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1.1 Acute stroke

Stroke is a disturbance of blood flow in the brain leading to cell-death. Stroke events
typically occur suddenly and require fast medical attention. According to the World
Stroke Organization, stroke is the second leading cause of death and is also the
third leading cause of disability worldwide'. Common stroke symptoms are sudden
numbness or inability to move the arm or leg, confusion, slurred speech, and loss of
vision, which varies by severity and location of the stroke. Approximately, one out of
four adults over the age of 25 will have a stroke in their lifetime, furthermore, 12.2
million people are having a stroke for the first time and 6.5 million will die as a result
of stroke each year’.

There are two major different stroke types: hemorrhagic stroke and ischemic
stroke. Hemorrhagic stroke refers to the rupture of blood vessels in the brain, which
comprises approximately 13% of all stroke cases?. This may occur either within the
brain (intra-cranial hemorrhage) or below the dura (subarachnoid hemorrhage). Is-
chemic stroke, on the other hand, is caused by the blockage of blood vessels by a
thrombus, usually in the form of a blood clot. This is the most common form of acute
stroke, accounting for approximately 87% of all stroke cases?. A simplified overview
of the two major types of stroke can be seen in Figure 1.1.

As many as 1.9 million brain cells die for every minute the brain is deprived of
blood3. Therefore, timely treatment is essential to have a good patient outcome, and
hence the phrase time is brain is often used with respect to treating acute stroke.
In the case of an ischemic stroke, the thrombus or clot should be removed to re-
store blood flow. This can be achieved by injecting clot-resolving drugs into the
arm or administering them directly inside the blocked blood vessel using a thin tube
through an artery in the groin. Alternatively, a surgical procedure called a (mechan-
ical) thrombectomy can be applied. Here, the surgeon uses a device attached to
a catheter to directly remove blood clots. Treatment of hemorrhagic stroke is much
more difficult and focuses on controlling the bleeding and reducing the pressure in
the brain caused by excess fluid. Treatment options include the administration of
drugs, surgery to remove blood and relieve pressure on the brain, or even surgery to
repair vessels or stop the source of the bleeding. The key point to make here is that
a fast and accurate diagnosis of stroke symptoms is essential for preventing death
and for achieving the best possible patient outcome.
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Figure 1.1: Simplified examples of the two major types of stroke. On the left hem-
orrhagic stroke where a ruptured bloodvessel leads to intracerebral bleeding. On the
right an ischemic stroke where an occluded blood vessel deprives a large region of
brain tissue of oxygen. Adapted from: https://www.strokecenter.org/ (January 2020).

1.2 Computed tomography

Computed Tomography (CT) is the foremost diagnostic imaging tool for stroke imag-
ing*. It relies on measuring the difference in tissue density using penetrating X-rays.
X-rays were discovered by Wilhelm Conrad Réntgen and are a form of electromag-
netic radiation®. Conventional X-ray imaging uses an X-ray tube to generate radiation
that is subsequently detected by a static detector. Dense materials (e.g, bones) ab-
sorb X-rays to a higher degree than soft materials (e.g., muscles), which allows the
creation of a 2D image that shows the difference in material density for the scanned
materials or tissues. Tissue density is measured in Hounsfield Units (HU). For exam-
ple, water has a value of 0 HU, and air has a value of -1000 HU, whereas bone can
have a value in the range of 300-1900 HU.

Modern CT scanners, as shown in Figure 1.2, are no longer reliant on a static
X-ray detector, but instead can take multiple images from various angles of a subject
that can be combined in a volumetric (3D) reconstruction. This feature is achieved
by rotating the X-ray tube and opposing X-ray detector in a circular gantry around
the scanned subject while taking multiple 2D images at various angles. Using a
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mathematical reconstruction algorithm on the 2D images acquired this way results
in a 3D volumetric representation of the scanned subject. Modern CT scanners are
now even able to acquire several 3D volumetric acquisitions in quick succession,
resulting in a 4D acquisition that can be used to examine dynamic phenomena like
blood flow.

Figure 1.2: Computed tomography scanner. An X-ray tube and an oppositely placed
detector are situated within the circular gantry at the head of the scanner bench. The
detector measures the X-ray beam attenuation of a subject on the bench creating
a projection image. The gantry internals can rotate at approximately two to three
revolutions per second. Image source: https://us.medical.canon/ (September 2022).
Copyright: Canon Medical Systems.

1.3 Acute stroke workup

As we explained above, the acute nature of stroke requires a fast diagnosis from
medical specialists. The main diagnostic imaging tool for stroke imaging is therefore
Computed Tomography (CT). CT exams can be performed in a matter of seconds to
minutes. The first diagnostic priority is to differentiate between hemorrhagic and is-
chemic stroke. CT scans can be made just after the administration of contrast agent,
which is a substance intravenously injected that can cause blood to be seen more
clearly. The difference between a contrast-enhanced and non-contrast CT image
is shown in Figure 1.3. A non-contrast CT (NCCT) scan allows the exclusion of in-
tracerebral hemorrhage and lesions that might mimic acute ischemic stroke such as
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Figure 1.3: Example of axial cross-sections of the head of a non-contrast CT (NCCT)
image on the left and a CT angiography (CTA) image with contrast on the right.

tumor or intracerebral hemorrhage when using a contrast scan instead. Therefore, a
non-contrast CT (NCCT) scan is typically performed first.

When there is no hemorrhagic stroke visible on the NCCT image, CT angiography
(CTA) and/or 4D-CTA angiography (4D-CTA) scans are taken to identify potential
blood-deprived areas in the brain and their causes. Both CTA and 4D-CTA scans are
taken after injection of contrast agent. Once the contrast agent travels through the
vasculature of the brain, the scan is made, making the vessels light up bright on the
CT image. The images can be used to look for abnormalities in the vasculature, like
the lack of blood flow due to occlusions or stenosis.

The major difference between a CTA and a 4D-CTA scan is that whereas the for-
mer only uses a single 3D acquisition of the contrast agent in the brain, the latter
takes multiple 3D acquisitions over time resulting in a 4D acquisition of the brain
in which the flow of contrast agent in the cerebral vasculature is captured. The
added dynamic information contained in the 4D-CTA acquisition is conventionally
used to compute perfusion maps (e.g., cerebral blood flow, cerebral blood volume,
and mean transit time), to detect perfusion defects, and for the estimation of infarct
core and penumbra region. Here the infarct core is irreversibly damaged tissue and
the penumbra is the tissue that is still salvageable once the blood supply is restored.
The 4D-CTA is a rich and challenging source of data for ischemic stroke diagno-
sis. Because modern CT scanners generate data with a higher spatial and temporal
resolution, and the abnormalities to look for are often small and subtle, the image in-
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terpretation process, carried out by neuroradiologists, is becoming increasingly time-
consuming and tedious. Hence, machine learning methods that can automate and
support diagnosis are becoming increasingly relevant.

1.4 Machine learning

Machine learning is a field of artificial intelligence that aims to build learning algo-
rithms that generate programs that accurately perform a task without being explicitly
programmed to do so. A learning algorithm can be understood using the following
definition by Mitchell®: “A computer program is said to learn from experience E with
respect to some class of tasks 7" and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E." This definition encap-
sulates the key components of machine learning algorithms, where a wide variety of
experiences F, tasks T', and performance measures P can be picked. Ultimately, a
machine learning algorithm produces a model or algorithm from experience £ that
can be expressed as a function y(z), which takes a task-related input = and produces
a task-related output y, which should perform well (on performance metric P) on task
T even for new unseen experiences not within £.

Some of the most common categories of machine learning tasks 7" are classifica-
tion (e.g., finding a categorical/discreet label for a given input), regression (e.g., as-
signing a continuous value for a given input), and image segmentation (e.g., finding
categorical/discreet labels for each pixel in an input image). Furthermore, machine
learning generally focuses on tasks 7' that are too difficult or too time-consuming to
solve with rule-based programs designed and implemented by humans (essentially
where humans program the function y(z) themselves). For example, in chapter 2
we segment different brain tissues in 4D-CTA images into white matter, gray matter,
cerebrospinal fluid, and blood vessels, by applying a machine learning method. We
could attempt to manually segment these tissues by directly applying intensity-based
thresholds on the input image. However, this would not exactly coincide with the ex-
act tissue types, due to overlap and ambiguity in the HU for certain tissue types and
noise in the 4D-CTA images. To improve upon this initial result we would have to iter-
atively design new rules or preprocessing steps and test if these improve the system.
Yet, with a machine learning approach, we can attempt to learn many of these rules
directly from the data, saving time and ultimately discovering rules that we might not
have even thought of that result in better segmentation performance.

Learning algorithms can be roughly categorized as being supervised or unsuper-
vised, which changes the available experience E (and usually also the used perfor-
mance metrics P) during the learning process. This thesis will solely focus on super-
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vised learning algorithms which is an experience E with labeled examples. That is,
we are provided with a training set of given inputs « for which we also have the cor-
responding expected target labels y(x) available. This is opposed to unsupervised
learning algorithms, which have experiences E with only the inputs z available. The
goal in the unsupervised setting is usually to find patterns in the input data x, such
as compact representations or clusters.

As a concrete example of a supervised machine learning algorithm, we will take
the regression task 7" from Chapter 3 where we attempt to reconstruct a NCCT im-
age from a 4D-CTA image. The input of the algorithm y(z) is a 4D-CTA image =
represented as a vector of voxels and the target output y is represented as a vector
of voxels of a NCCT image that is registered to the associated 4D-CTA image. As
experience £ we use a training dataset of a number of corresponding 4D-CTA and
NCCT pairs that are properly spatially aligned. As performance metric P we take the
mean squared error, which estimates the voxel-wise difference between the recon-
structed image from the algorithm NCCT* and the reference NCCT y. Ultimately the
goal is to show that the ‘learned’ model y(«) performs well on examples that are not
contained in the training dataset from experience E. This concept is called how well
a model ‘generalizes’ and for this purpose, so we used a separate testing dataset to
test the generalization capability of the learned model.

