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4 Introduction

Cancer is the second leading cause of death worldwide, after heart disease. Every
year, ten million people die of cancer1. Medical imaging, particularly computed
tomography (CT) scans, is crucial in detecting tumors and determining how to best
treat the disease. However, the large amount of CT scans can be overwhelming for
radiologists to analyze and report on. In the Netherlands alone, two million CT
scans were made in 2020, a doubling since 20102. In this thesis, we aimed to develop
and validate computer methods to assist radiologists in analyzing CT scans of cancer
patients, with the hope of reducing the time it takes them to report on these scans
and the potential to generate more precise and quantifiable measures of disease. The
technique that is used throughout this thesis is deep learning. We focus on methods
to locate and segment structures, both organs, such as the spleen and the kidneys,
and abnormalities, such as tumors or cysts.

This introductory chapter will provide a brief background on cancer imaging,
computed tomography, deep learning, and the evaluation metrics used throughout
the thesis. The chapter ends with a short outline of the thesis.

1.1 Cancer

Cancer is characterized by the uncontrolled growth and proliferation of abnormal
cells in the body. Normally, old cells die, yet in cancer, these cells persist, grow-
ing without control, and mutating into abnormal cells. These abnormal cells may
form a mass of tissue known as a tumor. When detected early, there are better treat-
ment options for most types of cancers, therefore early detection is crucial to reduce
the mortality rate. Over a span of 25 years, from 1991 to 2016, a combination of
cancer treatments and early detection efforts, supported by clinical trials providing
evidence of treatment efficacy, managed to reduce cancer deaths by 27%, as shown
by a study by Siegel et al. in 20193. This means that the number of cancer-related
deaths per 100,000 people per year dropped from 215 to 1563.

1.1.1 Cancer treatments

The treatment of cancer can vary widely depending on the type, stage, and loca-
tion of the cancer, as well as the individual patient’s health and preferences. How-
ever, some of the most important and commonly used treatments for cancer include
surgery, chemotherapy, radiation therapy and immunotherapy. Surgical removal of
cancerous tissue is a primary treatment for many types of cancer, particularly if the
tumor is localized and has not spread to other parts of the body. Chemotherapy
involves the use of drugs to kill or inhibit the growth of cancer cells. It can be ad-
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ministered orally or through intravenous injections and is often used when cancer
has spread to other parts of the body. Radiation therapy is a treatment using high-
energy radiation beams to target and destroy cancer cells or shrink tumors. It can be
used alone or in combination with other treatments. Immunotherapy drugs help the
immune system recognize and attack cancer cells. They have shown great promise
in treating various types of cancer4.

1.1.2 Imaging of cancer

X-rays, CT scans, and advanced imaging techniques such as MRI and PET scans play
a crucial role in the ongoing monitoring of cancer progression in patients. Among
these, CT scans are the most widely used. This prominence arises from their ability
to offer greater precision when compared to conventional 2D radiographs, lower cost
and better availability when compared with MRI, and their less invasive nature and
lower costs in contrast to PET scans.

In the management of cancer, CT scans have many applications. Beyond their
diagnostic utility, CT scans are instrumental in guiding medical decisions. They also
aid physicians during the process of taking biopsies, where tissue samples are col-
lected for further analysis. Additionally, CT scans are essential in the meticulous
planning of chemotherapy and radiation therapy regimens, ensuring that treatment
is precisely targeted to the affected area while sparing healthy tissue.

Moreover, information from CT scans allows medical professionals to quantita-
tively assess change in the volume of organs and tumors over time. This longitudinal
data is of paramount importance, serving as a yardstick to determine the effective-
ness of ongoing cancer treatments. It provides insights into whether the treatment
is achieving the desired results, and based on information from the CT the medical
team can decide to adjust to the therapeutic approach, if necessary. Furthermore,
CT scans are essential in identifying scenarios where palliative care may be the most
appropriate course of action, thus promoting a holistic approach to cancer care that
prioritizes the patient’s well-being and quality of life.

1.2 Computed Tomography

X-rays are electromagnetic radiation first discovered by Wilhelm Conrad Röntgen in
18955. A modern CT scanner consists of a source emitting x-rays and, on the oppo-
site side, an array of detectors measuring the radiation that has passed through the
patient. Both source and detector rotate around the patient, while the patient is lying
on a table that is moved through the rotating ring of source and detector. From the
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Figure 1.1: Orthogonal views

detector measurements it is possible to create 2D slices, cross-sectional images, of the
patient with pixel values indicating how much of the x-ray radiation was absorbed
by the tissue. These values are measured in Hounsfield Units (HU). Soft tissues, such
as muscle, absorb fewer x-rays than hard tissues, such as bone. Common HU values
are air -1000 HU, water 0 HU, fat -120 HU, muscles 40 HU, and bones 300 HU on-
ward. As a result, radiologists may miss lesions if the lesions have a similar density
as the directly surrounding tissue.

Intravenous (IV) and oral contrast agents can improve the visibility of certain
structures within the body, but they can also cause allergic reactions. Intravascular
contrast agents are often used during CT scans to help detect solid organ metastases,
such as the liver, the adrenal glands, and the brain. However, the use of contrast
media can also alter tissue attenuation and may cause artifacts. Artifacts can also be
created by materials with a high atomic number, such as hip and vertebrae prosthe-
ses.

CT scans are composed of a sequence of 2D slices that are reconstructed into a
3D image, which can be viewed in multiple orthogonal views (axial, coronal, and
sagittal, see Figure 1.1).

Modern CT scanners offer a higher resolution and are able to reconstruct thinner
slices. It is now possible to make scans where each voxel has a size of 0.5 × 0.5 × 0.5
mm, meaning each cubic centimeter of a patient already contains 8000 measurement
values. These high-resolution CT scans further increase the amount of data that must
be processed, add to the workload of radiology departments, and increase reading
times for radiologists.
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1.3 Medical Image Analysis and Deep Learning

Medical image analysis is the field that focuses on analyzing visual medical condi-
tions using digital computers. This analysis has been traditionally performed using
computer vision techniques, in which the feature extraction is handcrafted, meaning
that human experts decide on which features to compute from the image or a local
part of the image. These features were further processed by the computer.

However, Deep Learning (DL), a subfield of machine learning, has recently be-
come a popular approach for medical image analysis6,7. DL allows for the direct
learning of meaningful representations from data rather than requiring handcrafted
feature extraction. DL models typically consist of multiple convolutional layers
stacked on top of each other, which are applied to the input image to optimize the
medical imaging task. Using multiple layers allows for the learning of different fea-
tures at each layer, and the combination of convolutional layers, pooling, and non-
linear operations make DL a powerful tool for medical image analysis. Optimiza-
tion algorithms guide the neural network during training to update the weights of
the model and regularization techniques are used to try to ensure that the DL model
generalizes well to unseen data. During training, the parameters in the network,
the weights, are continuously slightly adjusted to produce more correct output for a
given input. The process by which these adjustments are computed for each weight
is called backpropagation.

One challenge in using DL, for medical image analysis particularly, is the limited
amount of annotated data available. DL typically requires large amounts of data
to achieve high performance, and the lack of large, annotated datasets can make it
difficult for DL models to perform or generalize well. While there may be plenty of
medical imaging data to analyze, the amount of data annotated is typically small, be-
cause annotating (indicating which part of an image or even which voxel has which
label) is expensive7. Data augmentation, a technique that slightly modifies the train-
ing data to generate new training data samples, can help the model to generalize
better.

Another challenge in DL is that typically for every new task, a new network has
to be trained. However, it is likely that a network that has already been optimized
for some task, for example, segmentation of the right kidney, could be partly ‘reused’
when a network is needed for a slightly different task, for example, segmentation of
the left kidney. Normally, the weights of the network are randomly initialized. In the
example above we could initialize the networks for segmenting the left kidney with
the weights of the already trained network for segmenting the right kidney. This
process is called transfer learning. There are many ways in which this can be done
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and this is the topic of research in Chapter 5.

In this thesis, we address the tasks of localization of structures and of segmenta-
tion. We now define each of these tasks.

1.3.1 Localization

Given an input image, a localization algorithm identifies and locates specific regions
of interest, such as the spleen in Figure 1.2b. These algorithms are often used as a
pre-processing step for more complex tasks such as 3D segmentation. In 3D images
such as CT scans, a localization algorithm may analyze each 2D slice in the CT scan
to classify the presence or absence of a particular organ. The combination of these
classifications across all the slices in an orthogonal view creates a 1D bounding box,
which can be performed in the other two orthogonal views to create a 3D bound-
ing box for the organ. This can be particularly useful in the early stages of cancer
detection and treatment planning, as it allows radiologists to more efficiently and
accurately measure the size and location of tumors and other abnormalities. Previ-
ous research has generally focused on creating separate networks for each organ; in
Chapter 2, we propose a multi-label method that can localize eleven structures using
a single network.

1.3.2 Segmentation

Given an input image, a segmentation algorithm automatically identifies and out-
lines organs of interest, such as the spleen in Figure 1.2c. Traditionally, semi-automatic
and automatic methods based on computer vision techniques such as thresholding,
watershed, random-walk, and level-sets were used for organ segmentation. How-
ever, the development of DL models such as 2D U-Net8 and 3D U-Net9, which uti-
lize an encoder-decoder architecture, have significantly improved the accuracy and
efficiency of organ segmentation.

In this thesis, we demonstrate the use of these techniques to segment various
structures, including the spleen, kidney, and kidney abnormalities.

1.4 Evaluation metrics

This section outlines the metrics used throughout this thesis to evaluate the perfor-
mance of the proposed methods. In the equations below, X represents the post-
processed output of the network, and Y represents the reference standard. The func-
tion SurfDist(A,B) measures the minimum distance from a voxel on surface A to a
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(a) (b) (c)

Figure 1.2: (a) Example of input slice. (b) Shows the output of the spleen localization,

(c) shows the output of the spleen segmentation.

voxel on surface B.

1.4.1 Wall distance

This metric measures the distance between two 2D slices that are in the same or-
thogonal direction. The organ localization method proposed in Chapter 2 uses this
metric to measure the distance in millimeters between the reference standard and
the predicted bounding boxes.

1.4.2 Dice score

The Dice score measures the overlap between two objects in proportion to the sum
of their volumes. It is commonly used for segmentation tasks to compare the perfor-
mance of different methods. High Dice scores (close to one) indicate a high level of
overlap between the two objects. All the proposed methods in this thesis used the
Dice score to report the results and compare performance.

Dice score =
Area of overlap

Total area
=

2 ∗ volume(X ∩ Y )

volume(X) + volume(Y )
= 2*

+
(1.1)

1.4.3 Jaccard coefficient

Similar to the Dice score, the Jaccard coefficient measures the proportionality be-
tween the overlap and union of two objects. High Jaccard coefficients (close to one)
indicate a high overlap between the two objects. This metric is also known as inter-
section over union (IoU) or Jaccard index. Chapter 2 of this thesis uses this metric to
report results.
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Jaccard coefficient =
Area of overlap
Area of union

=
volume(X ∩ Y )

volume(X ∪ Y )
= (1.2)

1.4.4 Maximum Hausdorff distance

This metric returns the maximum surface distance between two objects. Equation 1.3
shows that the maximum Hausdorff distance represents the maximum value among
the minimum distances from a voxel in Y to X. For this metric, values close to 0 are
preferred. This metric was reported in Chapter 3.

Max. Hausdorff dist. = max(max(SurfDist(X,Y )),max(SurfDist(Y,X))) (1.3)

1.4.5 95 percentile Hausdorff distance

This is a derived metric of the maximum Hausdorff distance. While the maximum
Hausdorff distance measures the maximum minimum distance between two objects,
the 95 percentile Hausdorff distance reports the 95 percentile of these minimum sur-
face distances. Many recent segmentation papers report this metric. Similar to the
maximum Hausdorff distance, values close to 0 are preferred. This metric was re-
ported in Chapter 3.

95% Hausdorff dist. = max(Percentile95(SurfDist(X,Y )), P ercentile95(SurfDist(Y,X)) (1.4)

min
min

min min

min min

min min

min

max

Figure 1.3: Representation of Hausdorff distance between two contours. The func-

tion SurfDist(X,Y) is represented by black arrows and returns the minimum distance

from point X to point Y. Note that SurfDist(Y,X) may be different than SurfDist(X,Y).

Maximum Hausdorff distance takes the maximum distance of the maximum dis-

tances between SurfDist(X,Y) and SurfDist(Y,X). Whereas 95% Hausdorff distance

takes the maximum of the 95 percentile of the SurfDist(X,Y) and the 95 percentile

of SurfDist(Y,X). Figure adapted from Kaspar 10.
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1.5 Thesis outline

The work presented in this thesis is focused on using DL for detecting and segment-
ing structures in CT scans. In Chapter 2, we present a method for localizing organs
in 2D orthogonal views; this method combines the outputs of each orthogonal view
to compose a 3D bounding box per organ. In Chapter 3, we apply a state-of-the-art
segmentation algorithm using Convolutional Neural Networks (CNN) to segment
the spleen, achieving performance comparable to that of an independent observer.
In an observer experiment, the radiologist rated the segmentation quality as 94%
as ready for clinical use. Additionally, we performed an experiment to measure
the splenic volume change over time. In Chapter 4, we segment the kidneys and
kidney abnormalities, including cysts, lesions, masses, metastases, and tumors. We
conducted an ablation study to analyze the performance of five components of the
method. In Chapter 5, we explore the use of transfer learning to segment addi-
tional structures using a partially annotated dataset (a junction of publicly available
datasets and data from public challenges). Finally, Chapter 6, provides the general
discussion and summary of this thesis.
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Abstract

Automatic localization of organs and other structures in medical images is an im-
portant preprocessing step that can improve and speed up other algorithms such
as organ segmentation, lesion detection, and registration. This work presents an
efficient method for simultaneous localization of multiple structures in 3D thorax-
abdomen CT scans. Our approach predicts the location of multiple structures using
a single multi-label convolutional neural network for each orthogonal view. Each
network takes extra slices around the current slice as input to provide extra context.
A sigmoid layer is used to perform multi-label classification. The output of the three
networks is subsequently combined to compute a 3D bounding box for each struc-
ture. We used our approach to locate 11 structures of interest. The neural network
was trained and evaluated on a large set of 1884 thorax-abdomen CT scans from pa-
tients undergoing oncological workup. Reference bounding boxes were annotated
by human observers. The performance of our method was evaluated by computing
the wall distance to the reference bounding boxes. The bounding boxes annotated
by the first human observer were used as the reference standard for the test set.
Using the best configuration, we obtained an average wall distance of 3.20±7.33mm
in the test set. The second human observer achieved 1.23 ± 3.39mm. For all struc-
tures, the results were better than those reported in previously published studies. In
conclusion, we proposed an efficient method for the accurate localization of multiple
organs. Our method uses multiple slices as input to provide more context around
the slice under analysis, and we have shown that this improves performance. This
method can easily be adapted to handle more organs.
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2.1 Introduction

An automatic organ localization is an important preprocessing step that can improve
other medical image processing steps. A 3D organ localization method can be used
to discard non-relevant areas of the scan for subsequent algorithms, e.g., full 3D or-
gan segmentation. For instance, organ localization methods have been used with
automatic organ segmentation methods11–14 to improve the performance and to re-
duce the ratio of false positive segmentations.

Many algorithms have already been proposed for the localization of organs in CT
scans11–21. We describe the most relevant literature, split into two parts: the first part
summarizes classical machine learning approaches – involving hand-crafted features
and a machine learning classifier – and the second part focuses on deep learning
approaches.

Criminisi et al used mean intensities over displaced, asymmetric cuboidal regions
of the volume combined with a random forest classifier to localize several anatomical
structures in CT scans17–19. Landmarks and relative position context features were
used to refine the final bounding boxes. Cuingnet et al. 11 used global contextual
information to obtain the initial bounding boxes of the kidneys and refined these
with regression forests. The organ localization was used as a pre-processing step for
automatic kidney segmentation. In a later work, Gauriau et al. 22 used an extended
cascade of random forest regressors. A confidence map of the organs was obtained
by voting at a voxel level; the prediction was thresholded to get the final bounding
box. Recently, Samarakoon et al. 23 introduced light random regression forests, which
use less nodes than classical random regression forests but produced comparable
results in the localization of organs in CT scans. Zhou et al used organ localization
as a pre-processing step for full 3D segmentation of 18 organs12,15,16. Organs were
localized per orthogonal view using template matching24, hand-crafted features and
local binary patterns12,16. A 3D bounding box per organ was determined by majority
voting.

Deep Learning is an area in machine learning that has become popular in the last
five years6. For image processing, Convolutional Neural Networks (ConvNets) are
most used. ConvNets learn directly from the raw image data, reducing the seman-
tic gap created by hand-crafted features and reducing the engineering time spent
on designing features. A substantial number of works on organ detection already
used neural networks. Shin et al. 26 used autoencoders to detect landmarks that can
roughly indicate the location of organs. Small ConvNets were used to localize re-
gions in CT scans27,31. Twelve regions of the body were detected in axial patches
to approximate bounding boxes using a ConvNet of two convolutional layers31. In
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Table 2.1: Overview of the structures that were detected by previously published

organ localization methods. The number of CT scans used and whether the approach

dealt with abnormalities is tabulated. Below the horizontal line, the methods that

used Deep Learning (DL) are listed.
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Zhan et al. 13 � � 40 No

Criminisi et al. 17 � � � 39 Yes

Criminisi et al. 18 � � � � � 100 Yes

Pauly et al. 20 � � 33 Yes

Cuingnet et al. 11 � 223 Yes

Zhou et al. 15 � � � 660 Yes

Criminisi et al. 19 � � � � � � 400 Yes

Gal et al. 25 � 247 No

Shin et al. 26 � � � 78 Yes

Zhou et al. 12 � � � � � 1300 Yes

Zhou et al. 16 � � � � � � � 300 Yes

Gauriau et al. 22 � � � � 130 No

Samarakoon et al. 23 � � � � 100 No

Roth et al. 27 � � ≈ 7 No

Humpire Mamani et al. 28 � � � � 553 Yes

de Vos et al. 29 � 400 No

Hussain et al. 30 � 100 Yes

a similar approach, Roth et al. 27 detected five regions of the body with a five-layer
ConvNet.

ConvNets were also already used to obtain 3D bounding boxes around organs in
CT scans28–30,32. A method to detect the heart, aortic arch, and descending aorta in
the cardiac area was proposed by de Vos et al. 32 using AlexNet33. Different Conv-
Nets were used for each organ and each orthogonal view. Each ConvNet returned
1D predictions, in which a static threshold was used to obtain binary predictions.
Thereafter, the binary predictions were joined to obtain 3D bounding boxes. In a
recent publication, de Vos et al. 29 proposed a single ConvNet able to detect six organs
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recent publication, de Vos et al. 29 proposed a single ConvNet able to detect six organs
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in all the orthogonal views using Spatial Pyramidal Pooling to deal with the different
input size. Hussain et al. 30 used single ConvNets per orthogonal view with slices of
256x256 as input. The predictions of each orthogonal view were concatenated into
a fully connected layer to provide a voxel-wise prediction. This organ localization
approach was used as a pre-processing step. In our previous work28, we proposed a
method to localize six organs in 3D thorax-Abdomen CT scans using a single multi-
label ConvNet per orthogonal view. We localized six organs: the liver, spleen, and
left and right lungs and kidneys. The input of each multi-label ConvNet contained
three slices: the slice being analyzed and the slices located five slices above and
below it. Feeding extra slices as context to predict the output of a certain slice was
an important improvement compared to the work by de Vos et al. 29, where they only
used the current slice under analysis. Each ConvNet returned 1D predictions, which
were thresholded with an optimized threshold per organ and orthogonal view. The
three thresholded predictions were joined to produce a 3D bounding box per organ.

In this study, we extended our previous work with several improvements. Firstly,
we are using a deeper ConvNet architecture and extensively experimented with mul-
tiple configurations to optimize the number of slices in the input set and the spacing
between the input slices. Secondly, we introduce more extensive data augmenta-
tion and train the model with a hard sample mining strategy which makes sure that
difficult samples are presented more often to the network. Finally, we trained the
method with a much larger number of scans and applied to detect more organs.

Table 2.1 summarizes the previous work and shows the organs targeted by each
approach. The methods are compared by data set size and whether the method was
applied to cases with abnormalities in the human body. Moreover, table 2.1 shows
whether the method is based on deep learning.

2.2 Materials and methods

2.2.1 Patient data

The data used in this paper was collected from the Radboud University Medical
Center, Nijmegen, the Netherlands. We collected CT data of patients who were
referred from the oncology department to our department in 2015. In total, 1884
thorax-abdomen CT scans were collected from 921 patients. 443 patients had one
scan, 198 patients had two, 145 patients had three, 134 had four to seven scans, and
one patient had eight scans. Age of the patients ranged from 18 to 92 years with
an average of 58 years. Table 2.2 shows the scanners and protocols used to acquire
the thorax-abdomen CT scans. Since we collected CT data from patients who were
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Figure 2.1: A diagram of the proposed approach to obtain 3D bounding boxes of mul-

tiple organs from a thorax-abdomen CT scan. From the 3D volume, orthogonal slices

are extracted which are then fed into three separate multi-label convNets. The result

of each convNet is a probability for each organ per orthogonal slice that the organ is

present. Post-processing is applied to keep the largest component from the 1D pre-

dictions per orthogonal view. Combining the 1D bounding boxes leads to the final

3D bounding box. The final bounding box is composed by six wall sides: superior,

inferior, anterior, posterior, dexter, and sinister.

undergoing oncological workup, many abnormalities are present. We intentionally
collected a difficult set of scans which included many abnormalities and may have
missing organs due to surgery.

Table 2.2: Summary of scanners and protocols used to acquire the 1884 CT scans in

our data set.

Manufacturer Scanner model Recons.
kernel

Slice thickness Scans

Toshiba Aquilion One FC09 1 mm 410
Siemens Somatom definition AS I30f/3 1 mm 7
Siemens Sensation 16 B30f 2 mm 982
Siemens Sensation 64 B30f 1 mm 485

Total 1884

The data set was randomly split up at patient level into 60% for training, 20%
for validation, and 20% for testing. The training set contained 1130 scans from 652
patients and was used to train the ConvNets. The validation set contained 377 scans
from 120 patients and was used to find the best configuration of the ConvNet and to
monitor the training process. The test set contained 377 scans from 149 patients and
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The data set was randomly split up at patient level into 60% for training, 20%
for validation, and 20% for testing. The training set contained 1130 scans from 652
patients and was used to train the ConvNets. The validation set contained 377 scans
from 120 patients and was used to find the best configuration of the ConvNet and to
monitor the training process. The test set contained 377 scans from 149 patients and
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was used for evaluation.

2.2.2 Organ annotation

Five human observers annotated the location of 11 structures for this study: the liver,
spleen, gallbladder, bladder, sacrum, and left and right lungs, kidneys, and femoral
heads. All 1884 CT scans were initially divided among four human observers to be
annotated. Then, an independent fifth human observer was asked to annotate the
test set of this study, which left us with two sets of test set annotations. All human
readers followed the same protocol to annotate the data in all three orthogonal views.
They annotated the first and last slices with visible tissue of the organ as walls of the
bounding box; this process was performed for every orthogonal view.

Common abnormalities found were tumors, cysts, fluid, and foreign objects such
as clips and prostheses. Examples can be seen in figure 2.3, showing two slices with
metallic objects inside the body that created streak artifacts during the CT image
acquisition process, and figure 2.3b, showing several liver tumors and clips. Addi-
tionally, organs (e.g., gallbladder, kidneys, and spleen) can be absent in the human
body due to surgery or anatomic variations. If a patient had a hip replacement (see
figure 2.3a), the titanium prosthesis was not annotated as femoral head. Sometimes,
organs can be very difficult to locate; for instance, the bladder and gallbladder are
difficult to detect when the organ is empty, especially in slim patients.

Due to the large size of the dataset, we used an algorithm to speed up the annota-
tion collection process of the lungs. An automatic lung segmentation tool was used
to retrieve initial bounding boxes of the lungs in the training and validation set34,
which were subsequently checked for errors by our human annotators. The lungs in
the test set were annotated completely manually.

(a) (b)

Figure 2.3: Examples of abnormalities in our data set: (a) prostheses replacing femoral

heads, (b) surgical clips and tumors inside the liver.
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2.2.3 Multi-label ConvNets for organ localization

We propose an automatic method to localize organs in 3D thorax-abdomen CT-scans
based on the presence of the organs on 2D slices. The schematic overview is visuali-
zed in figure 2.1. The method consists of three multi-label ConvNets – one for each
orthogonal view – that independently process the CT scan in three orthogonal views
(axial, coronal, and sagittal). Each ConvNet returns predictions along the axis, indi-
cating the presence of all organs. We thresholded the predictions for each organ at 0.5
and selected the largest connected component. We joined the largest 1D connected-
components of each orthogonal view to create a 3D bounding box per organ, for
instance around the left kidney as shown in figure 2.1. In the next subsections, we
explain the method in more detail.

Preprocessing

The original CT scans were resampled from 512 × 512 × Z, where Z represents
the number of slices in the CT scan, to 256 × 256 × 512 using cubic interpolation.
Consequently, the slices that are extracted from a volume have a fixed input size:
256×256, 512×256, and 512×256 for axial, coronal, and sagittal views, respectively.
The voxel intensities of the resampled CT volumes were subsequently rescaled from
[−1000, 400] Hounsfield Unit (HU) to [0, 1]; values outside this HU range were clipped.

