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Chapter1

Introduction

This chapter is in part adapted from:
The search for the neural correlate of consciousness: Progress and challenges. (2021),
Philosophy and the Mind Sciences 2. doi: https://doi.org/10.33735/phimisci.2021.87

Alex Lepauvre, Lucia Melloni
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When first encountering the images produced by scanning a human brain using
magnetic resonance imaging (MRI), one might assume that these machines can
“see” through tissues and bones to observe the brain lying underneath. A better
understanding of how an MRI scanner works reveals that this is not quite true.
An MRI scanner operates by generating a strong magnetic field to align hydrogen
atoms in the tissue to be imaged and then disrupting this alignment with radio
pulses *. As the atoms realign, they release energy, the amount of which depends on
the concentration of hydrogen atoms present in different tissues. These variations
are then processed by computer algorithms to reconstruct an image. This process
appears far removed from the intuitive and immediate notion of “seeing”; the MRI is
using tricks.

Now, consider what happens when we are presented with a picture: photons emitted
by a light source meet the image; some are absorbed while others bounce off,
depending on the frequency of their oscillations. Photons that bounce off the image
travel to our eyes and are absorbed by photoreceptors in the retina, resulting in
electrical signals. These signals are processed and integrated along the visual system,
to construct a representation of the outside world 2. Both in the case of the MRI and
the visual system, certain physical properties of the outside world are measured by
specialized sensors, and the information they gather is integrated to construct a
representation of what was measured.

This analogy illustrates that while it is true MRI measurements are very indirect,
the same can be said for the human visual system. Yet despite the similarities, a key
difference remains between the scanner and a human. For all the complex processing
involved in constructing an image from the MRI scanner sensors’ measurements,
the scanner arguably does not “see” the tissue being imaged in the way we see the
reconstructed image. In our case, somewhere along the way, we become conscious
of this reconstructed image. There is something it is like for us to “see” something
3; there is nothing it is like for the MRI to reconstruct the images from its sensors’
measurements. This fundamental difference constitutes the very basis of our
existence. Without it, there would be no reality to speak of—the color blue would not
exist, nor would the smell of coffee in the morning.

Something special must be happening in the human brain to give rise to conscious
experience, and since the time of Hippocrates, mankind has sought to understand
what consciousness is, what it does, and how physical systems such as the brain
—but not others like the heart—can instantiate it +°. David Chalmers famously
referred to the latter aspect as “The Hard Problem” ¢: why does matter, such as the
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brain, give rise to perceptions and emotions that have subjective, phenomenological
qualities? Solving this problem is not only a matter of philosophical intrigue; it has
profound medical, societal, and moral implications 7.

Studying consciousness scientifically poses a unique challenge, due to the inherent
subjective nature of the phenomenon ¥, which historically placed it outside the
scope of empirical science. However, this changed when Crick and Koch proposed
a narrow and tractable framework to attack consciousness, suggesting to focus
on identifying the neural mechanisms present during conscious states and absent
during unconscious ones *%. By pinpointing such mechanisms, known as the
neural correlates of consciousness (NCC) *, scientists hope to reveal the common
denominator of these processes, to eventually formulate theories to answer the hard
questions of consciousness °.

For the past thirty years, this bottom-up agenda has dominated the field, producing
a detailed cartography of brain areas and refined spatio-temporal patterns of brain
activity thought to be associated with conscious experience. The question is then, are
we closer to finding the mechanism(s) responsible for subjective, phenomenal qualities
than we were thirty years ago? Empirical findings have been vastly inconsistent, with
different studies proposing different spatiotemporal neural activation patterns to
constitute the NCCs . These inconsistencies relate to the controversies regarding
which experimental conditions truly allow to capture consciousness, leading to
debates over which of these findings revealed the true NCCs—and the conclusions
differ depending on underlying theoretical commitments. Consequently, the
supposedly theory neutral bottom-up approach has resulted the proliferation theories
of consciousness, each shaped by the specific biases inherent to the experimental
paradigms used to test them 2°. These theories are pursued in parallel and seldom
converge or challenge one another, dismissing each other’s evidence on methodological
grounds. This situation highlights that this agenda, while helpful, has significant
limitations in its ability to provide a unified scientific explanation of consciousness.

In my research, I propose that it is time to move beyond this bottom-up approach
and instead focus on rigorous testing of existing theories of consciousness. By
concentrating on finding dissociations between conscious experience and the
mechanisms proposed by different theories, we can overcome the limitations
associated with the NCC debates. In this thesis, I will demonstrate that this approach
leads to the refinement of theoretical models and to a better characterization of
consciousness itself, uncovering novel empirical avenues to progress toward a unified
scientific account of consciousness.

13
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The contrastive method to identify the NCCs:
a bottom-up agenda

The NCCs are formally defined as the minimal set of neural activities that are jointly
sufficient to give rise to consciousness . In any given conscious state—whether itis a
general state such as wakefulness versus dreamless sleep, or the experience of specific
content such as seeing a red ball or smelling coffee—a subset of the brain's ongoing
neural activity is directly responsible for consciousness, while the rest is associated
with unconscious processes. If we were to disrupt or prevent the neural activation
responsible for the experience of the content, then the experience of that content
would cease. In contrast, if neural activity associated with unconscious processes
were disrupted without affecting the content-NCCs (as opposed to state-NCCs, which
are linked to overall states of consciousness, such as being in dreamless sleep or fully
awake and alert “*%), consciousness would remain unaffected. Identifying these
mechanisms should reveal how they differ from those associated with unconscious
processes and reveal what the neural underpinnings of consciousness are.

Isolating the NCC requires modulating the content of experience while keeping
other parameters constant, such as the sensory input *%. This is not an easy feat,
as there is a tight association between what is presented to our sensorium and the
content of our experience; we tend to see what is in front of our eyes. Over the years,
psychophysicists have developed several methods to achieve a dissociation between
sensory input and conscious experience, rendering the same stimuli either visible or
invisible * (see box 1a-d). Under such conditions, as external factors are maintained
constant, contrasting the neural activity between the “seen” and “unseen trials”
removes any neural activation associated with unconscious sensory processing and

should in principle yield the NCC (see Figure 1.1).

However, this raises another issue. If different conscious experiences can occur
under matched sensory input, how can we know which content is experienced by
a participant at a given moment? Subjective experiences are by definition private
and cannot be measured from a third person’s perspective. Instead, experimenters
must infer participants' experience indirectly, relying on overt or covert markers
of conscious experience. The most common way to do so is to rely on participants'
introspective reports of their subjective experiences. In other words, we can simply
ask participants which stimulus they saw and which one they did not and compare
brain activity based on these subjective reports.
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In summary, isolating the content-NCCs requires relating subjective experience with
the underlying neural activity, while keeping all other factors constant. Provided that

the only difference between conditions is the perceptual states themselves, the isolated
neural activity should be the one that is minimally sufficient for consciousness to arise,
thus constituting a NCC (see Figure 1.1). This approach of comparing neural activity
between conscious states is referred to as the contrastive method and according to
some constitutes a gold standard in consciousness research 2522,

a Low noise Hilh noise

Threshold stimulation: this technique involves degrading Figure-ground segregation: The ground consists of
the stimuli by for instance adding noise such that the word textures made of oriented line segments while the figure
remains perceptible on some trials, but is missed on consists of lines onented in the arthogonal orientation to
others. In this example, the word “dog” is presented at low the ground, making it “pop-out” from the background. The
(left) and high (right) noise levels. At high noise levels, the figure can be difficult to discriminate from the background
word is more difficult to perceive and might be missed in and in some cases may fail 1o be experienced despite
some trials. Whether the stimulus is seen is inferred, being present.

typically based on participanis’ subjective reporis.

Target

Time
Backward masking: when a target and a mask are Binocular rivalry: when two incompatible stimuli are
presented in close succession, the mask interrupts the presented to each eye, subjeclive experience switches
processing of the target, in which case the target fails to between one and the other at regular intervals. In this
ba consciously experiencad. At the end of each trial, example, participants would at times experienca a house
parﬂchunisrapoﬂ%eheranotheymchuw (asdapmdbythalhoughismwleneﬂlotheheed
experienced the targats. By ipulating the tic) and at other times, the face. The subjects
onmmw(sm)mnmemwm report when a switch occurs, so that the experimenter can
mask. the visibility of the target can be experimentally know what content the subjects were experiencing at any
controlled. given time,

Box 1.1. Example of experimental paradigms to manipulate conscious experience independently of
sensory input

Box b is adapted from =
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Neural correlate of
consciousness

Figure 1.1. The contrastive method

By recording the neural activity of participants when presented with a sensory input that participants only sometimes
see, the recorded activity can be sorted into “seen” and “unseen” groups. As the sensory input is the same across both
conditions, sensory encoding should be present in both conditions (depicted in blue on the schematic brains), while
some activity should be unique to the seen condition (depicted in red). When subtracting the neural activation between
seen and unseen conditions, sensory encoding is removed and the neural activation that is unique to the conscious
condition remains, i.e. the Neural Correlate of Consciousness (NCC).

Empirical attempts to isolate the NCCs

Equipped with experimental methodologies to contrast consciousness under matched
sensory conditions, many studies have attempted to isolate the content NCC 72024,
These efforts were fueled by both the development of new experimental methods as
well as advances in human and animal brain recording and analysis technologies.

Unfortunately, no unique and consistent neural correlate of conscious vision was
identified 718202526 Some studies using various experimental paradigms (some
described in box 1) and recording techniques such as electroencephalography (EEG),
functional MRI (fMRI), and single neuron recordings in humans and animal models,
showed that activation in sensory cortex start to differ between the seen and unseen
conditions as early as 100ms after stimulus onset, suggesting that these activations
constitute NCCs 7. In contrast, other studies suggested that while activation in
sensory cortices is necessary for consciousness to emerge, it is not sufficient;it cannot
alone give rise to conscious experience. These studies found that cortical regions
associated with visual processing were similarly activated by seen and unseen trials
but that a fronto-parietal network was uniquely activated when participants reported
seeing the stimulus later than 250 to 300ms from stimulus onset onward 354,
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These discrepancies can be partly attributed to the methodological shortcomings
of the contrastive method. The core assumption of the contrastive method is that
when comparing between conditions in which the external input is controlled for
and only perception varies, the resulting difference directly reflects neural activity
involved in consciousness. However, this strategy is too simplistic. When comparing
neural responses associated with two perceptual states, as the contrastive method
does, two other families of internal processes co-occur with the ones directly
reflecting consciousness: the NCC-precursors (NCC-pr) and the NCC-consequences
(NCC-co) “*. NCC-pr refers to processes that precede the NCC proper. They might
enable a given stimulus to reach consciousness but are not conscious themselves.
The NCC-co refer to processes that might follow the NCC proper. They result from
consciousness but are not conscious either.

A typical example of NCC-pr is attention. While the role of attention in consciousness
is still being debated 2¢##+% it is now widely agreed that they are indeed two
different mechanisms. In classical contrastive paradigms, covert shifts of attention
may explain why some stimuli are seen while others are not. For example, in masking
paradigms, differential engagement of attention across trials might well explain
why an otherwise identical physical stimulus is perceived in some trials but missed
in others. The NCC-co are processes triggered by conscious experience but not
responsible for it. Some theories of consciousness assign consciousness a function.
Therefore, the fact that a critical stimulus was perceived entails that additional
processes will follow it. Such processes include encoding in working memory * and/
or episodic memory, reflecting about the perceived stimulus, and in the case of most
experimental paradigms employing the contrastive method, reporting about it .
Therefore, the NCCs discovered across studies may have been inflated by these two
types of processes.

17
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Processing stages Response
1. NCC-pr 2. NCC-proper I 3. NCC-co

Figure 1.2 The three NCCs problem

The contrastive method was argued to be insufficient to isolate the so-called NCC-proper (2). The results of the
subtraction between seen and unseen conditions are confounded by the occurrence of temporally flanked mechanisms,
termed NCC-pr (1) and NCC-co (3) (see ***). The former refers to the mechanisms enabling a stimulus to reach
consciousness without directly accounting for consciousness itself (yellow in the figure), while the latter refers to
mechanisms that are consequences of the conscious perception of a stimulus but need not be conscious themselves
(ved in the plot). Examples of NCC-pr are attention and prior expectations **5°51. As most theories of consciousness
assign a function to consciousness, typical NCC-co accompanies it: encoding in memory, decision making to name
a few. Additionally, as many contrastive studies rely on reports to differentiate conscious versus non-conscious
conditions, motor responses and planning, as well as self-monitoring, often confound the NCC-proper .

Following the acknowledgment of the 3-NCC problem, report and the associated
task-relevance confounds have received the most attention. No-report studies were
designed in which the content of consciousness is inferred without overt-report #.
This can be achieved by relying on eye movements to classify trials as seen or unseen,
or on-task instructions to manipulate the visibility of stimuli. Several no-report
studies suggest that late activation over the fronto-parietal relates to report-related
cognitive processes rather than consciousness, as such effects are only present when
seen stimuli have to be reported, not when seen stimuli do not have to be reported 5*-%.
These studies further show that mid-latency activation over posterior brain regions
seems to track closely conscious perception, both when participants report and do
not report the content of their experience.
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While these studies seem to relegate late, frontal activation to post-perceptual
processes only, several studies have highlighted that even though frontal activation
is reduced in the absence of a report, it is not absent #*-%. Thus, while some of the
previously observed prefrontal activation might index confounding factors such as
report, leading to an exacerbated prefrontal cortex activation, a selective portion
might still correspond to the NCC proper and the question as to whether the front or
the back of the brain constitutes the best candidate NCC remains open -,

The limitations of the bottom-up approach

Despite significant advancements in the empirical investigation of consciousness
over the past 30 years, the bottom-up approach has failed to identify a unified NCC.
While no-report paradigms can help eliminate post-perceptual processes, not all
confounds are related to report. For example, prior expectations also influence
conscious perception of stimuli and modulate associated neural responses and might
confound the search for the NCC 5%, In paradigms with passive viewing, such
as in the experiment by Cohen et al. 2, encoding in working memory occurs in the
seen but not in the unseen condition, also confounding the empirical findings. Thus,
there are a number of confounds, some already known: report, prior expectations,
working memory, episodic memory, task demands, attention, decision making, and
neuromodulatory states. This list is not exhaustive, and as our understanding of the
processes related to consciousness is improved, this list is likely to be expanded.
Aru and colleagues * have proposed that isolating the NCC proper will require
controlling for all these potential confounds—a task that could prove to be a century-
long enterprise.

Though time-consuming, this perspective seems pragmatic: by carefully designing
experiments accounting for all possible confounds, the NCC proper will eventually
be identified. However, I argue that this approach overlooks a more fundamental
limitation of the bottom-up agenda related to the measurement problem 772. A
perfect experiment (or series of experiments) to isolate the NCC would require
two components: first, a valid measure of consciousness that accurately and
reliably reflects a person’s subjective experience; second, experimental designs that
manipulates consciousness independently of all other cognitive processes .

However, we cannot achieve the first requirement, because consciousness can never
be measured directly due to its subjective nature. Instead, we must rely on proxies—
such as subjective reports, behavioral measurements, or physiological indicators—

19
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that are assumed to track consciousness. Testing the validity of such proxies would
require measuring them alongside the phenomenon they are supposed to capture to
test how tightly they are associated. As subjective experience can never be directly
measured, we can never establish with certainty that these proxies are tracking
consciousness rather than an associated phenomenon 7.

In other words, we can never establish with certainty that the proxy we have chosen
accurately measures participant’s experience. Because we can never be sure that
our proxy is valid, we also cannot be sure that our experimental manipulations are
affecting consciousness itself rather than other cognitive processes that our measure
might inadvertently be tracking. Even if we meticulously design experiments to
control for known confounds, we have no definitive way to confirm that consciousness
is manipulated independently of those confounds and that our results reflect the
NCC proper. Researchers may consider different proxies as the most appropriate
measures of consciousness, but without the ability to validate these proxies, there is
no objective way to determine whose measure is most accurate 7. Thus, the lack of
convergence in empirical findings may not reflect the complexity of consciousness
itself, but rather the fact that different paradigms and their associated measures are
tracking non-overlapping concepts 7757,

Based on the findings of experiments aiming to isolate the NCCs, theories of
consciousness were formulated. However, the empirical basis on which each of
these research programs were developed depends on unverified commitments
regarding which experimental conditions are adequate to isolate the NCCs. Different
programs may therefore have studied different phenomena labeled by each theory as
“consciousness” . This fragmentation creates a situation where findings from one
research program may not be comparable to those from another, allowing theories to
progress in parallel without ever converging or challenging each other and resulting
in a proliferation of theories "*-*. This view has recently been substantiated in a study
by Yaron and colleagues * who further exposed a strong validation bias in the field.
Their extensive literature review showed that the outcome of experiments is heavily
dependent on the chosen set of experimental parameters and that the alignment of
empirical results with theoretical framework was could be accurately predicted from
the experimental parameters alone.

Ultimately, we cannot determine which research program, if any, is truly tracking
consciousness as opposed to related phenomena. Because we cannot establish which
paradigm and measures track consciousness, there is no convincing proponents
of different theories that they are studying different phenomena. Designing
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increasingly sophisticated experiments will not resolve the discord in the field,
as researchers will likely continue exploring their own version of 'consciousness’,
disregarding the foundational assumptions of other programs, making convergence
or meaningful challenges between research programs unlikely. Combined, these
limitations indicate that the bottom-up approach, while providing valuable data
on neural processes correlated with consciousness, is insufficient for developing a
unified theory of consciousness.

Dissociating experience from its hypothesized mechanisms

Acknowledging the limitations of the traditional bottom-up approach, I have instead
applied a top-down strategy in my research. An abundance of theories propose
different and incompatible neural underpinnings of conscious experience 27882,
Provided that consciousness is a unified phenomenon, these theories cannot all be
true at the same time 7. I therefore aimed to test existing theories of consciousness
rigorously, to challenge and refine them.

Testing the necessity of proposed mechanisms to escape the validation bias
At first, adopting a top-down approach may not seem to resolve the issues that
I have described. There are many different ways to operationalize consciousness and
we cannot a priori know which is the most appropriate. If we want to test a given
theory, we need to adopt an operationalization that is compatible with the theory
being tested. Otherwise, evidence can be discarded by arguing that the experimental
conditions did not allow to measure consciousness appropriately. However, this
introduces a bias, as adopting the operationalization of a given theory can skew
findings toward what the theory predicts °. This raises a critical question: How can
we test theories of consciousness if the operationalization we have to adopt is biased
in favor of the theory being tested?

Before answering this question, I need to introduce what testing a theory of
consciousness entails and how it can be achieved. Falsifying a theory of consciousness
(or at least its predictions) requires finding a dissociation between the content
of consciousness inferred by a theory and the neural mechanisms proposed to
instantiate it by that same theory .

One way to test a theory of consciousness is through the problematic contrastive
method: if the mechanism proposed by a theory appears in both the seen and
unseen conditions, then it cannot be sufficient to give rise to consciousness, thus
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challenging the theory. There is however another way in which a theory can be
falsified. As highlighted by Chalmers *, a NCC need not to be necessary for conscious
experience, as there may be several neural correlates of a conscious state. Theories
of consciousness however aim to provide a mechanistic explanation of the target
phenomenon they claim to explain (consciousness). If the proposed mechanisms is
present without the target phenomenon, the proposed mechanism is not sufficient
to give rise to that target phenomenon. If the target phenomenon occurs without the
proposed mechanism, then that mechanism is not necessary. Either cases constitute
a dissociation between the proposed mechanism and the target phenomenon,
challenging the theory.

Accordingly, we can test a theory of consciousness by seeking conditions in which
consciousness (as defined by the theory being tested) occurs without the mechanism(s)
proposed to give rise to it, showing that the proposed mechanism(s) is not necessary
for consciousness. I will refer to this as the necessity dissociation approach. Unlike
the contrastive method, this approach does not require an unconscious condition,
as it suffices to find one conscious condition where the proposed mechanism fails to
occur. This allows theories to be tested under a broader range of conditions, reducing
the validation bias by enabling to test theories regarding novel aspects of conscious
experience and push the field forward .

Going beyond seen and unseen contrast by investigating the temporal
dynamics of conscious experience

One aspect of consciousness that has remained underexplored due to the limitation
of the contrastive method is the temporal dynamics of conscious experience. Most
studies have focused on the entry of content into awareness ' by relying on brief
stimulus presentation, typically under sooms 2283235364155565884 = 96 it s difficult
to render sustained stimuli unconscious. One exception is binocular rivalry (and
binocular flash suppression *) where participants' experience typically oscillates
between the percept of one or the other eyes with the interval between reported
switches typically of the order of a couple of seconds 233736 Surprisingly, these
studies focused primarily on identifying the brain regions that are selectively
activated at the moment of the switch, without further investigation of the neural
mechanisms associated with the persistence of contents in consciousness 22>, This
approach leaves significant gaps in our understanding, particularly regarding how
conscious experience unfolds and persists over time.

In my thesis, I address this gap by applying the necessity dissociation approach to
investigate the temporal dynamics of conscious experience. Specifically, I investigated
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whether the mechanisms proposed by theories of consciousness can account not only
for the onset of experience but also for its persistence over longer durations. In the
two empirical chapters of my thesis (Chapter 2 and Chapter 3), I relied on a simple
experimental paradigm in which highly visible stimuli of different categories were
presented for three distinct durations (0.5, 1.0, and 1.5s).

As we will see, under these conditions, theories of consciousness can a priori infer
the expected temporal dynamics of conscious experience and, in turn, predict the
corresponding neural activations that should give rise to them. If the predicted
neural activation is not observed, the theory is challenged, in line with the necessity
dissociation approach. Crucially, this method allows us to test theories without
relying on an unconscious condition, which would be difficult to achieve when
manipulating stimuli duration.

Obtaining theories predictions and testing them

Given the abundance of theories of consciousness, it was not feasible to test them all
in my research. Therefore, my efforts focused on two prominent theories in the field:
the integrated information theory (IIT) -*2 and the global neuronal workspace theory
(GNWT) 259394, both of them are described in box 2. Both theories offer distinct and
influential explanations of consciousness *7%, and testing them is highly relevant
for the field.
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Global neuronal workspace theory (GNWT)

Global
warkspace =

Local
| processors

processors

Figure adapted from *-%*

The global neuronal workspace theory (GNWT) has received the most empirical
attention over the past 30 years 2°. This theory specifies the neural implementation
of the previously formulated global workspace theory, which was only defined in
cognitive terms . According to GNWT consciousness is the result of the broadcast
of information through a fronto-parietal network of interconnected local processors
to engage cognitive processes such as evaluative systems and working memory.
The clearly stated explanatory target is access consciousness %%, GNWT assumes
a functional role of conscious experience: rendering information available to many
cognitive systems enables flexible processing and behavior that would not be possible
under automatic, unconscious processing. This theory is deeply rooted in empirical
studies highlighting the differential activation of the prefrontal cortex between seen
and unseen stimuli *2%4. Within this framework, a marker of conscious experience
is ignition (a non-linear, all or none increase) in the PFC. According to GNWT, the
PFC plays a critical role in conscious perception, mediating conscious processing
depending on a combination of signal intensity, attentional gain, and the current
state of the workspace.
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Integrated information theory (IIT)
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In contrastto GNWT (and other theories of consciousness), the integrated information
theory IIT does not start from the brain but instead from phenomenology, by
defining five axioms that are considered to be true to any conscious experience -2,
IIT states that all experiences exist intrinsically, are structured, specific, unitary, and
definite *2. Based on these axioms, physical properties were derived in mathematical
terms (postulates) that a system must satisfy to instantiate these axioms. From this
approach, they conclude that consciousness is identical to the cause-effect structure
specified by a partition of a system (called a complex in IIT) which has the maximum
integrated cause-effect power ¥. In other words, for any system in which units have
causal power over each other (such as the brain), partitions of that system have
integrated cause-effect power (¢) if that subsystem has causal power over itself. The
complex has borders: units are part of the system (or complex) if removing them
decreases the amount of ¢ while other units are not part of it if removing them does
not change ¢. There can be many such complexes in the brain at any given time but
the one with the highest ¢ is the conscious one. The experience itself is the unfolded
cause-effect structure of this particular complex; its particular phenomenological
properties are given by the form of that structure.

Due to its phenomenology-first approach, early empirical attempts at isolating the
NCCs were not instrumental in the formulation of IIT. As such, these studies do
not lend any direct support or challenge to the theory. Nonetheless, it is possible
to derive predictions as to which brain regions are most propitious to allow for the
highest levels of information integration in the brain. According to IIT, the neuro-
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architecture of the so-called posterior hot zone spread across parietal, temporal, and
occipital areas is most favorable for high ¢ due to its organization in a ‘pyramid-of-
grids’-like structure and the theory predicts that the NCCs should be found within
this zone ¥. As such, IIT can accommodate the findings associating conscious
experience with activation in sensory areas and as such is considered part of the ‘back
of the brain’ camp in the ongoing debates.

Box 1.2: Theories of consciousness of interest for the thesis

For the necessity dissociation approach to work, two conditions must be met.
First, theories of consciousness must state a priori their inference regarding the
content of consciousness under the experimental conditions. This means that
theories should explicitly define what they believe participants will consciously
experience in those conditions, based on theoretical considerations alone (e.g., all
attended stimuli should be experienced) or measurements (introspection, behavior,
physiological measures). Second, the observation that is predicted by a given theory
must accurately reflect the theory. Both conditions are difficult to meet when testing
theories under novel conditions, as theories of consciousness are poorly defined
beyond the confines of the restricted set of contrastive method parameters that they
have adopted. Failure to meet either of these conditions will undermine the whole
approach. If the criterion used to infer whether consciousness is present does not
align with the theory, evidence can be discarded by arguing that the stimulus may not
have been consciously experienced. If the predictions are not accurately related to the
framework being tested, it can simply be argued that the predictions were wrong and
that the theory is not challenged.

However, if both conditions are met and the predictions of a theory are falsified,
the theory itself must be updated by either changing its mechanistic account
for conscious experience to accommodate negative findings or by updating its
assumptions as to which are the necessary conditions for a stimulus to be consciously
experienced, which both constitutes a refinement of the theory. It is important to
highlight that under this approach, a negative finding bears more significance than
a positive one: validating a prediction does not necessarily imply that a theory as a
whole is correct, but falsifying a prediction implies that there is something wrong
with it (I will extend on this point in the discussion).

To ensure that both conditions are met, I have actively collaborated with key
proponents of two previously described theories of consciousness, IIT and GNWT.
In the work that I will present, theorists themselves were required to formulate their
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predictions regarding experimental paradigms that were later conducted. Critically,
these predictions were pre-registered before observing any data *~*". This procedure
limits hindsight bias and makes explicit which results were truly predicted and which
had to be accommodated after the fact.

Outline

In my thesis, I will present the results of studies that go beyond the traditional
bottom-up approach by rigorously evaluating theories of consciousness, investigating
whether the mechanisms they propose are necessary for conscious experience.
I investigated two theories, IIT and GNWT, in the context of sustained visual stimuli
presentation. The experiments were designed to bring about novel predictions of the
theories regarding an aspect of experience that they ought to be able to explain. Their
failure to do so would imply that they need further refinements.

In Chapter 2, I will present the results of a large-scale adversarial collaboration
between IIT and GNWT. This procedure consists of resolving debates between
disagreeing scholars by testing their theory in a joint empirical effort *® and it has
been argued to constitute a gold standard to settle scientific disputes *°°. In the
case of consciousness research, this approach is particularly valuable, as it compels
theories to agree on a common set of experimental conditions that all parties
accept, preventing them from dismissing evidence due to disagreements over the
measurement of consciousness. Furthermore, this process pushes theories to venture
beyond the biased set of experimental conditions under which they are typically
tested, leading to novel predictions that can be empirically tested. These novel
predictions were tested on a large multi-modal dataset (intracranial EEG, fMRI,
and magneto-encephalography (MEG)) and significant challenges to both theories
were revealed.

In Chapter 3, I will present the results of a study investigating the temporal dynamics
of conscious experience under similar presentation conditions as that of Chapter 2.
In light of the evidence contradicting GNWT prediction in Chapter 3, the theory
refined its inference regarding the temporal dynamics of conscious experience,
leading to novel predictions regarding behavioral observations expected in such
conditions. These predictions were tested and revealed that the temporal dynamics
of conscious access may in fact become dissociated from sensory input, challenging
initial assumptions regarding the temporal dynamics of conscious experience.
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In Chapter 4, I will provide an independent analysis of the results presented in
Chapter 2 and discuss the broader implications of the results of both studies from
a vision neuroscience and consciousness research perspective. I will explore how
the findings contribute to our understanding of the neural dynamics underlying
visual perception of persistent stimuli and propose that investigating the temporal
dynamics of conscious experience may provide a way forward to dissociate access
from phenomenal consciousness. Beyond the empirical results, I will engage in a
critical discussion about the value of theory testing in consciousness research. I will
emphasize that we should refrain from adopting extreme and naive falsificationist
views on theory testing and instead consider theory testing as a tool for theoretical
self-improvement. I will finish by providing recommendations for future top-down
efforts in consciousness research to push us closer to a comprehensive understanding
of consciousness through iterative refinement of theories of consciousness.
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Chapter 2

An adversarial collaboration to critically
evalutate theories of consciousness

This chapter has been published as:
An adversarial collaboration to critically evaluate theories of consciousness, BioRxiv.

doi: https://doi.org/10.1101/2023.06.23.546249

Cogitate Consortium, Oscar Ferrante!, Urszula Gorska-Klimowska', Simon Henin,
Rony Hirschhorn', Aya Khalaf!, Alex Lepauvre’, Ling Liu*, David Richter’, Yamil Vidal’,
Niccolo Bonacchi, Tanya Brown, Praveen Sripad, Marcelo Armendariz, Katarina
Bendtz, Tara Ghafari, Dorottya Hetenyi, Jay Jeschke, Csaba Kozma, David R Mazumder,
Stephanie Montenegro, Alia Seedat, Abdelrahman Sharafeldin, Shujun Yang,
Sylvain  Baillet, David ] Chalmers, Radoslaw M Cichy, Francis Fallon,
Theofanis I Panagiotaropoulos, Hal Blumenfeld, Floris P de Lange, Sasha Devore,
Ole Jensen, Gabriel Kreiman, Huan Luo, Melanie Boly, Stanislas Dehaene, Christof Koch,
Giulio Tononi, Michael Pitts, Liad Mudrik, Lucia Melloni;

Shared first authorship. My contribution to this project entails Conceptualization,
Data Curation, Data Quality, Formal analysis, Investigation, Methodology, Project
Administration, Software, Validation, Visualization, Writing of the original draft, review
and editing as defined by the credit taxonomy (https://credit.niso.org/)

Specifically, I contributed to the development of the experimental design (piloting);
contributed to the deployment of experiments across sites; contributed to the data
architecture of the platform for data sharing across sites for analysis; coordinated the
collection of iEEG data across three data collection sites; conducted the iEEG data analysis
of the project (including curation, validation, preprocessing, onset responsiveness,
category selectivity, decoding analysis, duration analysis, representation similarity

analysis) and contributed to data analysis of other recording modalities (principally MEG)
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Summary

Different theories explain how subjective experience arises from brain activity 7.
These theories have independently accrued evidence, but confirmation bias and
dependence on design choices hamper progress in the field *°. Here, we present
an open science adversarial collaboration which directly juxtaposes Integrated
Information Theory (IIT) > and Global Neuronal Workspace Theory (GNWT) 941017103,
employing a theory-neutral consortium approach 771°¢. We investigate neural
correlates of the content and duration of visual experience. The theory proponents
and the consortium developed and preregistered the experimental design, divergent
predictions, expected outcomes, and interpretation thereof . 256 human subjects
viewed suprathreshold stimuli for variable durations while neural activity was
measured with functional magnetic resonance imaging, magnetoencephalography,
and intracranial electroencephalography. We find information about conscious
content in visual, ventro-temporal and inferior frontal cortex, with sustained
responses in occipital and lateral temporal cortex reflecting stimulus duration, and
content-specific synchronization between frontal and early visual areas. These results
align with some predictions of IIT and GNWT, while substantially challenging key
tenets of both theories. For IIT, a lack of sustained synchronization within posterior
cortex contradicts the claim that network connectivity specifies consciousness.
GNWT is challenged by the general lack of ignition at stimulus offset and limited
representation of certain conscious dimensions in prefrontal cortex. These
challenges extend to some first-order and higher-order theories of consciousness
that share some of the predictions tested here '>°-°®. Beyond challenging the theories,
we present an alternative approach to advance cognitive neuroscience through a
principled, theory-driven, collaborative effort. We highlight the challenges to change
people’s mind ' and the need for a quantitative framework integrating evidence for
systematic theory testing and building.

Main

Philosophers and scientists have sought to explain the subjective nature of
consciousness (e.g., the feeling of pain or of seeing a colorful rainbow) and how
it relates to physical processes in the brain ™. This ongoing endeavor has led to a
number of theories of consciousness that have evolved in parallel 7% Those theories
offer incompatible accounts of the neural basis of consciousness 7. Empirical
support for a given theory is often highly dependent upon methodological choices,
pointing towards a confirmation bias when testing these theories *. Convergence
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upon a broadly accepted neuroscientific theory of consciousness will have profound
medical, societal, and ethical implications.

With this goal as a starting point, we make a concerted effort to test two theories
of consciousness, among several widely discussed ones ®, through a large-scale,
open science, adversarial collaboration 7#97°%1o1 aimed at accelerating progress in
consciousness research by building upon constructive disagreement. This collaboration
brings together proponents of Integrated Information Theory (IIT) #** and Global
Neuronal Workspace Theory (GNWT) " in addition to theory neutral researchers.
Together, we identified divergent predictions of the theories and jointly developed
an experimental design to test them (Figure 2.1a). We preregistered foundational and
novel predictions from the two theories, including pass/fail criteria for each prediction,
as well as expected outcomes and their interpretation ex-ante . We focus on GNWT
and IIT, two theories of consciousness out of several others widely discussed e.g.,
Recurrent processing theory and Higher-order theories 7, since these theories
feature prominently in the field of consciousness science as shown in a recent
systematic review of the literature .

IIT and GNWT explain consciousness differently: IIT proposes that consciousness
is the intrinsic ability of a neuronal network to influence itself, as determined by
the amount of maximally irreducible integrated information (phi) supported by a
network. According to proponents, theoretical and neuroanatomical considerations
suggest that a complex of maximum phi likely resides primarily in the posterior
cerebral cortex, in a temporo-parietal-occipital “hot zone” *# 212 GNWT instead
posits that consciousness arises from global broadcasting and late amplification (or
“ignition”) of information across interconnected networks of higher-order sensory,
parietal, and especially prefrontal cortex (PFC) 2511102,

IIT and GNWT both have a mathematical or computational core (concerning
integrated information and the global workspace respectively) and a proposed
biological implementation (primarily in posterior cortex vs. in prefrontal cortex
and associated areas respectively). It is difficult to test the mathematical or
computational core of these theories directly, so in this project we instead test their
proposed biological implementations. The two proposed biological implementations
are competing and incompatible proposals, and testing them is empirically tractable
with current methods, enabling scientific progress. In the case of GNWT, we focus
especially on PFC rather than the associated areas in higher-order sensory and
parietal cortex, because this is where GNWT and IIT pose the most incompatible
and hence maximally diagnostic predictions, enabling differential testing of the
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theories. One consequence of this biological focus is that theorists could respond
to challenging data by retaining the mathematical/computational core of a theory
and changing the proposed biological implementation. Another consequence is that
some predictions (and the associated consequences from testing these predictions)
may be shared by other theories of consciousness with a similar proposed biological
implementation, such as higher-order theories ”'°® implemented in prefrontal
cortex, and local recurrency theories »7° implemented in visual cortex. These are
natural features of a project designed to test theoretical proposals about the neural
mechanisms of consciousness. For an extensive explanation and rationale, refer to
our preregistration document (https://osf.io/92tbg/).

We scrutinize three preregistered, peer-reviewed predictions of IIT and GNWT
for how the brain enables conscious experience *: Prediction #1 pertains to which
cortical areas hold information about different aspects of conscious content.
IIT predicts that conscious content is maximal in posterior brain areas, while
GNWT predicts a necessary role for PFC. Prediction #2 pertains to how conscious
percepts are maintained over time ™™: IIT predicts that conscious content is
actively maintained by neural activity in the posterior ‘hot zone’ (PHZ) throughout
the duration of a conscious experience. GNWT predicts, instead, that an ignition
in PFC at stimulus onset, and at offset, updates the workspace, with activity-silent
maintenance of information in between "¢. Prediction #3 pertains to interareal
connectivity between cortical regions during conscious perception. IIT predicts
short-range connectivity within posterior cortex, including lower-level sensory
(V1/V2) and high-level category-selective areas (e.g., fusiform face area, lateral
occipital cortex). In contrast, GNWT predicts long-range connectivity between high-
level category-selective areas and PFC. The combination of predictions places a high
bar for either theory to pass considering the highly powered and multimodal studies
we conducted. Predictions received differential weighting with respect to challenging
the theories based on the centrality to the theory and methodological limitations
(Extended Table 2.1). In addition to testing specific predictions of the theories, we
also used this rich dataset for an exploratory analysis aimed at delineating cortical
areas potentially participating in consciousness after excluding confounding factors
related to cognitive/task-related processes (putative Neural Correlates Consciousness
(NCC) analysis in the supplementary section).

To empirically test these predictions, we investigated the content and temporal extent
of conscious visual experiences that are phenomenologically multifaceted and rich,
even for a single stimulus. For example, when viewing the Mona Lisa (Figure 2.1b),
one experiences it as located in a portion of visual space, having a specific identity, a
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specific orientation, and for as long as one looks at the painting. To approximate this
multifaceted aspect of consciousness, we manipulated several attributes of conscious
content. Specifically, we presented suprathreshold stimuli belonging to four different
categories (faces, objects, letters, false fonts), with each category containing twenty

individual identities presented in three different orientations (front, left, right view)
for three different durations (0.5, 1.0, 1.5 s) (Figure 2.1c). Participants viewed the
stimuli while searching for two infrequent targets, making some stimuli task relevant
and others task irrelevant (Figure 2.1d; See supplementary video depicting the task).
This paradigm offers several advantages: first, it provides robust conditions to test
the theories’ predictions as it focuses on clearly experienced conscious content,
studied through high signal-to-noise, suprathreshold, fully attended single stimulus
at fixation, making any challenges of the theories’ predictions more significant,
thereby aligning with Lakatos's sophisticated falsification approach . Second, it
minimizes task and report confounds, thereby isolating neural activity specifically
related to consciousness. Third, it allowed us to test novel predictions about
questions previously unaddressed by the theories, contributing to theory refinement
and advancing the field more broadly. For example, it diverges from the usual
testing grounds of these theories to explore new predictions about how experience
is maintained over time, thereby yielding more informative results. Additionally, this
adversarial collaboration has prompted more specific predictions for existing claims,
particularly regarding specific regions of interest, enhancing the detail of these
theories in the process.

All research was conducted by theory-neutral teams to minimize confirmatory bias.
We evaluated the theories’ predictions in 256 subjects who performed the same
behavioral task in three different neuroimaging modalities: functional magnetic
resonance imaging (fMRI, N=120), magnetoencephalography (MEG, N=102), and
intracranial electroencephalography (iEEG, N=34). Given the limitations of current
methods for measuring and recording human brain activity, such as varying
strengths in spatial or temporal resolution, we intentionally employed a combination
of techniques to mitigate these shortcomings. The integration of whole-brain,
non-invasive fMRI and MEG with invasive iEEG recordings maximizes sensitivity,
spatiotemporal resolution, and spatial coverage, thereby providing stringent and
comprehensive tests of the theories in humans. This approach, combined with the
use of large sample sizes, reduces the likelihood that negative results are due to
methodological or sensitivity issues. The selection of methods was pre-approved by
the adversaries before the study was conducted and results were known, ensuring
the entire protocol was deemed suitable for assessing their theories. Furthermore,
each data type was collected by two (or three) independent laboratories to ensure
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generalization across populations, recording systems, and experimenters. Altogether,
we aimed at fostering informativeness, reproducibility, and robustness of the results
by (1) dissociating theory leaders from researchers involved in data acquisition/
analysis to minimize biases and post hoc interpretation, (2) using a multimodal
approach to test theories with enough and adequate temporal and spatial precision
in humans, (3) acquiring data in a large sample of subjects to increase statistical
power, (4) using standardized *® and preregistered protocols  to evaluate theories
under the same experimental framework and further minimize confirmatory bias ™°,
and finally (5) combining an analysis optimization phase with a final testing
phase using independent parts of our dataset to corroborate the robustness of the
results ™. Consequently, we present a large-scale international effort to evaluate
two widely discussed theories of consciousness under an integrated, rigorous and
comprehensive adversarial collaboration framework, setting a precedent for theory
testing and proving the concept for an alternative scientific model aimed at reducing
bias and enhancing scientific rigor in the bio-medical sciences.

We first established that our task manipulations were effective and comparable
behaviorally across data modalities and experimental sites (see supplementary
section 1-2 for the full set of results). Subjects’ performance in the task was excellent,
with high hit rates (M=96.84%, SD=4.19%), low false alarm rates (M=1.45%, SD=4.30%),
and high fixation stability (mean accuracy <2°=89.62%, SD=10.61%; Figure 2.1e-g).
Subjects’ performance across laboratories within each data modality was similar
(all p=1.000 after multiple comparison correction, BF<o0.12). Epilepsy patients showed
slightly lower behavioral performance compared to neurotypical subjects, yet, behavior
was still comparatively high (hit rate 93.90%, SD=12.29; false alarm rate M=4.25%,
SD=20.17). We confirmed that subjects were conscious of the stimuli both in the task
relevant and irrelevant trials in a separate experiment which included a surprise
memory test (see supplementary section 3).