1.4.1 Applications

Machine learning algorithms are used all around us in everyday life, although most
of them often appear invisible to most people since they don’t require active inter-
action or awareness of the user. Google uses the search queries entered by their
users to learn to improve their services, companies like Facebook, Amazon, and
Netflix will learn about user preferences while users are interacting with their sys-
tems, supermarkets find spending patterns by analyzing customer buying behavior,
banks use fraud detection algorithms on financial transactions, and smartphones and
smartwatches have algorithms to predict and monitor user activity. Algorithms that
are more visible to people are voice recognition and synthesis software, image and
video filters for object and face recognition, self-driving cars, and various modern and
popular content creation tools that are able to generate high-fidelity output based on
simple text prompt inputs like DALL-E for image generation and ChatGPT for text,
code, and documentation synthesis. All machine learning algorithms generally have
model parameters that are tuned for the task they are designed to solve.

Usually, there is a close relation between the number of required model parame-
ters and the size of an algorithm input =. A model for a simple task like learning to
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predict user preferences from a few variables such as age, sex, and demographic in-
formation would likely require substantially fewer model parameters than for example
predicting whether a medical image scan contains a certain disease or if a raw audio
signal contains a certain utterance. When the input data is complex and a model
thus requires more parameters, this complicates optimizing or training the machine
learning model. It may be more computationally expensive and thus time-consuming
to find the optimal set of parameters and the model may need more annotated data
to optimize all of its parameters accurately. Hence, traditional machine learning ap-
proaches have often tried to circumvent this problem to extract task-related features
to reduce the complexity of the input signal.

Feature extraction is a core concept within machine learning, where task-specific
information is either extracted from the input data = or added a-priori in relation to
task 7. Traditionally, these features were hand-picked and implemented by human
programmers. For example, in chapter 2 we derived two lower-dimensional feature
maps, called the weighted temporal average (WTA) and the weighted temporal vari-
ance (WTV), from the high-dimensional 4D-CTA images which we used as input data
for a brain tissue segmentation task. Generally, well-chosen task-specific features
can help to increase task performance and can reduce the overall time required to
optimize the machine learning model. However, feature extraction has the drawback
that it introduces a bias toward how humans think the task needs to be solved. Also,
it reduces the generalizability of the machine learning algorithm, since it can intro-
duce features that might not translate well to other tasks. More modern approaches
like deep learning, which is the predominant approach throughout this thesis, tend
to move away from human hand-crafted feature extraction to a more generic and
data-centric approach and models that can be learned end-to-end from the data.

1.4.2 Deep Learning

Deep learning is a sub-field of machine learning that focuses primarily on artificial
neural networks (ANNs) consisting of a structured network of multiple small sim-
ple interconnected computational units as a machine learning model. Deep neu-
ral networks are obtained by stacking multiple configurations of these ANN models
— hence the word deep — in such a way it allows them to, almost magically, per-
form increasingly complex tasks. Although the idea for deep learning was already
around since the late seventies”?, it took several decades to have sufficiently large
annotated datasets, sufficient computational power, and efficient training methods to
make these models work.

The availability of large annotated datasets has had a big impact on the develop-
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ment of deep learning as a field. For example, the ImageNet® challenge used a big
database of nearly 15 million manually labeled natural images, that were organized
into 21 thousand separate classes. Especially for more complex deep learning mod-
els with an extensive number of parameters, the availability of these datasets helps
to supply sufficient examples to better estimate the optimal value for these model
parameters. Having these curated publicly available reference datasets also makes
the comparisons of different approaches easier by referencing the used dataset and
the task to solve. Within hospitals, digitized patient data like CT scans are increas-
ingly collected. Although curated annotated data are often still scarce, these are
increasing as well. Altogether the availability of digitized data helps to increase the
development of deep learning approaches for automating several tasks within the
medical domain, like the works in chapters 2 and 3 that rely on NCCT and 4D-CTA
scans from our hospital.

The current backbone of modern deep learning weight optimization (the actual
learning of the model parameters from the data) is based on the backpropagation
algorithm in combination with the stochastic gradient descent algorithm. The back-
propagation algorithm was generalized for neural networks by Rumelhart et al.™®,
which efficiently computes the gradients of the objective function, with respect to the
parameter weights for deep neural networks, by dynamically traversing the gradient
from the loss function from the last layer back to the first layer using the chain-rule.
The backpropagation algorithm does not deal with how the gradients are used to
update the weights, which is instead typically done by using a form of the gradient
descent algorithm ', which is an iterative method to estimate for each of the weights
in which direction to update them (either to increase or to decrease) in order to opti-
mize the objective function given the data from the training dataset.

Deep learning models require large datasets to achieve good performance. How-
ever, the size of the models can become a burden on the hardware used to train
the models. Traditionally, neural networks were trained by adjusting the parameters
that work best on average given the whole training dataset, i.e., using the gradient
descent algorithm. This might work for small datasets, but for example, ImageNet is
approximately 150GB in size, which for a typical desktop computer doesn't fit all at
once in memory. Hence, a modified version of the gradient descent algorithm was
invented called stochastic gradient descent (SGD)'?'3, which does not adjust the
parameters given the whole training dataset, but instead does so on smaller chunks
of the training data called mini-batches that are processed independently.

Another key success factor for developing and training deep neural networks is
the increasing computational power available. Deep learning model training is com-
putationally expensive in the number of computational operations and typically re-
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quires specialized hardware to perform in reasonable time like graphic processor
units (GPUs) which were originally designed for gaming or even Google’s tensor pro-
cessing units (TPUs) which were specifically designed for deep learning training and
inference. The specialized hardware is designed to take advantage of the fact that
most of the small individual units within the network can be independently computed,
which allows for parallel computations to reduce overall computation time.

The reliance on specialized hardware like GPUs and TPUs introduces new prob-
lems for researchers and the industry. For example, during deep learning model
training with sufficiently large input data for a learning task it is possible that the
required memory to compute all the intermediate states required for the backpropa-
gation algorithm on the specialized hardware is insufficient even for small batch sizes.
These cases can often be solved using some workarounds, like offloading some of
the intermediate results to disk or normal RAM, using checkpoints, and splitting the
model over multiple GPUs (model parallelism). Ultimately these workarounds will re-
sult in concessions regarding model complexity, training efficiency, and training time,
and on top of that often cost a lot of additional effort for the programmer. To sup-
ply the deep learning developers with tools to reduce memory requirements during
training we have developed a PyTorch framework called MemCNN in chapter 4.

1.5 Outline of this thesis

4D-CTA data is a useful imaging modality for assessing stroke symptoms but is also
challenging due to the high dimensionality of the data (3D + time). This thesis aims to
contribute to the analysis of 4D-CTA data for stroke applications using deep learning
techniques and is part of a larger research project together with Ajay Patel, and
Midas Meijs and was supervised by Bram van Ginneken and Rashindra Manniesing.
The research of Midas Meijs was predominantly focused on the analysis of cerebral
vasculature and vascular pathology like ischemic stroke '*~'7. Whereas, the research
of Ajay Patel focused on segmentation of the fundamental cerebral structures like the
cranial cavity and the two hemispheres and also hemorrhagic stroke identification
and quantification®2". The work in this thesis focuses on the extraction of useful
stroke-related information directly from the 4D-CTA data and also on deep learning
techniques to reduce memory overhead during neural network training.

More specifically the rest of the content of the chapters in this thesis are as follows:
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Chapter 2 describes a deep learning method to automatically segment and label
brain tissue in 4D-CTA data into white matter, gray matter, cerebrospinal fluid, and
vasculature.

Chapter 3 introduces a deep learning method to reconstruct a 3D non-contrast CT
from 4D-CTA data, which could potentially simplify the stroke workup.

Chapter 4 presents a deep learning framework aimed at introducing support for
memory optimization during model training using reversible operations.

Chapter 5 gives a general discussion of the presented work in this thesis in relation
to the research field and provides suggestions for future research.
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Abstract

4D-CTA imaging has great potential for use in stroke workup. A fully convolutional
neural network (CNN) for 3D multiclass segmentation in 4D-CTA is presented, which
can be trained end-to-end from sparse 2D annotations. The CNN was trained and
validated on 42 4D-CTA acquisitions of the brain of patients with suspicion of acute
ischemic stroke. White matter, gray matter, cerebrospinal fluid, and vessels were
annotated by two trained observers. The mean Dice coefficients, contour mean dis-
tances, and absolute volume differences were respectively 0.87 + 0.04, 0.52 &+ 0.47
mm, and 11.78 + 9.55 % on a separate test set of five patients, which were similar
to the average interobserver variability scores of 0.88 + 0.03, 0.72 4+ 0.93 mm, and
8.86 + 7.65 % outperforming the current state-of-the-art. The proposed method is
therefore a promising deep neural network for multiclass segmentation in 4D spa-
tiotemporal imaging data.
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2.1 Introduction

Computed tomography (CT) is at the core of modern acute stroke workup?2. CT is
cheap, widely available, and fast compared to other imaging modalities like magnetic
resonance imaging (MRI). Additionally, modern CT scanners can cover the whole
brain with high temporal and spatial resolution. From a head CT scan tissue densities
can be derived, which enables detecting pathology like hemorrhages. Additionally,
acquiring a head CT shortly after injection of contrast agent enables the visualization
of the cerebral vasculature and hemodynamics. CT angiography (CTA) and 4D CT
angiography (4D-CTA) are two such post-contrast techniques, which are respectively
a single 3D CT scan and a series of 3D CT scans over time. This work focuses on
the latter type of acquisition since we expect 4D-CTA to be the future image modality
for stroke. Essentially, 4D-CTA contains more temporal information and the CTA can
be derived from the 4D-CTA by a maximum intensity projection?3.

4D-CTA imaging will become increasingly important in the clinical workup of acute
stroke. It can be used to assess penumbra, infarct core, and collateral flow, which can
be used for selecting stroke patients for reperfusion therapy?*. A recent prospective
clinical trial showed that 4D-CTA imaging helps in identifying patients who will benefit
from endovascular treatment beyond the recommended time window of six hours?>.
Segmentation of soft tissue is important because it enables tissue-dependent perfu-
sion analysis, potentially refining the identification of infarction core and penumbra?®.
Segmentation of the cerebral vasculature is important for many applications?227:28,
We have demonstrated that it can be used to visualize vascular flow disturbances
reducing the time to detect abnormalities such as vascular occlusion and arterio-
venous malformations2®. Despite the potential uses of 4D-CTA imaging for stroke,
little work has been done on automatic segmentation of tissues from 4D-CTA data
using computer algorithms.