ConvNet architecture

The proposed multi-label ConvNet is shown in figure 2.2. The architecture is an
extended version of the architecture proposed in our previous work28. The first con-
volutional layer consists of 24 kernels of size 3×3×S, where S represents the number
of slices in the input size. The second convolutional layer consists of 32 kernels of
3× 3× 24. The third convolutional layer consists of 48 kernels of 3× 3× 32. Layers
four to the eight consist of 48 kernels of 3× 3× 48. Max-pooling is applied after the
first, second, fourth, and sixth convolutional layers in non-overlapping windows of
2 × 2. Every max-pooling reduces the size of each patch by half, for instance, from
24@510 × 254 to 24@255 × 127 after the first max-pooling layer of the coronal and
sagittal networks. The last layer is a fully-connected layer with 600 neurons, where
dropout35 is applied with p = 0.5 to avoid overfitting. We used a sigmoid as activa-
tion function and the multi-label cost36 to obtain the multi-label predictions. Recti-
fied linear units (ReLU) are used in the convolutional and fully-connected layers.
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Input settings

An important contribution of our study is that we input multiple slices. Therefore,
we conducted experiments to show the benefit of this approach. We hypothesized
that the performance of organ detection of a 2D slice can be improved by including
neighboring slices. We defined S as the number of slices and ∆ as the spacing be-
tween slices. The slice under analysis was always located in the middle of the set.
We experimented with different configurations and evaluated its impact to the per-
formance to find the best combination of S and ∆. In our experiments, S = (1, 3, 5)

and ∆ = (1, 2, 3, 4) were evaluated. Note that 1S represents a configuration with
only a single slice. As consequence, we had in total 9 experiments: Exp[1S, 3S1∆,
3S2∆, 3S3∆, 3S4∆, 5S1∆, 5S2∆, 5S3∆, and 5S4∆]. Each experiment contained three
ConvNets, one per orthogonal view.

Based on the results of these experiments, we selected the configuration with the
best performance and used that as the final configuration for our approach. We ap-
plied this configuration to the independent test set and evaluated the performance.
The performance of the Exp1S configuration on the test set was assigned as the base-
line system for comparison.

Training

The ConvNets were trained using the training and validation sets. We used a batch
size of 80 slices for all experiments. In one epoch, all slices of the training set were
shown to the ConvNet once. Glorot weight initialization was used to initialize the
weights of the network. RMSprop37 was used as gradient descent optimization with
learning rate 0.001 and ρ = 0.99. Thereafter, the learning rate was reduced by 1/10
every 5 epochs. Training stopped when the average area under the ROC curve
(AUC) performance on the validation set stopped improving within the previous
five epochs; the model with the highest AUC on the validation set was selected as
the final model.

We applied data augmentation to reduce overfitting and improve generalizability
of the ConvNet. Random rotation, translation, and scaling augmentations were used
in the input set. The rotation augmentation was applied by randomly rotating the
slice from -5 to 5 degrees using the slice center as the center of gravity with linear in-
terpolation. The translation and scaling augmentations were applied with a random
scale between [-0.1,0.1] to the size of the slice, where 0 represents no change. The
same data augmentation was used for all the slices in the input. Furthermore, we
used selective sampling38. Since ConvNets are typically trained with large datasets,
the data was carefully prepared and organized to achieve the highest performance
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possible. A dynamic approach called selective sampling was used to select specific
samples according to the current ConvNet performance. By following this approach,
difficult samples were shown more often than easy samples to the ConvNet during
training. After training the ConvNet for one epoch, we applied selective sampling
based on the loss value of the previous epoch for the samples. We defined the thresh-
old as 20%; any sample with a loss less than that value was omitted during training
in the current epoch.

Post-processing

A post-processing step was necessary to handle noisy predictions caused by, for ex-
ample, abnormalities in the scan. We smoothed the raw 1D predictions obtained per
orthogonal view using a 1D Gaussian filter with σ = 10 slices. Afterwards, a 0.5

threshold was applied to get a binary output. Connected-component analysis was
performed, and each orthogonal view’s largest 1D connected-component was kept.
The three 1D binary outputs were joined to obtain a 3D bounding box per organ. If
an organ was not detected on at least one of the binary predictions, the organ was
assumed absent and no 3D bounding box output was produced.

Table 2.3: Performance (mean ± standard deviation) of the different ConvNet config-

urations on the validation set.

Experiment Dice score Jaccard coef. Wall distance (mm)

Exp1S 0.82±0.22 0.74±0.24 5.70±11.65
Exp3S1∆ 0.87±0.21 0.81±0.23 3.94± 9.81
Exp3S2∆ 0.88±0.21 0.83±0.23 3.32±9.28
Exp3S3∆ 0.88±0.21 0.82±0.23 3.54± 9.40
Exp3S4∆ 0.87±0.21 0.81±0.24 3.91± 9.72
Exp5S1∆ 0.87±0.21 0.81±0.24 3.92±10.11
Exp5S2∆ 0.86±0.21 0.80±0.24 4.28±10.33
Exp5S3∆ 0.86±0.22 0.81±0.24 3.98± 9.78
Exp5S4∆ 0.87±0.21 0.82±0.23 3.78± 9.71

2.2.4 Evaluation

The 3D bounding boxes obtained by our method were compared to the ground truth
using Dice score, Jaccard coefficient, and the wall distances to the reference bound-
ing box. Dice score and Jaccard coefficient were defined as:
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Dice score = 2|X∩Y |
|X|+|Y | (2.1)

Jaccard coefficient = |X∩Y |
|X∪Y | (2.2)

where X represents the predicted mask and Y the reference mask.

2.3 Results

Table 2.3 shows the performances of the different configurations on the validation
set. The results show a substantial performance difference between the single slice
experiment (Exp1S) and the experiments that employ multiple input slices for all
evaluation metrics; this finding confirms our hypothesis that using multiple input
slices allows the network to perform a more accurate assessment.

We evaluated the influence of our post-processing steps on our results. We com-
puted the accuracy, sensitivity, specificity, false positive, and false negative rate at
the slice level for the three ConvNets with and without post-processing. We found
that extracting the largest connected component reduced the amount of false positive
slices and therefore slightly increased the overall accuracy at the slice level. Further-
more, we computed the mean wall distance error for Exp3S2∆ without smoothing
in the post-processing step on the validation set. We found that the smoothing was
beneficial for most organs and slightly decreased the mean wall distance error.

We selected the Exp3S2∆ as the final configuration for our approach because it
had the lowest wall distance error. We also ran the Exp1S configuration on the test
set as a baseline system for comparison. Table 2.4 shows the performances on the
test set per organ. The average wall distance error for Exp1S, Exp3S2∆, and second
observer were 5.40±9.75mm, 3.20±7.33mm, and 1.23±3.39mm, respectively. Using
the best configuration, we obtained an average wall distance of 3.20 ± 7.33mm. It
failed to detect the bounding box in 43 cases for the gallbladder, 17 cases for the left
kidney, 11 case for the right kidney, 6 cases for the spleen, 2 cases for the right femoral
head, and 2 cases for the bladder. For the independent second human observer, wall
distance was substantially smaller: 1.23 ± 3.39mm. Figure 2.4 shows box plots of
wall distance per organ of the proposed approach (Exp3S2∆) and second human
observer, respectively.
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(a) Box plots of the experiment Exp3S2∆
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(b) Box plots of the second observer

Figure 2.4: Comparison between Exp3S2∆ and the second observer. The box plots are

grouped per wall side and organ, showing the absolute wall distance in mm on the

test set. The red line represents the median. Note that the Y-axis is on a logarithmic

scale.
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2.4 Discussion

In this paper, we presented a method to localize organs in 3D thorax-abdomen CT
scans using multi-label ConvNets. We use three ConvNets – one for each orthogonal
view – to predict the presence of 8 organs and 3 bony structures. The 3D bounding
boxes around each organ were obtained by combining the predictions of the three or-
thogonal views. Previous work used a single slice as input for the 2D ConvNets29,32,
but our proposed system uses a set of slices as input to provide more context of the
information around the slice under analysis. Feeding multiple slices requires a small
additional computation effort in the first convolutional layer, but gives a substantial
performance boost. Our method already detects 11 structures simultaneously, but
it can easily be adapted to handle more organs and structures. We expect that this
approach will perform well in that scenario, because ConvNets have been already
successfully applied to multi-class problems with up to 1000 classes39.

To put our results into perspective, we compared our results with previous work
using the wall distance as metric, as this is the most widely reported metric in prior
research. Table 2.5 shows the results obtained by the experiments of this study, our
and other previous work, and the second observer in this study. Note that it was only
possible to make a direct comparison for all organs and structures between this study
and our previous work28. To obtain results from the system of our previous work,
we retrained that system using the same dataset, annotations, and organs described
in this paper.

Table 2.5 shows that recent methods based on deep learning substantially re-
duced the mean wall distance error in comparison to traditional machine learning
methods28–30,32. Moreover, our method improves upon previous work when we look
at the reported metrics and results of these studies. Note that caution should be taken
when comparing the performance of our method with performance from previous
studies because different datasets were used (as shown in table 2.1); a comparative
study on a single data set would provide a more objective comparison. Despite our
good results, there is still room for further improvement, as is evident from the fact
that the independent human observer still performs substantially better.

Table 2.5 shows that the liver wall distance of previous methods ranges from
8.87mm to 18.13mm, and our method obtained the lowest mean distance 5.84mm.
The corresponding box plot (figure 2.4) shows relatively high distances for the sin-
ister wall of the liver; a possible explanation is that in some cases there is only a
small tip of the liver visible on the most sinister sagittal slices, making it difficult to
determine where the liver ends. We assume this was also the reason for relatively
poor performance of the independent human observer, and we saw a similar trend
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Table 2.4: Performances of two of our configurations and the second observer on

the test set per organ. The obtained Dice score, Jaccard coefficient, and the absolute

wall distance are tabulated (mean ± standard deviation). The average wall distance

error for Exp1S, Exp3S2∆, and second observer were 5.40±9.75mm, 3.20±7.33mm,

and 1.23±3.39mm, respectively.

Method
Organs

Left
lung

Right
lung

Left
kidney

Right
kidney

Liver Spleen Gallbladder Sacrum Bladder
Left
femoral
head

Right
femoral
head

Dice

Exp1S 0.93±0.09 0.95±0.04 0.79±0.23 0.82±0.21 0.90±0.06 0.83±0.17 0.47±0.24 0.91±0.05 0.76±0.17 0.83±0.22 0.80±0.24
Exp3S2∆ 0.96±0.02 0.97±0.01 0.89±0.23 0.90±0.20 0.92±0.06 0.89±0.17 0.53±0.27 0.95±0.04 0.83±0.17 0.90±0.20 0.88±0.23
2nd Observer 0.98±0.02 0.98±0.01 0.96±0.06 0.95±0.12 0.98±0.02 0.96±0.09 0.83±0.30 0.93±0.03 0.95±0.11 0.92±0.20 0.91±0.22
Jaccard

Exp1S 0.87±0.11 0.91±0.07 0.70±0.24 0.73±0.22 0.82±0.09 0.73±0.19 0.34±0.19 0.84±0.08 0.64±0.18 0.75±0.21 0.71±0.23
Exp3S2∆ 0.93±0.03 0.94±0.03 0.84±0.23 0.85±0.21 0.86±0.09 0.84±0.19 0.40±0.23 0.90±0.06 0.73±0.20 0.85±0.19 0.83±0.22
2nd Observer 0.97±0.03 0.97±0.02 0.93±0.08 0.92±0.13 0.96±0.03 0.94±0.09 0.78±0.29 0.86±0.06 0.92±0.12 0.89±0.19 0.88±0.22
Wall distance (mm)

Exp1S 4.60±11.16 3.33±7.05 5.88±10.48 5.36±10.47 7.75±14.42 6.07±10.19 9.46±11.29 4.32±6.27 7.30±8.62 2.48±4.85 2.84±5.40
Exp3S2∆ 2.31± 3.05 1.99±2.64 2.67± 7.18 3.03± 9.30 5.84±12.69 3.37± 8.46 7.09± 8.91 2.13±3.54 4.70±7.94 1.04±2.32 1.02±2.51
2nd Observer 1.11± 1.99 1.15±2.17 0.98± 2.99 1.65± 6.54 1.46± 3.81 1.03± 2.88 1.24± 2.92 2.60±4.56 1.04±2.83 0.67±1.36 0.57±1.03

in previous work28,29.

Table 2.5: Mean wall distance per organ obtained by previous work, including our

preliminary work, our proposed method, and the second observer. Distances are in

millimeters and methods are in chronological order. Note that the results of other

algorithms are obtained on different data sets. The results tabulated here for our

previous work (Humpire et al 2017) are obtained after retraining that system using

the data from this study.

Method
Organs

Left
lung

Right
lung

Left
kidney

Right
kidney

Liver Spleen Gallbladder Sacrum Bladder
Left
femoral
head

Right
femoral
head

Zhan et al. 13 - - 8.97 8.97 - - - - - 4.47 4.47
Pauly et al. 20 14.78 15.02 - - 18.13 - - - - - -
Cuingnet et al. 11 - - 7.00 7.00 - - - - - - -
Criminisi et al. 19 12.90 10.10 13.60 16.10 15.70 15.50 18.00 - - 10.60 11.0
Gauriau et al. 22 - - 5.50 5.60 10.70 7.90 9.50 - - - -
de Vos et al. 32 - - - - 10.80 - - - - - -
Humpire Mamani et al. 28 2.87 2.60 5.68 5.82 8.19 7.17 11.59 3.61 8.67 1.75 1.91
de Vos et al. 29 - - - - 8.87 - - - - - -
Hussain et al. 30 - - 6.19 5.86 - - - - - - -
Samarakoon et al. 23 - - 11.52 10.98 15.82 14.84 - - - 7.67 7.42

Proposed method 2.31 1.99 2.67 3.03 5.84 3.37 7.09 2.13 4.70 1.04 1.02
2nd Observer 1.11 1.15 0.98 1.65 1.46 1.03 1.24 2.60 1.04 0.67 0.57

Regarding the sacrum, interestingly, table 2.5 shows that the second observer had
a greater mean wall distance than our method (2.60±4.6mm vs 2.13±3.5mm, respec-
tively). This may be due to the anatomical variations in the sacral promontory (an-
terior wall), which may look very similar to the L5 vertebrate in the coronal view.

The localization of the left and right lungs is challenging in the sagittal view be-
cause both lungs look identical in this direction. The single slice experiment (Exp1S)
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could not handle this problem properly due to a lack of context around the slice.
This issue was largely overcome when using multiple slices, as shown by the left
lung-dexter and right lung-sinister wall distances in the box plots.

Locating the gallbladder is complicated due to its relatively small volume and
sometimes highly irregular shape. Table 2.5 shows that it was the most difficult
organ to localize using our method (7.09mm mean wall distance error).

Our data contained many anatomical abnormalities such as tumors, clips, cysts,
and fluid. We note that several previous studies (see table 2.1) did not consider
abnormal cases. Our results show that our method is able to handle these abnor-
malities generally well. The large training data set may be responsible for this effect.
Our post-processing step is important to avoid irregular predictions provoked by
abnormalities.

Figure 2.5 shows predictions from Exp3S2∆ and labels projected in axial and
coronal slices obtained for the kidneys, bladder, and spleen. Figure 2.5(a) shows the
predictions obtained for a complex right kidney surrounded by a large tumor. Our
method was able to correctly localize the organ in all views. Moreover, despite that
metallic materials can affect the surrounding organ intensities, figure 2.5(b) shows
good bladder localization in the presence of a titanium prosthesis of the left femoral
head.

As mentioned in the introduction, a possible area where the proposed approach
can be used is automatic segmentation. Current popular deep learning approaches
for semantic segmentation of structures include 2D U-Net, 3D U-Net and V-Net8,9,40.
These approaches typically take a full slice or a large subvolume as input. This often
leads to an unbalance in the number of positive and negative voxels during training
which needs to be tackled by for example weight maps8,9 or a dice loss function40.
Focusing the network on a part of the image may speed up training and lead to faster
inference time. Mask R-CNN is another popular approach in which regions are first
extracted and segmentation is performed in a separate segmentation branch for the
extracted regions of interest41.

The ConvNets were implemented using Theano42,43. The experiments were exe-
cuted using a single NVidia GeForce GTX 1080 on a high-end PC with at least 256 GB
of RAM. Training time for a single ConvNet was in the order of 70 hours. Applying
the Exp3S2∆ model to a single scan (with an average number of slices of 700) took
approximately four seconds.
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Figure 2.5: ConvNet predictions projected along an axial and coronal slice. The blue,

green, and pink lines represent the bounding box walls obtained by our proposed

system, Exp3S2∆; black lines indicate the reference bounding box. In the top part,

sagittal predictions are plotted, coronal predictions are plotted next to the axial slices,

and axial predictions are plotted next to the coronal slices. Note that (h) includes a

sagittal slice for better visualization of the sacrum.
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2.5 Conclusion

An efficient and robust automatic method for 3D localization of 11 structures in
thorax-abdomen CT scans using a single ConvNet per orthogonal view is proposed.
Multiple slices were used as input to provide more context around the slice under
analysis and we have shown that this gave a substantial boost to the ConvNet perfor-
mance. The proposed approach can localize organs even when abnormalities such
as tumors, cysts, fluid, and metal artifacts are present. We compared our work to
recent papers and have shown that our approach outperforms recent work on organ
localization.
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Abstract

Purpose: To develop a fully automated algorithm for spleen segmentation and to
assess the performance of this algorithm in a large dataset.

Materials and Methods: In this retrospective study, a three-dimensional deep learn-
ing network was developed to segment the spleen on thorax-abdomen CT scans.
Scans were extracted from patients undergoing oncologic treatment from 2014 to
2017. A total of 1100 scans from 1100 patients were used in this study, and 400
were selected for development of the algorithm. For testing, a dataset of 50 scans
was annotated to assess the segmentation accuracy and was compared against the
splenic index equation. In a qualitative observer experiment, an enriched set of 100
scan-pairs was used to evaluate whether the algorithm could aid a radiologist in as-
sessing splenic volume change. The reference standard was set by the consensus of
two other independent radiologists. A Mann-Whitney U test was conducted to test
whether there was a performance difference between the algorithm and the inde-
pendent observer.

Results: The algorithm and the independent observer obtained comparable Dice
scores (P = .834) on the test set of 50 scans of 0.962 and 0.964, respectively. The radi-
ologist had an agreement with the reference standard in 81% (81 of 100) of the cases
after a visual classification of volume change, which increased to 92% (92 of 100)
when aided by the algorithm.

Conclusion: A segmentation method based on deep learning can accurately seg-
ment the spleen on CT scans and may help radiologists to detect abnormal splenic
volumes and splenic volume changes.
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3.1 Introduction

Splenic volume change (SVC) can occur as a result of infection, lymphoma, injury,
variations in splenic vascularization, and other reasons44–51. Full manual segmenta-
tion of the spleen in three dimensions is time-consuming and not feasible in clinical
practice. Instead, visual estimation or an approximation equation is typically used
by radiologists to assess the size of the spleen. To the best of our knowledge, there
are no studies that have investigated whether substantial SVC goes undetected using
these methods. During oncologic treatment, SVC can occur as an adverse effect of
chemotherapy52. A precise SVC may help clinicians in their treatment choices. The
first work in splenic volume approximation used the splenic index53,54. The splenic
index is calculated using the equation V = 30 + 0.58 × D × L × H , where depth
(D), length (L), and height (H) are two-dimensional measurements of the spleen in
the axial or coronal plane. Figure 3.1 shows these measurements in two-dimensional
sections of a CT scan. A precise three-dimensional segmentation can achieve an
accurate volumetric measurement of the spleen. Methods such as multiatlas55–57,
graph-cut56–58, active shape models59, active contours60, level-sets61, and random
forest62 have been extensively used to segment the spleen.

In recent years, Deep learning (DL) approachesconvolutional neural networks in
particularhave achieved high performance in many areas of computer vision and
have been successfully applied in medical imaging7,63–67. A sequence of convolu-
tional layers is applied to the image to optimize segmentation tasks, every con-
volution can highlight different features, and combining these layers with pooling
and nonlinear operations make these networks very powerful. For medical imag-
ing, 2D U-Net8, 3D U-Net9, and variant architectures have been successfully used
to segment structures and organs68–73. These architectures are based on a contract-
ing path of convolutions followed by an expanding path of convolutions to produce
voxel-wise predictions. The deepest convolutions learn global features, and the last
convolutions obtain the fine segmentation prediction. In an end-user comparison74,
three commercial systems showed that the liver and spleen segmentation volumes
were fast and accurate, but the initial fully automatic segmentation failed for some
cases and differed by 0.4%9.8% from the final segmentation after correction for the
remaining cases. The readers in this previous study took between 1 and 3 minutes
on average to perform the corrections. The study showed that the performance of
the fully automatic initial segmentation can be improved74. In this study, an auto-
matic segmentation algorithm for the spleen was developed on a large dataset of
thorax-abdomen CT scans from patients undergoing oncologic workup. Because
these patients undergo various types of cancer treatment (eg, chemotherapy and/or
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Figure 3.1: An example of the two-dimensional measurements needed to compute

the splenic index: depth in blue, height in red, and length in green. Note that depth

and height do not necessarily have to be measured on the same transversal section.

radiation therapy) and are at different stages of disease, the images contained both
local and widespread abnormalities throughout the scan. Our system was devel-
oped using a dataset of 400 CT scans (selected from 1100 patients) and tested using
a dataset of 50 scans. Finally, a qualitative observer experiment with an experienced
radiologist was conducted to assess whether the algorithm can help radiologists in
assessing SVC in 100 patients (selected from 500 patients).

3.2 Materials and Methods

3.2.1 Patient Data

The data in this retrospective study were collected from Radboud University Medi-
cal Center. The institutional review board granted a consent waiver for the clinical
images used in this study. We retrieved all thorax-abdomen CT studies referred from
the oncology department between January 2014 and December 2017. In total, 7415
studies from 2386 patients (mean age, 58 years; range, 1992 years; 54.7% women)
were retrieved. Part of this dataset (918 CT scans from 918 patients) was previously
used for a different study on developing an algorithm for organ localization75. We
only included contrast materialenhanced CT scans in this study (n = 6972 studies).
From the included data, we randomly selected 2150 CT scans from 1650 patients to
obtain four datasets (A, B, C, and D) as depicted in Figure 3.2. As the patients in this
dataset underwent an oncology workup, the scans typically presented multiple ab-
normalities, such as tumors, cysts, and lesions, which may alter the normal anatomy
of the spleen. Additional information on CT imaging and datasets is described in
Appendix 3.4.
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Dataset C

50 Patients
50 CT scans

Dataset A

100 Patients
100 CT scans

Dataset B

1000 Patients
1000 CT scans

Unused cases

736 Patients

Dataset D

500 Patients 
1000 CT scans

Select relevant scans
based on final
segmentations

Dataset        

300 Patients
300 CT scans

B300

Select enriched set for
observer experiment

Dataset        

100 Patients
200 CT scans

D100

Dataset of 
CT scans 
2014-2017

Select thorax-abdomen
CT scans with contrast

Datasets used for training System B

2386 patients
7415 studies

Dataset used for
training System A

Get final segmentations
using System A

Get final segmentations
using System B

Figure 3.2: Flowchart shows the criteria to distribute the CT scans used in this study

into datasets. Dataset A was used for training system A, and dataset A plus dataset

B300 were used for training system B. Dataset C was used for testing systems A and

B. Dataset D100 was used for the qualitative observer experiment. Note that dataset

B300 and D100 are subsets of datasets B and D, respectively.

3.2.2 CT Imaging

CT scanners from two manufacturers were used to acquire the CT scans: Toshiba
(Aquilion One) and Siemens (Sensation 16, Sensation 64, and Somatom Definition
AS). The reconstruction kernels were FC09, FC09-H, B30f, B30fs, and I30f. The con-
trast agents used were iomeprol, iohexol, iobitridol, and iopromide (Imeron [Bracco
Imaging], Omnipaque [GE Healthcare], Xenetix [Guerbet], and Ultravist [Bayer], re-
spectively) with amounts varying between 15 and 140 mL. The section thickness
ranged from 0.5 to 3 mm, with most (98.9%) having a section thickness of 1 or 2 mm.

3.2.3 Reference Standard Annotation

On all CT scans in the first training set (dataset A), the spleen was manually seg-
mented by medical students using a tool developed in-house. Students were in-
structed to verify that the segmentation was correct on all transversal sections and
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to peer-review each other. The annotations included the splenic hilum if it was sur-
rounded by splenic parenchyma. Dataset A was used as training data for the first
system. Subsequently, we used the first system to obtain the final segmentations of
dataset B. These final segmentations were used for selecting 300 additional scans for
training of the second system; that gave us dataset B300. The final segmentations of
the initial system on dataset B300 were manually corrected by the same medical stu-
dents to train a second system. Later, dataset A plus dataset B300 were used for train-
ing a second system. For the test set of 50 CT scans (dataset C), the same procedure
was used to annotate the spleen in all scans; this was then used as the reference stan-
dard for testing the system later on. In addition, one medical student (herein referred
to as “independent observer”) also annotated dataset C independently without con-
sulting other students or the experienced radiologist. An experienced radiologist
(E.T.S., > 30 years of experience in chest radiology) was consulted in difficult cases,
performed a quality check, and adjusted (if necessary) the annotations of dataset A,
B300, and C (reference standard).

3.2.4 Preprocessing and DL Network Settings for Automatic Spleen

Segmentation

Values outside of the attenuation range (-500 to +400 HU) on the CT scans were
clipped to discard unnecessary data for this task. The scans and reference masks
were resampled to 1 × 1 × 1-mm resolution using cubic and nearest neighbor inter-
polation, respectively. We used the 3D U-Net network9 as the architecture of our
system because it uses three-dimensional context to predict the results. This seg-
mentation network and its two-dimensional variant reached high performance in
multiple applications8,68,69,76–78. Because of the large memory footprint of the 3D U-
Net, each scan was divided into patches. At the edges of the CT scan, mirroring was
used as border handling when the patch covered an area outside the scan. Addi-
tional details on the inputs can be found in Appendix 3.4.

3.2.5 Network Training

The network performance was evaluated after every epoch (in one epoch, every CT
scan in the training set was used once) using the Dice score as the metric to select the
optimal model. The training stopped when the mean Dice score stopped improving
for 10 epochs. The optimal model of each network was used to evaluate the test
set (dataset C). We trained our first network from scratch using dataset A. The net-
work was evaluated after every epoch using 30% of the training scans. The training
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stopped after 21 epochs to find the optimal model, which we referred to as system
A. We used system A to process dataset B (n = 1000) to visually identify relevant
cases. These relevant scans composed dataset B300 (see Appendix 3.4). We trained a
new network from scratch using dataset B300 plus dataset A: segmentation system B.
Thus, system B was trained using 400 scans. The network stopped training after 43
epochs. We evaluated both segmentation systems A and B on the test set (dataset C)
of 50 scans.

3.2.6 Postprocessing for Automatic Spleen Segmentation

To produce the final segmentation results, each patch was processed separately, and
the results were stitched together and thresholded at 0.5 to obtain binary results.
Afterward, we applied connected components analysis and only retained the largest
connected component. The output was then resampled back to the original scan
resolution using nearest neighbor interpolation.

