.2 to 2.7 s from stimulus onset). 吀栀e red circle has a diameter of 6° 
of visual angle and the semi-transparent stimuli represent the stimuli in the dimension they were displayed on 
the screen.

Supplementary table 3.S10: Experiment 2 full model results

Chisq Df Pr(>Chisq)

SOA 308.14 2 < 0.001***

Onset/Offset 413.53 1 < 0.001***

T1 Task relevance 50.83 1 < 0.001***

SOA:Onset/Offset 110.51 2 < 0.001***

SOA:T1 Task relevance 1.91 2 0.384

Onset/Offset:T1 Task relevance 10.85 1 0.001***

SOA:Onset/Offset:T1 Task relevance 1.14 2 0.566

RT2 ~ SOA×Onset/offset×T1 Task relevance+ (SOA×Onset/offset×T1 Task relevance | Subject)+ 
(SOA×Onset/offset×T1 Task relevance | Duration
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Supplementary table 3.S11: Experiment 2 onset model results

Chisq Df Pr(>Chisq)

SOA 368.03 2 < 0.001***

T1 Task relevance 51.32 1 < 0.001***

SOA:T1 Task relevance 1.99 2 0.370

RT2* ~ SOA×T1 Task relevance+ (SOA×T1 Task relevance | Subject)+ (SOA× T1 Task relevance | Duration)
* Data restricted to onset-locked trials

Supplementary table 3.S12: Experiment 2 offset model results

Chisq Df Pr(>Chisq)

SOA 54.64 2 < 0.001***

T1 Duration 23.38 2 < 0.001***

T1 Task relevance 11.27 1 0.001**

SOA:T1 Duration 19.44 4 0.001**

SOA:T1 Task relevance 1.54 2 0.462

Duration:T1 Task relevance 1.48 2 0.476

SOA:T1 Duration:T1 Task relevance 3.63 4 0.458

RT2* ~ SOA×Duration× T1 Task relevance+ (SOA×Duration×T1 Task relevance | Subject)
* Data restricted to offset-locked trials

Supplementary table 3.S13: Experiment 2 offset model separately for each T1 duration

T1 Duration Chisq Df Pr(>Chisq)

500 ms SOA 6.46 2 0.039*

T1 Task relevance 2.22 1 0.136

SOA:T1 Task relevance 0.99 2 0.610

1000 ms SOA 42.82 3 < 0.001***

T1 Task relevance 8.81 1 0.003**

SOA:T1 Task relevance 0.33 3 0.848

1500 ms SOA 30.73 3 < 0.001***

T1 Task relevance 2.05 1 0.152

SOA:T1 Task relevance 5.29 3 0.071

RT2* ~ SOA×T1 Task relevance+ (SOA×T1 Task relevance | Subject)
* Data restricted to offset-locked trials of corresponding T1 duration.



156 | Chapter 3

Supplementary table 3.S14: Pairwise comparison of RT2 between SOA 0 and 466ms on offset trials 
separately for each T1 duration

T1 Duration Difference (s) z.ratio Pr(>Chisq)

500 ms 0.026 2.25 0.0732

1000 ms 0.064 5.67 < 0.001***

1500 ms 0.053 4.80 < 0.001***

Supplementary table 3.S15: Experiment 2 comparison of RT2 cummulative distribution of SOA 0 ms 

against 0.466 s

Onset/offset T1 relevance Duration (s) D p

onset T1 relevant all 0.33 < 0.001***

T1 irrelevant all 0.37 < 0.001***

offset T1 relevant 500 ms 0.06 0.420

1000 ms 0.19 0.001**

1500 ms 0.21 < 0.001***

T1 irrelevant 500 ms 0.10 0.103

1000 ms 0.23 < 0.001***

1500 ms 0.16 0.003**

Kilmogorov Smirnoff test separately for onset/offset T2 lock and T1 relevant/irrelevant trials. In the case 
of the offset trials, the test was conducted separately on each T1 durations.

Supplementary table 3.S16: Experiment 2 target only model results.

Duration (ms) Chisq Df Pr(>Chisq)

SOA Onset All 62.59 3 < 0.001***

Offset 500 5.07 3 0.080

1000 4.22 3 0.121

1500 7.13 3 0.028*

RT2* ~ SOA×T1 Task relevance+ (SOA×T1 Task relevance | Subject).
RT2 was modelled as a function of SOA separately for onset and offset trials. In the case of the offset 
trials, RT2 was modelled as a function of SOA separately for each T1 duration.
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Supplementary table 3.S17: iT2 full model results

Chisq Df Pr(>Chisq)

SOA 40.31 2 < 0.001***

Onset/Offset 27.49 1 < 0.001***

T1 Task relevance 21.51 1 < 0.001***

SOA:Onset/Offset 15.26 2 < 0.001**

SOA:T1 Task relevance 0.77 2 0.680

Onset/Offset:T1 Task relevance 2.92 1 0.087

SOA:Onset/Offset:T1 Task relevance 4.88 2 0.087

iT2 ~ SOA×Onset/offset×T1 Task relevance+ (SOA×Onset/offset×T1 Task relevance | Subject)+ 
(SOA×Onset/offset×T1 Task relevance | Duration)

Supplementary table 3.S18: iT2 onset model results

Chisq Df Pr(>Chisq)

SOA 48.33 2 < 0.001***

T1 Task relevance 17.98 1 < 0.001***

SOA:T1 Task relevance 0.99 2 0.609

iT2* ~ SOA×T1 Task relevance + (SOA×T1 Task relevance | Subject)
*Data restricted to onset-locked trials

Supplementary table 3.S19: iT2 offset model results

Chisq Df Pr(>Chisq)

SOA 3.83 2 0.148

T1 Duration 4.76 2 0.029*

T1 Task relevance 4.78 1 0.092

SOA:T1 Duration 4.79 4 0.091

SOA:T1 Task relevance 2.63 2 0.622

Duration:T1 Task relevance 0.68 2 0.712

SOA:T1 Duration:T1 Task relevance 1.73 4 0.785

iT2* ~ SOA×Duration× T1 Task relevance + (SOA×Duration×T1 Task relevance | Subject)
* Data restricted to offset-locked trials
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Supplementary table 3.S20: iT1 full model results

Chisq Df Pr(>Chisq)

SOA 15.62 2 < 0.001***

Onset/Offset 28.39 1 < 0.001***

T1 Task relevance 315.77 1 < 0.001***

SOA:Onset/Offset 17.04 2 < 0.001***

SOA:T1 Task relevance 0.30 2 0.862

Onset/Offset:T1 Task relevance 3.05 1 0.081

SOA:Onset/Offset:T1 Task relevance 0.70 2 0.704

iT1 ~ SOA×Onset/offset×T1 Task relevance + (SOA×Onset/offset×T1 Task relevance | Subject)+ 
(SOA×Onset/offset×T1 Task relevance | Duration)

Supplementary table 3.S21: iT1 onset model results

Chisq Df Pr(>Chisq)

SOA 30.02 2 < 0.001***

T1 Task relevance 189.78 1 < 0.001***

SOA:T1 Task relevance 0.15 2 0.929

iT1* ~ SOA×T1 Task relevance+ (SOA×T1 Task relevance | Subject)
* Data restricted to onset-locked trials.

Supplementary table 3.S22: iT1 onset model results

Chisq Df Pr(>Chisq)

SOA 0.62 2 0.734

T1 Duration 128.73 2 <0.001***

T1 Task relevance 7.25 1 0.027*

SOA:T1 Duration 0.89 4 0.641

SOA:T1 Task relevance 4.43 2 0.352

Duration:T1 Task relevance 0.49 2 0.781

SOA:T1 Duration:T1 Task relevance 2.81 4 0.590

iT1* ~ SOA×Duration× T1 Task relevance+ (SOA×Duration×T1 Task relevance | Subject)
* Data restricted to offset-locked trials.
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Supplementary 昀椀gure 3.S4: Correlation between RT2 and iT1 for each duration and onset offset trials

Reaction time to the auditory stimulus (RT2, y-axis) as a function iT1 (x-axis) separately for each SOA condition (dark 
shades: SOA of 0s, light shade: SOA of 0.466s), T1 duration (top: 500, middle: 1000, bottom: 1500 ms) and T1 onset 
locked trials and offset locked trials (left column and red lines: onset locked, right column and blue lines: offset locked)
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Supplementary table 3.S23:

Chisq Df Pr(>Chisq)

SOA 306.76 2 < 0.001***

Onset/Offset 362.51 1 < 0.001***

T1 Task relevance 1.02 1 0.312

iT1 835.57 1 < 0.001***

SOA:Onset/Offset 99.47 2 < 0.001***

SOA:T1 Task relevance 3.19 2 0.203

Onset/Offset:T1 Task relevance 4.99 1 0.026*

SOA:iT1 3.01 2 0.222

Onset/Offset:iT1 12.00 1 < 0.001***

Task relevance:iT1 0.01 1 0.937

SOA:Onset/Offset:Task relevance 1.08 2 0.582

SOA:Onset/Offset:iT1 0.64 2 0.726

SOA:T1 Task relevance:iT1 2.08 2 0.353

Onset/Offset:T1 Task relevance:iT1 0.54 1 0.463

SOA:Onset/Offset:T1 Task relevance:iT1 6.70 2 0.035*

RT2 ~ SOA×Onset/offset×T1 Task relevance ×iT1 + (SOA×Onset/offset×T1 Task relevance ×iT1 | Subject)+ 
(SOA×Onset/offset×T1 Task relevance ×iT1 | Duration)

Supplementary table 3.S24: iT1-RT2 model results in onset trials

Chisq Df Pr(>Chisq)