Only one related method was found for 4D-CTA3 which was based on a tradi-
tional pattern recognition approach. Although Manniesing et al.*® does provide a
coarse segmentation for cerebrospinal fluid (CSF) and vessels, the quantitative eval-
uation was only done for white matter (WM) and gray matter (GM), and only in the
axial direction of slices at specific brain locations. To our knowledge, a full multiclass
3D segmentation method that includes WM, GM, CSF, and vessels in 4D-CTA and
that has been quantitatively evaluated for all classes, is currently nonexistent.

In this work, we present a method for 3D multiclass segmentation in 4D-CTA using
a multiresolution fully convolutional neural network (CNN) which is able to learn end-
to-end from 2D sparse annotations. The CNN is applied to 4D-CTA images of acute
ischemic stroke patients for segmentation of WM, GM, CSF, and vessels.
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Medical imaging has witnessed a sharp rise of applications based on convolu-
tional neural networks (CNNs) in a few years time3!. CNNs are feed-forward artificial
neural networks consisting of multiple convolutional layers successively encoding
higher abstract representations. A powerful trait of CNNs is that representations can
be directly learned from data without the need for manually creating or selecting
features.

However, many deep learning approaches avoid learning from high dimensional
data because of practical limitations, i.e., higher GPU memory requirements and
increased number of computations. For example,32-38 propose a 2.5D approach in
which multiple 2D patches are sampled in different orientations around a center voxel
in 3D, and are then fed individually into a 2D CNN for predicting the output class at the
intersection. This approach is suboptimal since 3D context outside of the sampled
planes is ignored.

Full 3D approaches have been proposed to a lesser extent. Most provide fully
convolutional approaches that include multiresolution contextual information by pro-
cessing downscaled versions of the input and integrating the lower resolution images
later in the network at the original voxel resolution®=#4. 3D U-Net“® is a fully convo-
lutional network that processes 3D input at four different image resolutions and pro-
vides a voxel weighting scheme and smooth deformation field data augmentation to
be able to learn from sparsely annotated data. Other 3D segmentation approaches
try to leverage recurrent operations*~4. Some segmentation approaches*® utilize
CNNs for processing multi-channel 3D data, but the channels represent data from dif-
ferent modalities, whereas 4D spatiotemporal data represents multiple acquisitions
using the same modality over time. The distinction is useful, since the voxel inten-
sities encode for similar physical phenomena in the latter case, hence calculating
statistics (e.g., averages, variance) over the temporal dimension becomes sensible.
For example, consider carefully registered temporal images, taking a temporal aver-
age yields a meaningful image, since its voxel intensities are approximately similar.
However, for multi-model data, for example MR T0, T1, and Flair images, averaging
over its channels is less meaningful since the voxel intensities do not correspond
between channels. Only a single work was found in the literature that addressed
4D spatiotemporal data® for automatic multi-organ detection in MR using unsuper-
vised deep learning techniques. However, the resulting segmentations have limited
precision and class overlap.
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Figure 2.1: Our model, a CNN architecture for multiresolution volumetric segmenta-
tion from 4D data. Input data were 4D-CTA subvolumes consisting of 19 timepoints
and an input size of n x n x n voxels, with n € {92,100, 108, 116, ... }. The network
produced volumetric class probability maps for the four segmentation classes with the
same size as the input minus the size of the receptive field of 88 x 88 x 88 voxels. BN
is an abbreviation for batch normalization.

2.2 Methods

2.2.1 Model architecture

CNNs can be represented as directed graphs, where a node (hereinafter referred
to as layer) indicates an operation on volumetric feature maps, incoming edges indi-
cate what feature maps are fed to a layer, and outgoing edges represent the feature
maps produced by a layer. Figure 2.1 shows such a representation of our model. It
consists of 15 convolution layers (green), 3 max-pool layers (yellow), and 3 upscale
layers (blue). All solid arrows form the path through the network that visits all the lay-
ers exactly once, whereas the dotted arrows skip several layers within the network
(shortcuts). In addition to the shortcuts from the original U-Net®', shortcuts were
added over every two consecutive 3? convolutions as these were found to speed up
convergence and increase overall performance in combination with the other short-
cuts®2,

The model uses concatenation or elementwise summation to merge two sets of
feature maps at a layer into a single set of feature maps. The concatenation layer
joined the two sets, resulting in a larger set of feature maps. To perform elementwise
summation, both sets are required to have the same number of feature maps. If this
was not the case, all feature maps from the first set A (at the start of the curved
arrows in Figure 2.1) were (repeatedly) iterated and concatenated to a new set C'
until the number of feature maps between set A and the second set B were the
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same. Next, the new set C' was used instead of the original first set A to perform
elementwise summation. For example, let A = (a,b,¢) (3 feature maps) and B =
(f1, f2, f3,-- -, foa) (64 feature maps). Now a new set C' = (a,b, ¢, a,b, ¢, ...) is created
from set A by iterating its elements until it has the same 64 feature maps as set B.
Finally, the feature map sets B and C are merged by summation per feature map
at the summation layer D = (fi +a, fo+ b, fs+c, fa+a, fs+b,..., fos + ¢, fea + a).
Note that swapping the contents of sets A and B, yields D = (f, + a, fo + b, f3 + ¢).
The feature maps in both sets were cropped around the center to the smallest input
feature map size for both merge layers to resolve size mismatches.

The network was inspired by the 3D U-Net architecture. Feature extraction at
each voxel resolution was achieved by two subsequent 3% convolution layers with
batch normalization®3. Each of these convolutions was followed by a leaky variant of
a rectified linear activation unit (very leaky ReLU) as defined in%:

T, if x>0
flz) = , (2.1)

z/3, otherwise
The very leaky ReLU was preferred over the normal ReLU since it emits similar be-
havior, but prevents ‘dying ReLU’. This problem refers to a unit that only produces
zeros for any given input and which is unlikely to break out of that state during train-
ing, which makes these units no longer useful. Downscaling the input by a factor of 2
was achieved by a 2° max-pool layer. For this architecture, there are four voxel reso-
lutions at which features were extracted: the original resolution of 0.5 mm?/voxel, 1.0
mm?/voxel, 2.0 mm?3/voxel, and 4.0 mm?/voxel. To synthesize the output class proba-
bility maps from the lower resolution feature maps, the lower resolution feature maps
were first upsampled at each upsampling layer by a factor 2 using nearest neighbor
interpolation and were then concatenated with the feature maps acquired earlier at
a similar resolution (depicted by the horizontal striped arrows in Figure 2.1). This
upscaling operation was preferred to the deconvolution operations in Cigek et al. 0,
since the latter is thought to introduce artificial checkerboard patterns in the output®®.
This data integration process was repeated from the lowest to the highest resolution
until feature maps at the original voxel resolution were retrieved. Finally, the output
at the last layer was passed through a soft-max activation function.

The network architecture was fixed for training and evaluation and therefore in-
troduced a fixed relation between network input size and network output size. For
instance, at each 3% convolution layer, the size of the input feature maps is reduced
by 2 voxels, whereas a 2* max-pooling layer halves the number of voxels and a 23
upsampling layer doubles the spatial voxel size for the output feature maps. As the
feature maps were passed from layer to layer through the network, it finally produced
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an output size that had 88 voxels less than the input size in every spatial dimension.
In this particular case, the size difference equals the size of the receptive field of the
network, where the size of the receptive field of the network is the spatial extent of
the input voxels (subvolume) which contribute to the activation of a single output unit,
i.e., to the output class probability for an individual voxel.

The network input were batches consisting of 4D-CTA subvolumes. Each subvol-
ume could be varied in size (number of voxels per spatial dimension) and could be
varied in batch size (number of subvolumes per batch), but should always have a
fixed number of timepoints. Selecting the subvolume size and the batch size have
practical implications on the required GPU RAM and on training performance. Valid
input size values are n € {92,100, 108, 116, ... }, since n must be bigger than the size
of the receptive field of the network (n > 88) and the input size should produce even-
sized feature maps before each pooling layer to preserve voxel correspondence at
each resolution. For the experiments in this work, we fixed the number of timepoints
to 19, since it matched the number of timepoints for each 4D-CTA acquisition col-
lected for this study (see section 2.3). For network training, we put the subvolume
size to n = 124 voxels for each spatial dimension and employed a batch size of 2.
This gave an output class probability map per segmentation class with 36 voxels
(124 — 88) for each spatial dimension.

The full-size final prediction segmentations were obtained following a similar strat-
egy as described by Cigek et al.*°, Ronneberger et al.®', by repeatedly shifting and
applying a CNN on the input data until all input voxels had their corresponding pre-
dictions. First, the input data was zero-padded with a border half the size of the re-
ceptive field of 44 voxels for all spatial dimensions. Next, the model was repeatedly
applied until all voxels within the input data had corresponding brain tissue predic-
tions.

2.2.2 Model training

In deep learning, training of the architecture is at least as important as the design
of the architecture. In this work, a training strategy was used similar to the work
of Cigek et al.*°, consisting of a categorical cross-entropy objective function adapted
for sparse data; this was minimized using default stochastic gradient descent opti-
mizer with Nestorov momentum?®®. Training was done on sparse annotations, that
is, annotations in 2D cross sections of 3D volumes derived from 4D data (See sec-
tion 2.3). In this section, we describe the objective function and parameter regulariza-
tion, data sampling and augmentation, parameter initialization, optimizer, and other
technical details. The reported hyperparameters in this section were experimentally
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selected.