3.2.7 Qualitative Observer Experiment

To test the clinical usefulness (detection of growth or shrinkage of the spleen over
time) of our segmentation system, we performed an observer study using an en-
riched set of cases. To define growth or shrinkage, we used a tolerance of ±25% in
the SVC in this study. Thus, SVC of less than -25% was classified as shrinkage, and
SVC of greater than +25% was classified as growth. Values within -25% to +25%
were considered normal SVC. We computed the SVC over time in dataset D (500
new patients) to obtain the enriched dataset D100 (100 patients). See Appendix 3.4
for more details. The scan-pairs in dataset D100 were presented in a random order
to an experienced radiologist in a dedicated workstation. We considered three dif-
ferent reading modes for splenic volume change assessments (SVCa): visual SVCa,
automatic SVCa, and assisted SVCa. See Appendix 3.4 for more details. A radiol-
ogist and a 4th-year resident defined the reference standard for dataset D100. They
classified the scan-pairs visually as is currently done in clinical practice. In case of
disagreement, a consensus meeting was held. The consensus reference standard was
used to compare against visual SVCa, assisted SVCa, and automatic SVCa.

3.2.8 Statistical Analysis and Evaluation

Dice scores, relative absolute volume difference, maximum Hausdorff distance, and
average symmetric surface distance (ASSD) were used to measure the similarity be-
tween the predictions and the reference masks. Per metric, we reported the mean,
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standard deviation, and two-sided 95% Confidence Intervals (CI) computed using
1000 random bootstraps. We computed the P values using the Mann-Whitney U test
to test whether there was a statistical difference between the final system and the hu-
man observer (primary objective), and between the prototype and the final system
(secondary objective). A P value less than .05 (two-tailed) was considered statisti-
cally significant. The metrics in this article can be found in Appendix 3.4. We used
an in-house developed Python 3.6 (https://www.python.org/) script to perform the
statistical analysis.

3.2.9 Algorithm Availability

The segmentation algorithm can be tested online at https://grand-challenge.org/
algorithms/spleen-segmentation/, in which interested readers can register and
upload anonymized thorax-abdomen CT scans; an online workstation showing the
segmentation overlays in three dimensions will be output.

3.3 Results

3.3.1 Comparison of Segmentation Methods

First, we compared our automatic spleen segmentation methods on the test set (da-
taset C) including the independent observer (Table 3.1). System A obtained a Dice
score of 0.950 ± 0.040 (95% CI: 0.938, 0.959), system B obtained 0.962 ± 0.016 (95%
CI: 0.957, 0.966), and the independent observer obtained 0.964 ± 0.012 (95% CI: 0.961,
0.967). Figure 3.3 shows boxplots comparing the evaluation metrics presented in Ap-
pendix 3.4 among methods on the test set. The surface distancebased metrics (maxi-
mum Hausdorff, 95% Hausdorff, and ASSD) show that system B had fewer outliers
than system A, whereas system B and the independent observer were comparable.
Table 3.1 and Figure 3.3b, show that the splenic volumes computed by the splenic
index were not reliable. A Mann-Whitney U test was performed to compare the Dice
score performance between system A, system B, and the independent observer. The
difference between system A and system B (P = .019), and between system A and
the independent observer (P = .011) were statistically significant, but the difference
between system B and the independent observer was not significant (P = .834). Table
3.2 compares the performance of previous segmentation work. Table 3.2 shows that
not all methods can assess abnormalities in the spleen. The relative absolute volume
difference shows that the splenic index, Gloger et al. 61, system B, and the indepen-
dent observer obtained 16.56%, 6.30%, 4.39%, and 3.93%, respectively. In addition,
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the relative absolute volume difference between system B and the independent ob-
server (used as reference) was 2.37% (5.17 mL). On the basis of all the metrics, system
B outperformed system A. Therefore, we considered system B as the automatic SVCa
for the qualitative observer experiment.

Table 3.1: Comparison of Performance among the Experiments on the Test Set. Data

shown for dataset C (50 CT scans). The bottom part of the table shows the 95% con-

fidence intervals computed based on 1000 random resamplings (bootstraps). ASSD

= average symmetric surface distance, NA = not applicable. † No standard deviation

reported since this metrics is zero centered and we use the absolute value.

Method
Metrics

Dice score
Relative abs. vol. Max. Hausdorff 95% Hausdorff ASSD
difference (%)† dist. (mm) dist. (mm) (mm)

Mean ± SD

Splenic index N/A 16.562 N/A N/A N/A
System A 0.950 ± 0.040 5.988 8.463 ± 7.645 3.050 ± 5.209 0.825 ± 0.703
System B 0.962 ± 0.016 4.391 5.799 ± 5.819 2.052 ± 4.071 0.629 ± 0.313
Independent

0.964 ± 0.012 3.935 5.395 ± 2.438 1.447 ± 0.401 0.606 ± 0.168
observer

95% Confidence Intervals (CI)

Splenic index N/A 12.831-21.012 N/A N/A N/A
System A 0.938-0.959 3.938-8.894 6.527-10.785 1.892-4.671 0.660-1.047
System B 0.957-0.966 3.426-5.500 4.435-7.668 1.372-3.262 0.557-0.729
Independent

0.961-0.967 3.122-4.799 4.765-6.073 1.341-1.559 0.560-0.653
observer

3.3.2 Results of the Qualitative Observer Experiment

Comparison of SVCa

For the qualitative observer experiment, the two readers who were selected to define
the reference standard had disagreement in 13 scan-pairs, and a consensus meeting
was held to define the final reference standard. In total, 59 cases were categorized
as normal, 26 as growing, and 15 as shrinking in the reference standard. Table 3.3
compares the visual SVCa, automatic SVCa, and assisted SVCa assessments to the
reference standard. The visual SVCa classified 81% (81 of 100) of the patients cor-
rectly. During the visual SVCa, the radiologist visually approximated the SVC clas-
sification in 80 of the 100 patients. In the remaining 20 of the 100 patients, the ra-
diologist used the splenic index because the visual approximation was not evident.
The automatic SVCa classified 89% (89 of 100) of the patients correctly. Finally, the
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Figure 3.3: Boxplots show the performance of system A, system B, the independent

observer, and the splenic index on the test set (dataset C). The methods are compared

using, (a) Dice score, (b) relative absolute volume difference, (c) maximum Haus-

dorff distance, (d) 95% Hausdorff distance, and (e) average symmetric surface dis-

tance (ASSD). Mean and median values are depicted with black dashed and red lines,

respectively. Note that C and D have two ranges for the y-axis to zoom-in to the

boxplots body. Table 3.1 summarizes these results.

assisted SVCa classified 92% of the patients correctly. In total, when observing the
three-dimensional automatic segmentations and their volumes (ie, when going from
visual SVCa to assisted SVCa), the radiologist changed the classification in 15% (15
of 100) of the patients. In 11 of these patients (73%, 11 of 15), this change resulted
in the correct category in the reference standard. For five of these 15 patients, the
SVC values were close to the threshold of 25% defined in this study (25.16%, 25.79%,
27.23%, 27.24%, and 27.44%). Figure 3.4 shows examples of the SVC analysis. Fig-
ure 3.4A and 3.4B, shows patients with the minimum (-58%) and maximum (+140%)
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observer, and the splenic index on the test set (dataset C). The methods are compared

using, (a) Dice score, (b) relative absolute volume difference, (c) maximum Haus-

dorff distance, (d) 95% Hausdorff distance, and (e) average symmetric surface dis-

tance (ASSD). Mean and median values are depicted with black dashed and red lines,

respectively. Note that C and D have two ranges for the y-axis to zoom-in to the

boxplots body. Table 3.1 summarizes these results.

assisted SVCa classified 92% of the patients correctly. In total, when observing the
three-dimensional automatic segmentations and their volumes (ie, when going from
visual SVCa to assisted SVCa), the radiologist changed the classification in 15% (15
of 100) of the patients. In 11 of these patients (73%, 11 of 15), this change resulted
in the correct category in the reference standard. For five of these 15 patients, the
SVC values were close to the threshold of 25% defined in this study (25.16%, 25.79%,
27.23%, 27.24%, and 27.44%). Figure 3.4 shows examples of the SVC analysis. Fig-
ure 3.4A and 3.4B, shows patients with the minimum (-58%) and maximum (+140%)
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SVC, respectively. Figure 3.4C, shows a patient where the radiologist changed their
classification from normal to growth SVC after seeing our segmentations (assisted
SVCa). The probable reason for this change is that the spleen grew proportionally
in all the directions. Figure 3.4D, shows a patient with -10% SVC computed by our
method (automatic SVCa). In the visual SVCa, the radiologist classified this patient
as shrinkage SVC because it looks small in the sagittal plane. In the assisted SVCa,
the radiologist changed his classification from shrinkage to normal SVC.

Spleen segmentation ratings

The independent radiologist visually rated the quality of the automatic spleen seg-
mentations of 200 CT scans from 100 patients (dataset D100). The radiologist rated
87% (174 of 200) of the segmentations as excellent, 7% (14 of 200) as good, 3.5%
(seven of 200) as bad, and 2.5% (five of 200) as failure. The radiologist grouped 94%
(87% excellent and 7% good) of the segmentations as reliable segmentations. Figure
3.5 shows examples of this classification using probability maps in which black con-
tours highlight the final output of the algorithm after postprocessing. Figure 3.5a
shows a patient with large tumors in the liver and left kidney; the radiologist rated
this segmentation as excellent. Figure 3.5b depicts a patient with a beavertail liver
(enlarged liver attached to the spleen); this segmentation was rated as good because
of a small error (<5 mm). Figure 3.5c shows a bad segmentation in which the algo-
rithm did not perform well in the upper region of the spleen; this may be the result
of the low contrast enhancement on this scan. Figure 3.5d depicts a segmentation
failure caused by a dilated stomach.

3.4 Discussion

In this article, we developed an algorithm to segment the spleen using DL on three-
dimensional thorax-abdomen CT scans from patients undergoing oncologic workup.
The final system (system B, 0.962 Dice) and the independent observer (0.964 Dice) ob-
tained comparable results with no significant (P = .834) difference. In the qualitative
observer experiment, we showed that a radiologist improved the performance when
assisted by the algorithm to assess SVC.

For the development of the algorithm, an initial dataset of 100 random scans was
annotated (dataset A) to train the first system (system A). System A obtained a mean
Dice score of 0.950 (95% CI: 0.938, 0.959) on the test set (see Table 3.1). After adding
the 300 relevant cases (dataset B300) from dataset B to the training set, a second sys-
tem (system B) was trained, and this system reached a mean Dice score of 0.962 (95%
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Table 3.2: Comparison between our best performing system and previous work. The

methods are compared using Dice score, relative absolute volume difference, max-

imum Hausdorff distance, 95% Hausdorff distance, and average symmetric surface

distance (ASSD). The methods from Zhou et al. 64 , Roth et al. 65 , Gibson et al. 66 use

deep learning to segment the spleen. Abd = abdominal, Th-abd = thorax-abdominal.

Modality is CT unless otherwise mentioned.

Method Dice score Relative
abs. vol.
difference
(%)

Max. Haus-
dorff dist.
(mm)

95% Haus-
dorff dist.
(mm)

ASSD
(mm)

Contains
abnor-
mali-
ties

Modality

Gauriau et al. 62 0.870±0.150 - - - 2.6±3.0 No Abd
Wood et al. 60 0.873 - - - - Yes Abd
Gloger et al. 61 0.906±0.037 6.30±5.40 - - 1.73±0.68 No MRI
Zhou et al. 64 0.920 - - - - No Th-abd
Wolz et al. 57 0.920±0.092 - - - 2.27±3.03 Yes Abd
Tong et al. 56 0.925±0.065 - - - - Yes Abd
Huo et al. 63 0.926 - - - - Yes MRI
Roth et al. 65 0.928±0.080 - - - - No Th-abd
Landman et al. 67 0.930 - - - - No MRI
Okada et al. 58 0.932±0.052 - - - 1.26±2.43 No Abd
Gibson et al. 66 0.950 - - 2.40 0.80 No Abd
Linguraru et al. 55 0.952±0.014 - - - 0.70±0.10 Yes Abd

System B 0.962±0.016 4.391±3.790 5.799±5.819 2.052±4.071 0.629±0.313 Yes Th-abd
2nd observer 0.964±0.012 3.935±3.101 5.395±2.438 1.447±0.401 0.606±0.168 Yes Th-abd

CI: 0.957, 0.966) on the test set. The independent observer obtained a comparable
mean Dice score of 0.964 (95% CI: 0.961, 0.967).

Figure 3.3 shows that system B had a better and more robust performance with
fewer outliers than system A. The most challenging case on the test set had a beaver-
tail liver on the CT scan, obtaining a 0.88 Dice score for system B. In the same case,
the independent observer obtained a Dice of 0.94, showing that it was also difficult
for the independent observer. Table 3.1 and Figure 3.3 show that our algorithm ap-
proximated the independent observers performance for all metrics. Our selection
process of relevant cases boosted the performance from 0.950 Dice (system A trained
with initial dataset A) to 0.962 Dice (system B trained with datasets A and B300).

Based on the visual ratings of the segmentation quality, our method could reliably
handle difficult cases. Figures 3.5c and 3.5d show that an abnormal anatomy can lead
to less accurate spleen segmentation.

In the SVC analysis, the readers had to come to a consensus in 13 cases to define
the reference standard on dataset D100 . In the observer experiment, the radiologist
changed the classification of 15% (15 of 100) of the patients when going from the vi-
sual SVCa to the assisted SVCa. This resulted in a more reliable SVC classification
because the SVC is now computed based on precise segmentations and not based on
an approximation as the volume obtained by the splenic index. Figure 3.4D, shows
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Table 3.3: Comparison of the Visual SVCa, Assisted SVCa, and Automatic SVCa ver-

sus the Consensus-Based Reference Standard (dataset D100) in the Qualitative Ob-

server Experiment. The visual SVCa obtained 19 mistakes, assisted SVCa eight mis-

takes, and automatic SVCa 11 mistakes. Note that the consensus-based reference stan-

dard followed the same protocol as the visual SVCa. SVC = splenic volume change,

SVCa = splenic volume change assessment.

Reference Standard

Visual SVCa Shrinkage SVC Normal SVC Growth SVC Total

Shrinkage SVC 9 2 0 11

Normal SVC 6 54 8 68

Growth SVC 0 3 18 21

Total 15 59 26 100

Assisted SVCa

Shrinkage SVC 13 0 0 13

Normal SVC 2 54 1 57

Growth SVC 0 5 25 30

Total 15 59 26 100

Automatic SVCa

Shrinkage SVC 14 3 0 17

Normal SVC 1 49 0 50

Growth SVC 0 7 26 33

Total 15 59 26 100

a scan-pair in which the radiologist was likely misled. The stomach of the patient is
full in the baseline scan, which pushes the spleen toward the ribs. On the follow-up
scan, the stomach is empty, giving more space to the spleen to expand. Although
the volume changed -10% over time, it was within the range of normal SVC defined
by us. This indicated that our method can help radiologists to reduce bias when
measuring SVC. In this work, the threshold to classify shrinkage, normal (no sub-
stantial), and growth SVC was defined as +25%. Three cases obtained automatic
SVCa values around this fixed threshold. Future investigations will be useful to de-
fine better thresholds for clinical practice to classify SVC. Note that our qualitative
observer experiment resulted in percentages that were not representative for a large
random set because we were using the enriched dataset D100. This subset was cre-
ated by selecting 50 random patients classified as having substantial (either growth
or shrinkage) SVC and 50 random patients classified as normal (no substantial) SVC
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A

B

C

D

Baseline      Follow-up Baseline     Follow-up

Visual SVCa: Shrinking

Auto.  SVCa: Shrinking (-58%)

Assis. SVCa: Shrinking

Visual SVCa: Growing

Auto.  SVCa: Growing (+131%)

Assis. SVCa: Growing

Visual SVCa: Normal

Auto.  SVCa: Growing (+34%)

Assis. SVCa: Growing

Visual SVCa: Shrinking

Auto.  SVCa: Normal (-10%)

Assis. SVCa: Normal

Figure 3.4: Examples of splenic volume change (SVC) classification of scan-pairs from

dataset D100 (200 CT scans from 100 patients) in the qualitative observer experiment.

Sections surrounded by blue and orange rectangles show the automatic segmenta-

tions in the sagittal and coronal orthogonal views, respectively. A, B, Scan-pairs in

which the visual SVCa and automatic SVCa classification match. A, The scan-pair

with the largest negative SVC. B, The scan-pair with the largest positive SVC in the

dataset. C, D, Scan-pairs in which the visual SVCa and automatic SVCa classification

differ. C, The radiologist classified the scan-pair as normal SVC in the visual SVCa

but changed it to growth SVC in the assisted SVCa after seeing the segmentations

produced by automatic SVCa (system B). D, Similarly, the radiologist classified the

scan-pair as shrinking SVC in the visual SVCa but changed it to normal SVC in the

assisted SVCa. All the sections show 230 × 230 mm and have a window center of 60

HU and a window width of 360 HU. SVCa = splenic volume change assessment.

after automatic SVCa. A fully random selection from dataset D to obtain dataset D100

would have resulted in a higher number of normal cases, which would have been
less interesting for the observer experiment of our study.

Previous work is summarized in Table 3.2. The methods that used DL64–66 were
methods for multiorgan segmentation. None of the mentioned articles selected rele-
vant cases from a large set of scans as we did in this study. Gibson et al. 66 obtained
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(a) (b)

(c) (d)

Figure 3.5: Examples of (a) excellent, (b) good, (c) bad, and (d) failed segmentation

of the qualitative classification performed by the radiologist on dataset D100 (200 CT

scans from 100 patients, spleen masks are unavailable) as part of the qualitative ob-

server experiment. The figures show raw probabilities (before postprocessing) ob-

tained by system B on dataset B300. Red regions represent high probabilities (P ≥
50%) of spleen presence. Green to transparent gradient regions represent low proba-

bilities (P < 50%) of spleen presence. The black contour around the raw probabilities

represents the final output after postprocessing that is used to compute the splenic

volume. The cyan dashed lines and triangles point to mistakes. Coronal and axial

planes are shown, but (d) shows coronal and sagittal planes for better visualization.

All images have a window center of 60 HU and a window width of 360 HU.
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0.950 Dice score after applying transfer learning to improve their results. Linguraru
et al. 55 used probabilistic atlas and registration to segment the liver and spleen (0.952
Dice). These methods were trained with less data (from 90 to 331 scans) than the data
used for our best performing system (450 scans).

Our method showed reliable results; however, it had some limitations. For in-
stance, patients with severe distortions in the body may obtain irregular automatic
segmentations. Similarly, when the spleen is absent (splenectomy), this algorithm
may segment a small false-positive region in the region where the spleen is usually
located. These erroneous segmentations can be prevented by discarding candidates
under a certain threshold of splenic volume. Although we qualitatively measured
the performance of our algorithm in a large dataset, a quantitative measurement
on a large set would help to validate our algorithm more thoroughly but requires
a substantial annotation effort. Another limitation of this study was related to the
selection of the 300 relevant scans from dataset B to obtain dataset B300 because this
selection was performed by a single observer and another observer may have se-
lected different cases. This may have introduced bias, but only affected the training
of our algorithm and we expect this effect to be small. A trained medical student
was used as the human independent observer for the quantitative validation, and an
experienced radiologist may have performed slightly better. Finally, this algorithm
was trained and evaluated using data from a single hospital. Future studies should
focus on training and validation using multicenter data to increase the robustness of
the algorithm.

In conclusion, fully automated spleen segmentation is feasible in complex scenar-
ios such as oncologic follow-up. The performance of the DL algorithm was compara-
ble to that of an independent observer on the test set. This method showed potential
to help radiologists in classifying SVC accurately. Future studies are needed to inves-
tigate how this algorithm can affect the workflow of a radiologist and what effect it
has on the overall scan interpretation. Future validation studies should include mul-
ticenter data and should be performed prospectively to test whether this algorithm
can be safely and reliably used in clinical practice.

Appendix

Description of A, B, C, and D Datasets

Since the developed algorithm had not been tested before, we were not able to as-
sume a performance level and as a result, we did not perform power calculations
for this study. Datasets A, B, and C contain 100, 1000, and 50 CT scans respectively,
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one CT scan per patient; these scans were randomly selected from the initial set of
2150 CT scans. Dataset B300 is a subset of dataset B and contains 300 relevant (50%
challenging and 50% normal cases) CT scans. Datasets A and B300 were used for
the development of the systems, while dataset C was used for testing purposes and
performance measurements. Datasets A, B300, and C were fully annotated. Dataset
D was created by extracting 500 scan-pairs (follow-up scans) from 500 patients, from
the initial set of 2150 CT scans, making a dataset of 1000 CT scans. This dataset was
used for selecting 100 patients for dataset D100, which will be used to perform the
qualitative observer experiment. We made sure that each patient could only be part
of one of our main four datasets (A, B, C, and D). Figure 3.2 shows the scan selection
flowchart.

Network Inputs

During training, the network received the input set composed by [I, R, ω] and re-
turned the probability map P , where I represents a patch from the CT scan, R a
binary patch from the reference mask, and ω the weight-map. Every patch (I, R, P,

and ω) in the input set corresponds to the same center of gravity. The weight-map
ω is computed from R to compensate for the frequency between background and
foreground. During training, the network learns to reduce the difference between P

and R using Softmax with weighted (ω) cross-entropy as the cost function. For every
segmentation experiment, the dimension of I was 156× 156× 156 while R,P and ω

were 68 × 68 × 68. For training, the input sets were selected based on the size of P ,
the stride among input sets was 34mm in all the orthogonal directions. We trained
the network with positive (the spleen is present in R) and negative (the spleen is
absent in R) input sets. We selected all the positive input sets and randomly selected
(same number as the positive input sets) non-overlapping negative input sets. The
final segmentation of a CT scan is obtained by providing input sets that consist of
Is. Subsequently, the model returns P s; the stride among input sets was 68 mm (no
overlap). P s were stitched together to produce the final segmentation output.

Metrics for Measuring Similarity between Predictions and Refer-

ence Masks

The following metrics were used to measure the similarity between the predictions
and the reference masks.
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Dice score =
2 ∗ volume(X ∩ Y )

volume(X) + volume(Y )
, (3.1)

Relative abs. vol. diff. = 100 ∗ absolute

(
1−

volume(X)

volume(Y )

)
, (3.2)

Max. Hausdorff dist. = max(max(SurfDist(X,Y )),max(SurfDist(Y,X))), (3.3)

95% Hausdorff dist. = max(Percentile95(SurfDist(X,Y )), P ercentile95(SurfDist(Y,X)), (3.4)

Avg. symmetric surf. dist. =
mean(SurfDist(X,Y )) +mean(SurfDist(Y,X))

2
(3.5)

where X represents the post-processed output (final segmentation) of the network
(Section 3.2.6) and Y represents the reference mask. The function SurfDist(A,B)

measures the minimum distance from a voxel of surface A to a voxel in surface B.
In practice, high Dice scores (close to one) represent a high overlap between X

and Y . Metrics based on surface distances (maximum Hausdorff, 95% Hausdorff,
and ASSD) measure the (max, 95% percentile, or average) distance in millimeters
from Y to X ; values close to zero are better. For clinical precise applications, such as
guided surgery, metrics based on surface distances are more relevant than overlap-
ping measurements.

Selection of relevant scans for automatic segmentation (Dataset B300)

System A was used to process all scans in dataset B (n = 1000) to find relevant cases.
Since manual annotation of scans is time-consuming, we aimed to identify cases
where the segmentation algorithm failed and add these scans as training data. A
researcher visually classified the quality of the resulting segmentations on dataset B
as good (small errors included), bad (failures included), and splenectomy. Predic-
tions containing small errors of up to 10 mm from the boundaries of the spleen were
classified as good, the remaining predictions were classified as bad or splenectomy.
In total, 818 scans were classified as good, 150 scans as bad, and 32 scans as splenec-
tomy. The 150 bad cases and 150 randomly selected good cases were selected as
additional training data (see Select relevant scans based on final segmentations box
in Figure 3.2). The main errors were mainly undersegmentation caused by abnor-
mal spleen shape, beavertail liver, tumors in the surrounding structures, and large
organs. We instructed our medical students to correct (if needed) the 300 predic-
tions in a similar procedure as dataset A was annotated. These 300 cases composed
dataset B300.

Enriched dataset for the observer experiment (Dataset D100)

To create the enriched dataset for the qualitative observer experiment, we computed
the SVC over time in dataset D (500 new patients) and selected 50 patients from
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dataset D in which our system measured substantial SVC over time (either growth
or shrinkage) and 50 random patients from dataset D with no substantial SVC (nor-
mal). These cases created dataset D100 (subset of dataset D, see Select enriched set for
observer experiment in Figure 3.2), this dataset contains 100 patients, every patient
has two scans for SVC analysis, having a total of 200 CT scans.

Modes of Splenic Volume Change Assessment (SVCa)

For visual SVC, the radiologist visually classified the spleen on the second scan as
growing, shrinking, or normal (no substantial) SVC. Manual measurements and the
splenic index equation were allowed when the SVC was not visually evident. For
automatic SCVa, the measurements were fully automatic. For assisted SVCa, the ra-
diologist was aided by the algorithm. We showed the 3D segmentations as an over-
lay, the automatically calculated volumes, and the growth percentage computed by
our method to the radiologist. Based on this information, the radiologist classified
the SVC again as growing, normal, or shrinking. If the segmentation of our algo-
rithm was suboptimal, the radiologist would see this in the overlay and take this
into account for their assessment. To get insight into the quality of the segmenta-
tions, we asked the radiologist to visually rate the quality of each segmentation as
excellent (no oversegmentation neither undersegmentation), good (a minor error up
to 5 mm), bad (oversegmentation or undersegmentation over 5mm), or failure (seg-
mentation out of the spleen).