SOA 363.48 2 < 0.001***

T1 Task relevance 3.94 1 0.047*

iT1 614.01 1 < 0.001***

SOA:T1 Task relevance 1.82 2 0.403

SOA:iT1 1.34 2 0.512

T1 Task relevance:iT1 0.00 1 0.975

SOA:T1 Task relevance:iT1 9.26 2 0.010*

RT2* ~ SOA×T1 Task relevance ×iT1+ (SOA×T1 Task relevance×iT1 | Subject)
* Data restricted to onset-locked trials
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Supplementary table 3.S25: iT1-RT2 model results in offset trials

Chisq Df Pr(>Chisq)

SOA 56.81 2 < 0.001***

T1 Duration 19.55 1 < 0.001***

iT1 259.31 1 < 0.001***

SOA:T1 Duration 20.11 2 < 0.001***

SOA:iT1 1.91 2 0.386

T1 Duration:iT1 18.28 1 < 0.001***

SOA:T1 Duration:iT1 13.13 2 0.011*

RT2* ~ SOA× Duration×iT1+ (SOA×Duration×iT1 | Subject
* Data restricted to offset-locked trials

Supplementary table 3.S26: iT1-RT2 offset model separately for each of the T1 durations

T1 Duration (ms) Chisq Df Pr(>Chisq)

500 SOA 4.31 2 0.116

iT1 133.74 1 < 0.001***

SOA:iT1 2.60 1 0.272

1000 SOA 48.75 2 < 0.001***

iT1 82.97 1 < 0.001***

SOA:iT1 11.37 2 0.003**

1500 SOA 30.92 2 < 0.001***

iT1 41.14 1 < 0.001***

SOA:iT1 0.45 2 0.798

RT2* ~ SOA×iT1 (SOA×iT1 | Subject)
* Data restricted to offset-locked trials of corresponding T1 duration.
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Eyetracker results
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Supplementary 昀椀gure 3.S5: Pupil peak amplitude latency as a function of T1 stimulus appearance 

and disappearance

a.  Average pupil size (y-axis) in T1 relevant (green), irrelevant (brown) and target (grey) conditions as a function of 
time (x-axis) relative to the onset of T1 stimuli, separately for onset (left) and offset trials (right). Shaded areas 
around the curve represent 95% con昀椀dence intervals computed across subjects. Vertical box shading represent 
segments in which the pupil size is signi昀椀cantly larger in T1 relevant compared to irrelevant trials determined 
using a cluster based permutation test (red ɑ < 0.05, grey ɑ < 0.1)

b.  Average pupil 90% peak latency as a function of SOA (x-axis) in auditory task time-locked to T1 onset (red) 
and offset (blue), separately for T1 target trials, and T1 non-target task relevant and task irrelevant trials.  
Upper, leftward panel displays peak latency for targets only (Go trials), red lines indicate peak latency per SOA  
(0, 232, 466ms) locked to T1 onset.
Below, average pupil size (y-axis) as a function of time separately for each SOA, onset/offset (red and blue 
respectively) and T1 duration conditions (each row). 吀栀e vertical dashed lines represent the average 90% peak 
latency. 吀栀e columns correspond to the T1 relevance conditions (left: T1 target, middle: T1 relevant, left: T1 
irrelevant). 吀栀e 昀椀rst rows display the results in onset locked trials and the 3 bottom row depict the pupil response in 
offset trials separately for each T1 duration, as indicated by the numbers in the margins.

Supplementary table 3.S27: Experiment 2 Pupil peak latency onset

Chisq Df Pr(>Chisq)

SOA 9.24 3 0.002

T1 Task relevance 0.94 1 0.331

SOA:T1 Task relevance 0.09 3 0.764

Supplementary table 3.S28: Experiment 2 pupil peak latency offset

Chisq Df Pr(>Chisq)

SOA 0.33 3 0.565

T1 Duration 0.13 2 0.937

T1 Task relevance 0.01 1 0.932

SOA:T1 Duration 2.20 6 0.333

SOA:T1 Task relevance 0.10 3 0.751

Duration:T1 Task relevance 0.02 2 0.989

SOA:T1 Duration:T1 Task relevance 0.02 6 0.991
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Supplementary 昀椀gure 3.S6: Pupil dilation comparison between task relevant and irrelevant condition in 

the Cogitate data set

Average pupil size (y-axis) in relevant (green), irrelevant (brown) and target (grey) conditions as a function of time 
(x-axis) relative to the onset of T1 stimuli, separately for onset (left) and offset trials (right). Shaded areas around the 
curve represent 95% con昀椀dence intervals computed across subjects. Vertical box shading represent segments in which 
the pupil size is signi昀椀cantly larger in T1 relevant compared to irrelevant trials determined using a cluster based 
permutation test (red ɑ < 0.05)
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Supplementary 昀椀gure 3.S7: Density of electrode coverage and decoding results

a.  brain surface coloured according to the number of electrodes found in each region (Destrieux Atlas) across subjects 

(N=29). Areas marked in white correspond to those excluded from the analysis as they contained less than 
10 electrodes

b. Maximal decoding AUC (faces vs. objects) in the task relevant trial masked by signi昀椀cance decoding
c. Maximal decoding AUC (faces vs. objects) in the task irrelevant condition masked by signi昀椀cance decoding
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Supplementary 昀椀gure 3.S8: Time-Resolved Face/Object Decoding using invasive electrophysiological 

data from the Cogitate Study

Using the Cogitate iEEG data to compare face vs. objects decoding AUC in task-relevant (green) trials compared 
to task-irrelevant (brown) trials with cluster-based permutation test. Shading indicates the 95% con昀椀dence interval 
across cross-validation folds. Red shading represents signi昀椀cant clusters (p < 0.01, cluster-based permutation test). 
"N" indicates the number of channels per region. Temporal smoothing of the decoding time series using a uniform 40 
ms kernel was applied for plotting purposes only. 吀栀e upper middle panel depicts the coverage in the Cogitate iEEG 
sample, with each cortical parcel from the Destrieux atlas color-coded by the number of electrodes present. White areas 
indicate regions with fewer than 10 channels, which were omitted from the analysis. 吀栀e middle panel shows a brain 
surface map highlighting four cortical parcels from the Destrieux atlas where decoding accuracy for task-relevant 
trials was signi昀椀cantly higher than for task-irrelevant trials. Colors indicate the duration of the higher decoding  
in the task-relevant condition. Abbreviations: MFG (middle frontal gyrus), IFS (inferior frontal sulcus), IFG (inferior 
frontal gyrus), FG (fusiform gyrus), sLTG (superior lateral temporal gyrus), mLOTS (medial and lingual occipital 
temporal sulcus), STS (superior temporal sulcus), SMG (inferior temporal supramarginal gyrus).
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In the introduction, I proposed to accelerate progress in consciousness research by 

identifying cases where a given content is experienced, but the mechanisms proposed 

by a theory to instantiate it are not observed. This approach constitutes a shift 

from the traditional search for the NCCs and requires less restrictive experimental 

conditions, as the need to control for unconscious processing is alleviated. Theories 

of consciousness can accordingly be tested across a wider set of experimental 

conditions previously untested, forcing them to formulate novel predictions to put 

their explanatory power to the test.

To that end, I have relied on one aspect of consciousness that has so far received little 

attention: the temporal dynamics of conscious experiences. We experience particular 

contents for particular durations, and if a theory truly explains consciousness, it 

must be able to account for this aspect (among all others). I relied on a rather simple 

experimental paradigm in which visual stimuli were presented for three distinct 

durations while collaborating with proponents of the theories to ensure that these 

conditions matched their criteria for consciousness and that the theories were truly 

based on their predictions rather than accommodating the results a posteriori.

In this discussion, I begin by providing an independent analysis of the results 

presented in Chapter 2, situating them within the broader context of vision science 

and conscious research. While this study was a collaborative effort involving 

many researchers, I will provide intellectual insights going beyond the collective 

interpretation presented in Chapter 2. I will discuss how our results have advanced 

our understanding of the neural mechanisms associated with sustained visual 

presentation. Building upon this, I will explore the broader implications of both 

Chapter 2 and 3 in conjunction, illustrating how they open new avenues for 

investigating the dissociation between access and phenomenal consciousness. 

Subsequently, I further elaborate on the fundamental goals of theory testing in 

consciousness research. In line with the Lakatosian view of scientific progress, I 

argue that theory testing should not aim to eliminate current theories, but should 

instead be viewed as a process of refining and improving them toward the goal of a 

unified theory of consciousness. I will specifically highlight the value of adversarial 

collaboration in generating novel predictions and formalizing theories more 

effectively than testing them in isolation, while acknowledging the difficulty of 

obtaining opposing predictions from competing theories in the field of consciousness 

research. Finally, I will propose several concrete steps to improve the theory-

testing process, informed by the challenges I encountered and the insights I gained 

throughout my research. These recommendations entail general guidelines but also 

highlight additional scientific efforts I have undertaken to address obstacles in the 
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field. By sharing these insights and outlining practical measures, I aim to contribute 

to the advancement of consciousness research, helping to foster a more effective, 

integrative, and iterative approach to testing theories of consciousness.

Temporal dynamics of conscious experience and  
the underlying neural activity

In the previous two chapters, I presented the results of experiments in which highly 

visible stimuli were presented for three different durations. In the first study, we 

recorded neural data using three recording modalities (iEEG, MEG, and fMRI) to 

investigate the neural dynamics associated with such stimulus durations to test the 

predictions of IIT and GNWT regarding the neural dynamics to be observed under 

such stimulation conditions. In the posterior region of interest defined by IIT 

(encompassing the occipital and ventral temporal cortices, which I will refer to as 

the posterior ROI), sustained activation and content representation were observed, 

matching the duration for which the stimulus was on the screen. On the other hand, 

in the prefrontal region defined by GNWT (which I will refer to as the PFC), only 

transient responses and content representation were observed following stimulus 

onset, with virtually no further coupling with stimulus durations. Our results 

therefore align with IIT but challenge GNWT predictions.