Objective and regularization

The training objective is to find the set of weight parameters © for our model that
minimizes the loss function L(© | ¢,w), given the reference standard ¢ and voxel
weights w. The loss function was constructed from the weighted categorical cross
entropy WCCE(-), and Li-norm Ly(-) and Ly-norm Ly(-) weight regularization terms,
as follows:

L(© | t,w) =\ WCCE(® | t,w) +

(2.2)
ML (O) + A Ly(0)

where \g = 1,\; = 1le7% and \; = le™®. The WCCE(") is the weighted categorical
cross-entropy loss function, which calculates the weighted mean over the categorical
cross entropy CCE;(-) per voxel i with weights w;. The CCE;(-) defines the error
between output p; ;(©) of the soft-max activation function at the last layer of our
model given the weight parameters © and the reference standard ¢, ; for each voxel
1 and segmentation class j:

> wi
CCE{(O |t) = waloq pij(©))

WCCE(® | t,w) =

(2.3)

The weights w were set to an annotation mask by setting the weights w; to 1 if
annotations were present for voxel i and to 0 otherwise, thereby only learning from
labeled voxels.

Dropout was applied during training before the 3 convolutions by setting 50%
randomly selected voxels to zero at the coarsest image resolution (Figure 2.1) for
each processed batch.

Sampling

All the annotated voxels within the cranial cavity formed the sampling candidates.
The cranial cavity is defined as the space containing all soft tissues and CSF, in-
cluding the meninges, cerebrum, ventricles, cerebellum, and brain stem, and was
segmented using the method of Patel et al. 8. Each subvolume selected during train-
ing was centered on a single sampling candidate in world coordinates. All subvolume
voxels that were sampled outside of the input data were set to zero value.
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Each CNN model was shown 60k subvolumes, which were processed in batches
of 2 subvolumes during training. For every 400 subvolumes, an equal number of can-
didates were sampled uniformly per tissue type from the set of sampling candidates.

Augmentations

Five types of augmentations were used during training to artificially enlarge the
sparsely annotated dataset. The use of augmentations has been shown to prevent
overfitting, improve generalization, and introduce invariance to the augmentations
used?®40.

For each subvolume in the training data, one of the five following augmentations
was assigned with equal probability: identity-, mirroring-, rotation-, uniform scaling-,
or elastic deformation. Only one augmentation was computed per subvolume to keep
the computation time low. The identity transformation reproduces the original signal.
Mirroring flips the input along the sagittal axis only. Rotation is expressed as a 3D
Euler rotation in degrees around the center of the subvolume where the z,y, and z
rotations are individually sampled from the continuous uniform distribution 2/(—S8, 8).
Uniform scaling is defined as an affine transform that rescales the input uniformly
by a scalar over all axes, which is sampled from the continuous uniform distribution
U(1.01,1.25). Scaling down was omitted from the scaling augmentation since it could
potentially remove small vascular structures in the input. The elastic deformation
applies a 3D linear interpolation of the input subvolume where each individual corner
point of the bounding box of the subvolume was given a different randomized offset
in voxels for the z,y, and = coordinates drawn from the normal distribution A/(0, 6),
resulting in warped subvolumes.

A selected transformation was calculated once and then applied to the input sub-
volume, annotation labels, and annotation mask, with interpolation orders 1, 0, and
0, respectively.

Weight initialization

At the start of training, all weights in the model were initialized using a He initial-
ization scheme®’, which was adjusted for the very leaky ReLU activation function
(equation 2.1). That is, at each layer, the weights were sampled from the following
normal distribution:

N (0,V/9/ 5 Fanin)) (2.4)

where fan;, is defined as the number of feature maps being input to the layer multi-
plied by the size of the convolution kernel. To keep the initialization constant across
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Included (137)

[Training set (32) j"(Validation set‘(1/0)) [ :;st set A (5) j.[ Test set B (90) j

[ Patients (157)
3

Figure 2.2: Data flow diagram for the 4D-CTA data distribution over the training set,
the validation set, test set A, and test set B.

different experiments, the random generators were seeded with the same constant.

Optimizer and implementation

A stochastic gradient descent optimizer was used starting with a learning rate of 0.1,
which was decreased by a factor of 10 after having processed every 20k subvolumes.
Momentum was used and was kept constant at 0.9.

The model was implemented in Theano/Lasagne®%° and training was performed
on an NVidia Titan X graphics card with 12 GB of video memory.

2.3 Data

2.3.1 Patient inclusion and image acquisition

This retrospective study was approved by the institutional ethics committee and in-
formed consent was waived. In total, 157 patients (age 63 + 14 years, 61% male) with
a suspicion of stroke in 2015 or 2016 at the Radboud University Medical Center, Ni-
jmegen, the Netherlands, were included. 4D-CTA were acquired using a 320-row CT
scanner (Toshiba Aquilion ONE, Japan) consisting of 19 volumetric scans with differ-
ent exposures per timepoint. Patients received 80 mL of contrast agent (lomeron)
injected in the cephalic vein at the start of the first acquisition. Image reconstruction
was done using an FC41 smooth convolution kernel, resulting in 512 x 512 x 320
voxels with a voxel size of 0.47 x 0.47 x 0.5 mm. One full 4D CT acquisition took in
total less than a minute to complete using a strict protocol with fixed time intervals
between each of the 19 volumetric scans. No preprocessing or motion correction
were performed during the acquisition.

Twenty patients were excluded because of the presence of large pathology (bleed-
ings, infarcts, and excessive liquor) or because of imaging artifacts (e.g., clips, drains,
patient motion, or beam hardening). Test set B was formed from ninety patient cases.
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Figure 2.3: Example axial cross section for the derived images of a single 4D-CTA
image used for annotation. Left: the temporal average for WM, GM, and CSF seg-
mentation. Right: the temporal variance for vessel segmentation.

The remaining 47 patients were randomly split into a training set of 32, a validation
set of 10, and test set A of 5 patients. Test set A was also used to assess the
observer variability. Figure 2.2 summarizes the data selection.

2.3.2 Preprocessing

Timepoints ¢t > 0 were rigidly registered to the first timepoint (¢ = 0), to correct
for potential head movement during acquisition. The registration was performed with
Elastix® using the steps and parameter settings as described by Manniesing et al.*°.

Cerebral soft tissue has a limited intensity range in CT, approximately 20 HU to 65
HU®'. Intensity values outside this range, for example, bone that starts from 700 HU,
may complicate CNN training and limit the optimal achievable performance. There-
fore, the registered 4D-CTA was first clipped within the range [—50, 400] then linearly
scaled to [0, 1]. A broader clipping range was used rather than the defined soft tissue
HU ranges to preserve more spatial contextual information.
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2.3.3 Reference standard

The reference standard was obtained by manually annotating the WM, GM, CSF,
and vessels in a single 2D cross-section per patient imaging data. Annotations were
carried out by two medical students, who were trained and supervised by an experi-
enced neuroradiologist with more than 10 years of experience. A 3D annotation tool,
called VCAST (volumetric cluster annotation and segmentation tool®?) was devel-
oped in-house specifically for this task. VCAST provides normal annotation capabili-
ties (like brushes for annotating voxels in a cross-section) and, in addition, provides
supervoxel grids of various sizes to add or remove annotations. Other capabilities
of the tool include instant navigation to the cross sections requiring annotations and
preset keys for the window levels (center/width was 30/80 HU for CSF, 50/50 HU for
WM/GM, and 60/60 for vessels).

4D-CTA data is hard to interpret by human readers, which results in long annota-
tion times and an increased likelihood of error. To facilitate the human readers, two
images were derived for each 4D-CTA, by merging the temporal information. The
weighted temporal average (WTA)3° for annotating the WM, GM, and CSF because
it has the highest signal-to-noise ratio and best soft tissue contrast and the weighted
temporal variance (WTV)8 for annotating the vessels because of its sensitivity to
contrast variations. However, even in the WTV image, manually annotating vessel
structures is complex and time-consuming because of their varying shapes and sizes
and the partial volume effects. Therefore, vessels were first pre-segmented by an
automated segmentation algorithm based on local histogram features and a random
forest classifier®®. This segmentation was then presented within VCAST for further
manual refinements. See Figure 2.3 for an example of the derived images.

The areas selected for annotation are indicated in blue in Figure 2.4. The cere-
bellum was insufficiently detailed for an experienced reader to reliably derive WM
and GM annotations from — mainly because of the limitations of CT imaging — and
was therefore excluded from all cross sections. The falx cerebri and the tentorium
cerebelli were left out because these structures do not contain any of the four tissue
types used in this study.

The method of Patel et al. '® was used to segment all intracranial soft tissue, which
was then manually adjusted to reflect masks similar to Figure 2.4. For each cross-
section, the orthogonal plane was randomly selected, after which the cross-section
to be annotated was extracted from the selected plane. All cross sections consisting
of less than 10% of the mask voxels were excluded from selection. Six patients had
2D cross-sections for all three orthogonal planes, each plane was selected using
previously described method.
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Figure 2.4: Three cross sections (axial, coronal, sagittal) of an exemplar 4D-CTA
case. Blue areas were selected for annotation by the observers, other areas were not
annotated.

During annotations, four small densely connected voxel subareas were found
within the annotated cross sections for which the soft tissue labels could not reliably
be determined by the observers; these areas were ignored during training (three ar-
eas) and evaluation (one area). The areas had an average size of 76.4 mm?, were
less than 0.1% of all annotated voxels, and the effect on the evaluation measures
was assessed to be insignificant. After the observers annotated all patients once,
two qualitative inspections were performed by the radiologist to assess overall anno-
tation quality. Errors detected during these inspections were subsequently corrected.

In total, over 410 hours were spent by the observers in creating the reference
standard.

2.4 Experiments

2.4.1 Observer variability

Observer variability was estimated on five 4D-CTA data from test set A, which were
annotated in two subsequent series by both observers. When observers were un-
sure about their annotations, they were asked to leave those voxels out. Only voxels
annotated twice by both observers were used for calculating the estimation. Intracb-
server variability was reported for both observers and interobserver variability was
reported for the first series of annotations. The Dice Similarity Coefficient (DSC)®4,
contour mean distance (CMD), absolute volume difference (AVD), and mean volume
difference (MVD) were used as measures of evaluation.