As part of our testing framework, after excluding a limited number of subjects due
to data quality checks, we conducted an initial optimization phase on 1/3 of the MEG
(N=32) and fMRI (N=35) datasets to evaluate data quality across sites and to optimize
analysis pipelines. Following the optimization phase, pipelines were preregistered
(hteps://ost.io/92tbg/), and applied to the novel datasets containing twice as much data
(MEG, N=65 and fMRI, N=73). In what follows we report results obtained on the novel,
previously unexamined datasets (see methods for the strategy used for iEEG and text
for numbers of subjects that entered in each analysis). Results from the optimization
phase and preregistered replication phase were subsequently compared and deemed to
be largely compatible, with some minor exceptions (see supplementary section 4).
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Figure 2.1: GNWT and IIT predictions tested in an adversarial collaboration

a. Three key contrasting predictions of Integrated Information Theory (IIT) and Global Neuronal Workspace Theory
(GNWT) tested in an adversarial collaboration framework. Prediction #1: Decoding of conscious content,
evaluating which cortical areas hold information about different aspects of conscious content. IIT predicts that
conscious content is maximal in posterior brain areas, while GNWT predicts a necessary role for PFC. Prediction #2:
Maintenance of conscious content over time, evaluating the temporal dynamics by which the temporal extent of
the conscious content is instantiated. IIT predicts that conscious content is actively maintained in posterior cortex
throughout the extent of a conscious experience; while GNWT predicts brief content-specific ignition in PFC ~0.3-
0.5 s after stimulus onset and offset (when the workspace is updated), with content stoved in a non-conscious silent
state resembling activity-silent working memory in between. Waveforms and temporal generalization matrices
depict the amplitude- and information-based temporal profiles predicted by the theories, respectively (left: colored
rectangles indicate the three different stimulus durations, GNWT predicted waveforms pertain to PFC, IIT
predictions to posterior cortex; right: brown arrows indicate stimulus onset, red arrows stimulus offset, green and
blue colors reflect the predicted patterns of temporal generalization of conscious content according to each theory in
PFC and posterior cortex for GNWT and IIT, respectively). Prediction #3: Interareal communication, evaluating
the topological and temporal patterns of interareal connectivity subserving consciousness. The stars and arrows on
the brain (left) depict the different predictions about the expected synchrony patterns (green: GNWT; blue: IIT).

b. Conscious experience is multifaceted in content. Looking at the image of Mona Lisa by Leonardo da Vinci
underscores the fact that conscious experiences are rich: The painting is experienced as occupying a location in
space, pertaining to a given category (i.e., a face and not an object, or any other category), specifying an identify
(i.e., Mona Lisa and not any other face), and a particular orientation (i.e., leftward oriented and not rightward or
any other orientation). Moreover, the conscious experience is maintained over time for as long as one appreciates the
painting, endowing it with a temporal extent (i.e., it feels extended in time).

c. To experimentally capture the multifaceted aspect of phenomenological experience, we manipulated the content of
consciousness by varying stimuli along four dimensions: category (faces, objects, letters and false fonts), identity
(each category contained different exemplar), orientation (left, right, and front view), and duration (stimuli were
presented for three durationsi.e., 0.5s,1.0, and 1.5 s). Example stimuli used in the study are shown for reference.

d. Overview of the experimental paradigm: At any one point in time, no more than one high-contrast, stimulus
was present at fixation. In each trial, subjects were asked to detect target stimuli: either a face and an object or
a letter and a false font in any of the three different orientations. Thus, each trial contained three stimuli types:
targets (depicted in ved), task relevant stimuli (belonging to the same categories as the targets, depicted in orange-
red), and task irrelevant stimuli (belonging to the two other categories, depicted in purple). The pictorial stimuli
(faces/objects) were task relevant in half of the trial blocks, while the symbolic stimuli (letters/false fonts) were
relevant in the other half of the blocks. For illustration purposes only, a color line was added to depict the different
trial types. Blank intervals between stimuli are not depicted here.

e. Distribution of behavioral sensitivity scores (d’) separate per data modality and acquisition site. Crossing lines
depict average d’ per site/modality. Dots depict individual participants d’s. Colors depict data modality: MEG N=65
(orange), fMRI N=73 (ved), and iEEG N=32 (green), while the hue depicts each site within a modality.

£. Distributions of false alarm (FA) rates per site and data modality, separated by task condition: Orange-red depicts
task relevant stimuli. Purple depicts task irrelevant stimuli. Dots are individual participants FA rates. Other
conventions as in f.

g. Top row: Average fixations heatmaps computed over a 0.5 s window after stimulus onset. Heatmaps are displayed
per data modality, zoomed into the stimulus area. Bottom row: Average saccadic direction maps per data modality.
The three stimulus durations are shown separately.
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Prediction #1: Decoding of conscious content

According to IIT, PFC is not necessary for consciousness. Consequently, proponents
of IIT predict that decoding of conscious content should be maximal from the
posterior cortex, and should not increase when PFC is added. According to GNWT,
PFC is necessary for consciousness and consequently predicts that every content
of consciousness should be decodable from the PFC. IIT’s prediction of maximal
decoding in the posterior cortex was regarded as a non-core test of the theory
because, for IIT, what matters is not how much information can be decoded from
the extrinsic perspective of an observer, but how much information is available to
a neural substrate from its intrinsic, causal perspective. IIT and GNWT further
specify that brain areas evidencing conscious content should do so irrespective of
other cognitive processes, e.g., report. This implies that conscious content should
be present irrespective of task manipulations . To empirically test prediction #1,
we measured multivariate decoding of stimulus category (pictorial: faces/objects
and symbolic: letters/false fonts), and orientation (left/right/front facing). In each
block, the subjects’ task was to identify two stimuli belonging to either the pictorial
or the symbolic group of stimulus categories, e.g., a specific face and a specific
object (Figure 2.1d), making these two categories task relevant in that block. Hence,
all categories were task relevant and task irrelevant in different blocks. Stimulus
orientation was orthogonal to the task, and thus task irrelevant in all blocks.

Based on our preregistered predictions and pre-approved interpretations (Extended
Table 2.1, and https://osf.io/92tbg/), the theories would be challenged if we observe
decoding of one stimulus category pairing (e.g., faces/objects or letters/false fonts)
but not decoding of orientation (or vice versa) in at least one of the four categories, in
the relevant brain regions and time windows. Thus, the theories would pass this test
if decoding is possible for both category and orientation, but would fail otherwise.
Testing for decoding of both category and orientation constitutes a more stringent
test of the theories as it requires two conditions to be satisfied, making it more likely
for the test to fail *°, while also capturing a critical aspect of conscious content, i.e.,
its multidimensionality, or phenomenological richness (Figure2.1b). For decoding of
category, we also sought to demonstrate that information is present in the relevant
regions irrespective of the task by training a classifier in one task and evaluating
whether it generalizes to the other task condition, i.e., cross-task generalization.

Here, we report the most robust results for decoding of category (faces/objects)
and orientation (left/right/front views of faces). Qualitatively similar results were
observed for decoding of letters/false fonts (Extended Data Figure 2.2a-d). Results for
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orientation decoding were consistent across stimulus categories and data modalities
in posterior cortex, yet mostly absent in PFC (see supplementary section 5.1.2).

In the iEEG data, we trained pattern classifiers on high gamma frequency band
activity (70-150 Hz) at each time-point in the task irrelevant condition and tested
across all time-points in the task relevant condition, for each stimulus duration,
category, and across all electrodes within the theory-relevant ROIs (Figure 2.2a for
a visualization of ROIs and methods section for a list of anatomical ROIs). In the
posterior ROIs, face/object decoding showed significant cross-task generalization
(>95% accuracy) for the approximate duration of the stimulus (Figure 2.2b, top row).
In the PFC ROIs, significant cross-task face/object decoding accuracy (~70%) was also
evident, but the temporal generalization of this decoding was restricted to ~0.2-0.4
s (Figure 2.2b, bottom row). Training on task relevant and testing on task irrelevant
trials showed similar results (Extended Data Figure 2.2e; within-task decoding
provided in Extended Data Figure 2.3). The sustained (posterior) and phasic (PFC)
patterns of cross-task temporal generalization of decoding thus matched both IIT’s
and GNWT’s predictions, respectively.

While electrode coverage across our sample of iEEG patients (N=29 for the decoding
analyses) was exceptional in the relevant brain regions (Figure 2.2a, PFC ROIs

dectrodec =576, Posterior ROIs N
a larger population of healthy subjects (N=65) in MEG. Results from the cross-task

dectrodes=583), we also evaluated these predictions in
decoding of stimulus categories using the MEG cortical time series (see methods
section) combining all parcels within the theory-relevant ROIs were consistent
with the iEEG observations. Cross-task generalization of face/object decoding was
significant in both posterior and prefrontal ROIs (Figure 2.2c) within the theory-
predicted time-windows. The extent of cross-temporal generalization of decoding in
MEG was sustained in posterior ROIs. In PFC ROIs, decoding was brief for all three
stimulus durations (see supplementary section 5.1.1.2).

A limitation of MEG is its spatial imprecision, which can impact source localization.
We thus also tested the theories’ predictions in a large sample of healthy subjects
(N=73) exploiting the high spatial resolution of fMRI. Using a searchlight approach
(see methods section), we found distributed and robust cross-task generalization
(~75%) in striate and extrastriate, ventral temporal, and intraparietal cortex (Figure
2.2d; see Extended Data Table 2.4 for anatomical details). Generalization in
prefrontal cortex had lower accuracy (~60%), and was spatially restricted to middle
and inferior frontal cortex regions (Figure 2.2d). We obtained similar results with
a decoding approach using theory-relevant ROIs defined in the Destrieux atlas
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(see supplementary section 5.1.1.3). These results also closely matched a theory-
relevant ROIs analysis in the iEEG data restricted to the time windows specified by
the theories (Figure 2.2e). Hence, across recording modalities, we observed that face/
object decoding was present both in the posterior and the prefrontal ROI, in line with
IIT and GNWT predictions.

As the representation of conscious content is rich and multidimensional including
features beyond category, we turned to decoding of stimulus orientation (which was
always task irrelevant). Here, we found divergent results for the predictions of IIT and
GNWT: decoding of face orientation (left/right/front views) was found in posterior
ROIs but not in prefrontal ROIs, both in the iEEG theory-relevant ROIs decoding
approach (Figure 2.2f, h; accuracy improved to ~95% with pseudotrial aggregation
as shown in Extended Data Figure 2.5a) and in the fMRI searchlight approach
(Figure 2.2g, ~45%). From the MEG cortical time series, decoding of face orientation
was robust in posterior ROIs (~75% with pseudotrial aggregation), and reached above
chance levels, albeit weakly (35%) in prefrontal ROIs (Figure 2.2i). Notably though,
control analyses could not conclusively rule out that MEG decoding in the PFC ROIs
stemmed from signal leakage from posterior regions (Extended Data Figure 2.5b).
Decoding of orientation for the other stimulus categories (letters and false fonts but
not for objects) was observed in posterior ROIs but not in the prefrontal ones across
the three data modalities (see supplementary section 5.1.2).

Finally, we tested the preregistered prediction by IIT that prefrontal regions do
not contribute further information beyond that specified by posterior areas (or
may even degrade performance as it could introduce noise into the classifiers) ™.
The results of this test would challenge IIT if the inclusion of PFC was found to
increase decoding accuracy, while a lack of an increase would be consistent with
both theories as GNWT holds that workspace neurons in PFC broadcast information
from posterior processors rather than adding information. We compared decoding
performance from classifiers exclusively trained on posterior ROIs with classifiers
trained on posterior and prefrontal ROIs together (Extended Data Figure 2.5¢)
(see methods section). The results across all critical data modalities for testing
(iEEG, MEG) indicate that neither category nor orientation decoding improves, and
in some cases decreases, when adding prefrontal ROIs to posterior ROIs (Extended
Data Figure 2.5d-e). These results are robust to the selection of ROIs, as a control
analysis using a broader definition of prefrontal cortex, yielded comparable results
(see supplementary section 5.1.3).
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Prediction#1 is a central prediction for GNWT, while it is subsidiary for IIT.
Considering the primary preregistered tests, and their implications for both theories:
for prediction #1, we found mixed results for GNWT. On the one hand, we found
robust decoding of category in PFC across all three imaging modalities. However, for
decoding of orientation, results differed across modalities: only for MEG did cortical
activity show decoding of orientation for faces but not for any other stimulus category
in PFC. Yet, possible signal leakage from posterior sources could not be conclusively
ruled-out. Considering the negative decoding results for orientation from fMRI
and iEEG, which provide higher spatial resolution than MEG, this overall pattern
of results challenges one of GNWT’s predictions. For IIT’s predictions, decoding of
conscious content (both category and orientation) was robust in posterior cortex,
independent of the task manipulation, and consistent across data modalities (iEEG,
MEG and fMRI). Also, decoding of category and orientation was found to be the
same, or to decrease, when adding PFC to posterior regions.
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Figure 2.2: Prediction #1-Decoding of conscious content

a. Spatial coverage of intracranial electrodes across all patients included in the decoding analysis (N, ;.. =29),
displayed on a standard inflated cortical surface map (top), and within the regions of interest (ROIs) for the two

=583), prefrontal (green, N =576).

electrodes

theories (bottom): posterior (blue, N, . -
b. Cross-task temporal generalization of decoding of high gamma signal in iEEG in which pattern classifiers were
trained to discriminate stimulus category (faces vs. objects) in the task irrelevant condition at each time-point and
tested in the task relevant condition across all time-points. The three stimulus durations are plotted in columns
(left: 0.5 s; center: 1.0 s; right: 1.5 s) and the two theory ROISs in rows (top: posterior ROIs; bottom: prefrontal
ROIs). Significantly above-chance (50%) decoding is indicated by the outlined pink-red regions in the temporal

generalization matrices. Contours indicate statistically significant decoding evaluated through a cluster-based

permutation test.

¢. Cross-task decoding of stimulus category (faces vs. objects) in MEG cortical time series (N=65) when classifiers
were trained on relevant stimuli and tested on irrelevant stimuli (purple); or trained on irrelevant stimuli and
tested on relevant stimuli (red). Decoding was done separately within the whole posterior ROIs (top) and prefrontal
ROIs (bottom). The inset shows inflated cortical surfaces depicting the two ROIs used for theory testing (posterior:
blue; prefrontal: green) in the decoding. These decoding results combine data across the three stimulus durations,
and used pseudotrial aggregation. The purple and ved lines underneath the decoding functions indicate time-
periods showing significantly above-chance (50%) decoding as assessed by cluster-based permutation test. Error
bars depict 95% CI estimated across subjects.

d. Cross-task decoding of stimulus category (faces vs. objects) in f/MRI (N=73) using a searchlight approach, collapsed
across the three stimulus durations. Left panel (purple): Pattern classifiers trained on relevant stimuli and tested
on irrelevant stimuli. Right panel (orange-red): Pattern classifiers trained on irrelevant stimuli and tested on
relevant stimuli. Regions showing significantly above-chance (50%) decoding, evaluated through a cluster-based
permutation test, are indicated by the outlined colored regions on the inflated cortical surfaces (top: left/right
lateral views; bottom: right/left medial views).

e. Cross-task decoding of stimulus category (faces vs. objects) in iEEG within the theory-specific ROIs, collapsed
across stimulus duration. Decoding accuracies are indicated in purple for classifiers trained on velevant stimuli
and tested on irrelevant stimuli, and in orange-red when trained on irrelevant stimuli and tested on relevant
stimuli, and are displayed on inflated surface maps from a left lateral view (top left), posterior view (top right) and
left medial view (bottom).

f- Decoding of stimulus orientation (left vs. right vs. front view faces) which was always task irrelevant, in single
trial iEEG data, within posterior ROIs (top) and prefrontal ROIs (bottom), collapsed across the three stimulus
durations. Lines under the decoding functions indicate time-points showing above chance (33%) decoding from a
cluster-permutation test. Decoding using pseudotrial aggregation is shown in Extended Data Figure 2.5a. Error
bars depict 95% CI estimated across cross-validation folds.

g. Decoding of orientation (left vs. right vs. front view faces) in fMRI using the searchlight approach. Regions with
significantly above-chance (33%) decoding accuracies are indicated in outlined blue on the inflated cortical surface
maps (top: left/right lateral views; bottom: right/left medial views).

h. Decoding of orientation (left vs. right vs. front view faces) in iEEG within the ROIs. Regions with electrodes
showing above-chance (33%) accuracies are indicated in outlined blue on the inflated surfaces (top left: left lateral
view; top right: posterior view; bottom: left medial view).

i. Decoding of orientation (left vs. right vs. front view faces) in MEG cortical time series within the ROIs (top:
posterior; bottom: prefrontal). Time-points showing significantly above-chance (33%) decoding are indicated by
lines below the decoding functions. Error bars depict 95% CI estimated across subjects.
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Prediction #2: Maintenance of conscious content
over time

According to IIT, the state of the network that specifies the content of consciousness
in posterior cortex is actively maintained for the duration of the conscious experience
(manipulated here via different stimulus durations). In contrast, GNWT predicts
brief content-specific ignition in PFC ~0.3-0.5s after stimulus onset, when the
workspace is updated . Then, activity decays to baseline, with information being
maintained in an latent state, until another ignition marks the offset of the current
percept and the onset of a new percept (in our paradigm, the fixation screen following
stimulus offset). Thus, while the underlying brain response (the workspace update) is
temporally discrete (i.e., an onset and an offset response), the conscious experience
can be temporally continuous (lasting from one workspace update to the next).

Based on our preregistered predictions and interpretations (Extended Table 2.1,
and hteps://ostf.io/92tbg/), the theories would be challenged unless we observe the
predicted temporal dynamics for maintenance of conscious content, i.e., sustained
vs. phasic for IIT and GNWT (Figure 2.1a), respectively, for a minimum of one
conscious feature (category, identity or orientation), in the relevant brain regions and
time windows. Specifically, IIT would be challenged if we failed to observe sustained
content-specific information and activation tracking stimulus duration in posterior
cortex for the above-mentioned features. GNWT would be challenged if prefrontal
phasic activation (at onset and offset) associated with the maintenance of conscious
content over time was absent for those features. We tested those predictions by
evaluating both the strength of activation as a function of stimulus duration, and
the informational content of that activation in each of the theory-relevant ROIs.
Here, both activation and information content were deemed central predictions
for IIT, such that they jointly determine the overall interpretation of results. For
GNWT, activation alone was considered essential for theory evaluation due to the
challenges in precisely measuring the reinstatement of content specificity at the time
of stimulus offset.

We focused on the task irrelevant condition as it is most diagnostic for neural
activity related to consciousness, minimizing the contribution of other, potentially
confounding, cognitive processes (see supplementary sections 6.1 and 6.2.9 for
results on the task relevant condition). Due to the temporal nature of the predictions,
they were tested on the two data modalities with millisecond temporal resolution,
iEEG and MEG.
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First, we tested the theories’ predictions investigating neural activation as a function
of stimulus duration. In the iEEG data, we used linear mixed models (LMMs, see
methods section) to model the time course of neural activity in the high gamma (HG)
frequency band (70-150 Hz), which correlates with spiking activity 2%, per electrode
and theory-relevant ROI as a function of the theories’ predicted temporal models
(Figure 2.1a. middle panel) and stimulus duration (LMMs, see methods section). To
increase sensitivity and to accommodate the (category) selective responses expected
in higher-order sensory areas, we included an interaction term with category.

Although we lacked control over the placement of electrodes, the sampling density
of electrodes in both the posterior cortex and the prefrontal cortex (PFC) was
consistently high and evenly distributed across ROIs pertinent to the theories. This
enabled us to fairly and exhaustively test theories’ predictions directly in the human
brain. Across the 31 epilepsy patients in this analysis, 194 of 657 (29.5%) posterior ROI
electrodes and 123 of 655 (18.7%) PFC ROI electrodes exhibited HG activity in response
to the stimuli (see supplementary section 6.1.2).

In posterior cortex ROIs, the results of the LMMs revealed a total of 25 electrodes (out
of 657) that exhibited sustained activity that tracked stimulus duration (Extended
Data Table 2.6 for electrode localization and supplementary section 6.1.1 for results
of the full model), in line with IIT’s prediction (Figure 2.3a). A subset of 12 electrodes
showed sustained duration tracking irrespective of stimulus category predominantly
in early visual areas (Figure 2.3b for an example electrode in occipital pole). The
remaining 13 electrodes showed category-selective tracking (mostly to face stimuli)
localized to the ventral temporal cortex (Figure 2.3b for an example electrode in
lateral fusiform gyrus). Overall, the proportion of electrodes showing category-
specificity and duration tracking was rather small, e.g., only 15% (8/53) of face
selective electrodes showed sustained duration tracking as predicted by IIT, pointing
to a rather sparse underlying neural substrate. These responses mostly localized to
the lateral fusiform gyrus. The remaining majority face selective electrodes exhibited
transient activations at stimulus onset, localized across striate, extrastriate and
ventral areas (see supplementary section 6.1.2).

In PFC ROIs, 99 and 24 electrodes showed non-selective and category-selective onset
responses, respectively (Figure 2.3d). Yet, none of the 655 electrodes tested matched
the temporal profile predicted by GNWT (i.e., onset and offset). This null result was
not due to the analysis approach, as the LMM was indeed sensitive to picking up the
pattern predicted by GNWT in 10 electrodes outside the predicted RO, i.e., in striate/
extrastriate cortex (Figure 2.3b). An exploratory analysis to decode stimulus duration
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with unrestricted temporal profiles and time windows revealed a single electrode
in the inferior frontal sulcus showing the GNWT-predicted pattern, yet earlier than
expected (0.15 s post-onset and post-offset) (Figure 2.3d). The very same electrode
exhibited a biphasic event-related potential with a positive deflection early on (0.15 s)
and a negative deflection at a later latency (see supplementary section 6.1.1).
Additional control analyses, including time-locking the analyses to stimulus offset to
increase statistical sensitivity, corroborated the temporal profile predicted by IIT in
posterior ROIs, and the absence of the temporal profile predicted by GNWT in PFC
ROIs (see supplementary sections 6.2.1-6.2..3).

For MEG, we used LMMs to investigate the temporal patterns of gamma frequency
band power within the posterior (15 parcels) and the PFC (11 parcels) ROIs. Although
gamma frequency band activity was strong in posterior areas, none of the theory-
based models provided a good fit to the data (see supplementary section 6.1.3.1). We
also examined activity in the alpha band, recognizing its potential as a surrogate
for neuronal spiking. This is based on its well-documented inverse relationship
with neural spiking activity +5. Results on alpha frequency in iEEG and MEG were
inconclusive and did not provide strong support for either of the theories. In iEEG,
none of the prefrontal electrodes showed the predicted combination of an onset
and offset response, but instead this pattern was found in some posterior sites. In
MEG, temporal profiles consistent with GNWT were found in most areas in posterior
cortex and in the anterior cingulate cortex, but those results were highly dependent
on parameter choices and contamination from posterior sites could not be ruled-out
(see supplementary sections 6.1.1 and 6.1.3.2).

Together, the results from the temporal activation analysis are compatible with IIT’s
predictions of sustained activation within posterior cortex. In contrast, we found no
evidence in iEEG for GNWT’s prediction concerning late phasic ignition of PFC at
both stimulus onset and offset. MEG evidence in the alpha band was inconclusive,
and not supported by iEEG despite the ample coverage of PFC. These patterns of
results accordingly challenges GNWT’s predictions.

After analyzing the temporal profile of brain activity, we used cross-temporal
Representational Similarity Analysis (RSA) both in the iEEG and MEG source data
to test in which time windows the content of consciousness was represented
(Figure 2.1a. middle panel). For IIT, a critical prediction is that conscious content
should be maintained as long as the conscious experience lasts. GNWT instead
predicts a phasic ignition of the workspace at stimulus onset with no active
representation of the conscious content until another ignition marks the offset of
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the percept. This prediction was tested, but it was classified as non-essential for
the evaluation of GNWT. Within each of the theory-relevant ROIs, we performed
cross-temporal RSA for each stimulus dimension (category, identity, orientation)
and correlated them with the temporal models predicted by the theories (Figure 2.1a,
right panel). Here, we report the results for face and object stimuli. Qualitatively
similar results were observed for letters/false fonts (Extended Data Figure 2.7).

In iEEG, we calculated the correlation distance between the patterns of HG activity
=28) and 576 electrodes in PFC ROIs
=28), separately. Then, we applied principal component analysis (PCA)

across 583 electrodes in posterior (N
(N
to visualize the similarity structure (see methods section). We investigated the

subjects

subjects

1.5 s duration trials only, because they enable the best contrast between the temporal
profiles predicted by the theories.

In posterior cortex ROIs, the cross-temporal RSA revealed sustained face/object
categorical representation, with larger correlation distances between categories
(face/objects) than within category (face, object) (compare Figure 2.3e left with
the predicted pattern in Figure 2.1a). The RSA matrix significantly correlated
with the temporal model predicted by IIT, and outperformed the GNWT model
(see supplementary section 6.3 for results of all contrasts).

In PFC ROIs, the cross-temporal RSA revealed transient face/object categorical
representation at stimulus onset, but not at stimulus offset. In line with this
observation, we did not find any significant correlation with the GNWT onset &
offset model (compare Figure 2.3f left with the predicted pattern in Figure 2.1a). This
was also the case for the task relevant condition, where face/object information was
stronger, more stable and longer lasting. Further evidence for the absence of GNWT
predicted patterns in PFC ROIs was found in three control analyses using (a) feature
selection, which improved RSA in PFC; (b) modified time-windows to investigate
the possibility of an earlier ignition at stimulus offset; and (c) a decoding analysis
time-locking trials to stimulus offset to maximize sensitivity (see supplementary
section 6.4). None of these control analyses changed the overall results. These results
nicely align with two independent studies using comparable methods "%, attesting
to their robustness.

It has been argued that because conscious experiences are specific, the representation
of identity and orientation are more stringent tests of the neural substrate of
conscious experience %, than category. We thus also evaluated whether information
about stimulus identity (and orientation) matched the theories’ predictions.
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In posterior ROIs, object identity information was sustained throughout the
stimulus duration, with objects of the same identity showing smaller distances than
different object identities (Figure 2.3e, middle right). The IIT model significantly
correlated with the observed RSA matrix, and also better explained the data
compared to the GNWT model. Comparable results were found for letter and false-
font identity, but not for face identity (Extended Data Figure 2.7). For the PFC ROIs,
identity information was absent for all categories, both at stimulus onset, offset,
and generally throughout the time windows (for objects, see Figure 2.3f, middle
right). Finally, we tested for the presence of orientation information. In posterior
cortex ROIs, information about face orientation was weakly present at stimulus
onset, yet was not sustained, decaying after o.5 s (Figure 2.3e, right), contrary to
IIT’s predictions. In PFC ROIs, no information about face orientation was found
(Figure 2.3f right). MEG time series were inconclusive, as none of the theories’
predictions were borne out when testing information about category, identity, or
orientation (see supplementary section 6.5).

Considering the primary preregistered tests, their respective weight and
interpretations for both theories (Extended Table 2.1), for prediction #2, results were
in line with IIT’s prediction, as activation and representation of conscious content
was sustained in posterior cortex, including representation of category and identity
across multiple stimuli. Yet, sustained responses were rather rare in posterior cortex
(found only in 3.8% of the electrodes in the iEEG data). Also, there was no sustained
representation of orientation.

GNWT was challenged as we found no convincing evidence in iEEG or MEG for
a late phasic ignition of PFC at stimulus offset, despite the presence of robust
ignition at the onset of the stimuli. With regards to the information content, which
was considered a non-critical prediction for GNW, the RSA analysis demonstrated
category information in PFC, exclusively at stimulus onset and earlier than predicted;
while information about stimulus identity and orientation was completely absent.
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Figure 2.3: Prediction #2-Maintenance of conscious content over time

a. Intracranial electrodes in posterior ROIs, depicted in blue (N iees™3L N, =657) showing the sustained
duration profile compatible with IIT’s predictions, found for category-selective electrodes (N=13, dark blue),
specifically for faces (N=8, purple), and non-category selective electrodes (N=12, light blue). Additionally, a small
number of electrodes exhibited a biphasic duration profile (11 electrodes, green). Although this biphasic profile
corresponds with the GNWT predictions, it was expected to appear in PFC, not in posterior regions. We present
these findings to highlight the sensitivity of our analytical approach. However, this specific observation does not
directly support GNWT, as the original prediction pertained exclusively to the PFC.
Top panels. Averaged waveforms in posterior ROIs for non-category selective (left) and face-selective (middle)
sustained duration tracking electrodes, separately per stimulus duration, marked in shades of blue. Error bars
depict standard error of the mean. (Right) Bar plot depicting mean high-gamma power averaged across all face-
selective electrodes for each stimulus category separate per stimulus duration (faces: dark blue, objects: orange,
letters: turquoise, false fonts: dark red). Bottom panels. Raster plots of example electrodes depicting non-category
selective sustained duration tracking (left), face-selective sustained duration tracking (middle), and phasic onset
and offset duration tracking responses predicted by GNWT for PFC ROIs (vight). Rows depict single trials, sorted
per stimulus duration (from top: 0.5, 1.0, 1.5 s), and then category (from top: false fonts, letters, objects, faces).

- Electrodes in PFC ROIs, depicted in green (N, =31, N = 655) exhibiting phasic onset responses only (gray,
N=114), 1 electrode (black) exhibiting a phasic onset and offset response but significantly earlier (0.15s) than the
time window predicted by GNWT (>0.3s). None of the 655 electrodes showed phasic onset and offset response (with
activity silence in between) at the time windows predicted by GNWT.

. Top panels. Averaged waveforms in PFC ROIs for non-category selective (left) and face-selective (middle) onset only
responsive electrodes, separately per stimulus duration, marked in shades of gray (as their pattern does not comply
with any of the theory predictions). Error bars depict standard error of the mean. (Right) Averaged waveforms
for the electrode showing an onset & offset response that occur earlier than the predicted time-window. Bottom
panels: Raster plots for one example electrode exhibiting an onset response only (left), and the early onset and offset

ectrodes

s

o

electrodes

=

response (vight). Y Axis labels as in b.

Cross-temporal representational dissimilarity matrices across all electrodes in posterior ROIs (N, =28,

N, oot =583) for category (left and middle-left), identity (middle-right) and orientation (vight). Sustained
representation of category was found irrespective of task (compare task relevant and task irrelevant RSA matrices).
Principal component analysis revealed the stable separability across faces and objects, again irrespective of task.
Bar plots show the within class dissimilarly (distances within the face and object category) and between class
dissimilarity (faces vs. object distances). Larger between than within class separation was observed, consistent with
the presence of category information. Sustained information about object identity was observed in posterior cortex,
with larger between identity distances and within identity distances. Information about face orientation was weak
and not sustained across the stimulus duration in posterior cortex.

f. Cross-temporal representational dissimilarity matrices across all electrodes in PFC ROIs, as in Figure 2.3e.
Transient representation of category was found irrespective of task (compare task relevant and task irrelevant RSA
matrices). Principal component analysis revealed the stable separability across faces and objects, again irrespective
of task. Bar plots as in Figure 2.3¢. Larger between than within class separation was observed, consistent with the
presence of category information. There was no identity nor orientation information in PFC ROIs in the relevant
time windows predicted by GNWT, or at any other time point.

®




54 | Chapter 2

Prediction #3: Interareal communication

IIT predicts neural connectivity within the posterior cortex in the gamma band, i.e.,
between high-level and low-level sensory areas (V1/V2), throughout any conscious
visual experience. In contrast, GNWT postulates a brief and late metastable state
(>0.25 s) with information sharing between PFC and category-specific areas
manifested in long-range synchronization in the gamma/beta band **.

Based on our preregistered predictions and a-priori interpretations (Extended Table 2.1),
the theories would be challenged if we fail to observe interareal connectivity between
the cortical nodes specified by the theories in the relevant time windows. For IIT,
this implies sustained content-specific synchronization between face/object selective
areas and V1/V2; while for GNWT connectivity should be phasic (0.3-0.5 s) between
the category selective areas and PFC. Due to the temporal nature of the predictions,
iEEG and MEG provide the most informative test. We computed pairwise phase
consistency (PPC) ®° between each category-selective time series (face- and object-
selective nodes) and either the V1/V2 or the PFC time series in the intermediate
(1.0 s) and long-stimulus-duration (1.5 s), task irrelevant trials (see supplementary
section 7.1.2 for task relevant trials). We focused on gamma activity, which is
held to closely reflect neuronal spiking activity *'. Furthermore, within the framework
of IIT, spiking activity is considered a constituent property of the physical substrate
of consciousness *.

For iEEG, we restricted analyses to electrodes showing face and object selectivity,
using a different subset of electrodes to test connectivity with V1/V2 and PFC
(see methods section, Figure 2.4a for ROIs and for examples of face and object
selective electrodes). Due to the sparse coverage, the requirement to focus on
‘activated’ electrodes (see methods section) was relaxed. However, restricting the
analysis to only activated electrodes does not change the pattern of results. We found
increased category selective, e.g., faces>objects synchrony between category-selective
and V1/V2 electrodes (Figure 2.4b, top row). However, these effects were early and
short-lived (e.g., <0.75 s), observed only at low frequencies, i.e., 2-25Hz, and mostly
explained by the synchronous activity elicited by the stimulus evoked response
(Extended Data Figure 2.8). Thus, the findings did not match IIT predictions, as
the activity was not found in the gamma frequency predicted by IIT, and was not
sustained. No content-selective PPC was found between face- and object-selective
electrodes and PFC electrodes in the relevant time window, in contrast to GNWT’s
prediction (Figure 2.4b, bottom row).
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For MEG, we used Generalized Eigenvalue Decomposition (GED) 2 to extract face-
and object-selective components from ventral temporal areas (Figure 2.4c) and then
computed PPC. We found selective synchronization between face-selective areas
and both V1/V2 and PFC. However, these effects were early and restricted to low
frequencies (2-25 Hz), which was inconsistent with both IIT and GNWT (Figure 2.4d)
and mostly explained by stimulus evoked responses (Extended Data Figure 2.8).

The results of the preregistered PPC metric for prediction #3, which was critical
for both theories, thus supported neither of them. PPC was chosen based on the
theories’ mechanistic considerations, because it assesses oscillatory phase. However,
phase estimation is challenging in neural signals due to noise. We thus relaxed
the constraints and tested the theories exploring a connectivity metric sensitive to
co-modulations of signal amplitude - dynamic functional connectivity (DFC; see
methods section). We also removed the evoked responses given the observed impact
in the PPC metric (Extended Data Figure 2.8 includes the evoked response).

In iEEG, we observed significant connectivity between object selective electrodes
and V1/V2 (Figure 2.4e). Connectivity was evident in several frequency bands,
most predominantly the gamma band. Yet, it was again brief, in contrast to IIT’s
predictions. Connectivity between face selective electrodes and V1/V2 was scarce.
Significant connectivity was observed between PFC and both the face and the object-
selective areas, in the frequency (gamma) and time range predicted by GNWT. For
MEG, brief DFC in the alpha-beta frequency bands was found only between face-
selective nodes and both PFC and V1/V2 (Figure 2.4f).

Together, the results of the exploratory DFC metric in iEEG were in line with GNWT’s
predictions, while challenging IIT’s predictions, as connectivity with V1/V2 was not
sustained. V1/V2 were however sparsely sampled with iEEG in our population, with
only 12 electrodes localized to V1/V2 in contrast to 472 localized in PFC.

Finally, we then moved to fMRI, to evaluate connectivity across the entire cortex
with homogeneous sampling. We computed generalized psychophysiological
interaction (gPPI), defining Fusiform Face Area (FFA) and Lateral Occipital Complex
(LOC) as seed regions per subject based on an anatomically constrained functional
contrast (see methods section) and combining task relevant and irrelevant trials (the
preregistered analysis performed separately on each condition can be found in the
supplemental section 7.1.1. Here, conditions were pulled to increase statistical power.
See supplementary section 12.). FFA showed content selective (face>object stimuli)
connectivity with V1/V2, Inferior Frontal Gyrus (IFG) and Intraparietal Sulcus (IPS),
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consistent with the predictions of both IIT and GNWT (Figure 2.4g). No selective
increases in interareal connectivity between object selective nodes and PFC or V1/V2
was found in fMRI, also when separating task relevant and irrelevant trials (Extended
Data Figure 2.8). To determine whether connectivity to PFC and V1/V2 might be
driven by the task in gPPI, we explored the iEEG data separating trials by the task. We
found task independent, selective DFC connectivity (face>objects) for face selective
electrodes with both IFG and V1/V2 (Figure 2.4h).

The results for prediction #3, considering the preregistered hypotheses and their
pre-approved interpretation, provided no evidence for IIT or GNWT. Neither the
frequency band nor the temporal patterns of the PPC results were consistent with
either theory. Yet, when exploring amplitude-based metrics of connectivity (DFC and
gPPI), we did find support for GNWT predictions, as both in the iEEG and fMRI we
observed connectivity with PFC, further matching the timing (~0.3 s) and spectral
composition (gamma frequency) predicted by GNWT. For IIT, though connectivity
with V1/V2 was present both in the iEEG and fMRI data, with the expected spectral
signature (gamma frequency), it was not sustained throughout the duration of the
stimulus, contrary to IIT’s prediction.
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Figure 2.4: Prediction #3-Interareal communication

a.iEEG electrode coverage used to assess content-selective synchrony for IIT ROIs (top, N, ... .=4) & GNWT ROIs
(bottom, N,,...=21). Electrode coverage varied between ROIs as interareal connectivity was assessed between
electrodes on a per-subject basis. In addition, two example category-selective electrodes are shown (right): one face-
selective, and one object-selective. Error bars depict standard error of the mean.

b.iEEG Pairwise phase consistency (PPC) analysis of task irrelevant trials reveals significant content-selective
synchrony (e.g. faces > objects for face-selective electrodes; objects > faces for object-selective electrodes) in V1/V2
ROISs (top row), but not in PFC ROIs (bottom row).

¢. MEG cortical time series were extracted per participant from cortical parcels in V1/V2 (blue), PFC (green) and in
a fusiform (red) ROIs. Category-selective signals were obtained by creating a category-selective GED filter (i.e.,
contrasting face/object trials against any other stimulus category trials) on the activity extracted from the fusiform
ROL. Face- (bottom left) and object-selective (bottom right) responses averaged across participants are shown at the
bottom. Error bars depict 95% CI.

d. MEG PPC analysis of task irrelevant trials (N=65) reveals significant category-selective synchrony below 25 Hz
for the face-selective GED filter (i.e., faces > objects for face-selective electrodes) in both V1/Vz (top row) and PFC
ROIs (bottom row) and for the object-selective synchrony (objects > faces for object-selective electrodes) in the PFC
ROI only.

e. iIEEG Dynamic functional connectivity (DFC) analysis of task irrelevant trials reveals significant content-selective
synchrony only for object-selective electrodes in V1/V2 (e.g., top-right), but reveals significant content-selective
synchrony for both categories in the PFC ROI (bottom row).

f- MEG DFC analysis of task irrelevant trials (N=65) reveals significant content-selective synchrony below 25 Hz for
the face-selective GED filter in both V1/V2 (top left) and PEC (bottom left), but not for the object-selective GED filter.

g.fMRI gPPI (N=70) on task relevant and task irrelevant trials combined reveals significant content-selective
connectivity when FFA is used as the analysis seed. A cluster-based permutation test was used to evaluate the
statistical significance of the face > object contrast parameter estimates (p < 0.05). Various significant regions
showing task related connectivity with the FFA seed were observed including V1/Vz, right intraparietal sulcus
(IPS), and right inferior frontal gyrus (IFG).

h. Analysis of face-selective DFC synchrony across tasks is shown at the single electrode level in PFC (top) & V1/V2
(bottom) ROIs. Electrodes showing significant synchrony in relevant (orange-ved), irrelevant (purple), or both
relevant & irvelevant (black) task conditions combined are shown (averaged over 70-120 Hz and 0-0.5 s time
window). DFC synchrony was observed in both tasks, but restricted to IFG for the GNWT analysis and V2 regions
for IIT analysis, consistent with f/MRI gPPI analysis shown in panel g.
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Finally, as an additional goal, we used our rich fMRI dataset in a more exploratory
manner to delineate the cortical areas presumably involved in (visual) consciousness
(i.e., ‘putative NCCs’), after ruling out cortical areas that are only responsive to
other, accompanying (but confounding) cognitive processes *. This test, while
being excessively broad and thus not critical for the theories, nonetheless carries
implications for both theories, considering their distinct predictions regarding
the NCC. IIT predicts that the cortical substrate of consciousness should include
posterior areas while agreeing that certain PFC areas should be excluded due to task
confounds. GNWT predicts an involvement of PFC even after ruling out task-based
effects (see methods section for analysis strategy).

The full results of the pNCC analysis are described in the supplementary section 8.1;
here we focus on the PFC given its relevance to the theories. In PFC, the observed
pattern of candidate areas was more spatially restricted than anticipated by the
rather extensive preregistered GNWT ROIs. Specifically, the MFG, IFG and orbital
cortex might participate in consciousness, as predicted by GNWT. Furthermore, the
scant activation patterns found in PFC compared to the widespread deactivations
was surprising, and suggests a reconsideration of the strong focus on activations
(relative to deactivations) when assessing this region’s role in conscious perception.

General Discussion

This adversarial collaboration was aimed at overcoming researchers’ confirmation
biases, breaking theoretical echo chambers °, identifying strengths and weaknesses
of the theories 7 by forcing them to be explicit and committal about their respective
empirical predictions, rigorously testing them on common methodological
grounds >"°, and providing the means for theorists to change their minds given
conflicting results . In doing so, this approach enables progress in the field
by catalyzing our ability to evaluate and arbitrate between current theories of
consciousness. Embracing this spirit, we opted for a discussion in three voices
because even if we provide a stringent test that brought together incompatible
theoretical views, different interpretations of the same evidence still remain due
to how observers differentially weigh evidence. In what follows, the theory-neutral
consortium presents the main challenges our study poses to the theories, based on
the predictions, methods and analysis that were preregistered, and agreed upon with
the adversaries prior to conducting the study and the disclosure of its results. Then,
the adversaries offer their interpretation to the results and future directions. This
process follows the guidelines for structuring adversarial collaborations ™.
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Cogitate consortium

Figure 2.5 provides a detailed summary of the key results, including criteria for
determining if the results support or contradict the theories being tested. This
summary covers both the main findings and those less central to the theory
evaluation. The consortium aimed to rigorously test these theories, adopting a
Lakatos’s sophisticated falsificationist approach to the philosophy of science™*".
As such, challenged predictions are considered more informative than predictions
that are borne out by the data. Predictions and outcomes are weighted differentially
across the three predictions and so are the methodologies deemed pertinent for the
interpretation of the outcome (Extended Table 2.1).