IIT’s prediction through the lens of vision neuroscience
In the discussion section of the second chapter, Prof. Dehaene argues that the 

prediction of IIT regarding sustained activation is trivial (the meaning of which 

I will elaborate on later in the discussion), as ‘any physiologist familiar with the 

bottom-up response properties of those regions’ would also have made the same 

prediction. There is a sense in which this is true. The posterior ROI defined by IIT 

contains the occipital and the ventral temporal cortices, which play a prominent role 

in visual information processing. Specifically, these combined regions largely overlap 

with the ventral stream, which is widely accepted as being functionally specialized 

to recognize shapes and objects 265–268. As such, it is indeed fully expected that the 

category and identity of visual stimuli should be decodable from these brain regions, 

and had that not been the case, we indeed would have had bigger fish to fry 269. In fact, 

when developing our analysis pipelines, finding the strongest activation and content 

representation in these regions acted as a sanity check regarding the sensitivity of 

our methods.
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However, the prediction is less trivial when considering its temporal aspect. IIT does 

not only predict that there should be activation and visual content representation 

in these regions but also that these patterns should be sustained and stable for as 

long as a stimulus is presented on the screen. While the literature clearly shows that 

the ventral stream is involved in object recognition, most studies characterizing the 

functional specificity of cortical regions along this pathway relied on short, transient 

stimulus presentation 203,265–268. Some studies have manipulated stimulus duration 

but only within a short range (i.e. below 500 ms) to characterize the speed with which 

object recognition can be performed in the visual system 265,270. Therefore, it is unclear 

from this line of evidence whether the category-selective activation observed along 

the ventral stream is a transient process solely involved in the detection of a visual 

stimulus of a particular category, or if it instead plays a role in real-time monitoring 

of the presence of a particular percept, which would involve sustained activation.

In addition, visual adaptation has been shown to occur at various levels of the visual 

processing hierarchy. Neural responses following the appearance of a visual stimulus 

decrease rapidly following stimulus onset 271–273. Similarly, when the same visual 

stimulus is presented in rapid succession, the amplitude of the neural responses 

induced by the stimulus appearance decreases, an effect known as repetition 

suppression 273–276. A recent iEEG study (from which our experimental design was 

inspired) has shown that only a minority of visually responsive electrodes (21 out 

of 292) were sensitive to stimulus duration 113. Furthermore, they showed that the 

proportion of duration-sensitive electrodes strongly decreases along the visual 

hierarchy and is minimal in inferior-temporal category-selective sites (50% of the 

visual responsive electrodes show duration tracking in the early visual cortex, only 

1.5% in the inferior temporal cortex). Our study broadly replicated these findings, 

as only 25 out of 194 (13%) visually responsive electrodes showed an association with 

stimulus duration across the posterior ROI. Furthermore, only 8 out of 53 (15%) face-

selective electrodes showed significant duration tracking and were located mostly in 

the ventral temporal cortex (see Fig. 4.1).
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Figure 4.1: Channels responsivity, selectivity and duration tracking (adapted from Chapter 2 

supplementary material)

a.  Localization of all channels showing a signi昀椀cant change in activation following stimulus onset (50-350 ms) color 
coded by the percentage of signal change displayed on the fsaverage pial surface. 吀栀e colors on the brain surface 
correspond to broad anatomical regions (blue: occipital, green: ventral temporal, purple: temporal, orange: parietal, 
brown: motor, yellow: frontal cortices).

b.  Localization of all category-selective channels (signi昀椀cantly higher activation in one condition compared to all 
others from 50-350 ms from stimulus onset). 吀栀e color of each contact represents the category the contact is selective 
for (yellow: faces, red: objects, grey: letters, purple: false-fonts) and the color on the brain surface represents the 
regions of interest de昀椀ned by the theories (blue: IIT, green: GNWT).

c.  Localization of channels showing an association with stimulus duration (only depicting posterior ROI results, 
the light blue region on the brain is the fusiform gyrus). Electrodes are color-coded based on the response type that 
they display. Light blue electrodes show sustained activation for the duration of stimulus presentation regardless 

of category, dark blue show sustained activation that is further modulated by stimulus duration, purple electrodes 
show sustained activation only to faces stimuli and green electrodes show transient activation following both the 

onset and the offset of the visual stimulus.
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Sustained category-selective activation in the posterior ROI is far from ubiquitous, 

and I would therefore contend that IIT’s prediction was not trivial. It can be argued 

that some of the sustained activation observed in posterior electrodes may reflect 

the fact that visual input was not truly stable, despite participants being instructed 

to fixate in studies presenting visual stimuli for longer periods 113. Even when 

participants fixate, the position of the stimuli is not exactly fixed on the retina, as 

small eye movements remain (micro-saccades, tremors and drifts 277). Early visual 

areas have been shown to be sensitive to these fast-paced and spatially constrained 

changes in the visual input 278–280. It is however unlikely to be the case for higher-

order areas in the ventral stream. As we progress along the posterior-anterior axis,  

several studies revealed that the spatial and temporal extent of the receptive fields 

increases 272,275,281,282. In addition, several studies have revealed that higher-order visual 

area activation is invariant to changes in the visual input associated with saccades 

and blinks 114,217. Furthermore, recent studies have highlighted that adaptation occurs 

at different time scales along the visual hierarchy, reflecting the difference in the 

stability of the input drive of different regions 271. Accordingly, sustained activation 

observed in lower-level areas may reflect the constant change in visual input 

associated with minute eye movements. In contrast, as the input to higher-order 

areas is more stable, responses might become more adapted in most recording sites, 

accounting for the smaller proportion of channels showing sustained activation.

Nonetheless, sustained activation was observed at all levels of the visual hierarchy 

in Chapter 2 as well as in the study by Gerber and colleagues 113, including higher-

order areas. As discussed by Gerber and colleagues, these results might indicate  

two different functional specializations in visual information processing. Some units' 

functions might be to detect and recognize novel objects transiently, while other 

units are specialized in the monitoring of visual information in real-time, keeping 

tabs on the external world 113. Our results further confirm that sustained activation 

is scarcer than transient activation, and grows scarcer going up the hierarchy of the 

ventral stream.

Importantly, IIT not only predicted that such sustained category-selective responses 

should be observed, but it also predicted that the content of experience should be 

represented in a sustained and stable fashion. In light of the prominence of transient 

category-selective responses over sustained ones (which was already documented 

by Gerber and colleagues before the submission of the Cogitate pre-registration 96), 

this prediction is also not trivial as it entails that the transient category-selective 

activations do not contribute to the representations underlying our perception, 

despite their prominence in magnitude. Furthermore, if the sustained activation 
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observed at lower levels of the visual hierarchy reflects fast-paced and local changes 

in the retinal input, these should not support sustained and stable perceptual 

representations. Under these circumstances, a prediction very similar to that of 

GNWT made regarding content representation in the PFC could have been imaginable. 

To spare energy resources, perceptual contents may be represented transiently in 

higher-order visual areas following the onset and offset of the visual stimuli.

In addition to ours, two separate studies investigated the predictions regarding the 

temporal dynamics of content representation 126,127. The results of these studies align 

with ours, stable and sustained representations of visual information were observed 

in the occipital and ventral temporal regions. Importantly, not only category-level 

information was represented in a sustained fashion along the ventral stream, but also 

stimulus identity information. These results further indicate that perceptual content 

is not associated with activation magnitude, but instead with the multivariate 

activation patterns observed across neuronal populations 126.

Cogitate results through the lens of subjective experience
Beyond arguments regarding the triviality of IIT’s predictions from a vision science 

point of view, another argument can be made from the perspective of subjective 

experience. All recent studies investigating the neural dynamics associated with 

sustained stimulus presentation (including ours) share the initial assumption that 

under such conditions, participants' subjective experience is linked in some way 

to stimulus duration. In the introduction from Broday Dvir and colleagues 126, the 

authors state the following question: “Simply put, if the magnitude of neuronal 

activity determines perceptual awareness, how does perception remain stable 

despite this massive reduction?”. Similarly, Vishne and colleagues 127 open their paper 

by stating that “In essence, every perception has non-zero duration”. In our study, 

this assumption was initially shared by both IIT and GNWT, which is reflected in 

their predictions.

An important clarification must be made regarding this shared assumption: it is not 

about the experience of the duration of the stimulus (i.e., time perception), which 

refers to how long a stimulus is felt to last. Instead, it was assumed that participants 

experience the persistence of stimuli on the screen, one way or another. According to 

IIT, at each time point where the stimulus is present on the screen, participants have 

the experience of the stimulus present on the screen and accordingly, when stimuli 

are presented for longer, the stimulus presented on the screen remains experienced 

for longer. This also seems to be the initial assumption of the studies mentioned 

above 113,126,127. GNWT’s initial assumption was that participants experience the onset 
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and the offset of the visual stimulus, and as they experience the offset of the visual 

stimuli, the brain concludes that the visual stimulus persisted since the onset, and 

it is in that conclusion that participants are experiencing the persistence of the 

stimulus 96,97,225. Accordingly, participants experienced that longer stimuli persisted 

for longer on the screen. Regardless of whether the experience of persistence occurs 

in real-time or in a post hoc fashion (as GNWT suggests), the underlying neural 

activation should be modulated by stimulus duration in some way.