The CMD between two non-zero pixel sets A and B is defined as the mean dis-
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tance between boundaries of non-zero pixel regions:

CMD(A, B) = max(h(A, B), h(B, A))

h(A,B) = meanaeArJ;BQHa —0l|

The MVD between two non-zero-pixel sets A and B computes the volume difference
in mm?3 and is defined as:

MVD(A, B) = ni? Z > |4; - B

The AVD, which computes the relative volume difference between A and B in %, is
subsequently defined as:

AVD(AB) = MVDA.B)
n Zi:l A

2.4.2 Model evaluation

Our model was compared with 3D U-Net*?, which is a state-of-the-art CNN model for
volumetric image segmentation, on DSC for the segmentations. The models are sim-
ilar except that our model has additional shortcuts over every pair of two 3% convolu-
tions, uses very leaky ReLU instead of ReLU as an activation function throughout the
architecture, and uses nearest neighbor upsampling instead of deconvolution. Con-
cerning the training parameters, our model uses modified He initialization instead of
Xavier initialization®, uses a batch size of 2 instead of 1 and has additional L, and
L, regularization terms on the weights.

For a fair comparison, the 3D U-Net was trained and evaluated in the same man-
ner as described in section 2.2.2, but used the architecture and weight initialization
scheme from the original work. Additionally, the two models shared most of the
hyperparameters, which were experimentally tuned on the validation set. We have
kept the batch size (2) and subvolume size (1242 voxels) the same. Also, upsampling
layers instead of deconvolution layers were used since we wanted to avoid checker-
board artifacts®®. Furthermore, we used the same optimizer, learning rate scheme,
momentum term, L1 and L2-norm weighting, and augmentations from section 2.2.2.
Essentially, the only differences between the models were: the weight initialization,
the use of additional shortcuts over every pair of two 3* convolutions, and the activa-
tion function. All other hyperparameters were kept the same.

DSC, CMD, AVD, and MVD were used as evaluation measures in all experiments.
Each model was trained on 60k subvolumes randomly drawn from the annotated
voxels of the training set of 32 registered and normalized cases (section 2.3.2). After
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every 400 subvolumes processed the DSC for each model was calculated on the
separate validation set of 10 cases. After completing all iterations, the model with
the highest average DSC for all classes on the validation set was evaluated one last
time on test set A of five cases to assess the final performance. The averages of all
the test cases were reported and specified per tissue type and observer.

2.4.3 State-of-the-art comparison

Our best-performing model from section 2.4.2 was compared to Manniesing et al. °
which is the current state-of-the-art for WM/GM segmentation in 4D-CTA. The latter
method is based on feature extraction and support vector machine (SVM) classifi-
cation. It was evaluated on a different dataset with 22 different patients than the
32 patients in section 2.3, but the data was obtained with the same scanner. The
dataset had more annotated cross-sections 87 than our training dataset 40. The
method was cross-validated on selected axial cross-sectional slices in 22 patients.

For a fair comparison, only the voxels within the WM and GM classes defined by
their reference standard were used for evaluation, since the competing method pro-
vided coarse unevaluated segmentation classes for CSF and vessels. We compared
the output segmentations of our method with that of Manniesing et al.*® using DSC,
CMD, AVD, and computation time. The best-performing model (full model, trained
on 4D data from scratch) was selected and applied to the entire dataset from Man-
niesing et al.3® without preprocessing or fine-tuning. Similar to Manniesing et al.®°,
the statistics were first calculated per slice and then averaged over all slices.

2.4.4 Extended evaluation

Our method was applied to all cases from test set B and the resulting segmentations
were qualitatively inspected. For ten of these cases, a single cross-section was
annotated by a single observer using the same selection and annotation procedures
as in section 2.3.3. For this annotated subset, segmentations from our method and
3D U-Net were quantitatively scored on DSC, CMD, AVD, and MVD.

2.4.5 Ablation experiments

Ablation experiments were performed to assess the contribution of the He initializa-
tion scheme versus Xavier initialization, the addition of the shortcut connections, and
the replacement of the ReLU by the very leaky RelLU activation function. We used
our best-performing model architecture and training scheme as a basis and trained
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Table 2.1: The observer variability across five cases. Measures used are the Dice co-
efficient (DSC), contour mean distance (CMD) in mm, and absolute volume difference
(AVD), and mean volume difference (MVD) in mm3.

CSF WM GM vessel mean

DSC intraobs. 1 0.94 +0.01 0.94+0.01 095+0.01 0.95+0.01 0.94+0.01
intraobs. 2 0.85+0.07 0.87+£0.02 0.914+0.02 0.90+£0.03 0.884+0.05
interobs. 0.86 +0.04 0.86 +£0.02 0.89+0.02 0.89+0.03 0.88+£0.03

CMD intraobs. 1 0.13 +0.10 0.10+0.02 0.13+£0.06 0.08+£0.02 0.11+£0.07
(mm) intraobs. 2 1.16 £ 1.26 0.24+£0.08 0.37+0.13 0.42+0.17 0.554+0.73
interobs. 1.46 +1.61 0.35+0.13 048+0.09 0.59+0.20 0.72+£0.93

AVD intraobs. 1 248 +£1.62 2564255 2354295 4524264 2.98+2.65
(%) intraobs. 2 6.89 + 6.87 6.98 +4.28 3.61+2.88 3.78+2.65 5.31+£4.78

interobs. 17.28+£9.59  6.81£2.50 6.81+£3.61 4.524+4.94 8.86+7.65
MVD intraobs. 1 17£9 61 + 76 48+ 71 10+7 34 +57
(mm3) intraobs. 2 68 £ 63 120 £ 64 61 £ 48 T+5 64 £ 65

interobs. 152+ 97 129 + 56 116 + 66 11+12 102 + 85

three new models. For the first model, we replaced the modified He initialization
scheme with Xavier initialization. For the second model, we left out the additional
short shortcut connections, and for the third model, we replaced the very leaky RelLU
functions with normal ReLU functions. All models were reinitialized at the beginning
of training and were trained as described in section 2.2.2. The best models were
selected by taking the highest average DSC performance on the validation set. The
best models were evaluated on the ten annotated cases from the previous experi-
ment.

2.5 Results

2.5.1 Observer variability

The observer results are summarized in Table 2.1. The average DSC intra- and
interobserver agreements were equal or greater than 0.85 for all tissue types for both
observers, with most classes having over 0.90 overlap. Interobserver agreement had
average DSC scores equal to or greater than 0.86 and overall were slightly lower than
the intraobserver agreement. Paired t-test showed statistically significant differences
(p < 0.05) between the two observers for all tissue types.
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2.5.2 Model evaluation

The evaluation results are summarized in Table 2.2. In general, high degrees of
overlap with our model and the reference standard were found for all classes, with
average DSC in the range of [0.85,0.88] for observer 1 and [0.82,0.84] for observer
2. Paired t-tests over all experiments and classes showed significant differences
between observers (p < 0.05). Paired t-tests showed that the segmentation results
from our model and that of 3D U-Net differed significantly (» < 0.05). The training
time for each of the models was approximately 4 days.

Figure 2.5 shows the results on test set A of five patients obtained from the best
performing model.

2.5.3 State-of-the-art comparison

The comparison results are summarized in Table 2.3. Paired ¢-test showed significant
differences for all three evaluation measures for GM and computation time (p < 0.05)
and a significant difference for WM on CMD (p < 0.05). In general, our model out-
performs the pattern recognition SVM method by Manniesing et al.3® on DSC, AVD,
CMD and computation time.

2.5.4 Extended evaluation

The segmentations from our method show good differentiation of the WM, GM, CSF,
and Vessels, with a slight overestimation of the GM. The method makes more mis-
takes around imaging artifacts, like streaking and metal artifacts, but overall these
errors appear minor. The quantitative results on the extended evaluation set are
listed in Table 2.4. Paired ¢-tests showed significant differences between our model
and 3D U-Net, for all tissue types and all metrics (p < 0.05). Overall, our model
outperforms 3D U-Net on all metrics.

2.5.5 Ablation experiments

The ablation results are listed in Table 2.5. Paired t¢-tests showed significant differ-
ences, for all tissue types and all metrics, between our model and our model without
additional shortcuts over 3% convolution pairs and between our model and our model
with ReLU instead of very leaky ReLU activation functions (p < 0.05). However, the
tests showed no significant differences between our model and our model with Xavier
initialization instead of He initialization (p > 0.05).
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Table 2.2: Quantitative segmentation results on the observer reference standards
for our model and 3D U-Net. The Dice coefficient (DSC), contour mean distance
(CMD) in mm, absolute volume difference (AVD) in %, and mean volume difference
(MVD) in mm? were used for which the mean and standard deviation were calculated
for all five cases in test set A per tissue type and per observer (obs 1 and obs 2).
For comparison, we have added the interobserver variability. Paired ¢-tests showed

significant differences between observers p < 0.05 and between models p < 0.05, see

section 2.5.2 for details. Bold values indicate the best performance between models
per metric, per class, and per observer.