For IIT, the lack of sustained synchronization within posterior cortex represents
the most direct challenge, based on our preregistration. Across several analyses,
with various degrees of sensitivity, we only observed transient synchronization
between category selective and early visual areas. This is incompatible with IIT’s
claim that the state of the neural network, including its activity and connectivity,
specifies the degree and content of consciousness *2. Although this null result could
stem from methodological limitations (e.g., limited iEEG sampling of V1/V2 areas),
our multimodal and highly powered study provided the best conditions so far for
the predicted patterns to be found. We urge IIT proponents to direct future efforts
to evaluate this prediction and to determine its significance and the extent of
this failure.

More broadly, although IIT passed the predefined criteria for the duration prediction
(#2), there was no evidence for a sustained representation of orientation, despite
being a property of the consciously perceived stimuli, which should have accordingly
showed sustained representation ™. This is an informative challenge for IIT, as
orientation decoding was robust across all three data modalities, leaving open the
question of whether and how information about orientation is maintained over time.

Finally, our pNCC analysis suggested that portions of PFC might be important for
consciousness. While the most consistent activation and decodability of content was
found in posterior cortex, IIT must explain the finding that the MFG and the IFG
(for which we also found results in the decoding and synchrony analysis), were
visually responsive and not ruled out as being task-related. This finding is particularly
important to explain in the context of the current experiment where additional
cognitive processing of the task irrelevant stimuli was minimized .
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For GNWT, the most significant challenge based on our preregistered criteria
pertains to its account for the maintenance of a conscious percept over time; and
in particular, the lack of ignition at stimulus offset. In most of our main tests and
control analyses across data modalities (for details, see supplementary sections 5-6),
we failed to reveal an offset response in PFC (both in activation which was a critical
test, and also in reinstatement of decoded content of any type, which was predefined
as non-critical). This result is less likely to stem from sensitivity limitations, since
offset responses were robustly found elsewhere (e.g., visual areas); and in PFC, strong
onset responses were found to the very same stimuli. The lack of ignition at stimulus
offset is especially surprising given the change of conscious experience at the onset
of the blank fixation screen. This clear update to the content of consciousness should
have been represented somehow by the global workspace 7. Thus, as our results do
not support GNWT’s predictions regarding the maintenance of conscious experience,
that aspect of consciousness remains unexplained within the GNWT framework.

Another key challenge for GNWT pertains to representing the contents of experience:
though we found representation of category in PFC irrespective of the task, hereby
demonstrating the sensitivity of our methods, no representation of identity was
found, and representation of orientation was only evident in MEG (without being
able to exclude source leakage effects), although these dimensions were clearly a part
of subjects’ conscious experience of the stimuli. This raises the question of whether
PFC is involved in broadcasting all conscious content as predicted by GNWT * or
only a subset (e.g., abstract concepts and categories, rather than low-level details), in
which case the role of PFC in consciousness might need to be redefined.

Finally, the highly spatially restricted decoding of conscious content in PFC, alongside
the restricted activations and deactivations in PFC observed in the pNCC analysis,
point to a “localized spark” rather than the “wide-spread ignition” predicted by the
theory, further challenging it **.

Prior to the current study, the predictions from IIT and GNWT had mostly been tested
with one data modality at a time ™, leaving interpretational freedom for negative
results, which can easily be attributed to the limitations of a given modality **. Here,
the combination of techniques allowed us to cross-compensate for their respective
limitations to thoroughly and systematically assess the theories’ predictions. This
methodological approach was mutually agreed upon by the theory leaders prior to
data collection and results disclosure as the most powerful and conclusive approach,
making both positive and negative findings more meaningful.
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Although this study was designed around IIT and GNWT, the results may have
implications for other theories of consciousness. For example, GNWT’s prediction
#1 about PFC is shared by some (but not all) higher-order theories of consciousness
that also give a central role for PFC 7. As a result, the challenges to this prediction
challenge not only GNWT but also those higher-order theories. Predictions #2 and #3
about timing and connectivity are more distinctive to GNWT but could also be shared
by other theories in principle. Likewise, IIT’s non-core prediction #1 about posterior
cortex is also shared by many other theories (e.g., recurrent processing theory '),
and its prediction #2 about timing may be shared by some posterior theories of
consciousness, such as the local recurrency theory ¢, Its prediction #3 about
interareal connectivity is more distinctive to IIT (e.g., it is not shared by synchrony
theory ), so the challenge here is more specific as well.

All this highlights that our adversarial collaboration is designed more to challenge
theories than to confirm them. Both theories have some predictions confirmed,
but these predictions are also consistent with other theories, so the successful
predictions cannot serve as evidence for IIT or GNWT specifically. However, the
disconfirmed predictions are certainly challenges to both theories (and to others,
as discussed above). These challenges can be met by altering the theories or their
proposed biological implementation, but such alteration typically comes at some
cost to the theoretical framework, because the relevant features of the theory or the
implementation were motivated by the framework. In this respect, our adversarial
collaboration approach subscribes to the approach advocated by Lakatos 7, a
sophisticated version of Popper's falsificationism ¢, whereby scientific knowledge
advances through a process of conjectures and refutations. When a theory makes an
unsuccessful prediction, the challenged theory can survive by refining its details. But
if unsuccessful predictions continue, the theory can be deemed a degenerate rather
than a progressive research program . This process is expected to be continued by
the results of our second experiment (reported in a future manuscript), alongside
those of a follow-up adversarial collaboration using a comparable experimental
design in animal models (i.e., mice and non-human primates). With time, we hope
that substantial evidence will be gathered, allowing the scientific community to form
an informed judgment about both theories and possibly others (through the open
data). This might be important, as some have proposed a theory-inspired approach
to inferring consciousness in non-responsive populations such as unresponsive
patients, infants, non-human animals and artificial systems 7.

Conceptually, our study focused on the mechanisms by which the content of the
conscious experience of A differs from the experience of B (i.e., category, identity,
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orientation and duration), which addresses how the link between brain activity
and subjective phenomenology changes between distinct conscious experiences. As
such, we departed from the mainstream contrastive method in which the presence
of conscious experience is contrasted with its absence to study the neural differences
between conscious and unconscious processing. Though widely used, the standard
contrastive approach suffers from shortcomings which preclude it from directly
revealing the processes related to consciousness, as it confounds consciousness with
other cognitive processes such as decision-making, reporting, or the formation of
episodic memory traces after a conscious experience >+, Studying the content of
consciousness more directly links phenomenology to brain activity and overcomes
several of the limitations of the contrastive method. Yet, some might argue that in
doing so, we are tracking mere stimulus processing rather than consciousness per
se. Within the framework of this adversarial collaboration, our aim is to challenge
and potentially falsify *7»¢ IIT and GNW, by examining where their predictions
differ, rather than to discover the neural correlates of consciousness. In this context,
what might seem like a weakness — focusing on the presence of fully attended,
consciously experienced stimuli to test the theories' primary positive predictions
and their failures — is actually beneficial. This approach effectively tests if the neural
mechanisms suggested by these theories are indeed necessary for consciousness,
since if they are, they must be found in such clear-cut cases, where the stimuli are
undoubtedly experienced, and the evoked signal is strong (so null results cannot
stem from noisy or weak signals). Therefore, our method provides a rigorous and
principled examination of both IIT and GNWT.

Our study, while comprehensive, is not without its limitations. First, despite our
best efforts to minimize the contribution of task relevance by making some stimulus
features relevant on some trials and irrelevant in others, we cannot rule out some
residual task engagement with respect to category. However, this potential bias is
addressed by our deliberate choice to make features like orientation and duration
always irrelevant to the task. This approach strengthens the test for the theories we are
examining, as any detected effects on these features cannot be attributed to selective
attention driven by task requirements, no matter how minimal. Second, although
we made our best efforts to capture the richness of experience by investigating
multiple dimensions of conscious experience (i.e., category, orientation, identity and
duration), we acknowledge that our efforts are still far from measuring consciousness
in a way that truly captures its apparent phenomenal richness (e.g., an object’s
brightness and hue, its precise shape and location, the highly specific viewpoint
from which an object is perceived, etc.). Future studies will be needed to address this
further. Third, although our study offers superior spatial and temporal resolution
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across the brain by integrating three distinct brain imaging techniques—fMRI, MEG,
and iEEG—it falls short of incorporating single-unit recordings. Such recordings,
typically reserved for a small subset of epilepsy patients and limited to certain brain
areas like the Medial Temporal Lobe, are impractical for directly testing our theories.

Studies in other animal models, including Neuropixels and causal manipulations,
are underway as part of a different adversarial collaboration, and are expected to
complement our findings. Despite the inherent challenges of using animal studies to
probe consciousness (difficulty of measuring consciousness in non-human subjects
and the limited spatial coverage of Neuropixels probes, and overtraining), we see
these two adversarial collaborations as synergistic, providing a stronger test for the
theories than either one alone.

Beyond the direct challenges to the theories, our study raises a number of important
questions for theory testing and theory building, which apply broadly across most
fields, e.g., how to weigh different theory predictions, and how to combine evidence
across predictions, analyses and measures (in our case, fMRI, MEG and iEEG data).
From the outset, we defined an independent set of predictions, setting criteria for
failure to then weigh the results against these predictions. We opted for a lenient
approach with respect to falsificationism, sufficing with some evidence for a
prediction to pass (e.g., for decoding of category and orientation, we deemed a
result in at least one of the tested features sufficient to rule out a failure, instead
of requiring results to be seen across all tested categories and orientations). Yet,
a formal framework that quantitatively integrates evidence by weighing and
quantitatively integrating over passes and failures, accounting for the centrality of
the predictions for the theory, measurement error, and consistency across samples
and measurements is direly needed to enable systematic theory building in the era of
accumulation of results “°.
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Figure 2.5: An overview of theoretical predictions, experimental outcomes and interpretations

On the left, the original predictions made by the IIT (top) and GNWT (bottom) that were preregistered
(see also 7; Figure 2.1). The table describes the key hypotheses (second column, ‘Key hypotheses’) made by the theories
(see also Figure 2.1a), and probed in three different tests analyses (third column, ‘Test’; decoding (prediction #1;
Figure 2.2), activation & RSA (prediction #2; Figure 2.3) and synchrony (prediction #3; Figure 2.4)). Next, we describe
the possible outcomes of each of these analyses, and how they would inform the theoretical predictions (fourth column,

‘Possible outcome and interpretation’). Outcomes that conform with the prediction are presented in a green frame
(i.e., ‘pass’), outcomes that contradict the prediction are presented in a red frame (i.e., fail’). Outcomes in a solid
frame reflect critical predictions for the theories; dotted and grayed frames indicate non-critical predictions for the
theories. Thus, the left side of the table presents the a-priori predictions, expected outcomes and their centrality for the
theory evaluation, prior to conducting the experiment. The right side of the figure presents the actual findings of this
experiment, integrating over the three modalities and multiple tests. We first summarize the key findings with respect
to each prediction (fifth column; ‘Result’). Here, white indicates results that are aligned with the theories’ predictions,

red indicates results that challenge them, the mixture of white/red indicates cases in which the combination of results
yielded a mixture of a pass and a fail with the respective explanation for the failure. Yellow marks cases in which

we considered that the results did not allow a strong interpretation. We integrate over these results to generate the
final conclusion based on the key hypotheses, with the same color coding. For IIT, our conclusion includes a mixture
of a passed prediction (of content-specific complex of neural units in posterior cortex, throughout the persistence of a
percept, independent of the task) and a failure (of maximum of integrated information) and for GNWT, a mixture of
a partly challenged prediction (of an all-or-none threshold and amplification of information updating the content of
consciousness in PFC) and a partly supported one, given the inconclusive result for orientation (of global broadcasting
of information in the PEC). See the main text for how these results might also challenge other theories of consciousness.
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Integrated Information Theory: Melanie Boly, Christof Koch,

Giulio Tononi

The results corroborate IIT’s overall claim that posterior cortical areas are sufficient
for consciousness, and neither the involvement of PFC nor global broadcasting
are necessary. They support preregistered prediction #1, that decoding conscious
contents is maximal from posterior regions but often unsuccessful from PFC, and
prediction #2, that these regions are sustainedly activated while seeing a stimulus
that persists in time. They do not support prediction #3 concerning sustained
synchrony, although this negative finding is quite possibly the result of sparse
electrode coverage (see supplementary section 9). Below we illustrate how these
predictions were motivated by IIT.

Posterior regions are often considered mere ‘information processors’; their
activation, it is claimed, may be necessary but not sufficient for experiencing specific
contents. For example, they may show activations during deep sleep or anesthesia
and for unreported stimuli under contrastive, near-threshold paradigms *. This
seems to warrant the need for additional ingredients, such as ‘global broadcasting’ *
or ‘higher-order monitoring’ by PFC 2.

For IIT, however, posterior regions are sufficient for consciousness as long as they
satisfy the requirements for maximal integrated information. Why this prediction?
Unlike other approaches, IIT infers the essential, physical requirements for the
substrate of consciousness from the essential properties of experience ¥, This
leads to the claim that the quality and quantity of an experience are accounted for
by the ‘cause—effect structure’ specified by a substrate with maximal integrated
information, called the ‘main complex’ #2. We conjectured that posterior cortical
regions should provide an excellent substrate for the main complex owing to their
dense local connections arranged topographically into a hierarchical, divergent-
convergent 3D lattice *?, leading to prediction #1. Nevertheless, by IIT, posterior
regions can only support consciousness if their physiology ensures high integrated
information—which indeed breaks down *** due to bistability when consciousness is
lost in deep sleep and anesthesia 7,

Much of PFC, in contrast, seems to be organized not as a grid but as a patchwork
of segregated columns ', unfavorable for high integrated information. Even so, any
PFC region organized in a grid-like way with dense interconnections with posterior

«

regions may well be part of the main complex. As previously emphasized *, “.we
bear no preconceived enmity to the prefrontal cortex. Indeed, searching for the NCC of specific

aspects of experience...in certain anterior vegions is an important task ahead.” For example,
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parts of IFG might contribute to, say, an abstract/evaluative/actionable experiential
aspect of faces, which could be consistent with some pNCC analysis results. However,
IIT predicts that we would still experience faces (sans aspects contributed by PFC
regions) if PFC were selectively inactivated.

For IIT, all quality is structure: all properties of an experience are accounted for
by properties of the cause-effect structure specified by the main complex. Every
conscious content (face, object, letter, blank screen) is thus a (sub)structure of
integrated information (irreducible cause-effects and their overlaps *); it is neither
a message that is encoded and broadcasted globally >*+¢, nor a distributed activity
pattern, nor a neural process. Indeed, IIT’s research program aims to account for
specific consciousness contents—why space feels extended, time feels flowing, and
phenomenal objects feel like binding general concepts (invariants) with particular
features—all exclusively in terms of their corresponding cause—effect structures ¥
As highlighted in the Introduction, when we see Mona Lisa, we see that it is a face,
with her particular features, at a particular location on the canvas, and we see her
for as long as we look at her. This is why we predicted (prediction #2) that the NCC
in posterior cortex would last for the duration of the percept, notwithstanding
the widespread evidence for neural adaptation and onset/offset neural responses
(probably due to transient excitation/inhibition imbalance), and (prediction #3) that
synchrony would occur (reflecting causal binding) between units in higher and lower
areas, supporting respectively invariant concepts and particular features.

To conclude, moving beyond the contrastive paradigm between seen and unseen
stimuli and beginning to account for how experience feels is one key reason why
the experiments reported in this adversarial collaboration mark an important
development. Another is that they inaugurate a powerful new way of making progress
on a problem often considered beyond the reach of science. The group that carried
out this endeavor did so in a way that was explicit, open, and truly collaborative—in
short, in a way that is paradigmatically scientific.

Global Neuronal Workspace Theory: Stanislas Dehaene

This unprecedented data collection effort brings several new insights relevant to our
theory. Most importantly, the results confirm that PFC exhibits a metastable bout of
activity (“ignition”) for about ~200 ms, in a content-specific manner, even for task
irrelevant stimuli, irrespective of stimulus duration (Figures 2.2b, 2.3f, Supplementary
Figure 2.23), and with a concomitant transient increase in long-distance dynamic
functional connectivity with face- and object-selective posterior areas (Figure 2.4e-h).
Those findings, unpredicted by IIT but predicted by GNWT, support previous findings
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that PFC contains a detailed code for conscious visual contents *¢-5°_ They also
counter previous conclusions that were, in our opinion, too hastily drawn on the basis
of insufficient evidence ®*: with suitably sensitive experiments, content-specific PFC
regions do show a transient ignition even for irrelevant stimuli. While agreeing with
previous results 4515051 the convergence of iEEG, MEG and fMRI in the same task
alleviates concerns associated with a possible mis-reconstruction of MEG sources.
It also resolves a controversy related to the timing of conscious ignition, which was
initially thought to be associated with the P3oo ERP waveform *, but can obviously
arise earlier (~200 ms post-onset) **°. GNWT would further predict that this latency
should vary depending on the strength of both bottom-up accumulating evidence
(e.g., contrast *) and top-down attention/distraction by other tasks #5153,

While some results do challenge GNWT, they do not seem insurmountable given
experimental limitations. First, note that there is a considerable asymmetry in the
specificity of the theories’ predictions. None of the massive mathematical backbone
of IIT, such as the ¢ measure of awareness, was tested in the present experiment.
Instead, what are presented as unique predictions of IIT (posterior visual activation
throughout stimulus duration) are just what any physiologist familiar with the
bottom-up response properties of those regions would predict, since visual neurons
still respond selectively during inattention or general anesthesia **7*¢. Such posterior
stimulus-specific, duration-dependent responses are equally predicted by GNWT,
but attributed to non-conscious processing.

Unfortunately, here, it is impossible to decide which of the activations reflected
conscious versus non-conscious processing, because the experimental design did
not contrast conscious versus non-conscious conditions (fortunately, a second
experiment by the Cogitate consortium will include such a contrast). The present
experiment relied on the seemingly innocuous hypothesis that stimuli were
“indubitably consciously experienced” for their entire duration. However, it is well
known that perfectly visible stimuli, depending on attention orientation, may fail to
be seen (attentional blink, inattentional blindness) 7**® or may become conscious at a
time decoupled from stimulus presentation (psychological refractory period, retro-
cueing) 5*°7%1 Here, it seems likely that subjects briefly gained awareness of all the
images (since they remembered them later), but then reoriented their conscious
thoughts to other topics, without waiting for image offset — and this interpretation
perfectly fits the ignition profile that was found in PFC. It would be surprising
if participants’ consciousness remained tied to each image for its full duration on
every trial of this long experiment. It is also unclear whether participants were ever
aware of stimulus orientation, which was always irrelevant. A new experiment,
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using quantified introspection **, will be needed to assess for how long participants
maintained the visual image in consciousness.

For the same reason, the absence of decodable activation at stimulus offset, while
challenging, may simply indicate that participants never consciously attended to that
event, which was always uninformative and irrelevant. Making stimulus offset more
attractive, for instance by turning it into an occlusion event where an object hides
behind a screen, could yield different results.

For GNWT, the prefrontal code for a conscious mental object is thought to involve a
vector code distributed over millions of neurons which, unlike in posterior regions,
are not clustered but spatially intermingled 2. Thus, we are not surprised that
PFC responses are hard to decode from the macro- or mesoscopic signals measured
by fMRI, MEG, or large intracranial electrodes that pool over tens of thousands of
neurons. Therefore, the present positive results, indicating transient PFC ignition
and decoding of faces and objects, seem to us more important than the null ones,
especially as there is already much single-neuron evidence that PFC contains even
more precise stimulus-specific neural codes 6147145,

Finally, while the theories concern the necessary regions for conscious experience, the
present methods are purely correlational and do not evaluate causality. This limitation
is not unique to the present work, but applies to any brain-imaging experiment.
While applauding the present efforts, we therefore eagerly await the results of other
adversarial collaborations using causal manipulations in animal models.

Conclusion (Cogitate consortium)

At this point, the reader might expect the consortium to draw a final conclusion
regarding the two theories we have evaluated. Instead, we invite readers to form
their own conclusions, considering the relative evidence we presented for each
of the preregistered predictions, the scope of the evidence and the sophisticated
techniques, the role of hindsight bias, and the many challenges in changing people’s
minds. Science is a social enterprise and evidence is interpreted based on prior
beliefs and expectations. The reader is as much a part of this social enterprise as any
of the authors from this consortium. We have aimed to present the evidence, and the
adversaries’ reactions, as straightforwardly and openly as possible. This aligns with
our belief that science needs openness to collectively converge to true explanations of
complex phenomena in nature, such as consciousness.
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Methods

Preregistration and data availability
The full study protocol is available in the preregistration on the OSF webpage,

including: (a) an exhaustive description of the experimental design, (b) the theories’
predictions and agreed upon interpretations of the results, (¢) iEEG, MEG, and fMRI
data acquisition details; (d) preprocessing pipelines; and (e) data analysis procedures.
All data and code will be shared upon publication. Below, the main methods are
concisely summarized. Deviations from the preregistration are noted throughout the
manuscript and summarized in Section 12 of the supplementary materials.

Ethics Statement

The experiment was approved by the institutional ethics committees of each of
the data-collecting labs (see supplementary 10 for details). All volunteers and
patients provided oral and written informed consent before participating in the
study. All study procedures were carried out in accordance with the Declaration of
Helsinki. Epilepsy patients were also informed that clinical care was not affected by
participation in the study.

Participants

Healthy volunteers and patients with pharmaco-resistant focal epilepsy participated
in this study. The datasets reported here consist of: (1) Behaviour, eye tracking
and invasive electroencephalogram (iEEG) data collected at the Comprehensive
Epilepsy Center at New York University (NYU) Langone Health, Brigham and
Women's Hospital, Boston Children’'s Hospital (Harvard), and University of
Wisconsin School of Medicine and Public Health (WU). (2) Behaviour, eye tracking,
magnetoencephalographic (MEG) and electroencephalographic (EEG) data collected
at the Centre for Human Brain Health (CHBH) of the University of Birmingham (UB),
and at the Center for MRI Research of Peking University (PKU). (3) Behaviour, eye
tracking and functional magnetic resonance (fMRI) data collected at Yale Magnetic
Resonance Research Center (MRRC) and at the Donders Centre for Cognitive
Neuroimaging (DCCN), of Radboud University Nijmegen. For both the MEG and fMRI
datasets, a 1/3 of the data that passed quality tests (henceforth, Optimization dataset;
see preregistration for details about quality test criteria) were used to optimize
the analysis methods, which were subsequently added to the preregistration as an
additional amendment. These preregistered analyses were then run on the remaining
2/3 of the data (henceforth, Replication dataset) and constitute the data reported in
the main study. For comparison, results from the optimization phase are reported
in the supplementary 4. This procedure was not used for the iEEG data due to the
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serendipitous nature of the recording and electrode placement, the rarity of this type
of data and the increased difficulty of data collection due to the COVID-19 pandemic.

For the iEEG arm of the project, a total of 34 patients were recruited. Two patients
were excluded due to incomplete data. Demographic, medical and neuropsychological
scores for each patient, when available, are reported in Supplementary Table 2.25.
Three iEEG patients whose behavior fell slightly short of the predefined behavioral
criteria (i.e. hits < 70%, FA > 30%) were nonetheless included given the difficulty to
obtain additional iEEG data (see supplementary section 12). A total of 97 healthy
subjects were included in the MEG sample (mean age 22.79 +3.59 years, 54 females,
all right-handed), 32 of those datasets were included in the optimization phase (mean
age 22.50+3.43 years, 19 females, all right-handed), and 65 in the replication sample
(mean age = 22.93 + 3.66, 35 females, all right-handed). Five additional subjects were
excluded from the MEG dataset: two due to failure to meet predefined behavioral
criteria (i.e., hits < 80%, and/or FA > 20%), two due to excessive noise from sensors,
and one due to incorrect sensor reconstruction. A total of 108 healthy participants
were included in the fMRI sample (mean age 23.28 + 3.46 years, 70 females, 105 right-
handed), 35 of those datasets were included in the optimization sample (mean age
23.26+3.64 years, 21 females, 34 right-handed), and 73 in the replication sample
(mean age =23.29 +3.37, 49 females, 71 right-handed). Twelve additional subjects were
excluded from the fMRI dataset: eight due to motion artifacts, two due to insufficient
coverage, and two due to incomplete data (with respect to these last two subjects, see
supplementary section 12. Deviations from the preregistration document).

Experimental procedure

Experimental design

To test critical predictions of the theories, five experimental manipulations were
included in the experimental design: (1) four stimulus category (faces, objects, letters
and false fonts), (2) twenty stimulus identity (20 different exemplars per stimulus
category), (3) three stimulus orientation (front, left and right view), (4) three stimulus
duration (0.5 s, 1.0 s, 1.5 8), and (5) task relevance (relevant targets, relevant non-
targets, irrelevant).

Stimulus category, stimulus identity and stimulus orientation served to test
predictions about the representation of the content of consciousness in different
brain areas by the theories. In addition, stimulus duration served to test predictions
about the temporal dynamics of sustained conscious percepts and interareal
synchronization between areas. Task relevance served to rule out the effect of task
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demands, as opposed to conscious perception per se, on the observed effects . This
aspect of the experimental design was inspired by Farooqui & Manly *.

Stimuli

Four stimulus categories were used: faces, objects, letters and false fonts. These
stimuli naturally fell into two clearly distinct groups: pictures (faces and objects) and
symbols (letters and false fonts). These natural couplings were aimed at creating a
clear difference between task relevant and task irrelevant stimuli in each trial block
(see Procedure). All stimuli covered a squared aperture at an average visual angle
of 6° by 6°. Face stimuli were created with FaceGen Modeler 3.1; letter and false
fonts stimuli were generated with MAXON CINEMA 4D Studio (RC - R20) 20.059;
object stimuli were taken from the Object Databank . Stimuli were gray-scaled
and equated for luminance and size. To facilitate face individuation, faces had
different hairstyles and belonged to different ethnicities and genders. Equal
proportion of male and female faces were presented. The orientation of the stimuli
was manipulated, such that half of the stimuli from each category had a side view
(30° and -30° horizontal viewing angle, left and right orientation) and the other half
had a front view (0°).

Procedure

Subjects performed a non-speeded target detection task (see supplementary video).
The experiment was divided into runs, with four blocks in each run (see Trial counts
below). On a given block, subjects viewed a sequence of single, supra-threshold,
foveally presented stimuli belonging to one of four stimulus categories and presented
for one of three stimulus durations onto a fixation cross that was present throughout
the experiment. Within each block, half of the stimuli were task relevant and half
task irrelevant. To manipulate task relevance, at the beginning of each block subjects
were instructed to detect the rare occurrences of two target stimulus identities,
one from each relevant category (pictures: face/object or symbols: letter/false-font),
irrespective of their orientation. This was specified by presenting the instruction
“detect face A and object B” or “detect letter C and false-font D”, accompanied by
images for each target (See Figure 2.1d). Targets did not repeat across blocks. Each
run contained two blocks of the Face/Object task and two blocks of the Letter/False-
font task, with block order counterbalanced across runs.

Accordingly, each block contained three different trial types: i) Targets: the two
stimuli being detected (e.g., the specific face and object identities); ii) Task Relevant
Stimuli: all other stimuli from the task relevant categories (e.g., the non-target faces/
objects); and 1iii) Task Irrelevant Stimuli: all stimuli from the two other categories
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(e.g., letters/false fonts). An advantage of this design is that the three trial types
enabled a differentiation of neural responses related to task goal, task relevance, and
simply consciously seeing a stimulus.

Stimuli were presented for one of three durations (0.5 s, 1.0 s or 1.5 s), followed by a
blank period of a variable duration to complete an overall trial length fixed at 2.0 s.
For the MEG and iEEG version, random jitter was added at the end of each trial (mean
inter-trial interval of 0.4 s jittered 0.2-2.0 s, truncated exponential distribution) to
avoid periodic presentation of the stimuli. The mean trial length was 2.4 s. For the
fMRI protocol, timing was adjusted as follows: the random jitter between trials was
increased (mean inter-trial interval of 3 s, jittered 2.5-10 s, with truncated exponential
distribution), with each trial lasting approximately 5.5 s. This modification helped
avoid non-linearities in BOLD signal which may impact fMRI decoding **. Second, to
increase detection efficacy for amplitude-based analyses, three additional baseline
periods (blank screen) of 12 s each were included per run (total = 24). The identity
of the stimuli was randomized with the constraint that they appeared equally across
durations and tasks conditions.

Subjects were further instructed to maintain central fixation on a black circle
with a white cross and another black circle in the middle throughout each trial
(see Figure 2.1g).

Trial counts

The MEG study consisted of 10 runs containing 4 blocks each with 34-38 trials per
block, 32 non-targets (8 per category) and 2-6 targets, for a total of 1,440 trials.
The same design was used for iEEG, but with half the runs (5 runs total), resulting
in a total of 720 trials. For fMRI, there were 8 runs containing 4 blocks each with
17-19 trials per block, 16 non-targets (4 per category) and 1-3 targets, for a total of
576 trials. Rest breaks between runs and blocks were included.

Data Acquisition

Behavioral data acquisition

The task was run on Matlab (PKU: R2018b; DCCN, UB and Yale: R2019b; Harvard:
R2020b; NYU: R2020a, WU: 2021a) using Psychtoolbox v.3 . The iEEG version of the
task was run on a Dell Precision 5540 laptop, with a 15.6" Ultrasharp screen at NYU
and Harvard and on a Dell D29M PC with an Acer 19.1" screen in WU. Participants
responded using an 8-button response box (Millikey LH-8; response hand(s) varied
based on the setting in the patient’s room). The MEG version was run on a custom PC
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at UB and a Dell XPS desktop PC on PKU. Stimuli were displayed on a screen placed
in front of the subjects with a PROPixx DLP LED projector (VPixx Technologies Inc.).
Subjects responded with both hands using two 5-button response boxes (NAtA or
SINORAD). The fMRI version was run on an MSI laptop at Yale and a Dell Desktop
PC at DCCN. In DCCN, stimuli were presented on an MRI compatible Cambridge
Research Systems BOLD screen 32” IPS LCD monitor, and in Yale they were presented
on a Psychology Software Tools Hyperion projection system to project stimuli on
the mirror fixed to the head coil. Subjects responded with their right hand using a
2x2. Current Designs response box at Yale and a 1x4 Current Designs response box
at DCCN.

Eye tracking data acquisition

For the iEEG setup, eye tracking and pupillometry data were collected using a
EyeLink 1000 Plus in remote mode, sampled monocularly at soo Hz (from the left
eye at WU, and depending on the setup at Harvard), or on a Tobii-4C eye-tracker,
sampled binocularly at 90 Hz (NYU). The MEG and fMRI labs used the MEG and fMRI
compatible EyeLink 1000 Plus Eye-tracker system (SR Research Ltd., Ottawa, Canada)
to collect data at 1000 Hz. For MEG, eye tracking data were acquired binocularly. For
fMRI, data were acquired monocularly from either the left or the right eye, in DCCN
and Yale, respectively. For all recordings, a nine-point calibration was performed
(besides Harvard, where thirteen-point calibration was used) at the beginning of the
experiment, and recalibrated as needed at the beginning of each block/run.

iEEG data acquisition

Brain activity was recorded with a combination of intracranially subdural
platinum-iridium electrodes embedded in SILASTIC sheets (2.3 mm diameter
contacts, Ad-Tech Medical Instrument and PMT Corporation) and/or depth
stereo-electroencephalographic platinum-iridium electrodes (PMT Corporation;
0.8-mm diameter, 2.0-mm length cylinders; separated from adjacent contacts by
1.5 to 2.43 mm), or Behnke-Fried depth stereo-electroencephalographic platinum-
iridium electrodes (Ad-Tech Medical, BFO8R-SP21X-0C2, 1.28 mm in diameter,
1.57 mm in length, 3 to 5.5 mm spacing). Electrodes were arranged as grid arrays
(either 8 x 8 with 10 mm center-to-center spacing, 8 x 16 contacts with 3 mm
spacing, or hybrid macro/micro 8 x 8 contacts with 10 mm spacing and 64 integrated
microcontacts with 5 mm spacing), linear strips (1 x 8/12 contacts), depth electrodes
(1 x 8/12 contacts), or a combination thereof. Recordings from grid, strip and depth
electrode arrays were done using a Natus Quantum amplifier (Pleasonton, CA) or
a Neuralynx Atlas amplifier (Bozeman, MT). A total of 4057 electrodes (892 grids,
346 strips, 2819 depths) were implanted across 32 patients with drug-resistant
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focal epilepsy undergoing clinically motivated invasive monitoring. 3512 electrodes
(780 grids, 307 strips, 2425 depths) that were unaffected by epileptic activity, artifacts,
or electrical noise were used in subsequent analyses. To determine the electrode
localization for each patient, a post-operative computed tomography scan and a pre-
operative T1 MRI were acquired and co-registered.

MEG data acquisition

MEG was acquired using a 306-sensor TRIUX MEGIN system, comprising 204 planar
gradiometers and 102 magnetometers in a helmet-shaped array. The MEG gantry was
positioned at 68 degrees for optimal coverage of frontal and posterior brain areas.
Simultaneous EEG was recorded using an integrated EEG system and a 64-channel
electrode cap (EEG data is not reported here, but is included in the shared dataset).
During acquisition, MEG and EEG data were bandpass filtered (0.01 and 330 Hz)
and sampled at 1000 Hz. The location of the head fiducials, the shape of the head,
the positions of the 64 EEG electrodes and the head position indicator (HPI) coil
locations relative to anatomical landmarks were collected with a 3-D digitizer system
(Polhemus Isotrack). ECG was recorded with a set of bipolar electrodes placed on the
subject’s chest. Two sets of bipolar electrodes were placed around the eyes (two at the
outer canthi of the right/left eyes and two above/below the center of the right eye)
to record eye movements and blinks (EOG). Ground and reference electrodes were
placed on the back of the neck and on the right cheek, respectively. Subjects’ head
position on the MEG system was measured at the beginning and end of each run, and
also before and after each resting period, using four HPI coils placed on the EEG cap,
next to the left and right mastoids and over left and right frontal areas.

Anatomical MRI data acquisition

For source localization of the MEG data with individual realistic head modeling, a
high resolution T1-weighted (Tiw) MRI volume (3T Siemens MRI Prisma scanner)
was acquired per subject. Anatomical scans were acquired either with a 32-channel
coil (TR/TE = 2000/2.03ms; TI = 880 ms; 8° flip angle; FOV = 256%x256x208 mm;
208 slices; 1 mm isotropic voxels, UB) or a 64-channel coil (TR/TE = 2530/2.98ms;
TI = 1100 ms; 7° flip angle; FOV = 224%256*192mm, 192 slice, 0.5%0.5*1mm voxels,
PKU). The FreeSurfer standard template was used (fsaverage) for participants lacking
an anatomical scan (N=5).

fMRI data acquisition

MRI data were acquired using a 32-channel head coil on a 3T Prisma scanner. A session
included high-resolution anatomical Tiw MPRAGE images (GRAPPA acceleration
factor = 2, TR/TE = 2300/3.03 ms, 8° flip angle, 192 slices, 1 mm isotropic voxels), and a
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whole-brain T2*-weighted multiband-4 sequence (TR/TE =1500/39.6 ms, 75° flip angle,
68 slices, voxel size 2 mm isotropic, A/P phase encoding direction, FOV = 210 mm,
BW = 2090 Hz/Px). A single band reference image was acquired before each run. To
correct for susceptibility distortions, additional scans using the same T2*-weighted
sequence, but with inverted phase encoding direction (inverted RO/PE polarity) were
collected while the subject was resting at multiple points throughout the experiment.

Preprocessing and analysis details

For readability, we first detail the preprocessing protocols for each of the modalities
(iEEG, MEG, and fMRI) separately. Then, we describe the different analyses,
combining information across the modalities, while noting any differences
between them.

iEEG preprocessing

Data were converted to BIDS *” and preprocessed using MNE-Python version 0.24 ',
and custom-written functions in Python and Matlab. Preprocessing steps included
downsampling to 512 Hz, detrending, bad channel rejection, line noise and harmonic
removal, and re-referencing. Electrodes were re-referenced to a Laplacian scheme '
while bipolar referencing was used for electrodes at the edge of a strip, grid or
SEEG and the signal was localized at the midpoint (Euclidean distance) between the
two electrodes. Electrodes with no direct neighbors were discarded. Seizure onset
zone electrodes, those localized outside the brain, and/or containing no signal or
high amplitude noise level were discarded. Line noise and harmonics were removed
using a one pass, zero-phase non-causal band-stop FIR filter.

The high gamma power (HG, 70-150 Hz) was obtained by bandpass filtering the raw
signal in 8 successive 10 Hz wide frequency bands, computing the envelope using a
standard Hilbert transform, and normalizing it (dividing) by the mean power per
frequency band across the entire recording. To produce a single HG envelope time-
series, all frequency bands were averaged together °. Most analyses focused on the
HG power as it closely correlated with neural spiking activity ** and with the BOLD
signal 2. To obtain the Event Related Potentials (ERPs), the raw signal was low pass
filtered at 30 Hz with a one pass, zero-phase non causal low pass FIR filter. Epochs
were segmented between 1 s pre-stimulus until 2.5 s post-stimulus of interest.

Surface reconstruction and electrode localization

Electrode positions were determined based on a computed tomography
scan coregistered with a pre-implant T1 weighted MRI. A three-dimensional
reconstruction of each patient’s brain was computed wusing FreeSurfer
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(http://surfer.nmr.mgh.harvard.edu). For visualization, the individual subject’s
electrode positions were converted to Montreal Neurological Institute (MNI)152
space. As each theory specified a set of anatomical regions of interest (ROIs), after
electrode localization, electrodes were labeled according to the Freesurfer based
Destrieux atlas segmentation 7> and/or Wang atlas segmentation 4.

Identification of task responsive channels

To identify task responsive electrodes, we computed the Area Under the Curve (AUC)
for the baseline (-0.3-0 s) and the stimulus-evoked period (0.05-0.35s) separately for
the task relevant and irrelevant conditions, and compared them per electrode using
a Wilcoxon sign-rank test, corrected for False Discovery Rate (FDR ). A Bayesian
t-test 7® was used to quantify evidence for non-responsiveness.

Identification of category selective channels

To determine category selectivity for faces, objects, letters and false fonts on the HG,
we followed the method of Kadipasaoglu and colleagues 7. Per category, we computer
ad’ (AUC, 0.05 -0.4 s) comparing the activation between the category-of-interest (ul.)
and each of the other categories (u), normalized by the standard deviation of
each category:

1N
u — =YV,
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A permutation test (10,000 permutations) was used to evaluate significance. d’ was

d =

computed for the task relevant and irrelevant conditions, separately. An electrode
was considered selective if it showed selectivity on both tasks.

Multivariate analysis electrodes combination

Due to the sparse and highly variable coverage of iEEG data, all collected electrodes
were combined into a "super subject” multivariate analyses (RSA and decoding). To
create a single trial matrix for the super subject, we equated the trial matrices of all
our subjects by subsampling to the lowest number of trials in the relevant conditions.
Subjects that did not complete the full experiment were discarded (N=3), resulting in
a total of 29 subjects with 583 electrodes in posterior and 576 electrodes in prefrontal
ROIs, respectively. In the case of analyses on stimuli identities, stimuli that were
presented less than three times to any of the participants across intermediate and long
trials in the task relevant and irrelevant trials were discarded. We then subsampled
the trials for each identity to three trials per participant. The subsampling procedure
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was repeated 100 times to avoid random fluctuation induced by the subsampling. The
analysis was computed for each repetition and average across repetitions.

MEG preprocessing

The MEG data were converted to BIDS * using MNE-BIDS ", and preprocessed
following the FLUX Pipeline *° in MNE-Python vo0.24.0 **. Preprocessing steps
included MEG sensor reconstruction using a semi-automatic detection algorithm
and Signal-Space Separation (SSS) ™' to reduce environmental artifacts. FastICA *
was used to detect and remove cardiac and ocular components from the data for each
subject (M=2.90 components, SD=0.92). Prior to ICA, data were segmented, and
segments containing muscle artifacts were removed. After preprocessing, data were
epoched into a 3.5 s segment (1 s pre-stimulus to 2.5 s post-stimulus onset). Trials
where gradiometers values exceeded 5000 fT/cm, magnetometers exceeded 5000 {T,
and/or contained muscle artifacts were rejected from the MEG dataset. Finally, to be
included in the analyses, participants should have a minimum of 30 clean trials per
condition. No participants were excluded because of not meeting this criterion.

Source modeling

MEG source modeling was performed using the dynamic statistical parametric
mapping (dSPM) method ™, based on depth-weighted minimum-norm estimates
(MNE %) on epoched and baseline (-0.5 s to 0 s prior to stimulus onset) corrected
data. To build a forward model, the MRI images were manually aligned to the
digitized head shape. A single shell Boundary Elements Model (BEM) was constructed
in MNE-Python based on the inner skull surface derived from FreeSurfer ">, to
create a volumetric forward model (s mm grid) covering the full brain volume. The
lead field matrix was then calculated according to the head-position with respect to
the MEG sensor array. A noise covariance matrix for the baseline and a covariance
matrix for the active time window were calculated and the combined (i.e., sum)
covariance matrix was used with the forward model to create a common spatial filter.
Data were spatially pre-whitened using the covariance matrix from the baseline
interval to combine gradiometer and magnetometer data *.

fMRI Preprocessing

Source DICOM data were converted to BIDS using BIDScoin v3.6.3 **’. This includes
converting DICOM data to NIfTI using dem2niix ** and creating event files using
custom Python codes. BIDS compliance of the resulting dataset was controlled using
BIDS-Validator. Subsequently, MRI data quality control was performed using MRIQC*
and custom scripts for data rejection. All (ffMRI data were preprocessed using
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fMRIPrep 20.2.3 *°, based on Nipype 1.6.1". For further details on the fMRIprep
pipeline, see preregistration.