In our study, we focused primarily on the regions defined by the theories and 

observed that PFC activation was invariant concerning stimulus duration (neither 

in single-channel activation nor in multivariate activation patterns) and that only 

the posterior ROI showed such an association. Furthermore, Vishne and colleagues 

observed that only occipital and ventral-temporal cortices are modulated by stimulus 

duration, while PFC and parietal cortices’ representations were invariant to stimulus 

duration 127. Interestingly, Broday Dvir and colleagues observed an increase in fronto-

parietal electrodes activation following both the onset and the offset of the visual 

stimulus 126. However, they did not observe any multivariate content representations 

across these electrodes at any time points, which they attribute to the poor coverage 

of these regions in their data set. It must also be noted that in contrast to the study 

presented in Chapter 2 and the study of Vishne and colleagues 127, participants were 

required to memorize the presented stimuli to perform a memory task following the 

experiment and that all stimuli were presented for the same duration126. The ignition 

observed in fronto-parietal electrodes in their study might reflect memory-encoding 

processes, or expectation related processes, as highlighted in Chapter 3.

Under the assumption that the experience of persistence was influenced by stimulus 

duration in these studies, the brain regions consciousness involved in consciousness 

should reflect this temporal aspect of experience. In that sense, it matters little that 

IIT’s prediction is trivial. Together, these studies highlight that the region showing 

the strongest association with stimulus duration is the ventral visual stream. If 

the experience was indeed affected by how long the stimulus was presented, this 

makes the ventral visual stream a better candidate for the neural substrate of visual 

conscious experience, no matter how unoriginal that may be.

A triple dissociation between access consciousness, phenomenal 
consciousness, and unconscious processing in sight?
Based on the sustained activation and representation observed over sensory regions 

and on the transient activation and representations observed in the prefrontal 

cortex, 127 conclude that ‘to the extent conscious experience is continuous, it may rely 
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on sensory representations, and to the extent experience is discrete, it may rely on 

prefrontal representations’. However, I would argue that this conclusion mistakenly 

hinges on the distinction between the continuous vs. discrete nature of conscious 

experience 283–285. I believe it is mistaken because it implies that if consciousness 

is continuous, it is necessarily linked to sensory input, and if it is discrete, it is 

necessarily dissociated from sensory input. This does not need to be the case. 

Conscious experience could be continuous and dissociated from sensory input, in 

which case participants would have continuous experience but no experience of the 

persistence of the stimulus on the screen. Alternatively, participants' experience 

could be discrete and still experience the persistence of the stimulus on the screen. 

In other words, a more accurate conclusion is that to the extent that participants' 

experience reflected the temporal dynamics of stimulus presentation, it cannot 

arise from the prefrontal cortex, and to the extent that participants' experience was 

dissociated from the temporal dynamics of stimulus presentation, it cannot arise 

from sensory regions.

As Prof. Deheaene suggests in the discussion of Chapter 2, the lack of PFC ignition 

at stimulus offset may indicate that participants' experience was indeed dissociated 

from the temporal dynamics of stimulus presentation and that they may not in fact 

experience the persistence of the stimuli on the screen. The result of the study in 

Chapter 3 provides evidence supporting this view. Using the PRP as a time-resolved 

marker for conscious access, we observed that while this effect was present at 

stimulus offset, it was much weaker compared to the onset of the visual stimuli and 

not systematic.

These results indicate that the offset is not systematically consciously accessed or 

that when they do so, they do so only very briefly. This is perhaps not too surprising: 

as the duration of the stimuli was not relevant to the task, participants may not have 

dedicated cognitive resources to ‘do something with it’ in most trials, because they 

did not have to. These results enable us to reconcile the lack of PFC activation in 

Chapter 2 with the GNWT. If participants access the offset only very briefly and only 

on some trials, PFC ignition may have been too brief or sporadic (across trials) to be 

detected in neural recordings.

These findings support the view that participants only accessed the visual stimuli 

transiently rather than in a sustained fashion. However, this brings us to one of 

the largest and longest lasting debate the field of consciousness, whether access 

and phenomenal consciousness are distinct or distinguishable 252,253. Phenomenal 

consciousness refers to the subjective quality of an experience (seeing blue vs. 
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seeing red) while the latter refers to the capacity to ‘do something’ with that content  

(i.e. engaging cognitive functions such as evaluating it, thinking about it, and 

reporting it). Some authors argue that access has in fact little to do with consciousness 

and that studying it amounts to studying cognitive confounds 64. Others argue that 

there is no distinction between the two as it is by accessing representation that we 

become aware of them 286. Still, others argue that even if there is such a thing as 

inaccessible conscious experiences, such cases can never be investigated scientifically 

as such contents are by definition remain private and unmeasurable from a third-

person perspective 45,253.

Provided that only accessed contents are experienced, our results would indicate 

that indeed, participants' experience of the stimuli was transient and decoupled 

from stimulus duration. Alternatively, participants might have accessed conscious 

representations only long enough to classify the stimuli and select a response. 

Afterward, they may have continued to experience the stimulus without actively 

accessing it, which would constitute the highly sought-after condition of conscious 

experience in the absence of cognitive confounds 48,49,64.

Arbitrating between these two views brings us to the very reason why the debate 

between access and phenomenal consciousness has endured for so long: how can we 

know if participants' experience is limited to what is accessed? It has been proposed 

that this problem is dealt with by no-report paradigms. If participants are not 

required to report about a stimulus, they would passively experience the stimulus 

without accessing it, because they have no reason to do so 47. Accordingly, differences 

in neural activation between both conditions should reveal the neural correlates of 

phenomenal experience, in other words, the true NCCs 48,49. However, even when 

participants are not instructed to report the content of their experience, they might 

still spontaneously engage in post-perceptual cognitive processes related to their 

experience, or as Ned Block would put it, ‘You cannot stop [...] monkeys thinking’ 64. 

Therefore, it is at present unclear whether studies relying on the no-report method 

have investigated phenomenal consciousness in the absence of access or access 

consciousness in the absence of a report 52,55,56,59–61,86.

Progress in the debate between access and phenomenal consciousness would greatly 

bene昀椀t from knowing whether unreported stimuli were accessed or not. 吀栀is is tricky, as 
how can we know whether it was accessed if participants do not report it? Ned Block argues 64 

that this can be ensured by carefully designing ‘no-cognition’ experimental paradigms, in 

which post-perceptual processes do not occur. However, it is quite challenging to do so, 

as it requires a priori knowledge on how to limit post-perceptual processes.



| 179Discussion

4

I would argue that the work presented in Chapter 3 constitutes a more practical solution 

to this problem. Under the assumption that conscious access is a serial process, if a 

particular stimulus is accessed, it will interfere with the processing of a subsequent 

stimulus, even if no report is required of the stimulus being accessed. 吀栀erefore, the 
PRP effect constitutes a time-resolved marker that can be used to infer whether a given 
event was consciously accessed, even in the absence of a report. By combining this 

approach with no-report paradigms, it becomes possible to know if unreported events 

were consciously accessed. In other words, the PRP method enables 昀椀nessing the need 
to a priori de昀椀ne conditions in which post-perceptual processes will be limited 64 and 

instead directly test whether that is th e case in existing paradigms.

One problem remains: how can we distinguish unaccessed yet consciously 

experienced stimuli from unconsciously experienced ones? Unaccessed contents are 

by definition unreportable, so we cannot rely on subjective reports of participants to 

differentiate them from unconscious contents. As solution to this last issue, I appeal 

to the neural stance proposed by Lamme 287. By combining no-report paradigms 

with the PRP method, we can determine whether the stimuli in the condition that is 

considered conscious (through any adequate means) were accessed. If they were not 

accessed but the neural response differs from the unconscious condition, this would 

show a three-way dissociation between conscious access, phenomenal consciousness, 

and unconscious processing. The existence of such conditions remains speculative, 

but at least we now have a method to start searching.

Perhaps evidence for such conditions is not as far as one might think. In a recent study, 

ambiguous face stimuli were presented for 500 and 1000 ms, and participants only 

became aware of the faces if informed beforehand (one-shot learning) 288. Comparing 

the ERP components from the EEG recordings, the aware group displayed a sustained 

visual awareness negativity component (VAN) throughout the entire duration of the 

stimulus, unlike the unaware group. Clearly, there is something different between 

the conscious and unconscious condition. However, it is possible that participants 

consciously accessed the stimuli for as long as they were presented on the screen, 

accounting for the sustained difference between the seen and unseen conditions. 

This is of course unlikely given the results presented in Chapter 3, suggesting that 

under sustained visual presentation, conscious access is transient. Nonetheless, this 

has not been explicitly tested in this study. If a follow-up study were to demonstrate 

that a PRP effect is absent or only transient when participants are informed of the 

presence of the stimuli, these results would constitute a strong piece of evidence that 

participants' experience is indeed sustained for the entire duration of the stimulus 

but only sometimes and transiently access unreported contents.
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The bearing of evidence on theories

As I have outlined in my introduction, consciousness research faces a major 

challenge: the proliferation of multiple and often incompatible theories evolving in  

parallel 20,79,81,82. Not all these theories can be true at the same time and therefore, 

achieving a unified scientific theory of consciousness requires rigorous empirical 

testing of existing theories to begin the process of pruning the theoretical jungle 78. 

To achieve this, I have proposed an alternative to the traditional contrastive method, 

by trying to identify necessity dissociations, cases in which consciousness occurs 

in the absence of the mechanisms proposed to instantiate it by the theory. Both in 

Chapters 2 and 3, some of the predictions made by the theories failed. This begs the 

question: do these failed predictions entail that we have unequivocally established the 

existence of such dissociation between consciousness and the mechanisms proposed 

by the theories? And should we, based on these results, consider the theories falsified 

and abandon them?

The Lakatosian view on scientific progress and theory testing as 
theory refinement
Answering yes to these questions would be committing to a Popperian view of 

falsificationism 136: a failed prediction entails that the theory is wrong and any ad 

hoc explanations provided by the theorists would constitute desperate attempts to 

save their failed theories. In line the with the collective interpretation presented 

in Chapter 2, I do not believe that this is an adequate conclusion, for this would be 

throwing the baby with the bathwater. It would imply that the experiments I have 

presented functioned as an experimentum crucis–a decisive test that can definitely 

falsify a theory 289. This is hardly tenable in our case and more generally in young 

developing fields as complex as the neuroscience of consciousness 100,104,290.