interobs. our model 3D U-Net
vs obs 1 vs obs 2 vs obs 1 vs obs 2
DSC CSF 0.86 + 0.04 0.85 + 0.05 0.81 +£0.06 0.76 +0.10 0.75 + 0.09
WM 0.86 + 0.02 0.88 +0.04 0.86 +£0.03 0.88 +0.03 0.86 + 0.03
GM 0.89 £ 0.02 0.88 +£0.02 0.84 +0.02 0.85+0.03 0.81 +£0.03
vessel 0.89 + 0.03 0.86 +0.03 0.83 £0.03 0.65+0.11 0.64 +0.10
mean 0.88 +0.03 0.87 +0.04 0.84 +£0.04 0.78 £ 0.12 0.77 +0.11
CMD CSF 1.46 £ 1.61 0.82 + 0.80 0.65 +£0.45 1.68 £1.45 1.22+0.93
(mm) WM 0.35+0.13 0.49 +0.15 0.70 £0.14 0.65 +0.21 0.76 +0.13
GM 0.48 + 0.09 0.38 +£0.24 0.38 £0.08 0.43 +0.20 0.40 +0.15
vessel 0.59 + 0.20 0.39 +0.16 0.58 £0.23 4.17+1.69 4.20 +1.65
mean 0.72+0.93 0.52 +0.47 0.58 £0.29 1.73 £ 1.86 1.64 £1.78
AVD CSF 17.28 +9.59 12.95+12.24 12.15+7.49 48.90 +40.78  35.76 +29.74
(%) WM 6.46 + 2.15 10.62 + 6.97 13.22 £ 4.85 13.03 £4.74 12.36 + 6.64
GM 6.48 + 3.46 9.28 + 7.27 12.61 £6.58 3.58 +£3.69 5.41 + 3.63
vessel 4.35+4.76 14.26 +9.93 14.50+11.15 | 27.41 +14.63 30.10 + 14.34
mean 8.86 £ 7.65 11.78 £9.55 13.12+ 791 23.23 £27.75  20.91 £21.01
MVD CSF 152 £ 97 74+ 41 109 + 82 267 £+ 66 226 £ 79
(mm3) WM 129 4+ 56 165+ 110 208 £ 61 209 £ 72 188 + 85
GM 116 + 66 192 + 149 267 + 161 61 + 55 1114+73
vessel 11+£12 27+ 19 28 £ 18 50 + 23 59 + 26
mean 102 + 85 114+ 116 153 + 133 147+ 110 146 + 95

2.6 Discussion

We have presented a fully convolutional multiclass deep learning architecture for 3D
segmentation which can learn end-to-end from sparsely annotated 4D data. The
method gives high-quality segmentations of WM, GM, CSF, and vessels in 4D-CTA,
approximating the interobserver agreement and outperforms the current state-of-the-
art.
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Figure 2.5: Qualitative results produced by our model on test set A. From left to
right: temporal average, reference standard (observer 2), model prediction; each row
represents an annotated cross-section from the five test cases. The cerebellar area
in the top row was unlabeled.
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Table 2.3: Comparison between our model and Manniesing et al.%% on Dice coef-
ficient (DSC), contour mean distance (CMD) in mm, and absolute volume difference
(AVD) in %. The first three rows show segmentation scores for white matter (WM) and
gray matter (GM). The final row shows the average computation time of the segmen-
tation per model. * indicates a p < 0.05. Bold values indicate the best performance
between models per metric and per class.

Ours Manniesing et al.3°
WM GM WM GM
DSC 0.82 £0.07 0.81 +0.04* 0.81 £0.04 0.79 +0.05

CMD (mm) 0.94 + 0.40* 0.57 +0.30" 1.35+0.26 0.74 +0.19
AVD (%) 13.54 +11.83 9.80 £6.62° 15.83+10.85 16.48 +11.16
Time +5 mins* +60 mins

The experimental results (Table 2.2 and Table 2.4) highlight that our model sig-
nificantly outperforms 3D U-Net with respect to the DSC and CMD. This is likely to
be the combined contribution of the additional shortcuts, and the very leaky RelLU
activation function (Table 2.5). The additional shortcuts are thought to simplify learn-
ing by allowing information to directly skip the 23 convolutions pairs throughout the
network. The very leaky RelLU activation function is thought to work better since it
avoids ‘dead’ ReLU, which is a state of a normal ReLU that always outputs zero and
is unlikely to break out of this state. Finally, He initialization was thought to work
better than Xavier initialization, since it has been optimized for the ReLU function,
which we use throughout the network. However, there was no significant improve-
ment found from the ablation experiments (Table 2.5).

Our model slightly, but significantly, outperforms the current state-of-the-art method
by Manniesing et al.*® on WM and GM segmentation with respect to the DSC, AVD,
and CMD (see Table 2.3), without any training or optimization on the dataset used
to train the competing method and with our model being trained on less annotated
training slices. Despite these disadvantages our model significantly outperformed
the competing state-of-the-art method. If such measures were taken the model is
expected to perform even better. Furthermore, at prediction time, our model can
be run on a GPU within 5 minutes whereas the competing method, which can not
be easily GPU optimized, takes hours to compute on multiple CPUs. Additionally,
our model provides CSF and vessel segmentations that were learned directly from
4D-CTA data as opposed to unevaluated segmentation methods based on simple
heuristics.

The quantitative results (see Table 2.2) approximate the interobserver overlap
for the model compared to observer 1. However, while still having good overlap, the
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Table 2.4: Quantitative segmentation results on the extended reference standard for
our model and 3D U-Net. The Dice coefficient (DSC), contour mean distance (CMD)
in mm, absolute volume difference (AVD) in %, and mean volume difference (MVD)
in mm? were used for which the mean and standard deviation were calculated for the
ten annotated cases in test set B per tissue type. Paired ¢-tests showed significant
differences between models p < 0.05. Bold values indicate the best performance
between models per metric and per class.

our model 3D U-Net

DSC CSF 0.82 +0.07 0.67 +0.14
WM 0.85 +0.02 0.78 +0.03

GM 0.82 +0.02 0.75 4+ 0.03

vessel 0.81+0.05 0.51 £0.17
mean 0.82 £0.04 0.68 £0.15

CMD CSF 0.61+0.27 1.73 +1.01
(mm) WM 0.92 +0.31 1.88 4 0.54
GM 0.66 +0.19 0.88 £ 0.29

vessel 0.724+0.39 6.82 +2.47
mean 0.73 +£0.30 2.83 +2.71
AVD CSF 10.57+4.71 62.68 £ 48.45
(%) WM 13.23+£7.60  23.82412.62
GM 19.29 +11.81 14.56 +11.27
vessel | 15.00 +9.41 44.18 + 21.60
mean 14.52 + 8.69 36.31 £ 31.90

MVD CSF 108 =61 509 + 418

(mm3) WM 237+ 118 487 + 358
GM 307 + 198 210+135
vessel 18 +12 51 +23
mean 168 + 159 314 + 327

results are significantly inferior for the model compared to observer 2. This difference
might be a result of the fact that two out of three training cases were annotated by
observer 1. In other words, there was an observer imbalance of the training set.
Another explanation is that observer 1 had significantly lower intraobserver variability,
which may have resulted in easier cases for the model to generalize to.

The scores from the extended evaluation on the test set B (see Table 2.4) are
overall in line with the findings on test set A (see Table 2.2).3D U-Net significantly
performed worse than our model. However, the results on test set B are worse on
average than those on test set A. We suspect that to be the case because test set
B had more difficult cases than test set A. Because of this, the previously obtained
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Table 2.5: Ablation experiment segmentation results on Dice coefficient (DSC), con-
tour mean distance (CMD) in mm, absolute volume difference (AVD) in %, and mean
volume difference (MVD) in mm?. Reported values are averages over all tissue
classes. From left to right: our best performing model (Ours), our model with Xavier
instead of He initialization (Ours-Xavier), our model with additional shortcuts over 33
convolution pairs removed (Ours-no skip), and our model with ReLU instead of very
leaky ReLU activation functions (Ours-ReLU). * indicates a significant difference be-
tween the average metric score for our model and the average metric score of the
ablated model (p < 0.05). Bold values indicate the best performance between models
per metric.

Ours Ours-Xavier Ours-no skip Ours-ReLU
DSC 0.82+0.04 0.80+0.11 0.814+0.06* 0.704+0.12*
CMD 0.73+0.30 1.27+1.29 0.93+051* 1.554+ 1.22*
AVD 14.52+8.69 17.23 +18.29 21.94 + 11.59* 43.77 + 52.79*
MVD 168 &+ 159 99 + 74 268 + 253* 469 + 564*

interobserver overlap on test set A cannot be fairly compared with the new scores,
since the previous indications are expected to be overly optimistic regarding the more
difficult cases. Furthermore, we cannot compute new indications based on a single
observer.

We emphasize that annotating brain tissues of 4D-CTA is a very difficult task
for humans. Even though the observers had access to 3D data while annotating,
in practice they tended to focus mainly on a single 2D cross-section, which may
introduce an annotation bias. Visualization of test set A predictions (see Figure 2.5)
generally resulted in a good approximation of the reference standard. In the axial
cross sections, some GM over-segmentation occurred with respect to the reference
standard, but the model predictions seem to better match the underlying anatomy
presented in the temporal average image.

The dataset used for the evaluation consisted exclusively of normal-appearing
brain tissues without pathology or foreign objects, which are seen in everyday clin-
ical practice. The data was collected as such to focus on testing the feasibility of
segmentation of WM/GM/CSF and vessels in 4D-CTA using deep learning, which is
traditionally the domain of MR imaging. This implies that the method likely must be
trained on cases with pathology or foreign objects and at least be evaluated on such
cases before it can be used in practice. However, we argue that our method provides
a valuable first step towards this goal in the next paragraph.

In principle, the architecture is not limited to normal tissues. It can easily be
extended to include tissue classes for pathology or foreign objects, such as core,
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penumbra, bleedings, clips, drains, calcifications, and bone if sufficiently annotated
data for each class is collected. Furthermore, The presented method can be eas-
ily applied in a semi-supervised way on a cohort of pathology cases to get novel
segmentations, which would yield most likely correct segmentations in healthy tis-
sue areas but would have many errors near pathology or artifacts. Hence, expert
observers could subsequently refine the segmentations for use as a novel reference
standard, which in turn can be used to train and improve the model to reliably and ver-
ifiably deal with pathology as well. We intend to address these issues in future work
by adding more annotated patient scans to the dataset using the method described
above, which will include pathology and foreign objects and will be from different
scanners and acquisition protocols.

Our model has a straightforward design expecting a fixed number of timepoints,
which works well for data from standardized acquisition protocols. However, dealing
with a variable number of timepoints might be desirable in some cases. In this case,
interpolation could be used, or recurrent layers could be used. Our model can be
expanded with additional layers, filters, and shortcut connections to enable learning
a richer set of problem-relevant feature maps. However, this remains technically
challenging due to the total GPU RAM memory requirements for these experiments.
Although these changes may improve the stability of the training process, it was not
possible to increase the batch size to more than 2 or to increase our input spatial
dimensions (picking a larger value for n, Figure 2.1) much further without altering the
network. In the future, we would like to distribute our computations across multiple
GPUs to cope with the memory requirements and scale to larger networks, which
might involve switching to other deep learning frameworks.