Implementation of the convolutional neural networks

The networks were implemented using Keras and Tensorflow in Python 3.6. The seg-
mentation experiments were executed on a cluster environment with PCs equipped
with NVIDIA GTX 1080 and 1080ti graphics cards and 256 GB of RAM. An epoch
to train system A took 70 minutes while it took 6 hours for system B because of the
larger training set. A system requires from 2 to 3 minutes, depending on the size of
the thorax-abdomen CT scan, to process a full scan and get the final segmentation.
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Abstract

In this study, we introduce a deep learning approach for segmenting kidney paren-
chyma and kidney abnormalities to support clinicians in identifying and quantify-
ing renal abnormalities such as cysts, lesions, masses, metastases, and primary tu-
mors. Our end-to-end segmentation method was trained on 215 contrast-enhanced
thoracic-abdominal CT scans, with half of these scans containing one or more abnor-
malities.

We began by implementing our own version of the original 3D U-Net network
and incorporated four additional components: an end-to-end multi-resolution ap-
proach, a set of task-specific data augmentations, a modified loss function using top-
k, and spatial dropout. Furthermore, we devised a tailored post-processing strategy.
Ablation studies demonstrated that each of the four modifications enhanced kidney
abnormality segmentation performance, while three out of four improved kidney
parenchyma segmentation. Subsequently, we trained the nnUNet framework on our
dataset. By ensembling the optimized 3D U-Net and the nnUNet with our special-
ized post-processing, we achieved marginally superior results.

Our best-performing model attained Dice scores of 0.965 and 0.947 for segment-
ing kidney parenchyma in two test sets (20 scans without abnormalities and 30 with
abnormalities), outperforming an independent human observer who scored 0.944
and 0.925, respectively. In segmenting kidney abnormalities within the 30 test scans
containing them, the top-performing method achieved a Dice score of 0.585, while an
independent second human observer reached a score of 0.664, suggesting potential
for further improvement in computerized methods.

All training data is available to the research community under a CC-BY 4.0 license
on https://doi.org/10.5281/zenodo.8014289.
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4.1 Introduction

Kidney cancer is a significant global health issue, ranking as the 12th most deadly
cancer in the world, with an estimated 14,700 deaths in 2019 and approximately
73,820 new cases of kidney & renal pelvis cancer worldwide3. With the increas-
ing number of cases, automated tools are needed to assist clinicians in managing
this burden. For instance, by following nephrometry scoring systems79, automatic
kidney tumor segmentation methods may help specialists to detect and get reliable
measurements of kidney tumors.

Previous research on kidney segmentation has employed a variety of conven-
tional methods such as region growing80,81, active shape models82, active contours83,84,
graph cut85,86, level-sets87,88, snakes89, random forest90, and watersheds91. However,
to the best of our knowledge, there are only a few methods that focus on segment-
ing kidney tumors or cysts in the literature. Linguraru et al. 83 proposed a semi-
automatic method that combines fast marching and active geodesic contours to seg-
ment renal tumors. Kim and Park 81 used thresholds and histograms to segment the
kidneys and applied texture analysis to the kidney parenchyma to find seeds for
a region-growing algorithm to perform kidney tumor segmentation. Chen et al. 92

proposed a method to predict kidney tumor growth in mm2/day, manually seg-
menting the kidney tumors and using a reaction-diffusion model to predict their
growth. Kaur et al. 93 proposed an iterative segmentation method for renal lesions,
which uses spatial image details and distance regularization.

In recent years, CNNs have shown to be more effective than traditional methods
based on classical computer vision techniques and machine learning. Their abil-
ity to learn directly from raw data has led to their widespread use in segmenting
organs and structures in different modalities. For instance, Zheng et al. 94 used an
AlexNet-based method to localize the kidneys to define a seed for an active shape
model algorithm to segment the kidneys in patients with either abdominal surgery
or kidney tumors. Sharma et al. 95 used a network that takes the first 10 layers of the
VGG-16 network and upsampled them in a decoder fashion to segment the kidneys
of patients with renal insufficiency. Encoder-decoder networks such us 2D U-Net8

and 3D U-Net9 proved to be robust to tackle medical segmentation tasks in multiple
medical imaging segmentation challenges76,96. Variants of these models have been
extensively proposed and applied to a wide variety of tasks, including kidney seg-
mentation. For instance, Taha et al. 97 segmented the artery, vein, and ureter around
the kidneys using a 2D U-Net-like network that allows the deeper layers to influ-
ence more to the final prediction. Jackson et al. 98 used a 3D U-Net-like network to
segment the kidneys. Moreover, several methods used deep learning to segment
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kidney tumors99,100. Yu et al. 99 proposed Crossbar-Net, a network that segments
kidney and kidney tumors and uses horizontal and vertical patches instead of tradi-
tional squared patches. The network is divided into sets of sub-networks; a set con-
sists of a sub-network for vertical and another for horizontal patches. Yang et al. 100

proposed a 3D CNN using a pyramid pooling module to segment the kidneys and
kidney tumors in abdominal CT angiographic scans.

The top competitors of the Medical Decathlon76 and LiTS challenge68,101 have
achieved the highest performance using cascaded networks. These networks divide
the tasks into sub-tasks, with one network per sub-task. These networks have differ-
ent fields of view and thus complement each other, resulting in higher performance.
For instance, a first network may segment the liver and the liver tumor as a sin-
gle structure, aiming to determine the region of interest for the second network; the
second network then aims to segment the liver tumor class only. Similarly, Blau
et al. 102 used cascade networks to segment the kidney and kidney cyst in CT scans
using a 2D U-Net. Their method used heuristics such as a distance transform and
HU thresholding to select cyst candidates within the kidney region. A second (shal-
low) network classified whether a candidate represented a kidney cyst. Additionally,
Haghighi et al. 103 used a localization network for pre-processing, which cropped the
input for 3D U-Net to segment MRI images of the kidneys. In a recent challenge
on segmentation of the kidney and kidney tumors on CT104, nnUNet76 was the best
performing method. This method automatically adapts its hyperparameters based
on a fingerprint of the data, resulting in optimal performance. Furthermore, it uses
5-fold cross-validation to obtain the final prediction.

In this study, we propose an automatic method for segmenting the kidney paren-
chyma and kidney abnormalities in thorax-abdomen CT scans and compare it with
the nnUNet. We trained our method on 215 thorax-abdomen CT scans and tested
on additional 50 scans; the dataset consisted of scans from patients undergoing on-
cological workup. The dataset contains patients at different stages of disease and
therefore abnormalities can be present in multiple body regions.

4.2 Materials and Methods

4.2.1 Patient Data

The dataset used in this study was collected from the Radboud University Medi-
cal Center, Nijmegen, the Netherlands. We randomly retrieved 1905 studies from
929 patients referred by the oncology department in a 12 month period. These pa-
tients did not opt-out for use of their data for research, Protected health information
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Radiology
Report analysis:

Does the patient have any
kidney abnormality?

Dataset of clinical
studies 2015
929 patients

Discard irregular
cases

Randomly select 
133 patients

Select a
representative CT
scan per patient

Dataset A

215 Patients
215 CT scans

Dataset     

20 Patients
20 CT scans

132 patients

133 patients

yes (138 patients)

no (791 patients)

Dataset     

30 Patients
30 CT scans

B20

B30

Dataset B

Figure 4.1: Diagram of the CT scans selection criteria for this study, with dataset A for

training and datasets B30 and B20 for testing (with and without kidney abnormalities

respectively).

was removed from the DICOM data. This retrospective study was approved by the
medical-ethical review board of the hospital. CT scanners from two manufacturers
were used to acquire the CT scans: Toshiba (Aquilion One) and Siemens (Sensa-
tion 16, Sensation 64, and Somatom Definition AS). The reconstruction kernels were
FC09, FC09-H, B30f, B30fs, and I30f. The slice thickness ranged from 0.5 to 3 millime-
ters, 90% of them between 1 and 2 mm. Severe abnormalities throughout the body
are present in this dataset resulting from disseminated disease, surgery, chemother-
apy, radiotherapy, etc.

We selected a subset to perform our experiments; the procedure is summarized
in Figure 4.1. We analyzed the radiology reports per study to intentionally select po-
tential cases that contain kidney abnormalities such as cysts, lesions, masses, metas-
tases, and tumors. In Dutch: ((‘cyste’ OR ‘cysten’), (‘laesie’ OR ‘lesies’), ‘massa’, (‘metas-
tase’ OR ‘metastasen’), and ‘tumor’). Our selection criteria selected studies where the
radiology report mentioned in the same sentence the kidneys (’nier’ OR ’nieren’ NO
’bijnier’) and any kidney abnormalities. Furthermore, only one clinical study per pa-
tient was selected to get a large variety of anatomies for the segmentation task. In
case multiple studies for the same patient were found, we selected the study with
the earliest acquisition date.

We employed a radiology report analysis to curate a dataset of 138 clinical stud-
ies from 138 patients with kidney abnormalities, including cysts, lesions, masses,
metastases, or tumors. We excluded six patients with unusual anatomy, three pa-
tients who had received kidney transplants, two patients with kidneys of irregular
size, and one patient with a horseshoe kidney. The inclusion and exclusion criteria
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(a) Input CT scan (b) Annotations format 1 (c) Annotations format 2

Figure 4.2: Example illustrating the different annotation formats. Each subfigure

shows the same axial section, with overlays depicting the annotations: (a) shows the

axial CT section. (b) shows the annotations in format 1: parenchyma and kidney ab-

normalities as a single structure (yellow overlay). (c) shows the annotations in format

2: parenchyma (yellow overlay) and kidney abnormalities (red overlay) as different

structures. All images have a window center of 60 HU and a window width of 360

HU.

gave us 132 cases for analysis, which were then balanced with additional 133 ran-
dom patient studies without kidney abnormalities, for a total of 265 CT scans from
265 patients. The patient cohort contains 56% males; the average age was 60 years,
and the age ranged from 22 to 84. We divided this set into 215 CT scans for training
(dataset A) and 50 for testing (dataset B). The test set was further subdivided, with
60% (30/50) containing abnormalities (dataset B30) and the remaining 40% (20/50)
devoid of abnormalities (dataset B20). The distribution of the five types of abnormal-
ities (tumors, cysts, masses, lesions, and metastases) was proportional among the 30
cases in dataset B30 (six cases per abnormality), which were randomly selected.

In the test set, two and six patients had undergone left and right nephrectomy,
respectively, while the training set included seventeen and eighteen patients who
had undergone left and right nephrectomy, respectively.

4.2.2 Annotation procedure

Four medical students manually segmented the kidney’s parenchyma and kidney
abnormalities. They were trained by an experienced radiologist (EthS) and consulted
the radiologist whenever needed throughout the annotation process. Adhering to a
standardized protocol, the medical students annotated the kidney parenchyma as
the region composed of the renal cortex, renal medulla, and renal pyramid. The re-
nal hilum, collecting system, and (major and minor) calyces were excluded as much
as possible from the kidney parenchyma annotations. We grouped cysts, lesions,
masses, metastases, and tumors connected to the kidney parenchyma as kidney ab-
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standardized protocol, the medical students annotated the kidney parenchyma as
the region composed of the renal cortex, renal medulla, and renal pyramid. The re-
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normalities. The protocol excluded cases with abnormalities in the collecting system.

(a) Patients without kidney abnormalities. (b) Patients with kidney abnormalities.

Figure 4.3: Four examples of CT scans from the training set (dataset A) showing coro-

nal sections with annotations in format 2 (see Figure 4.2c) where yellow and red over-

lays represent annotations of the parenchyma and kidney abnormalities, respectively.

Note that all the patients have anomalies in the body (green arrows in the body), and

both cases of (b) have only one kidney and contain kidney abnormalities. All the

slices have a window center of 60 HU and a window width of 360 HU.

Annotators used an in-house tool based on MeVisLab105 to fully delineate the
contours of the structures in 2D orthogonal planes. Our tool was designed to re-
duce the manual annotation time by interpolating unannotated contours between
two manually delineated contours. The kidney parenchyma of the training set was
annotated using an active learning process, with medical students correcting the kid-
ney parenchyma predictions made by a pre-trained 3D U-Net (it used 50 CT scans
from dataset A); the kidney abnormalities were annotated from scratch. The test set
was manually annotated (i.e. the contour interpolation option of our tool was dis-
abled) by two medical students. One of these was considered as the reference stan-
dard and the other one as the second observer . The latter was the most experienced
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among the medical students and was not allowed to consult the experienced radi-
ologist during these annotations. The annotations of the second observer served
as a benchmark for human performance. The annotations were initially obtained in
the axial plane, followed by corrections in coronal and sagittal planes to keep the
annotation consistent in all orthogonal directions.

This study utilized two annotation formats, format 1 and format 2, to store the
annotations. Format 1 considers the kidney parenchyma and kidney abnormalities
as a single class (see Figure 4.2b) while format 2 separates them into two classes (see
Figure 4.2c).

Samples of CT scans from patients included in this study can be seen in Figure
4.3. While Figure 4.3a depicts patients without kidney abnormalities, it highlights
the presence of abnormalities in other parts of the body, such as liver tumors. Figure
4.3b shows patients with kidney abnormalities, as well as other abnormalities in the
body, such as nephrectomy and collapsed lung.

4.2.3 Segmentation network

We present an end-to-end method for segmenting renal parenchyma and abnormal-
ities in CT scans. We depict our architecture in Figure 4.4. It consists of two seg-
mentation networks, a multi-resolution network for kidney segmentation (annota-
tions in format 1, one voxel represents 4×4×4mm) and a high-resolution network
(annotations in format 2, one voxel represents 1×1×1mm). The multi-resolution net-
work is designed to first provide a rough localization of the kidney by processing a
low-resolution version of the CT scan. This defines an ROI for the high-resolution
network to refine the segmentation of the kidneys and kidney abnormalities.

Pre-processing

The CT scans and annotations were resampled to 1×1×1mm (for high-resolution
segmentation using annotations in format 2) and 4×4×4mm (for multi-resolution
segmentation using annotations in format 1) resolutions (see Figure 4.4a). Scans and
annotations were resampled using cubic and nearest-neighbor interpolation, respec-
tively. We clipped the Hounsfield Units to the range [-500,400].

Multi-resolution network

We present an end-to-end cascade method for parenchyma and kidney abnormality
segmentation. Unlike traditional cascade networks, which use two separate net-
works and do not allow for backpropagation, our approach uses a single network
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composed of two sub-networks. The first sub-network is a 3D U-Net with 16 fil-
ters that performs multi-resolution segmentation and defines an ROI. This network
takes 3D patches of 108×108×108 voxels, with each voxel representing 4×4×4 mm,
as input using annotations in format 1 (kidney parenchyma + kidney abnormalities)
and outputs 20×20×20 voxels. The output is then up-sampled 4 times and padded
with zeros to match and mask out the high-resolution input image in millimeters
(108×108×108 mm, one voxel represents 1×1×1 mm). The masked-out image serves
as an additional input to the second sub-network, the high-resolution segmentation
network, which uses a 3D U-Net with 32 filters and serves to fine-segment the kid-
neys and kidney abnormalities (see Figure 4.4b). Figures 4.4a and Figure 4.4b illus-
trate our approach and the connection between the multi-resolution and the high-
resolution segmentation network, respectively.

Data augmentation

Data augmentation was applied randomly to 70% of the training samples using scal-
ing, rotation, Gaussian blurring, image intensity variation, and elastic deformation.
Up to three of these data augmentation methods were applied randomly to each
training sample, to prevent too much data distortion. When elastic deformation was
used, it was only performed in conjunction with Gaussian blurring and image in-
tensity variation. Interpolation methods of cubic and nearest neighbor were used
for CT scans and reference standards, respectively. The scaling factor ranged from
0.95 to 1.05, with rotations of up to two planes of -5◦ to 5◦ degrees. Gaussian blur-
ring had a sigma range of 0.2 to 1.0, and image intensity variation varied between
-20 and 20 HU. We performed elastic deformation by placing ten control points in a
grid, randomly perturbed by up to 5 voxels that were used as input to cubic B-spline
interpolation.

Spatial dropout

We applied spatial dropout106, a regularization technique that is different from tradi-
tional dropout. Spatial dropout drops feature maps instead of individual neurons to
enforce independence among feature maps, encouraging the network to learn more
robust and generalizable features. We randomly dropped 10% of the feature maps
per layer.

Loss function

The loss function determines how the network’s weights are optimized after a for-
ward pass. In our experiments, we used a combination of weighted categorical cross-
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(a) Diagram of the proposed multi-resolution network.
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Figure 4.4: (a) Diagram of the proposed network. The multi-resolution segmentation

network uses a 3D U-Net network initialized with 16 filters. It processes blocks of

108×108×108 voxels and outputs the central 20×20×20 voxels (represented by the

dashed red square). One voxel corresponds to a resolution of 4×4×4mm, giving the

network a receptive field of 88×88×88 voxels or 352×352×352mm. The kidney paren-

chyma and kidney abnormalities are considered a single class in the multi-resolution

network (see Figure 4.2b). The high-resolution segmentation network uses a 3D U-

Net architecture initialized with 32 filters, with each voxel representing 1×1×1mm.

Its receptive field is 88×88×88 mm and it segments the parenchyma and the kid-

ney abnormalities as different classes (see Figure 4.2c). (b) Shows how the multi-

resolution and the high-resolution networks are connected.
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108×108×108 voxels and outputs the central 20×20×20 voxels (represented by the

dashed red square). One voxel corresponds to a resolution of 4×4×4mm, giving the

network a receptive field of 88×88×88 voxels or 352×352×352mm. The kidney paren-

chyma and kidney abnormalities are considered a single class in the multi-resolution

network (see Figure 4.2b). The high-resolution segmentation network uses a 3D U-

Net architecture initialized with 32 filters, with each voxel representing 1×1×1mm.

Its receptive field is 88×88×88 mm and it segments the parenchyma and the kid-

ney abnormalities as different classes (see Figure 4.2c). (b) Shows how the multi-

resolution and the high-resolution networks are connected.
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entropy and dice loss in the experiments.

Combined loss = α ∗ diceLoss+ γ ∗ TopK(weightedCrossentropy) (4.1)

where α = 0.3 and γ = 0.7 were used in all the experiments. Top-k 107 sorts the voxel-
wise loss in descending order and keeps the top k% to compute the final mean loss;
this approach emulates an online voxel-wise hard-mining per sample.

Post-processing

The output of the networks was post-processed to eliminate false positives. The
end-user prediction was reconstructed by stitching together the predictions. In all
the networks, the output was thresholded at 0.5 to get a binary prediction. The
predictions of the multi-resolution network were up-sampled four times and dilated
five times to mask out the predictions of the high-resolution segmentation network.
Only the kidney abnormalities that were connected to the kidney parenchyma were
kept, to ensure that there were no spurious kidney abnormality candidates outside
the kidney region.

CNN Settings

Due to the large footprint of the network, scans were divided into 3D patches to
train the 3D network. Each training sample consisted of a patch of 108×108×108
voxels from the CT scan and a 20×20×20 voxel reference standard. During training,
the reference standard patches were sampled every ten voxels in all the orthogonal
planes with up to 50% overlap among surrounding patches. During inference, the
cubes do not overlap. Patches at the border of the CT scan were mirrored to match
the input network size.

The Glorot uniform algorithm108 was used to initialize the weights of the net-
work. The weight-map w compensated for the high-class imbalance between the
classes. The background, parenchyma, and kidney abnormality classes had empir-
ically defined weights of 0.05, 0.10, and 0.99, respectively. We used Adam109 as op-
timization function with learning rate= 0.00001, β1 = 0.9, and β2 = 0.999. The
training stopped when the performance on the validation set stopped improving for
ten epochs, and the model with the highest average Dice score on the validation set
was selected as the optimal model.

Implementation of the CNN

The networks were implemented using Keras and TensorFlow as backend in Python
3.6. The segmentation experiments were executed on a cluster of computers equipped
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with GTX1080 and GTX1080ti graphics cards, each with 256GB of CPU RAM.

4.2.4 Evaluation

The end-user segmentation obtained by our networks was compared to the reference
masks using the Dice score.

Dice score =
2 ∗ volume(X ∩ Y )

volume(X) + volume(Y )
(4.2)

where X is the prediction, and the Y is the reference standard.

4.2.5 Ablation study

In this section, we conducted a step-by-step evaluation of the impact of each module
(multi-resolution, data augmentation, top-k, and spatial dropout) in our proposed
network. The backbone architecture for this ablation study was the 3D U-Net9. Our
experiments setup started with a 3D U-Net, and additional modules were added one
by one in subsequent experiments (see the left side of Table 4.1). In order to evaluate
the impact of each module on the network performance, we conducted an ablation
study by adding modules to the 3D U-Net backbone architecture one by one. The
baseline network, referred to as experiment 5 , only used the 3D U-Net initialized
with 32 filters and had a single input of 108×108×108 voxels with 1×1×1 mm per
voxel, producing 20×20×20 voxels. The subsequent experiments added the multi-
resolution module (experiment 4 ), data augmentation module (experiment 3 ),
top-k module (experiment 2 ), and spatial dropout module (experiment 1 ) to
the network. The input and output sizes and formats were consistent across all
experiments except experiment 5 ; networks receive two inputs of 108×108×108
voxels each, one input of 1×1×1 mm and one input of 4×4×4 mm per voxel for
high-resolution (input of 108×108×108 mm using annotation format 2) and multi-
resolution segmentation (input of 432×432×432 mm using annotation format 1), re-
spectively. The difference in performance between experiment 1 (experiment with
spatial dropout) and experiment 2 (experiment without spatial dropout) showed
the influence of the spatial dropout module, for example. As an initial step, we first
trained the multi-resolution module independently to reach its optimal sub-model.
Afterward, we froze the weights of the multi-resolution sub-model, except for the
last three layers to allow back-propagation from the high-resolution segmentation
network. All the experiments used 80% of dataset A for training and 20% for vali-
dation. Each experiment was trained independently to find the optimal model. The
best model from each experiment was evaluated using test sets B20 and B30.
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4.2.6 nnUNet

We conducted experiments with nnUNet76 to compare its performance with our
methods. Unlike our approach, nnUNet processes CT scans without any prepro-
cessing step, while we resample the CT scans to an isotropic resolution and clip
the HU range. To gain insight about the benefits of ensemble networks, we ensem-
bled nnUNet with our two highest-performing methods, one at a time. As nnUNet
only uses thresholding as postprocessing, we analyzed the impact of our dedicated
postprocessing method on performance. Note that our postprocessing eliminates
false-positive kidney abnormalities that are not attached to the parenchyma.

4.3 Results

The results of the ablation study conducted on the test sets (dataset B20 and B30)
are shown in Figure 4.5. These results are also summarized in Table 4.1, which in-
cludes asterisks (*) to indicate statistical significance (P-value < 0.05) between ex-
periment 1 and other experiments, as determined by a two-tailed Mann-Whitney
U test. We evaluated the predictions of each experiment per class to show more in-
sights into the results of our experiments. Furthermore, we combined the prediction
of both classes (annotation format 2) as a single structure (annotation format 1) and
computed its Dice score; this helps to make our results comparable to methods that
reported kidney dice only.

Dataset B30: The presence of kidney abnormalities characterizes the patients in
this dataset (see Figure 4.3b). The results of our experiments on dataset B30 are dis-
played in Figures 4.5d, 4.5b, and 4.5c. First, we evaluated the performance of the
methods in segmenting the kidney abnormalities class only. The results are shown
in Figure 4.5d and in the column “Dataset B30/Abnormalities class” of Table 4.1. The
second observer and experiment 1 achieved the two highest scores, 0.664±0.274
and 0.487±0.314, respectively. Experiment 5 obtained 0.390±0.315 Dice, the lowest
score when segmenting the kidney abnormalities only. Next, we evaluated the per-
formance of the methods in segmenting the parenchyma class only. The results are
shown in Figure 4.5b and in the column “Dataset B30/Parenchyma class” of Table
4.1. The two highest scores were obtained by Experiment 2 and experiment 4
with 0.938±0.051, 0.936±0.058, respectively, while the second observer obtained
the lowest score with 0.925±0.051. Finally, we evaluated the performance of the
methods when segmenting both the parenchyma and the kidney abnormalities class
as a single structure (annotation format 1). The results are shown in Figure 4.5c and
in column “Dataset B30/Parenchyma + abnormalities class” of Table 4.1. The two
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(a) (b)

(c) (d)

Figure 4.5: Performance comparison of our methods and the second observer on

datasets B20 and B30 using boxplots. The red and black lines represent the median

and the mean, respectively. Boxplot (a) shows results for class parenchyma only on

the dataset B20 (twenty cases without abnormalities). Boxplot (b) shows results for

class parenchyma only on the dataset B30 (thirty cases with abnormalities). Boxplot (c)

displays the results for class parenchyma plus abnormalities as a single structure on

dataset B30 (thirty test cases with abnormalities). Boxplot (d) shows results for Class

abnormalities only on the dataset B30 (thirty cases with abnormalities). Note that the

scale in the y-axis is different for boxplot (d). The modules for each experiment are

represented by the same color coding as in Table 4.1: experiment 1 , experiment 2 ,

experiment 3 , experiment 4 , experiment 5 , and second observer .

highest scores were achieved by Experiment 4 and experiment 3 with Dice scores
0.952±0.017 and 0.950±0.010, respectively. Experiment 5 obtained the lowest Dice
score with 0.924±0.065.

Dataset B20: The patients in this dataset do not present kidney abnormalities, but
it is probable that they have other anomalies in the body (see Figure 4.3a). The results
on the test set B20 are depicted in Figure 4.5a and in Table 4.1 under the column
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Dataset B20: The patients in this dataset do not present kidney abnormalities, but
it is probable that they have other anomalies in the body (see Figure 4.3a). The results
on the test set B20 are depicted in Figure 4.5a and in Table 4.1 under the column
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Table 4.1: Summary of performance of our methods and the second observer on

the test sets (dataset B20 and B30) using Dice score. The upper part of the table shows

Mean and SD, while the bottom part shows 95% Confidence Intervals. We analyzed

the performance per class (parenchyma and kidney abnormalities) and when both

classes are combined (parenchyma + kidney abnormalities). An asterisk (∗) indicates

that a value is significantly better or worse than the value of the reference system

(experiment 1 ). The best Dice score values per column are in bold.

