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Introduction



2 Introduction

1.1 Chest X-ray

Chest X-rays (CXR), after Wilhelm Rontgen discovered x-ray in the late 19th-century [1], have become
a cornerstone in diagnostic imaging. This technology fundamentally transformed healthcare, offering
anon-invasive window into the body’s internal structures. Its impact was profound, shifting medical
paradigms from invasive exploratory procedures to precise visual diagnostics. The first medical X-
ray, illustrated in Figure 1.1 [2, 3], is not just a historical artifact but a milestone, underscoring the
evolution of medical technology and its pivotal role in modern diagnostics.

Chest radiographs, in particular, are employed to visualize the thoracic cavity, which includes the
heart, lungs, airways, blood vessels, and the bones of the spine and chest. They are critical in diag-
nosing and monitoring an array of chest abnormalities and diseases including lung diseases, cardiac
conditions, bone abnormalities, foreign objects and accumulations, cancer detection, and preopera-
tive and postoperative assessments.

In addition to their clinical applications, the relatively low cost, accessibility, low radiation dose and
simplicity of chest X-rays have made them a cornerstone of medical diagnosis worldwide. This is evi-
dent from the 3.6 billion X-ray exams that were performed annually worldwide according to the 2008
United Nations Scientific Committee on Effects of Atomic Radiation (UNSCEAR) report [4]. In 2020,
almost 17 million X-ray studies were performed in the UK, comprising 48% of all medical imaging

exams [5].

Figure 1.1: The inaugural X-ray image by Rontgen (1895), showing Anna Bertha Lud-

wig’s hand with her wedding ring, symbolizing the advent of medical imaging [2, 3].

1.1.1 Types of Chest X-ray in Healthcare

Chest X-rays are conducted using a machine that emits X-ray radiation. The patient is positioned so

that the X-ray beams pass through the chest to create an image on a specialized digital plate or film lo-
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cated on the opposite side. As the X-rays pass through the body, they are absorbed by different tissues
to varying degrees; bones, for example, absorb more radiation and thus appear white on the image,
while air in the lungs absorbs little and appears black. The resulting images offer a visualization of
the structures within the chest.

There are primarily three types of standard chest X-ray images: Posteroanterior (PA), Anteroposterior
(AP), and Lateral. An example of different types of CXR can be seen in Figure 1.2, and the types of
CXRs are explained below in detail.

Posteroanterior (PA): In PA images, the X-ray beams travel from the back (posterior) of the patient
to the front (anterior), and the image is captured from the front. The patient stands facing the image
plate with their chest pressed against it and arms raised. This is the standard positioning as it offers
a clear and accurate representation of the chest structures, with minimal distortion of the heart and
lungs.

Anteroposterior (AP): In contrast, in AP images, the X-ray beams travel from the front (anterior) to
the back (posterior) of the patient. These images are often taken when a patient is unable to stand
or is bedridden, such as in intensive care units or emergency settings. In this case, the image plate is
placed behind the patient’s back, and the X-ray machine is positioned in front of the chest. AP images
may have some magnification of the heart and mediastinum compared to PA images.

Lateral: Lateral images are taken from the side, typically together with PA view. The patient stands
with arms raised and the left side pressed against the image plate. This view helps in providing
additional information about the structures in the chest from a different angle, particularly helpful
in localizing abnormalities seen in PA view. It can reveal abnormalities not visible in the PA or AP
view, especially those located in the posterior or anterior chest wall, or those obscured by the heart
and diaphragm.

Figure 1.2: Left: posterior-anterior (PA) view frontal chest radiograph. Middle: lateral
chest radiograph. Right: Anterior-posterior (AP) view chest radiograph. All three
CXRs are taken from the CheXpert dataset [6], patient 184.

In this thesis, posteroanterior (PA) images are primarily utilized in each chapter. However, Chapter 4
also incorporates lateral images alongside PA images.

1.1.2 Typical workflow of CXR Interpretation in Healthcare

In the realm of chest X-ray (CXR) interpretation, the workflow of a radiologist is characterized by
a blend of complex and diverse tasks. These tasks, while varied, often involve a methodical and
systematic approach. This workflow is significantly influenced by the specific symptoms and clinical
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context presented by each patient. Typically, a radiologist commences their analysis by methodically
assessing CXRs for a range of common abnormalities. These may include lung pathologies such
as pneumonia, pleural effusions, lung masses or nodules, and chronic conditions like COPD. The
process entails a detailed and systematic review of various anatomical areas, which is a consistent
step in the examination of each X-ray.

In addition to lung assessment, radiologists also evaluate the heart size to detect potential cardiac
issues and inspect the bones for any fractures or lesions. In this thesis, we propose an automated
method to assess heart size, as detailed in Chapter 3. A critical and frequent aspect of radiologists’
work is comparing current images with previous scans, an essential practice for tracking the pro-
gression of diseases or the effectiveness of treatments. Depending on the patient’s specific clinical
scenario, such as in ICU settings, the radiologist’s focus may shift. In these cases, they might concen-
trate on routinely checking the placement of medical devices like tubes and lines, or in instances of
trauma, prioritize identifying acute injuries. Throughout their workflow, radiologists typically doc-
ument their findings in a standardized format, often employing templated language to consistently

convey observations and conclusions.

1.1.3 Challenges with Chest X-rays

Given their accessibility, relatively low cost, and non-invasive nature, CXRs have become indispens-
able in clinical practice worldwide. However, despite the utility of CXRs, several challenges are
associated with their interpretation. CXRs are notoriously challenging to analyze (e.g overlapping
anatomy, and variations in image quality), and the detection of specific pathologies requires a metic-
ulous analysis from trained radiologists. Additionally, the subtle nature of certain abnormalities can
make them easy to overlook, even for experienced radiologists [7, 8]. These challenges are further
compounded by the sheer volume of CXRs being taken, which can lead to substantial workloads for
radiologists and, in turn, delayed reporting and increased likelihood of errors due to fatigue. Accord-
ing to the American College of Radiology, a significant proportion of radiologists report feelings of
burnout, in part due to the heavy workload associated with interpreting medical images, including
CXRs [9].

Furthermore, the global disparity in the availability of trained radiologists is a significant issue, es-
pecially in developing countries. This shortage often leads to situations where chest X-rays (CXRs)
are interpreted by healthcare workers who may not have specialized training in radiology. This can
result in potential inaccuracies in diagnoses. In some cases, particularly in remote or under-resourced
areas, there might even be instances where there is no one available to analyze these images at all.

In light of these challenges, automated algorithms for the analysis of CXRs have emerged as a promis-
ing avenue to augment diagnostic accuracy and efficiency. The anticipated benefits of automated
Chest X-ray (CXR) analysis encompass enhanced detection of subtle abnormalities (e.g., nodules),
triage of urgent cases, automated reporting of tedious daily tasks, and delivering analytical support
in scenarios with limited or no radiologist availability.

1.2 Automated Chest X-ray analysis

Automated CXR analysis systems hold the potential to address numerous challenges inherent in con-
ventional CXR interpretation to enhance diagnostic capabilities. These systems can potentially offer
a range of benefits, including but not limited to:
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1. Increase Efficiency: By rapidly analyzing images and generating preliminary reports, auto-
mated systems can greatly reduce the time radiologists need to spend on each case.

2. Enhance Accuracy: Automated algorithms can be trained to recognize subtle features that
might be overlooked by the human eye, potentially reducing diagnostic errors.

3. Prioritize Urgent Cases: Automated algorithms can alleviate the workload on radiologists
by acting as a first-level filter, identifying normal cases and flagging potential abnormalities
for expert review as triage. This can reduce the turnaround time for reports, enabling timely

clinical intervention, which is often critical for patient outcomes.

4. Alleviate Workloads: By handling the more routine and straightforward cases, automated
systems can alleviate the workload on radiologists, allowing them to focus their expertise on
more complex cases or those requiring urgent attention. This not only optimizes the allocation
of human resources but also ensures that patients receive timely and accurate assessments.

5. Facilitate Remote Diagnostics: In areas where radiologists are not readily available, auto-
mated systems can provide critical diagnostic support.

6. Identify New Health Markers: Advanced algorithms in automated systems can potentially
identify new health markers, thereby facilitating earlier detection of pathologies and enhancing
our understanding of patient health.

1.3 Deep Learning

In the past years, deep learning has emerged as the go-to method for image analysis, and it has signif-
icantly transformed the realm of medical imaging including automated chest X-ray analysis [10, 11].
Deep learning, which differs from traditional machine learning, can learn complex patterns directly
from data without needing specific feature engineering. This is achieved through its use of layered
neural networks. These networks can extract and learn features at multiple levels of abstraction, mak-
ing them particularly adept at handling the intricate details present in medical images.

The foundational concepts of neural networks date back to the 1940s and 1950s [12, 13]. Despite
their early inception, the surge in deep learning (DL) popularity did not occur until the late 2000s
[14]. This resurgence was largely fueled by the convergence of two critical factors: the availability of
extensive datasets and the advent of robust computational hardware, particularly graphics processing
units (GPUs). These GPUs facilitated large-scale training of deep neural networks, a task that was
previously unattainable.

Additionally, the evolution of cloud computing technologies has played a pivotal role. It has democ-
ratized access to powerful computing resources, allowing researchers and practitioners to engage in
DL without the prohibitive costs and complexities associated with establishing a personal computing
infrastructure. The rise of DL has also been propelled by the emergence of open-source frameworks,
like TensorFlow and PyTorch. These platforms have simplified the development and experimentation
processes for DL models, contributing significantly to its widespread adoption.

In recent years, DL has been achieving unprecedented, state-of-the-art results across various domains.
Notably, in the field of computer vision, these advancements are attributed to the progression in con-
volutional neural networks (CNNs) and the more recent integration of transformer models, a technol-
ogy already prevalent in areas like natural language processing. This thesis focuses exclusively on the
advancements and applications of Convolutional Neural Networks (CNNs) for CXR applications.
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1.3.1 CNN

CNNs have become a dominant method for processing data with a grid-like structure, particularly
images. This makes them markedly different from fully connected neural networks, especially in the
context of image processing.

In fully connected networks, each input node is connected to every node in the following layer, which
becomes computationally heavy and less efficient for high-dimensional data like images. CNNs, how-
ever, solve this problem by employing weight sharing with an approach called convolution. They use
small, learnable filters that move across the input image to extract key features such as edges and tex-
tures. The same filter is applied everywhere in the image and this significantly reduces the number
of weights, enhancing efficiency and reducing overfitting risks.

Further, the convolutional process allows them to detect features irrespective of where they appear in
the input field, making them highly effective for tasks where the object of interest might vary in size
or be located in different parts of the image. Additionally, the introduction of pooling layers in CNNs
helps in reducing data dimensionality by downsampling the output from the convolutional layers,
further decreasing computational demands.

Historically, CNNs gained prominence in the 1990s [15, 16] but truly came into the spotlight with the
success of AlexNet in the 2012 ImageNet competition [17, 18], a landmark moment in the field of deep
learning. This model showcased the power of CNNs in handling complex image recognition tasks
with unprecedented accuracy. Since then, several other models like VGGNet, ResNet, and DenseNet
[19-21] have continued to advance the field, each introducing novel concepts that have improved per-
formance in various image processing tasks. Further details on overview of deep learning methods
can be found in Section 2.2.

1.4 Deep Learning for CXR Analysis

Deep learning, notable for its extensive data requirements, has profoundly impacted chest X-ray re-
search, an area that has attracted significant research efforts. In this thesis, we conducted a thorough
review of over 290 research papers employing deep learning in CXR analysis. This review, presented
in Chapter 2, identifies the trends, the gaps and suggests potential future directions in the field.

The significant increase in the number of publications happened especially following the release of
large, labeled datasets. These datasets’ labels have been predominantly generated through automated
analysis of radiology reports. However, the emergence of public datasets and the consequent boom
in CXR research has inadvertently led to a deviation in research focus. Much of the effort has been
concentrated on identifying a broad spectrum of abnormalities, often more than ten, within a single
CXR as a classification task, where the model’s output is confined to the probability of an abnormality.
This trend, while beneficial for benchmarking, reproducibility, and research acceleration, overlooks
several crucial aspects. Firstly, there is a strong need to address data quality and inherent biases in the
annotation/labels of these datasets. Often, dataset labels are derived using natural language process-
ing techniques, which may not be sufficiently accurate, particularly for evaluating and comparing
model performances. To accurately assess model performance, ‘gold-standard’ annotations or labels
are necessary. Such high-quality labels could be obtained through expert radiological analysis of chest
X-rays (CXR), ideally involving multiple readers, or through associated CT scans, laboratory test re-
sults, or other relevant measurements. Moreover, the majority of public datasets originate from single
institutions, leading to a research focus on models trained and tested on data from a single source.

While valuable, this approach does not address the critical need for models to perform consistently
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across different clinical environments, a key requirement for real-world application.

Additionally, the research emphasis on detecting multiple abnormalities within a single CXR image
has broadened the gap between academic research and the practical clinical needs for focused de-
tection of significant abnormalities. There is a need for research to realign with clinical relevance and
utility. This necessitates a rigorous evaluation of the potential benefits provided by the Al systems
developed, as detailed in Section 1.2.

To transition from current research to more clinically relevant CXR analysis, a comprehensive ap-
proach is crucial. This entails a deep understanding of how Al systems will be utilized in clinical
settings and their interaction with radiologists, which in turn will shape the development of these
systems. It involves addressing radiologists’ specific needs, building trust through transparent and
explainable Al functionalities, ensuring that Al systems enhance efficiency without disrupting exist-
ing workflows, and considering their adaptability and scalability across diverse clinical environments.
Key focuses include the quality of annotations, the relevance of the tasks Al is designed to perform,
how the interaction of this Al system with radiologist will be and the generalizability of systems to
various patient demographics and healthcare infrastructures.

This thesis focuses on addressing several of these considerations aiming to move towards the devel-
opment of clinically relevant Al systems for CXR analysis, integrating insights from our exhaustive

literature review to inform the creation of systems that align closely with the real-world clinical needs.

1.5 Outline

In this thesis, we identify and address the challenges and gaps within the realm of deep learning for
CXR analysis, as outlined in Chapter 2. Drawing from these insights, our research efforts have been
geared towards solutions that contribute to the advancement of clinically relevant CXR analysis
systems, detailed in Chapters 3, 4, and 5. Additionally, by recognizing the distinct characteristics
of the problems in this domain, we have contributed to the field through fostering open-source and
collaborative research by organizing a research challenge (Chapter 5).

Chapter 2 conducts a systematic review of 296 research papers published in the domain of CXR
analysis employing deep learning. This literature review provides a comprehensive introduction to
CXRs and deep learning. We explain the deep learning methods frequently employed in this field,
provide an exhaustive list of all the publicly available datasets, and identify the issues and challenges
associated with these datasets. Further, we identify gaps and challenges in the field, and propose
potential future directions towards the direction of building clinically relevant CXR systems.
Chapter 3 delves into the detection of cardiomegaly on frontal chest radiographs utilizing two dis-
tinct deep learning strategies - anatomical segmentation and image-level classification. Although the
image-level classification method was the more prevalent approach in earlier literature for this task,
our findings indicate that the segmentation-based technique we propose surpasses image-level clas-
sification in terms of both enhanced accuracy and superior interpretability. Moreover, the approach a
based on segmentation, trained on a moderately sized set of chest radiographs, exhibits performance
akin to that of an independent radiologist. In contrast to the classification-based solutions used pre-
viously, our proposed method establishes a more clinically relevant system by yielding quantitative
measurements for cardiomegaly and producing a more explainable solution with enhanced perfor-
mance.

Chapter 4 delves into the potential of utilizing deep learning for estimating a critical quantitative
biomarker - total lung volume - directly from chest X-rays. This study marks, to the best of our
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knowledge, one of the first instances of demonstrating that state-of-the-art deep learning solutions
have the capability to accurately predict total lung volume from standard chest radiographs. The
model developed is openly accessible and can be employed to determine total lung volume from
routinely captured chest X-rays. This deep learning system can serve as a valuable instrument for
tracking trends over time in patients who undergo regular chest X-ray examinations.

Chapter 5 examines cutting-edge nodule detection and generation methodologies by organizing an
open-source and collaborative research challenge. We established a public challenge, NODE21, with
the objective of pinpointing state-of-the-art techniques in nodule detection and generation on chest
X-rays. Furthermore, our work systematically assess the utility of nodule generation methodologies
for the task of nodule detection. To achieve this, additional comprehensive experiments were con-
ducted with the winning solutions from both tracks to evaluate the influence of image generation
on detection methods. Our results demonstrate that employing generated images can improve the
performance of detection methods, with this impact being especially pronounced when there is a
scarcity of real nodule images available. The structure of this challenge was designed to accept sub-
missions exclusively in the form of open-source solutions using Docker containers, which guarantees
the reproducibility of all methods submitted.
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2.1 Introduction

A cornerstone of radiological imaging for many decades, chest radiography (chest X-ray, CXR) re-
mains the most commonly performed radiological exam in the world with industrialized countries
reporting an average 238 erect-view chest X-ray images acquired per 1000 of population annually [22].
In 2006, it is estimated that 129 million CXR images were acquired in the United States alone [23]. The
demand for, and availability of, CXR images may be attributed to their cost-effectiveness and low
radiation dose, combined with a reasonable sensitivity to a wide variety of pathologies. The CXR is
often the first imaging study acquired and remains central to screening, diagnosis, and management
of a broad range of conditions [24].

Chest X-rays may be divided into three principal types, according to the position and orientation of
the patient relative to the X-ray source and detector panel: posteroanterior, anteroposterior, lateral.
The posteroanterior (PA) and anteroposterior (AP) views are both considered as frontal, with the
X-ray source positioned to the rear or front of the patient respectively. The AP image is typically
acquired from patients in the supine position, while the patient is usually standing erect for the PA
image acquisition. The lateral image is usually acquired in combination with a PA image, and projects
the X-ray from one side of the patient to the other, typically from right to left. Examples of these image
types are depicted in Figure 2.1.

Figure 2.1: Left: posterior-anterior (PA) view frontal chest radiograph. Middle: lateral
chest radiograph. Right: Anterior-posterior (AP) view chest radiograph. All three
CXRs are taken from the CheXpert dataset [6], patient 184.

The interpretation of the chest radiograph can be challenging due to the superimposition of anatomi-
cal structures along the projection direction. This effect can make it very difficult to detect abnormal-
ities in particular locations (for example, a nodule posterior to the heart in a frontal CXR), to detect
small or subtle abnormalities, or to accurately distinguish between different pathological patterns.
For these reasons, radiologists typically show high inter-observer variability in their analysis of CXR
images [25-27].

The volume of CXR images acquired, the complexity of their interpretation, and their value in clini-
cal practice have long motivated researchers to build automated algorithms for CXR analysis. Indeed,
this has been an area of research interest since the 1960s when the first papers describing an automated
abnormality detection system on CXR images were published [28-32]. The potential gains from auto-
mated CXR analysis include increased sensitivity for subtle findings, prioritization of time-sensitive
cases, automation of tedious daily tasks, and provision of analysis in situations where radiologists

are not available (e.g., the developing world).
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In recent years, deep learning has become the technique of choice for image analysis tasks and made
a tremendous impact in the field of medical imaging [10]. Deep learning is notoriously data-hungry
and the CXR research community has benefited from the publication of numerous large labeled
databases in recent years, predominantly enabled by the generation of labels through automatic pars-
ing of radiology reports. This trend began in 2017 with the release of 112,000 images from the NIH
clinical center [33]. In 2019 alone, more than 755,000 images were released in 3 labelled databases
(CheXpert [6], MIMIC-CXR [34], PadChest [35]). In this work, we demonstrate the impact of these
data releases on the number of deep learning publications in the field.

There have been previous reviews on the field of deep learning in medical image analysis [10, 36-38]
and on deep learning or computer-aided diagnosis for CXR [39—41]. However, recent reviews of deep
learning in chest radiography are far from exhaustive in terms of the literature and methodology
surveyed, the description of the public datasets available, or the discussion of future potential and
trends in the field. The literature review in this work includes 296 papers, published between 2015
and March 2021, and categorized by application. A comprehensive list of public datasets is also
provided, including numbers and types of images and labels as well as some discussion and caveats
regarding various aspects of these datasets. Trends and gaps in the field are described, important
contributions discussed, and potential future research directions identified. We additionally discuss
the commercial software available for chest radiograph analysis and consider how research efforts
can best be translated to the clinic.

2.1.1 Literature Search

The initial selection of literature to be included in this review was obtained as follows: A selection of

papers was created using a PubMed search for papers with the following query.

chest and ("x-ray" or xray or radiograph) and
("deep learning" or cnn or "convolutional" or

"neural network")

A systematic search of the titles of conference proceedings from SPIE, MICCAI, ISBI, MIDL and EMBC
was also performed, searching paper titles for the same search terms listed above. In the case of
multiple publications of the same paper, only the latest publication was included. Relevant peer-
reviewed articles suggested by co-authors and colleagues were added. The last search was performed
on March 3rd, 2021.

This search strategy resulted in 767 listed papers. Of these, 61 were removed as they were duplicates
of others in the list. A further 260 were excluded as their subject matter did not relate to deep learning
for CXR, they were commentary or evaluation papers (did not describe a deep-learning architecture,
but rather just evaluated it) or they were not written in English. Publications that were not peer-
reviewed were also excluded (8). Finally, during the review process 142 papers were excluded as the
scientific content was considered unsound, as detailed further in Section 2.6, leaving 296 papers in
the final literature review.

The remainder of this work is structured as follows: Section 2.2 provides a brief introduction to the
concept of deep learning and the main network architectures encountered in the current literature. In
Section 2.3, the public datasets available are described in detail, to provide context for the literature
study. The review of the collected literature is provided in Section 2.4, categorized according to the
major themes identified. Commercial systems available for chest radiograph analysis are described
in Section 2.5. The paper concludes in Section 2.6, with a comprehensive discussion of the current
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state of the art for deep learning in CXR as well as the potential for future directions in both research
and commercial environments.

2.2 Overview of Deep Learning Methods

This section provides an introduction to deep learning for image analysis, and particularly the net-
work architectures most frequently encountered in the literature reviewed in this work. Formal def-
initions and more in-depth mathematical explanations of fully-connected and convolutional neural-
networks are provided in many other works, including a recent review of deep learning in medical
image analysis [10]. In this work, we provide only a brief overview of these fundamental details and
refer the interested reader to previous literature.

Deep learning is a branch of machine learning, which is a general term describing learning algorithms.
The algorithm underpinning all deep learning methods is the neural network, in this case, constructed
with many hidden layers (‘deep’). These networks may be constructed in many ways with different
types of layers included and the overall construction of a network is referred to as its ‘architecture’.
Sections 2.2.3 to 2.2.6 describe commonly used architectures categorized by types of application in
the CXR literature.

2.2.1 Convolutional Neural Networks

In the 1980s, networks using convolutional layers were first introduced for image analysis [15], and
the idea was formalized over the following years [16]. These convolutional layers now form the
basis for all deep learning image analysis tasks, almost without exception. Convolutional layers use
neurons that connect only to a small ‘receptive field” from the previous layer. These neurons are
applied to different regions of the previous layer, operating as a sliding window over all regions,
and effectively detecting the same local pattern in each location. In this way, spatial information is

preserved and the learned weights are shared.

2.2.2 Transfer Learning

Transfer learning investigates how to transfer knowledge extracted from one domain (source domain)
to another (target) domain. One of the most commonly used transfer learning approaches in CXR
analysis is the use of pre-training.

With the pre-training approach, the network architecture is first trained on a large dataset for a dif-
ferent task, and the trained weights are then used as an initialization for the subsequent task for
fine-tuning [42]. Depending on data availability from the target domain, all layers can be re-trained,
or only the final (fully connected) layer can be re-trained. This approach allows neural networks to
be trained for new tasks using relatively smaller datasets since useful low-level features are learned
from the source domain data. It has been shown that pre-training on the ImageNet dataset (for clas-
sification of natural images) [43] is beneficial for chest radiography analysis and this type of transfer
learning is prominently used in the research surveyed in this work. ImageNet pre-trained versions
of many architectures are publicly available as part of popular deep learning frameworks. The pre-
trained architectures may also be used as feature extractors, in combination with more traditional
methods, such as support vector machines or random forests. Domain adaptation is another subfield

of transfer learning and is discussed thoroughly in Section 2.2.7.
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2.2.3 Image-level Prediction Networks

In this work we use the term ‘image-level prediction’ to refer to tasks where prediction of a cate-
gory label (classification) or continuous value (regression) is implemented by analysis of an entire
CXR image. These methods are distinct from those which make predictions regarding small patches
or segmented regions of an image. Classification and regression tasks are grouped together in this
work since they typically use the same types of architecture, differing only in the final output layer.
One of the early successful deep convolutional architectures for image-level prediction was AlexNet
[17], which consists of 5 convolutional layers followed by 3 fully connected layers. AlexNet became
extremely influential in the literature when it beat all other competitors in the ILSVRC (ImageNet)
challenge [18] by a large margin in 2012. Since then many deep convolutional neural network archi-
tectures have been proposed. The VGG family of models [19] use 8 to 19 convolutional layers followed
by 3 fully-connected layers. The Inception architecture was first introduced in 2015 [44] using multi-
ple convolutional filter sizes within layered blocks known as Inception modules. In 2016, the ResNet
family of models [20] began to gain popularity and improve upon previous benchmarks. These mod-
els define residual blocks consisting of multiple convolution operations, with skip connections which
typically improve model performance. After the success of ResNet, skip connections were widely
adopted in many architectures. DenseNet models [21], introduced in 2017, also use skip connections
between blocks, but connect all layers to each other within blocks. A later version of the Inception
architecture also added skip connections (Inception-Resnet) [45]. The Xception network architecture
[46] builds upon the Inception architecture but separates the convolutions performed in the 2D im-
age space from those performed across channels. This was demonstrated to improve performance
compared to Inception V3.

The majority of works surveyed in this review use one or more of the model architectures discussed
here with varying numbers of hidden layers.

2.24 Segmentation Networks

Segmentation is a task where pixels are assigned a category label, and can also be considered as a
pixel classification. In natural image analysis, this task is often referred to as ‘semantic segmenta-
tion” and frequently requires every pixel in the image to have a specified category. In the medical
imaging domain these labels typically correspond to anatomical features (e.g., heart, lungs, ribs), ab-
normalities (e.g., tumor, opacity) or foreign objects (e.g., tubes, catheters). It is typical in the medical
imaging literature to segment just one object of interest, essentially assigning the category ‘other’ to
all remaining pixels.

Early approaches to segmentation using deep learning used standard convolutional architectures de-
signed for classification tasks [47]. These were employed to classify each pixel in a patch using a
sliding window approach. The main drawback to this approach is that neighboring patches have
huge overlap in pixels, resulting in inefficiency caused by repeating the same convolutions many
times. It additionally treats each pixel separately which results in the method being computationally
expensive and only applicable to small images or patches from an image.

To address these drawbacks, fully convolutional networks (FCNs) were proposed, replacing fully con-
nected layers with convolutional layers [48]. This results in a network which can take larger images
as input and produces a likelihood map output instead of an output for a single pixel. In 2015, a fully
convolutional architecture known as the U-Net was proposed [49] and this work has become the most
cited paper in the history of medical image analysis. The U-Net consists of several convolutional lay-
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ers in a contracting (downsampling) path, followed by further convolutional layers in an expanding
(upsampling) path which restores the result to the input resolution. It additionally uses skip connec-
tions (feature forwarding) between the same levels on the contracting and expanding paths to recover
fine details that were lost during the pooling operation. The majority of image segmentation works
in this review employ a variant of the FCN or the U-Net.

2.2.5 Localization Networks

This survey uses the term localization to refer to identification of a specific region within the image,
typically indicated by a bounding box, or by a point location. As with the segmentation task, local-
ization, in the medical domain, can be used to identify anatomical regions, abnormalities, or foreign
object structures. There are relatively few papers in the CXR literature reviewed here that deal specif-
ically with a localization method, however, since it is an important task in medical imaging, and may
be easier to achieve than a precise segmentation, we categorize these works together.

In 2014, the RCNN (Region Convolutional Neural Network) was introduced [50], identifying regions
of interest in the image and using a CNN architecture to extract features of these regions. A support
vector machine (SVM) was used to classify the regions based on the extracted features. This method
involves several stages and is relatively slow. It was later superseded by fast-RCNN [51] and sub-
sequently by faster-RCNN [52] which streamlined the processing pipeline, removing the need for
initial region identification or SVM classification, and improving both speed and performance. In
2017, a further extension was added to faster-RCNN to additionally enable a precise segmentation of
the item identified within the bounding box. This method is referred to as Mask R-CNN [53]. While
this is technically a segmentation network, we mention it here as part of the RCNN family. Another
architecture which has been popular in object localization is YOLO (You Only Look Once), first intro-
duced in 2016 [54] as a single-stage object detection method, and improved in subsequent versions
in 2017 and 2018 [55, 56]. The original YOLO architecture, using a single CNN and an image-grid
to specify outputs was significantly faster than its contemporaries but not quite as accurate. The im-
proved versions leveraged both classification and detection training data and introduced a number
of training improvements to achieve state of the art performance while remaining faster than its com-
petitors. A final localization network that features in medical imaging literature is RetinaNet [57].
Like YOLO, this is a single stage detector, which introduces the concept of a focal loss function, forc-
ing the network to concentrate on more difficult examples during training. Most of the localization
works included in this review use one of the architectures described above.

2.2.6 Image Generation Networks

One of the tasks deep learning has been commonly used for is the generation of new, realistic images,
based on information learned from a training set. There are numerous reasons to generate images
in the medical domain, including generation of more easily interpretable images (by increasing reso-
lution, or removal of projected structures impeding analysis), generation of new images for training
(data augmentation), or conversion of images to emulate appearances from a different domain (do-
main adaptation). Various generative schemes have also been used to improve the performance of
tasks such as abnormality detection and segmentation.

Image generation was first popularized with the introduction of the generative adversarial network
(GAN) in 2014 [58]. The GAN consists of two network architectures, an image generator, and a dis-
criminator which attempts to differentiate generated images from real ones. These two networks are
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trained in an adversarial scheme, where the generator attempts to fool the discriminator by learning
to generate the most realistic images possible while the discriminator reacts by progressively learning
an improved differentiation between real and generated images.

The training process for GANs can be unstable with no guarantee of convergence, and numerous
researchers have investigated stabilization and improvements of the basic method [59-62]. GANs
have also been adapted to conditional data generation [63, 64] by incorporating class labels, image-
to-image translation (conditioned on an image in this case) [65], and unpaired image-to-image trans-
lation (CycleGAN [66]).

GANSs have received a lot of attention in the medical imaging community and several papers were
published for medical image analysis applications in recent years [67]. Many of the image generation
works identified in this review employed GAN based architectures.

2.2.7 Domain Adaptation Networks

In this work we use the term ‘Domain Adaptation’, which is a subfield of transfer learning, to cover
methods attempting to solve the issue that architectures trained on data from a single ‘domain” typi-
cally perform poorly when tested on data from other domains. The term ‘domain’ is weakly defined;
In medical imaging it may suggest data from a specific hardware (scanner), set of acquisition param-
eters, reconstruction method or hospital. It could, less frequently, also refer to characteristics of the
population included, for example the gender, ethnicity, age or even strain of some pathology included
in the dataset.

Domain adaptation methods consider a network trained for an image analysis task on data from one
domain (the source domain), and how to perform this analysis accurately on a different domain (the
target domain). These methods can be categorized as supervised, unsupervised, and semi-supervised
depending on the availability of labels from the target domain and they have been investigated for a
variety of CXR applications from organ segmentation to multi-label abnormality classification. There
is no specific architecture that is typical for domain adaptation, but rather architectures are combined
in various ways to achieve the goal of learning to analyze images from unseen domains. The ap-
proaches to this problem can be broadly divided into three classes (following the categorization of
[68]); discrepancy-based, reconstruction-based and adversarial-based.