Many aspects of the network architecture contributed to a successful deep learn-
ing model, like the number of multi-resolution levels, the number of feature maps, and
the size of the filter kernels. our model has three max-pooling and upscaling opera-
tions, which provide feature extraction at four different resolution levels. The number
of resolution levels can be changed by removing or adding a pair of max-pooling and
upscaling operations and a long shortcut connection at a particular resolution. Gen-
erally, more resolution levels result in a bigger receptive field and hence each voxel
can infer its class from a broader volume of surrounding context, but the minimal
required input size increases. For example, increasing the resolution level from four
to five results in an increase of the minimum required input subvolume size from 923
to 1882, which would also increase the memory requirement by more than a factor of
eight and would no longer fit in GPU RAM.

The number of feature maps could only be slightly increased due to memory
limitations, but early experiments did not give a significant performance increase. In-
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creasing the feature maps at the earlier layers is especially troublesome since the
resulting intermediate feature maps take a lot of GPU memory. This problem is less
expressed at the lower resolution layers, where each feature map uses approximately
eight times less memory than a feature map at a previous resolution level. The min-
imal required feature maps for achieving similar performance were not investigated
due to the required computation times, but it is expected that reducing the number of
feature maps will at some point have a big effect on the performance.

The size of the filter kernels can be varied, but can be difficult to optimize, since
it holds a close relation to the receptive field and therefore also the minimum input
size for the network. Increasing all filter sizes from 3% to 53 for example requires
much larger input subvolumes, which would not fit in GPU RAM anymore. Another
approach would be to replace every pair of 33 filters by a single 5° filter, which ef-
fectively leaves the receptive field the same and reduces intermediate feature map
computations at the cost of an extra non-linearity. Doing this properly involved lower-
ing the initial learning rate.

Setting the training hyperparameters — like batch size, input size, optimizer choice,
and optimizer parameters — was found to be at least as important as the network ar-
chitecture to achieve good model performance. In our experience, changing the
batch size and input size, had a great impact on training and final model perfor-
mance. Generally taking the batch size and input size as big as possible while still
being able to fit in GPU RAM memory worked best. For the optimizer, we have only
experimented with default stochastic gradient descent with momentum. We did not
test with other optimizers, but they might require some tweaking. We do not expect
big performance increases from using different optimizers. Tweaking of the optimizer
parameters, like the learning rate and momentum factor in our experience can have
a big impact on training and final model performance.

Whereas predicting with our model is relatively fast (approximately 5 minutes for
a full 4D-CTA case), the end-to-end training of the network could take several days.
Hence, only a limited amount of experiments could be performed for this study. We
parallelized our experiments over multiple Titan X GPUs to speed up training. Ad-
ditionally, we split our training and validation computations per experiment and dis-
tributed these over different GPUs. We simultaneously used the CPU to prepare
subvolumes while training on another subvolume on the GPU, to ensure the best
possible continuity of input data. Furthermore, for validation we increased the input
subvolume size to better utilize the GPU memory and predict slightly larger subvol-
umes, which also sped up the process significantly. It might be possible to further re-
duce training times through deep supervision approaches®®, by reducing some of the
complexity of the model or by implementing more efficient data sampling schemes.
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There is not much literature on CNNs with respect to handling 4D or higher di-
mensional data; yet, it is the opinion of the authors that deep learning approaches
that are able to cope with high dimensional data will become increasingly important
as datasets increase in size and incorporate more dimensions. Hence, the com-
petitive segmentation results achieved by our proposed method, which was directly
learned from 4D-CTA input, suggests potential application of the method beyond the
application of stroke imaging.
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Abstract

The imaging workup in acute stroke can be simplified by deriving non-contrast CT
(NCCT) from 4D CT angiography (4D-CTA) images. This results in reduced workup
time and radiation dose. To achieve this, we present a stacked bidirectional con-
volutional LSTM (C-LSTM) network to predict 3D volumes from 4D spatiotemporal
data. Several parameterizations of the C-LSTM network were trained on a set of 17
4D-CTA/NCCT pairs to learn to derive a NCCT from 4D-CTA and were subsequently
quantitatively evaluated on a separate cohort of 16 cases. The results show that the
C-LSTM network clearly outperforms the baseline and competitive convolutional neu-
ral network methods. We show good scalability and performance of the method by
continued training and testing on an independent dataset which includes pathology
of 80 and 83 4D-CTA/NCCT pairs, respectively. C-LSTM is, therefore, a promising
general deep-learning approach to learn from high-dimensional spatiotemporal med-
ical images.
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3.1 Introduction

Computed tomography (CT) is the preferred modality in the imaging workup of pa-
tients suspected of acute stroke since fast diagnosis is critical for patient outcome. A
stroke workup consists of a non-contrast CT (NCCT) scan to identify hemorrhages,
is followed by a CT angiography (CTA) to assess the blood flow within the cerebral
vasculature, and is often followed by a 4D CT angiography (4D-CTA) to differentiate
core (irreversibly damaged brain tissue) and penumbra (salvageable tissue)®”. The
CTA and 4D-CTA are respectively a 3D and 4D (sequence of 3D images) acquisition
which are both acquired after the injection of contrast agent.

Randomized control trials published in 2015 including MR CLEAN®® and oth-
ers®-"2 have shown the benefit of endovascular therapy in ischemic stroke patients
with proximal occlusions and have led to the inclusion of CTA imaging to the stroke
guidelines?* with the highest level of recommendation. Three recent randomized
control trials (DAWN7”3, DEFUSE 374, and EXTEND"®) have unequivocally shown
the value of 4D-CTA for patient selection beyond the recommended time window of
six hours who will benefit from endovascular thrombectomy. These findings have led
to the adoption of 4D-CTA imaging as the highest recommendation in the modern
stroke guidelines®. Hence, 4D-CTA, just like CTA, is likely to become part of the
clinical routine in the acute stroke imaging workup.

Ischemic stroke is the most prevalent type within acute stroke patients (87%76)
which requires taking at least a CTA and often a 4D-CTA besides the conventional
NCCT scan. When a patient enters the hospital with suspicion of stroke, a simplifi-
cation of the stroke workup can be achieved by only acquiring a 4D-CTA and sub-
sequently deriving the NCCT and CTA from the 4D-CTA, hereby reducing workup
time, contrast usage, and radiation dose. The radiation doses are approximately in
the ranges of 2.0-2.7, 2.8-5.4, and 5.0-6.0 mSv for respectively NCCT, CTA, and
4D-CTA77-89. The workup time is in the order of one to two minutes for each of the
scans. The contrast usage for CTA and 4D-CTA are similar. Deriving the CTA and
NCCT from the 4D-CTA is feasible because the 4D-CTA in principle contains more
information than the other two scans. The feasibility of deriving high-quality CTA from
4D-CTA was shown in previous work?:.

We present a novel convolutional LSTM (C-LSTM) neural network designed to
derive 3D volumes from 4D spatiotemporal data. The main contribution of this work
is that we show the potential of the C-LSTM for deriving 3D volumes from 4D spa-
tiotemporal data and we present the first application for deriving NCCT from 4D-CTA,
which has the potential to simplify the stroke imaging workup.
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3.1.1 Related work

C-LSTM?®' is a type of recurrent neural network which combines the long short-term
memory (LSTM) network®? — the standard for processing sequential data — with con-
volution neural networks®® — the standard for processing spatial data — by replacing
the internal matrix multiplications of the weights with the input and hidden states with
convolutional operations. The added convolutions allow to simultaneously encode
spatial features while also encoding long-term recurrent dependencies. In contrast,
normal LSTMs can encode changes on the pixel level, yet they cannot encode spa-
tial features over time (e.g., motion). Hence, C-LSTM networks are different from
methods stacking normal LSTM networks on top of conventional convolutional lay-
ers, although these are often found under the same name in the literature. We will
only consider C-LSTM networks that have convolutions integrated for the remainder
of this paper.

The C-LSTM model has been first introduced in®' to predict the weather from
video sequences. The model was designed to encode spatiotemporal information in
general, hence the model has found its application in a range of domains: video anal-
ysis®® human pose and gesture recognition®-88, various sensor array monitoring
setups®-92, and protein structure prediction®%. There have been a few applications
of the C-LSTM model for medical image data, but most focus on segmentation tasks
and predicting a 3D volume from a sequence of 2D slice-based (2D + slice) instead
of predicting a 3D volume from temporal sequences of 3D volumes (3D + time) %97,

Despite the many interesting applications of the C-LSTM, it has not yet been
applied to derive 3D volumes from 4D spatiotemporal medical images or 4D-CTA
data. Furthermore, most C-LSTM applications have been limited to 3D spatiotempo-
ral video data (2D + time) and were not designed to handle 4D dynamic volumetric
data (3D + time).

Only a few deep learning approaches have been presented that were applied to
4D medical data when excluding multi-modal/multi-channel 3D data. Shin et al.®°
used stacked autoencoders for unsupervised multiple organ detection in dynamic
MRI data, but produced rough segmentations at best. Xu et al.®® automatically
aligned and analyzed convergent beam electron diffraction patterns from big 4D
micro electroscopic data using a hierarchy of several classical feed-forward convo-
lutional neural networks (CNN). The only other existing application of deep learning
on 4D-CTA data within the literature is experimental work by Vargas et al.®®, yet they
focused on classification, and their evaluation was somewhat limited. None of the
mentioned works use deep learning and 4D-CTA data.

Several CNNs for medical image derivation and reconstruction exist in the liter-
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ature reporting overall improved performance over traditional approaches (see '
and'®! for an overview of these topics). The CNN methods typically employ a re-
gression approach, i.e., optimizing the L2 loss between target and derivation. Nie et
al.’® derived CT from MRI images using four 3D convolutional layers. Bahrami et
al.’% ysed a CNN network for deriving 7T from 3T MRI with four 3D convolutional
layers. Others used CNNs to perform image denoising on low-dose 2D CT images
to derive denoised images %1%, However, the majority of the proposed regression
approaches only cover 2D or 3D images and are not designed to account for the
temporal information of the 4D-CTA.