Analysis-specific functional preprocessing

Additional, analysis-specific, fMRI data preprocessing was performed using FSL 6.0.2
(FMRIB Software Library; Oxford, UK *?), Statistical Parametric Mapping (SPM 12)
software 3, and custom Python scripts after the above outlined general preprocessing.
Functional data for univariate data analyses were spatially smoothed (Gaussian
kernel with full-width at half-maximum of 5 mm), grand mean scaled, and temporal
high-pass filtered (128 s). No spatial smoothing was applied for multivariate analyses.

Contrast of parameter estimates

We modeled BOLD signal responses to the experimental variables by fitting voxel-
wise General Linear Model (GLM) to the data of each run using FSL FEAT. The
following regressors were modeled in an event-related approach, with event duration
corresponding to the stimulus duration (i.e., 0.5, 1.0, 1.5 s), and convolved with a
double gamma hemodynamic response function: 12 regressors of interest (Targets,
task relevant and task irrelevant stimuli per stimulus category i.e., faces, objects,
letters, false fonts; and a regressors of no interest i.e., target screen display). We
included the first-order temporal derivatives of the regressors of interest, and a set
of nuisance regressors: 24 motion regressors (FSLs standard + extended set of motion
parameters) plus a CSF and a WM tissue regressor.

Each of the 12 regressors of interest was contrasted against an implicit baseline
(used in the putative NCC analysis). Additionally, we obtained contrast of parameter
estimates for ‘relevant faces vs. relevant objects’, ‘relevant letters vs. relevant false
fonts’, ‘irrelevant faces vs. irrelevant objects’, ‘irrelevant letters vs. irrelevant false
fonts’ (used for the definition of decoding ROIs), ‘relevant and irrelevant faces vs.
relevant and irrelevant objects’ and ‘all stimuli vs. baseline’ (used for the definition of
seeds for the generalized psychophysiological interaction analysis).

Data were averaged across runs per subject using FSUs fixed effects analysis and
subsequently averaged across participants using FSL's FLAME1 mixed effect analysis.
Gaussian random-field cluster thresholding was used to correct for multiple
comparisons, using the default settings of FSL, with a cluster formation threshold of
one-sided p < 0.001 (z > 3.1,) and a cluster significance threshold of p < 0.05.
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Anatomical Regions-of-interest (ROIs)

ROIs were defined a priori in consultation with the adversarial theories. They were
determined per subject based on the Destrieux atlas " including both hemispheres,
and then resampled to standard MNI space (see Supplementary Table 2.26). For
the connectivity analysis, areas V1/V2 (combining dorsal and ventral) were defined
based on the Wang cortical parcellation 7*. For details on the process of selecting
the ROIs and the justification of the ROIs selection in the context of this study, see
supplemental section 11.

Behavioral analyses

Log-linear corrected d’prime ™, false alarms (FA) and reaction times (RT) were
computed per category and stimulus duration, separately (FAs were also calculated
per task relevance, without duration), and per modality GEEG, MEG, fMRI). These
measures were compared with Linear/Logistic mixed models, where appropriate.
For the former, we report ANOVA omnibus F tests, and for the latter, omnibus x?
test from an analysis of deviance. We approximated degrees of freedom using the
Satterthwaite method ™. Pairwise t-tests following significant interactions were
Bonferroni corrected. To estimate Bayesian Information Criterion (BIC) differences
between the original and null logistic models, we used the p-values and sample
size (*%; p_to_bf package in R).

Eye-tracking analyses

For Eyelink, gaze and pupil data were segmented, and trials with missing data were
excluded. Blinks were detected using the Hershman algorithm 7, and removed with
200 ms padding . The Eyelink standard parser algorithm was used for saccade and
fixation detection. Saccades were further corroborated using the Engbert & Kliegl
algorithm. Fixations were baseline corrected (-0.25 s to 0 s). Mean fixation distance,
mean blink rate, mean saccade amplitude and mean pupil size were compared in
a Linear Mixed Model (LMM) with category and task relevance as fixed effects and
subject and item as random effects. Separate analyses were carried out on the first
0.5 s after stimulus onset including all trials; and on the 1.5 s trials including time
window (0-0.5 s, 0.5-1.0 8, 1.0-1.5 8) as fixed effects. BIC was used to test the models
against the null hypothesis models. For Tobii, gaze coordinate data was segmented,
missing data were excluded, and coordinates were baseline corrected to depict
heatmaps of patients’ gaze. Notably, the coordinate data was not added to the LMMs
due to its poorer quality with respect to the EyeLink data.
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Decoding analysis

All decoding analyses were performed using a linear Support Vector Machine (SVM,
scikit learn, https://scikit-learn.org/) classifier. Below we explain how this was done
for each one of the predictions.

iEEG Decoding was done on the HG response, averaged over non-overlapping
windows of 0.02 s separately for electrodes located in the GNWT and IIT ROIs.
The top 200 electrodes (selectKbest *°), as determined by F-test within a given
set of electrodes from the theory ROIs, were used as features for the classifier.
200 features were selected to provide a balance between model optimization
(e.g., feature selection) and subject representation (e.g., electrodes/features coming
from multiple subjects). Statistical significance of decoding performance was
assessed via permutation test, randomly permuting the sample labels and repeating
the decoding analysis 1000 times, corrected for multiple comparisons using a
cluster-based correction (cluster mass inference with cluster forming threshold at
p < 0.05 *2%9) Algo, to assess the decoding accuracy within unique ROIs (e.g.,
S_temporal_sup of the Destrieux atlas), separate classifiers were trained using all
electrodes in a given parcel. Each classifier was fitted using all electrodes in a parcel
and time window (GNWT: 0.3-0.5 s, IIT: 0.3-1.5 ) as features, resulting in a single
accuracy value per parcel. SelectKbest (200 features iEEG) feature selection and 5-fold
cross-validation with 3 repetitions was used. To assess the statistical significance of
the decoding accuracy within unique ROIs (so only one accuracy score is obtained
per ROI), p-values obtained via permutation tests were corrected for multiple
comparisons across all ROIs using FDR correction (q < 0.05 '7%).

MEG Decoding was done on bandpass filtered (1-40 Hz) and downsampled
(100 Hz) data. The reconstructed source-level MEG data within a subset of the
predefined anatomical ROIs (GNWT: 'G_and_S_cingul-Ant',G_and_S_cingul-Mid-
Ant', 'G_and_S_cingul-Mid-Post', 'G_front_middle','S_front_inf", 'S_front_sup/,
IIT: 'G_cuneus', 'G_oc-temp_lat-fusifor', 'G_oc-temp_med-Lingual', Pole_occipital’,
'S_calcarine','S_oc_sup_and_transversal’, as they show high response to the stimulus
on the optimization dataset) were extracted for further analysis (500 vertices and
800 vertices per hemisphere for each of the anatomical ROI defined by the theories).
We applied temporal smoothing (0.05 s window, o.01 sliding window), computed
pseudotrials >, normalized the data, and selected the top 30 features within a given
ROI as features for the different classifiers. A group-level one-sample t-test per
time point was performed on the decoding accuracy results, corrected for multiple
comparisons using a cluster-based correction >°.
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The overall decoding strategy for fMRI was similar to that used on the iEEG and MEG
data, yet with some differences. A Multi-Variate Pattern Analysis (MVPA) approach
was used on the pattern of BOLD activity over voxels. A non-spatially-smoothed
parameter estimate map was obtained by fitting a GLM per event with that event as
the regressor of interest and all the other remaining events as one regressor of no
interest *°¢ as implemented in NiBetaSeries 0.6.0 package. The model also included
the 24 nuisance regressors described in the fMRI preprocessing section.

Decoding was performed using a whole-brain approach and an ROI-based approach.
The whole-brain analysis was performed using a searchlight approach with 4 mm
radius. For ROI-based decoding, decoding ROIs were defined based on functional
fMRI contrasts (see fMRI preprocessing section) and constrained with pre-defined
anatomical ROIs (see Extended Data Table 2.2: Anatomical Regions-of-interest
(ROIs)). One-sample permutation test was used to determine if decoding significantly
exceeds chance level within each ROI. FDR was used to correct for multiple
comparisons across ROIs. For whole-brain decoding, a cluster-based permutation
test was used to evaluate the decoding statistical significance across subjects (p <
0.05). Additionally, stimulus vs. baseline searchlight decoding was performed using
leave-one-run out cross validation and the resultant decoding accuracy maps were
used as input for the multivariate putative NCC analysis (see below). To perform
stimulus vs. baseline decoding, we subsampled the stimuli trials to a 2:1 ratio with
respect to baseline. The SVM cost function was weighted by the number of trials from
each class.

Decoding schemes for the different predictions

To test GNWT and IIT decoding predictions, stimulus category (faces vs. objects and
letters vs. false fonts) was decoded separately for the task relevant and task irrelevant
conditions (within-task category decoding) while orientation (front view vs. left view
vs. right view) was decoded on the combined data from the two task conditions. In
addition, cross-task category decoding from task relevant to task irrelevant condition
and vice versa was performed to test generalization by training classifiers on
one condition and testing on the other condition. Both within-task category and
orientation decoding were performed in a leave-one-run-out cross validation scheme
for fMRI and in an k-fold cross validation scheme for MEG and iEEG.

For category decoding, trials from each task condition (i.e., task relevant, irrelevant)
were extracted for each category comparison of interest: 160 face/160 objects
classification, 160 letters/160 false fonts classification within each task relevance
condition for MEG, and half the trials for iEEG. For fMRI, there were 64 trials for
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each category in each task relevance condition. For orientation decoding, task relevant
and task irrelevant trials were collapsed within category to increase Signal-to-Noise
Ratio (SNR), resulting in 160 Front, 80 Left, and 8o Right trials per category for MEG,
and half these numbers for iEEG. For fMRI, there were 64 Front, and 32 Left and

Right trials per category. Decoding was evaluated using accuracy measures, tested
against 50% chance level for category decoding (binary classification) and against
33% chance level for orientation decoding (3-class classification). For orientation
decoding, balanced accuracy was used due to the unbalanced number of trials for the
different orientations. The SVM cost function was weighted by the number of trials
per class to reduce bias to the class with the highest number.

For within-task decoding (e.g., classification of categories across time), a classifier at
each time-point was trained and tested separately using a 5-fold cross-validation
(with 3 separate repeats of cross-validation). For cross-task decoding (task relevant
-> irrelevant & task irrelevant -> relevant), each SVM model was trained on one task
(e.g., faces/objects in the task relevant condition) and tested on the second task (e.g.,
faces/objects in the task irrelevant one). As cross-decoding in iEEG data is performed
across all pooled electrodes, an additional cross-validation step was performed on
this modality data to provide a confidence metric (e.g., confidence intervals) using
a 5-fold cross-validation with 3 repetitions (e.g. train on 80% of task 1, and test on
held-out 20% of task 2).

Within-task temporal generalization was performed by training a classifier at each
time-point (using selectKbest feature selection) and testing its performance across
all time-points using the same set of selected features and 3 repetitions of 5-fold
cross-validation. To generalize from one task to another across all time-points,
cross-temporal generalization was used: a classifier was trained at each time-point
in task 1 (e.g., task relevant) using selectKbest feature selection, and tested across all
time-points in task 2 (e.g., task irrelevant) using the same set of selected features.
Cross-validation was performed in the same fashion as in cross-decoding.

Additional decoding analyses were performed on all trials aligned to the stimulus
onset (e.g. -0.2-2 s relative to stimulus onset), and stimulus offset (-0.5-0.5 s around
stimulus offset). For the latter analysis, all trials from different durations were
aligned to the stimulus offset.

To assess the specific IIT prediction that including prefrontal regions along with
posterior regions to the decoding of categories will not significantly affect decoding
accuracy, we performed two additional decoding analyses in which the decoding
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performance of electrodes from the IIT region were compared with the decoding
performance when electrodes from both the posterior + PFC ROIs are included. The
PFC ROI included all PFC ROIs, except for inferior frontal sulcus, as it belongs to
the IIT extended ROIs. Posterior ROI included all IIT ROIs shown in Extended Data
Table 2.2. The first analysis compared the decoding accuracy for a model including all
electrodes from posterior regions to a separate model in which electrodes (features)
from posterior & PFC regions were combined (e.g., feature combination). In the
second analysis, the decoding accuracy of the model including all electrodes from
posterior regions was compared to a combined posterior + PFC model, in which
two separate classifiers were trained and calibrated on posterior & PFC regions
separately using isotonic calibration >, and posterior probabilities from each
classifier were combined using a softmax normalization 2°. Training and testing of
the individual models followed all previously described cross-validation procedures
and model comparison was performed using a variance-corrected paired t-test >’
and complemented with Bayesian analysis. Following Benavoli and colleagues ¢, the
prior distribution of the mean difference in decoding scores between two classifier
models was modeled as a Normal-gamma distribution conjugate to a normal
likelihood, and the posterior distribution was obtained as a normal distribution. This
posterior distribution was utilized to calculate the probability of one classification
model being better than, worse than, or equivalent to the other model. As this
estimation approach is applied using resampled datasets (e.g., using 5-fold cross-
validation), the performance of the model becomes dependent on the folds, and thus
a variance corrected t-distribution was used *.

We also tested this prediction on the fMRI data. To select features to be used for both
analyses, the face vs. object contrast for each subject was masked by a predefined
anatomical posterior ROIs as well as a PFC anatomical ROIs, defined the same
way as described above. Within each of the two ROIs, the 150 voxels that are most
selective to each of the to-be-decoded stimuli were defined as the decoding ROIs
(300 voxels total) for each subject. The first analysis compared the decoding
accuracies for a model that included 300 voxels from the posterior ROIs as features
to another model that included 600 voxels (300 features from each ROI). In the
second analysis, two separate models were constructed, calibrated, and combined
as described above. For the two analyses, model comparison was performed
using a group-level one-sample permutation test to determine if accuracies
obtained by combining posterior and PFC ROIs are significantly higher than the
accuracies obtained based on posterior ROIs only. FDR was used to correct for
multiple comparisons.



An adversarial collaboration to critically evalutate theories of consciousness

Duration analysis

Neural responses were extracted from three windows of interest (Wol) (0.8-1.0 s,
1.3-1.5 8, 1.8 -2.0 s) and compared using LMM. Four theory agnostic models were
fitted: a null model, a duration model (3 durations), a Wol model, and a duration
and Wol model. Two theory model were fitted: the GNWT model predicts activation
(ignition) following stimulus offset (0.3-0.5 s) independent of duration, with virtually
no response in between. The IIT model predicts sustained activation for the duration
of the stimulus returning to baseline after stimulus offset. Both theoretical models
were complemented with an interaction term between category (faces, objects, letters
and false fonts) and the theories’ predictors, to account for regions showing selective
responses to categories. Bayesian Integration Criterion (BIC) was used to define the
winning model.

Models for iEEG were fitted per electrode on the predefined ROIs, using the HG
(AUQ), alpha (8-13 Hz, obtained through Morlet wavelets, f=8-13 Hz, in 1 Hz steps;
f/2 cycles, AUC), and ERPs (peak to peak) as signal, separately for task relevant and
irrelevant condition.

MEG models were fitted to source data on the predefined ROIs, using the gamma
(60-90 Hz) and alpha band (8-13 Hz) as signal, separately for task relevant and
irrelevant conditions. Time-frequency analyses were performed on source-data
using Morlet wavelets (f=8-13 Hz, in 1 Hz steps; f/2 cycles; f=60-90 Hz, in 2 Hz steps,
f/4 cycles), and were baseline corrected. Spectral activity was computed for each
vertex, baseline corrected and then averaged across trials within each parcel included
in the ROIs, yielding a unique time-course per ROI parcel. In addition, a single source
time-course capturing the entire prefrontal ROI and the posterior ROI was computed
by averaging the spectral activity within an ROI. Models were fitted on each parcel
and ROI, as defined by the theories.

Representational Similarity Analysis (RSA)

To examine how the neural representations evolved over time in response to the
different stimulus properties (i.e., category, orientation and identity representation),
we performed cross-temporal RSA on source level MEG data and iEEG HG power
within each of the theory-defined ROIs, using all trials (see supplementary section 12).
Specifically, at each set of data points, we computed a Representational Dissimilarity
Matrix (RDM) by calculating the correlation distance (1- Pearson’s r, Fisher corrected)
between all pairs of stimuli (the preregistration document described a different
method which was however updated to optimize trial numbers, see supplementary
section 12 for a justification). Next, to quantify the representational space occupied
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by one class vs. another, we computed the average within-class distances vs. the
average between-class distances. This analysis was performed in a cross-temporal
manner, in which RDMs were computed between all stimuli at time point t1 and the
corresponding set of stimuli at time points t1,2,...0.

Long trials (1.5 s) were used to investigate category and orientation representation.
Since specific identities were repeated a limited number of times per duration, both
intermediate (1.0) and long (1.5 secs) trials were combined and equated in duration
by cropping the 1-1.5s time interval for long trials. This was done to allow for the
analysis of at least three (3) presentations of the same identity.

To evaluate the theoretical predictions about when significant content representation
should occur, we subsampled the observed cross-temporal representational matrices
in four time windows (0.3-0.5, 0.8-1.0, 1.3-1.5, 1.8-2.0 s). The subsampled matrices
were correlated to the model matrices predicted by GNWT and IIT (see Figure 2.1a,
right panel) using Kendall’s Tau correlation. If the correlation was significant
(see below) for at least one of the predicted matrices, we computed the difference
between the transformed correlation () to each theory; and compared this difference
against a random distribution to obtain a p-value. If the correlation with the theory
predicted pattern in the theory ROI was significantly higher than the other model,
we considered the theory prediction to be fulfilled.

To generate a null distribution of cross-temporal RSA surrogate matrices, we

repeated the procedure outlined above 1024 times, randomly shuffling the labels.
Next, the observed RSA matrix was z-scored using the null distribution as:

Obsi,j - lusurri,j

Zi,j =
O-S‘U,T‘r‘i,j

Where is the observed within-vs.-between class difference at time points i and j,
and,and are the mean and standard deviation of the surrogate representational
similarity matrix at time pointsiandj, respectively. Cluster based permutation tests >*,
z-score threshold of z = 1.5 for clustering, were used to evaluate significance. RSA
surrogates were also used to assess the significance of the correlation between the
observed matrices and the theories’ predicted matrices. First, a null distribution
of possible correlations was generated for each of the theories by correlating each
of the surrogate matrices to each of the theory predicted matrices. Next, a p-value
was obtained for each theory predicted matrix, by locating its observed correlation
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within the null correlation distribution. The same procedure was used to assess
the significance of the difference in correlation to IIT and GNWT matrices (e.g., each
of the surrogate matrices was correlated to each of the theory predicted
matrices and the difference between the two was computed). P-values were FDR
corrected (q < 0.05) .

For iEEG, the HG power per electrode within the predefined anatomical ROI was
averaged in 0.02s non-overlapping windows. Electrodes were used as features for
the RDM. The data were vectorized across all electrodes within a ROI (e.g., samples
x significant electrodes) to compute the RDMs. 576 and 583 electrodes entered this
analysis for the prefrontal and posterior ROI, respectively. The resultant RDM was
subjected to a principal component analysis and the first two dimensions were plotted
against each other to produce a 2-dimensional projection of dissimilarity scores
across all pairs for each of the 100 subsampling repetitions. The PCA components
were aligned across repetitions using Procrustes alignment and averaged together
for visualization purposes 221,

For MEG, the same analysis was run on the source reconstructed data within
the predefined anatomical ROIs used for the Decoding analysis, bandpass filtered
(1-40 Hz) and downsampled (100 Hz). For the category and orientation analysis,
pseudo-trials and temporal moving-average methods were used to optimize the RSA
analysis and improve the SNR. For identity, single trials were used. Vertices within
the ROIs were used as features. The statistical testing differed from that conducted
on the iEEG data, as it was performed at the subject level. Like the iEEG analysis, we
first tested if the correlation between the data and the model predicted by each theory
was greater than zero using the Kendall's tau measure, and then compared between
the theories using the Mann-Whitney U rank test on two independent samples.

Functional Connectivity analysis

For both iEEG and MEG, pairwise phase consistency (PPC *°) was computed between
each category-selective time series (face- and object-selective) and either the V1/V2
or the PFC time series.

For iEEG, the PPC analysis included electrodes in V1/V2 visual areas, in PFC ROIs (see
Extended Data Table 2.2), and face and object selective electrodes (see Identification of
task responsive channels), as long as they were “active” during the task. As both theories
predict different types of activation (e.g., ignition vs. sustained activation), channels
were categorized as active if they showed an increase in HG power relative to baseline
(-0.5 to -0.3 s, p<0.05, signed-rank test) evaluated across all trials (task relevant +
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irrelevant, intermediate + long trials, combined across both categories), for the
0.3-0.5 s window (GNWT), or in all time windows 0.3-0.5 s, 0.5-0.8 s, and
1.3-1.5 s (IIT).

For MEG, the category-selective single-trial time courses used to define the ROIs for
PPC analysis were extracted using the Generalized Eigenvalue Decomposition (GED)
method 2. Two GED spatial filters were built by contrasting either faces or objects
against all other categories during the first 0.5 s after stimulus onset. Single-trial
covariance matrices were computed separately for signal and reference for all vertices
within the fusiform ROl identified from the FreeSurfer parcellation using the Desikan
atlas 2, and the Euclidean distance between them was z-scored. Trials exceeding
3 z-scores were excluded. The reference covariance matrix was regularized to reduce
overfitting and increase numerical stability. The GED was then performed on the
two covariance matrices, resulting in N (= rank of the data) pairs of eigenvectors and
eigenvalues. The eigenvector associated with the highest eigenvalue was selected as
a GED spatial filter, which in turn was applied to the data to compute the single-
trial GED component time series. A GED spatial filter was extracted also for the PFC
ROI, on parcels from the Destrieux atlas ', to identify the distributed pattern of
sources that are responsive to visually-presented stimuli. Specifically, a spatial filter
was built by contrasting source-level frontal slow-frequency activity (30-Hz low-pass
filter) after stimulus onset (0 to 0.5 s) against baseline (-0.5 to 0 s). V1/V2 areas were
identified using the Wang Atlas * and a singular values-decomposition approach.
For the GED, the 1.0 and 1.5 s duration trials were used to minimize overlap with the
transient evoked at stimulus onset.

PPC was computed for each MEG time series/iEEG electrode pairing, for all face-
trials and object-trials separately. Analyses were performed on 1.0 and 1.5 duration
trials, separately on task relevant and irrelevant trials and also combined to maximize
statistical power. To compute synchrony, time-frequency analysis of the broadband
MEG and LFP signal was performed using Morlet wavelets (f=2-30 Hz, in 1 Hz steps;
4 cycles; f=30-180 Hz for iEEG or f=30-100 Hz for MEG, in 2 Hz steps, f/4 cycles),
and PPC was then computed by taking the difference in phase angle between MEG
time series/iEEG electrode at each time, t, and frequency f, for a specific trial and
computing PPC across all trials in a category (e.g., faces) as:

N-1 N

2
PPCUD = e =T Z Z cos (B(f+t) — 6(fr)),] = {1.. N trials)

J=1 k=j+1

, for all frequencies f, and at all times t.
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For iEEG, PPC for each category-selective site was then averaged across all its
pairings (e.g., all PFC electrodes pairings or all V1/V2 pairings within that patient).
The variability in electrode coverage across patients precluded a within-subjects
analysis. Therefore, to achieve sufficient statistical power, we pooled all derived PPC
values from one electrode pairing (e.g., face-selective to PFC) across all patients into
one ROI specific analysis. A similar approach was used on the MEG parcels.

To quantify content-specific synchrony enhancement, the difference in PPC was
computed between within-category and across-category trials (e.g., for face-selective
sites, the change in PPC was computed between faces vs. objects trials) using a
cluster-based permutation test >*'. This was done for both modalities.

As an exploratory analysis, we also investigated dynamic functional connectivity
using the Gaussian-Copula Mutual Information (GCMI 2?) approach to evaluate the
dependencies between time series. This power-based measure of connectivity was
implemented using the conn_dfc method from the Frites Python package . We used
the same parameters as for the PPC analysis, with the following exceptions: For both
MEG and iEEG, power was estimated through a multitaper-based method (using a
frequency dependent dynamic sliding window: 2-30 Hz, T= 4 cycles; 30-100 Hz, T4/f
using a 0.25-s sliding window. For iEEG the high frequency range was extended
from 30-180 Hz, T=4/f cycles). DFC was performed per frequency band, 0.1 s sliding
window, 0.02s steps.

For fMRI, connectivity was assessed through generalized Psycho-Physiological
Interaction (gPPI) implemented in SPM 2%. The Fusiform Face Area (FFA) and
Lateral occipital cortex (LOC) were defined as seed regions per subject based on
an anatomically constrained functional contrast. Anatomically, FFA seeds were
constrained to the “Inferior occipital gyrus (03) and sulcus” and “Lateral occipito-
temporal gyrus (fusiform gyrus, 04-T4)”. LOC seeds were constrained to the “Middle
occipital gyrus (O2, lateral occipital gyrus)” and the “Middle occipital sulcus and
lunatus sulcus” (Destrieux ROIs 2 and 21 for FFA and ROIs 19 and 57 for LOC, see
Anatomical Regions-of-interest (ROIs)).

Candidate seed voxels within the above-mentioned anatomical ROIs were defined
as those with a z value > 1 in the contrast of parameter estimates of all stimuli vs.
baseline. Three subjects with less than 300 candidate seed voxels were excluded
from the analysis. This was done to ensure that the seed voxels were visually driven.
Next, using an unthresholded contrast of parameter estimates between ‘relevant and
irrelevant faces’ and ‘relevant and irrelevant objects’, the 300 voxels most responsive
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to faces within the FFA anatomical ROIs were selected for the FFA seed, and the
300 voxels most responsive to objects within the LOC anatomical ROIs were selected
for the LOC seed.

gPPI analysis was performed per subject and seed region separately, including an
interaction term between the seed time series regressor (physiological term) and
the task regressor (psychological term) at the subject-level GLM 2%, separately for
task relevant and irrelevant conditions, and also combining across tasks to increase
statistical power. For combined conditions, the model design matrix for each subject
included regressors for task relevant and task irrelevant faces, objects, letters,
and false fonts collapsed across conditions (four regressors) as well as a regressor
for targets (irrespective of their category), yielding five regressors in total. As for
separated conditions, the model design matrix included regressors for task relevant
and task irrelevant faces, objects, letters, and falsefonts (eight regressors) as well as a
regressor for targets (irrespective of their category), yielding nine regressors in total.
For each seed, group level analysis was performed using a cluster-based permutation
test (preferred over the preregistered FDR correction. See supplementary section 12
for a justification of this change) to evaluate the statistical significance of face >
object contrast parameter estimates across subjects (p < 0.05; see supplementary
section 12).

Putative NCC analyses

A series of conjunction analyses were performed on the fMRI data to identify a)
areas responsive to task goal, b) areas responsive to task relevance, and c) areas
putatively involved in the neural correlate of consciousness. We note that the
contrasts proposed below might overestimate the neural correlates of consciousness
and that the fast event-related design adopted here might be suboptimal to detect
activity changes in the salience network ¢, i.e., potentially underestimating some
regions that might be involved in conscious processing. We therefore have adopted
a conservative approach that distinguishes between areas that might participate in
consciousness vs. those that definitely do not.

The conjunction defining areas responsive to task goals was defined as [TaskRelTar > bsl]
& [(TaskRelNonTar = bsl) & (Tasklrrel = bsl)]. This contrast captures areas that
show an increase of BOLD signal for targets but not for other stimuli. The
following conjunction identified areas responsive to task relevance: [(TaskRelTar > bsl)
& (TaskRelNonTar # bsl)] & [Tasklrrel = bsl]. This contrast identifies areas
displaying differential activity for all task relevant stimuli, but are insensitive to
non-task relevant ones. Finally, the following conjunction was used to identify the
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putative NCC areas: [(TaskRelNonTar (stim id) > bsl) & (TasklIrrel (stim id) > bsl)] OR
[(TaskRelNonTar (stim id) < bsl) & (TaskIrrel (stim id) < bsl)], critically detecting
areas that responsive to any stimulus category irrespective of task, with consistent
activation or deactivation. Thus, this analysis casts a wide net to identify areas that
can potentially be the neural correlates of consciousness, while excluding areas that
do not respond to task relevant/irrelevant stimuli (meaning that areas that respond
both to the task and to the content of perception are still included).

To compute conjunctions, we first ran a GLM (see above) corrected for multiple
comparisons (Gaussian random-field cluster-based inference). Equivalence to
baseline was established using a JZS Bayes Factor test, with a Cauchy prior (r scale
value of 0.707). Evidence maps were thresholded at BFo1 > 3. The thresholded z maps
and the Bayesian evidence maps on the group level were used for the conjunction
analysis. For conjunctions including an ‘unequal to, a ‘logical and’ operation was
used between the directional z maps, after thresholded maps were binarized. For
the putative NCC contrast, conjunctions were performed separately for activations
and deactivations, using a ‘logical and’ operator for the task relevant and irrelevant
z maps. The resulting maps were combined using a ‘logical or’ operation to discard
areas showing effects of opposite direction for task relevant and task irrelevant
stimuli. This analysis was also done at the subject level, masked using the anatomical
ROIs, to account for inter-subject variability. For each ROI, the proportion of subjects
with voxels included in the conjunction is reported. The multivariate version of the
putative NCC analysis was done using the thresholded statistical maps obtained
from the whole-brain searchlight decoding based on a subject-level stimulus vs.
baseline decoding accuracy maps (for details regarding the decoding approach used,
see Decoding Analysis).
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Extended Materials

GNWT predictions IIT predictions

Prediction #1: Decoding analyses

(A1) Cross-task generalization of decoding of
ANY CATEGORY that showed decoding in
the TR’ condition in ANY PREFRONTAL
areas from Task irrelevant (TI) to Task
relevant (TR) OR from TR to TI,
during 300-500 ms post-stimulus onset

data taken from any time window)

(A2) Decoding of ORIENTATION for ANY
category in ANY PREFRONTAL area,
during 300-500 ms post-stimulus onset

(A2) Decoding of ORIENTATION, for ANY
category in ANY POSTERIOR areas
(data taken from any time window)

(B1) NO Increase in decoding accuracy® for ANY
CATEGORY that showed decoding in the
TR condition when adding non-specialized
frontal areas (only for task irrelevant, data
taken from any time window for posterior ROI
and from 300-500 ms post-stimulus onset for
frontal areas)

(B2) NO Increase in decoding accuracy' of
ORIENTATION for ANY category that
showed decoding when adding non-
specialized frontal areas (only for task
irrelevant), data taken from any time window
for posterior ROI and from 300-500 ms post-
stimulus onset for frontal areas)

A1&A2 should be TRUE for MEG OR iEEG B1&B2 should be TRUE for MEG ORiEEG

Prediction #2: Activation and representational similarity analyses

(A) Phasic ignition in ANY PREFRONTAL area (A) Content-specific sustained activation

at stimulus ONSET (300-500 post onset) AND
OFFSET (300-500 post offset) in TI for ALL
stimulus durations for at least ONE category
in at least ONE measure of activation (ERP,
High gamma, alpha)

(B) Phasic RSA during ONSET and OFFSET (300-

500 ms post stimulus onset/offset) in TI for
1.0 and 1.5 durations for at least ONE content
(category OR orientation OR identity) in any
PREFRONTAL area

(from 300 ms until the offset) in TI for
ALL durations for at least ONE category
in posterior cortical areas in at least ONE
measure of activation (increased gamma,
decreased alpha)

(B) Sustained RSA (from 300 ms until the offset)

in TI for 1.0 and 1.5 durations for at least

ONE content (category OR orientation OR
identity) in any POSTERIOR area (contingent
on results of the blink control analysis)
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A should be TRUE for MEG OR iEEG

A&B should be TRUE for MEG OR iEEG

Prediction #3: Synchronization analyses

(A) Stronger synchronization between PFC and
FFA for faces vs. objects during the 300-
sooms time window in ANY technique?, AND
the STIMULUS difference should be larger
than the TASK difference

(C) Stronger synchronization between PFC and
LOC for objects vs. faces during the 300-
sooms time window in ANY technique, AND
the STIMULUS difference should be larger

(B) Stronger sustained (from 300 ms until the
offset) synchronization between (activated)
V1/V2 and FFA for faces vs. objects for ALL
durations in MEG/iEEG, AND the difference
in the pattern of synchronization should be
more consistent with the STIMULUS than
with the TASK

(D) Stronger sustained (from 300 ms until the
offset) synchronization between (activated)
V1/V2 and LOC for objects vs. faces for ALL
durations in MEG/iEEG, AND the difference

than the TASK difference in the pattern of synchronization should be
more consistent with the STIMULUS than
with the TASK
AORB AORB

Integration across predictions:
Prediction#1 (Decoding)
Prediction#2 (Activation)
Prediction#3 (Synchronization)

AND
AND

Integration across predictions:
Prediction#2 (Activation)
Prediction#2 (RSA)
Prediction#3 (Synchronization)

AND
AND

Extended Table 2.1: Key Predictions and Integration of Evidence across Planned analyses

Key predictions of each theory and plan for integrating outcomes across the different brain recording modalities and
analyses. Each prediction (Bolded titles, light gray cells) is broken down to sub-predictions, which are then integrated
together to provide the final conclusion per prediction (dark gray rows, appearing at the bottom for each prediction).
Bolded predictions are the ones appearing on Figure 2.7 on the Preregistration, and are defined as the critical
predictions for evaluating the theories. Numbered sub-predictions are the ones considered when integrating across
sub-predictions to reach the final conclusion of each prediction (black rows). Finally, light red row denotes vertical
integration across all predictions, to form the final conclusion for each theory based on its critical predictions.
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Extended Data Figure 2.1: Prediction#1 Decoding of conscious content for letters, false fonts, faces

and objects

a. fMRI decoding accuracies (letters vs. false fonts) using a searchlight approach, collapsed across the three stimulus
durations. Left: decoding for classifiers trained on task relevant and tested on task irrelevant stimuli (purple).
Right: decoding for classifiers trained on task irrelevant and tested on task relevant stimuli (orange-red). Regions
showing significantly above-chance (50%) decoding accuracies are indicated by the outlined colored regions on the
inflated cortical surfaces (top: left/right lateral views; bottom: right/left medial views).

b.iEEG decoding accuracies (letters vs. false fonts) within the theory-relevant ROIs collapsed across stimulus
duration. Left: decoding for classifiers trained on task relevant and tested on task irrelevant stimuli (purple). Right:
decoding for classifiers trained on task irrelevant and tested on task relevant stimuli (orange-red). ROIs showing
significantly above-chance (50%) decoding are displayed on inflated surface maps from a left lateral view (top left),
posterior view (top right) and left medial view (bottom).

¢. MEG cross-task decoding of category for letter vs false font. (orange-red: train on test irrelevant, test on task
relevant; purple: train on task relevant, test on task irrelevant). Left: results in posterior ROIs. Right: results in
prefrontal ROIs. Error bars depict 95% CI estimated across subjects.

d.iEEG cross-task temporal generalization of category decoding (letters vs. false fonts) classifiers trained on
task relevant stimuli and tested on task irrelevant stimuli. The three stimulus durations are plotted in columns
(left: 0.5 s; center: 1.0 s; right: 1.5 s) and the two theory ROIs in rows (top: posterior ROIs; bottom: prefrontal
ROIs). Significantly above-chance (50%) decoding is indicated by the outlined pink-red regions in the temporal

generalization matrices.
e. iEEG cross-task temporal generalization of category decoding (faces vs. objects) in the opposite direction as in
Figure 2.2b (classifiers trained on task relevant stimuli and tested on task irrelevant stimuli). Conventions as in c.
f.1EEG cross-task temporal generalization of category decoding (faces vs. objects), Classifiers are trained on task
relevant and tested on task irrelevant stimuli. Pseudotrials ave used to boost decoding accuracy. Conventions as in c.
9. 1EEG decoding accuracies within the theory-relevant ROIs using pseudotrial aggregation to boost decoding
accuracies, collapsed across stimulus duration. Conventions as in b.
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Extended Data Figure 2.2: Within-task temporal generalization of decoding of stimulus category
(faces vs. objects).

a. iEEG decoding accuracies for pattern classifiers trained and tested on task relevant stimuli. As in Figure 2.2b, the
three stimulus durations are plotted in columns (left: 0.5 s; center: 1.0 s; right: 1.5 s) and the two theory ROIs in
rows (top: posterior ROIs; bottom: prefrontal ROIs). Significantly above-chance (50%) decoding is indicated by the
outlined pink-red regions in the temporal generalization matrices.

b.iEEG decoding accuracies for pattern classifiers trained and tested on task irrelevant stimuli. Same plotting
conventions as in panel a.