Discrepancy-based approaches aim to induce alignment between the source and target domain in
some feature space by fine-tuning the image analysis network and optimizing a measurement of dis-
crepancy between the two domains. Reconstruction-based approaches, on the other hand, use an
auxiliary encoder-decoder reconstruction network that aims to learn domain invariant representa-
tion through a shared encoder. Adversarial-based approaches are based on the concept of adversarial
training from GANSs, and use a discriminator network which tries to distinguish between samples
from the source and target domains, to encourage the use of domain-invariant features. This category
of approaches is the most commonly used in CXR analysis for domain adaptation, and consists of
generative and non-generative models. Generative models transform source images to resemble tar-
get images by operating directly on pixel space whereas non-generative models use the labels on the

source domain and leverage adversarial training to obtain domain invariant representations.
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2.3 Datasets

Deep learning relies on large amounts of annotated data. The digitization of radiological workflows
enables medical institutions to collate and categorize large sets of digital images. In addition, ad-
vances in natural language processing (NLP) algorithms mean that radiological reports can now be
automatically analyzed to extract labels of interest for each image. These factors have enabled the con-
struction and release of multiple large labelled CXR datasets in recent years. Other labelling strategies
have included the attachment of the entire radiology report and/or labels generated in other ways,
such as radiological review of the image, radiological review of the report, or laboratory test results.
Some datasets include segmentations of specified structures or localization information.

In this section we detail each public dataset that is encountered in the literature included in this review
as well as any others available to the best of our knowledge. Details are provided in Table 2.1. Each
dataset is given an acronym which is used in the literature review tables (Tables 2.2 to 2.7) to indicate

that the dataset was used in the specified work.

1. ChestX-ray14 (C) is a dataset consisting of 112, 120 CXRs from 30, 805 patients [33]. The CXRs
are collected at the (US) National Institute of Health. The images are distributed as 8-bit
grayscale images scaled to 1024 x 1024 pixels. The dataset was automatically labeled from
radiology reports, indicating the existence of 14 types of abnormality.

2. CheXpert (X) is a dataset consisting of 224,316 CXRs from 65,240 patients [6]. The CXRs are
collected at Stanford Hospital between October 2002 and July 2017. The images are distributed
as 8-bit grayscale images with original resolution. The dataset was automatically labeled from
radiology reports using a rule-based labeler, indicating the presence, absence, uncertainty, and

no-mention of 12 abnormalities, no findings, and the existence of support devices.

3. MIMIC-CXR (M) is a dataset consisting of 371,920 CXRs from and 64, 588 patients [34]. The
CXRs are collected from patients admitted to the emergency department of Beth Israel Dea-
coness Medical Center between 2011 and 2016. In version 1 (V1) the images are distributed as
8-bit grayscale images in full resolution. The dataset was automatically labeled from radiology
reports using the same rule-based labeler system (described above) as CheXpert. A second ver-
sion (V2) of MIMIC-CXR was later released including the anonymized radiology reports and
DICOM files.

4. PadChest (P) is a dataset consisting of 160, 868 CXRs from 109, 931 studies and 67, 000 patients
[35]. The CXRs are collected at San Juan Hospital (Spain) from 2009 to 2017. The images are
stored as 16-bit grayscale images with full resolution. 27,593 of the reports were manually
labeled by physicians. Using these labels, an RNN was trained and used to label the rest of
the dataset from the reports. The reports were used to extract 174 findings, 19 diagnoses, and
104 anatomic locations. The labels conform to a hierarchical taxonomy based on the standard
Unified Medical Language System (UMLS) [82].

5. PLCO (PL) is a screening trial for prostate, lung, colorectal and ovarian (PLCO) cancer [69].
The lung arm of this study has 185,421 CXRs from 56,071 patients. The NIH distributes a
standard set of 25, 000 patients and 88, 847 frontal CXRs. This dataset contains 22 disease labels

with 4 abnormality levels and the locations of the abnormalities.

6. Open-i (O) is a dataset consisting of 7,910 CXRs from 3, 955 studies and 3, 955 patients [70]. The
CXRs are collected from the Indiana Network for Patient Care [83]. The images are distributed
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Table 2.1: CXR datasets available for research. Values above 10, 000 are rounded and
shortened using K, indicating thousand (such as 10K for 10, 000).

Labeling Methods: RP=Report Parsing, RIR=Radiologist Interpretation of Reports,
RI=Radiologist Interpretation of Chest X-Rays, RCI=Radiologist Cohort agreement
on Chest X-Rays, LT=Laboratory Tests.
Annotation Types: BB=Bounding Box, CL=Classification, CLoc=Classification with
Location label, R=Report, SE=Segmentation.
Gold Standard Data: This refers to the number of images labeled by methods other
than Report Parsing
Patients (P) X Annotation . Gold
R View Image Labeling
Studies (S) . . Standard
Positions Types Labels Studies Format method
Images (I) Data
ChestX-ray14(C) P: 31K PA: 67K CL 14 112K PNG RP
[33] I: 112K AP: 45K BB 8 983 RI 984
CheXpert (X) [6] P: 65K PA: 29K CL 14 224K JPEG RCI 235
S: 188K AP: 162K RP
I: 224K LL: 32K
MIMIC-CXR (M) P: 65K PA+AP:  CLMD 14 372K JPEGVD RP
[34] S: 224K 250K RV 372K DICOM
I. 372K LL: 122K v2)
PadChest (P) [35] P: 67K PA: 96K CL 193 110K DICOM RIR 27593
S: 110K AP: 20K R 110K RP
I: 160K LL: 51K
PLCO (PL) [69] P: 25K PA: 89K CL 22 89K TIFF RI All
I: 89K CLoc 17 89K
Open-i (O) [70] P: 3,955 PA:3,955 R 3,955 DICOM RI All
1: 7,910 LL: 3,955
Ped-pneumonia 1: 5,856 CL 2 5,856 JPEG RI All
(PP) [71]
JSRT+SCR (J) [72] I:247 PA: 247 SE 3 247 DICOM RI All
RSNA-Pneumonia I: 30K PA:16K BB 1 30K DICOM RI All
(RP) [73] AP:14K  CL
Shenzhen (S) [74]  I: 340 PA: 340 CL 2 340 DICOM RI All
340
Montgomery (MO) 1: 138 PA: 138 CL 2 138 PNG RI All
[74] SE 138

continued on the next page
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continued from the previous page
Patients (P) . Annotation . Gold
. View Image Labeling
Studies (S) . . Standard
Positions Types Labels Studies Format method
Images (I) Data
BIMCV (B) [75] P:9,129 PA:8,748 CL 1 25,554 PNG LT All
S: 18,430 AP: 10,469
1: 25,554 LL: 6,337
COVIDDSL (CD) P:1,725 PA CL 1 4,943 DICOM LT All
[76] S: 4,943 AP (most)
LL
SIIM-ACR (SD) [77] I: 16K PA: 11K SE 1 16K DICOM RI All
P:16K AP: 4,799
CXR14-Rad-Labels P:1,709 AP:3244 CL 4 4,374 PNG RCI All
(CR) [78] 1: 4,374 PA: 1,132
COVID-CXR (CO) L:866 PA:344 CL PNG Various
[79] P:449 AP:438 BB JPEG
LL:84 SE
NLST (N) [80] 1. 5493 No public information available
Number of images is reported by [81]
Object-CXR (OB)  L:10K No longer at original download location
Belarus (BL) 1: 300 No longer at original download location
end of table
as anonymized DICOMs. The radiological findings obtained by radiologist interpretation are
available in MeSH format!.

7. Ped-Pneumonia (PP) is a dataset consisting of 5,856 pediatric CXRs [71]. The CXRs are collected
from Guangzhou Women and Children’s Medical Center, Guangzhou, China. The images are
distributed in 8-bit grayscale images scaled in various resolutions. The labels include bacterial
and viral pneumonia as well as normal.

8. JSRT dataset (J) consists of 247 images with a resolution of 2048 x 2048, 0.175mm pixel-size
and 12-bit depth [72]. It includes nodule locations (on 154 images) and diagnosis (malignant or
benign). The reference standard for heart and lung segmentations of these images are provided
by the SCR dataset [84] and we group these datasets together in this work.

9. RSNA-Pneumonia (RP) is a dataset consisting of 30,000 CXRs with pneumonia annotations

[73]. These images are acquired from ChestX-ray14 and are 8-bit grayscale with 1024 x 1024
resolution. Annotations are added by radiologists using bounding boxes around lung opacities

and 3 classes indicating normal, lung opacity, not normal.

Thttps://www.nlm.nih.gov/mesh/meshhome . html
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Shenzhen (S) is a dataset consisting of 662 CXRs [74]. The CXRs are collected at Shenzhen
No.3 Hospital in Shenzhen, Guangdong providence, China in September 2012. The images,
including some pediatric images, are distributed as 8-bit grayscale with full resolution and are
annotated for signs of tuberculosis.

Montgomery (MO) is a dataset consisting of 138 CXRs [74]. The CXRs are collected by the tu-
berculosis control program of the Department of Health and Human Services of Montgomery
County, MD, USA. The images are distributed as anonymized DICOMs, annotated for signs of
tuberculosis and additionally include lung segmentation masks.

BIMCV (B) is a COVID-19 dataset released by the Valencian Region Medical ImageBank (BIMCV)
in 2020 [75]. It includes CXR images as well as CT scans and laboratory test results. The dataset
includes 3,293 CXRs from 1,305 COVID-19 positive subjects. CXR images are 16-bit PNG for-
mat with original resolution.

COVIDDSL (CD) is a COVID-19 dataset released by the HM Hospitales group in Spain [76]. It
includes CXR images for 1,725 patients as well as detailed results from laboratory testing, vital
signs etc. All subjects are stated to be confirmed COVID-19 positive.

COVIDGR (CG) is a dataset consisting of 852 PA CXR images where half of them are labeled as
COVID-19 positive based on corresponding RT-PCR results obtained within at most 24 hours
[85]. This dataset was collected from Hospital Universitario Clinico San Cecilio, Granada,
Spain, and the level of severity of positive cases is provided.

SIIM-ACR (SI) This dataset was released for a Kaggle challenge on pneumothorax detection
and segmentation [77]. Researchers have determined that at least some (possibly all) of the im-
ages are from the ChestX-ray14 dataset although the challenge organizers have not confirmed
the data sources. They are supplied in 1024 x 1024 resolution as DICOM files. Pixel segmenta-

tions of the pneumothorax in positive cases are provided.

CXR14-Rad-Labels (CR) supplies additional annotations for a subset of ChestX-ray14 data [78].
It consists of 4 labels for 4,374 studies and 1,709 patients. These labels are collected by the
adjudicated agreement of 3 radiologists. These radiologists were selected from a cohort of 11
radiologists for the validation split (2,412 studies from 835 patients), and 13 radiologists for the
test split (1,962 studies from 860 patients). The individual labels from each radiologist as well
as the agreement labels were provided.

COVID-CXR (CC) is a dataset consisting of 930 CXRs at the time of writing (the dataset remains
in continuous development) [79]. The CXRs are collected from a large variety of locations using
different methods including screenshots from papers researching COVID-19. Available labels
vary accordingly, depending on what information is available from the source where the image
was obtained. Images do not have a standard resolution and are published as 8-bit PNG or
JPEG files.

NLST (N) is a dataset of publicly available CXRs collected during the NLST screening trial [80].
This trial aimed to compare the use of low-dose computed tomography (CT) with CXRs for
lung cancer screening in smokers. The study had 26,732 participants in the CXR arm and a
part of this data is available upon request.

Object-CXR (OB) is a dataset of 10,000 CXR images from hospitals in China with foreign objects
annotated on the images. The download location? is no longer available at the time of writing.

’https://jfhealthcare.github.io/object-CXR/
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Further detail is not provided since it cannot be verified from the image source.

20. Belarus (BL) This dataset is included since it is used in a number of reviewed papers however
the download location (http://tuberculosis.by) is no longer available at the time of writing.
The dataset consisted of approximately 300 frontal chest X-rays with confirmed TB. Further
detail is not provided since it can no longer be verified from the image source.

The rapid increase in the number of publicly available CXR images in recent years has positively
impacted the number of deep learning studies published in the field. Figure 2.2 illustrates the cu-

mulative number of publicly available CXR images and the number of publications on deep learning

with CXR per year.
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Figure 2.2: Number of publications that were reviewed in this work, by year, com-
pared with the number of publicly available CXR images. Data for 2021 is until March
3rd of that year.

2.3.1 Public Dataset Caution

Publication of medical image data is extremely important for the research community in terms of
advancing the state of the art in deep learning applications. However, there are a number of caveats
that should be considered and understood when using the public datasets described in this work.
Firstly, many datasets make use of Natural Language Processing (NLP) to create labels for each image.
Although this is a fast and inexpensive method of labeling, it is well known that there are inaccuracies
in labels acquired this way [6, 86, 87]. There are a number of causes for such inaccuracies. Firstly,
some visible abnormalities may not be mentioned in the radiology report, depending on the context
in which it was acquired [88]. Further, the NLP algorithm can be erroneous in itself, interpreting
negative statements as positive, failing to identify acronyms, etc. Finally, many findings on CXR are
subtle or doubtful, leading to disagreements even among expert observers [88]. Acknowledging some
of these issues, [6] includes labels for uncertainty or no-mention in the labels on the CheXpert dataset.
One particular cause for concern with NLP labels is the issue of systematic or structured mislabeling,
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where an abnormality is consistently labeled incorrectly in the same way. An example of this occurs
in the ChestX-ray14 dataset where subcutaneous emphysema is frequently identified as (pulmonary)
‘emphysema’ [86, 89].

It has been demonstrated that deep neural networks can tolerate reasonable levels of label inaccuracy
in the training set without a significant effect on model performance [89, 90]. Although such labels
can be used for training, for an accurate evaluation and comparison of models it is desirable that
the test dataset is accurately labelled. In the literature reviewed in this work, many authors rely on
labels from NLP algorithms in their test data, while others use radiologist annotations, laboratory
tests and/or CT verification for improved test set labelling. We refer to data that uses these improved
labelling techniques as gold standard data (Table 2.1).

The labels defined in the public datasets should also be considered carefully and understood by the re-
searchers using them. Many labels have substantial dependencies between them. For example, some
datasets supply labels for both ‘consolidation” and ‘pneumonia’. Consolidation (blocked airspace)
is an indicator of a patient with pneumonia, suggesting there will be significant overlap between
these labels. A further point for consideration is that, in practice, not all labels can be predicted by a
CXR image alone. Pneumonia is rarely diagnosed by imaging alone, requiring other clinical signs or
symptoms to suggest that this is the cause for a visible consolidation.

Many public datasets release images with a lower quality than is used for radiological reading in the
clinic. This may be a cause for decreased performance in deep learning systems, particularly for more
subtle abnormalities. The reduction in quality is usually related to a decrease in image size or bit-
depth prior to release. This is typically carried out to decrease the overall download size of a dataset.
However, in some cases, CXR data has been collected by acquiring screenshots from online literature,
which results in an unquantifiable degradation of the data. In the clinical workflow, DICOM files are
the industry standard for storing CXRs, typically using 12 bits per pixel and with image dimensions
of approximately 2 to 4 thousand pixels in each of the X and Y directions. In the event that the data is
post-processed before release it would be desirable that a precise description of all steps is provided
to enable researchers to reproduce them for dataset combination.

2.4 Deep Learning for Chest Radiography

In this section we survey the literature on deep learning for chest radiography, dividing it into sec-
tions according to the type of task that is addressed (Image-level Prediction, Segmentation, Image
Generation, Domain Adaptation, Localization, Other). For each of these sections a table detailing
the literature on that task is provided. Some works which have equal main focus on two tasks may
appear in both tables. For Segmentation and Localization, only studies that quantitatively evaluate
their results are included in those categories. Figure 2.3 shows the number of studies for each of the
tasks.

Image-level Prediction

Image-level prediction refers to the task of predicting a label (classification) or a continuous value (re-
gression) by analyzing an entire image. Classification labels may relate to pathology (e.g. pneumonia,
emphysema), information such as the subject gender, or orientation of the image. Regression values
might, for example, indicate a severity score for a particular pathology, or other information such as
the age of the subject.
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Figure 2.3: Number of publications reviewed for each task. 296 studies are included,
each study may perform at most two tasks.

Tasks: IL=Image-level Predictions, SE=Segmentation, LC=Localization, IG=Image
Generation, DA=Domain Adaptation, OT=Other.

We classified 188 studies, fully detailed in Table 2.2 as image-level predictions. Most of these studies
make use of off-the shelf deep learning models to predict a pathology, metadata information or a set
of labels provided with a dataset. The number of studies for each label are provided in Figure 2.4.

The most commonly studied image-level prediction task is predicting the labels of the ChestX-ray14
dataset (31 studies). For example, [146] compares the performance of various approaches to classify
the 14 disease labels provided by the ChestX-rayl4 dataset. [189] compares the performance of an
ensemble of deep learning models to board-certified and resident radiologists, showing that their
models achieve a performance comparable to expert observers in most of the 14 labels provided by
ChestX-ray14. Following this, pneumonia is second most studied subject (26 studies). Of the 26
studies that worked with pneumonia, 12 studied pediatric chest X-rays and 11 of those used the Ped-
Pneumonia dataset for training and evaluation [141, 157, 179, 230234, 272-274]. Classification to
Normal/Abnormal (or Triage) is another commonly studied topic (20 studies). Here, studies aim to
distinguish normal CXRs or prioritize urgent/critical cases with the goal of reducing the radiologist
workload or improving the reporting time. For example, [140] develops a triaging pipeline based on
the urgency of exams. Similarly, [162] compares the performance of various deep learning models
applied to several public chest X-ray datasets for distinguishing abnormal cases. Pneumothorax is
another commonly studied condition (18 studies). For example, [238] aims to detect potentially crit-
ical patients and proposes that such models can be used to alert clinicians. Another common topic
is tuberculosis detection (18 studies). The first studies that use deep learning to detect this infec-
tious disease are [252, 253]. Performance of a deep learning model and how the assistance of this
model improves the radiologist performance is studied by [257]. This study in particular evaluates
the use of extra clinical information such as age, white blood cell count, patient temperature and oxy-
gen saturation to assist the deep learning model. Diagnosis or evaluation of COVID-19 from CXR
is another topic that has attracted a lot of interest from researchers (17 studies). For example, [150]
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Table 2.2: Image-Level Prediction Studies (Section 2.4).

Tasks: AA=Adversarial Attack, DA=Domain Adaptation, IC=Interval Change,
IG=Image Generation, IR=Image Retrieval, LC=Localization, OT=Other,
PR=Preprocessing, RP=Report Parsing, SE=Segmentation, WS=Weak Supervi-
sion. Bold font in tasks implies that this additional task is central to the work and
the study also appears in another table in this paper.

Labels: C=ChestX-Ray1l4, CM=Cardiomegaly, = CV=COVID, E=Edema,
GA=Gender/Age, L=Lung, LC=Lung Cancer, LO=Lesion or Opacity,
M=MIMIC-CXR, MN=Many, ND=Nodule, OR=Orientation, = P=PadChest,
PE=Effusion, PL=PLCO, PM=Pneumonia, PT=Pneumothorax, Q=Image Qual-
ity, T=Triage/Abnormal, TB=Tuberculosis, TU=Catheter or Tube, X=CheXpert,
Z=0Other.

Datasets: BL=Belarus, C=ChestX-rayl4, CC=COVID-CXR, CG=COVIDGR,
J=JSRT+SCR, M=MIMIC-CXR, MO=Montgomery, O=Open-i, P=PadChest,
PL=PLCO, PP=Ped-pneumonia, PR=Private, RP=RSNA-Pneumonia, S=Shenzen,
SI=SIIM-ACR, SM=Simulated CXR from CT, X=CheXpert.

Citation Method Other Labels Datasets
Tasks

[91] Combines lung cropped CXR model and a SELCPR C/L CJ
CXR model to improve model performance

[92] Comparison of image-level prediction and seg-  SE M C
mentation models for cardiomegaly

[93] A network with DenseNet and U-Net for clas- SE CcM C
sification of cardiomegaly

[94] U-Net based model for heart and lung segmen-  SE M PR
tation for cardiothoracic ratio

[95] Combines lung cropped CXR model and a SE E,LO,PE, M
CXR model using the segmentation quality PT,Z

[96] Pneumonia detection is improved by use of SE PM JMO,PP,
lung segmentation PR

[97] U-Net based model to segment pneumonia SE PM RP

[98] Multi-scale DenseNet based model for pneu- SE PT PR
mothorax segmentation

[99] DenseNet based U-Net for segmentation of the ~ SE Z PR
left and right humerus of the infant

[100] Uses a database of the intermediate ResNet-50 OT,IR TB MO,S
features to find similar studies

[101] Uses activation and gradient based attention LC CX C

for localization and classification

continued on the next page



26

Deep Learning for Chest X-ray Analysis: A Survey

continued from the previous page

Citation Method Other Labels Datasets
Tasks

[102] Detects and localizes COVID-19 using various LC Cv C,CC,PP,
networks and ensembling RPX

[103] GoogleNet trained with CXR patches, corre- LC CV,PM C,PR
lates with COVID-19 severity score

[104] Proposes a segmentation and classification LC LOND,PE, PR
model compares with radiologist cohort PT

[105] Trains a semisupervised network on a large LC ND PR
CXR dataset with CT-confirmed nodule cases

[106] Defines a loss that minimizes the saliency map LC ND PR
errors to improve model performance

[107] A weakly supervised localization with varia- LC PM C
tional model, leverages attention maps

[108] Attention guided CNN for pneumonia detec- LC PM RP
tion with bounding boxes

[109] A CNN for identification of abnormal CXRs LC T PR
and localization of abnormalities

[110] Introduces a visualization method to identify LC TB PR
regions of interest from classification

[111] Weakly supervised framework jointly trained LC TB PR
with localization and classification

[112] Combines classification loss and autoencoder IG,SE T JMO,0, S
reconstruction loss

[113] Wasserstein GAN to permute diseased radio- IG,LC Z PR
graphs to appear healthy

[114] Novel GAN model trained with healthy and IG PE SM, X
abnormal CXR to predict difference map

[115] GANs with U-Net autoencoder and CNN dis- IG T C
criminator and encoder for one-class learning

[116] Autoencoder uses uncertainty for reconstruc- IG T PPRP
tion error in one-class learning setting

[117] Continual learning methods to classify data DA CcM CcM
from new domains

[118] CycleGAN model to adapt adult to pediatric =~ DA PM PPRP
CXR for pneumonia classification

[119] Trains a Variational Autoencoder, uses en- WS X X

coded features to train models

continued on the next page
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Citation Method Other Labels Datasets
Tasks

[120] Predicts labels for unlabeled data using latent =~ WS X X
space similarity for semisupervision

[121] Y-Net to normalize image geometry for prepro-  SE,PR OR CMX
cessing

[122] COVID-19 opacity localization and severity de-  SE,LC Ccv PR
tection on CXRs

[123] ResNet-18 backbone for Covid-19 classifica- SE,LC CV,PM CC,J MO
tion with limited data availability

[85] Proposes a new dataset COVIDGR and anovel  SEIG Cv CG
method using transformations with GANs

[124] DenseNet for cardiomegaly detection given SE CM o,r
lung cropped CXR

[125] Multiple models and combinations of CXR  SE (@AY C,CC,PR,
datasets used for COVID-19 detection RP

[126] ResNet-101 trained for COVID-19, heatmaps SE CV,PM PR
are generated for lung-segmented regions

[127] Multiple architectures considered for two- SE PM PP
stage classification of pediatric pneumonia

[128] Compares visualization methods for pneumo- SE PM pp
nia localization

[129] Classifies patches and uses the positive area  SE PT PR
size to classify the image

[130] Feature extraction from CNN models and en- SE TB MO,PR,S
sembling methods

[131] Detection of central venous catheters using SE TU C
segmentation shape analysis

[132] Detection of air-trapping in pediatric CXRs us- SE V4 PR
ing Stacked Autoencoders

[133] Pneumoconiosis detection using Inception-v3  SE V4 PR
and evaluation against two radiologists

[6] Introduces CheXpert dataset and model per- RPLC X X
formance on radiologist labeled test set

[134] Curates data for interval change detection, pro- RPIC V4 PR
poses method comparing local features

[135] Parses reports to define a topic model and pre- RP CM,PE,Z (@]

dicts those using CXRs

continued on the next page
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Citation Method Other Labels Datasets
Tasks

[136] Trains model using image and reports to im- RP E M
prove image only performance

[137] Extracts ambiguity of labels from reports, pro- RP EPT,Z M
poses model that uses this information

[138] Creates and parses reports for ChestX-rayl4 RP MN C
AP data to obtain 73 labels for training

[139] Obtains findings by tagging common report RP MN PR
sentences to train models

[140] An ensemble of two CNNSs to predict priority ~ RP T PR
level for CXR queue management

[43] Evaluates bone suppression and lung segmen- PR,SE CM,PEPT, O
tation, detection of 8 abnormalities Z

[141] Classification of pediatric pneumonia typesus- PR,SE PM PP
ing adaped VGG-16 architecture

[142] Evaluates various image preprocessing algo- PR T CMO,PR,
rithms on the performance of DenseNet-121 S

[143] Detects 8 findings and analyzes how these can ~ OT CM,PEPT, C,0O
improve workflow prioritization V4

[144] Proposes a model for weakly supervised clas- LC,WS C C
sification and localization

[145] Proposes a recurrent attention mechanism to  LC C C
improve model performance

[146] Evaluates the use of various model configura- LC C C
tions for classification

[147] Attention mining and knowledge preservation =~ LC C C
for classification with localization

[148] Attention based model compared with well- LC C C
known architectures

[149] Minimizes the encoding differences of a CXR  LC C CX
from multiple models

[150] DenseNet used to predict COVID-19 severity LC (&% CC
as scored by radiologists

[151] Uses a ResNet-50 backed segmentation model ~LC CV,PM CC,RP
to detect healthy, pneumonia, COVID-19

[152] Uses multi instance learning for classification LC E,PM,PT M,PR,RP
with localization

[153] Lung cancer and nodule prediction using LC LC,ND PR

ResNet-34

continued on the next page
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Citation Method Other Labels Datasets
Tasks

[154] GradCam based attention mining loss, com- LC LO M
pared with labels extracted from reports

[78] Trains Xception using >750k CXRs, compares LC LOND,PT, C,PR
results with radiologist labels z

[155] ResNet and VGG used to distinguish AP from  LC OR PR,RP
PA images

[156] DenseNet-121 trained on public data evalu- LC PE,PM C,PL
ated using CT-based labels

[157] Evaluates the performance of various models LC PM PP
trained on pediatric CXRs on adult CXRs

[158] Evaluates ensembling methods and visualiza- LC PM,PT,Z PR
tion on pediatric CXRs

[159] Compares a ResNet-152 against radiologists ~LC PT C
and shows the statistical significance

[160] Compares GradCAM with radiologist segmen-  LC PT CPR
tations for evaluation of VGG-19

[161] Apical regions and patches from them ex- LC PT PR
tracted to detect pneumothorax

[162] Detection of abnormality, various networks LC T C,O,PPRP
compared with radiologist labeling

[163] Evaluates pre-training on ImageNet and CheX- LC T RP
pert on various models/settings

[164] Proposes a GAN-based model trained only LC T RP
with healthy images for anomaly detection

[165] Proposes a new model for faster classification LC TB BL,MO,S
of TB

[166] Evalutes the use of a ResNet based modelona LC TB PR
large gold standard dataset

[167] Evaluates multiple models for detection of LC TU PR
feeding tube malpositioning

[168] Graph CNN solution with ensembling which  LC X X
models disease dependencies

[169] Curates a dataset of heart failure cases and LC Z C
evaluates VGG-16 on it

[170] CNN for identifiying the presence of sub- LC V4 PR
phrenic free air from CXR

[171] Evaluates several models to predict hyperten- LC V4 PR

sion and artery systolic pressure

continued on the next page
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Citation Method Other Labels Datasets
Tasks

[172] Uses ResNet-18 to measure the Brassfield LC Z PR
Score, predicts Cystic Fibrosis based on it

[173] Simulates CXRs from CT scans and predicts LC Z PR
emphysema scores

[174] Inception network to predict pulmonary tosys- LC z PR
temic flow ratio from pediatric CXR

[175] Predicts COVID-19 severity by comparing IC,LC (@)% PR
CXRs to previous ones

[176] Addresses domain and label discrepancies in DA C,TB, X C,PR,X
multi-dataset training

[177] Method to increase robustness of CNN classi- AA,IG PM RP
fiers to adversarial samples

[178] Uses the features extracted from the training AA C C
dataset to detect adversarial CXRs

[179] Self-supervision and adversarial training im- AA PM PP

proves on transfer learning
[180] Claims 0.99 AUC for predicting TB, uses com-
plex feature engineering and ensembling

[181] ResNet model trained with frontal and lateral PR
images to predict COPD with PFT results
[182] One-class identification of viral pneumonia PR

cases compared with binary classification
[183] A distributed learning method that overcomes C C
problems of multi-institutional settings

[184] Geometric deep learning including metadata C C
with graph structure. Application to CXR

[185] Proposes a new weighting scheme to impove C C
abnormality classification

[186] ResNet-34 used with various training settings C C
for multi-label classification

[187] Investigates effect of data augmentations on C C
classification with Inception-Resnet-v2

[188] Proposes a variational/generative architec- C C
ture, demonstrates performance on CXRs

[189] Evaluates the performance of an ensemble C C
against many radiologists

[190] Novel method for multi-label classification, ap- C C
plication to CXR

continued on the next page
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Citation Method Other Labels Datasets
Tasks

[191] Defines a few-shot learning method by extract- C C
ing features from autoencoders

[192] Mean teacher inspired a probablistic graphical C C
model with a novel loss

[193] Examines the effect of denoising on pathology C C
classification using DenseNet-121

[194] Proposes integrating three attention mecha- C C
nisms that work at different levels

[195] Step-wise trained CNN and saliency-based au- C CoO
toeencoder for few shot learning

[196] Uses CT and CXR reports with CXR images C CPR
during training to diagnose unseen diseases

[35] Proposes a new dataset PadChest with multi- C P
label labels and radiology reports

[197] Lesion detection network used to improve C PR
image-level classification

[198] Method to produce confidence measure along- CPL CPL
side probability, uses DenseNet-121

[199] Uses self-supervised learning for pretraining, C,PT C,SI
compares with ImageNet pretraining

[200] Proposes a new CXR pre-training method, CX C,RPX
compares with pre-training on ImageNet

[201] Proposes a graph convolutional network CX CX
framework which models disease dependen-
cies

[202] Compares several models for the detection of CM C
cardiomegaly

[203] Tests four off-the-shelf networks for prediction CcM PR
of cardiomegaly

[204] Inception v3 trained to detect 4 abnormalities CM,E,LO, PR
and compared with expert observers z

[205] GoogLeNet to classify normal and 5 abnormal- CM,E,PE, PR
ities on a large proprietary dataset PT,Z

[206] Compares the performance of deep learning CM,PE PR
with traditional feature extraction methods

[207] ImageNet pre-training and feature extraction CM,PE,Z PR

methods for pathology detection

continued on the next page
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Citation Method Other Labels Datasets
Tasks

[208] An ensemble of DenseNet-121 networks used Cv C,PR
for COVID-19 classification

[209] Investigates the value of soft tissue CXR for Cv C,PR,RP
training DenseNet-121 for COVID-19

[210] Labels and predicts COVID-19 severity stage Ccv CcC
using CNN

[211] Uses a model trained on COVID-19 cases to (@)% PR
evaluate the effect of an imaging parameter

[212] COVID-19 detection based on RT-PCR labels, (@)% PR
evaluates an ensamble against radiologists

[213] Ensemble of ResNet models for COVID-19 de- (@)% PR
tection

[214] Compares the performance of a DenseNet-121 CV,PM PR
ensemble to radiologists

[215] Various models and use of semi-supervised la- E M
bels for edema severity estimation

[216] Age prediction on PA or AP images using GA C
DenseNet-169

[217] Gender prediction using features from deep- GA JMO,0,
learning models in traditional classifiers PR,S

[218] Age prediction on AP images using DenseNet- GA X
121 and ResNet-50

[219] Combines the CXR with age/sex/smoking his- LC PL
tory to predict the lung cancer risk

[220] Densenet-121 pre-trained with public data LC,TTB,Z PR
used to identify 6 classes

[221] Evaluates deep learning on pictures of CXRs M, X M, X
captured with mobile phones

[222] Ensemble of VGGNet and ResNet to detect var- MN CM
ious findings from AP CXRs

[223] Investigates the domain and label shift across MN CM,0,
publicly available CXR datasets PRPX

[224] Explores the use of the lateral view CXR for MN,P P
classification of 64 different labels

[225] Classification of CXRs as Frontal or Lateral us- OR PR
ing GoogLeNet architecture

[226] Assesses the effect of imprinted labels on OR PR

AP/PA classification

continued on the next page
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Citation Method Other Labels Datasets
Tasks

[227] Distinguishes the CXR orientation, bone CXRs OR,Z PR
and soft tissue CXRs from dual energy

[228] Compares PA and Lateral images for pathol- P P
ogy detection with DenseNet

[229] Introduces a loss term that uses the label hier- PL PL
archy to improve model performance

[230] Trains VGG-16 on Ped-pneumonia dataset PM PP

[231] Methods to mitigate imbalanced class sizes. PM PP
Applied to CXR using ResNet-18

[232] Evaluation of MobileNet to detect pneumonia PM PP
on pediatric CXRs

[233] Compares multiple architectures for pneumo- PM PP
nia detection

[234] Evaluates various capsule network architec- PM PP
tures for pediatric pneumonia detection

[235] Uses ResNet-50 to classify paediatric pneumo- PM PR
nia

[236] Compares traditional and generative data aug- PM RP
mentation techniques on CXRs

[237] Addresses catastrophic forgetting, application PT C
to pneumothorax detection using VGG-13

[238] Construction of large dataset, multiple archi- PT PR
tectures and hyperparameters optimized

[239] Model pre-trained with public data and fine- PT PR
tuned for pneumothorax detection

[240] DenseNet-121 used to detect CXRs with Q C
acquisition-based defects

[241] GoogleNet combined with rule-based ap- Q PR
proach to determine the image quality

[242] Detects abnormal CXRs using several models. T C
Evaluates on independent private data

[243] Defines a model on top of features extracted T C
from Inception-ResNet-v2 for triaging

[244] Collects features from pretrained models and T CM
adds a CNN on top for triaging

[245] Studies the effect of various label noise levels T CPR,X

on classification with DenseNet-121

continued on the next page
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Citation Method Other Labels Datasets
Tasks

[246] Various models for detection of abnormal T PR
CXRs, effect of different training set sizes

[247] Defines 10 abnormalities to define a triaging T PR
model and uses CT based test labels

[248] Ensembe of DenseNet and EffecientNet for T PR
identification of normal CXR

[249] Examines the use of data augmentation in T PR
small data setting

[250] Evaluation of extra supervision in the form of T PR
localized region of interest

[251] Evalutates various models and ensembling T RP
methods for the triage task

[252] Evaluates deep learning approaches for tuber- TB BL,MO,PR,
culosis detection S

[253] Evaluates the use of transfer learning for tuber- TB MO,PR,S
culosis detection

[254] Extracts feaures using off-the-shelf models and TB MO,PR,S
trains a model using those

[255] Combines hand-crafted features and CNN for TB MO,S
tuberculosis diagnosis

[256] Evaluates a Bayesian-based CNN for detection TB MO,s
of TB

[257] Evaluates assisting clinicians with an Al based TB PR

system to improve diagnosis of TB

[258] Various architectures, inclusion of patient de- TB PR
mographics in model considered

[259] Addresses preservation of learned data, appli- TB PR
cation to TB detection using ResNet-21

[260] Pre-training using CXR pathology and meta- TB S
data labels, application to TB detection

[261] Compares various models using various pre- TB S
training and ensembling strategies

[262] Evaluates models on detecting the position of TU PR
feeding tube in abdominal and CXRs

[263] Comparison of seven architectures and ensem- X X
bling for detection of nine pathologies

[264] A method to incorporate label dependencies X X
and uncertainty data during classification

continued on the next page
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Pneumonia I——
Triage/Abnormal I
Tuberculosis I
Pneumothorax I
COVID-19 I
Cardiomegaly I
Effusion I
Edema I
Orientation N
Many I
Nodule
Lesion or Opacity N
Gender/Age I
Lung Cancer Il
Image Quality Il
ChestX-Ray14 IIII———
CheXpert I
PadChest Il
PLCO Il
MIMIC-CXR Il
0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32

Figure 2.4: Number of studies for the Image-level Prediction labels. The studies that
specifically work on a dataset and its labels are grouped together at the bottom. 188
papers are included, each may study more than one label.

predicts the disease severity, similarly [175] predicts the disease progression by comparing an exam
with the previous exams of the patient, and [125] detects COVID-19 using a very limited amount
of data. Other than these most common tasks, there are many studies using deep learning to make
Image-level Predictions from CXRs. Other commonly utilized labels are illustrated in Figure 2.4 and
listed in Table 2.2.