Experiment

Test set: dataset B20 Test set: dataset B30

Parenchyma
class

Parenchyma
class

Parenchyma +
abnormalities class

Abnormalities
class

(Fig. 4.5a) (Fig. 4.5b) (Fig. 4.5c) (Fig. 4.5d)

Mean ± SD

Exp. 1 0.952±0.008 0.930±0.053 0.948±0.011 0.487±0.314
Exp. 2 ∗0.957±0.006 ∗0.938±0.051 ∗0.942±0.049 0.464±0.320
Exp. 3 0.954±0.007 0.930±0.064 0.950±0.010 0.440±0.310
Exp. 4 ∗0.956±0.007 0.936±0.058 ∗0.952±0.017 0.434±0.311
Exp. 5 0.952±0.015 0.931±0.057 0.924±0.065 0.390±0.315
Second observer ∗0.944±0.009 ∗0.925±0.051 ∗0.941±0.017 0.664±0.274
nnUNet ∗0.960±0.015 ∗0.940±0.069 ∗0.931±0.099 0.521±0.303
Ens. nnUNet Exp. 1 ∗0.962±0.007 ∗0.941±0.058 ∗0.927±0.125 0.526±0.305
Ens. nnUNet Exp. 2 ∗0.964±0.006 ∗0.944±0.055 ∗0.928±0.129 0.507±0.318

nnUNet PP ∗0.964±0.006 ∗0.941±0.068 ∗0.955±0.042 0.576±0.290
Ens. nnUNet Exp. 1 PP ∗0.962±0.007 ∗0.942±0.058 ∗0.960±0.009 0.585±0.293
Ens. nnUNet Exp. 2 PP ∗0.965±0.006 ∗0.947±0.050 ∗0.958±0.032 0.566±0.309

Confidence Intervals 95%

Exp. 1 0.948-0.955 0.910-0.950 0.945-0.952 0.369-0.604
Exp. 2 0.954-0.960 0.920-0.957 0.924-0.961 0.345-0.584
Exp. 3 0.950-0.957 0.906-0.954 0.946-0.954 0.324-0.555
Exp. 4 0.953-0.959 0.914-0.957 0.945-0.958 0.318-0.550
Exp. 5 0.945-0.959 0.910-0.952 0.900-0.948 0.273-0.508
2nd observer 0.939-0.948 0.906-0.944 0.935-0.947 0.561-0.766

nnUNet 0.953-0.965 0.913-0.961 0.892-0.959 0.411-0.625
Ens. nnUNet Exp. 1 0.959-0.965 0.918-0.958 0.876-0.959 0.416-0.627
Ens. nnUNet Exp. 2 0.961-0.967 0.923-0.961 0.876-0.961 0.397-0.613

nnUNet PP 0.961-0.967 0.915-0.962 0.938-0.965 0.469-0.673
Ens. nnUNet Exp. 1 PP 0.959-0.966 0.918-0.959 0.957-0.963 0.482-0.687
Ens. nnUNet Exp. 2 PP 0.962-0.967 0.926-0.963 0.945-0.965 0.454-0.672

“Dataset B20/Parenchyma class”. Experiment 2 and experiment 4 obtained the
highest Dice scores, 0.957±0.006 and 0.956±0.007, respectively. The second obser-
ver obtained the lowest Dice score with 0.944±0.009.

nnUNet: In our experiments, nnUNet obtained slightly better results in the pa-
renchyma class of datasets B20 and B30 compared to our experiments, a Dice score of
0.521 ± 0.303 in the kidney abnormality class, which was higher by +0.034 Dice than
our experiment 1 . To further analyze the differences between nnUNet and our
experiments, we ensembled the predictions of nnUNet with either experiment 1



68 Kidney abnormality segmentation in thorax-abdomen CT scans

or experiment 2 by averaging their probabilities. The ensemble nnUNet with
experiment 2 slightly improved the results of nnUNet in the parenchyma class
of both datasets but decreased in -0.014 Dice score in the abnormality class, while
the ensemble nnUNet with experiment 1 slightly improved in +0.004 dice score
compared to nnUNet in the abnormality class. The ensemble nnUNet with experi-
ment 2 performed slightly better than the ensemble nnUNet with experiment 1
in all classes, except the abnormality class, where the ensemble with experiment 1
had a Dice score of 0.526 ± 0.306, and the ensemble with experiment 2 obtained
0.507 ± 0.318. Since nnUNet only uses thresholding for post-processing, we applied
our dedicated post-processing to the nnUNet predictions to remove kidney abnor-
malities that are not attached to the kidney, which resulted in notable improvements
of +0.055, +0.059, and +0.059 for nnUNet, ensemble nnUNet with experiment 1 ,
and ensemble nnUNet with experiment 2 , respectively. As a result, the ensemble
nnUNet with experiment 1 and our dedicated post-processing was the highest-
performing experiment in the abnormality class, with a Dice score of 0.585 ± 0.293.

Table 4.2 compares our results with other methods published in the literature.
Some of the methods report the Dice scores for the left and right kidneys separately,
while others report a single score for both kidneys combined. To make our results
comparable to these methods, we post-processed our predictions to obtain the Dice
scores for both the left and right kidneys.

4.4 Discussion

In this paper, we presented an automatic method for the segmentation of the (kid-
ney) parenchyma and kidney abnormalities. We conducted experiments in an abla-
tion study fashion to evaluate the contribution of each module to the performance
(see Section 4.2.5). For instance, the comparison between experiment 5 and expe-
riment 4 in Figure 4.5 shows the influence of the multi-resolution module. Figure
4.5a shows that all of our experiments outperformed the second observer when
segmenting the kidney parenchyma in dataset B20 (patients without kidney abnor-
malities). While the presence of kidney abnormalities affected the performance of
kidney (parenchyma + abnormalities) segmentation; see the difference of outliers be-
tween Figure 4.5a (dataset B20) and Figure 4.5c (dataset B30: patients with kidney ab-
normalities). One of the reasons for this behavior may be the difficulty in defining the
boundary between the parenchyma and the kidney abnormality. When comparing
the boxplots, the interquartile range of Experiment 5 and experiment 2 obtained
the largest and the smallest interquartile range, respectively, indicating that the com-
bination of multi-resolution, data augmentation, and top-k modules positively im-
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Table 4.2: Performance comparison between our methods (experiment 1 and expe-

riment 2 ) and previous work of kidney segmentation and kidney tumor/abnormal-

ity segmentation using the mean Dice score as the metric. The methods listed below

the line reported the presence of cases with kidney tumors/abnormalities in their

datasets. The values marked with † are obtained after post-processing the prediction

masks from ‘Both kidneys’ column for comparability with other methods.

Method
Kidney
abnor-
malities

Kidneys Num.
test
scans

Deep
Learn-
ing

DescriptionLeft
kidney

Right
kidney

Both
kidneys

Methods that reported cases without kidney abnormalities or did not report them

Jackson et al. 98 N/A 0.860 0.910 - 24 Yes
Gibson et al. 66,110 N/A 0.930 - - 10 Yes 9-folds cross-validation.
Badura and Wieclawek 88 N/A 0.938 0.944 - 20 No
Heinrich et al. 111 N/A 0.942 - - 10 Yes 4-fold cross validation.
Wang et al. 112 N/A 0.956 0.954 - 30 Yes 4-fold cross-validation.
Khalifa et al. 90 N/A - - 0.973 60 No Leave-one-out.
Exp. 1 N/A 0.953† 0.951† 0.952 20 Yes Test set: Dataset B20, train set: Dataset A.
Exp. 2 N/A 0.960† 0.955† 0.957 20 Yes Test set: Dataset B20, train set: Dataset A.
Second observer N/A 0.943† 0.945† 0.944 20 N/A Test set: Dataset B20, train set: N/A.
nnUNet N/A 0.956† 0.959† 0.960 20 Yes Test set: Dataset B20, train set: Dataset A.
Ens. nnUNet Exp. 1 PP N/A 0.962† 0.944† 0.962 20 Yes Test set: Dataset B20, train set: Dataset A.
Ens. nnUNet Exp. 2 PP N/A 0.964† 0.946† 0.965 20 Yes Test set: Dataset B20, train set: Dataset A.

Methods that reported cases with kidney abnormalities

Turco et al. 87 - - - 0.800 55 No Polycystic kidneys only.
Sharma et al. 95 - - - 0.860 81 Yes Polycystic kidneys.
Skalski et al. 84 - - - 0.862 10 No Kidney cancer.
Blau et al. 102 - 0.870 0.870 - 46 Yes Cysts.
Lin et al. 80 - 0.873 0.886 - 30 No Two cases with tumor, one with a cyst.
Zheng et al. 94 - 0.890 0.920 - 78 Yes Kidney tumors.
Wieclawek 91 - - - 0.917 170 No Cysts and kidney tumors.
Yang et al. 100 0.802 - - 0.931 50 Yes Kidney tumors.
Yu et al. 99 0.913 - - - 36 Yes Kidney tumors.
Exp. 1 0.488 0.949† 0.951† 0.948 30 Yes Test set: Dataset B30, train set: Dataset A.
Exp. 2 0.464 0.956† 0.936† 0.942 30 Yes Test set: Dataset B30, train set: Dataset A.
Second observer 0.664 0.939† 0.943† 0.941 30 N/A Test set: Dataset B30, train set: N/A.
nnUNet 0.521 0.928† 0.951† 0.931 30 Yes Test set: Dataset B30, train set: Dataset A.
Ens. nnUNet Exp. 1 PP 0.585 0.960† 0.960† 0.960 30 Yes Test set: Dataset B30, train set: Dataset A.
Ens. nnUNet Exp. 2 PP 0.566 0.963† 0.955† 0.958 30 Yes Test set: Dataset B30, train set: Dataset A.

pacted the segmentation of the kidneys (parenchyma + abnormalities). Note the
spatial dropout module (difference between experiment 1 and experiment 2 )
was beneficial only to the kidney abnormality class (see Figure 4.5). Furthermore,
Figure 4.5d shows that the mean Dice score (black dashed line in boxplots) of our
experiments gradually increases when adding more modules (experiment 5 to ex-
periment 1 ) when segmenting the kidney abnormality class. This highlights the
positive impact of each module in this ablation study on the segmentation of kidney
abnormalities.
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Additionally, we trained nnUNet, a state-of-the-art segmentation method, on our
data and obtained results that were consistent with our previous experiments, except
for the kidney abnormality class where nnUNet achieved a 0.521 Dice score com-
pared to 0.488 obtained by experiment 1 . To explore further improvements, we
combined nnUNet predictions with our best-performing experiments, resulting in
an ensemble nnUNet + experiment 1 that achieved 0.526 Dice score for the kidney
abnormality class. Since nnUNet uses only thresholding as postprocessing, we in-
vestigated whether postprocessing nnUNet predictions with our dedicated postpro-
cessing could result in better performance. This additional postprocessing yielded a
0.585 Dice score, an improvement of +0.064 compared to the original nnUNet with
0.521 Dice score. While nnUNet is a state-of-the-art segmentation method, our dedi-
cated postprocessing method contributed to further improvement in discarding false
positive regions.

We note that the performance of the second observer is substantially better than
any of our experiments when segmenting only the kidney abnormalities, with an av-
erage 0.664 Dice score. Figure 4.5d shows four outliers for the second observer ,
three of these cases obtained a Dice score of zero and one case 0.207. The volume of
these four outliers is 29, 197, 282, and 5769 mm3, three of them are below the median
kidney abnormality volume in dataset B30 (1421 mm3). This demonstrates the dif-
ficulty of kidney abnormality segmentation, even for experienced radiologists. The
fact that we annotated multiple classes of kidney abnormalities (e.g. tumors, cysts,
lesions, and masses) as a single class and the diverse patient anatomy in patients
with kidney abnormalities may have contributed to the gap in performance.

Table 4.2 compares the Dice score obtained by previous work and our methods;
the middle line separates methods that segmented kidneys without abnormalities
and kidneys with abnormalities. While some methods reported Dice score for both
kidneys as a single score as reported in this paper, others reported Dice scores for
the left and right kidneys separately; then, we postprocessed our predictions to the
same format and have a better comparison. Most of the methods trained without
kidney abnormalities achieved higher Dice scores in the kidney parenchyma than
those trained with kidney abnormalities (below the middle line) due to the more
complex task. Although the performance of experiment 1 for kidney abnormality
segmentation was the lowest (0.487) among the previous work, the performance of
the second observer (0.664) was also below the previous work where Yu et al. 99

obtained 0.913 and Yang et al. 100 0.802 Dice score. This disparity could be due to the
fact that we grouped different types of kidney abnormalities including cysts, lesions,
masses, metastases, and tumors into a single class while Yu et al. 99 and Yang et al. 100

discarded other abnormalities different than kidney tumors. Our set of kidney ab-
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Additionally, we trained nnUNet, a state-of-the-art segmentation method, on our
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complex task. Although the performance of experiment 1 for kidney abnormality
segmentation was the lowest (0.487) among the previous work, the performance of
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Figure 4.6: Comparison of three cases on the test set B30 between experiment 1 , the

reference standard, and the second observer. (a) shows the original slice. (b) shows

the heatmaps (predictions prior to post-processing, using a color table mapping [0,1]

from transparent to green to red) of experiment 1 . (c) shows the final predictions

(red contours) of experiment 1 , the reference standard (green contours), and the

second human observer (yellow contours). The window center and window width

used for all slices were 60 HU and 360 HU.

normalities is diverse in terms of volume, texture, image intensity, and location in
the kidney, which makes network learning difficult.

Segmenting kidney abnormalities is challenging due to the similarity between tu-
mors in the collecting system and kidney cysts. For instance, Figure 4.6 shows three
cases from dataset B30 where our method returned some false positives due to the
similarity with tumors in the collecting system. Each case shows the kidney abnor-
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mality predictions of experiment 1 prior to post-processing in the second row as
heatmaps. While the third row shows the post-processed segmentation, reference
standard, and second observer as red, green, and yellow contours, respectively. In
all three cases, a false positive by our method is present, indicated by an isolated
red contour. In case 1, the false positives are abnormalities in the collecting system,
which have a similar image intensity as the cysts, similarly, the second observer also
segmented one of these abnormalities in the middle region. In case 2, the false pos-
itive appears as a small cyst-like region, while in case 3, it resembles an irregular
region in the kidney. Figure 4.7 shows a comparison of the final prediction in anno-
tation format 1 of experiment 1 , the reference standard, and the second observer
represented as red, green, and yellow contours, respectively. This figure shows the
best and median cases of datasets B20 and B30 and the Dice score of each case com-
puted between experiment 1 and the reference standard.

A limitation of our study is that we excluded patients with unusual anatomy and
with abnormalities in the collecting system.

Case 1 (0.971 Dice) best from
dataset B20

Case 2 (0.950 Dice) median
from dataset B20

Case 3 (0.966 Dice) best from
dataset B30

Case 4 (0.953 Dice) median
from dataset B30
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Figure 4.7: Comparison of four cases between experiment 1 , the reference standard,

and the second observer on the test set B30 in annotation format 1. (a) shows the

original slice and (b) shows the final predictions (red contours) of experiment 1 ,

the reference standard (green contours), and the second human observer (yellow con-

tours). All the slices have a window center of 60 HU and a window width of 360

HU.
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4.5 Conclusions

In conclusion, our ablation study and nnUNet showed that segmenting kidney ab-
normalities in challenging scenarios is possible, and improved performance can be
achieved by an ensemble of different methods and dedicated postprocessing. The
results show that our method has the potential to be a valuable tool for clinicians in
detecting and monitoring kidney abnormalities. An ablation study was conducted
to better understand the impact of the different modules of our method on its per-
formance. Further research is needed to optimize the performance of experiment 1
and nnUNet to test their ability to generalize to other datasets. Overall, our work
contributes to the ongoing efforts to develop accurate and reliable computer-aided
diagnosis systems for detecting and quantifying renal abnormalities.
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Abstract

Transfer learning is a technique used in machine learning where features learned by
a model on a large annotated dataset are transferred and leveraged when training
a new model for other tasks. This technique can save substantial time and compu-
tational resources compared to training models from scratch. In addition, perfor-
mance may also improve when leveraging pre-trained features. Due to the lack of
large datasets in the medical imaging domain, transfer learning from one medical
imaging model to other medical imaging models has not been widely explored. This
study explores the use of transfer learning to improve the performance of deep con-
volutional neural networks for organ segmentation in medical imaging. A base seg-
mentation model (3D U-Net) was trained on a large and sparsely annotated dataset;
its weights were used for transfer learning on four new down-stream segmentation
tasks for which a fully annotated dataset was available. We analyzed the training
set size’s influence to simulate scarce data. The results showed that transfer learn-
ing from the base model was beneficial when small datasets were available, pro-
viding significant performance improvements; where fine-tuning the base model is
more beneficial than updating all the network weights with vanilla transfer learning.
Transfer learning with fine-tuning increased the performance by up to 0.129 (+28%)
Dice score than experiments trained from scratch, and on average 23 experiments
increased the performance by 0.029 Dice score in the new segmentation tasks. The
study also showed that cross-modality transfer learning using CT scans was bene-
ficial. The findings of this study demonstrate the potential of transfer learning to
improve the efficiency of annotation and increase the accessibility of accurate organ
segmentation in medical imaging, ultimately leading to improved patient care. We
made the network definition and weights publicly available to benefit other users
and researchers.
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5.1 Introduction

Transfer learning is a widely used strategy when developing image analysis models
based on deep learning. The weights of a model trained on a large dataset are trans-
ferred to a new model that learns a different task. This transfer initializes the weights
of the new model with well-converged and meaningful filters, which gives the new
model a head start compared with random initialization and especially improves
the performance of models trained with small datasets113. While transfer learning is
therefore useful in many computer vision and medical image analysis applications,
the vast majority of pretrained models available for transfer learning are models
trained with two-dimensional non-medical images, such as the ImageNet dataset114.
Transfer learning from these models can lead to adverse results when training medi-
cal image analysis models115. However, models pretrained on a medical dataset with
a large number of three-dimensional medical images and a diverse set of labeled ob-
jects are currently not readily available.

Although various annotated datasets with three-dimensional medical images are
available under licenses that permit their use for pretraining, most of these datasets
are small, and annotations are usually sparse. In virtually all segmentation datasets,
only a single or a few anatomical structures are delineated because manual segmen-
tation in three-dimensional datasets is time-consuming and expensive. Most projects
are also focused on a specific task that does not require exhaustive annotation of all
structures. However, datasets in which many visible anatomical structures are de-
lineated would be best suited for training generic models for transfer learning.

There have been a few efforts to assemble datasets with a larger number of struc-
tures annotated, such as the VISCERAL dataset116. Other efforts focused on com-
bining datasets and expanding annotations to additional structures, such as Gibson
et al. 117, who combined two publicly available datasets118,119 and expanded the an-
notations to 14 structures. However, increasing the number of annotated structures
in a set of scans usually comes at the expense of the number of scans in the dataset.

This paper explores an alternative strategy for training a generic base model for
segmentation tasks in medical images that does not require a fully annotated dataset.
Instead, we propose to train the base model with a large but sparsely annotated
dataset. This dataset is assembled from multiple publicly available datasets with CT
images and reference segmentations of various anatomical structures. While each
image has at least one delineated structure, we relax the requirement that all struc-
tures be delineated in all images and propose a method for training a deep neural
network with this kind of sparse annotation. We investigate whether using this base
model to initialize the network for a new segmentation task improves the perfor-
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mance. We evaluate whether the size of the training dataset for the new tasks is
related to the efficacy of transfer learning. To enable others to use this base model
for transfer learning, the network is based on the commonly used 3D U-Net archi-
tecture9, and the code and weights are made available online.1

5.2 Related work

5.2.1 Transfer learning

While transfer learning is widely applied to 2D data, it is not commonly applied
in 3D medical imaging due to the lack of large 3D datasets. Multiple large 2D
fully-annotated datasets (ImageNet, MS-COCO, and CIFAR) and spatiotemporal 2D
datasets, such as Kinetics, are available in comparison to the small 3D medical imag-
ing datasets120.

Regardless of the image domain, methods trained on 2D images used transfer
learning to 3D images 121–126 by decomposing the 3D image into a sequence of 2D im-
ages. In Conze et al. 122, the features of a pretrained network on ImageNet segmented
healthy and unhealthy shoulder muscles in MRI using transfer learning. Similar to
action recognition in videos, a pretrained network on Kinetics (large dataset for ac-
tion recognition in videos) initialized a 3D network to diagnose appendicitis in CT
scans121. The network expects a sequence of frames to recognize an action in a video;
the sequence of frames was replaced by a sequence of 2D slices to recognize abnor-
mal regions in a CT scan. In Yang et al. 123, 2D pretrained networks are converted
to 3D networks; this approach benefits from the large-scale 2D datasets and the 3D
context that 3D networks offer.

Although different-domain transfer learning methods showed higher results than
methods trained from scratch, same-domain transfer learning showed more reliable
results for medical imaging65,127–130. Roth et al. 65 trained a cascade of 3D U-Nets us-
ing a fully annotated dataset to make 3D medical imaging more accessible for other
researchers. In Zhou et al. 128, a self-supervised learning method learns from unan-
notated medical data (LUNA16 dataset without annotations) to obtain a pretrained
model, which can be fine-tuned for classification and segmentation. The method
uses an encoder-decoder architecture to perform medical image restoration, which
learns the texture and features of organs. Similar to our approach, Chen et al. 129

joined data from three medical challenges (MRI and CT) to compose a partially an-
notated dataset and trained 3D convolutional networks for segmentation and clas-
sification. In a recent study, Ji et al. 130 trained a nnU-Net on a large-scale medical

1https://github.com/DIAGNijmegen/MedicalTransferLearning3D-UNet
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dataset for organ segmentation; transfer learning from that model increased the per-
formance in unseen segmentation tasks from the Medical Segmentation Decathlon
challenge131. The network weights obtained by Roth et al. 65, Chen et al. 129, and Zhou
et al. 128 were released and are publicly available. Additionally, our method uses a
partially annotated dataset composed of 6 publicly available datasets.

5.2.2 Learning from sparsely annotated data

Combining multiple medical annotated datasets could create a large but partially an-
notated dataset; this data cannot be directly used by methods that depend on fully
annotated datasets. Only few researchers focused on medical image segmentation
with partially annotated datasets where methods obtain pseudo-labels from unla-
beled images to train networks. Pseudo-labels can be obtained by approximating the
shape and position of a missing label132–134, relabeling135, weak annotations136,137, or
by adding constraints such us anatomical prior organ size138. By adapting the cross-
entropy to learn more from the foreground than the background, Jin et al. 139 trained
a 3D network to add more airway branches to the airway segmentation obtained
by a previous method. Multi-stage approaches (i.e., per groups of fully annotated
data) served as a multi-organ segmentation network129,135,140. In an end-to-end solu-
tion, Shi et al. 141 proposes two losses to train a network using a partially annotated
dataset (data from multiple datasets). The first loss merges all unlabeled as a sin-
gle label and the second loss assumes organs are non-overlapped to differentiate
between labeled organs and estimated predictions. Liu et al. 142 used incremental
learning to train the network on a different organ in each stage. After four stages,
the network segments the organs from four datasets. The method uses a corrective
loss to remove low-confidence output. Zhang et al. 143 proposed DoDNet, a network
that emulates a multi-head network (each head for a different task) by proposing a
dynamic single-head network.

5.3 Dataset

We combined a number of datasets to assemble a large but sparsely annotated train-
ing set for the generic base model, and multiple additional datasets for transfer learn-
ing experiments. See Figure 5.1 for examples of some of the datasets. Many of these
datasets have previously been made publicly available as part of segmentation chal-
lenges. Because the field of medical imaging is so broad with various modalities such
as CT and MRI and various imaging modes per modality such as contrast-enhanced
or ECG-gated CT imaging, we limited our experiments to the datasets consisting
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of thoracic and abdominal CT scans. The evaluation also includes a transfer learn-
ing experiment with an MR dataset to investigate whether cross-modality transfer
learning is effective. We used the following datasets in our study:

• The 2019 Kidney Tumor Segmentation challenge (KiTS19) dataset104 comprises
300 abdominal CT scans from a single medical center. In all scans, the kidneys
and kidney tumors were manually delineated and post-processed to remove
fat tissue. We included only the 210 scans that were originally made available
for model training and validation.

• The Liver and Liver Tumor Segmentation challenge (LiTS) dataset96 comprises
200 thoracic-abdominal CT scans from several medical centers. In the scans,
the liver and liver tumors were manually delineated. We included only the 131
scans that were originally made available for model training and validation.

• The Multi-organ Abdominal CT Reference Standard Segmentations (MARSS)
dataset117 is itself based on two other datasets, namely 47 images from the
Multi-atlas Labeling Beyond the Cranial Vault challenge119 and 43 images from
The Cancer Image Archive Pancreas-CT dataset118. In these 90 abdominal CT
scans, a total of 14 structures were manually delineated, but 6 of them were
only in the Cranial Vault dataset (see Table 5.1).

• The dataset from the Automatic Structure Segmentation for Radiotherapy Plan-
ning challenge (StructSeg2019)2 contains CT scans of the head and neck and
the thorax. We used only the 50 thoracic CT scans from the “organ-at-risk”
segmentation subtask, for which delineations of the lungs, heart, esophagus,
and spinal cord are available.

• The AAPM Thoracic Auto-Segmentation Challenge (TASC) dataset144 comprises
36 thoracic CT scans with delineations of the esophagus, heart, lungs, and
spinal cord.

• The Visceral dataset116 comprises 40 thorax-abdomen CT scans with delin-
eations of 20 structures (see Table 5.1). We disregarded four of these struc-
tures: the left and right rectus abdominis muscles because they are thin and
often difficult to segment structures, the thyroid because we found that the
segmentations were of lower quality compared with other structures, and the
L1 vertebrae since only a single vertebra was delineated while we used other
datasets (see below) with segmentations of all visible vertebrae.

2https://structseg2019.grand-challenge.org/
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(a) Visceral (b) KiTS19 (c) MARSS

(d) TASC (e) StructSeg2019 (f) LiTS

Figure 5.1: Examples CT scans of publicly available datasets. Colored regions rep-

resent annotated (reference masks) regions per dataset. The joined annotations of all

those datasets compose the partially annotated dataset used for the training of the

base model (Exp0). This figure uses the lung window level.
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• The dataset from the 2014 vertebra segmentation challenge at the Computa-
tional Methods and Clinical Applications for Spine Imaging (CSI) workshop
comprises 20 spine-focused thorax-abdomen CT scans with delineations of the
thoracic and lumbar vertebrae145.

• The Large Scale Vertebrae Segmentation challenge (VerSe19) dataset146,147 com-
prises 180 CT scans of the spine, including thoracic and abdominal scans but
also cervical spine scans. We used the 80 scans from the first two training
batches and the corresponding delineations of all visible vertebrae.