¢. MEG within task decoding of category for faces vs objects (ved-task relevant; purple-task irrelevant). Left: results in
posterior ROIs. Right: results in prefrontal ROIs.

d. MEG within task decoding of category for letters vs false fonts (ved-task relevant; purple-task irrelevant).
Left: vesults in posterior ROIs. Right: results in prefrontal ROIs. Error bars in ¢ and d depict 95% CI estimated
across subjects.

e. fMRI decoding using a searchlight approach, collapsed across the three stimulus durations. Left: decoding
accuracies for pattern classifiers trained and tested on task relevant stimuli (orange-red). Right: decoding accuracies

for pattern classifiers trained and tested on task irrelevant stimuli (purple). Regions showing significantly above-
chance (50%) decoding accuracies are indicated by the outlined colored regions on the inflated cortical surfaces
(top: left/right lateral views; bottom: right/left medial views).

f.iEEG decoding accuracies within the theory-relevant ROIs, collapsed across stimulus duration. Left: decoding
for classifiers trained and tested on task relevant stimuli (orange-red). Right: decoding for classifiers trained and
tested on task irrelevant stimuli (purple). ROIs showing significant above-chance (50%) decoding are displayed on
inflated surface maps from a left lateral view (top left), posterior view (top right) and left medial view (bottom).
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Anatomical ROIs Irrelevant- Relevant- Irrelevant Relevant
(Destrieux atlas) Relevant irrelevant

nvoxels %voxels nvoxels %voxels nvoxels %voxels nvoxels %voxels
Posterior ROI
G_and_S_ 1868 93 1866 93 1868 93 1876 93
occipital_inf
G_oc-temp_lat- 2549 98 2550 98 2542, 98 2561 99
fusifor
G_occipital_ 1979 80 1952, 79 1909 76 2096 85
middle
S oc_middle_ 1009 100 1008 100 1000 100 1010 100

and_Lunatus

G_cuneus 600 24 542 22, 587 23 1233 49
G_occipital_sup 1351 69 1295 66 1299 66 1302 66
G_oc-temp_med- 1403 47 1374 46 1375 46 1499 50
Lingual

G_oc-temp_med- 430 30 408 29 432 31 521 37
Parahip

G_temporal_inf 686 47 692 47 756 52 859 59
Pole_occipital 1952 80 1934 80 1870 77 1968 81
Pole_temporal o o o o o o 15 2
S_calcarine 448 18 427 18 395 16 657 27
S_intrapariet_ 261 7 287 8 799 21 1670 44
and_P trans

S oc_sup and_ 1163 82 1166 82 1225 87 1230 87
transversal

S_temporal_sup 1100 22, 944 19 820 17 2264 46
PFCROI

G_and_S_cingul- o o o o o o o o
Mid-Post

Lat_Fis-ant- o o o o 0o o 1250 23
Horizont

Lat_Fis-ant- 6 1 1 o 3 1 36 8
Vertical

G_and_S_cingul- o o 0 o 5 o 278 8
Ant

G_and_S_cingul- o o 0 o o o 200 1

Mid-Ant
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Anatomical ROIs Irrelevant- Relevant- Irrelevant Relevant
(Destrieux atlas) Relevant irrelevant

nvoxels %voxels nvoxels %voxels nvoxels %voxels nvoxels %voxels
G_front_inf- 134 6 65 3 98 4 436 20
Opercular
G_front_inf- o o o o o o 34 5
Orbital
G_front_inf- 142, 9 68 4 130 78 608 37
Triangul
G_front_middle so0 1 15 o 154 3 1301 21
S front_middle o o 4 o 29 1 86 4
S_front_sup o o) o o) o 0 300 8
S_front_inf 164 8 89 4 184 9 1022 49

Extended Table 2.2: Decoding of faces vs. category in the theory-defined ROIs

The table presents the number of voxels in each theory-defined ROI that were detected in the searchlight decoding
of category (faces vs. objects). The results are presented separately for cross-task decoding (i.e., when classifiers are
trained on the task irrelevant trials and tested on task relevant ones, or vice versa), as well as for within task decoding
(irrelevant and relevant conditions).
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Extended Data Figure 2.3: Control analyses for the decoding prediction.

a.Left panel: iEEG decoding vesults of orientation (left vs. right vs. front view faces) within the theory ROIs over
time as in Figure 2.2, using pseudotrials akin to the MEG analysis. Right panel: Regions with electrodes showing
above-chance (33%) accuracies are indicated in outlined blue on the inflated surfaces (left: left lateral view; middle:
posterior view; right: left medial view). Error bars depict 95% CI.

b. Two analyses were performed to evaluate potential leakage in the MEG decoding results. These analyses were
conducted on independent data from the optimization phase (N=32). Top panel: Stimulus-evoked response in face
task relevant trials combined across three stimulus durations were investigated at different latencies and projected
on the inflated surfaces. Blue and green ellipses denote posterior and prefrontal areas, respectively. Activity in
posterior areas showed the highest peak ~0.1-0.2 s while prefrontal areas showed the highest peak in a later time
window ~0.2-0.3 s. These differential peak timings serve as evidence against the leakage interpretation. Bottom
panels: Face vs. object decoding performance in task relevant trials combining trials across the three durations
was investigated separately within parcels in parietal and PEC to evaluate the possibility of a posterior to anterior
decoding gradient. Left panel: Average face vs. object decoding accuracy in an early time window (0.25-0.5 s)
projected on two differently inflated surfaces to better depict gyri and sulci in parietal and prefrontal areas. Right
panel: Time-resolved decoding performance in parietal and frontal parcels. Decoding performance is highest in
posterior areas and lowest in anterior areas, with fairly similar time courses, consistent with the possibility of
leakage in decoding from posterior to anterior areas. This effect is better appreciated when considering the high
decoding of faces vs. objects in motor related areas, with a gradient from postcentral to precentral sulcus. Error bars
depict 95% CI estimated across participants.

c. Region of interest used in the decoding analysis including and excluding PFC areas.

d. Decoding analysis including or excluding prefrontal areas alongside posterior areas to evaluate changes in
decoding performance. 11T predicts that including PFC to posterior areas should have either no effect or decreased
decoding performance (Posterior + Prefrontal: blue; posterior only: red). iEEG decoding of faces vs. objects (left),
letters vs. false fonts (middle) and face orientation (right). Lines underneath the decoding functions indicate time-
periods showing significantly worse decoding accuracies when including PFC. Error bars depict 95% CI.

e. MEG decoding results, same order as iEEG. Error bars depict 95% CI estimated across participants.

f. fMRI decoding of faces vs. objects. Histogram shows the differences in classification including and excluding frontal
areas. iEEG and MEG results consistently show similar (or worse) decoding performance when including prefrontal
areas. fMRI accuracies of PFC + Posterior show slight increase of 1.2% on average compared to posterior accuracies,
observed in 56% of the subjects. However, it is important to note that these increases are not considered robust due
to several factors, including the small magnitude of the accuracy difference and the fact that this slight increase was
observed only in the combined features analysis and not the combined models’ analysis (see Methods). The negative
outcomes observed in iEEG and MEG data support our interpretation of the fMRI results.
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Channel X y z Destrieux ROI
SE107-O2PH16 -0.03618 -0.08678 0.000733 S oc_middle_and_Lunatus
SE120-T3bOT10 -0.05876 -0.06964 -0.02078 G_oc-temp_lat-fusifor
SE120-T3bOT9 -0.05712 -0.0689 -0.02016 G_oc-temp_lat-fusifor
SF102-LO1 -0.01976 -0.10359 0.001174 Pole_occipital

SF102-LO2 -0.02301 -0.09792 0.005426 Pole_occipital

SF103-PIT1 -0.04072. -0.06213 -0.02039 G_oc-temp_lat-fusifor
SF103-PIT2 -0.04156 -0.04393 -0.02499 G_oc-temp_lat-fusifor
SF104-LO1 -0.01396 -0.10275 0.008659 Pole_occipital

SF104-LO2 -0.01663 -0.10338 0.005258 Pole_occipital

SF109-103 0.006178 -0.07586 -0.00279 G_oc-temp_med-Lingual
SF109-104 0.005093 -0.07816 -0.0047 G_oc-temp_med-Lingual
SF113-RIT1 0.038119 -0.04974 -0.02225 G_oc-temp_lat-fusifor
SF113-RIT2 0.040545 -0.04845 -0.02346 G_oc-temp_lat-fusifor
SE107-01b3 -0.01196 -0.06305 -0.00094 G_oc-temp_med-Lingual
SE107-O2PH14 -0.03383 -0.08203 6.93E-05 S oc_middle_and_Lunatus
SE107-O2PHis -0.0354 -0.08519 0.000512 S_oc_middle_and_Lunatus
SE108-02b14 -0.0294 -0.09064 -0.00472, S oc_middle_and_Lunatus
SE120-02%5 -0.04225 -0.09646 -0.00451 G_and_S_occipital_inf
SE120-0276 -0.04354 -0.09769 -0.00357 G_and_S_occipital_inf
SE120-T3c6 -0.05264 -0.08681 0.025426 S_temporal_sup
SF104-LO3 -0.02255 -0.10253 0.000551 Pole_occipital

SF109-D14 0.022039 -0.07051 0.008421 S calcarine

SF109-DLs 0.02433 -0.07204 0.008081 S_calcarine

SF109-G45 0.04645 -0.08224 -0.00242 G_occipital_middle
SE108-02b13 -0.02856 -0.08853 -0.00505 G_and_S_occipital_inf
SE110-02*10 0.036288 -0.1042 -0.00079 G_and_S_occipital_inf
SE110-02*7 0.031792 -0.09698 -0.00721 S_oc-temp_lat
SE110-02*8 0.03359 -0.09987 -0.00464 G_and_S_occipital_inf
SE110-02%9 0.035389 -0.10276 -0.00207 G_and_S_occipital_inf
SE120-O1b10 -0.02828 -0.11893 0.004408 Pole_occipital

SF102-LO3 -0.0356 -0.08904 -0.00424 G_occipital_middle
SF107-01 0.024693 -0.10108 -0.00812 Pole_occipital

SF107-O2 0.027381 -0.09982 -0.00773 Pole_occipital

SF107-03 0.042207 -0.08618 -0.00419 G_occipital_middle
SF113-RO1 0.034984 -0.08617 0.010333 G_occipital_middle
SF113-RO2 0.040244 -0.08034 0.011692. G_occipital_middle

Extended Table 2.3: Electrode locations found to be significant in the LMM analysis

Electrodes location in MNI coordinates, as well as in the corresponding parcellations of the Destrieux Atlas,
Wang Atlas and Desikan Atlas.
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Wang ROI Desikan ROI Model
TO1 ctx-lh-lateraloccipital IIT x Cate
Unknown ctx-lh-fusiform IIT x Cate
Unknown ctx-lh-fusiform IIT x Cate
Vad ctx-lh-lateraloccipital IIT x Cate
Vad ctx-lh-lateraloccipital IIT x Cate
Unknown ctx-lh-fusiform IIT x Cate
Unknown ctx-lh-fusiform IIT x Cate
Vad ctx-lh-lateraloccipital IIT x Cate
Vad ctx-lh-lateraloccipital IIT x Cate
Vav ctx-rh-lingual IIT x Cate
Vav ctx-rh-lingual IIT x Cate
Unknown Cerebellum-Cortex IIT x Cate
Unknown Cerebellum-Cortex IIT x Cate
Unknown ctx-lh-lingual GNW
LO2 ctx-lh-lateraloccipital GNW
LO2 ctx-lh-lateraloccipital GNW
LO1 ctx-lh-lateraloccipital GNW
Unknown ctx-lh-lateraloccipital GNW
Unknown ctx-lh-lateraloccipital GNW
Unknown ctx-lh-inferiorparietal GNW
Vad ctx-lh-lateraloccipital GNW
Unknown ctx-rh-pericalcarine GNW
Unknown ctx-rh-pericalcarine GNW
Unknown ctx-rh-lateraloccipital GNW
Unknown ctx-lh-lateraloccipital 1T
Unknown ctx-rh-lateraloccipital 1T
Unknown ctx-rh-lateraloccipital 1T
Unknown ctx-rh-lateraloccipital 1T
Unknown ctx-rh-lateraloccipital 1T

Vad ctx-lh-lateraloccipital 1T

LO2 ctx-lh-lateraloccipital 1T
Unknown ctx-rh-lateraloccipital 1T
Unknown ctx-rh-lateraloccipital IIT
Unknown ctx-rh-lateraloccipital 1T

V3B ctx-rh-lateraloccipital 1T

LO2 ctx-rh-inferiorparietal 1T
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Extended Data Figure 2.4: Maintenance of conscious content over time for stimulus categories, identity
and orientation.

Cross temporal representational similarity matrices across all electrodes in posterior cortex for letters vs. false
fonts (upper row), identity (middle) and orientation (bottom) for posterior (upper half) and PFC (lower half) ROI,
respectively. Contours in the matrices represent statistical significance, established using cluster-based permutation
tests (upper tail test at alpha=0.05). Clear separability between letters and false fonts in posterior cortex is illustrated
using Principal Component Analysis at 0.3 s irrespective of the task (left — task relevant, right - task irrelevant).
Separability was mostly sustained in the task relevant condition, but not from ~0.95 to 1.4 s. In the task irrelevant
condition, however, separability was statistically significant for a brief period in the beginning. Identity information
was statistically significant for letters and false fonts, but not faces. Identity information was not sustained for the
entire stimulus duration (however, z-scores were elevated until 1's, hinting at a limitation in statistical power). No
statistically significant orientation information was evident for any of the categories. None of the contrasts yielded
statistically significant vesults in the PFC ROL
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Extended Data Figure 2.5: Control analysis for the interareal communication prediction

a.iEEG Pairwise phase consistency (PPC) analysis of task irrelevant trials did not reveal any significant category-
selective synchrony cluster neither in the posterior ROI nor in the PFC ROI after removing the evoked response.
Colorbars represent the change in PPC (face-object trials) for each node (face-selective, object-selective). Positive
values reflect stronger connectivity for faces. Negative values reflect stronger connectivity for objects.

b. MEG PPC analysis of task irrelevant trials did not reveal any significant category-selective synchrony

cluster neither in the posterior ROI nor in the PFC ROI after removing the evoked response. The same conventions

of Figure 2.8a are used here.

iEEG Dynamic functional connectivity (DFC) analysis of task irrelevant trials without removing the evoked

response reveals significant content-selective connectivity between object-selective electrodes and V1/V2 electrodes

(top-right), reflected as broadband (25-125 Hz) decrease in the change in DFC (e.g., faces < objects). Similar

broadband content-selective changes in DFC (faces > objects) were observed for face-selective electrodes in PFC

(bottom-left). Smaller, yet significant effects, were detected for connectivity between face-selective electrodes and

V1/V2 electrodes (top-left) and for object-selective electrodes and PFC electrodes (bottom-right). Conventions as in

Figure 2.8a.

MEG DFC analysis of task irrelevant trials without removing the evoked response reveal significant content-
selective synchrony between the face-selective GED filter node and both V1/V2 (top-left) and PFC (bottom-left).
This is reflected in an increase in low-frequency connectivity (<25 Hz) combined with a decrease in high-frequency
connectivity (25-100 Hz). Smaller yet significant effects were detected for the object-selective GED filter (right).
Conventions as in Figure 2.8a.

. Generalized psychophysiological interactions (gPPI) task-related connectivity analysis of task irrelevant (left)
and task relevant (right) conditions revealed weak clusters of content-selective connectivity when FFA is used as
the analysis seed (p < 0.01, uncorrected). Common significant regions showing task related connectivity in task
irrelevant, task relevant, and combined conditions (Figure 2.4) include V1/V2, right intraparietal sulcus (IPS), and
right inferior frontal gyrus (IFG).

f. gPPI task-related connectivity analysis of task irrelevant (left), task relevant (middle), and combined conditions
revealed weak clusters of content-selective connectivity when lateral occipital complex (LOC) is used as the analysis
seed (p < 0.01, uncorrected). The results of the gPPI showed that there are no common significant regions showing
task related connectivity in task irrelevant, task relevant, and combined conditions.
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Investigating timing of conscious
experience using a dual-task and
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Abstract

What are the temporal dynamics of conscious perception? Intuitively, we believe we
continuously experience the external world. Competing theories attribute conscious
experience to different neural mechanisms, some emphasizing the prefrontal
cortex (PFC). However, recent studies have shown that PFC activation does not
reflect stimulus duration, challenging theories that assign the PFC a central role in
consciousness, given the assumption that longer stimulus duration corresponds to
prolonged conscious experience. This study tests that assumption by evaluating the
impact of visual stimuli on response times in a dual-task psychological refractory
period (PRP) paradigm and subjective timing through introspection. We found that:
(1) visual stimuli gained conscious access for a fixed duration, regardless of actual
duration; (2) this access occurred even for task-irrelevant stimuli, though it was
extended for task-relevant ones; and (3) at stimulus offset, conscious processing
weakened. Additionally, participants drastically underestimated delays caused by the
PRP effect, further suggesting that conscious experience does not directly need to
track stimulus dynamics. A reanalysis of Cogitate consortium data revealed that PFC
decoding dynamics followed similar time courses to those predicted by PRP measures.
We propose that the PRP effect is a reliable tool to track conscious access without the
need for overt reports, offering new insights into the timing of consciousness.
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Introduction

Do we always consciously perceive what is right in front of our eyes, at the moment
when it occurs? Empirical evidence suggests that the answer is more complex than it
might seem. For example, when we blink, visual stimulation is briefly interrupted by our
eyelids, yet we are usually unaware of these interruptions unless we consciously focus on
them 2. Conversely, during the attentional blink or inattentional blindness, high-contrast

stimuli appear, but participants report not seeing them because they are distracted by
another task s8+158.218-221 Congcious perception may also be severely delayed, as in the
psychophysical refractory period ***¢°22222 or it might be rescued by the presentation of a
late attentional “retro-cue” ™. In general, the timing and even the occurrence of conscious
experience may not coincide with the timing of external sensory stimulation.

These considerations are essential in interpreting the results of recent studies
investigating the neural dynamics associated with sustained stimulus presentation.
Several studies have shown that when highly visible stimuli are presented for varying
durations (0.3 to 1.5 seconds), sensory areas track stimulus duration, while the
prefrontal cortex (PFC) only shows transient activation following stimulus onset, with
no further activation correlating with stimulus duration **272%, Notably, one study
found an activation increase following stimulus offset in fronto-parietal electrodes .
However, the design of this study differed from the others as participants were
required to memorize the presented stimuli, and all stimuli were presented for the
same duration (1.5 s). Accordingly, the offset activation may reflect memory-related
processes or the predictability of stimulus disappearance in that specific study.

Superficially, the absence of a consistent neural signature in the PFC that tracks
the persistence of perceptual content challenges theories like the Global Neuronal
Workspace Theory (GNWT), which assumes that consciousness arises from the
broadcast of information in a globally accessible workspace located in a fronto-
parietal network *. According to GNWT, the maintenance of conscious access
depends on a non-linear, ignition-like activity in a fronto-parietal network signalling
new information entering the workspace at stimulus onset and offset of stimuli
(if this offset is consciously detected) *. Critically, GNWT does not assume that the neural
workspace remains active throughout a durable conscious experience, but at moments
when conscious refreshes occur, thereby aligning to a reconstructive view of temporal
experience *». During stable or predictable periods, no further refresh is needed, allowing
the workspace to be occupied by other contents. This maintenance occurs in an activity-
silent state, supported by short-term synaptic changes, with only occasional bursts of
reactivation for conscious retrieval.
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However, as noted earlier, evidence suggests that conscious access can be decoupled
from stimulus timing, such that neither the onset nor the duration of this ignition
have to be locked to stimulus properties. According to GNWT, the onset and duration
of conscious experiences are dictated by the availability of the global neuronal
workspace (GNW) rather than by external events. Furthermore, the persistence of a
stimulus in consciousness does not necessarily mean that the activity is continuously
sustained — it could simply be transiently activated to encode which stimulus was
presented, together with a tag that encodes its onset and duration **. While an
ignition needs to occur when contents enter into consciousness, typically 200-300
ms after stimulus onset, this activation (1) can be delayed when we are distracted
by another task, and (2) may quickly return to baseline as the content is maintained
in an activity-silent state. In other words, sustained activity is only optional: when
watching a picture, we may effortfully continue to attend to it throughout its
presentation duration, or we may simply encode its presence and timing, and let
our thoughts wander elsewhere. In the latter case, when the stimulus disappears,
if this disappearance is detected, the workspace would then have to refresh to
change the temporal tag, leading to an ignition at stimulus offset. However, again,
this would only occur if participants attend to stimulus duration and therefore to
stimulus offset.

In summary, GNW theory does not predict persistence of GNW activation throughout
a stimulus’ duration, as this would unnecessarily tie up the GNW bottleneck. Instead,
it predicts an ignition of the fronto-parietal network at the onset of the conscious
experience and at its offset if and only if this experience is attended to and accordingly
refreshed. Previous studies did not explicitly measure the persistence of conscious
experience to avoid introducing task demands and attention to the temporal aspect
of the stimuli "12¢12722¢ The default assumption was that stimuli were consciously
experienced throughout their duration because they were suprathreshold, presented
in isolation and fixated upon. However, since conscious access is heavily dependent on
attention, conscious perception may have been only transient after stimulus onset. If
so, the transient PFC activation as well as the lack of offset ignition observed in previous
studies would still align with GNWT’s assertion that fronto-parietal ignition is necessary
for consciousness. Thus, rather than challenging GNWT, the lack of association between
PFC activation and stimulus duration might suggest that conscious experience was
decoupled from visual presentation, exactly as GNWT predicts **.

Here, using behavioural experiments, we test the hypothesis that the PFC activation
observed by the Cogitate Consortium to visual stimuli of variable duration may
have reflected the timing of participants’ awareness. Using the very same stimuli,
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our preregistered study aims to clarify this by directly measuring the duration of
their conscious processing at stimulus onset and offset (https://osf.io/krjh7) — which
according to GNWT is equivalent to the duration of their occupation of the Global
Workspace. To do so, we relied on the psychological refractory period (PRP) effect .
This effect occurs when two tasks are presented in rapid succession, leading to
a delay in reaction time (RT) to the second stimulus (T2) with decreased interval
between the first and second task, reflecting a bottleneck in cognitive processing 2.

According to GNWT, this bottleneck is imposed by the GW, whereby the occupation
of the workspace by a given conscious content prevents other contents from reaching
consciousness ***2>22¢ which implies that conscious access operates in a serial manner.

Evidence supporting this interpretation comes from time-resolved electrophysiological
studies, which show that early sensory activation is unaffected by changes in stimulus
onset asynchrony (SOA) between competing stimuli, while later processing stages are
delayed when SOA is shorter sv1¢°227-2°_ Similarly, fMRI studies reveal that frontal
and parietal regions exhibit delayed activity as SOA decreases 22!, These delays
in PFC activation suggest that slower reaction times to the second task (RT2) occur
because conscious access to the second stimulus is delayed due to the serial nature
of conscious processing. This interpretation is supported by studies using quantified
introspection, where participants provided subjective reports of when they became
aware of stimuli. These studies show that while participants can accurately report
their decision times, they are unaware of the large delays caused by the PRP
effect 222 mistakenly believing they became conscious of the stimuli immediately.
This introspective blindness supports the notion that the PRP effect reflects a delay in
the conscious processing of the second stimulus, which in turn delays reaction time.

Building on the assumption that GW engagement imposes a cognitive bottleneck,
we used the PRP effect as a time-resolved marker for conscious access to evaluate
whether and when participants consciously experienced the onset, duration, and
disappearance of a visual stimulus. We did this by measuring the response time to
auditory stimuli presented at various SOAs relative to the onset and offset of visual
stimuli. In line with Global Neuronal Workspace Theory (GNWT), we preregistered
a series of hypotheses (https://osf.io/krjh7): (1) conscious access to an event should
induce a PRP effect on a subsequent stimulus; (2) the duration of the PRP effect
should be independent of the visual stimulus duration; and (3) there should be no
PRP effect at the stimulus offset. Based on previous studies "3%26%272¢ gshowing a
lack of prefrontal cortex (PFC) activation at stimulus offset, we hypothesized that
participants might only experience the stimulus transiently and remain unaware of
its disappearance, leading to a PRP effect at stimulus onset but not at offset.
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Figure 3.1: Overview of experimental design and predictions

a. Timing of the task: Visual stimuli (T1) were always presented first, at one of three possible durations (500, 1000
and 1500ms) followed by a fixation cross. Auditory stimuli (T2) were presented at four different stimulus onset
asynchronies (SOA: 0, 116, 232, 466ms) relative either to T1 stimulus onset (red) or to its offset (blue).

b. Tasks: For the visual T1 task, at the beginning of each block, two targets were presented (a face and an object or a
letter and a symbol). Participants were asked to press a button whenever that target appeared. Stimuli of the same
category as targets are labelled as task-relevant (green), stimuli of a different category as task-irrelevant (brown).
For the auditory T2 task, participants were asked to discriminate high and low tone using two distinct buttons.

c. Predictions: RT to T2 stimuli (RT2) should decrease with increased SOA when T2 are presented following T1 onset
(PRP effect, red) but not when following T1 offset (blue).

d. Introspective reports: In experiment 2, after each trial, introspection probes were also presented, asking participants
to rate their decision time for T1 (left) and T2 (right).

Our experiment also allowed us to investigate whether a PRP effect occurs even when
the first stimulus is task-irrelevant and does not require an overt report. According
to GNWT, this effect would support the serial nature of conscious processing. Since
participants do not actively respond to the task-irrelevant stimulus, the collision
between tasks would primarily affect central cognitive resources rather than motor
preparation. In this condition, the Cogitate Consortium observed a small but
significant PFC ignition, of fixed duration unrelated to stimulus duration. We argue
that this reflected a brief moment of conscious experience of the task-irrelevant
stimulus, and therefore predict that those stimuli should impose a similar short-
lived, duration-independent PRP delay.
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Finally, using quantified introspective reports of decision time, we aimed to
replicate previously observed introspective blindness to the PRP effect even when
no overt report is required for the T1 task. This allowed us to assess whether dual-
task interference occurs without active task performance, reinforcing the GNWT
hypothesis that the PRP effect represents a bottleneck of conscious processing.
Additionally, the use of the PRP effect provided a means to probe the occupancy
of the GW without drawing participants' attention to the temporal manipulation.

This addresses critiques that PFC findings supporting GNWT may confound task
demands and attention with consciousness itself.

Results

Experiment 1: visual events inducing a PRP effect

Our preregistered study builds on the experimental design and stimuli used by the
Cogitate consortium, which demonstrated an absence of a neural offset response
in the PFC using both invasive electrophysiology ((EEG) and source-localized
magnetoencephalographic (MEG) signals. Our goal was to evaluate whether the
appearance and disappearance of visual stimuli, presented for different durations,
would lead to a PRP effect in the reaction time of a subsequent auditory stimulus.
This allowed us to examine the relationship between conscious access to visual events
and the PRP effect, particularly in relation to stimulus offset.

Our design consisted of a dual-task combining a visual go/no-go target detection
task (Task 1, T1) and a pitch discrimination task (Task 2, T2). In Ti, participants
were shown visual stimuli (faces, objects, letters and false-fonts) for three durations
(500, 1000, and 1500 ms, see fig. 3.1A). They were required to detect rare target
stimuli (~11% of trials) from two categories (either a face and an object or a letter
and a false-font) within each block. Non-target stimuli from the same category as
the target were considered task-relevant (T1 relevant); while non-target stimuli from
a different category were considered task-irrelevant (T1 irrelevant). In T2, high and
low-pitch tones were presented at four different stimulus onset asynchrony (SOAs:
0, 116, 232, 466 ms) relative to either the onset or the offset of T1 visual stimulus. This
setup allowed us to determine whether either event (onset or offset) triggered a PRP
effect. Throughout the experiment, we collected motor responses and eye-tracking
data to monitor participants’ performance.

Following our preregistered protocols, we first confirmed that participants (N=21)
performed well on both the visual (T1) and auditory tasks (T2). As expected, task
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performance was high, with participants achieving 94.60% accuracy (SD = 3.00) in
T1and 94.64%accuracy (SD=5.11) in T2 (see fig. 3.S1). No participant met our exclusion
criterion (<80% hits or >20% false alarms in T1, <80% accuracy in T2). Eye-tracking
data showed that participants consistently maintained fixation on the stimuli,
spending 89% (+ 15%) of their time within 6° of visual angle from its centre until
2.0 seconds after stimulus onset (fig. 3.51).

We aimed to test the GNWT prediction about which events should trigger a PRP
effect. According to GNWT, the PRP effect reflects the serial nature of conscious
processing and indicates whether an event was consciously accessed. Since all T1
target stimuli required a button-press, we inferred that they were all consciously
processed, predicting a PRP effect at T1 stimulus onset. This prediction aligns with
previous findings of PFC ignition following the visual stimulus appearance 1326127.232,

We also predicted a PRP effect for non-target task-relevant stimuli, as the decision
to withhold a button press still requires conscious processing. Furthermore, given
that task demands likely maintain the workspace activated for a longer duration,
we predicted a longer PRP effect for task-relevant stimuli compared to task-
irrelevant ones.

Additionally, we predicted no PRP effect at stimulus offset, as this event is
uninformative and irrelevant, meaning that subjects would not need to attend to
it or consciously register the stimulus disappearance. This prediction addresses a
challenge to GNWT posed by earlier studies that did not observe PFC ignition during
stimulus offset. Superficially, the absence of ignition at stimulus offset appears
to contradict the GNWT claim that PFC ignition is necessary for conscious access.
However, if in fact subjects were not consciously aware of the stimulus offset, the
lack of ignition would be entirely consistent with GNWT. These predictions were
preregistered before the study (https://osf.io/krjh7).

To evaluate whether visual events (T1) affected the processing of auditory stimuli
(T2), we analysed participants’ reaction time to T2 (RT2) as a function of the interval
between T1 and T2. We used a generalised linear mixed model (GLMM) to model
participants' reaction times to T2 (RT2) as a function of the SOA, the relative timing
of T2 (with respect to T1 onset and offset), and the relevance of T1 (task-relevant and
task-irrelevant stimuli only). Due to the small number of T1 target trials (~11 %) and
the requirement of an overt response in those cases; we excluded these trials from the
main analysis and modelled them separately.
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In T1 target trials, we observed a typical PRP effect: reaction times to T2 (RT2)
decreased sharply as a function of the SOA of T2, locked to T1 onset (x*(3) = 362.47,
p <.001, see fig. 3.2a, red lines in left panel, table 3.1, and 3.S7). This interference was
so pronounced that the effect lasted longer than the duration of T1. A similar PRP-like
slowing effect was present for T2 locked to T1 offset. Yet, the PRP effect significantly
decreased in magnitude with longer T1 durations (500 ms offset locked: x*(3) = 111.64,
p <.001, 1000 ms: x*(3) = 37.16, p <.001, 1500 ms: x*(3) = 12.01, p =.007, see table 3.S7

and fig. 3.2A). This suggests that for shorter T1 durations, the PRP effect at stimulus
offset may be influenced by residual effects from T1 onset processing.

For non-target trials (T1 relevant and irrelevant), we also observed a typical PRP
effect, with RTs to T2 being slower when T2 was presented closer to T1 onset
(SOA main effect: x*(3) = 735.95, p < 0.001, see table 3.S1 and fig. 3.2A). The magnitude
of the PRP effect was strongly modulated by whether the auditory stimulus was
locked to the appearance or disappearance of the T1 visual stimulus (SOA X onset/
offset, x*(3) = 462.82, p < 0.001). To further explore these differences, we modeled
RT2 separately for trials locked to stimulus onset versus offset.

T1 task relevance influences central stage processing at stimulus onset
When the visual stimulus (T1) appeared, participants were required to decide on the
appropriate behavioral response - whether to press a button or not. Therefore, we
predicted that a PRP effect would be observed even in the no-go trials, regardless
of whether the T1 stimulus was relevant or irrelevant to the task. First, we analyzed
RT2 for Ti target trials during image onset, which revealed a strong effect of SOA
(see fig. 3.2A, red lines, left panel). More importantly, and in line with our
preregistered prediction, modeling RT2 for non-targets at image onset also showed a
clear PRP effect (SOA main effect: x*(3) =1109.31, p < 0.001, see table 3.S2 and fig 3.24,
red lines, middle and right panels). This PRP effect was further supported by pupil
dilation measurements. In line with earlier studies 2, pupil-evoked responses peaked
later (90% peak) at shorter SOAs relative to T2 onset (SOA main effect: ¥*(3) = 15.78,
p=0.001, see table 3.S8 and fig. 3.S2). Furthermore, RT2 was significantly correlated
with pupil peak latency (f = 0.24, p < 0.001)
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Figure 3.2 Experiment 1 Results: Modulation of the PRP effect by appearance and disappearance o T1and
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a. Response time to the first (RT1, grey) and second task (RT2) as a function of SOA from T1 onset (x-axis). For RTz2,
trials in which T2 was presented following T1 onset ave represented in red (collapsed across T1 duration), while
trials in which T2 was presented following T1 offset are represented in blue. Grey boxes represent T1 stimuli
durations. The horizontal dashed line in the upper left panel marks the mean RT to targets in the Cogitate study.

b. Empirical cumulative distribution function (ECDF) of RT2 separately for T1 target trials, T1 task-relevant, and T1
task-irrelevant trials. The upper row displays T1 onset-locked trials; the lower rows display T1 offset-locked trials.
For offset trials, each T1 duration is shown separately (second row: 0.5, third row: 1.0, 4th row: 1.5 5).
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The PRP effect reflects the interference between two stimuli, where the processing
of the first stimulus delays the processing of the second. For short SOAs, a delay in
RT2 is expected in every trial due to T1 processing. A bifurcation of RT2, where only
some trials are delayed while others are not, would contradict a proper PRP effect.
To rule this out and to further validate our GLM results, we examined the empirical
cumulative distribution for each SOA condition.

As shown in Figure 3.2B (upper row), consistent with a true PRP effect, the entire
RT2 distribution shifts towards shorter values as SOA increased. This shift effect
was confirmed by a Kolmogorov-Smirnov test, revealing a significant shift in the
empirical cumulative distribution function (ECDF) between SOA o and 466 ms, for
both T1-relevant and T1i-irrelevant trials (T1 relevant: D = 0.29, p < 0.001; T1 irrelevant:
D =0.29, p < 0.001; see Table 3.56).

We predicted that the PRP effect would be influenced by task relevance, with
T1i-relevant non-target stimuli requiring longer central-stage processing due to the
difficulty of discriminating targets from similar stimuli. This extended processing
should increase RT2. Indeed, we found a significant interaction between SOA and
T1 relevance (x*(3) = 12.82, p =.005; see Table 3.S2), indicating that central-stage
processing persisted beyond Ti, interfering with subsequent T2 stimuli. We also
observed larger pupil sizes for Ti-relevant trials, suggesting increased cognitive
load (see Fig. 3.S2). These findings support our prediction that stimuli that are more
relevant involve prolonged central processing.

Stimulus disappearance delays RT2

Unlike the appearance of the visual stimuli, the disappearance of the T1 stimulus
was completely task-free but still represented a significant visual change. This
raises the question: does a task-irrelevant event, if consciously perceived, affect
subsequent stimulus processing? We observed that the disappearance of the visual
stimulus delayed RT2 at short SOAs (main effect of SOA, x*(3) = 42.31, p < 0.001;
see Table 3.83 and Fig. 3.24, blue lines), superficially consistent with a PRP effect.
However, this delay might simply reflect extended T1 processing during stimulus
onset, mistakenly interpreted as an effect at stimulus offset. If that were the case,
the lingering T1 processing should diminish with longer T1 durations, leading to a
smaller PRP effect. Instead, we found the opposite: a stronger SOA effect with longer
T1 duration (interaction between T1 duration and SOA; x*(6) = 35.44, p < 0.001).
Separate modelling of RT2 for each T1 duration revealed no SOA effect for short trials
(x*(3) = 4.20, p = 0.240) but a significant effect for longer T1 durations (T1 1.0s: X*(3)
=12.67, p = 0.005; T11.58: X¥*(3) = 69.644, p < 0.001; see Table 3.S4). This suggests that
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the offset of longer visual stimuli, even when task-irrelevant, does impact subsequent
stimulus processing, supporting the idea that it is consciously perceived.

An alternative explanation for the effect of T1 disappearance on RT2 could be that
participants respond faster at longer SOAs, rather than slower at shorter SOAs. This
speed-up might result from the increased temporal predictability of the tone at large
SOAs, similar to the foreperiod effect observed in hazard rate studies **. In our study,
the offset may have acted as a cue, helping participants anticipate the tone and thus
facilitating faster RT2 at longer SOAs.

To distinguish between interference and facilitation effects, we compared RT2 in
offset trials for long T1 duration at SOA o ms (where the SOA effect is strongest)
with RT2 in onset trials at SOA 466 ms (where interference with T1 is minimal). RT2
was significantly longer in offset trials, by 30 ms, compared to onset trials (z = 6.22,
p < 0.001), indicating that the disappearance of the visual stimulus indeed delayed RT2.

Overall, our findings suggest that the disappearance of the visual stimulus did
trigger a PRP effect, but this effect was contingent on the duration of T1. Even in long
T1 trials, where the SOA effect is strongest, the effect size was significantly smaller
than the PRP effect induced by the appearance of the visual stimulus (see Table 3.1).
When comparing RT2 empirical cumulative distribution functions (ECDFs) between
the SOA o and 466 ms conditions, significant differences emerged only in long T1
trials for both task-relevance conditions (T1 relevant: D = 0.11, p < 0.001; T1 irrelevant:
D = 0.07, p = 0.038; see Table 3.S6). Additionally, intermediate T1 trials showed
significant differences for the T1 relevant condition (D = 0.08, p = 0.010; see Table 3.56),
further supporting the reduced impact of stimulus offset compared to stimulus onset.

Visual inspection of the RT2 distribution in long T1 trials suggests that only a
portion of trials were delayed by the disappearance (see Fig. 3.2b, bottom 3 rows).
The difference in RT2 across durations emerged only when participants showed
slower reaction times, indicating that in some trials, T2 processing was unaffected by
T1 disappearance, while in others, RT2 was delayed.

These findings challenge the GNWT prediction that no PRP effect should occur
at stimulus offset. However, the strong influence of task demands suggests that
completely task-free events, like T1 disappearance, are processed only briefly and
sporadically in the central stage. To further explore whether the PRP effect reflects
a delay in conscious access to the T2 stimulus, we conducted a second study where
participants provided introspective reports of their decision times.
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Table 3.1: Experiment 1 magnitude and effect size of the PRP effect in RT2

Condition PRP effect magnitude [s] Effect size [Cohen's d]
Targets 0.60 1.40
Onset - T1 relevant 0.12 0.47
Onset - T1 irrelevant 0.11 0.44
Offset - T1 500 ms 0.01 0.02
Offset - T1 1000 ms 0.02 0.07
Offset - T11500 ms 0.04 0.21

Differences in RT2 between the shortest and longest SOA are veported. Magnitude vefers to the difference in ms,
while Cohen’s d quantifies the effect size between these two SOAs. For non-targets, the PRP effect size was calculated
separately for the visual stimulus onset (collapsed across the three visual stimulus durations) and offset (collapsed
across task relevance). For targets, we focused on 1.5 sec visual stimulus and reported the difference between the
shortest SOA locked to stimulus onset and the longest SOA to stimulus offset.

Experiment 2

In this experiment, we aimed to validate the PRP effect as a marker for conscious
access, building on prior findings that both the appearance and disappearance of
visual stimuli induced a PRP effect. Prior studies have shown that participants are
introspectively blind to the delay in RT2 associated with SOA, suggesting that the
PRP reflects the serial nature of conscious access.

To replicate this, 11 participants from the previous study were reinvited for a
second experiment. The experimental design remained largely the same, with two
modifications: introspective ratings were added, and one SOA (116 ms) was removed
to reduce the overall duration of the study. At the end of each trial, participants
provided introspective ratings of their decision time for both the visual (iT1) and
auditory stimuli (iT2) on a continuous scale from o to 1000 ms (see Fig. 3.1A). They
were instructed to focus on their decision time rather than their reaction time, as no
overt response was required for T1 non-target trials.

In line with previous studies ***??, we predicted that iT1 and iT2 would correlate with
RT1 and RT2, indicating that participants can reliably introspect on their decision
time. We also expected participants to report longer iT1 for Ti-relevant compared to
Ti-irrelevant trials, due to the increased difficulty of target discrimination. However,
we predicted that iT2 would remain unaffected by SOA, despite the strong PRP effect,
suggesting that the PRP reflects a delay in participants gaining awareness of T2.
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Additionally, following the central stage interference model, we anticipated that a
significant portion of RT2 variance would be explained by iT1. Since the T1 and T2 tasks
were identical to those in the first experiment, this allowed us to test the replicability
of our previous findings (all predictions were preregistered, https://osf.io/krjh7).

Participants performed both tasks with high accuracy (T1: 95.86% accuracy, SD =1.93;
T2: 93.68% accuracy, SD = 5.86; see Fig. 3.S3). One participant was excluded for not
meeting the preregistered accuracy criteria (<80% in the auditory task). Eye-tracking
data showed that participants consistently maintained fixation, spending 94%
(+ 4%) of the time within 6° of visual angle from the stimuli until 2.0 seconds after
stimulus onset (see Fig. 3.S3). These results indicate that participants were engaged
and attentive throughout the experiment.

RT2 Experiment 1 veplication

In the T1 onset trials, we successfully replicated the significant effect of SOA
(x*(2) = 368.03, p < 0.001; see Fig. 3.3A, red lines), but we did not replicate the
interaction between T1 relevance and SOA (x*(2) = 1.99, p = 0.370; see Table 3.S11).
This lack of interaction might be due to the reduced power in our second study,
as it involved only half the number of participants. Pupil size was larger in T1-
relevant compared to Ti-irrelevant trials (see Fig. 3.S4a), and the pupil peak latency
mirrored the PRP effect observed in RT2 (SOA main effect: x*(3) = 9.24, p = 0.002; see
Table 3.S27), replicating the findings from Study 1. Additionally, RT was again
correlated with pupil peak latency (f = 0.40, p = 0.002).

In T1 offset trials, both the SOA effect (x*(2) = 54.64, p < 0.001; see Table 3.512) and
the interaction between T1 duration and SOA (x*(4) =19.44, p = 0.001) were replicated.
SOA had a significant effect on RT2 for all T1 durations (500 ms: x*(2) = 6.46,
p = 0.039; 1000 ms: x*(2) = 42.82, p < 0.001; 1500 ms: x*(2) = 30.73, p < 0.001;
see Table 3.813). In contrast to Study 1, where this effect was only observed at 1000
and 1500 ms durations, here it was significant across all durations. As in Study 1, the
SOA effect was much stronger in onset trials compared to offset trials (see Table 3.2).
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Figure 3.3: Experiment 2 results: Replication of study 1 and test of introspective awareness of the
PRP effect

A. Objective (solid lines) and introspective (dashed lines) response time to the first (RT1/iT1, grey) and second task
(RT2/iT2) as a function of SOA from T1 onset (x-axis). For iT2 and RT2, trials in which T2 was presented following
T1 onset are represented in red (collapsed across T1 duration), while trials in which T2 was presented following T1
offset are represented in blue. Grey boxes represent T1 stimuli durations. The horizontal dashed line in the upper
left panel mark the mean RT to targets in the Cogitate study.

B. Empirical cumulative distribution function (ECDF) of RT2 and iT2 (solid and dashed lines respectively) separately
for T1 target trials, T1 task-relevant, and T1 task-irrelevant trials. The upper row shows T1 onset-locked trials; the
lower rows display T1 offset-locked trials. For offset trials, each T1 duration is shown separately (second row: 0.5,
third row: 1.0, 4th row: 1.5 s).
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Introspective awareness of the PRP effect

First, we validated participants' introspective duration judgments using a calibration
task in which they estimated the length of a tone presented for a random duration
(20 to 1000 ms) Consistent with previous studies *222, estimated tone duration
was strongly correlated with actual duration (f = 0.91, p < 0.001). Similarly, in the
main experiment, participants' introspective decision times for T2 (iT2) were well
correlated with their reaction times (RT2) (iT2-RT2: r = 0.48, p < 0.001).

For Ti, objective reaction times (RT1) were only available for a few target trials
(~11% of the trials), but despite the limited data, we observed a strong correlation
between iT1 and RT1 (iT1-RT1: r = 0.48, p < 0.001). Consistent with previous studies,
participants underestimated their objective RT2 (B = 0.60, p < 0.001; see Fig. 3.3A),
likely reflecting the delay between perceptual processing and conscious awareness
(Marti et al., 2010). Participants were instructed to report their decision time rather
than their motor response time, as no overt response was required for T1 non-target
trials. This underestimation of RT2 can be partly attributed to the exclusion of the
response execution stages and the delayed onset of conscious experience.

Contrary to our preregistered prediction, we observed a significant interaction
between SOA and stimulus onset/offset (x*(2) = 15.26, p < 0.001; see Table 3.S17).
When analyzing onset and offset separately, this effect was significant only for onset
trials (Onset: x*(2) = 48.33, p < 0.001; Offset: x*(2) = 3.83, p = 0.148; see Tables S18-19
and Fig. 3.3). These findings suggest that participants were partially aware of the PRP
effect at stimulus onset, but only when the effect was strong. However, as shown in
Fig. 3.3A, participants significantly underestimated the slope of RT2 in their
introspective reports. The effect size of SOA on iT2 was much smaller than on RT2
(see Table 3.2).

To quantify this underestimation, we modeled iT2 as a function of the mean RT2
(representing the SOA-related slope) and the trial-by-trial deviation from mean RT2
(representing fluctuations in RT2). Variance partitioning revealed that the RT2 slope
explained only 1.6% of the variance in iT2, while 21.5% was explained by trial-by-trial
RT2 variance. This suggests that participants significantly underestimated the effect
of SOA on their RT2, indicating partial introspective blindness to the PRP effect.

The effect of SOA on iT2 in onset trials appears primarily driven by a significant delay
at SOA o ms. Comparing iT2 across SOAs in onset trials revealed delays only at short
SOAs (0-232 ms: z = 6.10, p < 0.001; 0-466 ms: Z = 5.95, p < 0.001), but no difference
between 232 ms and 466 ms (z = -0.121, p = 1.000) was observed. In contrast, RT2



Investigating timing of conscious experience using a dual-task and quantified introspection | 127

progressively decreased as a function of SOA (0-232 ms: z = 14.28, p < 0.001;
0-466 ms: z = 18.72, p < 0.001; 232-466 ms: z = 4.67, p < 0.001). This dissociation
suggests that the SOA effect on iT2 likely reflects participants' awareness of the
simultaneous presentation of auditory and visual stimuli at SOA o ms.

Interestingly, iT1 was also affected by SOA in onset trials (x*(2) = 30.02, p < 0.001; see
Table 3.S21), despite the fact that RT1 is typically unaftected by SOA in classical PRP
studies (Pashler, 1994). Although we lacked objective RT1 data for comparison, the iT1

effect was driven by longer iT1 at SOA 0 ms (0-232 ms: Z = 4.95, p < 0.001; 0-466 ms:
Z = 4.53, p < 0.001; 232-466 ms: z = -0.39, p = 1.000), further suggesting that
simultaneous stimulus presentation at SOA o ms influenced introspective judgements.