A large proportion of the studies use pre-trained standard architectures that can easily be found in
deep learning libraries such as Tensorflow or Pytorch. These architectures are commonly Resnet [20],
DenseNet [21], Inception [44], VGG [19], or AlexNet [17]. The choice of model depth (such as ResNet-
18, ResNet-50, DenseNet-121, DenseNet-161) also varies between studies as there is no standard in
this design choice. Most of those studies do not introduce methodological novelty but report or
compare the performances of multiple architectures on a given task. For example, [266] compares
various Resnet and Densenet models using both pretrained and randomly initialized weights on the
performance of detecting the existence of foreign objects. Similarly many other studies compare the
performance of different architectures with various depths on a given task, for example [162, 163, 167,
168]. Just like the model depth and architecture, there are many factors that affect the performance of

a deep learning model. The effect of various data augmentation and input pre-processing methods
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Citation Method Other Labels Datasets
Tasks

[265] Proposes self-training and student-teacher X X
model for sample effeciency

[89] Analyses the effect of label noise in training Z C
and test datasets

[266] Labels 6 different foreign object types and de- z M
tects using various architectures

[81] Evaluates the use of CXRs to predict long term V4 PL
mortality using Inception-v4

[267] Low-res segmentation is used to crop high-res Z PR
lung areas and predict pneumoconiosis

[268] Pneumoconiosis prediction with DenseNet- Z PR
121 and SVMs applied to extracted features

[269] Detection of coronary artery calcification using z PR
various CNN architectures

[270] ResNet-50 for detection of the presence of ele- Z PR
vated pulmonary arterial wedge pressure

[271] A network is designed to identify subjects with V4 PR,RP

elevated pulmonary artery pressure

end of table

are evaluated by [142, 187]. The effect of increasing or decreasing the image size are evaluated in [146,
186]. Various pre-training schemes are evaluated by [146, 260]. More sophisticated pre-processing
steps to improve model performance include bone suppression [43, 275] and lung cropping [91].
Some studies bring methodological novelty by making use of methods that are known to work well to
improve model performance elsewhere. For example, it is known that an ensemble of many models
improves performance compared to a single model [276]. Some studies that make use of this method
are [189, 214, 251, 261]. Attention mining (or object-region mining, attention-based) models are also
found in the literature [277]. Those models aim to improve performance and add localization capa-
bilities to an image-level prediction model. Some studies making use of attention mining models are
[145, 147]. Multiple-instance learning (multi-instance learning or MIL) [278] is another method that
is used to add localization capabilities to image-level prediction models. MIL breaks the input image
into smaller parts (instances), makes individual predictions relating to those instances and combines
this information to make a prediction for the whole image. Some studies that make use of MIL are
[152, 161]. Other topics within the literature include model uncertainty [198, 256], quality of the CXR
[95,121, 121, 240, 241] and defence against adversarial attack [177-179].

The different properties of datasets are also utilized to improve model capabilities or performance.
Many of the public datasets make use of labels that are not mutually exclusive. This has resulted in a
number of papers addressing the dependencies among abnormality labels [158, 168, 264]. Since many
of the labels are common between datasets from different institutes there has been investigation of the
issues related to domain and/or label shift in images from different sources [176, 223]. The effect of
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dataset sizes is evaluated by [246]. Semi-supervised learning methods combine a small set of labeled
and a large set of unlabeled data to train a model [119, 120, 192, 215].

Most of the studies working on image-level prediction tasks deal with frontal CXR images. The
importance of lateral chest X-rays and models that can deal with multiple views are evaluated in
[224, 228, 279].

2.4.1 Segmentation

Segmentation is one of the most commonly studied subjects in CXR analysis (58 papers) and includes
literature focused on the identification of anatomy, foreign objects or abnormalities. The segmenta-
tion literature reviewed for this work is detailed fully in Table 2.3. Anatomical segmentation of the
heart, lungs, clavicles or ribs, on chest radiographs, is a core part of many computer aided detection
(CAD) pipelines. It is typically used as an initial step of such pipelines to define the region of interest
for subsequent image analysis tasks to improve performance and efficiency [43, 91, 128, 132, 133, 258].
Further, the segmentation itself can be useful to quantify clinical parameters based on shape or area
measurements. For example, cardiothoracic ratio, a clinically used measurement to assess heart en-
largement (cardiomegaly), can be directly calculated from heart and lung segmentations [92, 94]. Or-
gan segmentation has, for these reasons, become one of the most commonly studied subjects among
CXR segmentation tasks as seen in Figure 2.5.

Another application found in the CXR literature is foreign object segmentation, i.e. catheter, tubes,
lines, for which high performance levels have been reported using deep learning [294, 295, 327]. In-
terestingly, only a small number of works addressed segmentation of abnormalities. [97] focused on
segmentation of pneumonia, and [323] developed a method to segment pneumothorax. Both of these
works used recently published challenge datasets (hosted by Kaggle), namely RSNA-Pneumonia and
SIIM-ACR. In general, the determination of abnormal locations on CXR is dominated by methods
which addressed this as a localization task (i.e. via bounding-box type annotations) rather than exact
delineation of abnormalities through segmentation. This is likely to be attributable to the difficulty of
precise annotation on a projection image and to the high annotation cost for precise segmentations.
A small number of works tackled the segmentation task using a patch-based CNN, which is trained
to classify the center of pixel in the patch as foreground or background by means of sliding-window
approach [313, 315]. However, this approach is generally considered inefficient for segmentation and
most works use fully convolutional networks (FCN) [48], which can take larger, arbitrary sized, im-
ages as input and produce a similar sized, per-pixel prediction, likelihood map in a single forward
pass. In particular, the U-Net architecture [49], a type of FCN, dominates the field with 50% of seg-
mentation works in literature (29/58) employing it or some similar variant. Successful applications
were built with this architecture to segment organs [299, 319, 320], pneumonia [97] and foreign objects
[294, 295]. For example, [299] compared three U-Net variant architectures for multi-class segmenta-
tion of the heart, clavicles and lungs on the JSRT dataset. Using regularization to prevent over-fitting
and weighted cross entropy loss to balance the dataset, they outperformed the human observer at
heart and lung segmentation. This result was in line with other works [292, 298, 301] employing
FCN-type architectures which also achieved very high performance levels on this dataset.

One commonly encountered challenge is that many algorithms produce noisy segmentation maps. In
order to tackle this, several works employed post-processing techniques. [327] used a probabilistic
Hough line transform algorithm to remove false positives and produce a smoother segmentation of
peripherally inserted central catheters (PICC). [324] used a heuristic approach to average cross-fold

predictions with an optimized binarization threshold and a dilation technique for pneumothorax seg-
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Table 2.3: Segmentation Studies (Section 2.4.1).

Tasks: DA=Domain Adaptation, IG=Image Generation, IL=Image-level Predictions,
LC=Localization, PR=Preprocessing, WS=Weak Supervision. Bold font in tasks
implies that this additional task is central to the work and the study also appears in
another table in this paper.

Labels: C=ChestX-Ray14, CL=Clavicle, CM=Cardiomegaly, CV=COVID, E=Edema,
H=Heart, L=Lung, LO=Lesion or Opacity, PE=Effusion, PM=Pneumonia,
PT=Pneumothorax, R=Rib, TU=Catheter or Tube, Z=Other.

Datasets: BL=Belarus, = C=ChestX-rayl4, J=JSRT+SCR, M=MIMIC-CXR,
MO=Montgomery, O=Open-i, PP=Ped-pneumonia, PR=Private, RP=RSNA-
Pneumonia, S=Shenzen, SI=SIIM-ACR, SM=Simulated CXR from CT.

Citation Method Other Labels Datasets
Tasks

[280] A model based on U-Net and Faster R-CNN to  LC,PR TU PR
detect PICC catether and its tip

[281] Tailored Mask R-CNN for simultaneous detec- LC L PR
tion and segmentation

[282] Uses Mask R-CNN iteratively to segment and LC R PR
detect ribs.

[91] Combines lung cropped CXR model and a ILLCPR CL CJ
CXR model to improve model performance

[92] Comparison of image-level prediction and seg- 1L M C
mentation models for cardiomegaly

[93] A network with DenseNet and U-Net for clas- IL M C
sification of cardiomegaly

[94] U-Net based model for heart and lung segmen- 1L M PR
tation for cardiothoracic ratio

[95] Combines lung cropped CXR model and a IL E,LO,PE, M
CXR model using the segmentation quality PT,Z

[96] Pneumonia detection is improved by use of IL PM J,MO,PP,
lung segmentation PR

[97] U-Net based model to segment pneumonia IL PM RP

[98] Multi-scale DenseNet based model for pneu- IL PT PR
mothorax segmentation

[99] DenseNet based U-Net for segmentation of the 1L Z PR
left and right humerus of the infant

[283] Attention-based network and CXR synthesis  IG,IG L JMO,PR

process for data augmentation

continued on the next page
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Citation Method Other Labels Datasets
Tasks

[284] Conditional GANs for multi-class segmenta- IG CLH,L ]
tion of heart,clavicles and lungs

[285] Processing method to produce scatter- IG LO SM
corrected CXRs and segments masses with
U-Net

[286] MUNIT based DA model for lung segmenta- DA CLH,L ]
tion

[287] Adversarial training of lung and heart segmen- DA CM J,PR
tation for DA

[288] CycleGAN guided by a segmentation module DA H,L,Z PR
to convert CXR to CT projection images

[289] CycleGAN based DA model with semantic DA L MO
aware loss for lung segmentation

[290] Conditional GANs based DA for bone segmen- DA R SM
tation

[291] FCN based novel model incorporating weak =~ WS CLH,L ]
landmarks and bounding boxes annotations

[292] U-Net segmentation model integrating unla- WS CLH,L ]
beled data through consistency loss

[293] Attention masks derived from classification IL PT PR
model to guide the segmentation model

[294] U-Net based network for classification and IL Z CJ
segmentation with simulated data

[295] U-Net based model for segmentation and a IL Z PR
classification for existance of lines

[296] U-Net for bone suppression given lung- PR
segmented CXR image with patches

[297] Proposes teacher-student based learning with CLH,L ]
noisy segmentations

[298] Various FCN based models explored for simul- CLH,L ]
taneous pixel and contour segmentation

[299] Investigates various FCN type architecture in- CLH,L ]
cluding U-Net for organ segmentation

[300] Capsule networks adapted for multi-class or- CLH,L ]
gan segmentation

[301] U-Net based architecture with residual connec- CLH,L J,MO,S

tions for organ segmentation

continued on the next page
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continued from the previous page

Citation Method Other Labels Datasets
Tasks
[302] U-Net based architecture based on dense con- CL,R PR
nections
[303] CNN trained with CT projection images for Ccv PR

quantification of airspace disease

[304] Denoising autoencoder as post-processing to HL J
improve segmentations

[305] Evaluates U-Net performance with various HL PR
loss functions, and data augmentation

[306] Stacked denoising autoencoder model for L BL,J,PR
space and shape parameter estimation

[307] Investigates the effect of fine-tuning different L ]
layers for U-Net based model

[308] Proposes a human-in-the-loop one shot L ]
anatomy segmentor

[309] U-Net with conditional random field post pro- L ]
cessing for lung segmentation

[310] Investigates U-Net with different optimizer L J
and dropout

[311] U-Net with dense connections for reducing L ] MO
network parameters for lung segmentation

[312] U-Net with self attention for lung segmenta- L J,MO,S
tion

[313] Multi-scale and patch-based CNN to segment L J,PR
lungs

[314] U-Net based model for lung segmentation L MO
trained with CXR patches

[315] Two stage patch based CNN for refined lung L MO
field segmentation

[316] Encoder-decoder architecture with ConvL- L MO
STM and ResNet for segmentation

[317] Encoder-decoder based CNN with novel edge L MO
guidance module for lung segmentation

[318] Proposes a convolutional LSTM model for ul- L MO
trasound, uses CXR as a secondary modality

[319] U-Net based segmentation model for dynamic L PR
CXRs

[320] U-Net for whole lung region segmentation in- L PR

cluding where heart overlaps

continued on the next page
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continued from the previous page

Citation Method Other Labels Datasets
Tasks

[321] Cascaded U-net with sample selection with im- L S
perfect segmentations

[322] ResNet-50 based architecture with segmenta- PT SI
tion and classification branches

[323] Investigates U-Net based models with various PT SI
backbone encoders for pneumothorax

[324] Ensemble of three LinkNet based networks PT SI
and with multi-step postprocessing

[325] Cascaded network with Faster R-CNN and U- 4 ]
Net for aortic knuckle

[326] Multi-scale U-Net based model with recurrent Z (@]
module for foreign objects

[327] Two FCN to segment peripherally inserted V4 PR
central catheter line and its tip

[328] Two Mask R-CNN to segment the spine and 4 PR

vertebral bodies and calculate the Cobb angle

end of table

mentation. Some authors proposed to learn post-processing by training an independent network,
inputting segmentation predictions for refinement, rather than using conventional methods. For ex-
ample, [304] used denoising autoencoders, trained to produce anatomically plausible segmentations
from the initial predictions. Similarly, [315] used a FCN to refine segmentation predictions. The final
segmentation was achieved by combining the initial and reconstructed segmentation results.

A number of researchers used a multi-stage training strategy, where network predictions are refined
in several steps during training [282, 315, 321, 325]. For example, [325] employed faster-RCNN to
produce coarse segmentation results, which were then used to crop the images to a region of inter-
est, which was provided to a U-Net trained to predict the final segmentation result. Similarly, [315]
employed two networks, where the second network received the predictions of the first to refine the
segmentation results. [282] trained separate networks for segmentation of each rib in chest radio-
graphs based on Mask R-CNN. The predicted segmentation results from the rib above was fed to

each network as an additional input.

Although most of the works in the literature harnessed FCN architectures, a few authors employed
recurrent neural networks (RNN) for segmentation tasks [316, 318, 326] and report good performance.
[316] proposed a novel architecture where the decoding component was long short term memory
(LSTM) architecture to obtain multi-scale feature integration. The proposed approach achieved a Dice
score of 0.97 for lung segmentation on Montgomery dataset. Similarly, [67] developed a scale RNN,
a network based on encoder and decoder architecture with recurrent modules, for segmentation of

catheter and tubes on pediatric chest X-rays.

The high cost of obtaining segmentation annotations motivates the development of segmentation
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Figure 2.5: Number of studies for the Segmentation labels. 58 papers are included,

each may study more than one label.

systems which incorporate weak-labels or simulated datasets with the aim of reducing annotation
costs [293, 294, 308, 326]. Several works addressed this using weakly supervised learning approaches
[293, 308]. [308] proposed a graph convolutional network based architecture which required only one
labeled image and leveraged large amounts of unlabeled data (one-shot learning) through a newly
introduced three contour-based loss function. [293] proposed a pneumothorax segmentation frame-
work which incorporated both images with pixel level annotations and weak image-level annotations.
The authors trained an image classification network, ResNet-101, with weakly labeled data to derive
attention maps. These attention maps were then used to train a segmentation model, Tiramisu, to-
gether with pixel level annotations.

2.4.2 Localization

Localization refers to the identification of a region of interest using a bounding box or point coordi-
nates rather than a more specific pixel segmentation. In this section we discuss only the CXR localiza-
tion literature which provides a quantitative evaluation of this task. It should be noted that there are
many other works which train networks for an image-level prediction task and provide some exam-
ples of heatmaps (e.g., saliency map or GradCAM) to suggest which region of the image determines
the label. While this may be considered as a form of localization, these heatmaps are rarely quanti-
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tatively evaluated and such works are not included here. Table 2.4 details all the reviewed studies
where localization was a primary focus of the work.

The majority of CXR analysis papers performing localization focus on identifying abnormalities rather
than objects (e.g., catheter) or anatomy (e.g., ribs). Localization of nodules, tuberculosis and pneumo-

nia are commonly studied applications in the literature, as illustrated in Figure 2.6.
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Figure 2.6: Number of studies for the Localization labels. 30 papers are included,

each may study more than one label.

In recent years, a variety of specific architectures, i.e. YOLO, Mask R-CNN, Faster R-CNN, have been
designed in computer vision research aiming at developing more accurate and faster algorithms for
localization tasks [345]. Such state of the art architectures have been rapidly adapted for CXR analysis
and shown to achieve high-level performance. For example, [341] demonstrated that the (original)
YOLO architecture was successful at identifying the location of pneumothorax on chest radiographs.
The model was evaluated on an external dataset with CXRs from 1,319 patients which were obtained
after percutaneous transthoracic needle biopsy (PTNB) for pulmonary lesions; it achieved an AUC of
0.898 and 0.905 on 3-h and 1-day follow-up chest radiographs, respectively. Similarly, other studies
[330, 334, 336, 338] harnessed architectures like RetinaNet, Mask R-CNN and RCNN for localization of
nodules and masses. [334] trained RetinaNet and Mask R-CNN for detection of nodule and mass and
investigated the optimal input size. The authors showed that, using a square image with 896 pixels
as the edge length, RetinaNet and Mask R-CNN achieved FROC of 0.906 and 0.869, respectively.
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Table 2.4: Localization Studies (Section 2.4.2).

Tasks:  IC=Interval Change, IL=Image-level Predictions, PR=Preprocessing,
RP=Report Parsing, SE=Segmentation, WS=Weak Supervision. ~Bold font in
tasks implies that this additional task is central to the work and the study also
appears in another table in this paper.

Labels: C=ChestX-Ray14, CM=Cardiomegaly, CV=COVID, L=Lung, LC=Lung
Cancer, LO=Lesion or Opacity, ND=Nodule, PE=Effusion, PM=Pneumonia,
PT=Pneumothorax, R=Rib, T=Triage/Abnormal, TB=Tuberculosis, TU=Catheter or
Tube, X=CheXpert, Z=Other.

Datasets:  C=ChestX-rayl4, CC=COVID-CXR, J=JSRT+SCR, M=MIMIC-CXR,
O=Open-i, PP=Ped-pneumonia, PR=Private, RP=RSNA-Pneumonia, S=Shenzen,
X=CheXpert.

Citation Method Other Labels Datasets
Tasks

[280] A model based on U-Net and Faster R-CNN to  SE,PR TU PR
detect PICC catether and its tip

[281] Tailored Mask R-CNN for simultaneous detec- SE L PR
tion and segmentation

[282] Uses Mask R-CNN iteratively to segment and  SE R PR
detect ribs.

[101] Uses activation and gradient based attention IL CX C
for localization and classification

[102] Detects and localizes COVID-19 using various  IL Ccv C,CC,PP,
networks and ensembling RPX

[103] GoogleNet trained with CXR patches, corre- 1L CV,PM C,PR
lates with COVID-19 severity score

[104] Proposes a segmentation and classification IL LOND,PE, PR
model compares with radiologist cohort PT

[105] Trains a semisupervised network on a large IL ND PR

CXR dataset with CT-confirmed nodule cases

[106] Defines a loss that minimizes the saliency map  IL ND PR

errors to improve model performance

[107] A weakly supervised localization with varia- IL PM C

tional model, leverages attention maps

[108] Attention guided CNN for pneumonia detec- 1L PM RP

tion with bounding boxes

[109] A CNN for identification of abnormal CXRs IL T PR

and localization of abnormalities

continued on the next page
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continued from the previous page

Citation Method Other Labels Datasets
Tasks

[110] Introduces a visualization method to identify ~ IL TB PR
regions of interest from classification

[111] Weakly supervised framework jointly trained IL TB PR
with localization and classification

[329] Extract nodule candidates using traditional = SE,PR ND ]
methods and trains GoogleNet

[330] RetinaNet for detecting nodules incorporating  SE ND J,PR
lung segmentation

[331] Combines reports and CXRs for weakly super- RP,WS PM,PT CM
vised localization and classification

[332] Proposes a model using LSTM and CNN, com-  IL,RP CM,ND C,0
bining reports and images as inputs

[333] Adversarially trained weakly supervised local-  IL C C
ization framework for interpretability

[334] Evaluates the effect of image size for nodule IL ND PR
detection with Mask R-CNN and RetinaNet

[335] Evaluates the reproducibility of YOLO for dis- IC LOND,PE, PR
ease localization in follow up exams PT,Z

[336] Evaluates the reproducability of various detec-  IC ND PR
tion architectures in follow up exams.

[337] ResNet model using CT and surgery based an- LC PR
notations for lung cancer prediction

[338] R-CNN for localization of lung nodules ND ]

[339] Fuses AlexNet and hand-crafted features to im- ND ]
prove random forest performance

[340] Patch-based nodule detectin, combines fea- ND J,PR
tures from different resolutions

[341] Evaluates the detection of pneumothorax be- PT PR
fore, 3h and 1d after biopsy

[342] Proposes a U-Net based model for localizing R (@]
and labeling individual ribs

[343] AlexNet for localizing tuberculosis with patch- TB S
based approach

[344] Localizes anatomical features for image qual- V4 PR

ity check

end of table
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A number of papers adapted classification architectures (e.g., ResNet, DenseNet) to directly regress
landmark locations for CXR localization tasks [109, 337]. One common way of tackling this is to adapt
the networks to produce heatmap predictions and draw boxes around the areas that created the high-
est signals. For example, [109] tailored a DenseNet-based classifier to produce heatmap predictions
for each of four types of CXR abnormalities. The network was trained with pixel-wise cross entropy
between the predictions and annotations. Similarly, [337] adapted ResNet-50 and ResNet-101 archi-
tectures for localization of nodules and masses on CXR. Other studies [340, 343] tackled this problem
using patch-based approaches, commonly referred as multiple instance learning, creating patches
from chest X-rays and evaluating these for the presence of abnormalities.

One challenge in building robust deep learning localization systems is to collect large annotated
datasets. Collecting such annotations is time-consuming and costly which has motivated research-
ers to build systems incorporating weaker labels during training. This research area is referred to as
weakly supervised learning, and has been investigated by numerous works [105-107, 109, 111] for lo-
calization of a variety of abnormalities in CXR. Most of the works [105, 106, 109, 111] leveraged weak
image-level labels by adapting a CNN architecture to create two branches for localization (heatmap
predictions) and classification. A hybrid loss function was used, combining localization and classifi-
cation losses, which enabled training of the networks using images without localization annotations.

2.4.3 Image Generation

There are 35 studies identified in this work whose main focus is Image Generation, as detailed in
Table 2.5. Image generation techniques have been harnessed for a wide variety of purposes including
data augmentation [346], visualization [113, 347], abnormality detection through reconstruction [114,
115], domain adaptation [288] or image enhancement techniques [348].

The generative adversarial network (GAN) [58, 67] has became the method of choice for image gener-
ation in CXR and over 50% of the works reviewed here used GAN-based models.

A number of works focused on CXR generation to augment training datasets [346, 353, 365] by using
unconditional GANs which synthesize images from random noise. For example, [346] trained a DC-
GAN model, similar to [365], independently for each class, to generate chest radiographs with five
different abnormalities. The authors demonstrated that this augmentation process improved the ab-
normality classification performance of DCNN classifiers (ResNet, GoogleNet, AlexNet) by balancing
the dataset classes. Another work [353] proposed a novel GAN architecture to improve the quality
of generated CXR by forcing the generator to learn different image representations. The authors pro-
posed SkrGAN, where a sketch prior constraint is introduced by decomposing the generator into two
modules for generating a sketched structural representation and the CXR image, respectively.
Abnormality detection is another task which has been addressed through a combination of image
generation and one-class learning methods [115, 116]. The underlying idea of these methods is that
a generative model trained to reconstruct healthy images will have a high reconstruction error if ab-
normal images are input at test time, allowing them to be identified. [115] harnessed GANs and
employed a U-Net type autoencoder to reconstruct images (as the generator), and a CNN-based dis-
criminator and encoder. The discriminator received both reconstructed images and real images to
provide supervisory signal for realistic reconstruction through adversarial training. Similarly, [116]
proposed an autoencoder for abnormality detection which was trained only with healthy images. In
this case the autoencoder was tailored to not only reconstruct healthy images but also produce un-
certainty predictions. By leveraging uncertainty, the authors proposed a normalized reconstruction

error to distinguish abnormal CXR images from normal ones.
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Table 2.5: Image Generation Studies (Section 2.4.3).
Tasks: DA=Domain Adaptation, IC=Interval Change, IG=Image Generation,
IL=Image-level Predictions, LC=Localization, PR=Preprocessing, RE=Registration,
SE=Segmentation, SR=Super Resolution. Bold font in tasks implies that this addi-
tional task is central to the work and the study also appears in another table in this
paper.
Labels: BS=Bone Suppression, C=ChestX-Ray1l4, CL=Clavicle, CM=Cardiomegaly,
CV=COVID, E=Edema, H=Heart, L=Lung, LO=Lesion or Opacity, PE=Effusion,
PT=Pneumothorax, T=Triage/Abnormal, TB=Tuberculosis, Z=Other.
Datasets: C=ChestX-rayl4, CC=COVID-CXR, J=JSRT+SCR, MO=Montgomery,
O=Open-i, PL=PLCO, PP=Ped-pneumonia, PR=Private, RP=RSNA-Pneumonia,
S=Shenzen, SM=Simulated CXR from CT, X=CheXpert.
Citation Method Other Labels Datasets
Tasks
[283] Attention-based network and CXR synthesis  SEIG L J,MO,PR
process for data augmentation
[284] Conditional GANs for multi-class segmenta- SE CLH,L ]
tion of heart,clavicles and lungs
[285] Processing method to produce scatter- SE LO SM
corrected CXRs and segments masses with
U-Net
[112] Combines classification loss and autoencoder  IL,SE T MO0, S
reconstruction loss
[113] Wasserstein GAN to permute diseased radio- IL,LC Z PR
graphs to appear healthy
[114] Novel GAN model trained with healthy and IL PE SM, X
abnormal CXR to predict difference map
[115] GANs with U-Net autoencoder and CNN dis- IL T C
criminator and encoder for one-class learning
[116] Autoencoder uses uncertainty for reconstruc- IL T PPRP
tion error in one-class learning setting
[349] Conditional GAN based DA for image registra- DA,RESE L C
tion using segmentation guidance
[350] Adversarial based method adapting new do- DA,IL CM PL
mains for abnormality classification
[351] Proposes a patch-based CNN super resolution SR z J

method

continued on the next page
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continued from the previous page

Citation Method Other Labels Datasets
Tasks

[352] Generates high resolution CXRs using multi- SR Z (@]
scale, patch based GANs

[353] Novel GAN model with sketch guidance mod- SR Z PP
ule for high resolution CXR generation

[354] AutoEncoder for bone suppression and seg- SEPR BS ]
mentation with statistical similarity losses

[355] Uses neural architecture search to find a dis- SE HL J,PR
criminator network for GANs

[356] Proposes an iterative gradient based input pre-  SE L S
processing for improved performance

[357] Learns transformations to register two CXRs, RE,IC Z PR
uses the difference for interval change

[358] Generates bone and soft tissue (dual energy) PR BS PR
images from CXRs

[359] Proposes an CNN with multi-resolution de- PR BS PR
composition for bone suppression images

[360] U-Net for bone generation with CT projection PR BS SM
images, used for CXR enhancement

[348] U-Net based network to generate dual energy PR Z PR
CXR

[361] GAN integrates edges of ribs and clavicles to PR z PR
guide DES-like images generation

[362] Generates diseased CXRs, evaluates their real- LC C C
ness with radiologists and trains models

[363] Novel CycleGAN model to decompose CXR IL C C,PR,SM
images incorporating CT projection images

[346] Uses DCGAN model to generate CXR with ab-  IL CM,E,PE, PR
normalities for data augmentation PT

[364] U-Net based architecture to decompose CXR  IL TB PR
structures, application to TB detection

[365] Two DCGAN trained with normal and abnor- IL Z PL
mal images for data augmentation

[347] Novel conditional GAN using lung function IL z PR
test results to visualize COPD progression

[366] Conditional GAN and two variational autoen- PR
coders designed for CXR generation

[367] Novel reconstruction algorithm for CXR en- PR

hancement

continued on the next page
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continued from the previous page

Citation Method Other Labels Datasets
Tasks

[275] Bone shadow suppression using conditional BS J
GANS with dilated U-Net variant

[368] Generates CXRs from CT to train CNN for BS PR
bone suppression

[369] Generates COVID-19 CXR images to improve cv CC,RP
network training and performance

[279] 2D-t0-3D encoder-decoder network for gener- 4 PR

ating 3D spine models from CXR studies
[370] Generates normal from abnormal CXRs, uses 4 PR
the deformations as disease evidence

end of table

The most widely studied subject in the image generation literature is image enhancement. Several
researchers investigated bone suppression [275, 354, 359-361, 368] and lung enhancement [360, 363]
techniques to improve image interpretability. A number of works [275, 361] employed GANSs to gen-
erate bone-suppressed images. For example, [361] employed GANSs and leveraged additional input
to the generator to guide the dual-energy subtraction (DES) soft-tissue image generation process. In
this study, bones, edges and clavicles were first segmented by a CNN model, and the resulting edge
maps were fed to the generator with the original CXR image as prior knowledge. For building a deep
learning model for bone suppressed CXR generation, the paired dual energy (DE) imaging is needed,
which is not always available in abundance. Several other studies [360, 363] addressed this by lever-
aging digitally reconstructed radiographs for enhancing the lungs and bones in CXR. For instance,
[363] trained an autoencoder for generating CXR with bone suppression and lung enhancement, and
the knowledge obtained from DRR images were integrated through the encoder.