• The COPDGene study148 is a clinical trial that enrolled 10,000 patients with
mild to severe COPD who received a thoracic CT scan in one of 21 medical
centers in the United States. We used a randomly selected subset of 100 CT
scans for which we had access to delineations of the pulmonary lobes.

• The PROMISE12 challenge dataset149 comprises 50 T2-weighted MR scans with
delineations of the prostate.

Table 5.1 provides an overview of the number of scans and the annotated anatomical
structures in the individual datasets.

5.3.1 Harmonization of the reference delineations

In the large dataset that we created by combining multiple datasets, each dataset
contains several structures annotated in more than one of the source datasets. The
annotation protocols sometimes differed slightly, and we, therefore, post-processed
some of the annotations to harmonize the reference data.

Three datasets delineated the kidneys: MARSS, visceral, and KiTS19. In the
KiTS19 dataset, kidney tumors were annotated with a separate label, while this was
not the case in the other two datasets. We, therefore, decided not to consider kidney
tumors a separate class and added them to the kidney class in the KiTS19 dataset.
Additionally, the KiTS19 dataset does not distinguish between left and right kidneys,
while the other two kidney datasets use two different labels. Therefore, we identi-
fied the left and right kidneys in the KiTS19 dataset and labeled them the same way
as in the other two datasets.

Similarly, the LiTS dataset contains delineations of the liver as well as liver tu-
mors, while other datasets did not separately label liver tumors (MARSS and vis-
ceral). Therefore, we combined the liver and liver tumor labels in the LiTS dataset.

In the CSI and VerSe19 datasets, we simplified the vertebra segmentation task by
removing the anatomical identification task. Instead, we assigned all vertebrae to
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Table 5.1: Summary of publicly available datasets considered in this paper and the
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line (except annotations of the esophagus) served to compose the partially annotated

dataset to train Exp0. The datasets below the middle line (+ subset of masks of the

esophagus) are fully annotated datasets and were used to analyze the influence of

transfer learning on new segmentation tasks.
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the same class. This also helped to eliminate any labeling discrepancies between the
datasets.

5.3.2 Base model and transfer learning tasks

The combined dataset contains a total of 736 CT scans and 50 MR scans with delin-
eations of 26 anatomical structures, where each structure is annotated in at least 39
and in up to 340 scans (see Table 5.1). For the generic base model training set, we
selected 22 of these structures; this corresponds to a set of 556 CT scans of which 90%
were used for training and 10% for validation.

We used the remaining four structures (esophagus, vertebrae, lung lobes, and
prostate) for transfer learning experiments with the generic base model (Figure 5.2).
The esophagus was annotated in three datasets already included in the training set,
i.e., this new target structure was not part of the annotations in the training set, but
the same CT scans were used to train the generic base model. This was not the case
for the vertebrae and the lung lobes, which were annotated in scans that were not
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part of the training set. Finally, the prostate was annotated in MR scans rather than
CT scans. For all four tasks, 10% of the available scans were set aside for evaluation
of the segmentation performance.

5.4 Method

The proposed strategy for training a generic base model using a sparsely annotated
dataset does not require a specific network architecture. However, networks initial-
ized with the weights of this base model will typically use the same or a very similar
architecture since the learned weights are coupled to the size and order of the indi-
vidual layers in the original architecture. We used the 3D U-Net9 architecture both
for the generic base model and for all transfer learning experiments because this ar-
chitecture is particularly popular for medical image segmentation tasks. However,
to avoid potential issues with normalization layers that become too data-specific and
thus hinder transfer learning, we opted to remove batch normalization from this ar-
chitecture. The 3D U-Net architecture used in this paper uses four resolutions, i.e.,
contains three pooling layers in the compression path. The number of filters in the
convolutional layers starts at 32 filters and doubles after each pooling layer.

The 3D U-Net is a patch-based segmentation network. The models trained with
CT images used an input patch size of 132×132×132 voxels. Since the network does
not make use of padding in the convolutional layers, the size of the output patches
is smaller, namely 44×44×44 voxels. The models trained with MR images from the
PROMISE12 dataset used a different patch size of 108×108×108 voxels because the
images had a substantially smaller field of view compared with the CT scans so that
132×132×132 voxel patches would have been often larger than the entire image. The
corresponding output patch size was 20×20×20 voxels. Note that the network does
not contain any fully-connected layers but only convolutions and pooling layers,
which makes it possible to change the input patch size without affecting the model.

5.4.1 Pre-processing

All networks were trained with isotropically resampled images and reference seg-
mentation masks. Images were resampled using cubic interpolation and reference
segmentation masks using nearest neighbor interpolation. The combination of vari-
ous datasets with images acquired in different institutions and for different purposes
resulted in a dataset with a wide range of different image resolutions. For instance,
the spacing between slices ranged from 0.5 mm (PancreasCT) to 5 mm (KiTS19, LiTS
and Multi-atlas Labeling Beyond the Cranial Vault challenge (Cranial Vault)). We
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Figure 5.2: This paper has two types of datasets, the large sparsely annotated dataset–

obtained by joining multiple publicly available datasets–and the fully annotated

datasets (vertebrae/CT, esophagus/CT, lung lobes/CT, and prostate/MR). The large

sparsely annotated dataset served to train Exp0, which learned from annotated re-

gions only. The fully annotated datasets were used for the evaluation of three training

strategies (scratch, vanilla transfer learning, and transfer learning with fine-tuning);

each of these experiments was evaluated on different training set sizes. The weights

of Exp0 initialized the weights of the networks that use transfer learning and continue

training on the new fully annotated datasets.

resampled all images using cubic interpolation and all segmentation masks using
nearest-neighbor interpolation to 1mm × 1mm × 1mm isotropic resolution.

Image intensities were normalized differently in CT and MR images. In CT im-
ages, the image values in Hounsfield Units (HU) were clipped to the range [-500,400],
which roughly corresponds to the abdominal window and level settings used to
view abdominal CT images. In MR images, we clipped the intensity values to the
5% and 95% percentiles of the image values (per image) and scaled this interval to
the range [-500, 400] to match the range used for the CT data.

5.4.2 Base model (Exp0)

We refer to the generic base model that was trained with a dataset with sparse an-
notations of 22 structures as Experiment Zero (Exp0). This model was trained using
patches evenly sampled from the training dataset with a stride of 30mm, a param-
eter determined through empirical experimentation. The final layer of the network
is a softmax layer with 23 classes corresponding to 22 foreground structures and the
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Table 5.2: Data distribution per dataset for the four new tasks for the transfer learning

experiments.

Segmentation
Data source Modality

Number of scans

task Training Validation Total

Esophagus MARSS, StructSeg2019, and TASC CT 158 18 176

Vertebrae CSI and VerSe19 CT 90 10 100

Lung lobes COPDgene CT 90 10 100

Prostate PROMISE12 MR 45 5 50

background. The background contains all the structures that were not annotated in
any of the images in the training set. Due to the sparse nature of the annotations,
there are no images with annotations of all foreground structures, and hence no im-
ages in which the background voxels are known. For example, voxels that were not
annotated as kidneys in the KiTS19 images might be background voxels but might
just as well belong to one of the other foreground classes that were not annotated
in the KiTS19 subset, e.g., the liver. To mitigate this problem, we trained the base
model using a hybrid masked loss function composed of two terms, an average Dice
score term and a cross-entropy term. These were computed only for the present
foreground structures, ignoring classes that were not annotated in an image.

Given a binary flag δc ∈ {0, 1} that indicates whether structure c is one of the
N ∈ {1, . . . , 22} annotated structures in the present image and a weight map ωc

(defined below), the hybrid masked loss function is defined as:

L =

(
1− 1

N

22∑
c=1

δc ·Dicec

)
+

(
−

22∑
c=1

δc · ωc · CCEc

)
,

where Dicec and CCEc correspond to the soft Dice score and the categorical cross-
entropy for class c, respectively. Both loss components are never computed for the
23rd class, the background since background labels are unknown in any images.
The factor δc ensures that the loss components are zero for structures that were not
annotated in the image. Note that this does, in principle, not have any effect on the
cross-entropy term since the cross-entropy for structure c is already zero for voxels
with another label.

The Dice score component is crucial for training with sparsely annotated data
without explicit background labels. In each image, N of the 22 structures are an-
notated, and the corresponding voxels’ labels are thus known. For the remaining
voxels, we only know that their labels are not among the N annotated classes. The
Dice score as a volume overlap measure penalizes false positive predictions and thus
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penalizes the classification of unlabeled voxels as one of the N known structures. By
presenting in consecutive training steps images from different subsets, i.e., with dif-
ferent structures annotated, the network can learn to recognize all 22 structures. The
use of a softmax layer forces the network to resort to the background class for voxels
that it does not recognize as any of the 22 structures; the probability of the back-
ground class will automatically increase when the network assigns low probabilities
to all other classes.

The cross-entropy component is computed based on only the labeled voxels and
thus only penalizes false-negative predictions. In combination with the Dice score
component, it provides an additional penalty for incorrect classifications of the la-
beled voxels in a training image, which boosts the importance of the strong labels
in the training data, i.e., the annotated foreground objects in each image. Because
cross-entropy terms are sensitive to class imbalances, we also introduce a weight
map ωc for each class. The weight of each class corresponds to the inverse sampling
probability across the entire training set150.

The weights of the model were initialized using the Glorot uniform initializer108.
To optimize the weights, we used the Adam optimizer109 and trained three networks
per experiment using different learning rates: 1× 10−4, 1× 10−5, and 5× 10−5. The
training was stopped once the mean dice score in the validation set did not improve
for ten epochs. An epoch was defined as the full iteration of positive patches (con-
taining annotations) from all CT images in the training set.

5.4.3 Data augmentation

During network training, 70% of the samples in each epoch were subject to slight
random transformations to augment the training data. We applied a combination
of up to three of the following data augmentation techniques to the samples: 3D
scaling, 3D rotation, Gaussian blurring, image intensity variation, and elastic defor-
mations. Scaling was between -5% and 5%, rotation in up to two planes between -5◦

and 5◦ degrees, Gaussian blurring with sigma between 0.2 and 1.0, and image inten-
sity variation between -20 and 20 HU, which was applied to the entire image. The
elastic deformation method used a ten-control point grid on the sample where every
control point was randomly shifted up to 5 voxels. Because the combination of elas-
tic deformations and scaling or rotation frequently resulted in unrealistic images, we
allowed only the combination with Gaussian blurring or image intensity variation.

Additionally, to combat the difference in image quality across scans from the var-
ious datasets, we randomly applied salt and pepper noise to 20% of the voxels fol-
lowed by Gaussian smoothing (σ = 0.9mm), which results in CT scans that look
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similar to scans acquired with lower radiation, i.e., lower mAs and kVp.

5.4.4 Post-processing

The image was divided into non-overlapping patches corresponding to the network
output to obtain segmentations of an entire image. The predictions for these patches
were stitched together to form a complete segmentation mask and were thresholded
at 0.5, assigning the background label if none of the foreground classes reached a
probability above 0.5. Connected component analysis was used to remove all but
the largest structure for each foreground class. Finally, the predicted segmentation
masks were resampled to the image’s original resolution.

5.4.5 Transfer learning (ExpXYZ)

The effect of transfer learning when training a 3D U-Net for segmentation of a new
structure was evaluated for four new segmentation tasks (Table 5.2). For each task,
we compared three training strategies: (1) training from scratch, where the weights
of the network were randomly initialized, and all network weights were updated
during training; (2) vanilla transfer learning, where the weights of the network were
initialized with the weights of the trained base model (Exp0), and all networks weights
are updated during training; and (3) transfer learning in combination with fine-
tuning, where the base model was used to initialize the network, followed by train-
ing only the last three layers for the new task while the other layers remained fixed.
The intention was to prevent a form of catastrophic forgetting where useful low-level
filters in the first layers that were inherited from the base model might be forgotten
when switching abruptly to a new task. By first adjusting only the last few layers to
the new task and then fine-tuning the entire network, the network might profit more
from transfer learning in a second step. In each step, the network was trained until
convergence.

The output layer of the base model has 23 channels, corresponding to a back-
ground class and 22 foreground classes. New tasks will usually have fewer classes,
e.g., three of our example tasks are binary segmentation problems with only one
foreground class, and the lung lobe segmentation task has five foreground classes.
When initializing a new model with the weights of the base model, we retain the
background class and reduce the number of foreground classes to the required num-
ber of foreground classes by dropping channels from the output layer.

The new models were trained in the same way as the base model with the ex-
ception of the loss function, which did not use the class presence factor δc and in-
cluded the background class in the cross entropy computation (i.e., an unmodified
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weighted cross-entropy term was used in combination with an unmodified soft Dice
score term). In addition, we extracted patches with a stride of 10mm from the images
because there were fewer images in the training sets than in the base model training
set which used a stride of 30mm.

Table 5.3: List of experiment IDs for the four additional segmentation tasks (verte-

brae, esophagus, lung lobes, and prostate), training strategy (scratch, vanilla trans-

fer learning, and transfer learning with fine-tuning), and training set size (Z =

[10, 20, 30, 40, 50, and full] CT scans). For instance, the experiment ExpVT40 trained

on 40 CT scans using vanilla transfer learning to segment the vertebrae. The results

show the mean Dice score and standard deviation.

Training from scratch Vanilla transfer learning
Transfer learning

with fine-tuning step

Experiment Dice score Experiment Dice score Experiment Dice score

ExpES10 0.459 ± 0.245 ExpET10 0.548 ± 0.214 ExpEF10 0.588 ± 0.193

Esophagus ExpES20 0.579 ± 0.194 ExpET20 0.617 ± 0.201 ExpEF20 0.641 ± 0.197

ExpES30 0.590 ± 0.204 ExpET30 0.632 ± 0.197 ExpEF30 0.652 ± 0.194

Modality: CT ExpES40 0.624 ± 0.195 ExpET40 0.659 ± 0.195 ExpEF40 0.666 ± 0.197

Structures: 1 ExpES50 0.627 ± 0.213 ExpET50 0.653 ± 0.196 ExpEF50 0.668 ± 0.197

ExpES158 0.694 ± 0.196 ExpET158 0.684 ± 0.206 ExpEF158 0.696 ± 0.206

ExpVS10 0.920 ± 0.036 ExpVT10 0.926 ± 0.031 ExpVF10 0.929 ± 0.028

Vertebrae ExpVS20 0.931 ± 0.030 ExpVT20 0.935 ± 0.029 ExpVF20 0.928 ± 0.029

ExpVS30 0.939 ± 0.023 ExpVT30 0.942 ± 0.025 ExpVF30 0.939 ± 0.025

Modality: CT (unseen) ExpVS40 0.943 ± 0.022 ExpVT40 0.944 ± 0.025 ExpVF40 0.943 ± 0.026

Structures: 1 ExpVS50 0.942 ± 0.024 ExpVT50 0.952 ± 0.020 ExpVF50 0.949 ± 0.023

ExpVS90 0.956 ± 0.020 ExpVT90 0.955 ± 0.022 ExpVF90 0.955 ± 0.016

ExpLS10 0.917 ± 0.027 ExpLT10 0.930 ± 0.028 ExpLF10 0.941 ± 0.030

Lung lobes ExpLS20 0.939 ± 0.035 ExpLT20 0.948 ± 0.026 ExpLF20 0.950 ± 0.025

ExpLS30 0.951 ± 0.024 ExpLT30 0.955 ± 0.022 ExpLF30 0.956 ± 0.023

Modality: CT (unseen) ExpLS40 0.959 ± 0.016 ExpLT40 0.961 ± 0.016 ExpLF40 0.961 ± 0.018

Structures: 5 ExpLS50 0.961 ± 0.015 ExpLT50 0.965 ± 0.014 ExpLF50 0.964 ± 0.013

ExpLS90 0.969 ± 0.010 ExpLT90 0.970 ± 0.011 ExpLT90 0.969 ± 0.013

ExpPS10 0.816 ± 0.020 ExpPT10 0.813 ± 0.014 ExpPF10 0.818 ± 0.019

Prostate ExpPS20 0.819 ± 0.062 ExpPT20 0.851 ± 0.032 ExpPF20 0.862 ± 0.018

ExpPS30 0.844 ± 0.053 ExpPT30 0.854 ± 0.018 ExpPF30 0.870 ± 0.015

Modality: MR (unseen) ExpPS40 0.852 ± 0.070 ExpPT40 0.861 ± 0.034 ExpPF40 0.869 ± 0.016

Structures: 1 ExpPS50 – ExpPT50 – ExpPF50 –

ExpPS45 0.852 ± 0.031 ExpPT45 0.882 ± 0.010 ExpPF45 0.884 ± 0.012

5.5 Results

We performed experiments with the base model and with models trained for four
new segmentation tasks, where these models were either trained from scratch or ini-
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Figure 5.3: Bar plots of Dice score obtained by the experiments reported in Table 5.3

respectively. Note that the Dice score ranges from 0.7 to 1.0 in the subfigures for better

visualization, except for the esophagus.

tialized with the base model. The new models were trained with different training
set sizes by randomly selecting a subset of the available training data to simulate lim-
ited training data. In the following, we refer to the generic base model as Exp0 and
use the following naming convention for the experiments of the four new tasks: Ex-
pXYZ, where X represents the segmentation task (E=esophagus, V=vertebrae, L=lung
lobes, and P=prostate), Y represents the training strategy (S=scratch, T=vanilla trans-
fer learning, F=transfer learning with fine-tuning step), and Z represents the training
set size (10, 20, 30, 40, 50, and all the images available in the dataset).

5.5.1 Base model (Exp0)

The base model was trained with a sparsely annotated dataset and evaluated on a
randomly selected subset of this dataset, which was not used for training. Note that
there was no separate test set but that the performance on the validation set is re-
ported. We chose not to reserve a test set for evaluating the base model because
the transfer learning experiments are the focus of this paper, and the base model’s
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Figure 5.3: Bar plots of Dice score obtained by the experiments reported in Table 5.3

respectively. Note that the Dice score ranges from 0.7 to 1.0 in the subfigures for better

visualization, except for the esophagus.

tialized with the base model. The new models were trained with different training
set sizes by randomly selecting a subset of the available training data to simulate lim-
ited training data. In the following, we refer to the generic base model as Exp0 and
use the following naming convention for the experiments of the four new tasks: Ex-
pXYZ, where X represents the segmentation task (E=esophagus, V=vertebrae, L=lung
lobes, and P=prostate), Y represents the training strategy (S=scratch, T=vanilla trans-
fer learning, F=transfer learning with fine-tuning step), and Z represents the training
set size (10, 20, 30, 40, 50, and all the images available in the dataset).

5.5.1 Base model (Exp0)

The base model was trained with a sparsely annotated dataset and evaluated on a
randomly selected subset of this dataset, which was not used for training. Note that
there was no separate test set but that the performance on the validation set is re-
ported. We chose not to reserve a test set for evaluating the base model because
the transfer learning experiments are the focus of this paper, and the base model’s
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performance is only of secondary interest. Since the base model was evaluated with
sparsely annotated data, we ignored structures without annotations and calculated
the Dice volume overlap score for each image between the available reference seg-
mentations and the automatic segmentation results for these structures. The scores
were then averaged across the dataset, resulting in an average Dice score of 0.725
± 0.195 for segmenting 22 structures across 54 images. The highest scores were
achieved for large structures like the lungs (0.967 and 0.966 for the right and left
lungs, respectively), while small and irregular structures like the portal and splenic
veins (0.349) achieved the lowest scores.

5.5.2 Transfer learning from Exp0

To evaluate whether transfer learning from the generic base model (Exp0) is ben-
eficial, we trained segmentation networks for four additional tasks using fully an-
notated rather than sparsely annotated datasets (Table 5.2). The performance of the
models when trained with the full datasets and smaller subsets of the data are listed
in Table 5.3 and visualized in Figure 5.3. Figures 5.4 to 5.7 show examples of seg-
mentations; the green and red regions represent the annotations and the predictions,
respectively, both with transparency to visualize the overlap (dark green) between
regions.

The segmentation models generally performed better when trained with larger
training sets, regardless of the training strategy. When training from scratch, the
increase in performance when training with more data was largest in the low data
regime. For example, the Dice score for the challenging esophagus segmentation task
increased from 0.459 to 0.579 (diff. +0.120) when training with 20 instead of 10 scans,
but adding ten additional scans and training with 30 scans in total only resulted in
a further increase of 0.11 in Dice score. For the pulmonary lobe segmentation task,
where large parts of the object are well recognizable but where the boundaries are
challenging to delineate precisely, ten scans were sufficient to reach a Dice score of
0.917. Adding more scans resulted in a steady increase in performance, reaching
0.969 when training with 90 scans.

Transfer learning by initializing the network weights with the weights of the base
model resulted, in most cases, in a better segmentation performance, both vanilla
and with the fine-tuning step. The impact differed per task and training set size.
Models that were trained with a small dataset and reached low segmentation per-
formance generally profited more from transfer learning, such as the esophagus seg-
mentation task where the model trained with only ten scans improved from 0.459
to 0.548 (diff. +0.089) when using vanilla transfer learning and to 0.588 when using
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transfer learning with fine-tuning step. On the other hand, lung lobes and vertebra
segmentation models trained with ten scans already reached a Dice score of more
than 0.900, and transfer learning had a limited impact on the performance of these
models. Overall, we observed that transfer learning did usually not contribute any-
more to the increase in performance when approximately 30 training scans were
available. At the same time, transfer learning usually did not hurt the performance.

5.5.3 Cross-modality transfer learning

To evaluate whether transfer learning from the base model (Exp0, trained on CT
scans) is beneficial for other modalities, we trained networks using MR scans (prostate
segmentation task) as input instead of CT scans. Although all the training strategies
trained on ten images obtained similar results, both transfer learning strategies ob-
tained higher results than experiments trained from scratch when training on 20 (and
more) images. When training with 20 images, the vanilla transfer learning experi-
ment obtained 0.851 Dice, while the experiment trained from scratch obtained 0.816
(diff: +0.032); the fine-tuning experiment obtained 0.862 (diff with scratch +0.062).
As with the experiments with CT scans (esophagus, lung lobes, and vertebrae seg-
mentation tasks), the performance increases when adding more images to the train-
ing set regardless of the training strategy. We observed that the difference among
training strategies gets smaller with more training data for CT data; this was dif-
ferent for the prostate segmentation task, where the transfer learning experiments
kept a steady difference with the experiments trained from scratch while adding
more training data. For instance, the difference in Dice score between vanilla trans-
fer learning and scratch experiments ranged from 0.010 to 0.032 (average diff: 0.020)
when the training set size increased from 10 to 45 MR scans. While the difference
in Dice score between transfer learning with fine-tuning and scratch experiments
ranged from 0.026 to 0.043 (average diff: 0.029) when increasing the training set size
from 10 to 45 MR scans.

5.5.4 Transfer learning with fine-tuning step from Exp0

Large network weight changes may happen when a pretrained network is re-trained
on a different task. We conducted experiments where the pretrained network grad-
ually adapted to the new task by allowing weight changes to a certain number of
layers. Subsequently, changes to all the network weights are allowed for further
specialization; we refer to this procedure as transfer learning with fine-tuning step.

Overall, transfer learning with fine-tuning obtained higher results than the other
two training strategies (vanilla transfer learning and scratch). For instance, the ex-
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periment to segment the esophagus trained on 10 CT scans using transfer learning
with fine-tuning (ExpEF10) obtained 0.588 Dice score, +0.129 than the experiments
trained from scratch ExpES10. Adding more images to the training set gradually
reduces the performance difference from 0.129 to 0.002 (average diff: 0.056). The
vertebrae segmentation tasks slightly increased the performance of the experiments
trained from scratch from 0.920 to 0.929 (diff: +0.009) when training on 10 CT scans;
adding more CT scans made the experiments trained from scratch slightly better
than transfer learning. Similarly, the lung lobe segmentation task showed minor im-
provements, where fine-tuning with 10 CT scans obtained 0.941 Dice, which is only
+0.024 higher than the experiment trained from scratch.

When comparing the transfer learning strategies, we observe that transfer learn-
ing with fine-tuning gets higher results than vanilla transfer learning. The esophagus
was the most benefited segmentation task with the transfer learning with fine-tuning
strategy. For instance, for a training set of 10 CT scans, the performance increased
in +0.040 Dice score when using fine-tuning compared to vanilla transfer learning.
Fine-tuning got slightly higher results for the lung lobes than vanilla transfer learn-
ing when training with up to 30 images, while more images made vanilla transfer
learning slightly higher. For the vertebrae experiments, the vanilla transfer learn-
ing was slightly better than fine-tuning; the difference in performance was between
-0.0066 to +0.0026 (average diff: -0.0017) for the experiments with different training
set sizes.

5.5.5 Vanilla transfer learning from a simpler model

To evaluate whether transfer learning from Exp0 (trained on a large sparsely anno-
tated dataset) is more beneficial than a simpler model, we compared the results of
transfer learning from a simpler model to transfer learning from Exp0. We conducted
experiments using vanilla transfer learning from:

Vertebrae to other segmentation tasks

We picked one of the models of the new segmentation tasks trained from scratch
with all the images available for further analysis. The weights of the model ExpVS90
(vertebrae trained from scratch using 90 CT scans) initialized networks to perform
vanilla transfer learning on the esophagus, lung lobes, and prostate datasets (see Ta-
ble 5.4). The esophagus experiment (initialized with the simpler model ExpVS90)
trained on 10 CT scans obtained 0.475 Dice, while ExpET10 (initialized with Exp0)
obtained 0.548 Dice (diff: +0.073). The difference in all the training set sizes for the
esophagus ranged from -0.004 to 0.073 (average diff among five experiments: 0.036).
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Table 5.4: Results of vanilla transfer learning from a simpler model (ExpVS90) to the

esophagus, lung lobes, and prostate segmentation tasks.