Despite participants' relative blindness to the large SOA effect on their objective
RT, they were aware of the smaller difference associated with T1 task relevance.
As predicted, task relevance significantly affected iT1 in both onset (x*(1) = 189.78,
p < 0.001) and offset trials (x*(2) = 7.25, p = 0.027; see Table 3.S21). Participants were
aware of the increased difficulty in classifying T1 non-target task-relevant stimuli.
Surprisingly, T1 task relevance also influenced iT2 in onset trials (onset: x*(1) = 17.98,
p < 0.001; offset: x*(1) = 4.78, p = 0.092; see Table 3.818), which contradicts the serial
access hypothesis that predicts consistent introspection regardless of T1 processing
duration. These results suggest that participants were indeed aware of some delay in
RT2 caused by the interference regime from T1 processing.

Table 3.2: Experiment 2 magnitude and effect size of the PRP effect

RT2 iT1 iT2
Condition Magnitude [s] Cohen'sd Magnitude[s] Cohen'sd Magnitude[s] Cohen'sd
Targets 0.69 1.41 0.14 0.55 0.07 0.39
Onset - T1 relevant 0.14 0.51 0.02 0.14 0.03 0.16
Onset - T1 irrelevant 0.15 0.61 0.02 0.14 0.04 0.24
Offset - T1 500 ms 0.02 0.08 0.00 0.00 -0.01 -0.03
Offset - T11000 ms 0.06 0.30 -0.02 -0.16 0.00 0.02
Offset - T11500 ms 0.05 0.31 o.01 0.04 0.01 0.07

Differences in RT2, iT1, and iT2 between the shortest and longest SOA. Magnitude indicates the difference in ms,
while Cohen’s d quantifies the effect size between these two SOAs. For non-targets, the PRP effect size was calculated
separately for the onset of the visual stimulus (collapsed across visual stimulus durations) and its offset (collapsed
across task-relevance). For targets, the shortest SOA of the onset was compared to the longest SOA on the offset on the
longest stimulus duration.
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Introspective report reliability can be assessed in the absence of overt report

In our experiment, T1 did not require an overt response on non-target trials,
so iT1 could not be directly validated against an objective RT. According to the
conscious access bottleneck model, participants' introspection of RT should reflect
the combined duration of the central and motor stages. Since participants were
instructed to report only their decision time, excluding the motor stage (which was
absent for T1 non-targets), iT1 should approximate the central stage occupation.

The central stage interference model explains the RT2 delay at short SOA by the
central stage being occupied by the T1 stimulus. A direct prediction of this model is
that iT1 should predict trial-by-trial variability in RT2 during the interference period.
Therefore, we expected the correlation between iT1 and RT2 to be strongest at short
SOA and to weaken as SOA increased.

This prediction was only partially validated. In onset trials, we observed a significant
correlation between iT1 and RT2 (x*(1) = 614.01, p < 0.001; see Table 3.524), but there
was no significant interaction with SOA (x*(2) = 1.34, p = 0.512), suggesting that the
correlation did not decrease as SOA increased. We had predicted that this correlation
would decrease once the interference period ended - when T1 central stage processing
was complete. One possible explanation is that T1 processing lasted longer than
0.466s in this study, which could explain the lack of interaction between iT1 and SOA
in onset trials.

If T1 processing did exceed 0.466s, we would expect an interaction between iT1 and
SOA in offset trials when T1 duration exceeded central stage processing. Consistent
with this, we found a significant three-way interaction between iT1, SOA, and T1
duration (x?*(2) = 13.13, p = 0.011; see Table 3.525) in offset trials. To explore this, we
modeled RT2 as a function of SOA and iT1 separately for each T1 duration in offset-
locked trials. Surprisingly, the interaction between iT1 and SOA was significant only
for intermediate (1000 ms) trials (x*(2) = 11.37, p = 0.003), but not for short (500 ms:
x(2) =2.60, p =0.27) or long trials (1500 ms: x*(2) = 0.45, p = 0.798; see Table 3.526).

These results suggest that T1 processing may have ended between 1.0 and 1.466s.
The absence of an interaction in short T1 trials might indicate that the interference
period was still ongoing by 0.966s (the latest tone onset in offset-locked short trials),
while the lack of interaction in long Ti trials suggests that the interference period
had ended by 1.5s (the earliest tone onset in offset-locked long trials). However, it
is unlikely that T1 processing lasted beyond 1s, as RT1 in target T1 trials averaged
below 1s. These findings may instead reflect a conflation of the effects induced by the
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T1 stimulus disappearance and T1 processing, which could not be separated in this
study, presenting a potential confound in this analysis.

Overall, the introspective task results show that participants were largely unaware of
the PRP effect, despite being sensitive to much smaller differences in their RT. This
supports the idea that participants can only consciously access the T2 stimulus after
completing their decision-making about T1. To further understand this cognitive

bottleneck, we next explored the neural data to identify potential neural correlates of
this cognitive bottleneck.

Neural Substrate of the cognitive bottleneck

Our novel application of the PRP paradigm provided detailed timing information
on processing stages in our visual task, as indicated by its indirect effect on RT2,
even though most T1 trials did not require an overt response. We leveraged findings
from the Cogitate study, which used a similar T1 task and included high-resolution
electrophysiological recordings from epilepsy patients (N=34), to identify potential
brain regions involved in central stage processing »2.

In our dual-task paradigm, we found that non-target, task-relevant stimuli engaged
central processing stages for a longer duration than non-target, task-irrelevant
stimuli. This suggests that the stronger PRP effect observed for task-relevant stimuli
is due to the increased difficulty in discriminating targets from similar non-targets,
rather than simply being an artifact of the dual-task setup.

The original Cogitate study found decoding of T1 stimulus categories (faces/objects
and letters/false-fonts) in brain regions such as the middle and inferior frontal
gyri, under both task-relevant and task-irrelevant conditions. However, that study
did not compare the duration of decoding between these conditions. Our findings,
which showed a longer PRP effect for task-relevant conditions, suggest that central
processing stages are 'occupied’ for a longer period in these conditions. This extended
processing likely correlates with longer decoding times for the stimulus category in
the task relevant trials.

To identify brain regions involved in this extended processing, we re-analyzed the
Cogitate data, focusing on differences in decoding duration between task-relevant
and irrelevant conditions. We first confirmed that task relevance in the Cogitate
study involved higher cognitive load by examining pupil dilation as a proxy %, which
was larger in task-relevant trials, consistent with our dual-task findings and other
PRP studies (see Fig. 3.56).
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Next, to assess the 'occupation' of brain regions by specific perceptual content,
we focused on decoding faces vs. objects. We selected this contrast because it had
the highest decoding accuracy in the Cogitate study, maximizing our ability to
detect differences between task relevance conditions. We performed time-resolved
decoding of the high-gamma band across channels within specific brain regions,
comparing task-relevant and irrelevant trials. Using a cluster-based permutation
test, we identified brain regions with sustained differences in decoding accuracy
between conditions (see methods).

Decoding of faces and objects occurred in the occipital, temporal, parietal, and
prefrontal cortices, in both task-relevant and irrelevant conditions (Fig. 3.S4), with
peak decoding accuracy similar across tasks. Using a stringent statistical threshold
(p < 0.01) when comparing the decoding AUC between task-relevant and irrelevant
trials, decoding was sustained for longer in task-relevant conditions specifically in the
middle and inferior frontal gyri, inferior frontal sulci, and the fusiform gyrus (Fig. 3.4).
Interestingly, extended decoding occurred earlier in frontal regions than in the
fusiform gyrus. When applying a conventional threshold (p < 0.05), additional regions
showed significant differences between task-relevant and irrelevant conditions,
though most appeared in late time windows, beyond stimulus presentation (see
Fig. 3.S8). Notably, at this threshold, the occipital pole exhibited more protruded
representation of stimulus category for task-relevant stimuli following stimulus
onset, although at a larger latency than what is observed in frontal regions. These
findings suggest that the middle and inferior frontal gyri process sensory inputs
for varying durations depending on the task context, highlighting their role in
distinguishing targets from non-targets and in central-stage processing.
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Figure 3.4: Test of hypothesis that Global Workspace access exists for task-irrelevant stimuli, but lasts
longer for task-relevant stimuli

Middle panel: Destrieux parcels showing a significant difference between the task-relevant and irrelevant
conditions. The colors indicate the duration of higher decoding in the task-relevant condition.

Outer panels: Time-resolved ROC-AUC values in the high gamma band for face/object classification in the task-
relevant (green) and task-irrelevant (brown) trials in regions of interest (ROI) showing significantly higher decoding
in the task-relevant compared to the irrelevant condition (40ms uniform kernel smoothing, shading around curves:
95% confidence intervals, ved shadings; p < 0.01, cluster-based permutation test). "N" indicates the number of
channels. Abbreviations: MFG (middle frontal gyrus), IFS (inferior frontal sulcus), IFG (inferior frontal gyrus),
FG (fusiform gyrus).Upper middle panel: channel counts for each parcel of the Destrieux atlas (white
represents parcels with fewer than 10 channels, which were excluded from the analysis).

Discussion

In the present study, we investigated the temporal dynamics of conscious experience
by examining the Psychological Refractory Period (PRP) effect in response to visual
stimuli. Previous studies have found transient activations only at stimulus onset
in the PFC, but not at stimulus offset »12¢127.22¢. While these results diverge from
the original GNWT prediction that conscious refreshes of the workspace occur at
both stimulus onset and offset, the lack of an offset response could be explained
by participants not consciously attending to the disappearance of the stimuli. This
hypothesis was not tested in earlier studies, as they did not assess subjects' awareness
of stimulus offset. Here, we employed the PRP effect and quantified introspection
to directly evaluate the timing of access consciousness with respect to both stimulus
onset and offset.
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Our findings revealed a robust PRP effect at stimulus onset, supporting the GNWT
prediction of conscious processing, even for task-irrelevant stimuli. While task
relevance extended the duration of this processing, the effect remained transient,
independent of stimulus duration, indicating that the workspace did not remain
occupied for the entire duration of stimulus display. A small PRP effect was observed
at stimulus offset, but it was not consistent, likely reflecting brief, occasional
processing of that event. These results suggest that conscious processing can be
transient and decoupled from visual presentation dynamics, aligning with previous
findings of no sustained PFC activation or offset ignition "3126:127,232,

Moreover, our findings reinforces the idea that the PRP represents a bottleneck
in conscious processing, even for task-free events like stimulus disappearance,
positioning the PRP effect as a powerful tool for studying conscious access without
relying on overt reports, minimizing report-related confounds.

Transient conscious processing of visual stimuli

In our study, participants performed a go/no-go task with visual stimuli, and we
observed a PRP effect in no-go trials (where no behavioural response is required),
consistent with previous studies »¢**. This finding indicates that motor planning is
not the sole source of the interference between T1 and T2. As expected, T1 relevance
modulated the magnitude of the PRP effect, with higher task relevance leading
to longer processing of the T1 stimulus. This effect aligns with the central stage
interference model and previous studies showing that manipulations affecting
central stage processing duration have an additive effect on response times at short
SOAs 97242,

Our re-analysis of the Cogitate iEEG data *** revealed that task relevance extended
processing duration in a few brain regions, particularly in the PFC, supporting
the hypothesis that the PRP effect is influenced by task relevance. These findings
are consistent with previous PRP studies that link central-stage processing to the
PFC 220231 and further highlight its role in conscious processing, as suggested by
the GNWT 2.

Importantly, while the relevance of T1 stimulus influenced the magnitude of the
PRP effect, the duration of T1 stimuli did not. This supports the GNWT prediction
in the Cogitate study *** that conscious experience is transient and not sustained
for the entire stimulus duration when participants are not required to attend to
it. The duration-invariant transient activation in the PFC observed in previous
studies 126127224 may thus reflect the dynamics of conscious experience, further
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suggesting that conscious processing is decoupled from the duration of visual
stimulus presentation, as initially proposed by GNWT 2,

Conscious processing of visual stimuli disappearance

A key aspect of our design involved presenting T2 stimuli at varying SOAs relative to
T1 disappearance (offset trials). Based on the absence of fronto-parietal ignition at
visual stimulus offset in previous studies *3%2¢12722¢ we hypothesized that participants

would not consciously process T1 disappearance, predicting no PRP effect. Contrary
to our prediction, we found a significant decrease in RT2 with increasing SOA
following T1 disappearance. Although this effect was much smaller than the PRP
effect observed around T1 onset, it calls for an explanation.

One possible interpretation is that the shorter RT2 at longer SOAs does not reflect
a delay in RT2 at short SOAs, as a genuine PRP effect would predict, but rather a
speeding up of RT2 as SOA increases, due to the increased probability of T2
appearance. Studies using a foreperiod design, where a target occurs at varying
latencies from a cue, have shown that RT decreases with increased SOA, as the
likelihood of the target appearing next increases »*+2#. In our task, T1 offset might
have acted as a cue, increasing preparedness and speeding RT2 at longer SOAs.

However, one observation contradicts this explanation: RT2 at short SOAs in offset
trials with long T1 duration was slower than RT2 at large SOAs in onset trials.
This observation suggests that T1 disappearance did delay the auditory stimulus
processing, consistent with a PRP effect. It may imply that, contrary to our
hypothesis, participants did consciously experience the disappearance of the visual
stimulus in at least some trials. Interestingly, the impact on T2 processing caused
by T1 disappearance depended on the duration of T1, with no effect observed when
T1 lasted only 0.5 seconds. This may be due to differences in attention driven by how
predictable T1's disappearance was based on its duration. We used three discrete
durations for the T1 stimuli (0.5, 1, and 1.5 s), which implies that as time elapsed,
T1 offset became increasingly likely. Under the predictive processing framework,
predictable events benefit from strong endogenous attention *+** and previous
studies have shown that increased expectations enhance neural representations ¢
and facilitate conscious perception . Therefore, the increased predictability of
longer T1 stimuli may have made their disappearance more likely to be consciously
experienced compared to shorter T1 stimuli.

If participants sometimes consciously experienced the offset of T1 stimuli, why did
previous studies fail to detect fronto-parietal ignition for this event? One explanation
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is that the auditory task in our study made T1 disappearance more relevant, possibly
serving as a cue for T2 and drawing more attention. This, combined with the
predictability of the offset in longer T1 trials, could have increased the likelihood of
the event being consciously experienced compared to previous studies. Alternatively,
the relatively small PRP effect observed at T1 offset suggests that conscious processing
of stimulus disappearance was either brief and/or sporadic across trials. As a result,
PFC ignition may have occurred in too few trials to be detectable in neural recordings
averaged across all trials.

Introspective awareness of the PRP Effect

Previous studies suggest that participants are introspectively blind to the PRP
effect 53222 -- even though objective RT differences are in the hundreds of milliseconds,
they are only aware of the duration of the central stage of conscious decision making,
not of the delays due to stimuli waiting in a preconscious buffer. This has been
interpreted as evidence in favor of the serial nature of conscious access, implying that
participants only become aware of the second stimulus after completing the central
stage processing of the first.

Our results differ, as we observed that a small significant decrease in both iT1 and
iT2 as SOA increased. Note that this effect was driven primarily by the shortest SOA
(o ms). Participants reported longer decision times when T1 and T2 were presented
simultaneously, with no significant differences in iT2 at later SOAs (232 and 466 ms).
This suggests that the impact of SOA on iT1 and iT2 is limited to simultaneous
presentation, an effect that may stem from increased central competition at short
SOAs. A previous study showed that without specific instructions, when visual
and auditory stimuli were presented simultaneously, participants suffer from an
additional central-stage slowing down due to task setting factors, i.e. the difficulty
of deciding which stimulus to respond to >. Here, we explicitly instructed subjects to
always respond to the visual stimulus first. That instruction could have been harder
to maintain when a competing auditory stimulus was simultaneously presented. This
effect may be compounded by the fact that auditory stimuli are typically processed
faster than visual stimuli, especially in our task where visual stimuli were more
complex and varied than the auditory stimuli, thereby increasing the competition for
central resources.

Alternatively, the discrepancy may be related to task order. In several previous
studies 222, T1 was auditory and T2 was visual, whereas in our study, T1 was visual
and T2 was auditory. Several studies suggest that introspective blindness to the
PRP effect occurs when T1 is auditory rather than visual 2##-2°, Bryce and Bratzke 2
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suggest that auditory T2 allows participants to better introspect RT delays due to
the sequence of sounds associated with the stimuli themselves but also the sounds
elicited by button presses. In our task, non-target trials only involved the tone and
the T2 response "click," which might have helped participants become aware of some
delays in RT2 at short SOA. While our experiment cannot rule out this account, our
findings, like others 272" indicate that despite a small effect of SOA on introspective
time, participants still drastically underestimate the PRP effect, suggesting they have
limited awareness of it.

PRP effect and conscious processing

Studies on the related phenomenon of the “attentional blink” (AB) have shown
that merely consciously experiencing the first stimulus (T1) is sufficient to induce
an attentional blink of a secondary stimulus. This finding indicates that the AB
effect reflects a bottleneck in conscious processing * equivalent to the processing
bottleneck in the PRP effect 26, When a second stimulus (T2) is presented while the
first is still being processed, it is stored in a decaying sensory buffer. If T1 conscious
processing finishes before T2 decays, T2 will be processed at a delay; otherwise, it
will be missed (i.e. not consciously experienced) 2. In our studies, we observed that
the PRP effect could be induced by events that are not associated with any tasks,
such as the disappearance of the visual stimulus. This finding aligns with previous
research showing that the PRP effect can occur when no task is associated with the T1
stimulus 2. This further supports the interpretation that the PRP effect reflects the
serial nature of conscious processing.

Some may argue that the PRP effect does not reflect the serial nature of conscious
experience but instead, the cognitive processes associated with accessing the content
of our conscious experience »2. Under this view, our results might indicate that
participants briefly access the content of their consciousness following the onset
of the stimulus, while their conscious experience may continue beyond this initial
access. If this is the case, the period during which the stimulus remains on the
screen after the content has been accessed could constitute a state of phenomenal
consciousness devoid of cognitive confounds. The distinction between phenomenal
and access consciousness remains highly debated, however, as does the issue of
whether consciousness can occur in the absence of cognitive processes 3. The
hypothesis that participants may have remained phenomenally conscious following
conscious access, even in parallel to performing a secondary task, is untestable in the
current study.
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On a more positive note, the use of the PRP effect as a marker for conscious access
constitutes a useful methodology for probing conscious experience in a time-resolve
manner. In recent years, the reliance on reports to infer whether a stimulus was
consciously experienced has been criticized, as the act of reporting itself introduces
cognitive confounds related to the need to report *+-#. Consequently, several no-
report paradigms have emerged to investigate the neural correlates of consciousness
by relying on alternative markers of conscious experience such as eye movements or
delayed reports #5525 Such paradigms have however also received criticism, due
to the difficulty of establishing whether content is experienced in the absence of a
trial-by-trial report 7. The PRP effect might offer a solution to these controversies.
If serial processing is unique to conscious access, the PRP effect may constitute
a reliable marker for conscious access which can be applied on a trial-by-trial
basis and in a fully time-resolved fashion, without inducing additional cognitive
confounds regarding the stimulus of interest. As such, the novel application of the
PRP as a marker for conscious access holds significant potential in advancing our
understanding of the neural underpinning of consciousness.

Methods

The experimental procedure, selection criteria and main hypothesis were pre-
registered and can be accessed in OSF (https://osf.io/krjh7). Below we provide
a summary of the experimental protocol. Further details are contained in
the preregistration.

Study 1

Participants

Twenty-one adults (13 females, 25.18 + 3.97 years old) with no hearing impairment
(self-reported) and normal or corrected-to-normal vision participated in exchange
for €14/hour. Experimental procedures were approved by the Ethics Council of the
Max Planck Society and conducted in accordance with the Declaration of Helsinki.
Participants provided written informed consent before the study. All subjects were
included in the analysis, as none met the pre-registered exclusion criteria of low
mean performance in the T1 visual task (<80% hits or >20% false alarms) or the T2
auditory task (<80% accuracy).
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Dual task

Stimuli and procedure

To evaluate whether the appearance and disappearance of a visual stimulus perturb
the processing of a subsequent auditory stimulus, subjects participated in a dual-
task paradigm (visual and auditory).

Task 1 (T1): We replicated the design from the ***. Grayscale images from four
categories (faces, objects, letters, and false-fonts, referred to as T1 categories)
were presented individually for three different durations (500, 1000, and 1500 ms,
T1 duration), followed by a blank screen. Each trial lasted 2 seconds, with an added
random jitter (mean of 1.0 seconds, range 0.7-2.0 seconds) to avoid periodic
presentation. Half of the stimuli were displayed in side-view (+/-30° rotation), and
half in front-view (T1 orientation). To manipulate task demands, participants were
instructed to detect the rare occurrence of specific faces and objects or specific letters
and false-fonts, depending on the experimental block, regardless of their orientation
and duration. Within each block, stimuli were categorised into three task relevance
conditions (T1 relevance): T1 target (stimuli to detect), T1 relevant (non-target stimuli
of the same category as targets but different identity), and T1 irrelevant (non-target
stimuli of a different category than targets). The task relevance manipulation was
orthogonal to the stimulus category: in half the blocks, targets were faces and objects;
in the other half, targets were letters and false-fonts.

Task 2 (T2): This consisted of a pitch discrimination task with high (1100 Hz) and low
(1000 Hz) pitch tones (82 ms duration). These tones (T2 pitch) were presented at four
stimulus onset asynchronies (SOA: 0, 116, 232, or 466ms) relative to the onset or offset
of the T1visual stimulus. Thus, offset T2 trials were presented at 12 different latencies
from T1 onset, depending on T1 duration (500, 1000 and 1500 ms). Participants were
instructed to respond as quickly and accurately as possible, making a decision on the
T1 stimulus (go/no-go) before responding to the T2 task.

A total of 2,160 trials were presented, divided into 60 experimental blocks. At the
beginning of each block, a target screen was shown displaying 2 target stimuli (a face
and anobjectoraletterand a false-font) in three different orientations (fig. 3.14, target
screen). Each block consisted of 34-38 trials, including 2-6 targets. The remaining
32 trials comprised 16 T1 relevant and 16 T1 irrelevant trials (eight per category).
The trial order was randomised and balanced with respect to task relevance, visual
stimulus duration, orientation, category, SOAs, onset/offset, and auditory stimulus
pitch frequency. Each unique combination of visual stimulus duration, SOA, and
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onset/offset was presented 10 times for target trials and 40 times for non-target task-
relevant and task-irrelevant trials.

Before the experiment, participants performed practice blocks: first only T2, then
only T1, and finally both tasks together. Each practice block consisted of 40 trials.
The entire experiment lasted roughly three hours, with participants completing it in
a single session, including a mandatory break of at least 10 minutes halfway through.
At the end of the experiment, participants filled a questionnaire asking participants
if they noticed the various experimental manipulations and whether they experienced
difficulty performing the task (see supplementary).

The experiment was programmed and controlled using Psychtoolbox-3 extensions %,
running in MATLAB *¢ on Windows 10 Enterprise (64-bit). Visual stimuli were
displayed on a BenQ XL2420Z 24-inch monitor at a 60Hz refresh rate, covering a
6° x 6° visual angle. Tones were played on dual speakers (Neumann, KH 120 A) at a
constant volume across participants (74 dB). Responses were collected using a Cedrus
RB-844 response box (mean latency of 5.13 ms + 0.7 ms, measured for 100 responses).
Participants used the index finger of one hand to respond to T1 and the index and
thumb of the other hand to respond to T2, with hand attribution counterbalanced
across subjects. Reaction times to both T1 (RT1) and T2 (RT2) stimuli were recorded.

Throughout the experiment, pupil and gaze data were continuously acquired
using a high-speed, video-based eye tracker (EyeLink 1000 Plus, SR Research),
sampled binocularly at 500 Hz. Participants' heads were stabilised using a chin rest
(70 cm from the display) to ensure a stable head position. A 13 points calibration was
performed at the beginning of the study, after the break or whenever participants
displaced their heads from the chin rest.

Trial exclusion

Following preregistered criteria (https://osf.io/krjh7), trials were excluded if: no
responses or incorrect responses to T2 were logged, if reaction times (RT) to T2 were
shorter than 100 ms, if a false alarm was recorded to T1 and/or if responses to T2
preceded those to T1.

Reaction time predictions and analysis

Analyses were performed in R »7 using the lme4 extension ?*. All predictions and
analyses described below were pre-registered (https://osf.io/krjh7), except if stated
otherwise. T1 Target trials were analysed and treated separately from non-target
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T1 trials to prevent contamination of over motor responses, which would affect
comparison between task relevant and task irrelevant conditions.

We modelled reaction times to the auditory task (RT2) using a gamma distribution
with an identity link function > in a generalised linear mixed model (GLMM). RT2
was modelled as a function of SOA, onset/offset (whether the auditory stimuli was
locked to the onset or offset of the T1 stimuli) and T1 relevance as fixed effects

(including interaction terms). We modelled inter-individual and inter-duration
differences in slope and intercept for each fixed effects and their interaction as
random effects, resulting in the following model:

RT2 ~ SOA x Onset
of fset

+ (SOA X Onset/of fset x T1 relevance | Subject)

X T1 relevance

+ (SOA x Onset/of fset X T1 relevance| Duration)

®

We hypothesised that the workspace was occupied only by the appearance of the
visual stimulus, not by its disappearance (offset). Accordingly, we predicted a main
effect of SOA in model (1), with an interaction between SOA and onset/offset factors,
capturing the lack of PRP effect in offsert trials.

To further test the prediction that the disappearance of the visual stimulus did not
occupy the workspace, we modelled RT2 in offset trials separately, as a function of
SOA, duration and T1 task relevance:

RT2,ffser ~ SOA X T1relevance X T1 Duration +

(SOA X T1 Task relevance X T1 Duration | Subject)
(2)

We predicted that no effect of SOA on RT2 in offset trials. To account for T1 duration,
which influences the latency of T2 presentation, we included it as a fixed effect in the
model. In short T1 trials, offset T2 stimuli were presented at 500 ms after T1 onset.
If the workspace remained occupied by T1 until 500 ms, delay in RT2 at short SOAs
might reflect lingering of T1 processing rather than T2 disappearance. Therefore, we
predicted that an interaction between SOA and T1 duration might be observed. If the
effect of SOA reflects a lingering of T1 processing, the effect should decrease with
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increased T1 duration. We tested this by performing post-hoc pairwise comparisons
of estimated marginal means using the "emmeans" package with Bonferroni
correction. Observing a significant interaction, we further modelled RT2 of offset
trials separately for each T1 duration (exploratory).

Finally, we hypothesised that in onset trials, the workspace should be occupied by
relevant T1 trials compared to the irrelevant ones, as task-relevant trials required
more extensive processing to decide whether a response was needed. Thus, we
predicted a larger SOA effect for task-relevant T1 trials. To test this, we modelled RT2
in onset trials as a function of SOA and task relevance:

RT2,pset ~ SOA X T1relevance + (SOA x T'1 Task relevance | Subject)

(3)

We expected a significant main effect of T1 task relevance and/or a significant
interaction between SOA and T1 relevance. For all models, p-values were obtained by
likelihood-ratio chi square (x?) tests of the full model against the model without the
respective effect.

In addition to the modelling approach, we computed the PRP effect size using the
Cohen’s d:

M2 - M1
Cohen's d = L2~V
Pooled SD

4)

where M1 and M2 are the mean RT2 for the short (oms) and longest SOAs (466ms)
respectively, Pooled SD is the standard deviation of the combined sample. Cohen's d
was computed separately for onset and offset trials. For onset trials, effect size was
computed across T1 durations separately for each T1 task relevance condition while
for offset trials, effect sizes were computed across T1 task relevance conditions
separately for each T1 duration. Moreover, for target trials, the interference regime
seemed to persist beyond the visual stimulus duration; consequently, the shortest
SOA of the onset was compared to the longest SOA and longest duration, time-locked
to offset.
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Eye-tracking analysis

Preprocessing

Theeye-trackingdatawereanalysed using pythonv3.12**and the MNE toolboxv1.6.1%¢.
Blinks' periods were identified using the algorithm described in *7. This method
detects the onset and offset of blinks based on stereotypical pupillometry patterns
associated with the occlusion of the pupil by the eyelid preceding and following

a blink. For blinked segments lasting 1.5s or less, pupil size and gaze position
missing samples were reconstructed using linear interpolation (mne.preprocessing.
eyetracking.interpolate_blinks) with padding of 0.02 around blink event (remaining
segments were discarded from further analysis). Interpolated data were epoched
from -0.3 to 2.7s around the visual stimuli onsets. Epochs data were baseline
corrected (divisive baseline). The same exclusion criterion as described for the
reaction time data were applied. In addition, we removed trials in which the z-scored
mean baseline amplitude (-0.2 to 0.0s) was superior to 2, as recommended by Mathot
and Vilotijevic > and trials in which participants spent less than 50% fixating within
a 2° of visual angle from the centre of the screen. Two participants were removed
from subsequent analysis as the total number of excluded trials exceeded 50%.

Task relevance and cognitive load

To test for an increase in cognitive load associated with the task relevance
manipulation, we compared the pupil size between task relevant and irrelevant trials
using a cluster-based permutation test *'. The comparison was performed separately
for trials where the tone was presented relative to the onset and offset, across all
stimuli durations. Importantly, because the relevance manipulation pertained to T1,
the data were aligned to the onset of the T1 stimulus, both in trials where the tones
were presented relative to the onset and offset. We predicted a larger pupil size
for task relevant compared to task irrelevant trials in both onset and offset locked
trials (exploratory).

PRP effect in the pupil response

To investigate the manifestation of a PRP effect in the pupil size, we computed
the evoked pupil response of each subject by averaging the pupil size across trials
separately for each SOA, T1 duration and onset/offset trials. We then extracted the
latency () of the evoked pupil response 90% peak »* relative to the auditory stimuli
onsets. The extracted latencies were modelled using a linear mixed model:

T~ SOA X Onset/of fset X Task relevance X duration + (1| Subject)

(5)
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The random slopes for each factor had to be removed due to convergence issues. The
latencies were then modelled separately for the onset and offset locked trials. The
expected outcome was the same as described in the behavioural data.

We pre-registered an attempt to deconvolve the pupil response into latent
components associated with the fast-paced events in each trial, following the method
proposed by 2. However, this analysis was unsuccessful since the events in our design
occurred too closely in time, preventing the algorithm from accurately attributing
the latent components to specific events. Consequently, we failed to resolve the
deconvolved components, and thus the results are not reported.

Experiment 2

Participants

11 participants (6 females, aged 24.18 + 2.17 years old) from the previous cohort were
reinvited to participate for a compensation of €14/h. Experimental procedures were
approved by the Ethics Council of the Max Planck Society and followed the guidelines
from the declaration of Helsinki. Participants provided written informed consent
before the study.

Stimuli and procedure

Stimuli, experimental procedure and apparatus were comparable to those used in
study 1 with two exceptions: 1) three (0, 116, and 466ms) as opposed to four SOAs
were used to decrease the overall duration of the experiment, 2) An introspective task
was included in addition to a visual target detection task and a pitch discrimination
task. Specifically, at the end of each trial, participants were prompted to report their
introspective evaluation of their decision time to T1 and T2 i.e., estimate the time
between the appearance of the stimulus and their decision to react rather than when
a button press was executed as most trials did not require a response to T1. On each
trial, shortened instructions were displayed to remind the participants of the task:
(1) “Visual task duration?”, and (2) “Auditory task duration?”. Participants used a dial
(Griffin PowerMate USB) to control a cursor on a linear scale (o-1s, fig. 3.1) presented
in the middle of the screen. Subjects operated the dial with one hand, and used the
other hand to respond to the visual T1 (ring finger), and auditory T2 (index finger
for high pitch, and thumb for low pitch). The hand assignment was counterbalanced
across participants.

Participants first conducted a duration estimation task whose purpose was to
determine the fidelity of their duration estimation judgments. They were presented
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binaurally with a single tone (800Hz) of variable duration (0.2 - 1s, 10ms interval),
at the same loudness as during the main task, while fixating on a grey screen with a
central fixation cross. At the end of each trial, subjects reported the duration of the
tone on an analog scale using a response dial. Participants received visual feedback
displaying their estimated duration against the true duration of the tone on the
screen. They were also informed if their estimates were accurate (<2oms estimation
error), too short or too long by displaying ‘Well done!’, ‘Your estimate was too short!’,

‘Your estimate was too long!’ respectively. 100 stimuli of different durations were
presented in random order.

A total of 972 were presented to avoid exhaustion due to addition of the introspective
task. 24 trials were presented per unique combination of T1 duration, orientation,
category, task relevance, SOA and onset/offset for the T1 relevant/irrelevant condition
and 6 times for T1 target condition. Subjects performed 24 blocks. Each block
consisted of 38-44 trials (2-6 targets, 18 T1 relevant, 18 T1irrelevant trials). Participants
were reminded of the T1 target identities midway in the block, to avoid forgetting
due to the increased block length. The experiment was divided into 2 sessions of
12 blocks each. A session lasted approximately 2h. A questionnaire was administered
at the end of the second session asking participants whether they noticed the various
experimental manipulations and whether they experienced difficulty performing the
task (see supplementary).

Trial exclusion
Same exclusion criteria as in study 1 were used. One subject was excluded due to low
T2 accuracy (<80%), resulting in a total sample of 10 subjects.

Reaction times (RT) and introspective Time (iT) analysis and predictions

The same modelling procedure as in the first study was applied to investigate
the effect of SOA, task relevance and onset/offset on RT2, with the same expected
outcome. These investigations constitute a replication of the first study, albeit with
a lower sample size (N=10 instead of N=21). We therefore predicted (preregistered)
that the analyses of RT2 in the second study should confirm the results of the first
study. Two additional variables were measured in this experiment: the introspective
decision time to the visual and auditory stimuli (iT1 and iT2, respectively). According
to the GNWT, participants should only be able to introspect about the duration for
which a given content was processed in the central stage. Accordingly, while iT should
to some extent be sensitive to variation in RT, the delay in RT2 at short SOA should
not be reflected in iT, as this delay reflects a delay in conscious processing of T2.
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To test this, we derived additional predictions of the iT1 and iT2 patterns based on
our experimental design, which were tested using R >7 and the Ime4 extension **.
All predictions and analyses described below were pre-registered, except if stated
otherwise (https://ostf.io/krjh7). As for previous models, both iT and RT data were
modelled using a gamma distribution with an identity link function.

We investigated the correlation between iT and objective RT for each task separately.
We z-scored RT and iT measures within subjects and then applied Pearson correlation
coefficient () between iT1-RT1and iT2-RT2, respectively. For iT1-RT1, the analysis was
restricted to T1 target trials as only those required a response. In line with previous
studies *?22, we predicted that participants should accurately introspect on the time
they required to reach a decision and therefore, iT should be strongly correlated
with RT both for T1 and T2. However, if introspection is limited to the central stage,
participants should underestimate RT due to the omission of sensory and motor
stages in the introspective ratings, as shown by . To assess whether participants
underestimated their objective reaction time, we modelled RT2 as a function of iT2
(following centering of iT2 by the population mean) and investigated the significance
of the intercept.

In addition, iT2 were modelled in the same fashion as RT2 to investigate the effects of
our experimental manipulations on introspective rating of decision time:

iT2 ~SOA X Onset/of fset x T1 relevance
+ (SOA X Onset/of fset X T1 relevance | Subject)

+ (SOA X Onset/of fset x T1 relevance | Duration)

(6

As the delay in RT2 is thought to reflect a delay in conscious processing of T2
in consciousness and because participants can only introspect about conscious
processes, we predicted that there will not be any effect of SOA on iT2. As the full
model revealed a main effect of SOA on iT2, we investigated the effect of SOA
separately for onset and offset trials separately:

iT2onset | offset ~ SOA X Duration X T1 relevance

+ (SOA x duration x T1 relevance | Subject)

(7)
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iT1 was modelled in the same way. Typically, the PRP effect is characterised by a delay
in RT2, while T1 processing remains constant across SOAs **. In our experiment,
participants did not provide an overt response to T1 in most of the trials. Nonetheless,
participants should be able to report the time it took them to decide not to reply once
they gain awareness of a new stimulus. We predicted that iT1 should not be impacted
by SOA. Importantly, we further hypothesised that our manipulation of T1 task
relevance should impact duration of conscious processing: a stimulus of the same

category as the target must be processed for longer than a stimulus of a different
condition. We therefore predicted that participants should be able to perceive a
difference in their decision time between task relevance conditions and we expected
a main effect of this factor.

Furthermore, according to GNWT, the delay in T2 processing at short latencies should
be explained by a transient occupation of the global workspace by T1. On the other
hand, introspective report of decision time for each content arguably constitutes a
quantification of the workspace occupation by a given content. If that is the case,
RT2 should be tightly correlated with iT1 at short SOAs. To test this hypothesis, we
added iT1 as a predictor in the RT2 model described in Eq 1. We predicted that there
should be an interaction between iT1 and SOA, reflecting a stronger effect of iT1 at
short SOAs, decreasing with increased SOA. We further modelled RT2 as a function
of iT1 separately for onset and offset trials.

Cogitate iEEG data

While we could not directly test the role of the PFC in the cognitive bottleneck
associated with the PRP effect, we conducted a reanalysis of the Cogitate 2
intracranial encephalography (iEEG) and eye tracking dataset. The similarity of
their task with our T1 task allowed us to leverage this data to probe the neural
underpinnings of our behavioural findings.

Participants

32 (18 females, aged 31.17 + 13.45 years old) patients with pharmaco-resistant epilepsy
who were monitored for epilepsy seizure localization were included in the analysis.
Participants provided informed consent for their participation in the Cogitate study.
iEEG data from a total of 4057 electrodes were collected across patients (1238 surface,
2819 depths). Three subjects were excluded from the analysis as they did not complete
the entire study, resulting in a total of 29 subjects and 3613 (1070 surface) electrodes.
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Stimuli and procedure

The experimental design of the original study was the same as our T1 task: grayscale
images of 4 different categories (faces, objects, letters and false-fonts) presented
for 3 durations (500, 1000 and 1500 ms) in 3 different orientations (half in centre
orientation, quarter left, quarter right, +30°). A blank screen was presented in
between each stimulus, such that each trial lasted for 2s with a jittered inter-trial
interval of 0.4s on average (truncated exponential distribution between 0.2 and
2.08) to avoid periodic stimulus onset. Participants had to detect infrequent target
stimuli (~11%).

Specific targets (a face and an object, or a letter and false-font) were presented at
the beginning of each block. A block included 32 non-target trials (8 per category)
and 2-6 target trials. Non-target trials consisted of 16 task-relevant (same category
as targets) and 16 task-irrelevant stimuli (different category from the targets). A total
of 720 trials were presented divided across 20 blocks. Trials were balanced across
category and task relevance conditions (80 trials per combination of task relevance
and category).

Eye-tracking data

The eye-tracking data were collected using an Eyelink 1000+ or a Tobii 4C eye tracker.
Due to the lower sampling rate (9oHz) and signal quality of the Tobii 4C, as well as
technical issues leading to the lack of pupil data in some of the subjects whose data
were collected using the Tobii, we only analysed the data collected using the Eyelink.
Out of the 29 subjects, eye-tracking data were collected from 14 subjects using the
Eyelink. Out of those, data from 2 subjects could not be recorded due to technical
issues during recordings in the clinic. Additionally, data from 2 participants were
rejected as the validation of the calibration was not performed and one due to
loss of tracking during the recording, resulting in a total of 9 subjects. The same
preprocessing pipeline was applied as for the PRP study. Finally, we investigated the
difference in pupil dilation between the task relevant and irrelevant trials in a time-
resolved fashion using a cluster based permutation test as described in section task
relevance and cognitive load.

iEEG preprocessing

We used the same preprocessing pipeline as described in ?*. The scripts can be
retrieved from https://github.com/Cogitate-consortium/iEEG-data-release. First,
data were downsampled to 512Hz and detrended. Channels marked by the
epileptologist as epileptic onset zones and channels showing no signal or high level of
noise (characterised by visual inspection) were discarded from further analysis. The
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remaining 3156 channels (981 surface) were notch filtered at 60Hz (and harmonics)
using a one pass, zero phase non-causal band-stop FIR filter to remove line noise.
Channels were then re-referenced using a Laplacian scheme, subtracting the average
activation of the two nearest channels on both sides from each channel within the
same implant %, Contacts located at the edge of shafts, strips and grids were
re-referenced using a bipolar scheme (subtracting the average of one neighbour
only). The high gamma (HG) signal was then calculated as follows: the signal was

bandpass filtered in 10 Hz frequency bins from 70 to 150 Hz (70-80 to 140-150Hz).
For each frequency bin, the absolute of the Hilbert transform was computed to
obtain the instantaneous amplitude and normalised by dividing each time point by
the average across the entire recording to account for the 1/f power spectrum profile.
The normalised envelopes were averaged across frequency bins to produce a single
HG envelope time series. The signal was segmented in epochs from -1 to 2.5s from
stimulus onset. Due to the variety in electrode coverage across participants, all
channels were combined into a “super-subject”. To that end, we first ensured that the
trial matrices were equated across subjects and then combined all collected channels
in a single subject.

Category decoding analysis

We hypothesised that task-relevant tasks require deeper central stage processing to
decide on the appropriate behavioural response, resulting in a protruded PRP effect.
Previous studies suggest that central stage processing occurs in the PFC. Importantly,
the difference in central stage processing duration between task relevance conditions
is not exclusive to dual tasks; it should also be observed when the T1 task is performed
in isolation, as is the case in the Cogitate study. To explore this possibility, we used
time-resolved multivariate patterns decoding of face/object category as a proxy for
the timespan for which a given brain region processes perceptual information.