2.4.4 Domain Adaptation

Most of the papers surveyed in this work train and test their method on data from the same domain.
This finding is inline with the previously reported studies [336, 371] and highlights an important con-
cern: most of the performance levels reported in the literature might not generalize well to data from
other domains [372]. Several studies [223, 372, 373] demonstrated that there was a significant drop
in performance when deep learning systems were tested on datasets outside their training domain
for a variety of CXR applications. For example, [373] investigated the performance of a DenseNet
model for abnormality classification on CXR images using 10 diverse datasets varied by their loca-
tion and patient distributions. The authors empirically demonstrated that there was a substantial
drop in performance when a model was trained on a single dataset and tested on the other domains.
[372] observed a similar finding for pneumonia detection on chest radiographs.

Domain adaptation (DA) methods investigate how to improve the performance of a model on a
dataset from a different domain than the training set. In CXR analysis, DA methods have been investi-
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gated in three main settings; adaptation of CXR images acquired from different hardware, adaptation
of pediatric to adult CXR and adaptation of digitally reconstructed radiographs (generated by aver-
age intensity projections from CT) to real CXR images. All domain adaptation studies, and studies on
generalization reviewed in this work are detailed in Table 2.6.

Table 2.6: Domain Adaptation Studies (Section 2.4.4).

Tasks: IG=Image Generation, IL=Image-level Predictions, RE=Registration,
SE=Segmentation. Bold font in tasks implies that this additional task is central
to the work and the study also appears in another table in this paper.

Labels: C=ChestX-Ray14, CL=Clavicle, CM=Cardiomegaly, H=Heart, L=Lung,
M=MIMIC-CXR, PM=Pneumonia, R=Rib, TB=Tuberculosis, Z=Other.

Datasets:  C=ChestX-rayl4, J=JSRT+SCR, M=MIMIC-CXR, MO=Montgomery,
O=Open-i, PL=PLCO, PP=Ped-pneumonia, PR=Private, RP=RSNA-Pneumonia,
S=Shenzen, SM=Simulated CXR from CT.

Citation Method Other Labels Datasets
Tasks

[286] MUNIT based DA model for lung segmenta- SE CLH,L ]
tion

[287] Adpversarial training of lung and heart segmen-  SE M J,PR
tation for DA

[288] CycleGAN guided by a segmentation module  SE HLZ PR
to convert CXR to CT projection images

[289] CycleGAN based DA model with semantic ~SE L MO
aware loss for lung segmentation

[290] Conditional GANs based DA for bone segmen-  SE R SM
tation

[117] Continual learning methods to classify data IL CM C,M
from new domains

[118] CycleGAN model to adapt adult to pediatric ~ IL PM PP,RP
CXR for pneumonia classification

[349] Conditional GAN based DA for image registra- IG,RESE L C
tion using segmentation guidance

[350] Adversarial based method adapting new do- IG,IL CcM PL
mains for abnormality classification

[372] Assessment of generalization to data from dif- IL PM Cc,0
ferent institutes

[374] Demonstrates the effect of training and teston 1L TB S

data from different domains

Most of the research on DA for CXR analysis harnessed adversarial-based DA methods, which ei-
ther use generative models (e.g., CycleGANs) or non-generative models to adapt to new domains
using a variety of different approaches. For example, [287] investigated an unsupervised domain
adaptation based on adversarial training for lung and heart segmentation. In this approach, a dis-

criminator network, ResNet, learned to discriminate between segmentation predictions (heart and
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lung) from the target domain and reference standard segmentations from the source domain. This
approach forced the FCN-based segmentation network to learn domain invariant features and pro-
duce realistic segmentation maps. A number of works [288, 289, 375] addressed unsupervised DA
using CycleGAN-based models to transform source images to resemble those from the target do-
main. For example, [288] used a CycleGAN-based architecture to adapt CXR images to digitally
reconstructed radiographs (DRR) (generated from CT scans), for anatomy segmentation in CXR. A
CycleGAN-based model was employed to convert the CXR image appearance and a U-Net variant
architecture to simultaneously segment organs of interest. Similarly, CycleGAN-based models were
adapted to transfer DRR images to resemble CXR images for bone segmentation [290] and to trans-
form adult CXR to pediatric CXR for pneumonia classification [115].

Unlike most of the studies which utilized DA methods in unsupervised setting, a few studies con-
sidered supervised and semi-supervised approaches to adapt to the target domain. [286] employed
a MUNIT-based architecture [376] to map target images to resemble source images, subsequently
feeding the transformed images to the segmentation model. The authors investigated both unsuper-
vised and semi-supervised approaches in this work, where some labels from the target domain were
available. Another work by [117] studied several recently proposed continual learning approaches,
namely joint training, elastic weight consolidation and learning without forgetting, to improve the
performance on a target domain and to mitigate effectively catastrophic forgetting for the source
domain. The authors evaluated these methods for 2 publicly available datasets, ChestX-ray14 and
MIMIC-CXR, for a multi-class abnormality classification task and demonstrated that joint training
achieved the best performance.

2.4.5 Other Applications

In this section we review articles with a primary application that does not fit into any of the categories
detailed in Sections 2.4 to 2.4.4 (14 studies). These works are detailed fully in Table 2.7.

Image retrieval is a task investigated by a number of authors [100, 385-390]. The aim of image re-
trieval tools is to search an image archive to find cases similar to a particular index image. Such
algorithms are envisaged as a tool for radiologists in their daily workflow. [387] proposed a ranked
feature extraction and hashing model, while [390] proposed to use saliency maps as a similarity mea-
sure.

Another task that did not belong to previously defined categories is out-of-distribution detection.
Studies working on this [382-384] aim to verify whether a test sample belongs to the distribution of
the training dataset as model performance is otherwise expected to be sub-optimal. [384] propose
using the training dataset statistics on different layers of a deep learning model and applying Maha-
lanobis distance to see the distance of a sample from the training dataset. [383] approach the problem
differently and train an unsupervised autoencoder. Later they use the feature encodings extracted
from CXRs to define a database of known encodings and compare new samples to this database.
Report generation is another task which has attracted interest in deep learning for CXR [377-380].
These studies aim to partially automate the radiology workflow by evaluating the chest X-ray and
producing a text radiology report. For example, [377] first determines the findings to be reported and
then makes use of a large dataset of existing reports to find a similar case. This case report is then
customized to produce the final output.

One other task of interest is image registration [381]. This task aims to find the geometric transforma-
tion to convert a CXR so that it anatomically aligns with another CXR image or a statistically defined

shape. The clinical goal of this task is typically to illustrate interval change between two images. De-
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Table 2.7: Other Studies (Section 2.4.5).
Tasks: IL=Image-level Predictions, IR=Image Retrieval, OD=Out-of-Distribution,

RE=Registration, RG=Report Generation, RP=Report Parsing. Bold font in tasks im-

plies that this additional task is central to the work and the study also appears in

another table in this paper.
Labels: C=ChestX-Ray14, H=Heart, L=Lung, Q=Image Quality, T=Triage/Abnormal,
TB=Tuberculosis, X=CheXpert, Z=Other.
Datasets: ~ C=ChestX-rayl4, J=JSRT+SCR, M=MIMIC-CXR, MO=Montgomery,
O=Open-i, PR=Private, S=Shenzen, X=CheXpert.

Citation Method Tasks Labels Datasets

[100] Uses a database of the intermediate ResNet-50  IL,IR TB MO,S
features to find similar studies

[377] Generate reports by classifying CXRs, and RG,RP z CM
finding and modifying similar reports

[378] Extracts features from Chest X-rays and uses RG,IL C c,0
another network to write reports.

[379] Generates radiology reports by training on  RG,IL z 0O,X
classification labels and report text

[380] A novel recurrent generation network with at- RG Z (@]
tention mechanism

[381] Anatomical priors to improve deep learning RE HL JMO,S
based image registration

[382] Proposes a method to reject out-of-distribution ~ OD,IL z C
images during test time

[383] Proposes to detect anomalies based on a OD QT C
dataset of autoencoder features

[384] Mahalanobis distance on network layers to de- OD Z C
tect out-of-distribution samples

[385] Compares the extracted feature and classifica- IR PR
tion similarities for ranking

[386] Uses extracted features to cluster similarly la- IR CX CX
beled CXRs across datasets

[387] Proposes a learnable hash to retrieve CXRs IR Z C
with similar pathologies

[388] Residual network to retrieve images with sim- IR Z (@]
ilar abnormalities

[389] Combines features extracted from CXRs and IR Z PR
metadata for image retrieval

[390] Proposes to use the saliency maps as a similar- IR Z X

ity measure for image retrieval
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tecting new findings, tracking the course of a disease, or evaluating the efficacy of a treatment are
among the many uses of image registration [391]. To that end, [381] aims to create an anatomically
plausible registration by using the heart and lung segmentations to guide the registration process.

2.5 Commercial Products

Computer-aided analysis of CXR images has been researched for many years, and in fact CXR was
one of the first modalities for which a commercial product for automatic analyis became available
in 2008. In spite of this promising start, and of the advances in the field achieved by deep learning,
translation to clinical practice, even as an assistant to the reader, is relatively slow. There are a variety
of legal and ethical considerations which may partly account for this [392, 393], however there is
growing acceptance that artificial intelligence (AI) products have a place in the radiological workflow
and attempts are underway to understand and address the issues to be overcome [394]. In this section
we examine the currently available commercial products for CXR analysis.

An up to date list of commercial products for medical image analysis [395, 396] was searched for
products applicable to chest X-ray. One product was excluded as it is not specifically a CXR diagnostic
tool, but a texture analysis product for many modalities. The 21 remaining products are listed in
Table 2.8. A number of these products have already been evaluated in peer-reviewed publications, as
shown in Table 2.8 and it is beyond the scope of this work to make an assessment of their performance.
All of the listed products are CE marked (Europe) and/or FDA cleared (United States) and are thus
available for clinical use [395, 396].

The commercial products include applications for a wide range of abnormalities, with 6 of them re-
porting results for more than 5 (and up to 30) different labels. The most commonly addressed task
is pneumothorax identification (8 products), followed by pleural effusion (7), nodules (6) and tuber-
culosis (4). In contrast with the literature, which is dominated by image-level prediction algorithms,
17 of 21 products in Table 2.8 claim to provide localization of one or more abnormalities which they
are designed to detect, usually visualized with heatmaps or contouring of abnormalities. Two further
products are designed for generation of bone suppression images, one for interval change visualiza-
tion and one for identification and reporting of healthy images. Products contribute differently to the
workflow of the radiologist. Five products focus on detecting acute cases to prioritize the worklist
and speed up time to diagnosis. Draft reports are produced by five other products, for either the nor-
mal (healthy) cases only or for all cases. The production of draft reports, like workflow prioritization,
is aimed at optimizing the speed and efficiency of the radiologist.

2.6 Discussion

In this work we have detailed datasets, literature and commercial products relevant to deep learn-
ing in CXR analysis. For researchers entering the field this study categorizes the existing data and
literature for their ease of reference. In this section we further discuss how future research should be
directed for higher quality and better clinical relevance.

It is clear that CXR deep learning research has thrived on the release of multiple large, public, la-
beled datasets in recent years, with 210 of 296 publications reviewed here using one or more public
datasets in their research. The number of publications in the field has grown consistently as more
public data becomes available, as demonstrated in Figure 2.2. However, although these datasets are
extremely valuable, there are multiple caveats to be considered in relation to their use, as described in
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Table 2.8: Commercial Products for CXR analysis. (Section 2.5)

Labels:
LO=Lesion

or Opacity,

CM=Cardiomegaly,

T=Triage/Abnormal, PM=Pneumonia, CV=COVID, TB=Tuberculosis,
ND=Nodule,

PE=Effusion,

PT=Pneumothorax, TU=Catheter or Tube, LC=Lung Cancer, BS=Bone Suppres-
sion, E=Edema, Z=Other
Output: LOC=Localization, PRI=Prioritization, REP=Report, SCOR=Scoring

Company

Product

Literature 4

most recent)

Labels (Total num-
ber)

Output

Siemens Health-
ineers

Samsung
Healthcare
Thirona

Thirona

Oxipit

Arterys

Quibim

GE
InferVision
JLK
Lunit
qure.ai
Digitec
VUNO
Riverain Tech-
nologies
Riverain Tech-
nologies
Riverain Tech-
nologies
Riverain Tech-
nologies
behold.ai
Zebra Medical
Vision
Zebra
Vision

Medical

Al-Rad Companion
Chest X-Ray

Auto Lung Nodule
Detection
CAD4COVID-XRay
CADA4TB

ChestEye CAD
Chest | MSK Al
Chest X-Ray Classi-
fier

Critical Care Suite
InferRead DR Chest
JLD-O2K
Lunit
CXR
gXR

INSIGHT

TIRESYA

VUNO Med-Chest
X-Ray

ClearRead Xray -
Bone Suppress
ClearRead Xray -
Compare
ClearRead Xray -
Confirm
ClearRead Xray -
Detect

Red Dot

Triage Pleural Effu-
sion

Triage Pneumotho-
rax

[397]
[398]
[399]

[400-403]

[404]

[109, 166, 402,
405]
[402, 406-408]

[409]

[410-413]

[411, 414, 415]

LOPEPT Z (5)

ND (1)

CV (1)

TB (1)

T (1)

LO, ND, PE, PT (4)
PM CM ND PE PT
EZ (16)

PT (1)
TBPEPTLC Z (9)
LC Z (16)

TB CM ND PE PT
Z(11)

TCV TB Z (30)

BS (1)

LO ND PE PT Z
()]

BS(1)

LC(1)

TU(1)

ND LC (2)

TPT (2)
PE

PT

LOC, SCOR, REP
LOC

LOC, SCOR
LOC, SCOR

REP (healthy)
LOC, SCOR, PRI
LOC, SCOR, REP

LOC, SCOR

LOC, SCOR

LOC, SCOR

LOC, SCOR, PRI,
REP

LOC, SCOR, PRI,
REP
Bone Suppressed
Image

LOC, SCOR

Bone Suppressed
Image
Subtraction Image

LOC
LOC

LOC
LOC, PRI

LOC, PRI
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Section 2.3. In particular, the caution required in the use of NLP-extracted labels is often overlooked
by researchers, especially for the evaluation and comparison of models. For accurate assessment of
model performance, the use of ‘gold-standard’ test data labels is recommended. These labels can be
acquired through expert radiological interpretation of CXRs (preferably with multiple readers) or via
associated CT scans, laboratory test results, or other appropriate measurements.

Other important factors to be considered when using public data include the image quality (if it
has been reduced prior to release, is this a limiting factor for the application?) and the potential
overlap between labels. Although a few publications address label dependencies, this is most often
overlooked, frequently resulting in the loss of valuable diagnostic information.

While the increased interest in CXR analysis following the release of public datasets is a positive
development in the field, a secondary consequence of this readily available labeled data is the ap-
pearance of many publications from researchers with limited experience or understanding of deep
learning or CXR analysis. The literature reviewed during the preparation for this paper was very
variable in quality. A substantial number of the papers included offer limited novel contributions
although they are technically sound. Many of these studies report experiments predicting the labels
on public datasets using off-the-shelf architectures and without regard to the label inaccuracies and
overlap, or the clinical utility of such generic image-level algorithms. A large number of works were
excluded for reasons of poor scientific quality (142). In 112 of these the construction of the dataset
gave cause for concern, the most common example being that the training dataset was constructed
such that images with certain labels came from different data sources, meaning that the images could
be easily differentiated by factors other than the label of interest. In particular, a large number of pa-
pers (61) combined adult COVID-19 subjects with pediatric (healthy and other-pneumonia) subjects
in an attempt to classify COVID-19. Other reasons for exclusion included the presentation of results
optimized on a validation set (without a held-out test set), or the inclusion of the same images mul-
tiple times in the dataset prior to splitting train and test sets. This latter issue has been exacerbated
by the publication of several COVID-19 related datasets which combine data from multiple public
sources in one location, and are then themselves combined by authors building deep-learning sys-
tems. Such concerns about dataset construction for COVID-19 studies have been discussed in several
other works [125, 416-419].

Although a broad range of off-the-shelf architectures are employed in the literature surveyed for this
review, there is little evidence to suggest that one architecture outperforms another for any specific
task. Many papers evaluate multiple different architectures for their task but differences between the
various architecture results are typically small, proper hyperparameter optimization is not usually
performed and statistical significance or data-selection influence are rarely considered. Many such
evaluations use inaccurate NLP-extracted labels for evaluation which serves to muddy the waters
even further.

While it is not possible to suggest an optimal architecture for a specific task, it is observed that en-
sembles of networks typically perform better than individual models [276]. At the time of writ-
ing, most of the top-10 submissions from the public challenges (CheXpert [6], SIIM-ACR [77], and
RSNA-Pneumonia [73]) consist of network ensembles. There is also promise in the development of
self-adapting frameworks such as the nnU-Net [420] which has achieved an excellent performance
in many medical image segmentation challenges. This framework adapts specifically to the task at
hand by selecting the optimal choice for a number of steps such as preprocessing, hyperparameter
optimization, architecture etc., and it is likely that a similar optimization framework would perform
well for classification or localization tasks, including those for CXR images.

In spite of the pervasiveness of CXR in clinics worldwide, translation of Al systems for clinical use has
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been relatively slow. Apart from legal and ethical considerations regarding the use of Al in medical
decision making [392, 393], a discussion which is outside the scope of this work, there are still a
number of technical hurdles where progress can be made towards the goal of clinical translation.
Firstly, the generalizability of Al algorithms is an important issue which needs further work. A large
majority of papers in this review draw training, validation and test samples from the same dataset.
However, it is well known that such models tend to have a weaker performance on datasets from
external domains. If access to reliable data from multiple domains remains problematic then domain
adaptation or active learning methods could be considered to address the generalization issue. An
alternative method to utilize data from multiple hospitals without breaching regulatory and privacy
codes is federated learning, whereby an algorithm can be trained using data from multiple remote
locations [421]. Further research is required to determine how this type of system will work in clinical
practice.

A final issue for deep learning researchers to consider is frequently referred to as ‘explainable AI’. Sys-
tems which produce classification labels without any indication of reasoning raise concerns of trust-
worthiness for radiologists. It is also significantly faster for experts to accept or reject the findings of
an Al system if there is some indication of how the finding was reached (e.g., identification of nod-
ule location with a bounding box, identification of cardiac and thoracic diameters for cardiomegaly
detection). Every commercial product for detection of abnormality in CXR provides a localization
feature to indicate the abnormal location, however the literature is heavily focused on image-level
predictions with relatively few publications where localization is evaluated. Many studies provide an
unvalidated visualization of the area of interest [128, 145, 155, 165, 171, 263, 272], using methods like
grad-cam [422] or saliency maps [423] which output heatmaps indicating which regions are impor-
tant in the network result. Although these heatmaps may be useful for conditions that are indicated
by localized patterns or signs, the lack of comprehensive evaluation of their accuracy is problematic.
Furthermore, many conditions may be difficult to explain with a heatmap, for example emphysema,
which is identified by irregular radiolucency throughout the entire lung (among other features). One
possible way to achieve clinically useful systems in such cases is to label an image (e.g. positive or
negative) for a series of known radiological features relating to the condition being identified, or to
use other (e.g. segmentation) information in the classification [92].

Beyond the resolution of technical issues, researchers aiming to produce clinically useful systems
need to consider the workflow and requirements of the end-user, the radiologist or clinician, more
carefully. At present, in the industrialized world, it is expected that an Al system will act, at least
initially, as an assistant to (not a replacement for) a radiologist. As a 2D image, the CXR is already
relatively quickly interpreted by a radiologist, and so the challenge for Al researchers is to produce
systems that will save the radiologist time, prioritize urgent cases or improve the sensitivity /speci-
ficity of their findings. Image-level classification for a long list of (somewhat arbitrarily defined)
labels is unlikely to be clinically useful. Reviewing such a list of labels and associated probabilities
for every CXR would require substantial time and effort, without a proportional improvement in di-
agnostic accuracy. A simple system with bounding boxes indicating abnormal regions is likely to be
more helpful in directing the attention of the radiologist and has the potential to increase sensitivity
to subtle findings or in difficult regions with many projected structures. Similarly, a system to quickly
identify normal cases has the potential to speed up the workflow as identified by multiple vendors
and in the literature [143, 246, 248].

To further understand how Al could assist with CXR interpretation, we first must consider the current
typical workflow of the radiologist, which notably involves a number of additional inputs beyond
the CXR image, that are rarely considered in the research literature. In most scenarios (excluding bed-
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side/ AP imaging) both a frontal and lateral CXR are acquired as part of standard imaging protocol,
to reduce the interpretation difficulties associated with projected anatomy. Very few studies included
in this review made use of the lateral image, although there are indications that it can improve clas-
sification accuracy [224]. Furthermore, the reviewing radiologist has access to the clinical question
being asked, the patient history and symptoms and in many cases other supporting data from blood
tests or other investigations. All of this information assists the radiologist to not only identify the vis-
ible abnormalities on CXR (e.g., consolidation), but to infer likely causes of these abnormalities (e.g.,
pneumonia). Incorporation of data from multiple sources along with the CXR image information will
almost certainly improve sensitivity and specificity and avoid an algorithm erroneously suggesting
labels which are not compatible with data from external sources. Another extremely important and
time-consuming element in the radiological review of CXR is comparison with previous images from
the same patient, to assess changes over time. Interval change is a topic studied by very few authors
and addressed by only a single commercial vendor (by provision of a subtraction image). Innovative
Al systems for the visualization and quantification of interval change with one or more previous im-
ages could substantially improve the efficiency of the radiologist. Finally, the radiologist is required
to produce a report as a result of the CXR review, which is another time-consuming process addressed
by very few researchers and just a handful of commercial vendors. A system which can convert radi-
ological findings to a preliminary report has the potential to save time and cost for the care provider.
In many areas of the world, medical facilities that do perform CXR imaging do not have access to ra-
diological expertise. This presents a further opportunity for Al to play a role in diagnostic pathways,
as an assistant to the clinician who is not trained in the interpretation of CXR. Researchers and com-
mercial vendors have already identified the need for Al systems to detect signs of tuberculosis (TB),
a condition which is endemic in many parts of the world, and frequently in low-resource settings
where radiologists are not available. While such regions of the world could potentially benefit from
Al systems to detect other conditions, it is important to identify in advance what conditions could be
feasibly both detected and treated in these areas where resources are severely limited.

The findings of this work suggest that while the deep learning community has benefited from large
numbers of publicly available CXR images, the direction of the research has been largely determined
by the available data and labels, rather than the needs of the clinician or radiologist. Future work, in
data provision and labelling, and in deep learning, should have a more direct focus on the clinical
needs for Al in CXR interpretation. More accurate comparison and benchmarking of algorithms
would be enabled by additional public challenges using appropriately annotated data for clinically
relevant tasks.
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3.1 Introduction

Recent literature on the automatic interpretation of chest X-ray (CXR) images has been dominated by
methods which learn to predict labels indicating the presence or absence of a specific abnormality in
the CXR [6, 146, 189]. Such labels are frequently referred to as ‘image-level’ labels since they refer to
the image as a whole and provide no more specific information, for example, regarding the location
or severity of the abnormality. The popularity of this method of analysis is likely related to the recent
release of numerous large public datasets, each of which provides multiple image-level labels for a
variety of abnormalities [6, 34, 35, 339]. However, image-level labels may not be the optimal way to
learn to recognise specific abnormalities. Since these labels provide no information on the shape or
location of the abnormality, it is likely that a very large number of labelled samples will be needed to
train a supervised-learning system. Furthermore, the trained system provides no insight or intuition
into how it infers labels. Such a ‘black-box’ system is more difficult to trust and less likely to find
acceptance in a clinical setting.

In this work, we investigate how a more intuitive and interpretable segmentation-based method to
detect abnormality compares with the state of the art in deep-learning using image-level labels. The
abnormality investigated in this case is cardiomegaly, one of the most frequently mentioned find-
ings in radiology reports for chest radiography exams. Cardiomegaly refers to an enlargement of
the heart and can be used as a marker for heart disease [424, 425]. Due to its wide availability, high
cost-effectiveness, and low radiation dose, chest X-rays are often the first imaging study acquired
and can be utilized as a fast screening tool for cardiomegaly. In order to detect this condition, ra-
diologists examine the cardiac silhouette and calculate the cardiothoracic ratio (CTR), a commonly
used radiographic index measured as the ratio of maximum horizontal cardiac diameter to the maxi-
mum horizontal thoracic diameter [426] (Figure 3.1). A CTR greater than 0.5 is the generally accepted
threshold considered to indicate an enlarged cardiac silhouette, referred to as cardiomegaly.

A vast number of studies have addressed the cardiomegaly detection task along with other abnor-
malities in a multi-label classification scenario [146, 189, 427-429], predicting all available labels from
the datasets used. Many of these works use the ChestX-ray14 dataset [339] which was released by
the National Institutes of Health in 2017 with 112,120 CXRs, each labelled with binary labels for 14
different abnormalities. The labels are automatically extracted from the text analysis of radiology re-
ports. These studies employed widely used state-of-the-art classification architectures, and applied
slightly different augmentation and preprocessing techniques to tackle the classification problem. In
particular, Baltruschat et al. [146] investigated the performance of different network architectures,
namely ResNet-38, ResNet-50, and ResNet-101, for classification of 14 abnormalities on the ChestX-
rayl4 dataset [339]. They achieved a similar level of performance as other recently published stud-
ies [427, 428], but all these studies were limited due to their evaluation on the noisy held-out evalua-
tion set where the labels were extracted from radiology reports using natural language processing [86].
In order to address this, Rajpurkar et al. [189] annotated a held-out evaluation set from ChestX-ray14
with the majority vote of 3 radiologists (not publicly available), and employed a 121-layer DenseNet
architecture. The images were resized to 512 x 512 and normalized with the mean and standard
deviation of images in the ImageNet training set before being fed into the network. They reported
state-of-the-art results where the proposed algorithm achieved radiologist-level performance on 11
abnormalities in their held-out evaluation set, however, performed significantly worse than the radi-
ologists for 3 abnormalities, one of which was cardiomegaly.

Some earlier works attempted to detect cardiomegaly through segmentation-based solutions via mea-

suring CTR. Ginneken et al. [430] investigated the performance of three supervised segmentation
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methods for anatomical segmentations, namely active shape models, pixel classification, and active
appearance models. They showed that both active shape models and active appearance models
reached a mean absolute error of 0.012 for cardiothoracic ratio measurement on their 247 held-out
set. Candemir et al. [431] proposed a graph-cut lung field segmentation method which was then
adapted to localize the heart region using heart models in order to measure the CTR. They reported
0.77 sensitivity and 0.76 specificity for the detection of cardiomegaly on 500 held-out evaluation im-
ages. Similarly, Dallal et al. [432] proposed a method that employed the same lung segmentation
method proposed by Candemir et al. [431] and using the Harris operator to detect the heart bound-
aries from the resulting lung field segmentation in order to measure the CTR. They reported a root
mean squared error of 0.06 on their 103 held-out images. Recent work by Li et al. [94] used a deep
learning system for heart and lung field segmentation and showed improved performance for de-
tection of cardiomegaly achieving a sensitivity of 0.97 and specificity of 0.92 on their 500 held-out
set.

This study is the first to directly compare segmentation-based and classification-based solutions for
cardiomegaly detection. We implement state-of-the-art deep learning methods for heart and lung
segmentation, through which we calculate CTR directly, and also for image-level classification of
cardiomegaly. Hyperparameter optimization is applied in all cases to ensure the best possible solu-
tion is obtained. We investigate the performance differences between the segmentation-based and
classification-based systems for cardiomegaly detection, and the effect of varying the training-set size

in each case.

146.86

266.72

Figure 3.1: Measurement of the cardiothoracic ratio in chest radiographs. Maximum
horizontal thoracic diameter = 266.72 (in mm), maximum horizontal cardiac diameter
= 146.86 (in mm), CTR = 0.55 (146.86/266.72). CTR > 0.5 and therefore this is a case
of cardiomegaly.
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3.2 Data

The data used in this study was retrospectively obtained from the publicly available ChestX-ray14
dataset [339]. It is composed of 112,120 frontal view chest radiographs from 30,805 patients stored
as 8-bit grayscale images with dimensions of 1024x1024. The dataset was automatically labeled from
text reports, indicating the presence or absence of 14 different thoracic abnormalities including car-
diomegaly.

Heart enlargement, i.e. cardiomegaly, cannot reliably be assessed on AP view chest radiographs since
the distance between the X-ray source and the patient is non-standardized on AP view, which causes
a variable magnification of the heart. Hence, we selected only posteroanterior (PA) studies. This
resulted in 67,310 PA images of 28,868 patients, 44% male, 41% abnormal.

65,205
training
images
67,310 2000random | 5ig14 visually inspected|
PA CXR images PA CXR images PA CXR images

112,120 CXR
images

400 random
PA CXR images
(200 cardiomegaly, 200
no cardiomegaly)

Held-out Evaluation Dataset

Class-method Training Dataset

Seg-method Training Dataset

367 Applicable PA CXR images.

367 CTR annotations.

65,205 (3000 validation) PA CXR images.

65,205 Image-level cardiomegaly labels.

778 (178 validation) Applicable PA CXR images.

778 Heart and lung masks.

367 Patients. 28,468 Patients. 758 Patients.

Figure 3.2: Flowchart of the data selection procedure. CXR = chest x-ray, PA = pos-
teroanterior, CTR = cardiothoracic ratio, class-method = image-level cardiomegaly
classification, seg-method = heart and lung segmentation. Images are from the pub-
licly available ChestX-ray14 dataset.

3.2.1 Held-out Evaluation Set

For the final model evaluation, we created a class-balanced set of 400 images (Figure 3.2). Using
the labels provided we randomly sampled 200 cases with cardiomegaly (200/1563) and 200 without
cardiomegaly (200/65,747).

A chest radiologist with over 30 years of experience and another chest radiologist with over 5 years
of experience independently annotated the maximal horizontal cardiac and thoracic diameters on all
evaluation cases. Cases where radiologists could not reliably locate the heart borders were excluded
from the study, leaving 367 cases. The annotations of the more experienced radiologist are used as
the reference standard throughout this work, while the other radiologist is used as a second reader,

for comparison with our automated methods.
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3.2.2 Training & Validation Set

Classification-based Method

After the selection of only posteroanterior (PA) studies as seen in Figure 3.2, there was a total of 65,205
chest radiographs from 28,468 patients (excluding the patients in held-out evaluation set). This set
was used as our training&validation set (3000 for validation), using the publicly available image-level
cardiomegaly labels for training the classification-based method.