Dataset Set: 10 images Set: 20 images Set: 30 images Set: 40 images Set: 50 images Set: all images
available

Esophagus 0.475 ± 0.243 0.550 ± 0.254 0.617 ± 0.199 0.616 ± 0.218 0.633 ± 0.199 0.688 ± 0.209

Lung lobes 0.908 ± 0.028 0.934 ± 0.029 0.946 ± 0.029 0.956 ± 0.017 0.964 ± 0.014 0.968 ± 0.016

Prostate 0.794 ± 0.043 0.844 ± 0.035 0.870 ± 0.017 0.881 ± 0.026 – 0.882 ± 0.017

Similarly, for the lung lobe segmentation task, the difference in performance among
training set sizes ranges from 0.001 to 0.022 (average diff among five experiments:
0.009). In contrast, the prostate segmentation task obtained differences in perfor-
mance ranging from -0.02 to 0.019 (average diff among four experiments: -0.002).
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Figure 5.4: Predictions of the experiments of the esophagus segmentation task trained

on 30 CT scans. (a) Shows the original slice, and the training strategies (b) scratch

ExpES30, (c) vanilla transfer learning ExpET30, and (d) transfer learning with fine-

tuning ExpEF30.

5.6 Discussion

This study evaluated transfer learning for segmentation tasks in medical imaging.
For this study, we focused on CT imaging and collected a large dataset consisting
of 556 CT scans from 6 publicly available datasets. We trained a base segmenta-
tion model using this large but sparsely annotated dataset and evaluated whether
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Figure 5.5: Predictions of the experiments of the vertebrae segmentation task trained

on 30 CT scans. (a) Shows the original slice, and the training strategies (b) scratch

ExpVS30, (c) vanilla transfer learning ExpVT30, and (d) transfer learning with fine-

tuning ExpVF30.
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Figure 5.6: Predictions of the experiments of the prostate segmentation task trained

on 30 MR scans. (a) Shows the original slice, and the training strategies (b) scratch

ExpPS30, (c) vanilla transfer learning ExpPT30, and (d) transfer learning with fine-

tuning ExpPF30.

transfer learning from the base model benefits four new segmentation tasks (esoph-
agus, lung lobes, prostate, and vertebrae). To utilize this limited annotated dataset,
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Figure 5.7: Predictions of the experiments of the lung lobes segmentation task trained

on 30 CT scans. (a) Shows the original slice, and the training strategies (b) scratch

ExpLS30, (c) vanilla transfer learning ExpLT30, and (d) transfer learning with fine-

tuning ExpLF30.

we trained the base model to learn from only the annotated regions and ignored
other regions which could belong to one of the other classes (e.g., kidneys in scans
in which only annotations of the liver are present). We analyzed different training
strategies (training from scratch, vanilla transfer learning, and transfer learning with
fine-tuning) and the influence of the training set size. We found that initializing a 3D
U-Net with the learned parameters of the base model is beneficial, especially when
only a limited number of annotated scans for the new task are available. Models
trained with small datasets (10 scans) that use transfer learning performed compa-
rable with models trained from scratch with 40 or more scans. This finding aligns
with previous research that showed that transfer learning reduces the need for large
amounts of annotated data and obtains better performance than networks trained
from scratch. Most importantly, for datasets with up to 50 annotated images, trans-
fer learning from the generic base model never hurt performance and can therefore
be generally recommended. However, transfer learning might not be necessary if a
larger dataset is available. Nevertheless, it remains advantageous for reducing com-
putational costs and mitigating carbon emissions due to faster convergence. Note
that the initial base model used in our experiments benefits from the multi-center
data used to compose the large sparsely annotated dataset. This dataset provides a
diverse range of examples and may help the model generalize better to new chal-
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lenging tasks. For instance, the results of the lung lobes segmentation task (see Fig-
ure 5.7) show how difficult it is to separate lung lobes. While the prostate segmen-
tation task (see Figure 5.6) shows both transfer learning strategies obtained more
consistent results than the experiment trained from scratch. Note the predictions
of the transfer learning with fine-tuning training strategy obtain better results than
the vanilla transfer learning, except on the vertebrae segmentation task where the
difference among training strategies is small.

Moreover, we investigated whether transfer learning from a model trained as
proposed is more beneficial than transfer learning from a simpler model, trained for
a single task and with a smaller dataset. While both transfer learning training strate-
gies generally resulted in improved performance, especially for small training sets,
transfer learning from a more generic model trained with many segmentation tasks
consistently improved the performance, this was more task-dependent when using
a single-task base model (Table 5.4). The results presented in Tables 5.3 and 5.4 pro-
vide insight into the performance of different transfer learning training strategies
for organ segmentation tasks. Our findings suggest that vanilla transfer learning
from the base model (Exp0) performs better than vanilla transfer learning from the
simpler base model (ExpVS90), except for two experiments in the prostate segmen-
tation task where the simpler base model slightly outperforms Exp0. Furthermore,
the simpler base model consistently performs better than experiments trained from
scratch in all tasks except for the lung lobes segmentation task. This comparison
suggests that transfer learning can be a useful approach for improving the perfor-
mance of deep learning models in medical imaging, especially when annotated data
is limited. Although we trained the base model on CT scans, transfer learning from
the base model (Exp0) was also favorable for the prostate segmentation task on MR
images. The simpler base model (ExpVS90) slightly obtained higher results in two
experiments than the proposed base model.

While multi-center data is beneficial for generalization, the difference among an-
notation tools and protocols in datasets may difficult the learning process of the
network. For instance, Figure 5.4 and Figure 5.6 show that the annotations (green
regions) of the esophagus and prostate are not consistent in the sagittal orientation.
The annotation tool was designed to annotate the structures in a single orthogo-
nal orientation, and no corrections were made on the other orthogonal orientations.
Moreover, all the networks learned to segment a continuous region. Similarly, the
dataset VerSe19 annotation protocol skips a partially present vertebra in the CT scan
(see Figure 5.5).

This study has a few limitations. First, some CT scans of the esophagus dataset
were present in the large sparsely annotated dataset to train Exp0 but without the an-
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notations of the esophagus. This data overlap may bias the transfer learning results
for the esophagus segmentation task; other segmentation tasks (lung lobes, prostate,
and vertebrae) contain unseen CT scans. Moreover, this paper aims to provide a base
model that benefits new medical segmentation tasks and not to obtain high perfor-
mance on the large sparsely annotated dataset.

Second, although the difference in performance between experiments trained
from scratch and using transfer learning was small when training with more than
50 CT scans, transfer learning experiments may be more robust in unseen images
due to the knowledge learned from the multi-center dataset; future research should
investigate whether this improved generalization is indeed observed.

Compared to our approach, Chen et al. 129 created a binary prediction per each
of the eight structures, while our approach uses a single softmax layer to obtain the
predictions. Federated learning has gained significant attention in recent years as
an approach to facilitate multi-data center learning without the necessity of shar-
ing sensitive patient data151–153. It is noteworthy that while both federated learning
and our study address sparsely annotated data, our study is not directly compati-
ble with federated learning due to the centralization of data into a single large but
sparsely annotated dataset. This centralization approach, while effective for our re-
search goal, differs from the decentralized nature of federated learning.

Overall, our study highlights the potential of transfer learning for organ segmen-
tation in medical imaging, and our results provide valuable insights for researchers
and practitioners looking to optimize the performance of deep learning models in
this domain. Further investigation may determine the optimal approach for select-
ing a base model and understanding the factors contributing to the performance
differences observed in different tasks.

5.7 Conclusions

In conclusion, this study demonstrates the effectiveness of transfer learning in im-
proving the performance of deep learning models in medical imaging, mainly when
annotated data is limited. Our results indicate that the learned features of a net-
work trained on a partially annotated dataset can be transferred to new segmenta-
tion tasks, providing significant benefits, particularly on tasks where annotated data
is scarce. Our experiments show that transfer learning can be applied successfully
to four segmentation tasks (esophagus, lung lobes, vertebrae, and prostate) and can
significantly reduce the need for extensive annotation efforts. Additionally, we have
demonstrated that cross-modality transfer learning can be effective, as shown by
our results in prostate segmentation in MR scans. Furthermore, we found that fine-
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tuning the pre-trained base model before transfer learning is more beneficial than
using vanilla transfer learning. However, further research is needed to explore the
limitations and potential applications of transfer learning in medical imaging and to
develop more effective methods for utilizing sparsely annotated datasets.

Appendix

Comparison of training strategies

When comparing results per training strategy, the experiments that used transfer
learning with fine-tuning obtained higher results than the other training strategies
(scratch and vanilla transfer learning), except for the vertebrae experiments. This
improvement gradually reduces when increasing the training set size, see Figure 5.3.
Transfer learning with fine-tuning was more beneficial to the esophagus experiments
with small training sets, where the difference in Dice score between training strate-
gies reached +0.129 Dice (ExpEF10 0.588 - ExpES10 0.459) when training on ten scans.
Similarly, the prostate segmentation task experiments show that transfer learning is
beneficial in most cases, except for ExpPF10, which performs similarly to ExpPS10.
The largest difference in the prostate segmentation reached +0.043 Dice (ExpPF20
0.863 - ExpPS20 0.819) when training on 20 scans. While the lung lobes and verte-
brae segmentation tasks show a slight improvement when using transfer learning
with fine-tuning.

We compared two scenarios, networks trained on limited data and networks
trained on large training data. Our results show that transfer learning benefits ex-
periments with limited data (usually up to 30 images). Ideally, transfer learning
would reduce the need for large training sets. For instance, the difference between
the experiment trained with 10 CT scans and the experiment trained from scratch
on the full dataset of the esophagus decreased from +0.235 (ExpES158 - ExpES10)
to +0.106 Dice (ExpES158 - ExpEF10) after using transfer learning. Moreover, the
transfer learning experiment with fine-tuning reached 0.666 Dice when training with
40 images, reducing the difference to +0.027 in Dice score (ExpES158 - ExpEF40).
Note the transfer learning experiment reaches 0.027 difference in Dice score with
118 fewer images in the training set than ExpES158. For the lung lobes segmen-
tation task, the performance difference between training with the entire training set
and training from scratch using ten images reached +0.052 (ExpLS90 0.969 - ExpLS10
0.917). Transfer learning with fine-tuning reduced that difference to +0.028 (ExpLS90
0.969 - ExpLF10 0.941). Moreover, the transfer learning experiment with fine-tuning
reached 0.961 Dice when training with 40 images, reducing the difference to 0.008
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Dice (ExpLS90 - ExpLF40). Note the transfer learning experiment reaches a 0.008
difference in Dice score with 50 fewer images in the training set than ExpLS90. Sim-
ilarly, the difference for the vertebrae segmentation task reached +0.036 (ExpVS90
0.956 - ExpVS10 0.920). The difference is already small; however, transfer learning
with fine-tuning slightly reduced that difference to 0.027 (ExpVS90 0.956 - ExpVF10
0.929). For this segmentation task, both transfer learning strategies obtained simi-
lar results. The vanilla transfer learning experiment trained on 30 images reached
a 0.942 Dice score, 0.014 less than the experiment trained from scratch on the full
dataset; these experiments have a difference of 60 images in training sets. Transfer
learning did not benefit the prostate segmentation task with the smallest training set,
as with previous segmentation tasks, but with more images in the training set. For
instance, when using 20 images as training set, the difference with the experiment
trained from scratch on the full dataset decreased from +0.033 (ExpPS45 0.852 Dice
- ExpPS20 0.819 Dice) to -0.01 (ExpPS45 0.852 Dice - ExpPF20 0.862 Dice) after using
transfer learning. This shows that transfer learning with fine-tuning on 20 scans ob-
tained already a higher performance than the experiment trained from scratch on the
full dataset. The difference in performance among training strategies when using the
full dataset reached +0.032 (ExpPF45 - ExpPS45) for the prostate segmentation task;
this shows the benefits of cross-modality transfer learning. Note that the same dif-
ference in the CT segmentation tasks is lower (+0.0001 lung lobes, +0.015 esophagus,
and -0.0012 vertebrae). These results show that transfer learning was highly bene-
ficial when having limited data, boosting performance and reducing the need for a
large annotated dataset to obtain high segmentation performance.

Transfer learning increased the performance of segmentation tasks compared to
experiments trained from scratch (see Table 5.3 and Figure 5.3). Moreover, the experi-
ments that use transfer learning with fine-tuning obtained higher results than vanilla
transfer learning. These results show that gradual training (fine-tuning) boosts the
network’s performance of the four new segmentation tasks, including the prostate
segmentation (cross-modality transfer learning), which has MR data only. Raghu
et al. 115 showed that different domain transfer learning does not improve perfor-
mance. This paper shows that the same domain/modality transfer learning is bene-
ficial for the medical domain, including different modalities (CT to MR prostate).

Results of experiments trained on 10 scans

This section shows the results of the experiments trained on 10 scans. This figures
are 5.8, 5.10, 5.11, and 5.9.
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Figure 5.8: Predictions of the experiments of the esophagus segmentation task trained

on 10 CT scans. (a) Shows the original slice, and the training strategies (b) scratch

ExpES10, (c) vanilla transfer learning ExpET10, and (d) transfer learning with fine-

tuning ExpEF10.
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Figure 5.9: Predictions of the experiments of the vertebrae segmentation task trained

on 10 CT scans. (a) Shows the original slice, and the training strategies (b) scratch

ExpVS10, (c) vanilla transfer learning ExpVT10, and (d) transfer learning with fine-

tuning ExpVF10.
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Figure 5.10: Predictions of the experiments of the prostate segmentation task trained

on 10 CT scans. (a) Shows the original slice, and the training strategies (b) scratch

ExpPS10, (c) vanilla transfer learning ExpPT10, and (d) transfer learning with fine-

tuning ExpPF10.
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Figure 5.11: Predictions of the experiments of the lung lobes segmentation task

trained on 10 CT scans. (a) Shows the original slice, and the training strategies (b)

scratch ExpLS10, (c) vanilla transfer learning ExpLT10, and (d) transfer learning with

fine-tuning ExpLF10.
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106 General Discussion

In this thesis, we described deep learning methods for detection and localization and
for segmentation of structures and organs in CT scans from patients referred by the
oncology department. These patients typically have complex pathologies in various
body regions. Therefore, developing automated algorithms capable of detecting, lo-
calizing, and segmenting the affected structures and organs is not an easy task but
doing so may create a valuable tool for radiologists and oncologists, providing them
with precise and quantitative information to support diagnosis, assess treatment re-
sponse, and do treatment planning. Thus, the methods developed in this thesis have
the potential to make an impactful contribution to clinical practice. In this chapter,
we discuss the main contributions of this thesis, describe limitations, and propose
potential directions for future research.

Structure localization

Structure localization is particularly challenging in patients with complex anatomy
and multiple abnormalities17,18,30. To address this challenge, we developed a multil-
abel deep learning algorithm that simultaneously localizes multiple structures in CT
scans in Chapter 2.

The localization of certain organs in medical imaging can be challenging due to
various factors. In our study, we found that the sinister wall of the liver was par-
ticularly difficult to localize as this region of the liver contains only a small tip; the
longer the tip, the more complex it is to provide a precise localization. The gallblad-
der was also challenging to detect, likely due to its relatively small size. Similarly, the
bladder was also a difficult organ to localize due to the variation in its size among in-
dividuals. Additionally, using a single slice as input made it difficult to differentiate
between the left and right lungs in the sagittal view, while experiments with mul-
tiple slices showed improved performance, indicating the importance of providing
3D context to the network.

Our approach enhanced the network’s contextual awareness by adding adjacent
slices as input. Future research may expand this contextual scope by integrating
recurrent neural networks (RNNs) such as long short-term memory (LSTM)154 net-
works alongside 2D/3D convolutions. These combined architectures assess a se-
quence of slices where a prediction of a slice influences the upcoming ones, leverag-
ing a broader context to achieve smoother and more refined predictions.

A limitation of our method is that it requires access to large amounts of CT scans
for training and validation. To address this limitation, it is important to explore other
methods that can use less data for training and still generate robust results. This
could involve investigating the use of transfer learning, where pre-trained models
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are adapted to new tasks with limited annotated data. With the recent advance-
ments in Natural Language Processing (NLP), there has been a surge of interest in
Large Language Models (LLMs)155. Few-shot learning methods156, where only a few
annotated samples would be sufficient to optimize a model for a new downstream
task, have also demonstrated promising performance. This approach holds great po-
tential for the detection of lesions and abnormalities within the human body, includ-
ing rare conditions where only a limited number of samples are accessible. Although
few-shot learning performs well for NLP, research indicates that it is a challenging
task in computer vision, and while the concepts of burstiness and a large set of rarely
occurring classes do occur in the context of few-shot learning with images, they are
not as naturally prevalent as in natural language data157.

Finally, structure localization methods may help CAD systems, as they could as-
sist radiologists in identifying and localizing structures of interest more efficiently.
Furthermore, it has the potential to improve the accuracy of CAD systems by accu-
rately indicating to which structure an abnormality belongs.

Organ segmentation

Organ segmentation is important in medical image analysis, particularly for accurate
diagnosis, treatment planning, and disease monitoring131. Measurements obtained
from binary segmentations are essential in many medical tasks, such as determining
tumor size, assessing disease progression, and monitoring treatment response. To
address organ segmentation, we used deep learning segmentation models in Chap-
ters 3, 4, and 5.

In Chapter 3, our research focused on the spleen, an important organ for assess-
ing disease progression, and the splenic volume change (SVC) which can occur as an
effect of chemotherapy, infection, and lymphoma44–51. We presented a segmentation-
based algorithm that accurately measures splenic volume change over time. Our
segmentation method (automatic SVCa) obtained 89% agreement with the refer-
ence standard; these findings suggest that precise segmentations can be useful for
radiologists in assessing SVC. Our study showed that automatic SVCa, based on
spleen segmentation, achieved a more precise splenic volume approximation than
the widely used in clinical practice splenic index equation (visual SVCa). Our ex-
periments showed that while deep learning networks require substantial data for
optimal performance, data quality is crucial in achieving a robust network. Addi-
tionally, the presence of rare conditions, such as the beavertail liver in the test set,
had an impact on the performance of our algorithm. Similarly, our method returned
false-positive regions in scans from patients who had undergone splenectomy. These
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false positive regions occurred in regions where the spleen is usually located. While
we made efforts to incorporate challenging cases into the training set, it remains dif-
ficult to encompass the full spectrum of abnormal conditions, which would need
extensive sampling to achieve a balanced dataset and enhance its representative-
ness in the training set. Due to the wide range of pathologies that oncology patients
may have, future research should expand this dataset to tackle SVC in different sub-
groups, for example groups with different ethnicities, and increase the robustness
of the method to reliably use this method in clinical practice. Moreover, the hard
threshold to determine SVC classification is a limitation of our study as it was set
empirically to ±25%. Future research should analyze the threshold to determine the
SVC classification which could lead to more relevant results for radiologists.

To tackle kidney cancer, the 12th most deadly cancer worldwide3, in Chapter 4
of this thesis, we focused on the kidney parenchyma and kidney abnormalities seg-
mentation in patients referred for CT imaging by the oncology department. While
the results are comparable for the kidney parenchyma class across the experiments,
notable variations emerge when considering the kidney abnormalities class. The
conducted ablation study has provided valuable insights, showing that the experi-
ments with systems with a greater number of modules, Experiment 1 and Experi-
ment 2, obtained the best performance in segmenting the kidney parenchyma and
kidney abnormalities. The influence of individual modules on the segmentation of
kidney abnormalities was examined in Table 4.1, with Experiment 3, involving data
augmentation, showing relatively minimal impact on performance. In contrast, as
demonstrated in Experiment 4, the multi-resolution module emerged as the most in-
fluential in enhancing segmentation results, followed closely by spatial dropout in
Experiment 1 and the top-k module in Experiment 2. In addition to our approach,
we also evaluated nnUNet, which performed similarly to our approach when seg-
menting the parenchyma but was better when segmenting the kidney abnormalities.

The performance of nnUNet improved after adding our dedicated postprocess-
ing(nnUNet = 0.521, nnUNet + postproc = 0.576) which shows that SOTA algorithms
can still be benefited by customized postprocessing.

Due to the complexity of the kidney abnormality segmentation task, our exper-
iments, including our best experiment (Dice score=0.585) could not outperform the
second observer (Dice score = 0.664). A limitation of our study is the data annota-
tion protocol which excluded abnormalities in the collecting system. However, it is
noteworthy that a significant portion of the false positives generated by our meth-
ods were tumors located in the collecting system. These abnormalities can exhibit
visual characteristics that can be confused with kidney cysts, thereby contributing
to false positive segmentations. Figure 4.6c shows how the second observer made
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similar errors, showing the difficulty of this issue. For better performance, future
research could focus on independently annotating the classes that we grouped as
kidney abnormalities. While this chapter contributed to the segmentation of kidney
parenchyma and kidney abnormalities, future research could focus on automating
nephometry scoring systems79 to offer a more standardized output to radiologists.
Our training data including annotations is available to the research community un-
der a CC-BY 4.0 license on https://doi.org/10.5281/zenodo.8014289.

Transfer learning

Publicly available datasets and challenges have facilitated the development and eval-
uation of automatic organ segmentation methods. They provide large amounts of
medical imaging data with annotations and ground truth labels, leading to rapid
advances in the field.

In Chapter 5, we trained a segmentation network on a sparsely annotated dataset
to use as a base model for transfer learning. We trained a model to learn from only
the annotated regions and ignored other regions, which could belong to one of the
other classes. Our results showed that transfer learning with fine-tuning was most
beneficial to models trained with very small datasets. With larger datasets, transfer
learning never hurt performance compared to training from scratch, but the benefits
were unfortunately only minor.

We also tried transfer learning from a simpler model (ExpVS90), and the results
showed that training from our sparsely annotated dataset was better; still, trans-
fer learning from a simpler model is beneficial compared to training from scratch.
Moreover, cross-modality transfer learning was also beneficial, from our sparsely
annotated dataset (CT scans) to prostate segmentation task on MR images.

While utilizing multi-center data can enhance the robustness of models, it is im-
portant to acknowledge that discrepancies in annotation tools and protocols across
datasets can introduce complexities into the network’s learning process. Future re-
search should focus on analyzing the robustness of the models after transfer learn-
ing; we believe the models trained with our dataset are more robust since they were
trained with multi-center data. A limitation of this study was the utilization of a
partially annotated validation set; a fully annotated validation set can lead to more
robust weights for the base model. Despite nnUNet’s status as the State-of-the-Art
(SOTA) in medical imaging segmentation tasks, it predominantly relies on fully an-
notated datasets. Therefore, there is a potential avenue for further improvement
through adaptations that enable training with sparsely annotated datasets.

The algorithms introduced in this thesis are part of an extensive list of algorithms
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available for testing at https://grand-challenge.org/algorithms/. This compre-
hensive repository of algorithms is dedicated to enhancing the reporting process for
CT scans of oncology patients.

Future research

While this thesis has contributed to the field of medical image analysis, there are still
limitations and challenges that need to be addressed.

For instance, the algorithms we developed were trained and tested on a specific
patient population and scanner type, and their generalizability to other populations
and imaging modalities has not been studied in this thesis. Therefore, future research
should focus on validation on a wider range of populations and imaging modalities
to ensure that we obtain robust and generalizable algorithms that can be applied to
a wider range of patients and imaging settings. Nonetheless, the work presented
in this thesis is an important step towards using deep learning methods to assist in
the clinical assessment of oncology patients and has the potential to improve patient
outcomes and quality of life.

This thesis primarily employed data derived from patients referred to the oncol-
ogy department, and the methodologies developed in this thesis were trained with
patients exhibiting oncological abnormalities. One of the limitations is the absence
of data containing non-oncological abnormalities within our dataset. Other studies
tackled this issue by annotating more data158,159; this is not always feasible as data
annotation is expensive and time-consuming. Other domains solve the lack of data
by applying data augmentation to the training data to obtain a large variety of data.
In the 3D medical imaging domain, the typical data augmentation (rotation, scal-
ing, shifting, elastic deformations, etc.) cannot create synthetic abnormalities in the
CT scans. Generative adaptive networks (GANs) are a potential solution for this
problem by creating realistic synthetic 3D data. Studies show that GANs improved
the results of tumor segmentation after adding 2D synthetic patches that added tu-
mors160. To the best of our knowledge, this was not done to generate 3D realistic
patches yet161–163.

In recent years, object detection architectures, such as YOLO164, have gained sig-
nificant interest and can be applied for organ localization within medical imaging.
By using an object detection framework across all orthogonal views within a CT scan,
we could yield a coarse 3D segmentation. Furthermore, architectures like Mask R-
CNN41,165 offer the capability to simultaneously derive a 3D bounding box and seg-
mentation, potentially enhancing the precision and comprehensiveness of the organ
localization network.
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YOLO and Mask R-CNN use a single image as their input. Enhancing the input
with additional slices or contextual information could potentially lead to improved
outcomes, and RNNs can be advantageous. Furthermore, the adoption of a 3D ap-
proach for organ localization has the potential to encompass a broader contextual
scope, thereby facilitating more precise localization results.

Recent advancements in the field, such as nnDetection166, have adopted a self-
configuring methodology as nnUNet76 for localizing structures within medical im-
ages. As the availability of publicly available datasets and pre-trained models con-
tinues to expand, the demand for fully annotated training datasets for new tasks
will reduce significantly. Instead, the focus may shift towards annotating abnormal-
ities within 2D slices rather than fully annotated organs in CT scans. Exploring a
synergistic approach that combines nnDetection with few-shot learning holds the
potential for substantial enhancements in the domain of medical image analysis.

While nnUNet has established itself as the SOTA solution for medical segmen-
tation tasks, applying these networks requires large computational resources. This
slow inference response time poses a significant issue to its clinical adoption. In a
recent development, Huang et al. 167 addressed this challenge by devising a more
streamlined version of nnUNet, achieving a remarkable 10 times boost in inference
speed, at the cost of a slight performance trade-off. Further optimization efforts
could enhance nnUNet’s speed, rendering it practical for clinical use. Moreover,
nnUNet, which is based on 3D U-Net architecture introduced in 2016, could benefit
from the integration of newer deep learning techniques, such as transformers155,168,
which have emerged since its inception. These innovations may offer opportunities
for performance enhancement without creating complex architectures. The future
evolution of nnUNet may involve modest architectural refinements and the utiliza-
tion of partially annotated data to further boost its capabilities.

To ensure the practical implementation of these automated methods, future re-
search can focus on integrating them into existing clinical workflows and evaluating
their impact on radiologists’ efficiency169 and diagnostic accuracy. This can involve
conducting studies to assess the benefits of using these tools in reducing interpre-
tation time, improving inter-observer variability, and enhancing clinical decision-
making.