One reason to refrain from such a reading is the problem of underdetermination, 

as articulated by the Duhem-Quine thesis 291. Underdetermination implies that 

empirical evidence alone is insufficient to establish the validity of a single scientific 

theory, as the same empirical observation can be predicted by many different 

theories rather than a single one. Furthermore, predictions are never tested in 

isolation; instead, we are testing a whole network of assumptions and hypotheses 292. 

A failed prediction indicates that something within this network is wrong, but it does 

not specify which assumption or hypothesis is at fault. Consequently, a confirmed 

prediction in a single study does not entail that a theory is confirmed and a failed 

prediction does not entail that the theory is wrong 140.
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This may seem rather obvious. In both chapters, when testing predictions, both 

theories relied on several auxiliary assumptions: that the signal of interest was strong 

enough to be detected in our data (or that it would be comparable in size to studies, 

on which we based our power calculations), that our analytical tools were sufficiently 

sensitive to detect those signals. These are of course the usual suspects among a 

large amount of auxiliary assumptions. Accordingly, when predictions fail, we can 

never establish with certitude that the prediction under test is itself at fault, or if for 

example, a more trivial issue is to blame. For example, in Chapter 2, IIT’s proponent 

argues that the lack of synchrony between low and high-level visual areas might be 

due to the limitations of the spatial resolutions available in our recordings, rather 

than the absence of synchrony between these brain regions. Similarly, in Chapter 3, 

I suggested that offset ignition may have been present in Chapter 2, but in too few 

trials to be detected from the neural recordings.

In the case of consciousness research, the issue of underdetermination is particularly 

severe. I have explained in the introduction that consciousness cannot be measured 

directly and must therefore it must be inferred 71,72,83, in our case based on theoretical 

considerations and knowledge amassed in previous studies (in the case of Chapter 3). 

Accordingly, a failed prediction might entail that the inference about consciousness 

was misled, rather than the predicted observation 83. This kind of argumentation can 

be seen across both chapters. In the second chapter, Prof. Dehaene argues that the 

lack of offset ignition (and content representation) in the PFC might indicate that the 

initial assumption of experience of persistence may have been misled, and had it been 

otherwise, the predicted neural activation would have been observed. As a result, it 

was inferred in Chapter 3 that participants never experienced the disappearance of 

the stimuli (based on the results of Chapter 2). Based on the observation of a PRP 

effect at the offset of stimuli, I myself proposed that participants might after all have 

experienced the disappearance of the stimulus on some occasions.

From the Duhem-Quine thesis, it follows that the ad-hoc justifications provided by 

theorists and scientists to account for failed predictions may very well be justified. 

It is indeed quite reasonable to suggest that predictions’ failures can result from 

noise, flawed inferences, or many other factors that do not directly implicate the 

core theory. Thus, we can never, based on failed predictions, unequivocally conclude 

that the mechanisms proposed by the theories are not necessary and/or sufficient for 

conscious experience. However, this leads to a broader concern: if theories can always 

accommodate failed predictions, does this mean that they can never be empirically 

overthrown? And if so, is there any realistic empirical path towards a unified theory 

of consciousness?
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吀栀e answer lies in how we understand the purpose of theory testing. 吀栀e fact that a 
prediction can be accounted for by adjusting auxiliary assumptions does not entail 

that a failed prediction is inconsequential, as the very act of re昀椀nement of auxiliary 
assumptions constitutes scienti昀椀c progress. As discussed in Chapter 2, Imre Lakatos 
formalized this approach in his concept of research program 117,293. Rather than viewing 

theories as static entities that are falsi昀椀ed by a single failed prediction (as the Popperian 
view entails), Lakatos described theories as research programs, composed of a “hard 

core” which are the fundamental claims of the theory and auxiliary assumptions.

In this framework, failed predictions are not without consequences. When a 

prediction fails, the theory’s protective belt of auxiliary assumptions is adjusted, 

allowing the core to remain intact. The core and this adjusted belt constitute a 

novel version of the theory, in a long line of versions of the theories in the research 

program history. In this view, research programs are never falsified, they are either 

progressive or degenerative. For a research program to be considered progressive, 

it must predict novel facts that were not predicted by the previous versions of the 

theory and some of these novel predictions must be corroborated empirically 294. If it 

fails to do so, it is considered degenerative.

As we and several others have argued, this framework is well-suited to appreciate the 

value of theory testing in consciousness research 83,104,140,290. This iterative refinement 

of theories is evident in Chapters 1 and 2, particularly in how GNWT evolved in 

response to empirical challenges. In Chapter 2, we tested a version of GNWT,, 

whose hard core is that consciousness is the result of information broadcast in the 

workspace, and inferred that participants experience the persistence of stimuli they 

consciously perceive (along with many other assumptions). Based on the observation 

that PFC activation was not modulated by stimulus duration, GNWT revised this 

inference, predicting that participants do not experience the disappearance of the 

stimulus unless task-relevant. Chapter 3 tested this updated version of the theory,, 

finding only partial validation of this novel prediction, as conscious access of 

stimulus disappearance occurred in a subset of trials. Now GNWT is further refined 

to, predicting that task relevance and predictive processes interact to influence 

conscious experience, paving the way for future studies.

Accordingly, theories can remain progressive despite their predictions being falsified, 

by adapting and making novel predictions, spurring novel scientific discoveries. 

Accordingly, engaging in testing theories of consciousness can be seen as a way 

toward theories’ self-improvement 290, refining our understanding of consciousness 

at the same time 294, making it a worthwhile endeavor.
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On the usefulness and limitations of Adversarial Collaboration in 
consciousness research
While we cannot definitively establish whether the current version of a theory is 

wrong, we can establish whether it is better or worse than a competing theory. As 

Lakatos observed, often in the history of science, theories are abandoned because 

another, better theory becomes available 117,293. It is with that goal in mind that we 

relied on the framework of Adversarial Collaboration in Chapter 2.

The framework of Adversarial Collaboration aims to settle theoretical disputes and 

has recently been discussed as constituting a gold standard for theory testing 99,110. 

As can be seen in Chapter 2, this approach requires theorists from opposing camps 

to band together and design an experiment they agree a priori is appropriate to 

arbitrate between their contradicting claims 98,111. This approach is particularly 

useful in the case of consciousness research. As we have seen, theories are tested in 

parallel with operationalization parameters reflecting the particular commitment of 

the theory being tested. As a result, the evidence fitting a given research program 

is discarded by another based on disagreement with the experimental parameters, 

stalling progress 78,140. This is prevented by the very nature of ACs: an experimental 

design is agreed upon a priori based on which theories’ predictions will be tested. 

Accordingly, the results should enable us to establish which (current version) of the 

theories being tested better explains conscious experience 78.

Involving the advocates of each theory in the theories comparison process is crucial 

in the field of consciousness research, where theories are often under-defined 

and theoretical work is typically focused on explaining existing effects rather than 

advancing novel predictions under untested conditions 25,65,87,94,108,121,287,295. When 

theories are compelled to step beyond their comfort zones, novel predictions are 

formulated and these predictions must be faithful representations of the theories 

themselves, which is ensured by involving proponents of each theory. This framework 

does not only yield novel predictions, but it also forces theories to become more 

precise to be able to attribute evidence to one or the other theory. For instance, in 

Chapter 2, theories have to provide precise definitions of the regions of the brain 

they consider to play a critical role in conscious experience–details that were not 

explicitly stated before. I believe that my work attests to the value of this approach: 

the results have led to the refinement of the theories and the generation of novel 

predictions, engaging in a progressive research agenda that may not have emerged 

had the theories not been challenged under novel experimental conditions.
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However, there is an important limitation of the study presented in Chapter 2. 

Despite the theories being tested on common experimental grounds and some of 

their predictions being falsified, we cannot decide which of IIT or GNWT (in their 

current formulations) provides a better account of empirical data. That is because, 

despite our best efforts to bring the theories on common grounds, the predictions 

they committed to were not formally adversarial.

This can be seen in the pre-registered predictions of the project 96. The first prediction 

relates to the decoding of conscious content. GNWT predicts that it can be decoded 

from the PFC, while IIT predicts it can be decoded from the posterior ROI. These 

predictions are not contradictory as they concern different data; they are therefore 

not mutually exclusive. As Prof. Dehaene mentions in the discussion of Chapter 2, 

GNWT would also predict that the content being experienced should be decodable 

from sensory regions. Furthermore, IIT does not deny that decoding in the PFC could 

be observed. Instead, IIT predicts that there should not be additional information 

regarding the content being experienced in the PFC beyond the information found 

in the posterior hot zone. Importantly, this prediction from IIT was not explicitly 

contested nor endorsed by GNWT. In Chapter 2, we observed decoding in both 

prefrontal and posterior ROIs, and we observed that adding prefrontal features to the 

posterior classifier did not lead to an increase in decoding accuracy. In other words, 

both theories saw all their predictions validated, and it is accordingly not possible to 

determine which theory accounts the best for the observed data.

Similarly, GNWT did not predict that no sustained activation should be observed in 

the posterior ROI and IIT did not predict that no onset and offset ignition should be 

observed in the PFC. The lack of offset-ignition in the PFC does challenge GNWT but 

it has no implications for IIT. GNWT did not predict that the connectivity between 

FFA and V1/V2 should not be larger when a face is presented, and IIT did not predict 

that connectivity between FFA and PFC should not be larger when a face is presented. 

Accordingly, the failure of IIT prediction challenges only IIT and has no bearing 

on GNWT.

This limitation does not change the implications that failed predictions have for the 

theories, but does entail that we cannot answer the question of whether one theory is 

better than the other.