Segmentation-based Method

To develop deep neural networks to segment the heart and lungs we first set out to obtain manual
segmentations of heart and lung boundaries. In order to select challenging cases for annotation of
heart and lung boundaries, we developed a standard U-net [49] architecture which segments the
heart and lung area, trained on a separate publicly available dataset, namely JSRT [72]. The JSRT
dataset consists of 247 images from scanned films with a resolution of 2048x2048 and 12-bit depth.
The reference standard for the heart and lung boundaries of those images are provided with the SCR
dataset [430]. Our deep learning system was trained on a randomly selected 200 cases (200/247) and
the remaining 47 cases were used as the validation set. The images were scaled to a dimension of 256
x 256, and the network was trained with Adam optimizer with a learning rate of 1075.

Further, a set of 2000 radiographs was randomly selected from the 65,205 remaining images in the
ChestX-ray14 dataset (Figure 3.2). The JSRT-trained system was tested on those cases and visual in-
spection was used to select 814 cases most of which the algorithm performed sub-optimally. Those
814 cases were presented to a medical student and a computer scientist (with experience analyzing
chest radiographs) who were instructed to annotate the heart and lung areas. An experienced radiolo-
gist was consulted for difficult cases and cases where the heart boundaries could not be inferred were
excluded. This resulted in 778 radiographs (178 for validation) with lung and heart area annotations
to be used as the segmentation training & validation set.

3.3 Methods

Two approaches for cardiomegaly detection are described in this section: firstly a classification ap-
proach based on image level labels (class-method) and secondly the segmentation-based approach
(seg-method). For each approach hyperparameter optimization was run for 200 experiments. The
final hyperparameters chosen were those that yielded the highest performance on the validation set.

3.3.1 Classification-based Method

To classify cardiomegaly using image-level labels we implemented three state-of-the-art classification
architectures, ResNet18, ResNet50 [20], and DenseNet121[21], which have achieved excellent perfor-
mance in several computer vision and medical image analysis tasks. Particularly, they were previ-
ously shown to achieve high-performance levels on the ChestX-ray14 dataset with multi-label clas-
sification settings [146, 189]. Training and architecture related hyperparameters of the class-method
were systematically optimized to ensure optimum performance.

All the network architectures were pretrained on ImageNet, and a fully connected layer (2 output

units with SoftMax activations) was added after the global average pooling layer. The networks
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were trained with 65,205 frontal standard chest radiographs (3000 for validation) from ChestX-ray14
dataset, as in Figure 3.2, using categorical cross-entropy loss. Since there is a class imbalance prob-
lem in such a scenario (1156 images with cardiomegaly among 65k), we employed an over-sampling
technique [433] by sampling the positive cardiomegaly cases until the dataset was balanced.

All images underwent per sample mean-standard deviation normalization. Data augmentation was
applied to the training samples by means of inception-like preprocessing [44, 89]. This consists of
applying a random rotation up to 7 degrees, random resizing with a scale in the range [0.7, 1], and
random cropping a 4:3 or 3:4 part of the chest X-ray.

Class-method Hyperparameter Optimization

Several aspects of the hyperparameters were optimized for the class-method for 200 experiments.
Due to the very long training time of the class-method (which can take from 2 hours to 23 hours for
one experiment depending on the network architecture and other hyperparameters), the hyperopt
library [434] was used for 50 experiments. In every experiment during the optimization using hy-
peropt, the model being optimized is trained from scratch with the candidate hyperparameters for a
maximum number of epochs predefined for each model. The selection of the candidate hyperparam-
eters are based on Bayesian optimization, i.e., the hyperparameters were selected based on a trade-off
between the results of the previous iterations, the regions of unexplored hyperparameter space, and
their underlying distribution.

Further, we also optimized the hyperparameters through grid search, which can be run in parallel
unlike hyperopt, for an additional 150 experiments.

The hyperparameters range and the values selected after the optimization can be seen in Table 3.1.
We used three commonly used architectures, DenseNet121, ResNet50, and ResNet18, as a hyperpa-
rameter value in order to optimize the network architecture for our problem settings. Due to mem-
ory constraints, we made sure that the batch size was set to 8 when the network architecture was
DenseNet121 or ResNet50 with an input resolution of 512 otherwise to 16.

Based on the hyperparameter optimization results, after every 100 iterations, the validation loss was
calculated on the whole validation set. If the validation loss did not decrease compared to the previ-
ous step, the learning rate was reduced by multiplying it with 0.2. The model which showed the least
validation error was selected as our final model.

After the hyperparameter optimization, the best model found for the class-method was ResNet50
trained with the largest input resolution of 512. During the experiments, we observed that all the
deep learning models were powerful and achieved a high level of performance and that the most
crucial hyperparameters on performance were learning-related, i.e. learning rate.

The hyperparameter optimization procedure took around 23 days with hyperopt on a PC equipped
with TitanX GPU, and 6 days for grid search optimization (run in parallel) for 150 experiments using
several GPU, TitanX, GTX1080, GTX1080ti, GTXTitanx, and TitanV. The code was implemented in
Tensorflow [435].

3.3.2 Segmentation-based Method

The segmentation-based approach (seg-method) is designed to address the cardiomegaly detection
task on chest radiographs, through segmentation of the heart and lungs and subsequent calculation
of the cardiothoracic ratio (CTR). As illustrated in Figure 3.3, two different models were developed for

heart and lung field segmentation respectively. After segmentation, the maximum horizontal cardiac
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Hyperparameter = Range Best class-model
Optimizer [Adam, SGD, Adagrad, RMSprop] RMSprop
. Learning rate {0.00001, 0.1} 0.012

Learning L
Initializer [Orthogonal, Glorot, He, LeCun] He
LR reduced factor [0.2,0.9] 0.2

. Model [ResNet18, ResNet50, DenseNet121] ResNet50

Architecture .

Input resolution [64, 128, 256, 512] 512

Table 3.1: Optimized hyperparameters for the class-method. The naming convention
follows [436]. LR=learning rate. LR reduced factor indicates the factor to multiply
learning rate with in case of no improvement is seen on the validation set performance

during training.

and thoracic diameters were calculated and used to calculate CTR and hence the presence or absence
of cardiomegaly based on the clinically used CTR threshold of 0.5.

For the development of heart and lung segmentation models, a U-net-like fully convolutional network
architecture [49] was implemented and its training, regularization, and architecture-related hyperpa-
rameters were systematically optimized for the best model selection.

The U-net architecture [49] is a state-of-the-art segmentation network, which has achieved promising
results on a variety of medical image segmentation tasks [432, 437]. It consists of contracting and
expanding paths, where the contracting path is composed of convolution operations decreasing the
spatial resolution and the expanding path consists of transposed convolutions increasing the resolu-
tion. Further, the details that were lost through downsampling operations are recovered through skip
connections which pass feature maps from the contracting to the expanding path.

During training, each model was trained by optimizing the binary cross-entropy loss between the

predicted masks and the reference standard (heart or lung masks), which is formulated as follows:

N
BCE = > uilogis + (1.~ ylog(1 = )

Where N denotes the number of images, y; represents the reference standard for the sample i, ;
represents the model prediction for the sample i.
All images underwent per sample mean-standard deviation normalization. Data augmentation with
random rotation, vertical and horizontal shift, zooming, and brightness was applied to improve sys-
tem robustness. The model was trained for a maximum of 300 epochs, terminating if there was no
improvement in the validation set performance for 20 successive epochs. We selected the epoch with
the best performance on the validation set.

Seg-method Hyperparameter Optimization

Similar to the class-method, the hyperparameters of the seg-method were optimized using the hyper-
opt library [434] for 200 experiments.

The heart and lung segmentation models were optimized separately. A specific set of learning, archi-
tecture and regularization-related parameters [438-441] were selected for the hyperparameter search
as listed in Table 3.2 (with the naming convention as in [436]). The learning rate was the only contin-

uous hyperparameter and was sampled from a log uniform distribution. The other hyperparameters
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Figure 3.3: Illustration of the architecture pipeline for the seg-method. CTR = cardio-
thoracic ratio. Two different models are trained, for heart and lung field segmentation,
respectively. CTR is derived from those predicted segmentation maps by determining

the maximum horizontal thoracic and cardiac diameter and computing the ratio.

were sampled from a discrete uniform distribution between the defined choices.

As a regularization hyperparameter, the selection of dropout (with a probability of 0.5) [441] before
each convolution in the expanding path was introduced as a binary hyperparameter. We used batch
normalization [442] after every convolution layer as it improved performance by enabling more effi-
cient learning.

Due to the limitations of computational memory, some restrictions on the combinations of hyperpa-
rameter settings were required. While a large batch size helps to stabilize the training, the depth of
the network and the number of convolution operations per layer increase the capacity of the network,
and the receptive field and the higher resolution images allow the network to see more details within
the image. However, not all these conditions can be satisfied at the same time due to memory con-
straints. Therefore, the selection of these hyperparameters was conditioned on each other: when the
input resolution was 512, the batch size was chosen as 4, and when the depth of the network was
larger than 4, the number of convolution operations per depth was limited to 2 and the number of
initial feature maps limited to 32.

The best models found after the hyperparameter optimization for both heart and lung segmentation
were U-net architecture with the highest depth 6 as in Table 3.2. During the experiments, we observed
that a larger input resolution yielded better performance.

The hyperparameter optimization procedure took around 13 days for each of the lung and heart
segmentation models on a PC equipped with TitanX GPU and with the code implemented in Keras
[436] with Tensorflow backend [435].

3.4 Experiments

The seg-method and class-method performance were investigated for cardiomegaly classification.
Further, since the seg-method additionally produces a clinically relevant measure, CTR, the perfor-
mance of this system was also evaluated in terms of CTR accuracy.
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Hyperparameter Range Heart model  Lung model
Regularization = Dropout [True, False] False False

Batch size [4,8,16] 4 4

Optimizer [Adam, SGD, Adagrad, RMSprop] =~ Adam RMSprop
Learning Activation function [ReLU, SELU, ELU] SELU ELU

Learning rate {0.00001, 0.01} 0.00018 0.00076

Initializer [Orthogonal, Glorot, He, LeCun] LeCun he_normal

Convolutions per depth  [1, 2, 3] 2 1
Architecture Depth of the Anetwork [2,3,4,5,6] 6 6

Input resolution [64, 128, 256, 512] 512 512

Initial feature maps [32, 64] 32 32

Table 3.2: Hyperparameter optimization for the seg-method. Regularization, learning
and architecture related hyperparameters are optimized and ranges are demonstrated.

The naming convention follows [436].

3.4.1 Cardiomegaly Classification

We evaluate the performance of the two methods and of the second reader by calculating the area
under the receiver operating characteristic curve (AUC). To construct ROC curves the reference stan-
dard CTR values were thresholded at 0.5 in order to obtain binary cardiomegaly labels. The sensitivity
and specificity of each system and the reader performance is then computed at all possible operating
points by applying various thresholds on the CTR output score (second-reader and seg-method) or
SoftMax prediction for cardiomegaly (class-method) in order to produce an ROC curve.

It is important to note that the class-method was trained on a considerably larger dataset compared to
the seg-method. This was done considering the different levels of annotation efforts between the two
methods in order to have a fair comparison, and to investigate the performance of the class-method in
its full potential. To validate our experimental design, we have also included the performance of the
class-method when being trained with the same small dataset as the seg-method in our ROC analysis.

The kappa statistic [443] between the reference standard and the second reader and the models are
calculated. Further, the sensitivity, specificity, positive predictive value, and negative predictive value
and their 95% confidence intervals [444, 445] are reported, based on a fixed threshold of 0.5.

3.4.2 Training Set Size Analysis

In order to investigate the effect of the number of training images on the cardiomegaly classification
performance, we constructed learning curves. We train both the seg-method and the class-method
networks with varying numbers of training images and determine the effect of this on the method
performance. The seg-method was trained with 50, 100, 200, 300, 400, 500, 600 images using 178
images in the validation set for each experiment and the class-method was trained with 2.5k, 5k, 10k,
20k, 40k, 62k images each using 3000 images as the validation set. We analyzed the results with the
AUC score.
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3.4.3 CTR Analysis

Heart and Lung segmentation

Since the seg-method detects cardiomegaly through lung and heart segmentation, the segmentation
performance of the final models, which were found through hyperparameter optimization, were eval-
uated on the full JSRT dataset (247 images). We used intersection over union (IOU), also known as

Jaccard index, as a performance measure which is calculated as follows:

[ XNY |
I0U = —————
| XUY |

where X represents the output of the network, and Y is the reference standard segmentation output.
IOU quantifies the overlap between X and Y as the ratio between the number of pixels that are
common between X and Y (cardinality of the intersection set) and the total number of pixels present

across both of them (cardinality of the union set).

CTR calculation

The performance of the seg-method was analyzed as a regression task in order to evaluate the perfor-
mance in terms of CTR accuracy. Segmentation predictions can directly be used to calculate maximal
horizontal cardiac and thoracic diameter, and used to calculate CTR as their respective ratio. The
reference standard is created from the first radiologist CTR annotations to which the performance of
the seg-method and the second reader can be compared.

The mean absolute error was used to evaluate the accuracy of CTR predictions with respect to the

reference standard as follows:
N
1
MAE = N; le |,
i

where N denotes the number of images, and ¢; represents the difference between the predicted CTR
and the reference standard CTR.

Moreover, CTR performance was also evaluated with Pearson correlation coefficient to summarize
the strength of the linear relationship between the reference standard and the CTR predictions. The
differences in CTR measurements, and the cardiac (in mm) and thoracic diameters (in mm) between
the reference standard and the seg-method and the second reader were analyzed.

3.5 Results

3.5.1 Cardiomegaly Classification

As shown in Figure 3.4, the class-method performed reasonably well, but with clearly much lower
specificity at all sensitivity settings compared to the seg-method. The performance of the second
reader and the seg-method are very similar to each other on this dataset with an AUC of 0.978 (95%
confidence interval [CI]: 0.969, 0.988) and 0.977 (95% [CI]: 0.966, 0.988), respectively. In contrast, the
class-method obtained an AUC of only 0.941 (95% confidence interval [CI]: 0.922, 0.959) when it was
trained on a large dataset (62k). Further, the performance of the class-method decreased considerably
achieving an AUC of 0.830 (95% confidence interval [CI]: 0.789, 0.863) when it was trained on the
same small dataset as the seg-method (600).
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The kappa statistic for cardiomegaly classification (at a threshold of 0.5) between the reference stan-
dard and the second reader was 0.856 while for the seg-method and class-method were 0.870 and
0.683, respectively. The sensitivity, specificity, positive predictive value (PPV), and negative predic-
tive value (NPV) (at a fixed threshold of 0.5) on the held-out evaluation set are provided in Table 3.3.
The seg-method and the second reader showed similar performance levels with the sensitivity of 0.97

and 0.91 and specificity of 0.90 and 0.95, respectively.
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Figure 3.4: Receiver operating characteristic curves for detection of cardiomegaly in
the held-out evaluation set (N=367). Reference = Radiologist 1, TS: Number of train-
ing samples, The second reader (Radiologist 2). Shaded areas represent the 95% con-
fidence intervals. The reference standard CTR values were thresholded at 0.5 in order

to obtain binary cardiomegaly labels.

3.5.2 Training Set Size Analysis

The impact of the number of training images on the classification performance is illustrated in Figure
3.5a and 3.5b for both seg-method and the class-method. Figure 3.5a illustrates that seg-method
benefits from an increased number of training images until the number of training images reaches
500. It seems that increasing this number further does not bring any performance gain.

The effect of the number of training images for the performance of the class-method appears to be
more crucial compared to the seg-method in Figure 3.5b. The performance continues to increase
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MAE Sensitivity Specificity PPV NPV
Seg- 0.97 0.90 0.93 0.95
0.0135
Method [0.93, 0.99] [0.84,0.94] [0.88,0.96] [0.90,0.98]
Class- 0.81 0.89 091 0.77
Method [0.75,0.86] [0.83,0.93] [0.86,0.94] [0.70, 0.83]
Second 091 0.95 0.96 0.89
0.0135
Reader [0.87,0.95] [0.90,0.98] [0.92,0.98] [0.83,0.93]

Table 3.3: Comparison of the seg-method with the class-method and the second
reader. PPV = positive predictive value, NPV = negative predictive value, MAE =
mean absolute error. The number between brackets denote 95% confidence intervals.
MAE is calculated against the reference standard for CTR. Since the class-method pro-
duces a binary output, MAE can not be calculated. All other measures relate to binary

classification of cardiomegaly status.

substantially with the addition of more training data even after 40k training images.
Moreover, Figure 3.5a and 3.5b demonstrates that only 100 training images were sufficient for the seg-
method to achieve a better performance than the class-method which was trained with 62k training

images.

3.5.3 CTR Analysis

Heart and Lung segmentation

The seg-method achieved 0.87 and 0.95 intersection over union (IOU) on the full JSRT dataset (247

images) for heart and lung segmentation, respectively.

CTR calculation

The mean absolute error between both the seg-method and the second reader against the CTR refer-
ence standard was 0.0135 as seen in Table 3.3. The scatter plots of the reference standard CTR against
the predicted CTR values of the model and the second reader are provided in Figure 3.6a and 3.6b,
respectively. In line with our expectations, the misclassified cases for both the second reader and the
seg-method are consistently those cases where the CTR is close to the threshold value of 0.5. Both the
model and the second reader CTR predictions against the reference standard appear highly correlated,
showing 0.960 and 0.965 Pearson correlation coefficient, respectively.

The histogram of the differences between the reference standard CTR values and the seg-method and
the second reader are illustrated in Figure 3.6c and 3.6d, respectively. For both the seg-method and
the second reader, the majority of the differences were less than 0.06. In particular, there were 7 cases
out of 367 where the differences between both the seg-method and the second reader to the reference
standard were higher than this value.

The range of differences between the reference standard maximal horizontal cardiac and thoracic
diameters and the model and the second reader are shown in Figure 3.6e and 3.6f, respectively. The
measurement differences for both the cardiac and thoracic diameters were in a similar range for the

model and the second reader.
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Figure 3.5: The performance of the seg-method and the class-method for various train-
ing set sizes. TS = number of training samples. All curves are computed for the held-

out evaluation set (N=367). Shaded areas represent the 95% confidence intervals.

Difficult Case Analysis

Example cases for the predictions of seg-method and class-method are shown in Figure 3.7. Misclas-
sified cases where the reference standard is close to the CTR threshold of 0.5 are less interesting since
these differences can be caused by inter-reader variability. Therefore we analyzed the misclassified
cases where the reference standard was higher than 0.55 or lower than 0.45. There were no misclas-
sified cases for both seg-method and class-method when the reference standard was lower than 0.45.
However, class-method misclassified 8 cases where the reference standard was higher than 0.55 while

the seg-method misclassified only one single case.

3.6 Discussion

In this work, it was demonstrated that a segmentation-based model trained on a modestly sized col-
lection of chest radiographs (778 images) achieves an AUC of 0.977 for the detection of cardiomegaly,
which is comparable to an independent second reader with an AUC of 0.978. The seg-method reached
a high sensitivity and specificity on this task at 97% and 90%, respectively. In contrast, the class-
method of image-level classification for cardiomegaly achieves a significantly lower performance
with an AUC of 0.941 although it has been trained on 65,205 images. The performance achieved
by the class-method is nonetheless representative of the state-of-the-art for classification-based solu-
tions since several studies [6, 146, 189, 446—448] reported similar or lower cardiomegaly classification
performance which were evaluated on a variety of datasets.

Experimental results demonstrated that the seg-method trained on only 100 annotated images can still
outperform the class-method (Figure 3.5), trained on 65k images. This result highlights the difference
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between the methods in several aspects. First, it reveals that integrating domain knowledge from
segmentations in subsequent image analysis may greatly reduce the volume of annotated training
data required to achieve high performance. It additionally suggests that much improved accuracy
can be obtained on these tasks, even with very limited training data. Finally, the seg-method opens
the black-box solution of the class-method by producing the heart and lung segmentation and the
diameters making up the CTR measure, rather than producing a single classification output. This is
likely to be useful in clinical settings where the use of black-box algorithms is typically viewed as a
high-risk solution.

It is notable that the class-method continued to improve in performance as additional training data
was added. We hypothesize that with enough training samples it would eventually obtain a similar
performance to the seg-method and the second reader. Further, the performance of class-method
might be improved if the training labels did not contain any noise, although deep-learning systems
have been shown to be robust to training label noise in recent studies [89, 449]. However the method
would remain, nonetheless, inexplicable to clinicians.

Compared to the previous studies using segmentation-based solutions for cardiomegaly classifica-
tion [431, 432], our seg-method showed a substantially improved performance. Considering the fact
that the heart and lung field segmentation performance is the key to the algorithm performance, it is
clear that the improved performance of our seg-method relies heavily on our segmentation method-
ology. Unlike earlier studies, we employed a deep learning model, a state-of-the-art segmentation
network [49], and systematically optimized its hyperparameters to segment the lung and heart field
with optimal accuracy. This can be seen with the intersection over union (IOU) score reported for
the heart and lung field segmentation in these studies. For instance, Candemir et al. [431] showed
that they achieved IOU of 0.70 and 0.95 for the heart and lung segmentation, respectively whereas
Dallal et al. [432] achieved IOU of 0.57 with their heart segmentation approach. However, our model
achieved IOU of 0.87 and 0.95 on the JSRT dataset for heart and lung field segmentation, respectively,
outperforming the results reported in [430].

This result suggests that there is a difference with a large margin in terms of heart segmentation
performance between our proposed deep learning approach and the earlier studies. Recent work by
Li et al. [94] which also used a deep learning segmentation model supports this result. In this work,
the obtained CTR values are comparable with manual measurements although they required 5000
manually segmented scans for training, compared to just 778 in this work. Our work is the first to
provide a direct comparison between segmentation-based and end-to-end image-level cardiomegaly
classification demonstrating the advantages of the former, both in terms of clinical interpretation and
performance. We also provide an online demo! where interested readers can test out our seg-method
algorithm.

While it is clear that annotations of heart and lung boundaries are more time-consuming to obtain
than image-level labels (which are often extracted using automatic methods from radiology reports),
we believe that segmentation of anatomy is important not only for cardiomegaly detection, but also in
the identification and quantification of many other abnormalities. Our manual segmentations took an
average of 2 minutes per image (for both heart and lung boundaries) and we expect that our trained
segmentation networks could now serve as guidance in many clinically interpretable abnormality
detection systems. Future work will investigate the incorporation and importance of anatomical seg-
mentation in other clinically relevant tasks.

This study has several limitations. First, all chest radiographs were retrieved from a single institution,

https://grand-challenge.org/algorithms/cxr-cardiomegaly-detection/
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which may affect the robustness of the system in evaluating images from other sources. Second,
lateral view chest radiographs were not considered in our study although they might potentially
be used, when in doubt, as complementary information to accept or reject cardiomegaly. Further,
the cases for which the determination of CTR measurements was not possible (due to invisibility of
anatomical boundaries) were manually excluded from our held-out evaluation set. In clinical practice,
such images cannot be used for the determination of cardiomegaly. The automated rejection of such
cases by the model would be a useful tool in clinical settings and might be a good future research
direction.

We conclude that we have implemented a segmentation-based cardiomegaly algorithm with perfor-
mance comparable to a human reader, and with the advantages of improved accuracy and better
interpretability compared to the image-level classification method. Future work will investigate ex-
tending the segmentation-based approach to other diagnostic tasks.
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Figure 3.6: MAE = mean absolute error, CTR = cardiothoracic ratio. (a) and (b): The

scatter plots of the reference standard CTR values against the CTR values of the seg-

method and the second reader respectively. Correctly classified and misclassified

samples are visualized in purple and green, respectively. (c) and (d): The histogram of

the CTR differences between the reference standard and the seg-method and second

reader respectively. (e) and (f): The box plot of the differences between the maximal

horizontal cardiac and thoracic diameters between the reference standard and the seg-

method and the second reader in mm.
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Figure 3.7: Example cases of the model predictions. CTR = cardiothoracic ratio, RS =
reference standard. (a)-(c): Three example cases of the seg-method predictions. Model
prediction CTR (reference standard CTR). Cases a and b are correctly classified and
case c is misclassified. (d)-(i): Example cases of the class-method predictions. d and e

are the correctly classified cases, whereas f is an example of misclassification.
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4.1 Introduction

Chest radiography (CXR) remains the most commonly performed imaging technique and one of the
most often repeated exams because of its low cost, rapid acquisition and low radiation exposure [24].
It was estimated that 129 million chest radiographs were performed in 2006 in the United States alone
[23]. Chest radiographs play an important role in screening, monitoring, diagnosis, and management
of thoracic diseases.

Wide availability of CXR has motivated researchers to build artificial intelligence (AI) systems that
can automatically detect a variety of abnormalities [140, 189, 399] and extract quantitative clinical
measurements from them [92, 94]. Al systems have potential use for routine quantification of nu-
merous biomarkers related to lung diseases, cardiac health, or osteoporosis. Applying such systems,
whenever a chest radiograph is acquired, would be a step towards routine quantitative radiology

reporting.

This work focuses on an important quantitative biomarker, total lung volume, and investigates whether
it can be measured automatically from plain chest radiographs using state-of-the-art deep learning
approaches. Total lung volume (TLV) is used for assessing severity, progression and response to treat-
ment in restrictive lung diseases [450, 451]. Specific temporal changes in TLV can be identified in
patients with obstructive and restrictive lung diseases, such as emphysema, pulmonary fibrosis or
asthma. Further, TLV has been shown to correlate with mortality and health status [452].

Currently, the gold standard for measurement of TLV is the pulmonary function test (PFT), using spe-
cial techniques such as body plethysmography, helium, or nitrogen dilution techniques [451]. Several
studies [453—-455] demonstrated that TLV measured from CT strongly correlates to TLV obtained from
PFTs. Alternatively, several studies investigated TLV estimation from CXR using predictive equations.
In fact, this has been a research interest for a century, with the first paper appearing in 1918 ([456])
demonstrating the correlation of external measurements from CXR to the pulmonary function test
(gas dilution technique). All such previous literature, investigating predictive equations, was either
based on the use of planimetric techniques [457-460], or made assumption of a given a geometry
[461-463], or required several manual linear measurements to estimate TLV from CXR. However, all
these studies required manual measurements to estimate TLV and used small sample sizes, making

it unclear whether the techniques could be generalized to other populations.

In this study, we investigate, to the best of our knowledge, for the first time, whether chest radio-
graphy can be used to automatically predict TLV in a fully automated fashion using large datasets
and deep learning. We examine the role of TLV labels derived from thoracic CT imaging in training
deep learning systems. In order to account for variations in inspiration and dataset complexity, ex-
periments with simulated and real chest radiographs in three different datasets were designed in a
step-wise fashion. For each experiment, we optimized various state-of-the-art deep learning regres-
sion approaches to predict TLV using only posterioranterior (PA) view, lateral view or both views.
The purpose of our study was to determine the accuracy of fully automatic measurement of TLV
from CXR using deep learning based models.



4.2 Materials and Methods 79

4.2 Materials and Methods

4.2.1 Data and Preprocessing

The data used in this study was obtained from two sources; the COPDGene study [464] and Rad-
boud University Medical Center (RUMC). To facilitate our stepwise experimentation, demonstrating
sources of error, we experimented with simulated CXR images (digitally reconstructed radiographs),
which are obtained from average intensity projections (AIP) on thoracic CT, as well as with true CXR
images. Reference total lung volume labels were obtained by two means; through segmentation of
the lungs in CT and from pulmonary function tests (PFT). The datasets constructed are described in

detail in the sections below and in Figure 4.1.

COPDGene-sim

Inspiration chest CT studies (1000) from unique patients were randomly selected from the COPDGene
study, [464] which is publicly available on request for research purposes. The images in this study are
acquired from patients with Chronic Obstructive Pulmonary Disorder (COPD), varying from mild to
very severe. From the 1000 randomly selected CT studies, 800 (600 for training and 200 for validation)
were used for training and validation, and 200 were retained as a held-out test set as illustrated at the
top of Figure 4.1.

Lung segmentations were obtained by an automated algorithm and manually corrected by trained
analysts with radiologist supervision [465]. Reference TLV was calculated for each CT scan by multi-
plying CT image spacing by the number of voxels segmented.

Simulated CXRs were generated from CT by creating AIP [173] from coronal and sagittal planes, re-
sulting in frontal and lateral view simulated CXR. This dataset, which we refer to as COPDGene-sim,
was used to demonstrate model performance in an ideal scenario where there is no inspiration differ-
ence between the label source (CT) and the (simulated) CXR image, CT segmentations are manually
corrected, and the variety of pathologies is limited.

RUMC Datasets

This data was obtained from routine clinical care in Radboud University Medical Center, Nijmegen,
the Netherlands (RUMC). This study was approved by the research ethics committee of the Rad-
boud University Nijmegen Medical Centre. Dataset was collected and anonymized according to local
guidelines and informed consent was obtained from all participants. All research was performed in
accordance with relevant guidelines and regulations.

We retrospectively collected CXR studies and chest CT acquired between 2003 and 2019 resulting in
321k CXR studies and 120k CT studies. Patients with both CT and CXR (with PA and lateral view),
performed a maximum of 15 days apart, were selected (4420 patients). The reference standard TLV
measurements were obtained by a CT lung segmentation algorithm [465] and segmentation failure
cases were visually identified and excluded (284 CT). This resulted in 7621 CXR studies and 5305 CT
studies from 4275 patients (Figure 4.1). Multiple CXR studies from a single patient could be matched
to a single CT reference standard.

A group of patients being assessed for lobectomy was used to provide subjects with both PFT and
CXR data acquired within 15 days of each other. This resulted in 928 CXR studies from 485 patients.
Reference TLV was determined using the helium delusion technique [466].
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From this dataset, we created two sets for experimentation. The first is referred as RUMC-sim and
used simulated CXR generated from CT as described in Section 4.2.1. The second is RUMC-real,
consisting of real CXR with CT-derived and PFT-derived labels for TLV. To investigate the relationship
between CT-derived and PFT-derived labels, we created a dataset, CT-evaluation, where both CT and
PFT were acquired within 15 days of each other. We made sure that there was no patient overlap
between training and held-out evaluation sets for all the datasets. These datasets are detailed below
and illustrated in Figures 4.1 and 4.2.

RUMC-sim In this dataset, both frontal and lateral view chest radiographs were simulated from
5305 CT studies (4275 patients). Of these, 389 patients (590 CT studies) were randomly selected and
used as a held-out evaluation set, whereas the remaining 3886 patients (3236 for training, 650 for
validation) were used for training. This dataset, with CT-derived lung volume labels, was used to
illustrate the model performance in a set of images with a large variety of abnormalities (compared
to COPDGene-sim), e.g., pleural fluid, large masses, widespread interstitial abnormalities. The use
of simulated CXR images removes any possibility of error related to inspiration effort, or patient
position between the label source (CT) and the (simulated) CXR.

RUMC-real This dataset consists of patients with real CXR studies (PA and lateral) and with
lung volume reference standard measurements from two sources, namely CT and PFT. For CT-based
data, the same patient partitioning was used as in RUM-sim, but using the CXR with the study time
closest to that of the corresponding CT study rather than a simulated CXR. This resulted in 7621 CXR
studies with CT-derived labels, whereas PFT-derived labels were used for 928 CXR studies as seen
in Figure 4.1. As a held-out evaluation set, 590 patients with 1008 CXRs with CT-derived labels, and
291 CXR from 150 patients with PFT-derived labels were randomly selected. We made sure there
was no patient overlap between the PFT-based evaluation set and any training set (with CT-labels or
PFT-labels).

CT evaluation dataset We identified patients with PFT results available that were also in the
RUMC-sim dataset, and selected patients with PFT results obtained a maximum of 15 days apart
from their CT study. This resulted in 137 CT studies from 130 patients. CT lung volume was calcu-
lated by means of an automated CT lung segmentation algorithm [465], and the results were visually
inspected, identifying no obvious failed segmentations. This set was used to demonstrate the rela-
tionship between CT-derived and PFT-derived labels.

All CT scans used in the COPDGene-sim and RUMC-sim datasets were first resampled to Imm
isotropic spacing before generating simulated CXRs by average intensity projection. Similarly, real
CXRs were resampled to have Imm x 1mm spacing. Resampling of all CXR to the same spacing is
crucial All real and simulated CXR images were padded with zeros to reach a fixed size of 512 x 512

pixels. Images underwent standard normalization to the range of -1 to 1.