In summary, the methods presented in this thesis have the potential to improve
the accessibility and applicability of deep learning algorithms for medical image
analysis in various clinical settings.
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Both the number of scans acquired and the size of individual scans are growing
rapidly. As a result, radiologists face increasing workloads. This is especially the
case in CT scans of oncology patients. Analyzing such CT scans is time-consuming
and strenuous. These scans often contain many small details, making it easy to miss
subtle abnormalities. Automated tools can offer significant advantages in terms of
both time and accuracy. By automating specific tasks, such as detecting and segment-
ing organs and abnormalities, radiologists can save time and focus on more critical
aspects of their work, such as diagnosis and treatment planning. Moreover, these
tools can help reduce inter-observer variability, especially when tracking changes
over time. Therefore, the implementation of automated tools can enhance the ef-
ficiency and accuracy of oncological radiological analysis, leading to better patient
treatment.

3D structure localization is an essential pre-processing step for computationally
intensive tasks, where limiting the analysis to an area of interest may speed up the
analysis (e.g., 3D full segmentation and registration). Initial studies on structure lo-
calization employed a single network per orthogonal view to localize an organ; a
method that is not scalable for localizing multiple organs. To address this problem,
Chapter 2 describes a fully automatic method for multi-structure localization; we
propose utilizing a single network for each orthogonal view, designed to localize
multiple structures simultaneously. Our method uses a sigmoid activation in the
last layer to allow multi-label predictions. We observed that identifying the pres-
ence of an organ on a single 2D slice may be challenging for some structures. For
instance, radiologists find it challenging to localize the fibrous appendix of the liver
(the last tip of the liver) in the sagittal view when limited to a single 2D slice. More-
over, distinguishing between the left and right lung may be difficult in the sagittal
view. Typically, radiologists scroll through the CT scan to address this issue. To em-
ulate this approach, we added the surrounding slices to the slice of interest as an
additional input to the network. These surrounding slices provide the network with
additional contextual information, aiding in the localization of organs in challeng-
ing regions such as the fibrous appendix of the liver. We showed that multi-label
networks boost their performance when adding the surrounding slices to the slice of
interest as input. We used a large dataset (1884 CT scans) to develop this method and
applied extensive data augmentation. Our best configuration achieved an average
wall distance of 3.20 ± 7.33 mm in the test set, while the human observer obtained
1.23 ± 3.39 mm.

Patients with cancer undergo invasive treatments that can result in various side
effects (anemia, fatigue, hair loss, nausea, and organ volume change). Organ vol-
ume change can be essential information for the oncological team and can provide
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Patients with cancer undergo invasive treatments that can result in various side
effects (anemia, fatigue, hair loss, nausea, and organ volume change). Organ vol-
ume change can be essential information for the oncological team and can provide

Summary 115

an indication that the treatment plan of a patient should be adjusted. The spleen
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classification of volume change; this agreement increased to 92% when aided by our
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cancer and evaluating the effectiveness of treatment. CT scans are often used to visu-
alize these abnormalities, but interpreting these images can be time-consuming and
subjective. This is where automated tools like segmentation networks can be partic-
ularly helpful. In Chapter 4, we used convolutional neural networks to segment kid-
ney abnormalities and kidney parenchyma in CT scans. To create a balanced dataset,
we selected CT scans with kidney abnormalities from radiology reports and added
scans without abnormalities. We conducted an ablation study to evaluate the effec-
tiveness of five modules in our proposed segmentation network. The results show
that our system using all proposed modules obtained the highest score (0.487±0.314)
in segmenting the kidney abnormalities among the ablation study experiments. The
system that omits the last module obtained the highest score (0.957±0.006) in seg-
menting the kidney parenchyma in patients without kidney abnormalities among
the ablation study experiments. As an additional experiment, we trained the state-
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of-the-art nnUNet on our data and obtained a 0.521±0.303 Dice score for kidney
abnormalities, an increase of 0.034 compared to our best ablation study experiments.
By applying our dedicated postprocessing, we improved the performance of nnUNet
by 0.055, reaching 0.576±0.290 Dice score. After ensembling the nnUNet with our
best-performing method, we reached a 0.585±0.293 Dice score for kidney abnormal-
ity segmentation. While all our experiments outperformed an independent human
observer in segmenting the kidney parenchyma in patients without kidney abnor-
malities, this human observer obtained higher score in segmenting the kidney abnor-
malities. Thus, more research is needed to further improve automated segmentation
of kidney lesions.

In contrast to traditional machine learning approaches, deep learning perfor-
mance improves with more training data. Although hospitals have large amounts of
medical imaging data, these are typically not annotated. Data annotation is tedious
and time-consuming, limiting the opportunity to have large annotated datasets for
medical imaging projects. Instead, medical imaging projects typically start with a
small number of annotations to train a deep-learning network. Robustness is one
of the main problems of methods trained on small training sets; they may fail when
applied to data obtained with input settings that differ slightly from those used to
obtain the scans in the (small) training set. Transfer learning may be a solution for
transferring knowledge from a large to a small dataset. Unfortunately, transfer learn-
ing has not yet been widely used in the medical domain. In Chapter 5, we performed
transfer learning from a model trained on a partially annotated dataset to four new
segmentation tasks. We joined annotations of six publicly available datasets and
medical segmentation challenges to compose our partially annotated dataset. We
trained a 3D U-Net using the partially annotated dataset; this network uses a weight
map that forces the network to learn from the annotated regions only. We used the
optimal model as a pre-trained model for four additional segmentation tasks. One
of these tasks used data from a different domain, MRI scans. The tasks that we
addressed were vertebrae, esophagus, lung lobes, and prostate segmentation. We
evaluated whether transfer learning benefits the segmentation task. Additionally,
we evaluated the influence of the training set size in the new segmentation tasks.
Our experiments show that transfer learning benefits the performance of the seg-
mentation task, especially when the available training set is of limited size. For
instance, the esophagus segmentation task obtained 0.459±0.245 Dice score when
training from scratch and obtained 0.588±0.193, an increase of +0.129, in Dice score
when using transfer learning with fine-tuning step on a dataset of 10 CT scans. The
improvement for the vertebrae, lung lobes, and prostate segmentation were +0.009
(from 0.920 to 0.929), +0.024 (from 0.917 to 0.941), and +0.002 (from 0.816 to 0.818).
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Cross-modality transfer learning from CT to MR data was also beneficial with up
to +0.043 (from 0.819 to 0.862) increase in Dice score for the experiment with 20 MR
scans in the training set.

In summary, this thesis presented a range of methods for structure localization
and organ segmentation that may contribute to automating radiology reports and
can be incorporated in computer-aided detection and diagnosis systems.
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Dit proefschrift bevat resultaten van ontwikkelde computersystemen die medische
beelden analyseren met behulp van deep learning, met name convolutionele neurale
netwerken. We hebben ons vooral gericht op de analyse van CT scans van de borst
en buik van mensen met kanker.

Er worden steeds meer scans gemaakt en die scans bevatten gemiddeld steeds
meer beelden. Dat betekent dat radiologen het steeds drukker krijgen. Dit geldt
vooral voor het verslaan van CT-scans van patiënten met kanker. Het duurt lang
om deze scans goed te bekijken, en het is makkelijk om kleine details over het hoofd
te zien. Door radiologen te ondersteunen met computerprogramma’s hopen we dit
proces sneller en nauwkeuriger te maken.

Door bepaalde taken, zoals het herkennen van organen en afwijkingen, aan de
computer over te laten, kunnen radiologen zich focussen op belangrijkere dingen zo-
als het stellen van een diagnose en het bedenken van een behandelplan. Ook zorgen
deze computerprogramma’s ervoor dat radiologen meer op één lijn zitten, vooral
bij het inschatten van veranderingen over tijd. Dus door deze tools te gebruiken,
kunnen we de zorg voor mensen met kanker verbeteren.

Voordat de computer een specifieke analyse van een scan maakt, is het handig om
eerst te bepalen welk deel van de scan hiervoor moet worden geanalyseerd. Dat noe-
men we 3D-structuurlokalisatie. Dit is het onderwerp van Hoofdstuk 2. In eerdere
studies gebruikten onderzoekers hiervoor één computernetwerk per kijkrichting van
de scan, maar dat is niet efficiënt als je meerdere organen of gebieden tegelijk wilt
vinden. Om dat op te lossen, hebben we een nieuwe methode bedacht. Die gebruikt
ook één netwerk per kijkrichting, maar kan dan wel meerdere organen tegelijk vin-
den. We gebruiken hier een speciale techniek voor, genaamd ’sigmoid activation’,
waardoor het netwerk meerdere labels kan voorspellen.

We zagen dat het soms lastig is om een orgaan te vinden als je maar één 2D-
plaatje in één richting bekijkt. Bijvoorbeeld, het laatste stukje van de lever is moeilijk
te zien in zo’n enkel plaatje. En het is ook lastig om het verschil tussen de linker- en
rechterlong te zien in een sagittale doorsnede. Normaal gesproken scrollen radiolo-
gen door de scan om dit beter te kunnen zien. Daarom hebben we ons programma
zo aangepast dat het ook de omliggende plaatjes meeneemt. Zo krijgt het netwerk
meer informatie en kan het beter organen vinden die moeilijk te zien zijn.

We hebben dit getest met een grote verzameling scans (1884 stuks) en veel ver-
schillende versies van de netwerken. Onze beste instelling haalde een gemiddelde
nauwkeurigheid waarbij het 3.20 ± 7.33 mm van de referentie af zat. Dit kwam in
de buurt van menselijke waarnemers; zij maakten een fout van 1.23 ± 3.39 mm.

Patiënten met kanker krijgen behandelingen die nogal wat bijwerkingen kunnen
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bij het inschatten van veranderingen over tijd. Dus door deze tools te gebruiken,
kunnen we de zorg voor mensen met kanker verbeteren.

Voordat de computer een specifieke analyse van een scan maakt, is het handig om
eerst te bepalen welk deel van de scan hiervoor moet worden geanalyseerd. Dat noe-
men we 3D-structuurlokalisatie. Dit is het onderwerp van Hoofdstuk 2. In eerdere
studies gebruikten onderzoekers hiervoor één computernetwerk per kijkrichting van
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hebben, zoals bloedarmoede, vermoeidheid, haaruitval, misselijkheid en verande-
ringen in de grootte van sommige organen. Als een orgaan van grootte verandert, is
dat belangrijke informatie voor het behandelteam. Het kan namelijk betekenen dat
het behandelplan aangepast moet worden. De milt is zo’n orgaan dat kan verande-
ren van grootte na een kankerbehandeling.

In de dagelijkse praktijk meten radiologen de milt op in een paar richtingen door
een lijntje te trekken op het beeld. Dit levert, met behulp van een formule, de milt-
index, een schatting voor het volume van de milt. Echt nauwkeurig is dit niet. In
Hoofdstuk 3 stellen we een nieuwe manier voor om met behulp van computers de
grootte van de milt exact te meten. We hebben een computermodel getraind, een
3D U-Net, om dit te doen. Eerst hebben we 100 CT-scans gebruikt om het model te
trainen. Daarna hebben we de fouten die het model maakte verbeterd en een tweede
model getraind met 400 scans.

In ons eerste experiment, met de U-Net getraind op 100 CT-scans, behaalden we
een Dice-score van 0.950±0.040. Het tweede 3D U-Net (getraind op 400 scans) kreeg
een Dice-score van 0.962± 0.016 in een testsample van 50 CT-scans. Een onafhanke-
lijke menselijke waarnemer behaalde een Dice-score van 0.964±0.012. Als we kijken
naar de relatieve fout in het absolute volume, had de miltindex een foutmarge van
16.6%, het eerste 3D U-Net 5.99%, het tweede 3D U-Net 4.39%, en de onafhankelijke
waarnemer 3.94%.

In een observerstudie behaalde een radioloog in 81% van de gevallen (81 scanpa-
ren van 100) overeenstemming met de referentiestandaard voor visuele classificatie
van significante volumeverandering; deze overeenstemming steeg naar 92% toen
ons algoritme ter ondersteuning werd gebruikt. Bovendien beoordeelde de radio-
loog de kwaliteit van 94% van de voorspelde segmentaties als klaar voor klinisch
gebruik.

Het komt vaak voor dat er afwijkingen zichtbaar zijn in scans van patiënten met
kanker, vooral in gevorderde stadia van de ziekte. Het nauwkeurig kwantificeren
van deze afwijkingen en ze monitoren is cruciaal om de voortgang van de ziekte te
volgen en de effectiviteit van de behandeling te evalueren. Het interpreteren van
scans gemaakt op meerdere tijdspunten kan tijdrovend en subjectief zijn. Hier ko-
men geautomatiseerde tools zoals segmentatienetwerken goed van pas. In Hoofd-
stuk 4, gebruikten we convolutionele neurale netwerken om afwijkingen aan de nie-
ren en nierparenchym in CT-scans te segmenteren.

Om een gebalanceerde dataset te maken, hebben we CT-scans met nierafwijkin-
gen geselecteerd door te zoeken naar trefwoorden in de radiologieverslagen, en we
hebben scans zonder afwijkingen toegevoegd. Vervolgens hebben we allerlei net-
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werken met verschillende nieuwe elementen getraind en getest. We hebben een ab-
latiestudie uitgevoerd om de effectiviteit van vijf modules in ons voorgestelde seg-
mentatienetwerk te evalueren. Hierbij laat je steeds één element weg en kijk je wat
het effect op de nauwkeurigheid is.

De resultaten laten zien dat ons systeem dat alle voorgestelde modules gebruikt,
de hoogste Dice score behaalde (0.487± 0.314) bij het segmenteren van de nierafwij-
kingen in vergelijking met de andere experimenten in de ablatiestudie. Het systeem
dat alleen de laatste module weglaat, behaalde de hoogste score (0.957 ± 0.006) bij
het segmenteren van het nierparenchym bij patiënten zonder nierafwijkingen.

Als extra experiment hebben we een nnUNet, de state-of-the-art in automatisch
segmenteren, getraind op onze data en behaalden we een Dice-score van 0.521±0.303

voor nierafwijkingen, een stijging van 0.034 vergeleken met onze beste resultaten uit
de ablatiestudie. Onze method bevat een speciale nabewerking, en door deze toe te
passen op de output van de nnUNet verbeterden we de prestaties van nnUNet met
0.055, wat resulteerde in een Dice-score van 0.576± 0.290.

Na het combineren van de nnUNet met onze best presterende methode, behaal-
den we een Dice-score van 0.585± 0.293 voor het segmenteren van nierafwijkingen.
Al onze experimenten presteerden beter dan een onafhankelijke menselijke waar-
nemer bij het segmenteren van het nierparenchym bij patiënten zonder nierafwij-
kingen. Maar deze menselijke waarnemer behaalde wel een hogere score bij het
segmenteren van de nierafwijkingen. Er is dus nog ruimte voor verbetering voor
geautomatiseerde segmentatie van nierletsels.

In tegenstelling tot traditionele machine learning benaderingen, verbetert de pres-
tatie van deep learning als er meer trainingsdata beschikbaar zijn. Hoewel zieken-
huizen veel medische beelden hebben, zijn deze meestal niet geannoteerd, dat wil
zeggen dat de precieze posities van organen en afwijkingen niet worden ingetekend.
Dit soort data-annotatie, essentieel om computerprogramma’s te trainen, is een lang-
durig en tijdrovend proces. Daarom beginnen deze projecten meestal met een klein
aantal annotaties om een netwerk te trainen. Gebrek aan robuustheid is een van de
belangrijkste problemen van methoden die zijn getraind op kleine datasets; ze kun-
nen falen als ze worden toegepast op data die enigszins afwijken van de scans in de
(kleine) trainingsset.

Transfer learning kan een oplossing zijn om kennis over te dragen van een grote
naar een kleine dataset. Helaas is transfer learning nog niet veel gebruikt in de medi-
sche sector. In Hoofdstuk 5 hebben we transfer learning toegepast vanuit een model
dat is getraind op een gedeeltelijk geannoteerde dataset.

We hebben vier nieuwe segmentatietaken onderzocht. Hiervoor hebben we de
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data en annotaties van zes openbaar beschikbare datasets samengevoegd. We heb-
ben een 3D U-Net getraind met deze gedeeltelijk geannoteerde dataset; ons netwerk
gebruikt een speciale techniek die het in staat stelt om alleen van de geannoteerde
gebieden te leren. We hebben daarna dit model gebruikt als een vooraf getraind
model voor vier extra segmentatietaken. Een van deze taken gebruikte data uit een
andere domein, namelijk MRI-scans. De taken die we hebben aangepakt waren seg-
mentatie van wervels, slokdarm, longkwabben en prostaat. We hebben geëvalueerd
of transfer learning voordelen oplevert voor de segmentatietaak. Daarnaast hebben
we de invloed van de grootte van de trainingsset op de nieuwe segmentatietaken
geévalueerd.

Onze experimenten laten zien dat transfer learning de prestaties van de segmen-
tatietaak ten goede komt, vooral als de beschikbare trainingsset klein is. Bijvoor-
beeld, de segmentatietaak van de slokdarm behaalde een Dice-score van 0.459 ±
0.245 bij training vanaf nul en bereikte een Dice-score van 0.588 ± 0.193, een toe-
name van +0.129, bij het gebruik van transfer learning met een fijnafstemmingsstap
op een dataset van 10 CT-scans.

De verbetering voor de segmentatie van wervels, longkwabben en prostaat wa-
ren respectievelijk +0.009 (van 0.920 naar 0.929), +0.024 (van 0.917 naar 0.941), en
+0.002 (van 0.816 naar 0.818). Ook het overzetten van kennis tussen verschillende
soorten scans, van CT naar MRI, was voordelig met een toename van maximaal
+0.043 (van 0.819 naar 0.862) in Dice-score voor het experiment met 20 MRI-scans
in de trainingsset.

Samenvattend heeft dit proefschrift een reeks methoden gepresenteerd die kun-
nen worden opgenomen in systemen die artsen helpen bij het stellen van diagnoses
op basis van CT scans van de thorax en de onderbuik en die later mogelijk zelfs
zouden kunnen bijdragen aan het automatiseren van het opstellen van radiologie-
rapporten.
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[166] Baumgartner M., Jäger P. F., Isensee F., and Maier-Hein K. H. nnDetection: A self-configuring
method for medical object detection. In Medical Image Computing and Computer-Assisted Inter-
vention, volume 12905 of Lecture Notes in Computer Science, pages 530–539, 2021.

[167] Huang Z., Wang H., Ye J., Niu J., Tu C., Yang Y., Du S., Deng Z., Gu L., and He J. Revisiting nnU-
Net foriterative pseudo labeling andefficient sliding window inference. In MICCAI Challenge
on Fast and Low-Resource Semi-supervised Abdominal Organ Segmentation, volume 13816 of Lecture
Notes in Computer Science, pages 178–189, 2022.

[168] Khan S., Naseer M., Hayat M., Zamir S. W., Khan F. S., and Shah M. Transformers in vision: A
survey. ACM Comput. Surv., 54(10s):1–41, sep 2022.

[169] van Leeuwen K. G., de Rooij M., Schalekamp S., van Ginneken B., and Rutten M. J. How does
artificial intelligence in radiology improve efficiency and health outcomes? Pediatric Radiology,
52:1–7, October 2021.



*

142 Bibliography

[157] Chan S., Santoro A., Lampinen A., Wang J., Singh A., Richemond P., McClelland J., and Hill F.
Data distributional properties drive emergent in-context learning in transformers. In Advances
in Neural Information Processing Systems, volume 35, pages 18878–18891, 2022.

[158] Gibson E., Hu Y., Huisman H., and Barratt D. Designing image segmentation studies: statistical
power, sample size and reference standard quality. Medical Image Analysis, 42:44–59, 2017.

[159] Gibson E., Yipeng, Ghavami H. N., Ahmed H. U., Moore C., Emberton M., Huisman H., and
Barratt D. Inter-site variability in prostate segmentation accuracy using deep learning. In
Medical Image Computing and Computer-Assisted Intervention, volume 11073 of Lecture Notes in
Computer Science, pages 506–514, 2018.

[160] Frid-Adar M., Diamant I., Klang E., Amitai M., Goldberger J., and Greenspan H. GAN-based
synthetic medical image augmentation for increased CNN performance in liver lesion classifi-
cation. Neurocomputing, 321:321–331, 2018.

[161] Chen Y., Yang X.-H., Wei Z., Heidari A. A., Zheng N., Li Z., Chen H., Hu H., Zhou Q., and Guan
Q. Generative adversarial networks in medical image augmentation: A review. Computers in
Biology and Medicine, 144:105382, 2022.

[162] Chlap P., Min H., Vandenberg N., Dowling J., Holloway L., and Haworth A. A review of
medical image data augmentation techniques for deep learning applications. Journal of Medical
Imaging and Radiation Oncology, 65(5):545–563, 2021.

[163] Russ T., Goerttler S., Schnurr A.-K., Bauer D. F., Hatamikia S., Schad L. R., Zöllner F. G., and
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[166] Baumgartner M., Jäger P. F., Isensee F., and Maier-Hein K. H. nnDetection: A self-configuring
method for medical object detection. In Medical Image Computing and Computer-Assisted Inter-
vention, volume 12905 of Lecture Notes in Computer Science, pages 530–539, 2021.

[167] Huang Z., Wang H., Ye J., Niu J., Tu C., Yang Y., Du S., Deng Z., Gu L., and He J. Revisiting nnU-
Net foriterative pseudo labeling andefficient sliding window inference. In MICCAI Challenge
on Fast and Low-Resource Semi-supervised Abdominal Organ Segmentation, volume 13816 of Lecture
Notes in Computer Science, pages 178–189, 2022.

[168] Khan S., Naseer M., Hayat M., Zamir S. W., Khan F. S., and Shah M. Transformers in vision: A
survey. ACM Comput. Surv., 54(10s):1–41, sep 2022.

[169] van Leeuwen K. G., de Rooij M., Schalekamp S., van Ginneken B., and Rutten M. J. How does
artificial intelligence in radiology improve efficiency and health outcomes? Pediatric Radiology,
52:1–7, October 2021.





*

Dankwoord



146 Dankwoord

One day, I was in the middle of the carnival in warm Brazil, at midnight, wearing a
T-shirt, and the very next day, I was wearing many layers of clothing in Nijmegen in
the middle of winter, 35◦C less than what I was used to but still, ready to join DIAG.
This Ph.D. journey has undeniably proven to be the most arduous chapter of my life,
yet with the support of many people, I am happy to have successfully concluded
this exciting chapter. For that, I would like to express my gratitude and thank all the
people I met during my years at DIAG.

To my promoters: I would like to thank Bram van Ginneken, whose guidance
has pushed me forward from my initial day at DIAG. On that day, you gave me
my first task: submitting a paper to MICCAI within 30 days. Since then, I have
known this journey would be challenging. Your meticulous attention to detail was
the main reason for my difficult meetings with you. A simple remark such as “you
should know your data...” made me think a lot. Bram, I have learned invalu-
able lessons from our interactions and am sincerely grateful for your mentorship.
Mathias Prokop, thanks for your invaluable clinical feedback during our “Pulmo”
meetings. Upon learning of my struggles with writing papers, you promptly recom-
mended “The Elements of Style” by William Strunk Jr., a resource that enhanced my
writing skills. Your encouraging remarks, such as “I want to see this project working
in the clinics,” have kept me motivated throughout my research. Your insights have
been fundamental to the completion of this thesis.

To my co-promoters: Colin Jacobs, you have been a fantastic co-promotor, al-
ways guiding me and explaining everything with (a lot of) patience; I appreciate
that a lot. The “hola” at the start of our meetings showed that your Spanish was bet-
ter than my Dutch. I have always been impressed by how you fixed the problems I
had with MevisLab in a few minutes. Thanks for changing the name of the Chest CT
team to the Body CT team to make me feel more like part of the team. Nikolas Leß-
mann, I am also happy you joined me as my co-promotor. Your sharp knowledge
of Deep Learning helped me refine the last two chapters of this thesis. I appreciate
your constant support and valuable insights, which have been essential to the suc-
cessful completion of this thesis. Ernst Th. Scholten, although you are not officially
my co-promotor, I consider you one; your clinical perspective was critical for this
thesis. Thank you very much for your kind way of explaining complex anatomy in
simple terms. Your willingness to offer assistance and demonstrate practical clinical
applications has been invaluable to this thesis.

To my paranymphs: Anton Schreuder, it was fun helping you with some of the
scripts you needed for your papers. Luckily, you did not need help for all 20 papers
you published during your PhD. Thanks for sharing every board game possible with
me. I noticed clearly that I disappointed you when I told you I liked Monopoly. I
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Primary and secondary data used in Chapters 2-4 are stored in centrally stored and
regularly backed-up Radboudumc servers accessible by members of the Diagnos-
tic Image Analysis Group (DIAG). Chapter 5 of this thesis uses publicly available
datasets (1-12) that can be accessed online after registration. Algorithms are stored
in a private GitHub repository accessible by DIAG members.

The algorithm described in Chapter 3 can be used online at http://grand-challenge.
org/algorithms/spleen-segmentation/ . The dataset used in Chapter 4 is available
at https://doi.org/10.5281/zenodo.8014290. The source code used for the exper-
iments presented in Chapter 5 is publicly available on GitHub at https://github.
com/DIAGNijmegen/MedicalTransferLearning3D-UNet .

1. Kidney Tumor Segmentation Challenge (KiTS19)104

https://kits19.grand-challenge.org

2. LiTS - Liver and Tumor Segmentation Challenge96

https://competitions.codalab.org/competitions/17094

3. Multi-atlas Labeling Beyond the Cranial Vault challenge119

https://www.synapse.org/#!Synapse:syn3193805/wiki/217789

4. The Cancer Image Archive Pancreas-CT dataset118

https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT

5. Multi-organ Abdominal CT Reference Standard Segmentations117

https://zenodo.org/record/1169361

6. Automatic Structure Segm. for Radiotherapy Planning challenge (StructSeg2019)
https://structseg2019.grand-challenge.org/

7. AAPM Thoracic Auto-Segmentation Challenge144

http://aapmchallenges.cloudapp.net/competitions/3

8. Visceral dataset116

http://www.visceral.eu/benchmarks/anatomy3-open/

9. Computational Methods and Clinical Applications for Spine Imaging (CSI)
workshop145

https://csi-workshop.weebly.com/challenges.html.

10. Large Scale Vertebrae Segmentation challenge (VerSe19)146,147

https://verse2019.grand-challenge.org/
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