Specifically, we use a support vector machine (SVM) classifier to decode faces from
objects separately for task relevant and irrelevant trials. SVW was performed per
cortical label of the Destrieux atlas 2. The following cortical labels contained less
than 10 electrodes each and where omitted from the analysis: G_and_S_paracentral,
G_cingul-Post-ventral, G_cuneus, Lat_Fis-ant-Horizont, Lat_Fis-ant-Vertical,
S_cingul-Marginalis, S_collat_transv_post, S_interm_prim-Jensen, S_oc_middle_
and_Lunatus, S_oc_sup_and_transversal, S_pericallosal, S_precentral-sup-part,
S_suborbital, S_temporal_transverse, G and_S_frontomargin, G_subcallosal (see fig 3.4,
middle panel). We limited our analysis to faces/objects comparisons as these were
found to show the highest decoding accuracy in the Cogitate across all regions
investigated ?*%. After extracting trials in which either a face or an object were
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presented (80 trials each), we first averaged the HG signal in 0.01s non-overlapping
window to smooth the data. We then used a time-resolved support vector machine
(SVM) classifier to decode faces from objects with 5 fold cross-validation. The
decoding accuracy was averaged across folds. We repeated this procedure (pseudo
trials computations and classification) 5 times to avoid any bias from random splits
in the cross-fold validation. The average decoding accuracy in each condition was
obtained by averaging across folds and iterations.

Statistical significance of the difference in accuracy between task-relevant and
irrelevant trials was obtained using a permutation test by shuffling category labels
10,000 times and repeating the decoding analysis. We corrected for multiple
comparisons using cluster-based correction (cluster mass inference with cluster
forming threshold as p < 0.05, 27201202
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Supplementary
Study 1

Behavioural results:
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Supplementary figure 3.S1: Study 1 behavioural performance and fixation

A. Participants behavioural performance and reaction time to each task in the first experiment. The left panel shows
participants' behavioural performance in the first and second task. For T1, the &’ to each stimulus category is
displayed. For T2, the d’ depicts the sensitivity in discrimination between high and low pitch sound and the 8
depicts whether participants' responses are biassed towards one or the other response (B=1 indicates no bias). The
right panel depicts the reaction time to the first and second task, for each of the visual stimulus categories and
tones respectively.

B. Fixation heatmap across all participants and experimental conditions. The x and y axis represent the gaze position
on the screen in pixel units and the colour represents the dwell time, i.e. the amount of time (in seconds) spent at
a particular location during the trial (from -0.2 to 2.7 s from stimulus onset). The red circle has a diameter of 6°
of visual angle and the semi-transparent stimuli represent the stimuli in the dimension they were displayed on
the screen.

Supplementary table 3.S1: Experiment 1 full model results

Chisq Df Pr(>Chisq)
sOA 735.95 3 <0.001"*%
Onset/Offset 652.77 1 <0.001"**
T1 Task relevance 125.99 1 <0.001""*
SOA:Onset/Offset 462..82 3 <0.001%**
SOA:T1 Task relevance 10.00 3 0.02*
Onset/Offset:T1 Task relevance 83.86 1 <0.001"*
SOA:Onset/Offset:T1 Task relevance 4.11 3 0.250

RT2 ~ SOAxOnset/OffsetxT1 Task relevance + (SOAxOnset/offsetxT1 Task relevance | Subject)+
(SOAxOnset/offsetxT1 Task relevance | Duration)
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Supplementary table 3.S2 Experiment 1 onset model results

Chisq Df Pr(>Chisq)
SOA 1109.31 3 <0.001%**
T1 Task relevance 192.37 1 <0.001"**
SOA:T1 Task relevance 12.82 3 0.005"*%

RT2* ~ SOAxT1 Task relevance+ (SOAxT1 Task relevance | Subject)+ (SOAxT1 Task relevance | Duration)

* Data restricted to onset-locked trials

Supplementary table 3.S3: Experiment 1 offset model results

Chisq Df Pr(>Chisq)
SOA 42.31 3 <0.001%%%
T1 Duration 10.93 2 0.004**
T1 Task relevance 4.34 1 0.037*
SOA:T1 Duration 35.44 6 < 0.001%**
SOA:T1 Task relevance 1.06 3 0.786
Duration:T1 Task relevance 1.62 2 0.444
SOA:T1 Duration:T1 Task relevance 4.49 6 0.611

RT2* ~ SOAxDurationx T1 Task relevance+ (SOAxDurationxT1 Task relevance | Subject)

* Data restricted to offset-locked trials

Supplementary table 3.S4: Experiment 1 offset model, separately for each T1 durations

T1Duration Chisq Df Pr(>Chisq)

500 ms SOA 4.20 3 0.240
T1 Task relevance 0.19 1 0.659
SOA:T1 Task relevance 1.32 3 0.724

1000 ms SOA 12.67 3 0.005**
T1 Task relevance 4.95 1 0.026%
SOA:T1 Task relevance 0.50 3 0.919

1500 ms SOA 69.44 3 <0.001%%%
T1 Task relevance 0.67 1 0.412
SOA:T1 Task relevance 4.01 3 0.260

RT2* ~ SOAxT1 Task relevance+ (SOAxT1 Task relevance | Subject)

* Data restricted to offset-locked trials of corresponding T1 duration.
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Supplementary table 3.S5: Pairwise comparison of RT2 between SOA 0 and 466 on offset trials separately
for each T1 duration

T1 Duration Difference (s) z.ratio Pr(>Chisq)
500 ms 0.009 1.75 0.484
1000 ms 0.015 2.73 0.038"*
1500 ms 0.036 6.40 <0.001"%*

Supplementary table 3.S6: Comparison of RT2 empirical cumulative distribution of SOA oms against 0.466ms

Onset/offset Ti relevance Duration (s) D P
onset Ti relevant all 0.29 <0.001***
Tiirrelevant all 0.29 <0.001%*%
offset Ti relevant 500 ms 0.05 0.130
1000 ms 0.08 0.010*
1500 ms 0.1 <0.001%*%
Tiirrelevant 500 ms 0.04 0.319
1000 ms 0.05 0.117
1500 ms 0.07 0.038"

Kilmogorov Smirnoff test separately for onset/offset T2 lock and T1 relevant/irrelevant trials. In the case
of the offset trials, the test was conducted separately on each T1 durations.

Supplementary table 3.S7: Results of experiment 1 target only models

Duration (ms) Chisq Df Pr(>Chisq)
SOA Onset All 362.47 3 <0.001%**
Offset 500 111.64 3 <0.001"*%
1000 37.16 3 <0.001%**
1500 12.01 3 0.007**

RT2* ~ SOAxT1 Task relevance+ (SOAxT1 Task relevance | Subject)
*RT2 was modelled as a function of SOA separately for onset and offset trials. In the case of the offset
trials, RT2 was modelled as a function of SOA separately for each T1 duration.



152 | Chapter 3

Eyetracker results:
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Supplementary figure 3.S2: Pupil peak amplitude latency as a function of T1 stimulus appearance
and disappearance.

a.. Average pupil size (y-axis) in T1 relevant (green), irrelevant (brown) and target (grey) conditions as a function of
time (x-axis) relative to the onset of T1 stimuli, separately for onset (left) and offset trials (vight). Shaded areas
around the curve represent 95% confidence intervals computed across subjects. Vertical box shading represent
segments in which the pupil size is significantly larger in T1 relevant compared to irrelevant trials determined
using a cluster based permutation test (red o < 0.05, grey o < 0.1)

b. Average pupil 90% peak latency as a function of SOA (x-axis) in auditory task time-locked to T1 onset (ved)

and offset (blue), separately for T1 target trials, and T1 non-target task relevant and task irrelevant trials.
Upper, leftward panel displays peak latency for targets only (Go trials), red lines indicate peak latency per SOA
(0, 116, 232, 466ms) locked to T1 onset.
Below, average pupil size (y-axis) as a function of time separately for each SOA, onset/offset (red and blue
respectively) and T1 duration conditions (each row). The vertical dashed lines represent the average 90% peak
latency. The columns correspond to the T1 relevance conditions (left: T1 target, middle: T1 relevant, left: T1
irrelevant). The first rows display the results in onset locked trials and the 3 bottom row depict the pupil response in
offset trials separately for each T1 duration, as indicated by the numbers in the margins.

Supplementary table 3.S8: Pupil peak latency onset

Chisq Df Pr(>Chisq)
SOA 15.78 3 0.001%*
T1 Task relevance 1.70 1 0.192
SOA:T1 Task relevance 0.48 3 0.922.

Supplementary table 3.S9: Pupil peak latency offset

Chisq Df Pr(>Chisq)
SOA 0.11 3 0.990
T1 Duration 2.03 2 0.362
T1 Task relevance 1.75 1 0.186
SOA:T1 Duration 4.30 6 0.636
SOA:T1 Task relevance 0.71 3 0.871
Duration:T1 Task relevance 0.52 2 0.771

SOA:T1 Duration:T1 Task relevance 0.40 6 0.999
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Supplementary figure 3.S3: Study 2 behavioural performance and fixation

a. Participants behavioural performance and reaction time to each task in the first experiment. The left panel shows
participants' behavioural performance in the first and second task. For T1, the d’ to each stimulus category is
displayed. For T2, the d’ depicts the sensitivity in discrimination between high and low pitch sound and the
B depicts whether participants' responses are biassed towards one or the other response (B=1 indicates no bias).
The right panel depicts the reaction time to the first and second task, for each of the visual stimulus categories and
tones respectively.

b. Fixation heatmap across all participants and experimental conditions. The x and y axis represent the gaze position
on the screen in pixel units and the colour represents the dwell time, i.e. the amount of time (in seconds) spent at
a particular location during the trial (from -0.2 to 2.7 s from stimulus onset). The red circle has a diameter of 6°
of visual angle and the semi-transparent stimuli represent the stimuli in the dimension they were displayed on
the screen.

Supplementary table 3.S10: Experiment 2 full model results

Chisq Df Pr(>Chisq)

SOA 308.14 2 <0.001"**
Onset/Offset 413.53 1 <0.001"**
T1 Task relevance 50.83 1 <0.001"%*
SOA:Onset/Offset 110.51 2 < 0.001°%*
SOA:T1 Task relevance 1.91 2 0.384
Onset/Offset:T1 Task relevance 10.85 1 0.001%**
SOA:Onset/Offset:T1 Task relevance 1.14 2 0.566

RT2 ~ SOAxOnset/offsetxT1 Task relevance+ (SOAxOnset/offsetxT1 Task relevance | Subject)+
(SOAxOnset/offsetxT1 Task relevance | Duration
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Supplementary table 3.S11: Experiment 2 onset model results

Chisq Df Pr(>Chisq)
SoA 368.03 2 <0.001***
Ti1 Task relevance 51.32 1 <0.001""*
SOA:T1 Task relevance 1.99 2 0.370

RT2* ~ SOAxT1 Task relevance+ (SOAxT1 Task relevance | Subject)+ (SOAx T1 Task relevance | Duration)
* Data restricted to onset-locked trials

Supplementary table 3.S12: Experiment 2 offset model results

Chisq Df Pr(>Chisq)

SOA 54.64 2 <0.001%%%
T1 Duration 23.38 2 <0.001"*%
T1 Task relevance 11.27 1 0.001%*
SOA:T1 Duration 19.44 4 0.001%*
SOA:T1 Task relevance 1.54 2 0.462
Duration:T1 Task relevance 1.48 2 0.476
SOA:T1 Duration:T1 Task relevance 3.63 4 0.458

RT2* ~ SOAxDurationx T1 Task relevance+ (SOAxDurationxT1 Task relevance | Subject)

* Data restricted to offset-locked trials

Supplementary table 3.S13: Experiment 2 offset model separately for each T1 duration

T1 Duration Chisq Df Pr(>Chisq)

500 ms SOA 6.46 2 0.039%
T1 Task relevance 2.22 1 0.136
SOA:T1 Task relevance 0.99 2 0.610

1000 ms SOA 42.82, 3 <0.001%%*
T1 Task relevance 8.81 1 0.003**
SOA:T1 Task relevance 0.33 3 0.848

1500 ms SOA 30.73 3 <0.001%%*
T1 Task relevance 2.05 1 0.152
SOA:T1 Task relevance 5.29 3 0.071

RT2* ~ SOAxT1 Task relevance+ (SOAxT1 Task relevance | Subject)
* Data restricted to offset-locked trials of corresponding T1 duration.
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Supplementary table 3.S14: Pairwise comparison of RT2 between SOA o and 466ms on offset trials
separately for each T1 duration

T1 Duration Difference (s) z.ratio Pr(>Chisq)
500 ms 0.026 2.25 0.0732
1000 ms 0.064 5.67 <0.001***
1500 ms 0.053 4.80 <0.001"**

Supplementary table 3.S15: Experiment 2 comparison of RT2 cummulative distribution of SOA o ms
against 0.466 s

Onset/offset Tirelevance Duration (s) D P
onset T1relevant all 0.33 <0.001***
T1irrelevant all 0.37 <0.001"**
offset T1relevant 500 ms 0.06 0.420
1000 ms 0.19 0.001"*
1500 ms 0.21 <0.001"**
T1irrelevant 500 ms 0.10 0.103
1000 ms 0.23 <0.001"**
1500 ms 0.16 0.003**

Kilmogorov Smirnoff test separately for onset/offset T2 lock and T1 relevant/irrelevant trials. In the case
of the offset trials, the test was conducted separately on each T1 durations.

Supplementary table 3.816: Experiment 2 target only model results.

Duration (ms) Chisq Df Pr(>Chisq)
SOA Onset All 62.59 3 <0.001"*%
Offset 500 5.07 3 0.080
1000 4.22 3 0.121
1500 7.13 3 0.028"

RT2* ~ SOAxT1 Task relevance+ (SOAxT1 Task relevance | Subject).
RT2 was modelled as a function of SOA separately for onset and offset trials. In the case of the offset
trials, RT2 was modelled as a function of SOA separately for each T1 duration.



Investigating timing of conscious experience using a dual-task and quantified introspection | 157

Supplementary table 3.S17: iT2 full model results

Chisq Df Pr(>Chisq)

SOA 40.31 2 < 0.001%%*
Onset/Offset 27.49 1 <0.001"*
T1 Task relevance 21.51 1 <0.001%%*
SOA:Onset/Offset 15.26 2 <0.001"%
SOA:T1 Task relevance 0.77 2 0.680
Onset/Offset:T1 Task relevance 2.92 1 0.087
SOA:Onset/Offset:T1 Task relevance 4.88 2 0.087

iT2 ~ SOAxOnset/offsetxT1 Task relevance+ (SOAxOnset/offsetxT1 Task relevance | Subject)+
(SOAxOnset/offsetxT1 Task relevance | Duration)

Supplementary table 3.S18: iT2 onset model results

Chisq Df Pr(>Chisq)

SOA 48.33 2 <0.001"*
T1 Task relevance 17.98 1 <0.001"%*
SOA:T1 Task relevance 0.99 2 0.609

iT2* ~ SOAxT1 Task relevance + (SOAxT1 Task relevance | Subject)

*Data restricted to onset-locked trials

Supplementary table 3.S19: iT2 offset model results

Chisq Df Pr(>Chisq)

SOA 3.83 2, 0.148
T1 Duration 4.76 2 0.029*
T1 Task relevance 4.78 1 0.092
SOA:T1 Duration 4.79 4 0.091
SOA:T1 Task relevance 2.63 2 0.622
Duration:T1 Task relevance 0.68 2 0.712
SOA:T1 Duration:T1 Task relevance 1.73 4 0.785

iT2* ~ SOAxDurationx T1 Task relevance + (SOAxDurationxT1 Task relevance | Subject)

* Data restricted to offset-locked trials
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Supplementary table 3.S20: iT1 full model results

Chisq Df Pr(>Chisq)
SOA 15.62 2 <0.001%%*
Onset/Offset 28.39 1 <0.001"**
T1 Task relevance 315.77 1 <0.001"*%
SOA:Onset/Offset 17.04 2 <0.001%**
SOA:T1 Task relevance 0.30 2 0.862
Onset/Offset:T1 Task relevance 3.05 1 0.081
SOA:Onset/Offset:T1 Task relevance 0.70 2 0.704

iT1 ~ SOAxOnset/offsetxT1 Task relevance + (SOAxOnset/offsetxT1 Task relevance | Subject)+
(SOAxOnset/offsetxT1 Task relevance | Duration)

Supplementary table 3.S21: iT1 onset model results

Chisq Df Pr(>Chisq)
SOA 30.02 2 <0.001"**
T1 Task relevance 189.78 1 <0.001***
SOA:T1 Task relevance 0.15 2 0.929

iT1* ~ SOAxT1 Task relevance+ (SOAxT1 Task relevance | Subject)
* Data restricted to onset-locked trials.

Supplementary table 3.S22: iT1 onset model results

Chisq Df Pr(>Chisq)

SOA 0.62 2 0.734

T1 Duration 128.73 2 <0.001%**
T1 Task relevance 7.25 1 0.027*
SOA:T1 Duration 0.89 4 0.641
SOA:T1 Task relevance 4.43 2 0.352
Duration:T1 Task relevance 0.49 2 0.781
SOA:T1 Duration:T1 Task relevance 2.81 4 0.590

iT1* ~ SOAxDurationx T1 Task relevance+ (SOAxDurationxT1 Task relevance | Subject)
* Data restricted to offset-locked trials.
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Supplementary figure 3.S4: Correlation between RT2 and iT1 for each duration and onset offset trials

Reaction time to the auditory stimulus (RTz, y-axis) as a function iT1 (x-axis) separately for each SOA condition (dark
shades: SOA of 0s, light shade: SOA of 0.466s), T1 duration (top: 500, middle: 1000, bottom: 1500 ms) and T1 onset
locked trials and offset locked trials (left column and red lines: onset locked, right column and blue lines: offset locked)
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Supplementary table 3.523:

Chisq Df Pr(>Chisq)

SOA 306.76 2 < 0.001%%*
Onset/Offset 362.51 1 <0.001"%*
T1 Task relevance 1.02 1 0.312

iT1 835.57 1 <0.001"**
SOA:Onset/Offset 99.47 2 <0.001"**
SOA:T1 Task relevance 3.19 2 0.203
Onset/Offset:T1 Task relevance 4.99 1 0.026
SOA:iT1 3.01 2 0.222,
Onset/Offset:iT1 12.00 1 <0.001"**
Task relevance:iT1 0.01 1 0.937
SOA:Onset/Offset:Task relevance 1.08 2, 0.582,
SOA:Onset/Offset:iT1 0.64 2 0.726
SOA:T1 Task relevance:iT1 2.08 2 0.353
Onset/Offset:T1 Task relevance:iT1 0.54 1 0.463
SOA:Onset/Offset:T1 Task relevance:iT1 6.70 2 0.035*

RT2 ~ SOAxOnset/offsetxT1 Task relevance xiT1 + (SOAxOnset/offsetxT1 Task relevance xiT1 | Subject)+
(SOAxOnset/offsetxT1 Task relevance xiT1 | Duration)

Supplementary table 3.524: iT1-RT2 model results in onset trials

Chisq Df Pr(>Chisq)

SOA 363.48 2 <0.001"*%
T1 Task relevance 3.94 1 0.047

iT1 614.01 1 <0.001"**
SOA:T1 Task relevance 1.82 2 0.403
SOA:T1 1.34 2 0.512

T1 Task relevance:iT1 0.00 1 0.975
SOA:T1 Task relevance:iT1 9.26 2 0.010*

RT2* ~ SOAxT1 Task relevance xiT1+ (SOAxT1 Task relevancexiT1 | Subject)
* Data restricted to onset-locked trials
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Supplementary table 3.S25: iT1-RT2 model results in offset trials

Chisq Df Pr(>Chisq)

SOA 56.81 2 < 0.001%%*
T1 Duration 19.55 1 <0.001"%*
iT1 259.31 1 <0.001%%*
SOA:T1 Duration 20.11 2 <0.001"%*
SOA:iT1 1.91 2 0.386

T1 Duration:iT1 18.28 1 <0.001%%*
SOA:T1 Duration:iT1 13.13 2 o.o11*

RT2* ~ SOAx DurationxiT1+ (SOAxDurationxiT1 | Subject
* Data restricted to offset-locked trials

Supplementary table 3.S26: iT1-RT2 offset model separately for each of the T1 durations

T1 Duration (ms) Chisq Df Pr(>Chisq)

500 SOA 4.31 2 0.116
iT1 133.74 1 <0.001%%*
SOA:T1 2.60 1 0.272.

1000 SOA 48.75 2 <0.001"*
iT1 82.97 1 <0.001%%*
SOA:T1 11.37 2 0.003**

1500 SOA 30.92 2 <0.001**
iT1 41.14 1 <0.001"%*
SOA:T1 0.45 2 0.798

RT2* ~ SOAxIT1 (SOAxiT1 | Subject)
* Data restricted to offset-locked trials of corresponding T1 duration.
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Eyetracker results
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Supplementary figure 3.S5: Pupil peak amplitude latency as a function of T1 stimulus appearance
and disappearance

a. Average pupil size (y-axis) in T1 relevant (green), irrelevant (brown) and target (grey) conditions as a function of
time (x-axis) velative to the onset of T1 stimuli, separately for onset (left) and offset trials (right). Shaded areas
around the curve represent 95% confidence intervals computed across subjects. Vertical box shading represent
segments in which the pupil size is significantly larger in T1 relevant compared to irrelevant trials determined
using a cluster based permutation test (red a < 0.05, grey @ < 0.1)

b. Average pupil 90% peak latency as a function of SOA (x-axis) in auditory task time-locked to T1 onset (red)

and offset (blue), separately for T1 target trials, and T1 non-target task relevant and task irrelevant trials.
Upper, leftward panel displays peak latency for targets only (Go trials), red lines indicate peak latency per SOA
(0, 232, 466ms) locked to T1 onset.
Below, average pupil size (y-axis) as a function of time separately for each SOA, onset/offset (red and blue
respectively) and T1 duration conditions (each row). The vertical dashed lines represent the average 90% peak
latency. The columns correspond to the T1 relevance conditions (left: T1 target, middle: T1 relevant, left: T1
irrelevant). The first rows display the results in onset locked trials and the 3 bottom row depict the pupil response in
offset trials separately for each T1 duration, as indicated by the numbers in the margins.

Supplementary table 3.S27: Experiment 2 Pupil peak latency onset

Chisq Df Pr(>Chisq)
SOA 9.24 3 0.002
T1 Task relevance 0.94 1 0.331
SOA:T1 Task relevance 0.09 3 0.764

Supplementary table 3.S28: Experiment 2 pupil peak latency offset

Chisq Df Pr(>Chisq)
SOA 0.33 3 0.565
T1 Duration 0.13 2 0.937
T1 Task relevance 0.01 1 0.932
SOA:T1 Duration 2.20 6 0.333
SOA:T1 Task relevance 0.10 3 0.751
Duration:T1 Task relevance 0.02 2 0.989
SOA:T1 Duration:T1 Task relevance 0.02 6 0.991
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Pupil size across durations (N=9)
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Supplementary figure 3.S6: Pupil dilation comparison between task relevant and irrelevant condition in
the Cogitate data set

Average pupil size (y-axis) in relevant (green), irrelevant (brown) and target (grey) conditions as a function of time
(x-axis) relative to the onset of T1 stimuli, separately for onset (left) and offset trials (vight). Shaded areas around the
curve represent 95% confidence intervals computed across subjects. Vertical box shading represent segments in which
the pupil size is significantly larger in T1 velevant compared to irrelevant trials determined using a cluster based
permutation test (red a < 0.05)



Investigating timing of conscious experience using a dual-task and quantified introspection | 165

A
# Channels

B Relevant AUC

Irrelevant AUC

Supplementary figure 3.S7: Density of electrode coverage and decoding results

a. brain surface coloured according to the number of electrodes found in each region (Destrieux Atlas) across subjects
(N=29). Areas marked in white correspond to those excluded from the analysis as they contained less than
10 electrodes

b. Maximal decoding AUC (faces vs. objects) in the task relevant trial masked by significance decoding

¢. Maximal decoding AUC (faces vs. objects) in the task irrelevant condition masked by significance decoding
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Supplementary figure 3.88: Time-Resolved Face/Object Decoding using invasive electrophysiological
data from the Cogitate Study

Using the Cogitate iEEG data to compare face vs. objects decoding AUC in task-relevant (green) trials compared
to task-irrelevant (brown) trials with cluster-based permutation test. Shading indicates the 95% confidence interval
across cross-validation folds. Red shading represents significant clusters (p < 0.01, cluster-based permutation test).
"N"indicates the number of channels per region. Temporal smoothing of the decoding time series using a uniform 40
ms kernel was applied for plotting purposes only. The upper middle panel depicts the coverage in the Cogitate iEEG
sample, with each cortical parcel from the Destrieux atlas color-coded by the number of electrodes present. White areas
indicate regions with fewer than 10 channels, which were omitted from the analysis. The middle panel shows a brain
surface map highlighting four cortical parcels from the Destrieux atlas where decoding accuracy for task-relevant
trials was significantly higher than for task-irrelevant trials. Colors indicate the duration of the higher decoding
in the task-relevant condition. Abbreviations: MFG (middle frontal gyrus), IFS (inferior frontal sulcus), IFG (inferior
frontal gyrus), FG (fusiform gyrus), sLTG (superior lateral temporal gyrus), mLOTS (medial and lingual occipital
temporal sulcus), STS (superior temporal sulcus), SMG (inferior temporal supramarginal gyrus).
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In the introduction, I proposed to accelerate progress in consciousness research by
identifying cases where a given content is experienced, but the mechanisms proposed
by a theory to instantiate it are not observed. This approach constitutes a shift
from the traditional search for the NCCs and requires less restrictive experimental
conditions, as the need to control for unconscious processing is alleviated. Theories
of consciousness can accordingly be tested across a wider set of experimental
conditions previously untested, forcing them to formulate novel predictions to put
their explanatory power to the test.

To that end, I have relied on one aspect of consciousness that has so far received little
attention: the temporal dynamics of conscious experiences. We experience particular
contents for particular durations, and if a theory truly explains consciousness, it
must be able to account for this aspect (among all others). I relied on a rather simple
experimental paradigm in which visual stimuli were presented for three distinct
durations while collaborating with proponents of the theories to ensure that these
conditions matched their criteria for consciousness and that the theories were truly
based on their predictions rather than accommodating the results a posteriori.

In this discussion, I begin by providing an independent analysis of the results
presented in Chapter 2, situating them within the broader context of vision science
and conscious research. While this study was a collaborative effort involving
many researchers, I will provide intellectual insights going beyond the collective
interpretation presented in Chapter 2. I will discuss how our results have advanced
our understanding of the neural mechanisms associated with sustained visual
presentation. Building upon this, I will explore the broader implications of both
Chapter 2 and 3 in conjunction, illustrating how they open new avenues for
investigating the dissociation between access and phenomenal consciousness.
Subsequently, I further elaborate on the fundamental goals of theory testing in
consciousness research. In line with the Lakatosian view of scientific progress, I
argue that theory testing should not aim to eliminate current theories, but should
instead be viewed as a process of refining and improving them toward the goal of a
unified theory of consciousness. I will specifically highlight the value of adversarial
collaboration in generating novel predictions and formalizing theories more
effectively than testing them in isolation, while acknowledging the difficulty of
obtaining opposing predictions from competing theories in the field of consciousness
research. Finally, I will propose several concrete steps to improve the theory-
testing process, informed by the challenges I encountered and the insights I gained
throughout my research. These recommendations entail general guidelines but also
highlight additional scientific efforts I have undertaken to address obstacles in the



Discussion | 171

field. By sharing these insights and outlining practical measures, I aim to contribute
to the advancement of consciousness research, helping to foster a more effective,
integrative, and iterative approach to testing theories of consciousness.

Temporal dynamics of conscious experience and
the underlying neural activity

In the previous two chapters, I presented the results of experiments in which highly
visible stimuli were presented for three different durations. In the first study, we

recorded neural data using three recording modalities (EEG, MEG, and fMRI) to
investigate the neural dynamics associated with such stimulus durations to test the
predictions of IIT and GNWT regarding the neural dynamics to be observed under
such stimulation conditions. In the posterior region of interest defined by IIT
(encompassing the occipital and ventral temporal cortices, which I will refer to as
the posterior ROI), sustained activation and content representation were observed,
matching the duration for which the stimulus was on the screen. On the other hand,
in the prefrontal region defined by GNWT (which I will refer to as the PFC), only
transient responses and content representation were observed following stimulus
onset, with virtually no further coupling with stimulus durations. Our results
therefore align with IIT but challenge GNWT predictions.

IIT’s prediction through the lens of vision neuroscience

In the discussion section of the second chapter, Prof. Dehaene argues that the
prediction of IIT regarding sustained activation is trivial (the meaning of which
I will elaborate on later in the discussion), as ‘any physiologist familiar with the
bottom-up response properties of those regions’ would also have made the same
prediction. There is a sense in which this is true. The posterior ROI defined by IIT
contains the occipital and the ventral temporal cortices, which play a prominent role
in visual information processing. Specifically, these combined regions largely overlap
with the ventral stream, which is widely accepted as being functionally specialized
to recognize shapes and objects 2%, As such, it is indeed fully expected that the
category and identity of visual stimuli should be decodable from these brain regions,
and had that not been the case, we indeed would have had bigger fish to fry 2. In fact,
when developing our analysis pipelines, finding the strongest activation and content
representation in these regions acted as a sanity check regarding the sensitivity of
our methods.
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However, the prediction is less trivial when considering its temporal aspect. IIT does
not only predict that there should be activation and visual content representation
in these regions but also that these patterns should be sustained and stable for as
long as a stimulus is presented on the screen. While the literature clearly shows that
the ventral stream is involved in object recognition, most studies characterizing the
functional specificity of cortical regions along this pathway relied on short, transient
stimulus presentation 2°32¢72% Some studies have manipulated stimulus duration
but only within a short range (i.e. below 500 ms) to characterize the speed with which
object recognition can be performed in the visual system 227, Therefore, it is unclear
from this line of evidence whether the category-selective activation observed along
the ventral stream is a transient process solely involved in the detection of a visual
stimulus of a particular category, or if it instead plays a role in real-time monitoring
of the presence of a particular percept, which would involve sustained activation.

In addition, visual adaptation has been shown to occur at various levels of the visual
processing hierarchy. Neural responses following the appearance of a visual stimulus
decrease rapidly following stimulus onset **-?7. Similarly, when the same visual
stimulus is presented in rapid succession, the amplitude of the neural responses
induced by the stimulus appearance decreases, an effect known as repetition
suppression 22726, A recent iEEG study (from which our experimental design was
inspired) has shown that only a minority of visually responsive electrodes (21 out
of 292) were sensitive to stimulus duration . Furthermore, they showed that the
proportion of duration-sensitive electrodes strongly decreases along the visual
hierarchy and is minimal in inferior-temporal category-selective sites (50% of the
visual responsive electrodes show duration tracking in the early visual cortex, only
1.5% in the inferior temporal cortex). Our study broadly replicated these findings,
as only 25 out of 194 (13%) visually responsive electrodes showed an association with
stimulus duration across the posterior ROI. Furthermore, only 8 out of 53 (15%) face-
selective electrodes showed significant duration tracking and were located mostly in
the ventral temporal cortex (see Fig. 4.1).
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Figure 4.1: Channels responsivity, selectivity and duration tracking (adapted from Chapter 2

supplementary material)

a. Localization of all channels showing a significant change in activation following stimulus onset (50-350 ms) color
coded by the percentage of signal change displayed on the fsaverage pial surface. The colors on the brain surface
correspond to broad anatomical regions (blue: occipital, green: ventral temporal, purple: temporal, orange: parietal,
brown: motor, yellow: frontal cortices).

b. Localization of all category-selective channels (significantly higher activation in one condition compared to all
others from 50-350 ms from stimulus onset). The color of each contact represents the category the contact is selective
for (vellow: faces, ved: objects, grey: letters, purple: false-fonts) and the color on the brain surface represents the
regions of interest defined by the theories (blue: IIT, green: GNWT).

c. Localization of channels showing an association with stimulus duration (only depicting posterior ROI results,
the light blue region on the brain is the fusiform gyrus). Electrodes are color-coded based on the response type that
they display. Light blue electrodes show sustained activation for the duration of stimulus presentation regardless
of category, dark blue show sustained activation that is further modulated by stimulus duration, purple electrodes
show sustained activation only to faces stimuli and green electrodes show transient activation following both the
onset and the offset of the visual stimulus.
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Sustained category-selective activation in the posterior ROI is far from ubiquitous,
and I would therefore contend that IIT’s prediction was not trivial. It can be argued
that some of the sustained activation observed in posterior electrodes may reflect
the fact that visual input was not truly stable, despite participants being instructed
to fixate in studies presenting visual stimuli for longer periods ™. Even when
participants fixate, the position of the stimuli is not exactly fixed on the retina, as
small eye movements remain (micro-saccades, tremors and drifts 7). Early visual
areas have been shown to be sensitive to these fast-paced and spatially constrained
changes in the visual input ##-2%. It is however unlikely to be the case for higher-
order areas in the ventral stream. As we progress along the posterior-anterior axis,
several studies revealed that the spatial and temporal extent of the receptive fields
increases 22275281282 n addition, several studies have revealed that higher-order visual
area activation is invariant to changes in the visual input associated with saccades
and blinks ™27, Furthermore, recent studies have highlighted that adaptation occurs
at different time scales along the visual hierarchy, reflecting the difference in the
stability of the input drive of different regions **. Accordingly, sustained activation
observed in lower-level areas may reflect the constant change in visual input
associated with minute eye movements. In contrast, as the input to higher-order
areas is more stable, responses might become more adapted in most recording sites,
accounting for the smaller proportion of channels showing sustained activation.

Nonetheless, sustained activation was observed at all levels of the visual hierarchy
in Chapter 2 as well as in the study by Gerber and colleagues ™2, including higher-
order areas. As discussed by Gerber and colleagues, these results might indicate
two different functional specializations in visual information processing. Some units'
functions might be to detect and recognize novel objects transiently, while other
units are specialized in the monitoring of visual information in real-time, keeping
tabs on the external world ™. Our results further confirm that sustained activation
is scarcer than transient activation, and grows scarcer going up the hierarchy of the
ventral stream.

Importantly, IIT not only predicted that such sustained category-selective responses
should be observed, but it also predicted that the content of experience should be
represented in a sustained and stable fashion. In light of the prominence of transient
category-selective responses over sustained ones (which was already documented
by Gerber and colleagues before the submission of the Cogitate pre-registration ),
this prediction is also not trivial as it entails that the transient category-selective
activations do not contribute to the representations underlying our perception,
despite their prominence in magnitude. Furthermore, if the sustained activation
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observed at lower levels of the visual hierarchy reflects fast-paced and local changes
in the retinal input, these should not support sustained and stable perceptual
representations. Under these circumstances, a prediction very similar to that of
GNWT made regarding content representation in the PFC could have been imaginable.
To spare energy resources, perceptual contents may be represented transiently in
higher-order visual areas following the onset and offset of the visual stimuli.

In addition to ours, two separate studies investigated the predictions regarding the
temporal dynamics of content representation %7, The results of these studies align
with ours, stable and sustained representations of visual information were observed

in the occipital and ventral temporal regions. Importantly, not only category-level
information was represented in a sustained fashion along the ventral stream, but also
stimulus identity information. These results further indicate that perceptual content
is not associated with activation magnitude, but instead with the multivariate
activation patterns observed across neuronal populations 2.

Cogitate results through the lens of subjective experience

Beyond arguments regarding the triviality of IIT’s predictions from a vision science
point of view, another argument can be made from the perspective of subjective
experience. All recent studies investigating the neural dynamics associated with
sustained stimulus presentation (including ours) share the initial assumption that
under such conditions, participants' subjective experience is linked in some way
to stimulus duration. In the introduction from Broday Dvir and colleagues ¢, the
authors state the following question: “Simply put, if the magnitude of neuronal
activity determines perceptual awareness, how does perception remain stable
despite this massive reduction?”. Similarly, Vishne and colleagues ' open their paper
by stating that “In essence, every perception has non-zero duration”. In our study,
this assumption was initially shared by both IIT and GNWT, which is reflected in
their predictions.

An important clarification must be made regarding this shared assumption: it is not
about the experience of the duration of the stimulus (i.e., time perception), which
refers to how long a stimulus is felt to last. Instead, it was assumed that participants
experience the persistence of stimuli on the screen, one way or another. According to
IIT, at each time point where the stimulus is present on the screen, participants have
the experience of the stimulus present on the screen and accordingly, when stimuli
are presented for longer, the stimulus presented on the screen remains experienced
for longer. This also seems to be the initial assumption of the studies mentioned
above 2627 GNWT’s initial assumption was that participants experience the onset
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and the offset of the visual stimulus, and as they experience the offset of the visual
stimuli, the brain concludes that the visual stimulus persisted since the onset, and
it is in that conclusion that participants are experiencing the persistence of the
stimulus 97225, Accordingly, participants experienced that longer stimuli persisted
for longer on the screen. Regardless of whether the experience of persistence occurs
in real-time or in a post hoc fashion (as GNWT suggests), the underlying neural
activation should be modulated by stimulus duration in some way.

In our study, we focused primarily on the regions defined by the theories and
observed that PFC activation was invariant concerning stimulus duration (neither
in single-channel activation nor in multivariate activation patterns) and that only
the posterior ROI showed such an association. Furthermore, Vishne and colleagues
observed that only occipital and ventral-temporal cortices are modulated by stimulus
duration, while PFC and parietal cortices’ representations were invariant to stimulus
duration . Interestingly, Broday Dvir and colleagues observed an increase in fronto-
parietal electrodes activation following both the onset and the offset of the visual
stimulus 6. However, they did not observe any multivariate content representations
across these electrodes at any time points, which they attribute to the poor coverage
of these regions in their data set. It must also be noted that in contrast to the study
presented in Chapter 2 and the study of Vishne and colleagues 7, participants were
required to memorize the presented stimuli to perform a memory task following the
experiment and that all stimuli were presented for the same duration?. The ignition
observed in fronto-parietal electrodes in their study might reflect memory-encoding
processes, or expectation related processes, as highlighted in Chapter 3.

Under the assumption that the experience of persistence was influenced by stimulus
duration in these studies, the brain regions consciousness involved in consciousness
should reflect this temporal aspect of experience. In that sense, it matters little that
IIT’s prediction is trivial. Together, these studies highlight that the region showing
the strongest association with stimulus duration is the ventral visual stream. If
the experience was indeed affected by how long the stimulus was presented, this
makes the ventral visual stream a better candidate for the neural substrate of visual
conscious experience, no matter how unoriginal that may be.

A triple dissociation between access consciousness, phenomenal
consciousness, and unconscious processing in sight?

Based on the sustained activation and representation observed over sensory regions
and on the transient activation and representations observed in the prefrontal
cortex, ¥’ conclude that ‘to the extent conscious experience is continuous, it may rely
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on sensory representations, and to the extent experience is discrete, it may rely on
prefrontal representations’. However, [ would argue that this conclusion mistakenly
hinges on the distinction between the continuous vs. discrete nature of conscious
experience 2372%5, | believe it is mistaken because it implies that if consciousness
is continuous, it is necessarily linked to sensory input, and if it is discrete, it is
necessarily dissociated from sensory input. This does not need to be the case.
Conscious experience could be continuous and dissociated from sensory input, in
which case participants would have continuous experience but no experience of the
persistence of the stimulus on the screen. Alternatively, participants' experience
could be discrete and still experience the persistence of the stimulus on the screen.
In other words, a more accurate conclusion is that to the extent that participants'
experience reflected the temporal dynamics of stimulus presentation, it cannot
arise from the prefrontal cortex, and to the extent that participants' experience was
dissociated from the temporal dynamics of stimulus presentation, it cannot arise
from sensory regions.

As Prof. Deheaene suggests in the discussion of Chapter 2, the lack of PFC ignition
at stimulus offset may indicate that participants' experience was indeed dissociated
from the temporal dynamics of stimulus presentation and that they may not in fact
experience the persistence of the stimuli on the screen. The result of the study in
Chapter 3 provides evidence supporting this view. Using the PRP as a time-resolved
marker for conscious access, we observed that while this effect was present at
stimulus offset, it was much weaker compared to the onset of the visual stimuli and
not systematic.

These results indicate that the offset is not systematically consciously accessed or
that when they do so, they do so only very briefly. This is perhaps not too surprising:
as the duration of the stimuli was not relevant to the task, participants may not have
dedicated cognitive resources to ‘do something with it’ in most trials, because they
did not have to. These results enable us to reconcile the lack of PFC activation in
Chapter 2 with the GNWT. If participants access the offset only very briefly and only
on some trials, PFC ignition may have been too brief or sporadic (across trials) to be
detected in neural recordings.

These findings support the view that participants only accessed the visual stimuli
transiently rather than in a sustained fashion. However, this brings us to one of
the largest and longest lasting debate the field of consciousness, whether access
and phenomenal consciousness are distinct or distinguishable **25*. Phenomenal
consciousness refers to the subjective quality of an experience (seeing blue vs.
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seeing red) while the latter refers to the capacity to ‘do something’ with that content
(i.e. engaging cognitive functions such as evaluating it, thinking about it, and
reporting it). Some authors argue that access has in fact little to do with consciousness
and that studying it amounts to studying cognitive confounds ®. Others argue that
there is no distinction between the two as it is by accessing representation that we
become aware of them 2. Still, others argue that even if there is such a thing as
inaccessible conscious experiences, such cases can never be investigated scientifically
as such contents are by definition remain private and unmeasurable from a third-
person perspective .

Provided that only accessed contents are experienced, our results would indicate
that indeed, participants' experience of the stimuli was transient and decoupled
from stimulus duration. Alternatively, participants might have accessed conscious
representations only long enough to classify the stimuli and select a response.
Afterward, they may have continued to experience the stimulus without actively
accessing it, which would constitute the highly sought-after condition of conscious
experience in the absence of cognitive confounds ¢,

Arbitrating between these two views brings us to the very reason why the debate
between access and phenomenal consciousness has endured for so long: how can we
know if participants’ experience is limited to what is accessed? It has been proposed
that this problem is dealt with by no-report paradigms. If participants are not
required to report about a stimulus, they would passively experience the stimulus
without accessing it, because they have no reason to do so . Accordingly, differences
in neural activation between both conditions should reveal the neural correlates of
phenomenal experience, in other words, the true NCCs “*. However, even when
participants are not instructed to report the content of their experience, they might
still spontaneously engage in post-perceptual cognitive processes related to their
experience, or as Ned Block would put it, ‘You cannot stop [...] monkeys thinking’ *.
Therefore, it is at present unclear whether studies relying on the no-report method
have investigated phenomenal consciousness in the absence of access or access
consciousness in the absence of a report 5255:5¢:59-61.8¢,

Progress in the debate between access and phenomenal consciousness would greatly
benefit from knowing whether unreported stimuli were accessed or not. This is tricky, as
how canwe knowwhetheritwasaccessedif participantsdonotreportit? Ned Block argues®
that this can be ensured by carefully designing ‘no-cognition’ experimental paradigms, in
which post-perceptual processes do not occur. However, it is quite challenging to do so,
as it requires a priori knowledge on how to limit post-perceptual processes.
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I'would argue that the work presented in Chapter 3 constitutes a more practical solution
to this problem. Under the assumption that conscious access is a serial process, if a
particular stimulus is accessed, it will interfere with the processing of a subsequent
stimulus, even if no report is required of the stimulus being accessed. Therefore, the
PRP effect constitutes a time-resolved marker that can be used to infer whether a given
event was consciously accessed, even in the absence of a report. By combining this
approach with no-report paradigms, it becomes possible to know if unreported events
were consciously accessed. In other words, the PRP method enables finessing the need
to a priori define conditions in which post-perceptual processes will be limited * and
instead directly test whether that is th e case in existing paradigms.