4.2.2 Methods

We experiment with 5 different deep-learning architectures, 4 of which are widely used popular classi-
fication architectures (DenseNet121 [21], ResNet34, ResNet50 [20], VGGNet [467]), and one, referred
as 6-layer CNN, was designed to represent a shallow architecture. The 6-layer CNN consisted of 6
CNN layers, each followed by RELU, batch normalization and a pooling layer. The first CNN layer
had 32 feature maps, and the number of feature maps was doubled in each layer. The final CNN
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Figure 4.1: Flowchart that shows the criteria to select the data to be used in the exper-
iments. Numbers of images are shown with numbers of patients in brackets. Abbre-
viations: CXR = chest radiographs, CXR-sim = simulated chest radiographs from CT,

PFT = pulmonary function test.

Experimental Datasets

COPDGene-sim  RUMC-sim  RUMC-real (CT-labels) = RUMC-real (PFT-labels)
Label type CT-derived CT-derived ~ CT-derived PFT-derived
Patient position Y Y
Possible sources  difference
Inspiration effort v v
of label error difference
T -
'C segmentation Y v
inaccuracy
Diverse pathologies Y Y Y

Table 4.1: Datasets characteristics in step-wise experiments. RUMC-real (PFT-labels)

was used to finetune the models which were pretrained on the RUMC-real (CT-
derived) dataset. Y indicates that the condition holds true.
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(a) Real CXR (b) Fake CXR (c) CT scan

Figure 4.2: Real CXR (a), Simulated CXR (b) and coronal CT slices (c) from a patient in
the RUMC-real dataset. Lobe segmentation results in CT are illustrated in the bottom
row of (¢). CT-derived TLV is calculated as the sum of the lobe volumes. CT-derived
TLV for this subject was 3.8 liters, while PFT-derived TLV was 4.3 liters.

layer was followed by 3 fully connected layers which mapped the number of features to 512, 128 and
1, respectively.

The dual CNN architecture, which receives both frontal and lateral radiographs as input, consists of
two branches with a backbone architecture that is either VGG-Net, ResNet34 or 6-layer CNN, and
concatenates the features from these branches before the first fully connected layer. Due to memory
limitations, Densenet121, and ResNet50 architectures were not investigated for the dual CNN model.
These network architectures were trained with 3 possible inputs (PA CXR, lateral CXR or both, and
methods of combining their outputs (see Figure 4.3). Each network outputs a regression value repre-
senting TLV in liters.

For each model trained, a hyperparameter optimization was carried out to ensure the best possible
result for that architecture/input combination on the validation set. A variety of aspects for train-
ing a convolutional neural network were considered as hyperparameters: they were learning rate,
optimizer, oversampling technique, and data augmentation as seen in Figure 4.4. Random hyperpa-
rameter optimization was employed given a predefined range for hyperparameters for each model
(frontal, lateral, and dual CNN) separately.

Each model was trained by optimizing the mean squared error loss between the predicted TLV and
the reference standard TLV. The model was trained for a maximum of 300 epochs, terminating if
there was no improvement in the validation set performance for 50 successive epochs. We selected
the epoch that yielded the least mean squared error in the validation set.

For each of our 3 datasets, the optimal combination of architecture and hyperparameters was identi-
fied for each of the 3 possible input types on the validation set. These models were then applied to
the held-out evaluation set. In addition, the average of the 2 outputs from the networks using single
(frontal or lateral) inputs is calculated and presented as Ensemble CNN output (Figure 4.3).

Our TLV prediction experiments were constructed in a step-wise fashion, to identify potential sources
of error as the task becomes increasingly difficult. This is illustrated in Table 4.1. CT-derived volume
labels are used in all experiments except the final one where the network is additionally fine-tuned
with PFT-derived labels. We begin with the COPDGene-sim dataset, where errors related to patient
position and inspiration effort as well as errors related to CT segmentation accuracy and diversity

of underlying pathologies are eliminated. In RUMC-sim we introduce the potential for errors from
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Figure 4.3: Illustration of architecture pipelines. Four different experimental designs
were considered: frontal CNN, lateral CNN, dual CNN (combining frontal and lateral
models by layer concatenation) and ensemble CNN (combining optimal frontal and

lateral models by averaging their outputs).

minor CT segmentation inaccuracies, and from the diverse pathology within the dataset, which is
likely to increase the variability in image appearance. Finally in RUMC-real, we first experiment
with predicting CT-derived TLV from chest radiographs (RUMC-real (CT-labels)), and subsequently
with PFT-derived TLV (RUMC-real (PFT labels)). In this last experiment, since there is only a small
number of gold-standard PFT labels available (487 patients), the network trained with CT-labels is
used as pre-trained model, and fine-tuned using CXR images with associated PFT-labels.

As an additional experiment, we investigate the relationship between PFT-derived TLV and CT-
derived TLV, in a scenario where they are acquired at most 15 days apart from each other, using
the CT-evaluation dataset.

4.2.3 Statistical Analysis

Mean absolute error (MAE), mean absolute percentage error (MAPE) and Pearson correlation coef-
ficient were computed to demonstrate the relationship between predicted and reference TLV values.
The 95% limits of agreement were estimated by means of a non-parametric method for Bland-Altman

plot since the data distribution was not normal, as assessed with Shapiro-Wilk test [468] and quantile-
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Figure 4.4: [llustration of our model selection process on validation set. Different net-
work architectures were systematically optimized for three different inputs, namely
frontal, lateral, and dual (frontal+lateral), separately. Each of them was optimized
systematically for hyperparameters, and the model with the least mean absolute per-

centage error on the validation set was selected.

quantile plot [469].

4.3 Results

Model training for each model, namely frontal CNN, lateral CNN, and dual CNN, took between
8 to 14 hours on the RUMC-sim and RUMC-real datasets (depending on the network architecture),
and 2 to 4 hours on the COPDGene-sim dataset using a variety of GPUs such as TitanX, GTX1080,
GTX1080ti, GTXTitanx, and TitanV. The mean processing time per test image was 0.3 seconds.

Three trained models (frontal, lateral, dual) were selected for each dataset, based on optimization
using the validation set, and applied to the held-out evaluation data. Additionally the outputs of
the optimized frontal and lateral models were averaged and presented as “Ensemble” model. The
selected architectures, and their performance on the held-out evaluation data are provided in Table
4.2

In the COPDGene-sim dataset, where chest radiographs were simulated from CT and potential sources
of label error were minimal, VGG-Net, 6-layer CNN, and Densenet121 architectures were selected. On
the held-out evaluation set the model with the lowest error according to all 3 metrics was the dual
CNN with 6-layer CNN architecture. This model achieved a mean absolute percentage error (MAPE)
of 2.2% and mean absolute error (MAE) of only 112ml. The scatter plot of model predictions against
the reference standard from CT volumes and Bland-Altman-like plot for analyzing differences be-
tween the reference standard and predicted TLV measurements are shown in Figure 4.5 (a) and (b),
respectively. As shown in Figure 4.5 (b), 95% of differences between predicted and reference standard
TLV were from -351ml to 261ml.

On the RUMC-sim dataset, which contains more abnormal images compared to COPDGene-sim,
Densenet121, and ResNet architectures were selected from the validation set experiments. As in the
COPDGene-sim experiments, the lateral CNN model performed better than the frontal CNN model
and the best performance on the evaluation set was, once again, achieved by the dual CNN with
MAPE of 2.9% and MAE of 112ml as seen in Table 2 and plotted in Figure 4.5 (c). Limits of agreement
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of the differences between the predicted and reference standard TLV measurements was between
-348ml to 235ml as shown in Figure 4.5 (d).

Finally, in the RUMC-real dataset, where real chest radiographs were used, dual CNN and ensemble
CNN performed very similarly, and the best result obtained (with the least MAPE) with CT-derived
labels was achieved by the ensemble CNN, as shown in Table 2. This model achieved 15.7% MAPE,
and MAE of 597ml. The model predictions and references for the evaluation set of 1008 CXRs are plot-
ted in Figure 4.6 (a); and the differences between predicted TLV and reference standard is analyzed
in Figure 4.6 (b). As shown in Figure 4.6 (b), the model tended to underestimate TLV where reference
standard was higher than 6 liters, and overestimate TLV where reference standard was lower than 4
liters.

For the final experiment using PFT-derived labels, the best models trained on the RUMC-real (CT-
labels) data for frontal, lateral, dual CNN were used as pretrained models and further fine-tuned on
637 CXR images with PFT-derived labels. The results achieved on 291 CXR images with PFT-derived
labels are shown in in Table 2 (RUMC-real (PFT-labels)). The best model on the held-out evaluation
set was the dual CNN with ResNet34 architecture and achieved MAE of 408ml and MAPE of 8.1%.
The model predictions and PFT-derived reference standard were highly correlated with Pearson cor-
relation coefficient of 0.92 as illustrated in Figure 4.6 (c); 95% of differences between predicted and
reference standard TLV measurements were from -1 liters to 938 ml (Figure 4.6 (d)).

Figure 4.7 (a) and (b) shows the results of the comparison between CT-derived TLV and PFT-derived
TLV on the CT evaluation set of 137 subjects. These two measurements were well correlated with
Pearson’s r of 0.78, however, considerable variations were observed between the two measurements
for some patients. TLV was consistently underestimated by CT-based measurements where median
differences (bias) between CT-derived and PFT-derived was -560ml as shown in Figure 4.7 (b).

Evaluation Datasets (#images) =~ Model Architecture MAPE(%) MAE(ml) Pearson’sr
Frontal CNN DenseNet121 43 226 0.978
. Lateral CNN VGG-Net 3.6 198 0.983
COPDGene-sim (200)
Dual CNN 6-layer CNN 2.2 112 0.995
Ensemble CNN  DenseNet121&VGG-net 2.6 139 0.992
Frontal CNN DenseNet121 55 220 0.978
. Lateral CNN DenseNet121 5.0 200 0.984
RUMC-sim (590)
Dual CNN ResNet34 2.9 112 0.993
Ensemble CNN  DenseNet121& DenseNet121 3.8 154 0.989
Frontal CNN VGG-Net 16.9 650 0.826
Lateral CNN DenseNet121 16.8 639 0.831
RUMC-real (CT-labels) (1008) 1 ensere
Dual CNN ResNet34 16.1 592 0.855
Ensemble CNN  VGG-Net & DenseNet121 15.7 597 0.851
Frontal CNN VGG-Net 10.3 509 0.870
Lateral CNN DenseNet121 9.2 472 0.875
RUMC-real (PFT-labels) (291)
Dual CNN ResNet34 8.1 408 0.922
Ensemble CNN VGG-Net & DenseNet121 8.5 420 0.907

Table 4.2: Results of the selected models on the held-out evaluation sets. Mean abso-
lute error is calculated against the reference standard for TLV measurements. MAE
= mean absolute error (in milliliters), MAPE = mean absolute percentage error, Pear-
son’s r = Pearson correlation coefficient. Bold font indicates best performance per

dataset and metric.
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Figure 4.5: Results on simulated datasets in step-wise experiments. Left: The TLV

predictions of the best model against the reference standard measurements on the
held-out evaluation sets. (a) COPDGene, (c) RUMC-sim. Red line is line of identity
(ideal agreement). Right: Bland-Altman-like plot to analyze the differences between

predicted and reference standard TLV measurements. Non-parametric method was

used to estimate 95% limits of agreement. Abbreviations: r = Pearson correlation

coefficient, MAE = mean absolute error, MAPE = mean absolute percentage error, N
= number of data, P2.5 = 2.5th percentile P97.5= 97.5th percentile.

4.4 Discussion

This study demonstrated that state-of-the-art deep learning solutions can measure TLV from PA and

lateral CXRs, using primarily CT-derived labels and a small number of PFT-derived measures. To

demonstrate the sources of error, the experiments were conducted in a step-wise fashion with in-

creasing levels of complexity. Using simulated CXRs eliminated potential error related to the patient

position or inspiration level between the CT and CXR image acquisition. Results on both simulated

datasets show extremely low error (MAPE of 2.2% and 2.9%) and high correlation with the reference
labels (r=0.99 and r=0.99). The slightly better performance on the COPDGene-sim dataset may be
attributed to the fact that this dataset contains a limited range of pathologies and that the CT segmen-

tations were manually corrected, meaning that even very small inaccuracies were eliminated.
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Figure 4.6: Results on real datasets in step-wise experiments. Left: The TLV predic-

tions of the best model against the reference standard measurements on the held-out
evaluation sets. (a) RUMC-real, (c) RUMC-real (PFT-labels). Red line is line of identity
(ideal agreement). Right: Bland-Altman-like plot to analyze the differences between

predicted and reference standard TLV measurements. Non-parametric method was

used to estimate 95% limits of agreement. Abbreviations: r = Pearson correlation co-

efficient, MAE = mean absolute error, MAPE = mean absolute percentage error, N =
number of data, P2.5 = 2.5th percentile P97.5= 97.5th percentile.

In the dataset of clinical CXR with CT-derived volumes (RUMC-real dataset) we see a substantial
increase in the prediction error with MAPE of 15.7%, which we attribute largely to the difference in

patient position and inspiration effort between the CT and the CXR image acquisition. It is likely that

the degree of inspiration in the CXR and CT images is different, particularly given that there is known

to be a high intra-individual deviation in TLV between routine CT scans ([470]). The indication from

this experiment is that CT-derived labels are useful, but not optimal, to learn the TLV from CXR. As

an additional check we investigated the relationship between CT-derived and PFT-derived volumes

in 137 cases where both were available. This provides results in line with previous studies on CT-

derived lung volumes [470, 471]: although CT-derived lung volume and TLV are well correlated

(r=0.78), there are considerable differences in some patients.
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Figure 4.7: CT-derived TLV against PFT-derived TLV on CT evaluation dataset. Left:
Comparison of CT-derived total lung volumes with Pulmonary Function Test total
lung volumes on the CT evaluation set. Right: Bland-Altman-like plot to analyze
differences between CT-derived and PFT-derived total lung volume. Abbreviations: r
= Pearson correlation coefficient, MAE = mean absolute error, MAPE = mean absolute
percentage error, N = number of data, PFT = pulmonary function test, P97.5 = 97.5th
percentile, P2.5 = 2.5th percentile.

To overcome the issues with the CT-derived labels on the RUMC-real dataset we further fine-tuned
the best networks from that experiment with PFI-derived labels. Evaluation on an independent
dataset of 291 subjects that were not used for training showed that the error of the estimated TLV
from CXR relative to the measured TLV from PFT is reduced considerably, achieving MAPE of 8.1%
and Pearson’s correlation coefficient of 0.92. This algorithm is publicly available at “https://grand-
challenge.org/algorithms/cxr-total-lung-volume-measurement/”.

In all experiments the model was optimized to use the best performing architecture and input. In
the experiments using simulated CXR images, it is notable that the networks using lateral images
as input perform better than the networks using frontal images. This may indicate that the lateral
projection image contains more information related to CT-derived TLV. However we note also that in
all experiments the combination of frontal and lateral images produced the optimal results, either by
use of a dual-CNN or through an ensemble.

Previous literature has investigated predictive equations for measurement of TLV from chest radio-
graphs using manual measurements. One study [472] investigated performance with simulated chest
radiographs to predict CT-derived TLV. Their method, which required manual measurements, had
an inferior performance (MAPE of 5.7%) on their dataset compared to our results obtained in the
COPDGene-sim and RUMC-sim datasets (MAPE of 2.2% and 2.9%). For studies which investigated
predictive equations to estimate PFT-derived TLV from real CXR [458, 461, 462], the coefficient of
correlation between predictions and reference standard (body plethysmography or helium dilution
technique) generally ranged from 0.80 to 0.93 (compared to our method with 0.92). Sample sizes in
these papers ranged from 21 to 100 patients. However, it should be noted that many of these studies
used spirometric control to regulate the level of inspiration during CXR acquisition. In fact, one study
[473] has shown that without spirometric control the correlation of predicted TLV and PFT-derived
reference standard was only 0.47, compared to 0.82 with spirometric control. In this work, however,
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we experiment with routinely taken chest radiographs (with no spirometric control), and produce
TLV predictions which are highly correlated (r=0.92) to PFT-derived results. Our work is the first to
demonstrate automated measurement of TLV from chest radiographs and achieves a comparable or
lower error range with a remarkably larger sample size compared to previous literature.

There are several limitations in this study. First, the algorithms were evaluated on an internal dataset
from a single institution; validation of the models on an external dataset is an important next step to
assess the algorithm robustness. Second, the datasets were constructed from routinely taken studies
with the assumption that TLV would not change in 15 days, which might not hold true for extreme
cases. This selection criterium also yielded an under-representation of healthy subjects but reflects
a clinical population in which TLV measurements are of clinical interest. The PFT-derived reference
standard measurements were obtained using the helium dilution technique which might underesti-
mate TLV in patients with severe airway obstruction. Furthermore, inspiration levels were not con-
trolled in a similar fashion to PFT in these routine chest radiographs, which could have introduced a
source of error in our predictions, but this represents regular clinical practice. One possible solution
to address this issue would be to develop an automated algorithm to assess the inspiration level on
CXR, for example by rib counting [342]. Moreover, our held-out evaluation set was constructed with
patients assessed for lobectomy since their PFT results were readily available; future research should
address the evaluation of the algorithm on a population with other clinically relevant pathologies,
including fibrosis.

In conclusion, we demonstrated that TLV can be automatically estimated from CXR using a deep-
learning approach, with an accuracy that is superior or comparable to the previous literature using
semi-automated methods. Further, we showed that the deep learning system can be trained pri-
marily with CT-derived labels from automatically segmented chest CT images, and fine-tuned on
gold-standard PFT-derived labels. This automated system could be routinely applied to clinical chest
radiographs and serve as a tool for identifying temporal change in total lung volume in patients with
restrictive and obstructive lung diseases.
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5.1 Introduction

Lung nodules may be an early manifestation of lung cancer, the biggest cancer killer among both
women and men [474]. Because early stage lung cancers are often asymptomatic, most lung cancers
are diagnosed when the disease is already metastasized. However, the mortality rate varies signifi-
cantly depending on the stage of the cancer when it was detected. While the 5-year survival rate of
localized lung cancer is 59.0%, it is only 5.8% when the disease has metastasized [475]. This statistic
highlights the crucial role of early detection of lung cancer in reducing mortality rates.

While chest CT scans are preferred over chest X-rays for lung cancer screening [476, 477], the inclu-
sion criteria for CT screening programs are typically strict and a considerable number of patients who
develop lung cancer in their lifetime might not be eligible for such screening programs. In contrast,
Chest X-rays (CXR), being the most common imaging study acquired, play a crucial role for the de-
tection of early lung nodules through routine clinical practice. Pulmonary nodules are frequently
encountered as incidental findings in patients undergoing CXR as routine examination or for issues
unrelated to lung cancer.

The detection of lung nodules on CXR is a challenging task because superimposition of anatomical
structures may obscure lung lesions as seen in Figure 5.1. In fact, several studies [25, 478] show that
radiologist sensitivity for detecting nodules can vary from 36% to 84% on various datasets. Other
work [7, 8] shows that 19%-26% of lung cancers visible on chest radiographs were, in fact, missed at
their first readings.

Considering its high clinical relevance and potential impact, nodule localization has been one of the
most widely studied topics on automated CXR analysis for decades [36]. This trend has changed
in the last few years, however, with the release of publicly available CXR datasets (Chest X-ray14,
CheXpert, MIMIC-CXR) [6, 33, 34] of which many publications made use [11]. The annotations
of these datasets were obtained using natural language processing (NLP) techniques on radiology
reports, and image-level labels are generated with more than 10 different abnormalities including
lung nodules.

The volume of publications inspired by these datasets demonstrates their value to the research com-
munity, particularly as large-scale training sets. For development of clinically applicable algorithms,
however, evaluation must be extremely rigorous and evaluation dataset labels must be of a very high
standard. Many of the works using these public datasets used the NLP-generated labels [146, 194, 195,
197, 446] for evaluation or, at best, radiologist assessment of CXR images [78, 104, 153, 189]. The pit-
falls of NLP labeling have been well documented [86], failing largely because the radiology report is
not always a complete description of the entire image, but often refers only to a specific clinical ques-
tion. Similarly named conditions such as pulmonary emphysema and subcutaneous emphysema are
also known to be confused by such labelling systems [11, 86]. Radiological reading of CXR, while sub-
stantially better, also has limitations as a gold-standard; many nodules have a very subtle appearance
on CXR and radiologist sensitivity and agreement is low in the absence of a CT or pathology-based
gold standard.

For clinically relevant results a reference standard based on CT or on proven lung cancer is optimal,
while algorithms should ideally pinpoint nodule locations to provide explainability and improve
efficiency if acting as a second reader. Several studies have described work including such datasets
used for evaluation of either a commercial or research algorithm for nodule localization [105, 337, 398,
479]. However, since this data (or the evaluation platforms) remains inaccessible to the public, direct
comparison with other nodule detection algorithms on the same dataset is not possible. The time,
cost, and patient privacy issues associated with the collection of large datasets with strong reference
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standards limits the number of available dataset for evaluation of algorithms for many researchers.
The data-hungry nature of modern deep-learning technologies means that researchers also require
large training datasets. The labeling requirements in training data are generally less stringent than
those in evaluation sets, however, NLP labels are generally insufficient for extracting useful cases of
solitary pulmonary nodules, and radiological reading is certainly required to obtain training data for
localization algorithms (those which identify the location of the nodule(s)). Given the challenges and
expenses of acquiring radiological labels and the scarcity of cases with subtle or concealed nodules,
there is significant interest in exploring the insertion of simulated nodules into CXR images as a
training tool. Such a dataset could be constructed to meet the needs of the user in terms of numbers
of images, nodule sizes, locations, and conspicuity. However, this area, while holding strong promise,
is still a newly explored domain, indicating an early stage in its development and application in the
field of CXR [480, 481].

Motivated by these observations, we organized a public challenge, NODE21, which consists of two
tracks: nodule detection and nodule generation. The aim of the NODE21 challenge is to improve
the state of the art for the detection of solitary nodules on CXR. The nodule detection track assesses
the performance of state-of-the-art nodule detection systems for CXR whereas the nodule generation
track determines the utility of simulated nodule training data on the performance of nodule detection
systems. Radiologist-annotated training data is made publicly available and private test sets have a
CT-based reference standard. Algorithm evaluation is provided through the Grand-Challenge plat-
form [482] and the challenge design ensures that the algorithms and code are publicly available and
reproducible.

In this paper, we discuss the results of the detection and generation tracks of the NODE21 challenge.
Additional extensive experiments are performed using various combinations of detection and gen-
eration algorithms to analyze the impact of the generated images on the detection performance and
provide guidance on how best to incorporate simulated data as part of training data.

Figure 5.1: Left and Middle: Coronal and sagittal CT images showcasing a lung can-
cer lesion highlighted in a yellow box. Right: A posterior-anterior chest X-ray of
the same patient, conducted a few days after the CT scans, with the identical lesion
marked in a red box. The CT scans distinctly reveal the tumor, making it hard to over-
look. Conversely, the Chest X-ray image, even though the nodule is not obscured by
major organs like the heart, only faintly displays it due to the overlay of surrounding
structures. This illustrates the inherent difficulty in detecting nodules through chest

radiographs.
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5.2 Data

There are three datasets associated with NODE21: the training set, the experimental test set, and the
final test set. The training dataset is made public, while both test sets are private and only accessi-
ble to challenge organizers. Participants could evaluate their method against the experimental test
set multiple times during the preparation of their algorithm to ensure correct working and to allow
method or parameter tuning. Submission to the final test set was allowed only once, at the end of the
challenge, to ensure that participants could not optimize their method for that set.

The aim of the NODE21 challenge is to improve the state of the art for the detection of solitary nodules
on CXR, a key factor in early lung cancer diagnosis. With this in mind, data selection for the challenge
deliberately excluded images with a predominantly abnormal pattern of consolidation or infiltrates,
clusters of nodules or more than three visible nodules. This ensures the challenge focuses on detecting
small and clinically relevant nodules, while excluding clear abnormal cases that could cause models
to overfit to obvious signs instead of learning the finer details necessary for early detection. Data
selection was strategic, focusing on nodules sized 6mm-30mm to maintain clinical relevance and
excluding obvious abnormalities, as they often indicate advanced disease stages [483].

All datasets were pre-processed using the publicly available OpenCXR library [484] image standard-
ization process. This process first removes homogeneous border regions and then applies energy-
based normalization of image intensity values to standardize image appearance [485] using a lung
segmentation [92] as an intermediate step. The images were then cropped to the region of the lung
fields and resized to 1024 x 1024 pixels preserving aspect ratio and using padding on the shorter side.
The training set is provided with both the original images and the pre-processed versions available,
however, participants were advised that their algorithm would be tested on images that had been pre-
processed in this way. Previous work [485] has demonstrated that such preprocessing makes image
analysis systems more robust to variation in test data from different X-ray equipment, for example.
The NODE21 training dataset was made available on the Zenodo data sharing platform [486], with a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

The following subsections describe the three datasets in more detail.

5.2.1 Training dataset

This dataset consists of postero-anterior (PA) chest radiographs (both with and without nodules) with
bounding boxes provided to identify the nodule locations. The original data selection was made from
public datasets where we had explicit permission to redistribute or where the dataset license provided

permits it. These public datasets are as follows:
* JSRT [72]
e PadChest [35]
¢ ChestX-ray14 [339]
* Open-1[487]

To select images likely to contain nodules, data from each of these sets was chosen to include PA im-
ages with a label indicating nodule and (where possible) other labels selected to exclude confounding
abnormalities such as consolidation or infiltrates. For a detailed description of the filtering process

please refer to the annotation page [488].
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Since the JSRT labels were provided by radiological examination with CT as the reference standard
and with nodule location information available we did not re-label or re-annotate any of these cases,
however, five cases were excluded as the nodules were outside the desired size range. All other
selected data consist of chest X-ray images (without corresponding CT scan) and was reviewed in
a reader study on the Grand-Challenge platform [482] by a chest radiologist with over 30 years of
experience (ETS). The radiologist was asked to identify visible nodules on a chest X-ray by drawing
bounding boxes around them. Images, where no nodule could be seen, where the nodule was outside
the desired size range, or where there were significant confounding abnormalities, were excluded.
Figure 5.2 displays all lung nodule bounding boxes from the training data superimposed on a single
normalized chest X-ray image. While a majority of the nodules are located in the central lung regions,
the dataset also includes instances of nodules positioned behind the diaphragm and heart.

Figure 5.2: Normalized chest X-ray with lung nodule bounding boxes from training
data, showcasing the approximate distribution of locations and size variations of nod-

ules.

In addition to the nodule images, a selection of normal images was also included for training. These
images were chosen from the same four public datasets using the label of non-nodule for JSRT and
of 'normal” or 'no finding’ for the other datasets (please refer to [488] for a detailed explanation of
filtering). Since the PadChest and ChestX-ray14 datasets had very large numbers of images matching
the applied filters (28,688 and 22,452 respectively) a random selection of 1500 normal images was
chosen from each in the initial selection. All selected images were then reviewed in a 3-step process to
reduce the number of FP as follows: 1) A member of the NODE21 team specializing in deep learning
for chest X-ray image analysis with over four years of experience briefly reviewed each image and
rejected any with obvious nodules or abnormalities. 2) The baseline nodule detection system (see
section 5.3.1 for further details of this system) was run on the remaining images to identify suspicious
regions, which were again reviewed by a team member. 3) Any case where the team member was
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uncertain whether a nodule was present was presented to a radiologist (ETS) for review and rejected
if an abnormality was present.

Following this selection and review process, 1134 images (containing 1476 nodules) and 3748 non-
nodule (normal) images were obtained. The numbers per dataset pre- and post-review are provided
in Table 5.1.

Participants received the original CXR images, complete with identifiers for tracing them back to
their respective public datasets, alongside the OpenCXR standardized image versions. All related
metadata is publicly available and readily accessible. The dataset features a balanced gender distri-
bution, with 48% female and 52% male participants, and an average age of 58.6. Additionally, the

dataset encompasses a variety of nodule sizes, ranging from 6mm to 30mm.

Table 5.1: Training data selection process. Nodule and non-nodule (normal) CXR
images were selected from 4 public datasets: JSRT(J), PadChest(P), ChestX-ray14(C)
and Open-1(O) and reviewed before inclusion in the challenge. Review steps are de-
scribed in detail in the text. Figures indicate the number of images with the number

of nodules in brackets.

Source J P C O Total(Nodules)
Nodule Data

Initial Selec- 154 908 1586 82 2730

tion

After radiol- 149 314 617 54 1134(1476)

ogy review

Non-Nodule (Normal) Data
Initial Selec- 93 1500 1500 1164 4257
tion
After 3-step 93 1366 1187 1102 3748
review

For the generation track, we randomly sample 1000 images from the non-nodule images in the train-
ing dataset. Nodule bounding boxes were generated using our nodule location generator as shown
in Figure 5.3. Up to 3 bounding boxes (1-3) were selected per image to be used to generate nodules
inside. The images and the bounding boxes were provided to the participants at the test time where
their submitted generation algorithm was expected to generate nodules inside the requested bound-
ing boxes. Further, for the generation track, we provided a public set of NODE21 CT patches which
participants were free to use as part of their generation algorithm. These are cropped 3D patches
containing nodules from the public Lunal6é CT dataset [489]. The patches were 50 x 50 x 50 mm,
resampled to voxels of 1 x 1 x 1 mm. A total of 1186 nodule patches are provided together with

associated nodule segmentations via the Zenodo data sharing platform [486].

5.2.2 Experimental test set

The images for the experimental test set were collected for this study is derived from standard clinical
procedures at Radboud University Medical Center (RUMC) in Nijmegen, the Netherlands. For this
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set a reference standard of CT was required to confirm the presence of a nodule, so patients who
had undergone both frontal CXR and a CT scan within a maximum of 60 days of each other were
identified. These were further filtered to those patients whose corresponding CT report contained the
word 'nodule’. A nodule detection system [490] was used to identify nodules on CT scans as a means
of assisting the annotating radiologist (ETS). The radiologist was then provided with the 200 CXR
images alongside the CT slices with detected nodules identified and asked to find the corresponding
nodules on CXR and annotate them. The radiologist could also access the full CT scan if needed.
The annotator was asked to annotate solitary nodules, solid or subsolid, located in a region of oth-
erwise normal appearance. Images with a predominant pattern of abnormal tissue, or clusters of
nodules were excluded, as such very abnormal cases are not of interest. The cases where a nodule
was only visible on CT but could not be seen on CXR even by estimating the approximate location
were excluded from the study to maintain a high level of specificity and relevance for CXR-based
detection systems. This approach ensures that only confirmed nodules, which are consistent across
both imaging modalities, are included, thus enhancing the reliability of the dataset.

To select normal CXR images for inclusion in the experimental test set the Radboudumc CXR reports
were searched for the text ‘Normal image of heart and lungs’ or the text 'Normal cardiopulmonary
image’ since these phrases had been observed to be used frequently to report a completely normal
CXR image. From the results, a random selection of 120 PA CXR images from unique patients was
made and provided to a chest radiologist for review. Images with any suspicion of nodule or other
confounding abnormality were rejected.

A total of 281 CXR images were selected in this way, 166 of which contained (248) nodules and the
remaining 115 were normal. The details are provided in Table 5.2

5.2.3 Final test set

The final test set was originally collected for a previous study [413]. It consists of 300 CXR images
from 4 different hospitals in the Netherlands. A positive case is defined by the presence of a solitary
pulmonary nodule visible on the PA image and confirmed by CT acquired within 3 months of the
CXR. A negative case is one without nodules or other substantial pathology, confirmed by CT within
6 months of the CXR acquisition. The nodule locations were provided through the original study data
and used for the NODE21 challenge. In addition, the findings of a total of 12 independent readers (6
radiologists and 6 radiology residents) are available, indicating whether or not they believe a nodule
is visible on the CXR. These additional findings are used in this paper to provide an independent com-
parison between computer algorithms and human experts, but not as the reference standard for the
challenge evaluation process. The final dataset excluded two images (which could not be obtained)
from the original set in the paper and consists of 111 nodule-positive images (each with one nodule)

and 187 non-nodule images as summarized in Table 5.2.