There are several possible reasons why the theories did not commit to directly 

opposing predictions. A first possibility is that while the theories in their current 

form might be capable of making contradicting statements, the experimental 
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conditions may have not been adequate to bring about such contradicting statements. 

I acknowledge that our experimental choices may have limited the potential for 

direct opposition between the theories, and future studies could explore alternative 

paradigms. Alternatively, this limitation may not lie in the experimental design but 

rather reflect the lack of specification of theories in their current formulations. As 

theories have been mostly tested with a restricted set of experimental conditions, 

they may be reluctant to make predictions in experimental conditions falling outside 

of their current purview. A last possibility is that GNWT and IIT may have non-

overlapping explanatory targets, that is they attempt to explain different concepts 

loosely understood to be covered by the concept of consciousness 76,77, in which case 

they will never be able to formulate truly contradicting predictions.

I do not believe it is possible to determine a posterioir which of these reasons 

is the cause of the lack of contradicting predictions in Chapter 2. However, our 

results highlight the importance of considering such factors in future adversarial 

collaborations. If theories are reluctant to commit to contradicting predictions in a 

given experimental paradigm, it is worth exploring whether alternative paradigms 

in which the theories being tested would be willing to commit to contradicting 

predictions. Importantly, if this proves to be unfeasible, this may reflect their current 

lack of specificity or their misaligned explanatory targets. I would argue that in both 

cases, adversarial collaboration projects remain far from vain, as they encourage the 

refinement and formalization of theories in ways that isolated testing cannot. In 

turn, such projects may produce the necessary refinements, making theories capable 

of formulating contradicting predictions in future studies. Alternatively, these 

refinements might help clarify the misalignment in explanatory targets of theories 

so far thought to address related phenomena. Both outcomes would contribute to 

refining the theoretical landscape. Therefore, researchers should not be discouraged 

from engaging in adversarial collaborations, even when obtaining directly competing 

predictions is challenging, as these collaborations drive both theoretical and 

experimental progress.

Improving the efficacy of theory testing efforts

I believe that my research demonstrates the significant progress that can be made 

by testing predictions from theories of consciousness. By attempting to identify 

dissociations between the content of conscious experience and the mechanisms 

proposed by various theories, I have uncovered key gaps in their explanations and in 

our understanding of conscious experience. These efforts, in line with the Lakatosian 
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view of scientific progress, have not only led to the refinement of these existing 

theories but have also deepened our understanding of consciousness itself.

While the Lakatosian view entails that that theories cannot be directly falsified by 

a single experiment, attempts at testing theories of consciousness should still aim 

to be as decisive as possible. Experiments should be designed such that when a 

prediction fails, the options for revising assumptions are limited to meaningful 

ones. In my research, I have developed and applied strategies to constrain, which 

assumptions need to be revised when a prediction fails. My work has also granted 

me hindsight wisdom, revealing additional strategies that can further enhance 

the efficacy of theory testing. By sharing both the methods I implemented and the 

lessons I gained, I offer practical guidelines to make future attempts at testing 

theories of consciousness more effective and integrative, fostering iterative progress 

toward a unified scientific theory of conscious experience.

Constraining auxiliary assumptions
A first insight is that while some assumptions inevitably need to be made when 

testing predictions, certain assumptions can—and should—be verified. A critical 

assumption, often taken for granted, is that the experimental conditions under which 

data are collected are appropriate and consistent. This is by no means guaranteed. In 

the large-scale, multi-lab study presented in Chapter 2, we observed that differences 

in hardware and software configurations, as well as variability in testing practices, 

could lead to significant discrepancies in experimental setup performances. 

Addressing this variability in the Cogitate project required the development of testing 

protocols to ensure that experiments were functioning consistently across all sites.

Based on this observation, I conducted an additional study (not included in this 

thesis) to investigate the extent to which it is representative of the community. We 

surveyed the field and revealed that while most researchers conduct some form 

of setup testing, the specific aspects tested varied greatly across researchers 118. 

Furthermore, I demonstrated through simulations that even slight deviation in 

setup performance could have drastic impact on statistical results. In this state of 

affairs, failed predictions in theories could easily be attributed to trivial technical 

issues. To address this issue, the testing protocol developed in the Cogitate project 

was extended to a standardized framework applicable to any event-based studies 

in cognitive neuroscience. This framework includes a shorthand report, enabling 

researchers to document the performance of their setups comprehensively.
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By applying this protocol, researchers can rule out trivial technical issues as potential 

explanations for failed predictions, directly reducing the underdetermination problem. 

吀栀is is particularly important in multi-lab studies, where cross-site consistency is 
critical and facilitate replication efforts by enabling researchers to match experimental 
performance across different studies. By systematically addressing these technical 
challenges, variability in results across studies can be reduced; helping to ensure that 

theory testing is based on robust, high-quality data.

A second, related insight deals with the inference problem. As discussed earlier, 

consciousness research relies on proxies to infer the content of consciousness, which 

introduces a layer of uncertainty. When a theory faces a failed prediction, it can often 

dismiss the evidence by arguing that the inference about consciousness was flawed. I 

believe that this specific type of post hoc justification can be mitigated by providing 

a priori a logical derivation of the inference from the theory itself and declaring the 

level of confidence the theory places on the inference.

In the experiment presented in Chapter 2, GNWT did not explicitly justify the rationale 

behind the inference that participants experienced the persistence of stimuli on the 

screen (nor did IIT, but I will stick to GNWT to illustrate this recommendation). As a 

result, it became easy to discard this inference when no offset ignition was observed. 

Had GNWT provided a theoretical motivation for this inference (based on attention 

and the lack of competing stimuli for example) and declared a high confidence in it, 

rejecting the inference would have incurred a large cost to the theory. Furthermore, 

by exposing, the logical derivation behind the inference would have made explicit 

the background assumptions supporting the theory’s prediction, leading to a more 

precise and constructive update of the theory by identifying which part of the rational 

is flawed. In other words, declaring a priori the rationale and degree of confidence in 

the inference can help limit the degrees of freedom a theory has in terms of ad-hoc 

accommodation, leading to more precise revision of the theories.

Adherence to the open science ethos
Another critical recommendation to strengthen theory testing is adhering to the open 

science ethos 104,110. Pre-registration is critical to establish the progression of research 

programs. Under the Lakatosian view, there is nothing wrong per se with theories 

to provide ad-hoc explanations when their predictions fail. There is however a clear 

demarcation between predictions (made based on theoretical considerations alone) 

and accommodation, which is a post hoc explanation of why a prediction fails 290. 

Across both chapters, theories predictions were pre-registered, enabling a clear 

tracking of the evolution of theories, highlighting how accommodation leads to novel 
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predictions, which can then be empirically tested. This, in turns, makes it possible to 

assess whether a theory remains progressive or eventually becomes degenerative. In 

addition to pre-registering the predictions, the rationale and degree of confidence 

placed in the inference I have proposed above should also be pre-registered. By 

pre-registering both the predictions alongside the rationale behind the inference, 

the degrees of freedom available for post-hoc justifications ensures more precise 

revisions of theories based on empirical evidence.

In addition to pre-registration, data sharing is another essential component of 

the open science framework. As I have highlighted, theory testing is an inherently 

iterative and dynamic process; the findings of a single study are insufficient to 

conclusively confirm or refute a theory. For a theory to remain progressive when 

its predictions are refuted, it must generate novel predictions that are empirically 

tested. Importantly, as highlighted by Negro 290, the novelty of a prediction is 

understood in terms of 'use-novelty'—the prediction of a fact is considered novel if 

it was not part of the set of empirical observations used to motivate the theory up 

until that point. Therefore, testing these novel predictions does not always require 

new experiments; they can often be validated using existing observations or by 

reanalyzing existing datasets.

Furthermore, the validation of a theory’s prediction in a single experiment 

demonstrates its validity only in this particular instance. Importantly, if a theory 

of consciousness is correct, the mechanisms it proposes to instantiate conscious 

experience should be observed across all experimental conditions under which 

consciousness occurs. In this sense theory testing can be seen as a generalization 

problem 296 and testing theory’s predictions across diverse datasets is necessary to 

establish the robustness and the scope of a theory. Such an endeavor requires the 

aggregation of empirical data to test the robustness of theories’ predictions across 

the wealth of empirical data amassed in empirical efforts to investigate the neural 

underpinnings of conscious experience.

However, in the current state of the literature, most data aggregation has occurred 

at the level of reviews written primarily from the perspective of the proponents of 

the theories 25,65,87,94,108,121,287,295. However, a comprehensive meta-analysis to establish 

the generalizability of theories’ predictions would require the sharing of the data 

collected across the wealth of empirical studies conducted over the past three decades. 

However, sharing data is not sufficient as data that are not properly documented 

or structured are of limited use. Instead, data should be shared following the FAIR 

principle—they should be Findable, Accessible, Interoperable, and Reusable 297. 
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Recognizing this necessity, I have dedicated significant effort to ensure that the data 

collected across both chapters are openly accessible and thoroughly documented. 

Specifically, I have authored a paper (submitted to Scientific Data) describing the 

extensive iEEG data set collected in Chapter 2 and developed a comprehensive 

Python package to facilitate data access and analysis for replications and reuse of the 

data for alternative purposes 298. The data are structured and documented following 

the Brain Imaging Data Structure (BIDS) principle 167. We extended the metadata 

beyond the BIDS specification to include detailed, machine-readable information 

about the experimental setup, data collection procedures, clinical information about 

participants, and more.

These efforts not only make the data more usable for replication and reanalysis 

for other purposes, they also constitute a stepping-stone to building a centralized 

database that can support meta-analysis and holistic theory testing. Such analyses 

can help resolve inconsistencies in the literature, facilitates the generalization and 

scope delineation of theories of consciousness, moving the field toward a more 

unified and empirically grounded theoretical framework.