One problem remains: how can we distinguish unaccessed yet consciously
experienced stimuli from unconsciously experienced ones? Unaccessed contents are
by definition unreportable, so we cannot rely on subjective reports of participants to
differentiate them from unconscious contents. As solution to this last issue, I appeal
to the neural stance proposed by Lamme *’. By combining no-report paradigms
with the PRP method, we can determine whether the stimuli in the condition that is
considered conscious (through any adequate means) were accessed. If they were not
accessed but the neural response differs from the unconscious condition, this would
show a three-way dissociation between conscious access, phenomenal consciousness,
and unconscious processing. The existence of such conditions remains speculative,
but at least we now have a method to start searching.

Perhaps evidence for such conditions is not as far as one might think. In a recent study,
ambiguous face stimuli were presented for 500 and 1000 ms, and participants only
became aware of the faces if informed beforehand (one-shot learning) ***. Comparing
the ERP components from the EEG recordings, the aware group displayed a sustained
visual awareness negativity component (VAN) throughout the entire duration of the
stimulus, unlike the unaware group. Clearly, there is something different between
the conscious and unconscious condition. However, it is possible that participants
consciously accessed the stimuli for as long as they were presented on the screen,
accounting for the sustained difference between the seen and unseen conditions.
This is of course unlikely given the results presented in Chapter 3, suggesting that
under sustained visual presentation, conscious access is transient. Nonetheless, this
has not been explicitly tested in this study. If a follow-up study were to demonstrate
that a PRP effect is absent or only transient when participants are informed of the
presence of the stimuli, these results would constitute a strong piece of evidence that
participants' experience is indeed sustained for the entire duration of the stimulus
but only sometimes and transiently access unreported contents.
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The bearing of evidence on theories

As I have outlined in my introduction, consciousness research faces a major
challenge: the proliferation of multiple and often incompatible theories evolving in
parallel 2752 Not all these theories can be true at the same time and therefore,
achieving a unified scientific theory of consciousness requires rigorous empirical
testing of existing theories to begin the process of pruning the theoretical jungle 7.
To achieve this, I have proposed an alternative to the traditional contrastive method,
by trying to identify necessity dissociations, cases in which consciousness occurs
in the absence of the mechanisms proposed to instantiate it by the theory. Both in
Chapters 2 and 3, some of the predictions made by the theories failed. This begs the
question: do these failed predictions entail that we have unequivocally established the
existence of such dissociation between consciousness and the mechanisms proposed
by the theories? And should we, based on these results, consider the theories falsified
and abandon them?

The Lakatosian view on scientific progress and theory testing as

theory refinement

Answering yes to these questions would be committing to a Popperian view of
falsificationism *¢: a failed prediction entails that the theory is wrong and any ad
hoc explanations provided by the theorists would constitute desperate attempts to
save their failed theories. In line the with the collective interpretation presented
in Chapter 2, I do not believe that this is an adequate conclusion, for this would be
throwing the baby with the bathwater. It would imply that the experiments I have
presented functioned as an experimentum crucis—a decisive test that can definitely
falsify a theory **. This is hardly tenable in our case and more generally in young
developing fields as complex as the neuroscience of consciousness 102042,

One reason to refrain from such a reading is the problem of underdetermination,
as articulated by the Duhem-Quine thesis *'. Underdetermination implies that
empirical evidence alone is insufficient to establish the validity of a single scientific
theory, as the same empirical observation can be predicted by many different
theories rather than a single one. Furthermore, predictions are never tested in
isolation; instead, we are testing a whole network of assumptions and hypotheses 2.
A failed prediction indicates that something within this network is wrong, but it does
not specify which assumption or hypothesis is at fault. Consequently, a confirmed
prediction in a single study does not entail that a theory is confirmed and a failed
prediction does not entail that the theory is wrong °.
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This may seem rather obvious. In both chapters, when testing predictions, both
theories relied on several auxiliary assumptions: that the signal of interest was strong
enough to be detected in our data (or that it would be comparable in size to studies,
on which we based our power calculations), that our analytical tools were sufficiently
sensitive to detect those signals. These are of course the usual suspects among a
large amount of auxiliary assumptions. Accordingly, when predictions fail, we can
never establish with certitude that the prediction under test is itself at fault, or if for
example, a more trivial issue is to blame. For example, in Chapter 2, IIT’s proponent
argues that the lack of synchrony between low and high-level visual areas might be
due to the limitations of the spatial resolutions available in our recordings, rather
than the absence of synchrony between these brain regions. Similarly, in Chapter 3,
I suggested that offset ignition may have been present in Chapter 2, but in too few
trials to be detected from the neural recordings.

In the case of consciousness research, the issue of underdetermination is particularly
severe. I have explained in the introduction that consciousness cannot be measured
directly and must therefore it must be inferred 77>®, in our case based on theoretical
considerations and knowledge amassed in previous studies (in the case of Chapter 3).
Accordingly, a failed prediction might entail that the inference about consciousness
was misled, rather than the predicted observation ®. This kind of argumentation can
be seen across both chapters. In the second chapter, Prof. Dehaene argues that the
lack of offset ignition (and content representation) in the PFC might indicate that the
initial assumption of experience of persistence may have been misled, and had it been
otherwise, the predicted neural activation would have been observed. As a result, it
was inferred in Chapter 3 that participants never experienced the disappearance of
the stimuli (based on the results of Chapter 2). Based on the observation of a PRP
effect at the offset of stimuli, I myself proposed that participants might after all have
experienced the disappearance of the stimulus on some occasions.

From the Duhem-Quine thesis, it follows that the ad-hoc justifications provided by
theorists and scientists to account for failed predictions may very well be justified.
It is indeed quite reasonable to suggest that predictions’ failures can result from
noise, flawed inferences, or many other factors that do not directly implicate the
core theory. Thus, we can never, based on failed predictions, unequivocally conclude
that the mechanisms proposed by the theories are not necessary and/or sufficient for
conscious experience. However, this leads to a broader concern: if theories can always
accommodate failed predictions, does this mean that they can never be empirically
overthrown? And if so, is there any realistic empirical path towards a unified theory
of consciousness?
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The answer lies in how we understand the purpose of theory testing. The fact that a
prediction can be accounted for by adjusting auxiliary assumptions does not entail
that a failed prediction is inconsequential, as the very act of refinement of auxiliary
assumptions constitutes scientific progress. As discussed in Chapter 2, Imre Lakatos
formalized this approach in his concept of research program . Rather than viewing
theories as static entities that are falsified by a single failed prediction (as the Popperian
view entails), Lakatos described theories as research programs, composed of a “hard
core” which are the fundamental claims of the theory and auxiliary assumptions.

In this framework, failed predictions are not without consequences. When a
prediction fails, the theory’s protective belt of auxiliary assumptions is adjusted,
allowing the core to remain intact. The core and this adjusted belt constitute a
novel version of the theory, in a long line of versions of the theories in the research
program history. In this view, research programs are never falsified, they are either
progressive or degenerative. For a research program to be considered progressive,
it must predict novel facts that were not predicted by the previous versions of the
theory and some of these novel predictions must be corroborated empirically ». If it
fails to do so, it is considered degenerative.

As we and several others have argued, this framework is well-suited to appreciate the
value of theory testing in consciousness research #1429 This iterative refinement
of theories is evident in Chapters 1 and 2, particularly in how GNWT evolved in
response to empirical challenges. In Chapter 2, we tested a version of GNWT,,
whose hard core is that consciousness is the result of information broadcast in the
workspace, and inferred that participants experience the persistence of stimuli they
consciously perceive (along with many other assumptions). Based on the observation
that PFC activation was not modulated by stimulus duration, GNWT revised this
inference, predicting that participants do not experience the disappearance of the
stimulus unless task-relevant. Chapter 3 tested this updated version of the theory,,
finding only partial validation of this novel prediction, as conscious access of
stimulus disappearance occurred in a subset of trials. Now GNWT is further refined
to, predicting that task relevance and predictive processes interact to influence
conscious experience, paving the way for future studies.

Accordingly, theories can remain progressive despite their predictions being falsified,
by adapting and making novel predictions, spurring novel scientific discoveries.
Accordingly, engaging in testing theories of consciousness can be seen as a way
toward theories’ self-improvement »°, refining our understanding of consciousness
at the same time *¢, making it a worthwhile endeavor.
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On the usefulness and limitations of Adversarial Collaboration in
consciousness research

While we cannot definitively establish whether the current version of a theory is
wrong, we can establish whether it is better or worse than a competing theory. As
Lakatos observed, often in the history of science, theories are abandoned because
another, better theory becomes available ">, It is with that goal in mind that we
relied on the framework of Adversarial Collaboration in Chapter 2.

The framework of Adversarial Collaboration aims to settle theoretical disputes and
has recently been discussed as constituting a gold standard for theory testing *°.
As can be seen in Chapter 2, this approach requires theorists from opposing camps
to band together and design an experiment they agree a priori is appropriate to
arbitrate between their contradicting claims . This approach is particularly
useful in the case of consciousness research. As we have seen, theories are tested in
parallel with operationalization parameters reflecting the particular commitment of
the theory being tested. As a result, the evidence fitting a given research program
is discarded by another based on disagreement with the experimental parameters,
stalling progress 7*°. This is prevented by the very nature of ACs: an experimental
design is agreed upon a priori based on which theories’ predictions will be tested.
Accordingly, the results should enable us to establish which (current version) of the
theories being tested better explains conscious experience 7.

Involving the advocates of each theory in the theories comparison process is crucial
in the field of consciousness research, where theories are often under-defined
and theoretical work is typically focused on explaining existing effects rather than
advancing novel predictions under untested conditions 2565:87:94108121.287.295 = YWhen
theories are compelled to step beyond their comfort zones, novel predictions are
formulated and these predictions must be faithful representations of the theories
themselves, which is ensured by involving proponents of each theory. This framework
does not only yield novel predictions, but it also forces theories to become more
precise to be able to attribute evidence to one or the other theory. For instance, in
Chapter 2, theories have to provide precise definitions of the regions of the brain
they consider to play a critical role in conscious experience—details that were not
explicitly stated before. I believe that my work attests to the value of this approach:
the results have led to the refinement of the theories and the generation of novel
predictions, engaging in a progressive research agenda that may not have emerged
had the theories not been challenged under novel experimental conditions.
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However, there is an important limitation of the study presented in Chapter 2.
Despite the theories being tested on common experimental grounds and some of
their predictions being falsified, we cannot decide which of IIT or GNWT (in their
current formulations) provides a better account of empirical data. That is because,
despite our best efforts to bring the theories on common grounds, the predictions
they committed to were not formally adversarial.

This can be seen in the pre-registered predictions of the project *¢. The first prediction
relates to the decoding of conscious content. GNWT predicts that it can be decoded
from the PFC, while IIT predicts it can be decoded from the posterior ROI. These
predictions are not contradictory as they concern different data; they are therefore
not mutually exclusive. As Prof. Dehaene mentions in the discussion of Chapter 2,
GNWT would also predict that the content being experienced should be decodable
from sensory regions. Furthermore, IIT does not deny that decoding in the PFC could
be observed. Instead, IIT predicts that there should not be additional information
regarding the content being experienced in the PFC beyond the information found
in the posterior hot zone. Importantly, this prediction from IIT was not explicitly
contested nor endorsed by GNWT. In Chapter 2, we observed decoding in both
prefrontal and posterior ROIs, and we observed that adding prefrontal features to the
posterior classifier did not lead to an increase in decoding accuracy. In other words,
both theories saw all their predictions validated, and it is accordingly not possible to
determine which theory accounts the best for the observed data.

Similarly, GNWT did not predict that no sustained activation should be observed in
the posterior ROI and IIT did not predict that no onset and offset ignition should be
observed in the PFC. The lack of offset-ignition in the PFC does challenge GNWT but
it has no implications for IIT. GNWT did not predict that the connectivity between
FFA and V1/V2 should not be larger when a face is presented, and IIT did not predict
that connectivity between FFA and PFC should not be larger when a face is presented.
Accordingly, the failure of IIT prediction challenges only IIT and has no bearing
on GNWT.

This limitation does not change the implications that failed predictions have for the
theories, but does entail that we cannot answer the question of whether one theory is
better than the other.

There are several possible reasons why the theories did not commit to directly
opposing predictions. A first possibility is that while the theories in their current
form might be capable of making contradicting statements, the experimental
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conditions may have not been adequate to bring about such contradicting statements.
I acknowledge that our experimental choices may have limited the potential for
direct opposition between the theories, and future studies could explore alternative
paradigms. Alternatively, this limitation may not lie in the experimental design but
rather reflect the lack of specification of theories in their current formulations. As
theories have been mostly tested with a restricted set of experimental conditions,
they may be reluctant to make predictions in experimental conditions falling outside
of their current purview. A last possibility is that GNWT and IIT may have non-
overlapping explanatory targets, that is they attempt to explain different concepts
loosely understood to be covered by the concept of consciousness 7”7, in which case

they will never be able to formulate truly contradicting predictions.

I do not believe it is possible to determine a posterioir which of these reasons
is the cause of the lack of contradicting predictions in Chapter 2. However, our
results highlight the importance of considering such factors in future adversarial
collaborations. If theories are reluctant to commit to contradicting predictions in a
given experimental paradigm, it is worth exploring whether alternative paradigms
in which the theories being tested would be willing to commit to contradicting
predictions. Importantly, if this proves to be unfeasible, this may reflect their current
lack of specificity or their misaligned explanatory targets. I would argue that in both
cases, adversarial collaboration projects remain far from vain, as they encourage the
refinement and formalization of theories in ways that isolated testing cannot. In
turn, such projects may produce the necessary refinements, making theories capable
of formulating contradicting predictions in future studies. Alternatively, these
refinements might help clarify the misalignment in explanatory targets of theories
so far thought to address related phenomena. Both outcomes would contribute to
refining the theoretical landscape. Therefore, researchers should not be discouraged
from engaging in adversarial collaborations, even when obtaining directly competing
predictions is challenging, as these collaborations drive both theoretical and
experimental progress.

Improving the efficacy of theory testing efforts

I believe that my research demonstrates the significant progress that can be made
by testing predictions from theories of consciousness. By attempting to identify
dissociations between the content of conscious experience and the mechanisms
proposed by various theories, I have uncovered key gaps in their explanations and in
our understanding of conscious experience. These efforts, in line with the Lakatosian
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view of scientific progress, have not only led to the refinement of these existing
theories but have also deepened our understanding of consciousness itself.

While the Lakatosian view entails that that theories cannot be directly falsified by
a single experiment, attempts at testing theories of consciousness should still aim
to be as decisive as possible. Experiments should be designed such that when a
prediction fails, the options for revising assumptions are limited to meaningful
ones. In my research, I have developed and applied strategies to constrain, which
assumptions need to be revised when a prediction fails. My work has also granted
me hindsight wisdom, revealing additional strategies that can further enhance
the efficacy of theory testing. By sharing both the methods I implemented and the
lessons I gained, I offer practical guidelines to make future attempts at testing
theories of consciousness more effective and integrative, fostering iterative progress
toward a unified scientific theory of conscious experience.

Constraining auxiliary assumptions

A first insight is that while some assumptions inevitably need to be made when
testing predictions, certain assumptions can—and should—be verified. A critical
assumption, often taken for granted, is that the experimental conditions under which
data are collected are appropriate and consistent. This is by no means guaranteed. In
the large-scale, multi-lab study presented in Chapter 2, we observed that differences
in hardware and software configurations, as well as variability in testing practices,
could lead to significant discrepancies in experimental setup performances.
Addressing this variability in the Cogitate project required the development of testing
protocols to ensure that experiments were functioning consistently across all sites.

Based on this observation, I conducted an additional study (not included in this
thesis) to investigate the extent to which it is representative of the community. We
surveyed the field and revealed that while most researchers conduct some form
of setup testing, the specific aspects tested varied greatly across researchers .
Furthermore, I demonstrated through simulations that even slight deviation in
setup performance could have drastic impact on statistical results. In this state of
affairs, failed predictions in theories could easily be attributed to trivial technical
issues. To address this issue, the testing protocol developed in the Cogitate project
was extended to a standardized framework applicable to any event-based studies
in cognitive neuroscience. This framework includes a shorthand report, enabling
researchers to document the performance of their setups comprehensively.
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By applying this protocol, researchers can rule out trivial technical issues as potential
explanations for failed predictions, directly reducing the underdetermination problem.
This is particularly important in multi-lab studies, where cross-site consistency is
critical and facilitate replication efforts by enabling researchers to match experimental
performance across different studies. By systematically addressing these technical
challenges, variability in results across studies can be reduced; helping to ensure that
theory testing is based on robust, high-quality data.

A second, related insight deals with the inference problem. As discussed earlier,
consciousness research relies on proxies to infer the content of consciousness, which
introduces a layer of uncertainty. When a theory faces a failed prediction, it can often
dismiss the evidence by arguing that the inference about consciousness was flawed. I
believe that this specific type of post hoc justification can be mitigated by providing
a priori a logical derivation of the inference from the theory itself and declaring the
level of confidence the theory places on the inference.

Inthe experiment presented in Chapter 2, GNWT did not explicitly justify the rationale
behind the inference that participants experienced the persistence of stimuli on the
screen (nor did IIT, but I will stick to GNWT to illustrate this recommendation). As a
result, it became easy to discard this inference when no offset ignition was observed.
Had GNWT provided a theoretical motivation for this inference (based on attention
and the lack of competing stimuli for example) and declared a high confidence in it,
rejecting the inference would have incurred a large cost to the theory. Furthermore,
by exposing, the logical derivation behind the inference would have made explicit
the background assumptions supporting the theory’s prediction, leading to a more
precise and constructive update of the theory by identifying which part of the rational
is flawed. In other words, declaring a priori the rationale and degree of confidence in
the inference can help limit the degrees of freedom a theory has in terms of ad-hoc
accommodation, leading to more precise revision of the theories.

Adherence to the open science ethos

Another critical recommendation to strengthen theory testing is adhering to the open
science ethos °+°, Pre-registration is critical to establish the progression of research
programs. Under the Lakatosian view, there is nothing wrong per se with theories
to provide ad-hoc explanations when their predictions fail. There is however a clear
demarcation between predictions (made based on theoretical considerations alone)
and accommodation, which is a post hoc explanation of why a prediction fails >°.
Across both chapters, theories predictions were pre-registered, enabling a clear
tracking of the evolution of theories, highlighting how accommodation leads to novel
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predictions, which can then be empirically tested. This, in turns, makes it possible to
assess whether a theory remains progressive or eventually becomes degenerative. In
addition to pre-registering the predictions, the rationale and degree of confidence
placed in the inference I have proposed above should also be pre-registered. By
pre-registering both the predictions alongside the rationale behind the inference,
the degrees of freedom available for post-hoc justifications ensures more precise
revisions of theories based on empirical evidence.

In addition to pre-registration, data sharing is another essential component of
the open science framework. As I have highlighted, theory testing is an inherently
iterative and dynamic process; the findings of a single study are insufficient to
conclusively confirm or refute a theory. For a theory to remain progressive when
its predictions are refuted, it must generate novel predictions that are empirically
tested. Importantly, as highlighted by Negro *°, the novelty of a prediction is
understood in terms of 'use-novelty'—the prediction of a fact is considered novel if
it was not part of the set of empirical observations used to motivate the theory up
until that point. Therefore, testing these novel predictions does not always require
new experiments; they can often be validated using existing observations or by
reanalyzing existing datasets.

Furthermore, the validation of a theory’s prediction in a single experiment
demonstrates its validity only in this particular instance. Importantly, if a theory
of consciousness is correct, the mechanisms it proposes to instantiate conscious
experience should be observed across all experimental conditions under which
consciousness occurs. In this sense theory testing can be seen as a generalization
problem >¢ and testing theory’s predictions across diverse datasets is necessary to
establish the robustness and the scope of a theory. Such an endeavor requires the
aggregation of empirical data to test the robustness of theories’ predictions across
the wealth of empirical data amassed in empirical efforts to investigate the neural
underpinnings of conscious experience.

However, in the current state of the literature, most data aggregation has occurred
at the level of reviews written primarily from the perspective of the proponents of
the theories :6587:94108121287.295  However, a comprehensive meta-analysis to establish
the generalizability of theories’ predictions would require the sharing of the data
collected across the wealth of empirical studies conducted over the past three decades.
However, sharing data is not sufficient as data that are not properly documented
or structured are of limited use. Instead, data should be shared following the FAIR
principle—they should be Findable, Accessible, Interoperable, and Reusable 2.
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Recognizing this necessity, [ have dedicated significant effort to ensure that the data
collected across both chapters are openly accessible and thoroughly documented.
Specifically, I have authored a paper (submitted to Scientific Data) describing the
extensive iIEEG data set collected in Chapter 2 and developed a comprehensive
Python package to facilitate data access and analysis for replications and reuse of the
data for alternative purposes >®. The data are structured and documented following
the Brain Imaging Data Structure (BIDS) principle . We extended the metadata
beyond the BIDS specification to include detailed, machine-readable information
about the experimental setup, data collection procedures, clinical information about
participants, and more.

These efforts not only make the data more usable for replication and reanalysis
for other purposes, they also constitute a stepping-stone to building a centralized
database that can support meta-analysis and holistic theory testing. Such analyses
can help resolve inconsistencies in the literature, facilitates the generalization and
scope delineation of theories of consciousness, moving the field toward a more
unified and empirically grounded theoretical framework.

Bayesian evidence accumulation: a comprehensive framework to test
theories of consciousness

A final important insight is that the reliance on frequentist statistics suffers from key
limitations when it comes to navigating complex empirical situations that arose in the
studies I have presented, and more broadly, in consciousness neuroscience . While
the Lakatosian view provides a useful philosophical framework, it remains vague as
to what constitutes a challenge to a theory requiring an update of the protective belt
and how to determine when a research program becomes degenerative *°. Across
both Chapters, each theory made several predictions and a binary outcome (pass or
fail) was determined based on a criterion of significance in the classical frequentist
statistic tradition. According to this criterion, some predictions were supported by
the data, others were not. Moreover, these predictions were tested across different
modalities (iIEEG, fMRI, MEG, behavior, and eye-tracking), and in some cases,
predictions were only validated in some modalities but not others.

In this state of affairs, it becomes difficult to determine how much a theory should be
revised in light of empirical evidence. Not all predictions are equally relevant to the
theories; some are more critical than others °. For instance, it could be argued that
for IIT, the prediction of decoding in the posterior cortex may be less central than that
of sustained representation for the duration of the stimulus presentation. Similarly,
one might argue that the lack of offset-ignition poses a stronger challenge than the
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absence of content representation following stimulus offset for GNWT. Furthermore,
a given theory may a priori place more trust in one recording modality compared to
another, depending on the spatio-temporal resolution of the method in question.
These important nuances are difficult to address using frequentist statistics, as
all predictions are tested on equal footing and in isolation. While we attempted to
provide a comprehensive reading of our experimental results in Chapter 2, taking
into consideration the relevance of each prediction to the theory, this approach
lacks formalism.

In contrast, Bayesian inference offers a formal framework for updating beliefs based
on novel empirical observations, making it well-suited for evaluating and refining
theories of consciousness, as recently proposed by Corcoran and colleagues *°. While
Bayesian methods have traditionally been associated with confirmation rather than
falsification *°, it transcends the traditional dichotomy of confirmation versus
falsification by providing a probabilistic quantification of evidence for a particular
model. Under this framework, a generative model is defined and theories predictions
are operationalized by specifying prior distributions reflecting expectations about
the observed effects **°. For a single prediction, evidence can be estimated through
variational approximations by fitting the model to the observed data, thereby
assessing how well the prior distribution aligns with the observed data. For a single
prediction, the log of evidence of each theory can compared to determine which
one has the most empirical support. Critically, evidence for each model can also be
summed across multiple predictions, recording modalities, and experiments to
establish which theory receives more overall support from the data.

Building on these advantages, the Bayesian framework offers several critical
improvements over frequentist statistics for theory testing in consciousness
neuroscience. Bayesian inference overcomes the limitation of testing predictions
in isolation by allowing for the accumulation of evidence across predictions and
recording modalities. In adversarial collaboration situations where each theory
makes different predictions on separate modalities, this enables to determine which
theory has the most empirical support in a principled way. It is important to note
that the evidence of a given theory is only meaningful when compared to another that
of another model making predictions regarding the same data. Accordingly, it does
not account for the aforementioned limitations of the study presented in Chapter 2
where the theories predictions addressed different aspects of the data.

However, the straightforward evidence accumulation scheme possible under the
Bayesian framework readily enables meta-analyses to assess the generalizability of
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theories of consciousness across many studies. When combined with the advocated
data sharing practices, this framework allows for the accumulation of evidence
for competing theories across many data sets, thereby establishing which theory
accounts for the most openly accessible data. This provides a tractable and low-cost
agenda towards more empirically grounded theoretical frameworks.

In addition, the flexibility of operationalizing theory predictions through prior
distributions enables the integration of several recommendation outlined earlier. For
instance, if experimental performance are documented to have lower performance,
this can be reflected by selecting less constrained priors, indicating lower confidence
in detecting effects. Similarly, the degree of confidence a theory places in the
inference regarding the content of consciousness in a particular experiment can be
incorporated in the analysis, to reflect the associated confidence a theory has that the
predicted effect will be observed.

Importantly, under the Bayesian framework, setting a less constrained prior has
meaningful consequences: it implies that the amount of evidence gains if its prediction
is correct is lower compared to if it had set a more constrained, confident prior. This
mechanism ensures that precise predictions are rewarded over vague ones, encouraging
them to put forth riskier predictions by rewarding them when they do so *>°.

Moreover, the Bayesian framework aligns well with the open science practices of
pre-registration. By pre-registering analysis plans, models, and priors, researchers
enhance the transparency of theory testing and ensure that the specified priors
were not inadvertently contaminated by knowledge of the data. This approach is
embraced by a novel adversarial collaboration aimed at comparing IIT, predictive
processing theory and neuro-representationalism %, and this project holds the
promise of providing an unprecedented quantification of empirical support for the
theories involved.

In conclusion, adopting Bayesian evidence accumulation schemes constitutes a
promising direction for a more formal effective theory testing in consciousness research.
This approach aligns with the Lakatosian view of scientific progress, providing a formal
method to determine the progressiveness of a research project #2°. Furthermore, this
approach integrates our earlier recommendations regarding experimental rigor,
explicit theoretical inferences, pre-registration and holistic theories testing. By
embracing Bayesian inference, we can encourage a more rigorous, integrated and
productive scientific environment, ultimately propelling the field towards more
unified and empirically grounded theoretical frameworks.
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Conclusion

In this thesis, I proposed a novel approach to advancing consciousness research
by identifying instances where conscious experience occurs in the absence of the
mechanisms proposed by existing theories. This method shifts away from the
traditional search for neural correlates of consciousness (NCCs) and the limitations
of the contrastive method, allowing for a broader range of experimental conditions
and alleviating the need to control for unconscious processing. By focusing on the
temporal dynamics of conscious experience—specifically, how we experience the
persistence of particular contents—I aimed to test the predictions of Integrated
Information Theory (IIT) and the Global Neuronal Workspace Theory (GNWT) under
new experimental paradigms.

In collaboration with proponents of both theories, I conducted experiments
presenting highly visible visual stimuli for three distinct durations. The results
showed sustained activation and content representation in the posterior regions,
as predicted by IIT. In contrast, only transient responses were observed in the PFC,
challenging GNWT's initial predictions. However, my subsequent study suggested
that participants might not experience the full duration of stimuli; instead, they may
only access representations transiently, just long enough to reach a decision.

These results have significant implications for both vision science and consciousness
research. They refine our understanding of the neural mechanisms associated with
sustained visual presentation and provide insights into the temporal dynamics
of conscious experience in this context. Additionally, they offer a new avenue for
investigating the dissociation between access consciousness and phenomenal
consciousness, providing a way forward for this longstanding debate.

Importantly, this work demonstrates that scientific progress in consciousness
research is best achieved through the iterative refinement of existing theories
rather than their outright rejection upon encountering contradictory evidence.
Adopting a Lakatosian view of scientific progress, I observed that even when
core assumptions of theories remain robust against empirical falsification, the
process of testing and refining these theories leads to deeper insights and more
comprehensive explanations.

While the adversarial collaboration framework used in this research facilitated
rigorous testing and promoted constructive dialogue between competing theories, it
also revealed limitations—particularly the difficulty for theories of consciousness to
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commit to opposing predictions. This made it challenging to definitively establish
which theory better accounts for the empirical data. Future research should aim
to design experiments that elicit directly competing predictions and consider
employing Bayesian inference methods to navigate complex empirical situations
more effectively.

In conclusion, this thesis underscores the importance of an iterative, integrative
approach to testing theories of consciousness. By focusing on refining and
improving existing theories and embracing collaborative efforts, we can enhance the
explanatory power of these theories and move closer to a unified understanding of
consciousness. Adhering to open science practices, such as pre-registration and data
sharing, will further strengthen the rigor and transparency of future research in this
intricate field.
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Nederlandse Samenvatting

In het veld van het bewustzijnsonderzoek worden tal van theorieén voorgesteld
die onverenigbare mechanistische verklaringen bieden voor de neurale basis van
bewustzijn. Deze theorieén ontwikkelen zich vaak parallel, waarbij elke theorie
eigen empirisch bewijs verzamelt zonder interactie met of uitdaging van alternatieve
perspectieven. Deze fragmentatie is symptomatisch voor methodologische
beperkingen van de traditionele bottom-up benadering, die steunt op controversiéle
experimentele operationalisaties. Verschillende operationalisaties kunnen per
ongeluk verschillende fenomenen volgen, die door onderzoekers als “bewustzijn’
worden geinterpreteerd. Dit leidt tot inconsistente bevindingen en belemmert de
vooruitgang naar een verenigde wetenschappelijke verklaring van bewustzijn.

Erkennend dat dit tot stilstand heeft geleid, verschuift mijn proefschrift van
de bottom-up benadering door te focussen op rigoureuze tests van bestaande
theorieén over bewustzijn. Ik hanteer een noodzaak-dissociatiebenadering, met
als doel gevallen te identificeren waarin bewustzijn optreedt in afwezigheid van de
mechanismen die door een theorie worden voorgesteld, om zo de noodzakelijkheid
van deze mechanismen te testen. Deze aanpak omzeilt de controversiéle voorwaarden
die nodig zijn bij de contrastieve benadering en maakt het mogelijk om theorieén te
testen op nieuwe experimentele gronden.

Ik voerde twee experimenten uit die gericht waren op de temporele dynamiek
van bewustzijn en de bijbehorende neurale activiteit tijdens de presentatie van
stimuli. In de eerste studie maakte ik gebruik van het krachtige raamwerk van
adversariéle samenwerking om de voorspellingen te testen van twee toonaangevende
theorieén van bewustzijn—de Geintegreerde Informatietheorie (IIT) en de Global
Neuronal Workspace Theory (GNWT)—met betrekking tot de verwachte neurale
dynamiek bij aanhoudende visuele ervaringen. Deze samenwerking zorgde voor
een onbevooroordeelde test van de voorspellingen van de theorieén en leidde tot
belangrijke uitdagingen voor beide.

In de tweede studie onderzocht ik meer direct de temporele dynamiek van bewuste
ervaring in verband met de presentatiecondities van het eerste experiment,
waarbij bleek dat deze dynamiek sterk kan afwijken van intuitieve verwachtingen.
De bevindingen suggereren dat bewuste toegang tot stimuli mogelijk vluchtiger
is dan eerder werd gedacht, wat een verfijning van ons huidige begrip van
bewustzijn oplevert.
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De resultaten van beide studies tonen aan dat de noodzaak-dissociatiebenadering
effectief bijdraagt aan de vooruitgang van het veld door de beperkingen van
bestaande theorieén over bewustzijn te identificeren en deze theorieén te verfijnen.
De falsificatie van bepaalde voorspellingen leidde tot de ontwikkeling van nieuwe
hypothesen en opende nieuwe empirische wegen om bewustzijn te onderzoeken en
ons begrip ervan te verfijnen.

Concluderend illustreert dit proefschrift dat rigoureuze tests van theorieén over
bewustzijn aanzienlijke vooruitgang in het veld bevorderen. Door te identificeren
waar theorieén tekortschieten en hun evolutie aan te moedigen, verbeteren we zowel
de theoretische modellen als ons begrip van bewustzijn zelf, en komen we dichter
bij een verenigde wetenschappelijke verklaring. Deze benadering onderstreept het
belang van het overstijgen van de traditionele bottom-up benadering door daarnaast

te focussen op theorie-testing en verfijning, om de huidige impasse te doorbreken en
de ontwikkeling van progressieve onderzoeksprogramma's te bevorderen.
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English Summary

In the field of consciousness research, numerous theories propose incompatible
mechanistic explanations for the neural underpinnings of consciousness.
These theories often progress in parallel, each accumulating its own supporting
empirical evidence without engaging with or challenging alternative perspectives.
This fragmentation is symptomatic of methodological limitations inherent to
the traditional bottom-up approach that relies on controversial experimental
operationalization. Different operationalization may mistakenly track different
phenomena, each interpreted by researchers as “consciousness”, leading to
inconsistent findings and hindering progress toward a unified scientific explanation
of consciousness.

Recognizing this stalemate, my thesis shifts from the bottom-up approach by
focusing on rigorous testing of existing theories of consciousness. I adopt a necessity
dissociation approach, aiming to identify cases where consciousness occurs in
the absence of the mechanisms proposed by a theory to test the necessity of these
mechanisms. This approach circumvents the controversial conditions required by the
contrastive approach and enables testing theories on novel experimental grounds.

I conducted two experiments centered on the temporal dynamics of consciousness
and the associated neural activity during stimulus presentation. In the first study, I
relied on the powerful framework of adversarial collaboration to test the predictions
of two leading theories of consciousness—the Integrated Information Theory (IIT)
and the Global Neuronal Workspace Theory (GNWT)—regarding the neural dynamics
expected with persistent visual experiences. This collaborative approach allowed for
unbiased testing of theories' predictions and led to significant challenges for both.

In the second study, I investigated more directly the temporal dynamics of conscious
experience associated with the presentation conditions of the first experiment,
revealing that these dynamics might differ strikingly from intuitive expectations. The
findings suggest that conscious access to stimuli may be more transient than previously
thought, yielding a refinement of our current understanding of consciousness.

The results of both studies demonstrate that the necessity dissociation approach
effectively advances the field by identifying the limitations of existing theories
of consciousness and prompting their refinement. The falsification of certain
predictions led to the development of new hypotheses, opening novel empirical
avenues for exploring consciousness and refining our understanding thereof.
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In conclusion, this thesis illustrates that rigorous testing of theories of consciousness
fosters significant progress in the field. By identifying where theories fall short
and encouraging their evolution, we enhance both the theoretical models and
our understanding of consciousness itself, moving closer to a unified scientific
explanation. This approach underscores the importance of moving beyond the
traditional bottom-up approach by focusing in addition on theory testing and
refinement to break through the current stalemate and foster the evolution of
progressive research programs.
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Research data management

The research presented in this thesis followed the applicable laws and ethical
guidelines. Research data management was conducted according to the FAIR
principles (Findable, Accessible, Interoperable, Reusable). The paragraphs below
specify this in detail and provide access information to the data.

ETHICS

This thesis uses data from human participants. The experiment presented in
Chapter 2 was approved by the institutional committees of each data collecting labs
(Comprehensive Epilepsy Center at New York University Langone Health, Brigham
and Women’'s Hospital, Boston Children’s Hospital (Harvard), and University of
Wisconsin School of Medicine and Public Health, Centre for Human Brain Health
of the University of Birmingham, the Center for MRI Research of Peking University,
Yale Magnetic Resonance Research Center and at the Donders Centre for Cognitive
Neuroimaging of Radboud University Nijmegen). All volunteers and patients provided
oral and written informed consent before participating in the study. Epilepsy patients
were also informed that clinical care was not affected by participation in the study.
The Experiment presented in Chapter 3 was approved by the Ethics Council of the
Max Planck Society (No. 2017_12). Participants provided written informed consent
before the study. Both study procedures were carried out in accordance with the
Declaration of Helsinki.

This research was supported by the Templeton World Charity Foundation (TWCF0389)
and the Max Planck Society.

FINDABLE, ACCESSIBLE

Data, code, and research documentation were shared on openly accessible platforms.
The data collected in Chapter 2 are archived on hard disk drives (HDD) at the Max
Planck Institute for empirical institute and can be downloaded as data bundles
or through the XNAT database platform. The data are accompanied by extensive
machine-readable metadata, enabling programmatic queries based on various
attributes of the data and subjects to maximize accessibility and findability of the
data. The data collected in Chapter 3 are available on the OSF platform. All code
and documentation necessary for the replication of published results are available
on GitHub. All data will remain available for at least 5 years after termination of
the studies.
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Chapter Resource Link License
2 Data https://www.arc-cogitate.com/data-release ~ MIT License
2 Analysis code https://github.com/Cogitate-consortium/ MIT License

cogitate-mspl

2 Experiment code https://github.com/Cogitate-consortium/ MIT License
Experiment1

3 Data https://osf.io/krjh7 MIT License

3 Analysis code https://github.com/ncc-brain/ MIT License

Reconstructed_time_analysis

3 Experiment code https://github.com/ncc-brain/ MIT License
Reconstructed_time_experiment

INTEROPERABLE, REUSABLE

The raw data for Chapter 2 and 3 are available in their raw format following the BIDS

conventions, to ensure interoperability and reusability. All codes used for analysis and
experiment have been documented extensively and we provide readme files to instruct
users how to use our data. In addition, I have created code and notebooks to illustrate
how to use the iEEG data of our project to ensure reusability of the data for other
scientificenquiries and serve as educational resources for researchers. These resources
can be found here: https://github.com/Cogitate-consortium/iEEG-data-release

PRIVACY

The privacy of all participants has been warranted by using pseudonymized subject
codes. Linking pseudonymized codes to personal data is not possible, as all keys
Key files were deleted after finalization of the projects presented in chapter 2 and 3.
Personal identifiable information was removed from all files and headers and
MRI-data from Chapter 2 were defaced before being shared.
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as important as it is to do good research, communicating it well is equally important.
After all, what is the point of doing it if we cannot even tell a nice story about it? I will
not name you all by fear of forgetting someone important. But I need to point out
that you, Simeon, would not have been included in the list, because I would never
forgive myself for not making this joke to conclude this thesis.
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Donders Graduate School

For a successful research Institute, it is vital to train the next generation of scientists.
To achieve this goal, the Donders Institute for Brain, Cognition and Behaviour
established the Donders Graduate School in 2009. The mission of the Donders
Graduate School is to guide our graduates to become skilled academics who are
equipped for a wide range of professions. To achieve this, we do our utmost to ensure
that our PhD candidates receive support and supervision of the highest quality.

Since 2009, the Donders Graduate School has grown into a vibrant community
of highly talented national and international PhD candidates, with over 500 PhD
candidates enrolled. Their backgrounds cover a wide range of disciplines, from
physics to psychology, medicine to psycholinguistics, and biology to artificial
intelligence. Similarly, their interdisciplinary research covers genetic, molecular,
and cellular processes at one end and computational, system-level neuroscience
with cognitive and behavioural analysis at the other end. We ask all PhD candidates
within the Donders Graduate School to publish their PhD thesis in de Donders Thesis
Series. This series currently includes over 700 PhD theses from our PhD graduates
and thereby provides a comprehensive overview of the diverse types of research
performed at the Donders Institute. A complete overview of the Donders Thesis
Series can be found on our website: https://www.ru.nl/donders/donders-series

The Donders Graduate School tracks the careers of our PhD graduates carefully. In
general, the PhD graduates end up at high-quality positions in different sectors, for
a complete overview see https://www.ru.nl/donders/destination-our-former-phd. A
large proportion of our PhD alumni continue in academia (>50%). Most of them first
work as a postdoc before growing into more senior research positions. They work
at top institutes worldwide, such as University of Oxford, University of Cambridge,
Stanford University, Princeton University, UCL London, MPI Leipzig, Karolinska
Institute, UC Berkeley, EPFL Lausanne, and many others. In addition, a large group of
PhD graduates continue in clinical positions, sometimes combining it with academic
research. Clinical positions can be divided into medical doctors, for instance, in
genetics, geriatrics, psychiatry, or neurology, and in psychologists, for instance
as healthcare psychologist, clinical neuropsychologist, or clinical psychologist.
Furthermore, there are PhD graduates who continue to work as researchers
outside academia, for instance at non-profit or government organizations, or in
pharmaceutical companies. There are also PhD graduates who work in education,
such as teachers in high school, or as lecturers in higher education. Others continue
in a wide range of positions, such as policy advisors, project managers, consultants,
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data scientists, web- or software developers, business owners, regulatory affairs
specialists, engineers, managers, or IT architects. As such, the career paths of
Donders PhD graduates span a broad range of sectors and professions, but the
common factor is that they almost all have become successful professionals.

For more information on the Donders Graduate School, as well as past and upcoming
defences please visit:

http://www.ru.nl/donders/graduate-school/phd/
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