5.2.4 Additional Experiments Data

For additional experiments performed in this paper, in order to experiment with larger datasets,
we utilized VinDr-CXR dataset [491]. VinDr-CXR is a publicly available dataset that contains 18k
posterior-anterior view chest X-rays with both localization and classification labels for thoracic dis-
eases. The images were labeled by a group of 17 experienced radiologists for the presence of 22
critical findings and 6 diagnoses. From this dataset, we selected 10606 images which were labeled
with "No finding’, (meaning the selected CXR images are expected to contain no abnormalities). Nod-
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Table 5.2: Experimental and Final test set statistics. Figures indicate the number of
images with numbers of nodules in brackets. Before and After indicates the number
of images before and after the radiology review, respectively. Details of the selection

and review process are provided in the text.

Nodule Data Non-nodule Data

i Before 200 120
Experimental Test Set

After 166 (248) 115

Final Test Set After 111 (111) 187

ule bounding boxes were generated using our nodule location generator as shown in Figure 5.3. Up
to 3 bounding boxes (1-3, 7-17mm) were selected per image to be used to generate nodules inside.
This size selection is deliberately smaller than the training dataset criteria to represent more subtle
nodule characteristics in the dataset.

5.3 Challenge Setup

The NODE21 challenge was hosted on the Grand-Challenge platform [482], which has hosted over
330 medical image analysis challenges since 2007. The challenge website is publicly accessible online
athttps://node21.grand-challenge.org/([483]), providing access to all information and function-
ality, including data, evaluation, and leaderboards. On Grand-Challenge, interested parties could
register and find a general overview of the challenge including the deadlines, a description of the
datasets, the evaluation metrics, and the preprocessing code. Through the website, the participants
could submit their algorithms and access a forum to post questions or comments. The NODE21 chal-
lenge continues to accept unlimited submissions for the experimental test set and limited number of
submissions on final test set, supporting continuous benchmarking efforts.

One aim of the NODE21 challenge was for competing algorithms to be fully reproducible and pub-
licly available. To this end, only algorithm submissions in the form of a docker container were ac-
cepted. Docker containers encapsulate the software, allowing it to run uniformly and consistently
on any system that supports Docker which plays a significant role in bridging the reproducibility
gap in scientific research, reinforcing the credibility of the study, and fostering an environment con-
ducive to collaborative scientific exploration and advancement. Once submitted, the container would
automatically run on the private test set and generate results for the leaderboard. The submitted so-
lutions were required to be linked to a public GitHub repository with a version tag and an Apache
2.0 or MIT license. The submitted algorithms are thus open-source and publicly available and can be
tested out by interested users on the Grand-Challenge platform. The GitHub repository is available
at https:/ / github.com/node21challenge.

The NODE21 challenge was divided into two tracks, a detection track, where participants submitted
algorithms for detecting nodules in CXR, and a generation track, where participants submitted algo-
rithms for generating realistic nodules on normal CXR images. Interested parties could enter either
or both tracks.

The challenge was open from October 19, 2021, when the training dataset was released, until January

25, 2022. Participants were allowed to submit their methods for evaluation on the experimental test
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set starting from December 2nd, to test their model performance as well as to make sure their docker
submission worked as expected. Repeated submissions for evaluation on the experimental test set
were permitted. From January 10th to 25th, participants were able to submit their final best algorithm
to the final test set where only a single submission per participant was allowed. Submissions (to
either phase) were not permitted after January 25, 2022.

5.3.1 Baseline models

For each of the detection and generation tracks, a baseline model was provided with code available
at https:/ /github.com/node21challenge. This provided a benchmark performance for each track as
well as template code for participants to demonstrate how to build working docker containers for

submission to Grand-Challenge. The baseline methods are described in more detail in section 5.4.1

5.3.2 Detection track

The detection track participants were required to submit an algorithm that reads a chest X-ray as
input, and returns a list of bounding boxes for identified pulmonary nodules, with a likelihood score
associated with each one.

Evaluation Metrics

For each algorithm submitted to the detection track, the following metrics were calculated: Area
under the receiver operating curve (AUC) and sensitivities at average false positive (FP) rates of
0.125, 0.25, and 0.50 nodules per image.

To calculate the AUC, an image score was assigned to each chest X-ray by choosing the maximum
bounding-box probability among detected nodules in that image. If there was no nodule prediction
for an image, the image score was set at 0. These image scores were thresholded to obtain the receiver
operating curve and, hence, the AUC.

To obtain sensitivities at different FP rates, free-response operating curve (FROC) analysis was used.
If more than one predicted bounding box overlapped a reference bounding box with intersection-
over-union (IOU) > 0.2 then only the prediction bounding box with the maximum probability among
them was retained. Any prediction bounding box was then considered as a true positive if it over-
lapped with a reference standard bounding box at IOU > 0.2, otherwise, it was considered a false
positive. Using the numbers of true and false-positives, we then calculated the average sensitivity at
3 predefined false positive rates: 1/8, 1/4, and 1/2 FPs per image. For cases where the FROC curve
did not extend to the specified false positive rate the highest sensitivity value from the curve was
used.

The final metric used to rank participants on the leaderboard was calculated as follows:

rank_metric = (0.75 x AUC) + (0.25 * S) (5.1)

where S is the sensitivity at 0.25 FP per image. This gives a heavier weighting to the algorithm’s
ability to identify images containing nodules (which is the most clinically important task) but also
considers its ability to correctly pinpoint the nodule locations.
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5.3.3 Generation track

The generation track participants were required to submit algorithms that take a frontal chest X-ray
and one or more bounding box locations as inputs and return the same X-ray image with synthetically
generated nodules inserted at the requested locations.

The locations of the nodules to be generated were pre-determined by the challenge organizers. In
order to select plausible locations on the input chest X-rays, deep learning based lung and heart seg-
mentation algorithms [92] were run. The resulting segmentation maps were used to select the region
where nodules could potentially appear, including the entire lung segmentation and the heart seg-
mentation to the lowest detected point of each lung (see Figure 5.3). In order to include the lung
regions obscured by the heart and diaphragm, for each lung the most upper point of the heart seg-
mentation, the lowest detected point of the lung, and the leftmost point of the right lung (rightmost
for the left lung) were used, which creates rectangular squared like region at the bottom of the lung
areas. Up to three square bounding box locations (random from 1 to 3 nodules per image) with ran-
dom sizes (7-17mm) were selected from this region and their locations and sizes were provided with
the image for the generation algorithms to be trained with. We made sure that the nodule boxes fit

inside the boundaries.

(1) ()

Figure 5.3: Process used to identify locations where nodules should be generated.
Step 1 applies heart and lung segmentation on a given CXR image and indicates the
boundaries including heart and lungs to below the diaphragm. Step 2 receives the
segmented CXR image and randomly places 1-3 square boxes (in the size range of

7-17mm) in the bounded regions.

Evaluation Metrics

Generation track algorithms were evaluated by training a detection system with the generated im-
ages, including synthetic nodules, and evaluating the resulting nodule detection system as described
in section 5.3.2. This evaluation metric is based on the principle that a high-quality generation sys-
tem should create images that can improve the performance of a detection system when included as
training data.

For the evaluation of the generation algorithms, 1000 chest X-rays that are free of nodules were ran-
domly selected from the NODE21 training dataset, and bounding box locations where nodules should
be generated were pre-determined. This set of images and the locations were kept private and only
visible to challenge organizers.

Once a generation algorithm was submitted, it was run on this dataset to output 1000 chest X-rays
with generated nodules. The resulting generated images were used to train our baseline nodule
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detection system. This trained nodule detection system was then evaluated on the appropriate test set
(experimental or final, depending on which phase the participant submitted to). The same evaluation
metrics as used in the detection track (see section 5.3.2 were calculated and detection performance
was equated with generation performance for leaderboard ranking.

5.4 Challenge Submissions

In total, 302 participants from various countries joined the challenge before the submission deadline.
There were over 230 submissions to the experimental test set from both tracks combined. In the final
test phase, 10 teams from 7 countries (6 teams for the detection track and 4 teams for the generation
track) submitted a solution.

For inclusion in this paper, the best ranking methods from each track are selected for analysis and
further experimentation. From the detection track, we include the top three performing methods as
well as the baseline. Most of the generation track methods had a poor performance compared with
the baseline and only one additional method (the top ranking method) was selected, along with the
baseline, based on its methodology and performance.

5.4.1 Baseline Methods

DB (Baseline Detection Algorithm) This model is the open-source baseline detection algo-
rithm, which was provided by the challenge organizers before submissions were opened. It is based
on a Faster R-CNN architecture [52] which uses ResNet50[20] as the backbone. The model was trained
on the OpenCXR-preprocessed version of the NODE21 training dataset.

In order to tackle the data imbalance issue, images with nodules were oversampled until the number
of negative images was reached. The model was trained for 30 epochs, and early stopping was used
in case of no improvement in the validation set performance for 5 consecutive epochs.

GB (Baseline Generation Algorithm) This model is the open-source baseline generation al-
gorithm that was provided by the challenge organizers before submissions were opened. The method
requires 3D nodule templates segmented from CT scans. The algorithm is based on a simple cut and
paste principle[480, 492], where nodules are generated from 3D nodule templates from CT scans and
superimposed into a chest X-ray at the requested location. For each bounding box, a randomly se-
lected nodule, which was cropped from a CT scan, was resampled so that it fit into the size of the
given bounding box. As a next step, the resampled nodule was superimposed inside the bound-
ing box, and the Poisson image blending technique [493] was applied to reduce local discrepancies
around the corner regions.

This model used 3D nodule templates which were cropped from LUNA16 dataset and this dataset
was also provided to the NODE21 participants together with the training dataset as described on
Section 5.2.1.

5.4.2 Detection Track Top Submissions

In this section, we describe the top three detection solutions submitted. Methods D1, D2, D3 denote
rank 1, rank 2 and rank 3 algorithms, respectively. Further details regarding the training strategies of
these methods can be found online in the NODE21 challenge page [494].
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D1 This model was placed as the rank 1 algorithm in the final leaderboard [495]. The submit-
ted algorithm was an ensemble of 20 different models based on Faster RCNN [52], RetinaNet [57],
YOLOVS5 [55] and EfficientDet-D2 [496] architectures. Each model was trained using 5-fold cross-
validation; Yolov5 were trained with a resolution of 640 x 640 and 1024 x 1024. The final ensemble
used 5 models from each fold from Faster R-CNN, RetinaNet, Yolov5 (640 x 640 resolution), 4 models
from Yolov5 (1024 x 1024 resolution), and 1 model from EfficientDet-D2 and the 20 model predictions
were ensembled using weighted box fusion [497].

All the models were trained using the OpenCXR-preprocessed version of the NODE21 training dataset
and no additional preprocessing steps were performed.

The Faster R-CNN and RetinaNet implementations utilized a pretrained ResNet-50 model as a back-
bone network. All the models except RetinaNet leveraged transfer learning, and pretrained the mod-
els on VinDr-CXR dataset [491]. All the model parameters were kept trainable during training.

In order to tackle data imbalance, the participants generated artificial nodules on 1000 randomly
selected healthy images from the training dataset by using the GB.

For all the models except YOLOV5, various data augmentation schemes were applied such as crop-
ping and padding, horizontal flipping, random rotation, blurring, and cutout augmentation. For the
Yolov5 model, the original augmentation strategies were used, and test time data augmentation was

applied.

D2 This model was ranked in 2nd place on the final leaderboard. The submitted algorithm is an
ensemble of 33 YOLOv5 models, which were trained using 33 folds where each fold contains 85%
of the nodules from the training dataset. The predictions of the 33 models were merged using a
non-maximum suppression method.

Data balancing was tackled by undersampling the number of negative images in the training dataset.
The model was trained from scratch using OpenCXR preprocessed version of the NODE21 training
dataset. No further preprocessing steps were applied.

D3 This model was ranked 3rd on the final leaderboard. The algorithm is an ensemble of six mod-
els based on MaskRCNN and RetinaNet architectures with ResNet50 backbone. Three models per
architecture were trained where each model was trained using different thresholding values for nor-
malizing the dataset. The thresholding on the pixel intensities was performed based on predefined
upper and lower quantile values, which was then followed by uniform normalization. Predictions of
the six models were merged using non-maximum suppression.

All the models were trained using transfer learning. They were first pretrained with projected CT
scans on the DeepLesion dataset [498], and then were further fine-tuned on the Lunal6 dataset [489]
to have better weight initialization. The resulting models were then trained on NODE21 training
dataset where all the layers in the networks were kept trainable. Data imbalance was tackled by
oversampling the positive cases for the training of Mask-RCNN model.

5.4.3 Generation Track Top Submissions

The generation track aims to assess whether the state-of-the-art generation algorithms can improve
the performance of the detection systems. The algorithms should take a frontal chest radiograph and
one or more bounding box locations as input and produce an image with generated nodules at the
requested locations. Further details regarding these methods can be found online in the NODE21
challenge page [499].
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Table 5.3: Network architecture and training details of NODE21 detection solutions.

WBF= weighted box fusion, NMS= non max suppression

Method Architecture Pretrained  Ensemble Ensemble Resolution Batch Epochs Dataimbalance

Size Method  Resolution Size
YOLO
D1 FRCNN VinDr-CXR 20 WBF 1024 or 640 8or16 20-60  simulated data
RetNet
D2 YOLO ImageNet 33 NMS 1024 8 60 undersampling
D3 MaskRCNN - DeepLesion NMS 1024 8 10 oversampling
RetNet Lunal6é
DB FRCNN COCoO 1 no 1024 4 30 oversampling

G1 This model was placed as rank 1 algorithm in the final leaderboard. The nodule generation task
was tackled by generative inpainting, where a network learns to inpaint the mask region in a given
patch.

This model uses a generative adversarial networks (GANs), which consists of generator and discrim-
inator networks specialized for inpainting. It is based on a recently proposed CR-Fill architecture
[500], where the generator network receives a masked patch along with the actual mask and gradu-
ally produces the inpainted region. The generator has two components, the coarse network and the
refinement network, where the predictions produced by coarse network are refined in the next step
by the refinement network. Several losses were calculated to train the network; L1 loss was calculated
from both the coarse and refined inpainted patches, adversarial loss and structural similarity index
measure (SSIM) were calculated from the refined image patch. It also used contextual reconstruction
loss from the feature maps produced by the refinement network, which aims to select useful patches
from the image to fill in the missing region.

In order to increase the number of nodule cases to train the network, CheXpert [6] and MIMIC
datasets [34] were utilized. Since these two datasets do not have location annotations, the baseline
detection network was run on them, and predictions with confidence higher than 0.7 were selected.
This procedure resulted in 7000 nodule images from CheXpert, 6500 nodule images from MIMIC.
Since NODE21 dataset contains higher quality nodule annotations, the images from NODE21 were
oversampled ten times during training. All the images were preprocessed using the OpenCXR library
and no additional preprocessing step was performed. Horizontal flipping was used as augmentation

during training.

5.5 Experiments

In addition to presenting the challenge evaluation metrics for each detection and generation method,
in this work, we also evaluate an ensemble model of the best solutions in each track. The four detec-
tion track algorithms (D1-D3 and DB) were ensembled using the weighted box fusion method [497].
For the generation track, we combine all the generated images from both methods (G1 and GB) and
assess the impact of this simulated nodule data in training. The performance of these experiments
was evaluated in the same way as in the challenge. For the ensembled detection method, AUC score,
and sensitivity at various false positive rate (0.5, 0.25, 0.125) were computed. In the generation track
experiment, the combination of generated images produced by G1 and GB methods were used to
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train a baseline detection method. The resulting nodule detection system was then evaluated using
the same detection evaluation metrics described above.

For this publication, additional experiments were performed to systematically assess the impact of
the generated nodule images for building nodule detection systems. All models were trained from
scratch without using any external data to make sure none of the images that were used in our test
dataset were included in our training data. The experiments were designed to determine the impact
of the dataset size, and the type of the detection and generation methods. In these additional exper-
iments, we have utilized the large VinDr-CXR dataset [491] to generate nodules using G1 and GB
methods aiding in assessing how dataset size affects performance. 10606 images which were labeled
with ‘No finding’, were selected and up to 3 nodule bounding boxes (1-3) were generated using our
nodule location generator(Figure 5.3, see Section 5.2.4 for details). Both G1 and GB generation meth-
ods were run on the images to synthesize nodules within the requested bounding boxes. These 10606
images are used for the experiments described in the remainder of this section to assess the impact of
various factors when building a nodule detection system.

5.5.1 Impact of the generation methods

These experiments aim to compare the performance of two nodule generation methods, namely G1
and GB, to create data for training nodule detection systems. To evaluate the utility of simulated
nodules generated by the G1 and GB methods, the baseline detection method, DB, was trained exclu-
sively on images produced by G1 and GB. Using a fixed detection method architecture allows us to
investigate only the impact of the generation methods. The training dataset for DB consisted solely
of positive cases, each containing at least one nodule generated by G1 or GB.

In these experiments, the DB detection algorithm was trained solely with the generated CXR images
(no real nodules) obtained using G1 or GB. For each generation model, we trained the detector firstly
using all available images (10606 from VinDr-CXR), and further with various smaller dataset sizes
set at 10%, 20%, 50% and 75% of the full simulated dataset. Finally, we used an ensemble approach
and combined the images from both methods (G1+GB, resulting in 21212 images), and trained the
detection model again using the full dataset and the specified subsets of 10%, 20%, 50%, and 75%.
The resulting detection models from each experiment were evaluated on the final test set, and AUC
score and sensitivity at various false positive rate (0.5, 0.25, 0.125) were computed to measure the
performance of the corresponding generation model or ensemble.

5.5.2 Impact of the real dataset size

In these experiments, we consider the importance of the availability of real CXR nodule images and
investigate the added value of generated nodule images for boosting model performance.

The NODEZ21 training dataset (4882 images, 1134 with nodules) is used as the source of real (not gen-
erated) nodule images, and 20k images with generated nodules are used (10606 VinDr-CXR images
with nodules generated by each of 2 methods). The nodule images in the real dataset were oversam-
pled until they reached the same size as the non-nodule images to have a balanced dataset. For each
experiment where we combine real and generated data, we make sure that data was balanced as well
by oversampling the real dataset size until it reaches the same size as the generated data. We investi-
gate the impact of these generated images on the detection model when the number of real NODE21

images is varied.
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The baseline detection method, DB, was trained using 10%, 20%, 50%, 75%, and 100% of the real
dataset respectively. Next, each of these training datasets was combined with all the available gener-
ated images and DB was re-trained with each of these combination datasets. To prevent data imbal-
ance where the number of real images was too small compared to the number of generated images,

we oversample the real dataset until it reaches the generated dataset size during training.

The resulting detection methods from each experiment were evaluated on the final test set using AUC,
and sensitivity at various false positive rates (0.5, 0.25, 0.125).

5.5.3 Impact of combining detection and generation methods

In our final experiments, we analyze the impact of the generated data from different generators (G1
and GB) on each of the different detection methods described in this paper, namely D1, D2, D3, and
DB. Each detection model was first trained with the real dataset (the NODE21 training dataset) to
create a benchmark performance measure. Next, the detection method was trained by boosting the
NODE21 training dataset with generated images, which were generated either by G1 or GB methods

or a combination of both.

It is important to note that during the challenge the submitted algorithms were allowed to use ex-
ternal data sources and computational size or time was not limited for training. However, for these
additional experiments, in order to compare the impact of the detection method (and not other fac-
tors such as external data or computational source), all three detection methods, D1, D2, and D3, were
adapted to fit with the computational resource requirements. All models were trained from scratch
without using any external data to make sure none of the images were used in our test dataset. The
batch-size of the methods was decreased to be able to train each model with 12GB memory, and no
other external data was used for training. For this reason, the benchmark performance measures
are not identical to those achieved during the challenge. The specific modifications to each method
were as follows: D1: The batch-size was reduced from 16 to 8 and the training set was limited to the
provided NODE21 training data. D2: The batch-size was reduced from 16 to 8 D3: The method was
trained with random weight initialization instead of pre-trained using external data-sources.

For all the experiments, we trained the corresponding detection model three times and the model
with the best validation set performance was selected as the final model for evaluation. This was
done in order to reduce the impact of the randomization process during training which arises from

specific GPU computations.

The final model performance was evaluated on the final test set using AUC score, and sensitivity at
various false positive rates (0.5, 0.25, 0.125).

5.5.4 Statistical Methods

To compare AUC scores achieved by different methods, DeLong’s test is used [501] with statistical
significance set at p<0.05.
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Table 5.4: The performance of the nodule detection algorithms on the final test set of
298 images (111 with nodules). The ensemble model was obtained using weighted
box fusion [497] on the four individual model predictions. AUC=Area under ROC
curve, ‘Outperforms’ indicates the names of methods that have significantly lower
AUC. 5(0.5) indicates the algorithm sensitivity at an average of 0.5 false positives per

image.

Training Dataset Source : NODE21 training set

Training Dataset Size : 3748 images per generator

Test Dataset Source : NODE21 Final Test Set

Test Dataset Size : 187 (non-nodule) and 111 (nodule) images
Method AUC S(0.5) S(0.25) S(0.125) Outperforms

D1 0.868 0.800 0.750 0.603 DB
D2 0.862 0.771 0.723 0.600 DB
D3 0.833 0.761 0.704 0.590
DB 0.816 0.714 0.635 0.504

Ensemble 0.877 0.819 0.754 0.619 D3, DB

5.6 Results

5.6.1 Challenge Detection track

The performance of the detection algorithms on the final test data is provided in Table 5.4. As seen in
the table, the D1 and D2 methods achieved a similar level of performance with an AUC of 0.868 and
0.862 and sensitivity of 0.800 and 0.771 at 0.5 FP rate, respectively. D3 method also achieved a high
level of performance with an AUC score of 0.833 and sensitivity of 0.761 at 0.5 FP rate, however, only
D1 and D2 algorithms showed significantly higher performance than DB (p<0.05).

The ensembled model which was created from the four detection track algorithms (D1, D2, D3 and
DB) using weighted box fusion [497] achieved a significantly higher performance than D3 and DB
methods (p<0.05) with an AUC of 0.877 and a sensitivity of 0.819 at 0.5 FP rate (Table 5.4). Further,
the performance of the detection algorithms was compared to 12 experienced radiologists on the
final evaluation set. Figure 5.6 illustrates the performance of each detection algorithm, the ensemble
detection model, and the performance of the 12 observers. The final ensemble method showed a
better performance than 3 radiologists and achieved a similar level of performance to 8 radiologists,
underperforming only one radiologist.

Figure 5.4 shows example nodule cases from the final test set. As illustrated by the figure, while more
obvious nodules are detected by all the detection methods, D1 and D2 methods perform better than
D3 and DB methods for detecting small subtle nodules (nodules behind the rib and clavicles as in the
example). Further, all the detection methods can miss very small or subtle nodules and nodules that
appear in the region of vessels.



5.6 Results 107

D1, D2, D3, D4 D1, D2, D3, D4 D1

D1, D2 X X

Figure 5.4: Example nodule cases in the final test set. Detection methods that detected
the corresponding nodule in the image are displayed below each image. X denotes

that the nodule was missed by all the detection methods.

5.6.2 Challenge Generation track

The generation algorithms were evaluated by running the baseline detection model with training data
composed of CXRs with nodules generated by the submitted generation algorithm.

The baseline detection model trained with 1000 images generated by G1 and GB methods respectively
achieved similar levels of performance with AUCs of 0.746 and 0.722 and a sensitivity of 0.524 and
0.505 at 0.5 FP rate, when evaluated on the final test data. These results are provided in Table 5.5. The
impact of combining images from both generation methods, G1, and GB, was evaluated by creating a
total of 2000 nodule images (1000 images from each generation method). The final detection method
(Faster R-CNN model) trained with these combined images achieved a significantly higher perfor-
mance (p<0.05) than those trained using data from individual generation methods, with an AUC of
0.783 on the final test data (Table 5.5.

In a qualitative evaluation, we visually inspected 200 randomly selected generated images from each
method. Some examples of the generated images from both methods can be seen in Figure 5.5. While
the G1 method consistently produced more visually realistic nodules compared to the GB method, the
diversity of the nodule appearance (e.g. shape) was more limited. The GB method, on the other hand,
tended to produce very bright nodules around the heart region and was more prone to producing
extremely subtle nodules.
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Figure 5.5: Examples of generated nodules using G1 and GB methods. The top row
indicates nodules generated by G1, and the bottom row shows generated nodules

using GB.

5.6.3 Experiment Results

Impact of the generation method

The first set of experimental results where the baseline detection system was trained using solely
generated data can be seen in Table 5.6. As seen in the table, the baseline detection method, DB,
achieved an AUC of 0.701 and 0.722 using data from G1 and GB methods, respectively, and using
only 10% of the generated data (1060 images). Considering networks trained using data from just
one generator (G1 or GB), the AUC does not increase significantly when the dataset size is increased
gradually from 10% all the way to 100% and remains in similar ranges (p>0.05). Networks trained
using G1 data alone also did not have a significantly different performance compared to those trained
using GB data alone, regardless of dataset size.

It is, however, noteworthy that the performance consistently improved when G1 and GB generated
datasets were combined for training, regardless of the dataset size. The model trained with both G1
and GB generated datasets surpassed the performance of models trained exclusively on data from
either G1 or GB, given the same number of samples. The highest performance levels (0.778-0.798)
were achieved when the model was trained with the combination of G1+GB images, and the model
trained with just 10% of this data (n=2,121) has an AUC that is not statistically different from that of
the model trained with any other percentage, or with all data from both models (n=21,212).

Impact of the real dataset size

In Table 5.7, the results of varying the size of the real dataset available for training the DB detection
model are shown. When training with real data only the detection performance improves consistently
as the size of the dataset is increased.

Adding generated images into the training data results in performance improvements when only part

of the real dataset is available. All the experiments except when the full real dataset was used showed
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Table 5.5: The performance of the generation algorithms on the final test set. Each
generator, G1, and GB methods were run on 1000 (non-nodule) CXR images from the
training data, and the resulting data was used to train the baseline Faster R-CNN
model. G1+GB denotes the experiments where images generated from both methods
are combined (results in 2000 generated images). AUC=Area under ROC curve. ‘Out-
performs’ indicates the names of methods that have significantly lower AUC. 5(0.5)

indicates the algorithm sensitivity at an average of 0.5 false positives per image.

Training Dataset Source : NODE21 training set

Training Dataset Size : 1000 (generated-nodule) images per generator
Test Dataset Source : NODE21 Final Test Set

Test Dataset Size : 187 (non-nodule) and 111 (nodule) images

Nodule Generator AUC S(0.5) S(0.25) S(0.125) Outperforms

Gl 0.746 0524 0.362 0.27
GB 0.722 0505 0.352 0.324
G1+GB 0.783 0591 0.51 0.463 G1,GB

significant improvement when generated images (G1+GB) were added (p<0.05).

The best performance was achieved when DB was trained using all NODE21 training data (real data)
and all generated data which resulted in an AUC score of 0.844 and sensitivity of 0.762 at a 0.5 FP
rate. The visual analysis comparing the outcomes of the two models revealed that augmenting the
Faster R-CNN training with G1+GB generated images improved nodule detection in difficult regions
such as near the clavicles or adjacent to blood vessels. Figure 5.7 presents few example cases where
nodules were detected solely after the addition of generated images to the training data.

Impact of combining detection and generation methods

In this set of experiments, each of the detection algorithms (D1, D2, D3, and DB) was trained first
using only real data (NODE21 training dataset), and then using a combination of real data with sim-
ulated nodule images generated by G1, G2 or both. The experiment results are displayed in Table
5.8.

The AUC values achieved by models with generated data added to the NODE21 training data are
generally not significantly better than those achieved by the model using only NODE21 (real) training
data. The only exception to this is for D3, where adding all generated images (G1+GB) to the training
set yielded a significant performance improvement(p<0.05), increasing the AUC score from 0.766 to
0.812.

5.7 Discussion

In this paper, we analyze the results of the two-track NODE21 challenge which was organized to
collectively develop nodule detection and generation algorithms on chest X-rays. NODE21 was one
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Figure 5.6: ROC curve for the D1, D2, D3, and DB methods, their respective ensemble
performance (denoted as ensemble model), and the 12 observers on the final test set
of 298 images (111 with nodules). The ensemble model was obtained using weighted
box fusion [497] on the four individual model predictions. AUC=Area under ROC

curve.

of the first challenges which included only fully reproducible and open algorithm solutions. The best-
performing algorithms from both tracks were selected to be included in the paper, and additional
experiments were performed to systematically analyze the impact of the generated images on the
state-of-the-art detection model performance.

The detection track solutions achieve results comparable to the 12 radiological readers (comprising
six radiologists and six residents). Based on the 95% confidence intervals of the ROC curves, the en-
semble model (of D1, D2, D3, DB) is outperformed by only one reader and its performance surpasses
three others. Only two readers exceed the performance of the top model, D1, while its performance
surpasses that of three others, as indicated by the 95% confidence intervals. The commercial nodule
detection solution tested in 2014 on the same dataset [413] achieved a sensitivity of 81% at 1.9FP per
image, while D1 alone can obtain 80% sensitivity at 0.5FP per image. This demonstrates the advances
in Al in the last decade, which allow researchers to quickly develop systems with radiologist-level
performance. Comparison with recent work using different test sets is generally difficult since the
criteria for data selection and annotation vary widely. In 2021, a commercial system (AI Rad Com-
panion Chest X-Ray algorithm (Siemens Healthineers AG)) achieved an AUC of 0.82 on a dataset that
included CT-visualised nodules considered challenging to detect on CXR, similar to our test dataset
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Figure 5.7: Illustrative examples of nodules detected exclusively in the Faster R-CNN

model trained with additional G1+GB generated images.

[479]. This suggests that the detection networks in this challenge (AUC=0.816-0.868) perform in the

range of the current state-of-the-art technologies.

Interestingly, the top three solutions (D1-D3) all utilized an ensemble of numerous state-of-the-art
models (ranging from 6 to 33 models), implying the advantages of this strategy in achieving supe-
rior performance. These findings are consistent with prior studies [11, 276], and also align with the
majority of the top-10 public challenge submissions such as CheXpert [6], SIIM-ACR [77], and RSNA-
Pneumonia [73], all of which have utilized ensemble methodologies. Pinpointing the reasons for
performance differences between the detection solutions (D1-DB) is a complex task, as there could
be various factors at play. These may range from the quantity of models used in an ensemble, the
architecture of the models themselves, to the strategies deployed during training. While the num-
ber of models in an ensemble appears to suggest an improvement in performance (Table 5.3), this
hypothesis requires additional validation through future research.

The generation track attracted a smaller number of participants and a scarcity of innovative methods.
Most entries closely mirrored the provided baseline algorithm, with only one competitor (G1) employ-
ing a unique GAN method and demonstrating robust performance. This could suggest that the task
of generating nodules was viewed as more challenging than that of nodule detection, a sentiment that
aligns with previous research [11] where detection on CXR has been explored more comprehensively
than the generation task.

Notably, our research demonstrates that combining nodules from different generators is considerably
more beneficial than using a larger quantity from a single generator (as shown in Table 5.6). This
underlines the importance of diverse generation techniques in real-world applications. The experi-
ments, where the DB model was trained with a range of sizes of generated images (from G1, GB, or a
combination of both), revealed that a model trained with only 2121 images from a combination of G1
and GB significantly outperforms one that is trained with a notably larger set of 10606 images from
G1 alone. No model trained with data from a single generator could outperform a model trained on
combined data, regardless of dataset size. One theory to explain this phenomenon is that when the
data is generated using only a single method (G1 or GB), the detection method might learn features
consistently produced by the generator, such as sharp nodule borders for example, which are not
always present in real nodule data. We hypothesize that generating data with different methods can
help the detection algorithm to focus less on these generator-specific features, and more on the im-

portant nodule characteristics. This theory is consistent with previous work on natural images [492]
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Table 5.6: Impact of the generation methods: The baseline detection model, DB, is
used; G1 and GB denote 10606 images with nodules generated by G1 and GB models,
respectively. Each experiment was run three times, and the model with the best per-
formance on the validation set was selected. AUC=Area under ROC curve. ‘Outper-
forms’ indicates which methods which have significantly lower AUC. (Methods that
were never significantly worse than others are not listed in these additional columns).
* indicates that the method with significantly worse performance was trained with a
dataset that was larger or the same size. 5(0.5) indicates the algorithm sensitivity at

an average of 0.5 false positives per image.