Bayesian evidence accumulation: a comprehensive framework to test 
theories of consciousness
A final important insight is that the reliance on frequentist statistics suffers from key 

limitations when it comes to navigating complex empirical situations that arose in the 

studies I have presented, and more broadly, in consciousness neuroscience 100. While 

the Lakatosian view provides a useful philosophical framework, it remains vague as 

to what constitutes a challenge to a theory requiring an update of the protective belt 

and how to determine when a research program becomes degenerative 299. Across 

both Chapters, each theory made several predictions and a binary outcome (pass or 

fail) was determined based on a criterion of significance in the classical frequentist 

statistic tradition. According to this criterion, some predictions were supported by 

the data, others were not. Moreover, these predictions were tested across different 

modalities (iEEG, fMRI, MEG, behavior, and eye-tracking), and in some cases, 

predictions were only validated in some modalities but not others.

In this state of affairs, it becomes difficult to determine how much a theory should be 

revised in light of empirical evidence. Not all predictions are equally relevant to the 

theories; some are more critical than others 140. For instance, it could be argued that 

for IIT, the prediction of decoding in the posterior cortex may be less central than that 

of sustained representation for the duration of the stimulus presentation. Similarly, 

one might argue that the lack of offset-ignition poses a stronger challenge than the 
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absence of content representation following stimulus offset for GNWT. Furthermore, 

a given theory may a priori place more trust in one recording modality compared to 

another, depending on the spatio-temporal resolution of the method in question. 

These important nuances are difficult to address using frequentist statistics, as 

all predictions are tested on equal footing and in isolation. While we attempted to 

provide a comprehensive reading of our experimental results in Chapter 2, taking 

into consideration the relevance of each prediction to the theory, this approach 

lacks formalism.

In contrast, Bayesian inference offers a formal framework for updating beliefs based 

on novel empirical observations, making it well-suited for evaluating and refining 

theories of consciousness, as recently proposed by Corcoran and colleagues 100. While 

Bayesian methods have traditionally been associated with confirmation rather than 

falsification 300, it transcends the traditional dichotomy of confirmation versus 

falsification by providing a probabilistic quantification of evidence for a particular 

model. Under this framework, a generative model is defined and theories predictions 

are operationalized by specifying prior distributions reflecting expectations about 

the observed effects 100. For a single prediction, evidence can be estimated through 

variational approximations by fitting the model to the observed data, thereby 

assessing how well the prior distribution aligns with the observed data. For a single 

prediction, the log of evidence of each theory can compared to determine which 

one has the most empirical support. Critically, evidence for each model can also be 

summed across multiple predictions, recording modalities, and experiments to 

establish which theory receives more overall support from the data.

Building on these advantages, the Bayesian framework offers several critical 

improvements over frequentist statistics for theory testing in consciousness 

neuroscience. Bayesian inference overcomes the limitation of testing predictions 

in isolation by allowing for the accumulation of evidence across predictions and 

recording modalities. In adversarial collaboration situations where each theory 

makes different predictions on separate modalities, this enables to determine which 

theory has the most empirical support in a principled way. It is important to note 

that the evidence of a given theory is only meaningful when compared to another that 

of another model making predictions regarding the same data. Accordingly, it does 

not account for the aforementioned limitations of the study presented in Chapter 2 

where the theories predictions addressed different aspects of the data.

However, the straightforward evidence accumulation scheme possible under the 

Bayesian framework readily enables meta-analyses to assess the generalizability of 
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theories of consciousness across many studies. When combined with the advocated 

data sharing practices, this framework allows for the accumulation of evidence 

for competing theories across many data sets, thereby establishing which theory 

accounts for the most openly accessible data. This provides a tractable and low-cost 

agenda towards more empirically grounded theoretical frameworks.

In addition, the flexibility of operationalizing theory predictions through prior 

distributions enables the integration of several recommendation outlined earlier. For 

instance, if experimental performance are documented to have lower performance, 

this can be reflected by selecting less constrained priors, indicating lower confidence 

in detecting effects. Similarly, the degree of confidence a theory places in the 

inference regarding the content of consciousness in a particular experiment can be 

incorporated in the analysis, to reflect the associated confidence a theory has that the 

predicted effect will be observed.

Importantly, under the Bayesian framework, setting a less constrained prior has 

meaningful consequences: it implies that the amount of evidence gains if its prediction 

is correct is lower compared to if it had set a more constrained, con昀椀dent prior. 吀栀is 
mechanism ensures that precise predictions are rewarded over vague ones, encouraging 

them to put forth riskier predictions by rewarding them when they do so 100,290.

Moreover, the Bayesian framework aligns well with the open science practices of 

pre-registration. By pre-registering analysis plans, models, and priors, researchers 

enhance the transparency of theory testing and ensure that the specified priors 

were not inadvertently contaminated by knowledge of the data. This approach is 

embraced by a novel adversarial collaboration aimed at comparing IIT, predictive 

processing theory and neuro-representationalism 301, and this project holds the 

promise of providing an unprecedented quantification of empirical support for the 

theories involved.

In conclusion, adopting Bayesian evidence accumulation schemes constitutes a 

promising direction for a more formal effective theory testing in consciousness research. 
吀栀is approach aligns with the Lakatosian view of scienti昀椀c progress, providing a formal 
method to determine the progressiveness of a research project 83,290. Furthermore, this 

approach integrates our earlier recommendations regarding experimental rigor, 

explicit theoretical inferences, pre-registration and holistic theories testing. By 

embracing Bayesian inference, we can encourage a more rigorous, integrated and 

productive scientific environment, ultimately propelling the field towards more 

unified and empirically grounded theoretical frameworks.
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Conclusion

In this thesis, I proposed a novel approach to advancing consciousness research 

by identifying instances where conscious experience occurs in the absence of the 

mechanisms proposed by existing theories. This method shifts away from the 

traditional search for neural correlates of consciousness (NCCs) and the limitations 

of the contrastive method, allowing for a broader range of experimental conditions 

and alleviating the need to control for unconscious processing. By focusing on the 

temporal dynamics of conscious experience—specifically, how we experience the 

persistence of particular contents—I aimed to test the predictions of Integrated 

Information Theory (IIT) and the Global Neuronal Workspace Theory (GNWT) under 

new experimental paradigms.

In collaboration with proponents of both theories, I conducted experiments 

presenting highly visible visual stimuli for three distinct durations. The results 

showed sustained activation and content representation in the posterior regions, 

as predicted by IIT. In contrast, only transient responses were observed in the PFC, 

challenging GNWT's initial predictions. However, my subsequent study suggested 

that participants might not experience the full duration of stimuli; instead, they may 

only access representations transiently, just long enough to reach a decision.

These results have significant implications for both vision science and consciousness 

research. They refine our understanding of the neural mechanisms associated with 

sustained visual presentation and provide insights into the temporal dynamics 

of conscious experience in this context. Additionally, they offer a new avenue for 

investigating the dissociation between access consciousness and phenomenal 

consciousness, providing a way forward for this longstanding debate.

Importantly, this work demonstrates that scientific progress in consciousness 

research is best achieved through the iterative refinement of existing theories 

rather than their outright rejection upon encountering contradictory evidence. 

Adopting a Lakatosian view of scientific progress, I observed that even when 

core assumptions of theories remain robust against empirical falsification, the 

process of testing and refining these theories leads to deeper insights and more 

comprehensive explanations.

While the adversarial collaboration framework used in this research facilitated 

rigorous testing and promoted constructive dialogue between competing theories, it 

also revealed limitations—particularly the difficulty for theories of consciousness to 



| 193Discussion

4

commit to opposing predictions. This made it challenging to definitively establish 

which theory better accounts for the empirical data. Future research should aim 

to design experiments that elicit directly competing predictions and consider 

employing Bayesian inference methods to navigate complex empirical situations 

more effectively.

In conclusion, this thesis underscores the importance of an iterative, integrative 

approach to testing theories of consciousness. By focusing on refining and 

improving existing theories and embracing collaborative efforts, we can enhance the 

explanatory power of these theories and move closer to a unified understanding of 

consciousness. Adhering to open science practices, such as pre-registration and data 

sharing, will further strengthen the rigor and transparency of future research in this 

intricate field.
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Nederlandse Samenvatting

In het veld van het bewustzijnsonderzoek worden tal van theorieën voorgesteld 

die onverenigbare mechanistische verklaringen bieden voor de neurale basis van 

bewustzijn. Deze theorieën ontwikkelen zich vaak parallel, waarbij elke theorie 

eigen empirisch bewijs verzamelt zonder interactie met of uitdaging van alternatieve 

perspectieven. Deze fragmentatie is symptomatisch voor methodologische 

beperkingen van de traditionele bottom-up benadering, die steunt op controversiële 

experimentele operationalisaties. Verschillende operationalisaties kunnen per 

ongeluk verschillende fenomenen volgen, die door onderzoekers als “bewustzijn” 

worden geïnterpreteerd. Dit leidt tot inconsistente bevindingen en belemmert de 

vooruitgang naar een verenigde wetenschappelijke verklaring van bewustzijn.

Erkennend dat dit tot stilstand heeft geleid, verschuift mijn proefschrift van 

de bottom-up benadering door te focussen op rigoureuze tests van bestaande 

theorieën over bewustzijn. Ik hanteer een noodzaak-dissociatiebenadering, met 

als doel gevallen te identificeren waarin bewustzijn optreedt in afwezigheid van de 

mechanismen die door een theorie worden voorgesteld, om zo de noodzakelijkheid 

van deze mechanismen te testen. Deze aanpak omzeilt de controversiële voorwaarden 

die nodig zijn bij de contrastieve benadering en maakt het mogelijk om theorieën te 

testen op nieuwe experimentele gronden.