Training Dataset Source : VinDr-CXR dataset

Training Dataset Size : 10606 (generated-nodule) images per generator
Test Dataset Source : NODE21 Final Test Set

Test Dataset Size : 187 (non-nodule) and 111 (nodule) images

Dataset AUC S(0.5) S(0.25) S(0.125) Nb ofimages Outperforms

10% 20% 50% 75% 100%

Gl GB Gl GB Gl GB Gl GB Gl GB

10% G1 0.701 0.392 0.349 0.295 1060
10% GB 0.722  0.504  0.400 0.307 1060
10%G1+GB 0.778 0.581 0.495 0.381 2121 v vt v v v
20% G1 0.708 0.438 0.371 0.324 2121
20% GB 0.734 0476 0.419 0.359 2121
20%G1+GB 0.797 0590 0472 0.381 4242 v v v v v v
50% G1 0.716 0.466 0.383 0.324 5303
50% GB 0.743 0.505 0.429 0.343 5303
50%G1+GB 0.797 0.648 0.505 0.416 10606 v v v v v v vt
75% G1 0.700 0.414 0.390 0.343 7954
75% GB 0.743 0571 0457 0.354 7954
75%G1+GB 0798 0.619 0.552 0.475 15909 v v v v v v v v v Y
Gl 0.709 0.405 0.381 0.362 10606
GB 0.745 0.545 0.466 0.352 10606
G1+GB 0.782 0.638 0.524 0.438 21212 v v v v v v

which showed that combining generated images with different blending techniques performed better
than using a single blending technique for an object localization task.

Another insight from our results is that increasing generated dataset size does not significantly in-
crease the performance of the detection model (for either single generators or combined). Using only
10% of the available data produces a comparable result to using 100% for all datasets (G1, GB, G1+GB).
This indicates that the generated nodules are useful but lack diversity, hence producing larger num-
bers of them does not aid performance. However, it is notable that DB detection systems trained only
with synthesized nodule images can lead to high-performance levels (with AUC close to 0.8 for those
trained with combined datasets) when evaluated on real nodule images. This is further emphasized
in scenarios where the dataset size is limited (e.g., 2000 images), where a model trained with G1+GB
datasets achieves a performance level (AUC of 0.783, Table 5.5) comparable to that of a model trained
with a real dataset (AUC of 0.774, Table 5.7), highlighting the usefulness of the generation dataset.

In the next set of experiments (Table 5.7), the focus was placed on examining the enhancement pro-
vided by the inclusion of synthetically generated images when real data (chest X-rays with nodules)
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Table 5.7: Impact of the real dataset size: The baseline detection model, DB, is used;
G1 and GB denote 10606 images with nodules generated by G1 and GB models, re-

spectively. Each experiment was run three times, and the model with the best per-

formance on the validation set was selected. AUC=Area under ROC curve. S(0.5)

indicates the algorithm sensitivity at an average of 0.5 false positives per image. *

indicates that the AUC is significantly improved compared to the previous row (with-

out generated training data).

Training Dataset Source : VinDr-CXR and NODEZ21 training dataset

Training Dataset Size : 10606 (generated-nodule), 4882 NODE21 images

Test Dataset Source : NODE21 Final Test Set

Test Dataset Size : 187 (non-nodule) and 111 (nodule) images

Dataset AUC S(0.5) S(0.25) S(0.125) Nb of images
10% Real 0.742 0409 0.314 0.276 488
10% Real+ G1 + GB  0.802* 0.668 0.584 0.499 21700
20% Real 0.774 0571 0.438 0.350 976
20% Real+ G1 + GB  0.830* 0.704  0.629 0.556 22188
50% Real 0.789 0.676  0.584 0.504 2441
50% Real + G1 + GB  0.848* 0.795 0.635 0.523 23653
75% Real 0.797 0.685 0.590 0.512 3661
75% Real + G1 + GB  0.849* 0.779  0.693 0.584 24873
Real 0816 0.714 0.635 0.504 4882
Real + G1 + GB 0.844 0.762 0.638 0.514 26094
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Table 5.8: Impact of the generated images on the performance of detection methods.
Real = 4882 NODE21 images, G1 and GB are 10606 images with simulated nodules
generated by G1 and GB methods, respectively. AUC=Area under ROC curve. 5(0.5)
indicates the algorithm sensitivity at an average of 0.5 false positives per image.T
denotes training time in days. *indicates the AUC values found to be significantly

different (comparisons were only made within each detection method).

Training Dataset Source : VinDr-CXR and Node21 dataset
Training Dataset Size : 10606 (generated-nodule), 4882 NODE21
Test Dataset Source : NODE21 Final Test Set

Test Dataset Size : 187 (non-nodule) and 111 (nodule) images

Method AUC S(05) S(0.25) S(0.125) T (days)
D1

Real 0845 0781 0707 0594 2
Real+G1 0838 0759 0.674 0543 5
Real+GB 0.844 0792 0713 0584 5
Real+G1+GB 0.852 0784 0733 0600 6
D2

Real 0846 0782 0704 0619 1
Real+G1 0849 0784 0712 0639 2
Real+GB 0851 0779 0711 0623 2
Real+G1+GB 0.858 0762 0705 0.609 2
D3

Real 0.766* 0.614 0449 0352 1
Real+G1 0778 0639 0599 0502 1
Real+GB 0789 0.645 0601 0521 1
Real+tG1+GB 0.812* 0.695 0.614 0533 1
DB

Real 0816 0714 0.635 0504  4h
Real+G1 0.832 0724 0648 0505  6h
Real+GB 0.827 0719 0.644 0500  6h

Real+G1+GB 0.844 0.762 0.638 0.514 6h
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was accessible. For models using up to 75% of the real dataset, there was a statistically significant im-
provement in performance when the 21k synthetic nodule images were added to the dataset. When
using the full real dataset for training the baseline model, the addition of the generated data did not
result in a statistically improved model, even though the AUC value did rise from 0.816 to 0.844.
Notably, however, this latter version of the DB model achieved comparable performance to that of
D1 and D2 (p> 0.05) (in contrast to the original DB which had significantly worse performance com-
pared to D1 and D2 (Table 5.4). This indicates that the addition of the generated data has elevated
the performance of the simple Faster R-CNN model to be comparable to that of much more complex
ensemble models.

The finding that generated data is most useful when real dataset size is limited is consistent with
the additional findings in Table 5.8. While adding G1 and GB datasets into training yielded a slight
increase in AUC for all the detection methods, only D3 showed a statistically significant improvement
when retrained with all generated nodule data added to the real training dataset. This suggests that
for the other three methods, the real data contains sufficient data diversity for the task.

In conclusion, the results from the NODE21 challenge demonstrate that the utilization of generated
nodule data can improve the effectiveness of detection methods for identifying nodules in CXRs un-
der certain scenarios. Given the data and methodologies applied in this study, the enhancement was
most prominent when the size of the real dataset was restricted and when data generated from two
different generation methods was combined. These findings suggest that employing various gener-
ation methods, or possibly even differing method parameters or blending techniques, can increase
diversity and likely offer more benefits compared to merely using the same generator to produce a
larger volume of images. Future efforts should concentrate on enhancing the diversity of the gener-
ated images to potentially achieve greater advances in performance.
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In this thesis, we have focused on leveraging deep learning techniques for enhancing chest X-ray
(CXR) analysis, encapsulating a series of studies that span from literature review to the development
of clinically relevant diagnostic algorithms and the facilitation of a public research challenge.

This chapter outlines the main contributions of our work and proposes directions for future research
towards clinical integration.

6.1 Towards clinically relevant AI systems for CXR

To advance Al systems for clinical use, our research highlights several essential factors. The next
sections outline these critical steps, drawing on findings from our literature review in Chapter 2. We
discuss how our thesis approaches these factors, aiming to contribute effectively to the field.

6.1.1 Assessing Benefits and Impacts of Al systems

An important conclusion from our comprehensive literature review shows a widening gap between
academic research in automated CXR analysis with deep learning and practical application within the
realm of clinical radiology, as mentioned in Section 1.4. To bridge this gap, it is essential to understand
the intended use of Al systems within clinical settings and their interaction with radiologists. This
thesis delves into several key areas where Al can significantly impact radiological practices, building
on the areas identified in Section 1.2.

1. Alleviating Workloads and Enhancing Efficiency: A primary focus of our research, discussed
in Chapter 3, centers on the development of a cardiomegaly detection algorithm using deep
learning techniques. This algorithm automates the calculation of the cardiothoracic ratio, a
clinically relevant measure often used in assessing heart enlargement. This application exem-
plifies how Al can automate routine, time-consuming tasks, and aims to let radiologists to
concentrate on more complex diagnostic challenges.

2. Prioritizing Urgent Cases and Enhancing Diagnostic Accuracy: Chapter 5 delves into one
of the most important diagnostic challenges in chest X-ray (CXR) analysis: the detection of
lung nodules. Given the critical role early detection plays in patient outcomes and the in-
herent complexity of accurately identifying subtle lung nodules, this area of CXR analysis is
paramount. Despite its significance, recent years have seen a noticeable decline in research
efforts directed towards lung nodule detection, a trend that our review paper in Chapter 2
attributes to a broader shift in research focus. To address these challenges and move the field
forward, Chapter 5 introduces a public research challenge focused on the nodule detection task
where models identify the location of the nodule with bounding boxes. The challenge also pro-
vides a public CXR nodule dataset with annotations from radiologists to accelerate research in
this area. This application demonstrates an example of an Al system which can be used to en-
hance diagnostic precision, through the early identification of subtle nodules, and potentially
prioritize urgent cases to ensure they receive prompt attention.

3. Uncovering New Health Indicators: The exploration of Al applications in identifying previ-
ously unavailable health markers from chest X-rays (CXR) represents a relatively unexplored
territory. The premise here is to leverage deep learning to uncover health indicators that are
not immediately apparent to radiologists through traditional visual analysis of CXRs. An illus-

trative example is presented in Chapter 4, where we develop a deep learning model capable of
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estimating total lung volume from CXR images. To our knowledge, this study marks the first
successful demonstration of such a capability, highlighting the potential for Al applications to
extend the scope of insights from CXR beyond the current clinical practice.

6.1.2 Explainable AI through Transparent Model Outputs

The development of deep learning models for chest X-ray (CXR) analysis is increasingly focused on
not just achieving high accuracy but also on ensuring that the models” outputs are interpretable and
actionable for clinicians. Explainability is important in the medical field, as it provides insights into
the logic behind a model’s predictions, enabling healthcare professionals to make informed decisions.
This is particularly important when dealing with binary outcomes, such as the presence or absence
of a specific condition, where understanding the underlying reasoning might significantly impact
radiologist’s decision making process.

A key challenge in the current landscape is the deep learning models’ "black box" nature, which can
erode trust among medical practitioners and hinder the adoption of Al tools in clinical settings. One
common method to address this issue in CXR analysis has been the use of saliency maps, which aim
to visually represent the areas of an image most influential to the model’s decision. While these maps
offer some insights into the model’s focus areas, the effectiveness and interpretability of these visual
maps have not been thoroughly evaluated.

Recognizing the limitations of simple binary outputs and the need for more granular insights, a shift
towards models that provide detailed localization and segmentation of abnormalities is likely to be
more beneficial in clinical settings. Chapter 3 illustrates this shift by introducing a segmentation-
based model for cardiomegaly detection on CXR, diverging from the classification-based models that
have been predominantly used in the literature. This model calculates and visually presents the
cardiothoracic ratio, offering a quantifiable and visually interpretable output that directly supports
clinical decision-making. The study highlights how refining the training objectives of deep learning
models not only enhances performance but also yields results with significantly improved explain-
ability.

Extending this approach, Chapter 5 delves into lung nodule detection, framing it as a bounding box
detection challenge to emphasize explainability and clinical applicability. A public challenge was
crafted to assess algorithms not merely on their ability to detect nodules within a CXR but also on
the accuracy of their localization. To facilitate this, a public dataset annotated with bounding box
representations of nodules was provided for algorithm training. This method of specifying nodule
locations directly supports diagnostic processes and is likely to foster a more streamlined and effec-
tive workflow for radiologists. By reducing the time devoted to uncertain searches for nodules and
allowing clinicians to easily disregard model outputs for obvious false positives, this approach has
potential to significantly speed up the diagnostic process compared to classification based models
with binary outputs. It empowers clinicians to make informed decisions about the model’s findings,
ensuring that they do not expend effort searching for nodules merely because the model indicates
their presence.

These advancements mark a significant transition in the application of deep learning within medical
imaging. We are moving from basic detection tasks to creating deep learning models that deliver
detailed, understandable, and clinically useful insights. This shift is vital for building confidence in
deep learning among medical professionals, ensuring these technologies can be seamlessly integrated
into daily clinical workflows. Ultimately, this progress aims to enhance radiologists” workflow by

providing precise, actionable information that supports timely and informed decision-making.
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6.1.3 Quality of labels and annotations

The reliability and accuracy of labels and annotations play an important role in the development and
assessment of deep learning models in medical imaging. Chapter 2 reveals that a substantial por-
tion of the studies in the literature relies on publicly available labeled datasets for either training or
evaluation. However, these datasets frequently depend on automated techniques to parse radiology
reports for labels, introducing a layer of vagueness due to the automated labeling process. Moreover,
radiology reports themselves may not comprehensively list all findings, given their contextual nature,
leading to labels that might not fully capture the spectrum of possible diagnoses. This process, com-
pounded by the limitations of natural language processing (NLP) technologies, often results in label
inaccuracy or noise.

The utilization of these public datasets, while beneficial for training purposes, introduces significant
challenges when employed for evaluating the performance of chest X-ray analysis systems. The re-
liance on such datasets tends to skew performance metrics, rendering comparisons between models
and the selection of the most effective model unreliable. The hidden pitfalls of using labels extracted
via NLP methods are frequently underestimated, especially when it comes to model evaluation and
comparison.

In response to these challenges, Chapter 2 advocates for the use of evaluation datasets grounded in
a well-defined reference standard. Achieving a more accurate model performance assessment ne-
cessitates high-quality labels, ideally obtained from thorough radiological examinations by multiple
expert reviewers or supported by additional diagnostic evidence, including CT scans and laboratory
tests. Building on this principle, Chapter 5 introduces the NODE21 CXR dataset, annotated by ex-
perienced radiologists with bounding box annotations to pinpoint nodule locations. To ensure the
highest levels of accuracy, two distinct test datasets were employed: an experimental test set and a
final test set, both of which were augmented with CT scan data. By making the training dataset pub-
licly accessible and keeping the leaderboard open for experimental test set submissions, we aim to
foster research in this area and facilitate robust model comparisons. This strategy not only enhances
the quality of research but also supports the development of more reliable and effective diagnostic
tools in medical imaging.

Additionally, each chapter of this thesis emphasizes the creation of high quality annotated evalua-
tion datasets to ensure the reliability and accuracy of performance assessments. In Chapter 3, while
utilizing the publicly accessible Chest X-ray14 dataset, we enhanced the evaluation dataset by hav-
ing radiologists precisely annotate cardiomegaly, marking the cardiothoracic ratio directly on each
chest X-ray image. A similar approach was adopted in Chapter 4, where the task was to train a deep
learning system to estimate the total lung volume from chest X-ray images. Given the challenge of
deriving total lung volume directly from a CXR, we compiled a dataset from patients who had un-
dergone both a CXR and a pulmonary function test (PFT) within a short time frame. We then utilized
the total lung volume measurements from the PFTs as the labels for our dataset, ensuring our model
could be trained and evaluated against a concrete, clinically validated standard.

6.1.4 Benchmarking

Public datasets and challenges hold significant importance in the field of deep learning for medical
imaging, providing a unified platform for the assessment and comparison of various methodologies
and models. These resources enable researchers to benchmark their work against state-of-the-art tech-
niques, highlighting opportunities for enhancement and guiding the evolution of innovative strate-
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gies. They represent a critical mechanism for facilitating research advancement, fostering collabora-
tion, and enabling reproducible, fair evaluations.

Leveraging this insight, Chapter 5 details our initiative to launch NODE21, a public research chal-
lenge focused on the detection and generation of lung nodules on CXR. To support this challenge,
we compiled a training dataset from several public sources, all re-annotated by radiologists to ensure
label accuracy. A unique aspect of this challenge was the requirement for participants to submit their
solutions as Docker containers, promoting full reproducibility. This format allowed each submitted
solution to be utilized not only for evaluating model performance but also for further training of
models. To our knowledge, NODE21 represents one of the first examples of a research challenge that
offers solutions which are accessible for both training and testing purposes, thereby fostering com-
plete reproducibility and transparency. Furthermore, we have kept submissions for the experimental
test data open, enabling ongoing comparison of new models against the established benchmarks.

6.1.5 Reproduciblity

Reproducibility is fundamental to scientific progress. It’s vital for ensuring that other researchers can
replicate results, which strengthens the trust in findings and facilitates further advancements.

In line with promoting reproducibility, we have made the algorithms developed in chapters 3, 4 and 5,
in the thesis publicly available. This allows others in the field to apply our models to new datasets, test
their effectiveness, and conduct comparisons with their own models. Such comparisons are crucial

for identifying improvements and driving innovation in CXR analysis using deep learning.

6.1.6 Generalizability

In medical imaging, ensuring the generalizability of models represents a formidable challenge due to
the inherent variability and complexity of the data. A model developed and trained using datasets
from one medical institution may underperform when applied to data from another institution. This
discrepancy can arise from differences in imaging techniques, equipment specifications, and patient
demographics. This issue is made even worse by the fact that collection of large medical data to train
these models is very difficult, limiting the potential for models to learn from a broad and representa-
tive sample of data.

In the spirit of this, Chapter 5 provides public training dataset from multiple resources. We have
aimed to address model generalizability by compiling the training dataset from various public sources,
while ensuring the test dataset comprises data from a hospital not involved in the training phase,
thereby broadening the applicability of research findings to diverse clinical settings.

6.2 Future Work

The progress in deep learning has led to significant advancements across various research domains,
with CXR analysis standing out as a field that has seen remarkable progress. Several recent applica-
tions demonstrate performance levels comparable to radiologists, marking a substantial leap forward.
However, as we achieve these high performance benchmarks, it becomes apparent that in focusing
solely on marginal gains, we may overlook broader aspects critical to translating these systems into

clinical practice.
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Moving forward, our focus should shift from simply making small improvements in performance
to taking a broader look at the entire field of chest X-ray analysis. Our thorough review of existing
research has highlighted how public datasets have already started to change where we focus our
efforts. However, while these datasets have been invaluable, it’s time to build on what we’ve learned
from their limitations. We need to develop high-quality public datasets that not only address clinically
important questions but also provide clear definitions of how these systems can be useful and ensure
the labels used are accurate and reliable. The positive influence of well-designed public datasets and
research challenges on advancing the field is undeniable—they push us forward and inspire new
ideas and breakthroughs.

Another vital area for future work is the enhancement of label quality, possibly through the incorpora-
tion of data from CT scans or other diagnostic tests, thereby surpassing the limitations of traditional
radiological assessments. Evaluating models against these refined datasets will not only improve
accuracy but also push the boundaries of what is achievable with Al in medical imaging.

As we move towards the integration of Al systems into clinical settings, it is essential to consider
more than just performance metrics. Understanding the specific information radiologists require,
determining the desired outcomes of Al models, assessing the generalizability and fairness of model
performance, and ensuring robustness are all critical factors. These considerations are fundamental
to the successful deployment of Al systems in healthcare environments.

Lastly, there is a pressing need for studies that investigate the prospective impact of Al systems in
clinical practice. Such research would provide invaluable insights into the practical benefits and
challenges of implementing Al-assisted diagnostics, guiding future developments in a direction that
maximizes utility and efficacy in real-world settings.

In conclusion, it is crucial that future developments not only strive for technical excellence but also for
practical applicability in healthcare settings. By focusing on creating high-quality datasets, enhancing
label accuracy, and considering the broader implications of Al integration into medical workflows, we
can ensure that deep learning tools become valuable assets in improving patient care. The journey
ahead is not just about achieving technological milestones but also about making real-world impacts
that enhance the effectiveness and efficiency of clinical diagnostics.
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In Chapter 1, we lay the groundwork by introducing the core concepts on the basics of Chest X-rays
(CXR), detailing their varieties and applications in medical practice. Subsequently, we address the
challenges in CXR interpretation in clinical settings, establishing a case for the necessity of automated
systems in CXR analysis. This chapter also offers a brief overview of the deep learning frameworks
employed throughout the thesis and highlights the current gaps and hurdles identified in existing
research. It equips readers with the essential knowledge needed to understand the field of CXR
analysis and introduces the solutions proposed in this thesis to address these challenges.

Chapter 2 presents an extensive review of the literature on CXR analysis from 296 peer reviewed
studies, pinpointing critical gaps and suggesting directions for future research. It introduces deep
learning and CXR fundamentals, categorizes key literature trends by their analytical tasks, and pro-
vides a detailed overview of public datasets and commercial CXR analysis products. Serving as a
pivotal resource, this analysis is designed not only to orient new researchers to the field but also to of-
fer insights for researchers from other disciplines seeking to understand the nuances of CXR analysis
through deep learning. The chapter reflects on the collective achievements and challenges faced by
the CXR deep learning research community, discussing common pitfalls and suggesting directions for
future work. By doing so, it lays the groundwork for developing CXR analysis methodologies with
clear clinical applicability, thereby setting the stage for the research discussed in subsequent chapters.
In Chapter 3, we critically examine the prevalent use of classification-based methodologies in the
literature for detecting cardiomegaly in chest X-rays (CXR) and introduce an alternative strategy cen-
tered on anatomical segmentation. This chapter performs a comparative analysis between these two
distinct deep learning tasks, namely anatomical segmentation and image-level classification, employ-
ing systematic hyperparameter optimization to optimize their performance. Our findings indicate
that the segmentation-based technique not only surpasses image-level classification in performance
but also enhances interpretability substantially. The proposed approach, when trained on a dataset of
moderate size comprising chest radiographs, achieves a comparable performance to the radiologist.
Importantly, the model generates a quantitative measurement that is clinically relevant, offering a
pathway to consistent and reproducible assessments, as well as facilitating detailed reporting. The
model developed is publicly available.

Chapter 4 delves into the utilization of deep learning methodologies for the measurement of a criti-
cal quantitative biomarker: total lung volume, using chest X-ray (CXR) images. To our knowledge,
this is one of the first studies illustrating the ability of state-of-the-art deep learning techniques to
accurately estimate total lung volume from conventional chest radiographs. The study demonstrates
a potential application towards expanding the diagnostic capabilities of CXR beyond traditional vi-
sual assessments. The model developed is openly accessible and can be employed to determine total
lung volume from routinely captured chest X-rays. This deep learning system has potential to serve
as a valuable instrument for tracking trends over time in patients who undergo regular chest X-ray
examinations.

Chapter 5 examines state-of-the-art nodule detection and generation methodologies through the or-
chestration of an open-source and collaborative research initiative, NODE21. We organized a public
research challenge, NODE21, with the objective of benchmarking state-of-the-art techniques in nod-
ule detection and generation task on chest X-rays. We additionally performed extensive experiments
using the top performing solutions from each track to analyze the impact of synthetic nodule genera-
tion methodologies for the task of nodule detection on CXR. Our results demonstrate that employing
generated images can improve the performance of detection methods, with this impact being espe-
cially pronounced when there is a scarcity of real nodule images available. Furthermore, the structure

of this challenge was designed to accept submissions exclusively in the form of open-source solutions
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using Docker containers, which guarantees the reproducibility of all methods submitted. The chal-
lenge also contributes to the field by providing a valuable public dataset, annotated by radiologists,
to facilitate research and address this important clinical issue.

In Chapter 6, we reflect on the work presented in the previous chapters of this thesis. We examine
the main contributions and applications of our research for CXR analysis. We further discuss poten-
tial future directions to move towards the development and integration of Al systems that can be
effectively utilized in clinical settings.
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Dit proefschrift gaat over toepassingen van deep learning in de klinische praktijk en richt zich speci-
fiek op het gebruik van deze moderne techniek om thoraxfoto’s te analyseren.

In Hoofdstuk 1 geven we een uitgebreide review van de onderwerpen die centraal staan in het proef-
schrift: thoraxfoto’s (CXR, een afkorting die staat voor chest x-ray), de uitdagingen bij het interpre-
teren van deze beelden, en het belang dat automatische systemen kunnen spelen. We reviewen de
literatuur op het gebied van deep learning en de onderliggende technieken voor het analyseren van
thoraxfoto’s. We geven ook een overzicht van publieke datasets die beschikbaar zijn voor onder-
zoekers. Het hoofdstuk stipt ook aan waar de grootste uitdagingen liggen in het onderzoek op dit
terrein.

Hoofdstuk 2 bevat een uitgebreide literatuurstudie over CXR-analyse gebaseerd op 296 peer-reviewed
studies, waarbij kritieke lacunes worden geidentificeerd en richtingen voor toekomstig onderzoek
worden gesuggereerd. Het introduceert deep learning en de basisprincipes van CXR, categoriseert de
belangrijkste literatuurtrends op basis van hun analytische taken en biedt een gedetailleerd overzicht
van openbare datasets en commerciéle producten voor CXR-analyse. We reflecteren op de collectieve
prestaties en uitdagingen waarmee de onderzoeksgemeenschap van CXR deep learning wordt gecon-
fronteerd. Daarnaast stippen we veelvoorkomende valkuilen aan en suggereren we richtingen voor
toekomstig onderzoek. Dit hoofdstuk legt de basis voor het ontwikkelen van methodologieén voor
CXR-analyse met duidelijke klinische toepasbaarheid.

In Hoofdstuk 3 onderzoeken we kritisch het heersende gebruik van op classificatie gebaseerde metho-
dologieén in de literatuur voor het detecteren van cardiomegalie (een vergroot hart) in thoraxfoto’s.
We introduceren een alternatieve aanpak die het probleem benadert als een segmentatietaak. Dit
hoofdstuk voert een vergelijkende analyse uit tussen deze twee verschillende aanpakken. Om de
vergelijking goed te kunnen maken voeren we een systematische hyperparameter optimalisatie uit
voor beide methoden. Onze resultaten geven aan dat de segmentatiegebaseerde techniek niet alleen
de prestaties van classificatie op beeldniveau overtreft, maar ook de interpretatie aanzienlijk verbe-
tert. De voorgestelde benadering is even nauwkeurig als een radioloog, terwijl deze is getraind op
een relatief kleine dataset. Belangrijk is dat het model een klinisch relevante kwantitatieve meting
genereert die opgenomen kan worden in het radiologierapport. Het ontwikkelde model is openbaar
beschikbaar.

Hoofdstuk 4 gaat in op het gebruik van deep learning methodologieén voor het meten van een kri-
tische kwantitatieve biomarker: het totale longvolume. We schatten dit volume met uitsluitend een
thoraxfoto als input. Dit is een van de eerste studies die deze toepassing onderzoekt. De studie toont
de potentie aan om voortaan bij elke thoraxfoto een schatting van het longvolume mee te leveren. Ook
hier is het ontwikkelde model openlijk toegankelijk. Dit deep learning systeem zou een waardevol
instrument kunnen zijn om patienten die regelmatig thoraxfoto’s krijgen te volgen over de tijd.
Hoofdstuk 5 onderzoekt state-of-the-art methoden om nodules in thoraxfoto’s automatisch te detec-
teren. Nodules kunnen wijzen op de aanwezigheid van longkanker. We hebben hiervoor een online
competitie, NODE21, georganiseerd. De competitie bestond uit twee tracks: een track waarbij deel-
nemers methoden ontwikkelden om nodules te detecteren met de computer, en een tweede track
om kunstmatig nodules toe te voegen in thoraxfoto’s. De beelden met gesimuleerde nodules uit de
tweede track konden vervolgens gebruikt worden in de eerste track om de detectiemethoden verder
te verbeteren. Het hoofdstuk laat uitgebreide experimenten zien met de best presterende oplossingen
van elke track. Onze resultaten tonen aan dat het gebruik van gegenereerde afbeeldingen de presta-
ties van detectiemethoden kan verbeteren, met name wanneer er een tekort is aan beschikbare echte
nodule afbeeldingen. NODE21 was zo ontworpen dat inzendingen uitsluitend in de vorm van open-
source oplossingen met Docker containers werden geaccepteerd, wat de reproduceerbaarheid van
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alle ingediende methoden garandeert. Deze studie heeft ook een waardevolle openbare dataset op-
geleverd, geannoteerd door radiologen, die toekomstig onderzoek kan faciliteren om dit belangrijke
klinische probleem aan te pakken.

In Hoofdstuk 6 sluiten we af met een discussie die de belangrijkste bijdragen van het proefschrift
samenvat en ingaat op de belangrijkste punten voor het toepassen van Al systemen in de klinische
praktijk. We kijken naar manieren om de voordelen en impact van Al te meten, hoe we AI meer
uitlegbaar kunnen maken, hoe de kwaliteit van de data en annotaties waarmee Al wordt getraind
kan worden verbeterd en hoe Al generaliseerbaar en reproduceerbaar gemaakt kan worden.
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resilience. Thank you for being my universe as I invented this “apple pie’.



Curriculum Vitae



178

Curriculum Vitae

Ecem Sogancioglu was born in Izmir, Turkiye on March
15, 1990. She received her Bachelor’s degree in Computer
Science at Hacettepe University. She received her Master’s
degree in Computer Science at the University of Freiburg
with specialization in Artificial Intelligence on March 2017.
She joined the Diagnostic Image Analysis Group as a PhD
candidate on October 2017. Her research is focused on
deep learning algorithms for Chest X-Rays, under the su-
pervision of Bram van Ginneken and Keelin Murphy. The
results of her work is in your hands right now (or in your

screen).



PhD Portfolio



180 PhD Portfolio

Name: Ecem Sogancioglu
Graduate school: Radboud Institute for Health Sciences (RIHS)
PhD period: 02-10-2017 until 30-11-2021

Courses & workshops Year(s) ECTS
Radboudumc International Introduction Day 2017 0.25
Radboudumc Work Safety 2017 0.5
Coursera Deep Learning Specialization 2017-2018 5
Radboud University Mindfulness-based Stress Reduction 2018 2
Scientific writing for PhD candidates 2018 3
Achieving your goals and performing more successfully in your PhD 2019 1
Scientific integrity 2020 1
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This thesis is based on the results of medical-scientific research with human participants. The research
project described in this PhD thesis makes use of an extensive amount of data with the purpose of
training and evaluation several machine learning algorithms. This data consists of three main com-
ponents: (1) digitized Chest X-ray images of patient internals, (2) labels that describe these images at

patient level, and (3) test results indicating various patient health markers.

Regarding the origin, ownership, and permission to use this data, we strictly follow the regulations
of the Radboudumec. The medical ethical committee Radboud CMO, Nijmegen, the Netherlands has
given approval to conduct these studies. Informed consent was obtained from research participants.
Technical and organizational measures were followed to safeguard the availability, integrity and confi-
dentiality of the data (these measures include the use of independent monitoring, pseudonymization,
access authorization and secure data storage).

Data for Chapter 4 and 5 was collected and securely stored within the Radboudumc storage system.
More generally, all scientific experiments conducted within the context of this research project have
been executed exclusively within the Radboudumc IT infrastructure. In order to protect patients’ pri-
vacy rights, all data used within the context of this research project has been subject to pseudonymiza-
tion. This process ensures that personally identifiable information is replaced by artificial identifiers,
or pseudonyms, before conducting any of the experiments described within this thesis. We adhere to
the FAIR data principles (findable, accessible, interoperable and re-usable) whenever possible. This
data is only accessible by project members working at the Radboudumc. The data will be archived
for 15 years after termination of the study. Reusing the data for future research is only possible after
a renewed permission by the participants. The anonymous datasets that were used for analysis are

available from the corresponding author upon reasonable request.

The Chapter 5 additionally contains labels of publicly available data, and this labels were shared
under Zenodo!, an open repository operated by CERN, in fully anonymized form for public use.
Data were made reusable by adding sufficient documentation (research protocol, codebook and a
readme file), by using preferred and sustainable data formats and by publishing under the CC.BY.4.0

license. The data not suitable for reuse will be archived for 15 years after termination of the study.

Thttps://zenodo.org/records/5548363
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