Ik voerde twee experimenten uit die gericht waren op de temporele dynamiek 

van bewustzijn en de bijbehorende neurale activiteit tijdens de presentatie van 

stimuli. In de eerste studie maakte ik gebruik van het krachtige raamwerk van 

adversariële samenwerking om de voorspellingen te testen van twee toonaangevende 

theorieën van bewustzijn—de Geïntegreerde Informatietheorie (IIT) en de Global 

Neuronal Workspace Theory (GNWT)—met betrekking tot de verwachte neurale 

dynamiek bij aanhoudende visuele ervaringen. Deze samenwerking zorgde voor 

een onbevooroordeelde test van de voorspellingen van de theorieën en leidde tot 

belangrijke uitdagingen voor beide.

In de tweede studie onderzocht ik meer direct de temporele dynamiek van bewuste 

ervaring in verband met de presentatiecondities van het eerste experiment, 

waarbij bleek dat deze dynamiek sterk kan afwijken van intuïtieve verwachtingen. 

De bevindingen suggereren dat bewuste toegang tot stimuli mogelijk vluchtiger 

is dan eerder werd gedacht, wat een verfijning van ons huidige begrip van 

bewustzijn oplevert.
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De resultaten van beide studies tonen aan dat de noodzaak-dissociatiebenadering 

effectief bijdraagt aan de vooruitgang van het veld door de beperkingen van 

bestaande theorieën over bewustzijn te identificeren en deze theorieën te verfijnen. 

De falsificatie van bepaalde voorspellingen leidde tot de ontwikkeling van nieuwe 

hypothesen en opende nieuwe empirische wegen om bewustzijn te onderzoeken en 

ons begrip ervan te verfijnen.

Concluderend illustreert dit proefschrift dat rigoureuze tests van theorieën over 

bewustzijn aanzienlijke vooruitgang in het veld bevorderen. Door te identificeren 

waar theorieën tekortschieten en hun evolutie aan te moedigen, verbeteren we zowel 

de theoretische modellen als ons begrip van bewustzijn zelf, en komen we dichter 

bij een verenigde wetenschappelijke verklaring. Deze benadering onderstreept het 

belang van het overstijgen van de traditionele bottom-up benadering door daarnaast 

te focussen op theorie-testing en verfijning, om de huidige impasse te doorbreken en 

de ontwikkeling van progressieve onderzoeksprogramma's te bevorderen.
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English Summary

In the field of consciousness research, numerous theories propose incompatible 

mechanistic explanations for the neural underpinnings of consciousness. 

These theories often progress in parallel, each accumulating its own supporting 

empirical evidence without engaging with or challenging alternative perspectives. 

This fragmentation is symptomatic of methodological limitations inherent to 

the traditional bottom-up approach that relies on controversial experimental 

operationalization. Different operationalization may mistakenly track different 

phenomena, each interpreted by researchers as “consciousness”, leading to 

inconsistent findings and hindering progress toward a unified scientific explanation 

of consciousness.

Recognizing this stalemate, my thesis shifts from the bottom-up approach by 

focusing on rigorous testing of existing theories of consciousness. I adopt a necessity 

dissociation approach, aiming to identify cases where consciousness occurs in 

the absence of the mechanisms proposed by a theory to test the necessity of these 

mechanisms. This approach circumvents the controversial conditions required by the 

contrastive approach and enables testing theories on novel experimental grounds.

I conducted two experiments centered on the temporal dynamics of consciousness 

and the associated neural activity during stimulus presentation. In the first study, I 

relied on the powerful framework of adversarial collaboration to test the predictions 

of two leading theories of consciousness—the Integrated Information Theory (IIT) 

and the Global Neuronal Workspace Theory (GNWT)—regarding the neural dynamics 

expected with persistent visual experiences. This collaborative approach allowed for 

unbiased testing of theories' predictions and led to significant challenges for both.

In the second study, I investigated more directly the temporal dynamics of conscious 

experience associated with the presentation conditions of the 昀椀rst experiment, 
revealing that these dynamics might differ strikingly from intuitive expectations. 吀栀e 
昀椀ndings suggest that conscious access to stimuli may be more transient than previously 
thought, yielding a re昀椀nement of our current understanding of consciousness.

The results of both studies demonstrate that the necessity dissociation approach 

effectively advances the field by identifying the limitations of existing theories 

of consciousness and prompting their refinement. The falsification of certain 

predictions led to the development of new hypotheses, opening novel empirical 

avenues for exploring consciousness and refining our understanding thereof.
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In conclusion, this thesis illustrates that rigorous testing of theories of consciousness 

fosters significant progress in the field. By identifying where theories fall short 

and encouraging their evolution, we enhance both the theoretical models and 

our understanding of consciousness itself, moving closer to a unified scientific 

explanation. This approach underscores the importance of moving beyond the 

traditional bottom-up approach by focusing in addition on theory testing and 

refinement to break through the current stalemate and foster the evolution of 

progressive research programs.
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Research data management

The research presented in this thesis followed the applicable laws and ethical 

guidelines. Research data management was conducted according to the FAIR 

principles (Findable, Accessible, Interoperable, Reusable). The paragraphs below 

specify this in detail and provide access information to the data.

ETHICS
This thesis uses data from human participants. The experiment presented in 

Chapter 2 was approved by the institutional committees of each data collecting labs 

(Comprehensive Epilepsy Center at New York University Langone Health, Brigham 

and Women’s Hospital, Boston Children’s Hospital (Harvard), and University of 

Wisconsin School of Medicine and Public Health, Centre for Human Brain Health 

of the University of Birmingham, the Center for MRI Research of Peking University, 

Yale Magnetic Resonance Research Center and at the Donders Centre for Cognitive 

Neuroimaging of Radboud University Nijmegen). All volunteers and patients provided 

oral and written informed consent before participating in the study. Epilepsy patients 

were also informed that clinical care was not affected by participation in the study. 

The Experiment presented in Chapter 3 was approved by the Ethics Council of the 

Max Planck Society (No. 2017_12). Participants provided written informed consent 

before the study. Both study procedures were carried out in accordance with the 

Declaration of Helsinki.

This research was supported by the Templeton World Charity Foundation (TWCF0389) 

and the Max Planck Society.

FINDABLE, ACCESSIBLE
Data, code, and research documentation were shared on openly accessible platforms. 

The data collected in Chapter 2 are archived on hard disk drives (HDD) at the Max 

Planck Institute for empirical institute and can be downloaded as data bundles 

or through the XNAT database platform. The data are accompanied by extensive 

machine-readable metadata, enabling programmatic queries based on various 

attributes of the data and subjects to maximize accessibility and findability of the 

data. The data collected in Chapter 3 are available on the OSF platform. All code 

and documentation necessary for the replication of published results are available 

on GitHub. All data will remain available for at least 5 years after termination of 

the studies.
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Chapter Resource Link License

2 Data https://www.arc-cogitate.com/data-release MIT License

2 Analysis code https://github.com/Cogitate-consortium/
cogitate-msp1

MIT License

2 Experiment code https://github.com/Cogitate-consortium/
Experiment1

MIT License

3 Data https://osf.io/krjh7 MIT License

3 Analysis code https://github.com/ncc-brain/
Reconstructed_time_analysis

MIT License

3 Experiment code https://github.com/ncc-brain/
Reconstructed_time_experiment

MIT License

INTEROPERABLE, REUSABLE
The raw data for Chapter 2 and 3 are available in their raw format following the BIDS 

conventions, to ensure interoperability and reusability. All codes used for analysis and 

experiment have been documented extensively and we provide readme files to instruct 

users how to use our data. In addition, I have created code and notebooks to illustrate 

how to use the iEEG data of our project to ensure reusability of the data for other 

scientific enquiries and serve as educational resources for researchers. These resources 

can be found here: https://github.com/Cogitate-consortium/iEEG-data-release

PRIVACY
The privacy of all participants has been warranted by using pseudonymized subject 

codes. Linking pseudonymized codes to personal data is not possible, as all keys 

Key files were deleted after finalization of the projects presented in chapter 2 and 3. 

Personal identifiable information was removed from all files and headers and  

MRI-data from Chapter 2 were defaced before being shared.
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For a successful research Institute, it is vital to train the next generation of scientists. 

To achieve this goal, the Donders Institute for Brain, Cognition and Behaviour 

established the Donders Graduate School in 2009. The mission of the Donders 

Graduate School is to guide our graduates to become skilled academics who are 

equipped for a wide range of professions. To achieve this, we do our utmost to ensure 

that our PhD candidates receive support and supervision of the highest quality.

Since 2009, the Donders Graduate School has grown into a vibrant community 

of highly talented national and international PhD candidates, with over 500 PhD 

candidates enrolled. Their backgrounds cover a wide range of disciplines, from 

physics to psychology, medicine to psycholinguistics, and biology to artificial 

intelligence. Similarly, their interdisciplinary research covers genetic, molecular, 

and cellular processes at one end and computational, system-level neuroscience 

with cognitive and behavioural analysis at the other end. We ask all PhD candidates 

within the Donders Graduate School to publish their PhD thesis in de Donders Thesis 

Series. This series currently includes over 700 PhD theses from our PhD graduates 
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performed at the Donders Institute. A complete overview of the Donders Thesis 
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outside academia, for instance at non-profit or government organizations, or in 
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in a wide range of positions, such as policy advisors, project managers, consultants, 



| 225Acknowledgements

*

data scientists, web- or software developers, business owners, regulatory affairs 

specialists, engineers, managers, or IT architects. As such, the career paths of 

Donders PhD graduates span a broad range of sectors and professions, but the 

common factor is that they almost all have become successful professionals.

For more information on the Donders Graduate School, as well as past and upcoming 

defences please visit:

http://www.ru.nl/donders/graduate-school/phd/
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