Generative adversarial networks (GAN) % are increasingly used for image gener-
ation and derivation97:1%_ |n this setting, two networks are trained in competition: a
generator that tries to generate images looking similar to the target image distribution,
and a discriminator that tries to distinguish between images made by the generator
and the real images. A well-trained generator can create images that appear to be
drawn from the real target data distribution. A popular GAN for image synthesis is
the CycleGAN'%, which can synthesize images when trained with unpaired target
and source images. This technique has been applied in medical imaging'' for 2D
unpaired MR to CT synthesis. However, GANs have not yet been applied to 4D
data nor NCCT derived from 4D-CTA data, and these methods are more demanding
with respect to memory usage and processing time. We preferred a simple regres-
sion training scheme over adversarial training: The generator network within a GAN
training scheme is known to mimic the source data distribution’%, which contains a
lot of undesired noise in the use case we considered in this work. Minimizing the
mean squared error between derivation and target has a simpler training procedure,
is simpler to optimize during model training, and yields smoother results '1°.

We introduce a general stacked bidirectional convolutional LSTM deep learning
model for deriving 3D volumes from spatiotemporal 4D data. Using this model, the
feasibility of deriving a NCCT from 4D-CTA is demonstrated. This is a major exten-
sion of our previous work: the stacked C-LSTM model was simplified by removing the
extra 3D convolutions on top of the C-LSTM layers, and ablation experiments were
added for the hyperparameters and for the number of timepoints'''. Additionally,
the model was compared to state-of-the-art deep learning methods and validated for
scalability to a larger dataset and cases with pathology.
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3.2 Methods

3.2.1 C-LSTM

The convolutional LSTM model (C-LSTM) from?®' was used, which is an adaptation
of the normal LSTM model and can be described by the following equations:

iy = o (2 *e Wi + hy_1 %5, Wi + b;)
= 0 (@ %y W + hy_y %, Wiy + by)
= o (x %¢ Wao + M1 %5 Who + b,)
= Py %o Wae + hy_1 %5 Whe + be)
:ftGCt,1 + 1 © g

ht = O [O) (}J(Ct)

where z, and h,_; are the inputs at timepoint ¢, with =, the input sequence data
at timepoint ¢ and h,_; the previous hidden state. A, is the output at timepoint ¢
and also the hidden input state for the next timepoint ¢t + 1. 4, f;, o;, and g; are
the input gate, the forget gate, the output gate, and the cell state, respectively; this
encodes how much the input at the current timepoint and the hidden state from the
previous timepoint contribute to the current cell state ¢, through the weight matrices
W, and W, and biases b. Usually, ¢ and ¢ are the sigmoid and hyperbolic tangent
functions. © is the element-wise product and x, and x; are the convolution operators
for the input and the recurrent input respectively. w was set to the hyperbolic tangent
function. Figure 3.1 shows a graphical representation of the C-LSTM equations for
sequentially processing 3D spatiotemporal data.

Note that the C-LSTM is essentially a generalization of the conventional LSTM.
The normal LSTM computations can be obtained for the C-LSTM model by setting
a convolutional kernel of 12 for x, and =, or by entirely replacing the convolution
operations with matrix multiplications.

C-LSTM layer

Since the C-LSTM falls within the class of recurrent neural networks, it can have any
of the following input-output sequence mappings: one-to-one, one-to-many, many-
to-one, or many-to-many. However, we only considered two variants which encapsu-
late Egs. (3.1) in a single layer. This results in a function F' : S — S which takes in a
sequence S of length [ and outputs an equally lengthy sequence (hy, ha, ..., hi_1, )
or, alternatively, only the last state in the sequence ;.
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Figure 3.1: Graphical representation of a single 3D convolutional long short term
memory (3D C-LSTM) layer for processing 4D spatiotemporal data. Each cube rep-
resents a 3D subvolume. Input 4D spatiotemporal sequence (zg, x1, ..., z7—1, z7) Of
length T" with each 3D subvolume x; at timepoint ¢ can be found at the bottom. Each
input subvolume x; with the hidden state h;—; and cell state ¢;—; subvolumes from
the previous timepoint (on the left) are fed into the C-LSTM equations 3.1 resulting
in a new cell state subvolume ¢; and a hidden/output subvolume . (on the right). By
repeatedly feeding the subvolumes z; from the sequence to the C-LSTM equations
and combining the resulting hidden/output states &, you obtain a novel processed 4D
spatiotemporal sequence (hg, h1, ..., hr—_1, hr) of length T' (at the top).

Bidirectional C-LSTM

In a bidirectional approach to sequences, the signal is processed both from 0 to N
and also from N to 0 by another similar recurrent network. Finally, the two results
are combined, and this generally yields better results. Since we knew the entire se-
quence length beforehand, the bidirectional approach was used and the sequences
at the end were summed; given sequence output 1 (hi,hl,... Al | ki) and the re-
versed but same-sized sequence output 2 (h?, h? ..., h% h?), the output sequence
y of the combined bidirectional LSTM becomes y = (h{ + h?, h + h? ..., h} | +
h3, hi + hi).
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Stacked C-LSTM

The previously described components were combined in a network consisting of a
parameterizable stack of C-LSTM layers and convolutions. A schematic overview of
the K, f, x,, x,-stacked C-LSTM network is shown in Fig. 3.2.

The network takes a batch of one or more 3D spatiotemporal input sequences
of length 7' timepoints as a 6D tensor with the following dimensions: batch size,
timepoints, number of filters, and the spatial dimensions (z, y, ). The filter dimension
was introduced for implementation convenience following the Keras data format and
was always set to one for the input tensor. The batch of sequences was fed through
a stack of K bidirectional C-LSTM layers, each with f filters, «, input convolution
kernel size, and x;, hidden convolution kernel size. All K bidirectional C-LSTM layers
passed on the entire length of the sequences to the next layer, which was the entire
output sequence y composed from the forward and backward hidden states 4! and
h? as described in section 3.2.1. The last layer in the stack only passed a single
prediction (yr) for its input sequence of length T, reducing the input sequences to a
5D tensor with a filter size of f.

Lastly, a final single 3D convolution with a single filter, a 1% convolutional kernel,
and an identity activation function was used to produce the output-derived image as
a 5D tensor.

3.2.2 Model training

The training of the model employed a regression training scheme where the mean
squared error loss (MSE) between the NCCT and derived NCCT was minimized
using the RMSProp optimizer. The RMSProp optimizer was chosen because initial
experiments yielded more stable training performances than the SGD optimizer. The
optimizer settings were a learning rate of 0.001, a rho value of 0.9, and an epsilon
of 1e-6. Each model was trained for 1500 iterations, where each iteration consisted
of 100 randomly sampled 4D-CTA sub-volumes (322 x 19 timepoints) from within the
cranial cavity across all training set cases. The choice for the sub-volume size was
based on the large memory requirements of the model on the GPU during training.
Methods for reducing the memory footprint, like reducing batch size, gave a worse
performance. A cranial cavity mask was created to segment all intracranial soft tissue
using the method of Patel et al.’®. The resulting cranial cavity mask was refined
by discarding all voxels with an intensity below air density (-1000 Hounsfield units)
followed by a binary erosion with a 3D ball structuring element with a radius of three
voxels. The batch size during training was 2. Training and evaluation were performed
on a single NVIDIA Titan X GPU with 12 GB of RAM using Theano®® as the backend.
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Figure 3.2: Parameterizable K, f, ., x,-stacked C-LSTM network. In green, K bidi-
rectional C-LSTM layers with f filters, x, the size of the input kernel, and =, the size
of the recurrent kernel. In gray, a single 3D convolution with one filter, 1% kernel, and
identity activation function. At the top, the input sequence is a 6D tensor (a num-
ber of 3D subvolume sequences of T' timepoints, with a single dummy filter) which
is reduced to a 5D tensor with f filters after the last C-LSTM layer. Subsequently,
the single filter 3D convolution renders the final output a single filter 5D tensor at the
bottom.

The initial hidden state of each C-LSTM layer was set to zero. The weights
Wi, War, Wao, and W, were all initialized using uniform Xavier initialization''2. The
recurrent kernels W,;, Wy ¢, Wy,, and W, were all initialized using random orthogonal
matrices. All bias terms were set to zero except for the forget bias, which was set to
one as recommended by Jozefowicz et al.''3. All normal convolutional layers were
initialized using uniform Xavier initialization.

3.2.3 Implementation details

The stacked 3D C-LSTM models were implemented in Keras'™*. The C-LSTM oper-
ations at each timepoint were optimized by exploiting that i,, f;, o;, and g, from equa-
tion 3.1 require similar computations. Hence, the convolution operations *;, and x,
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can be computed efficiently by concatenating the weight matrices for W, and W, i.e.,
Tp kg Wiy Wap, Wao, Wae) @nd he—y s, (Whi, Whs, Whe, Wie). This way, the components
for i, fi, 04, g, could be computed by two convolutions instead of eight.

3.3 Data

This retrospective study included 196 patients (age 65+ 13 years, 59% male) with sus-
picion of stroke admitted to our hospital in 2015-2017 and who have received both a
NCCT and a 4D-CTA scan. 63 cases were diagnosed with at least one major pathol-
ogy (e.g., hemorrhage, large infarct, and ischemic symptom) and 30 cases showed
at least one major artifact (e.g., clips, streaking artifacts, and metal artifacts). Two
small datasets were taken from the total patient data for tuning the hyperparameters:
17 cases for training D%*" and 16 cases for testing D%*, with 8 and 0 pathology
cases respectively. The remaining data was added to a larger disjoint dataset of 163
cases consisting of a training set D%*" of 80 (28 pathology and 14 artifact) cases
and a test set D's* of 83 (27 pathology and 16 artifact) cases.

4D-CTAs were acquired on a 320-row CT scanner (Toshiba Aquilion ONE, Japan)
consisting of 19 volumetric scans with different exposures per timepoint. Patients re-
ceived 80 mL of contrast agent (lomeron) injected in the cephalic vein at the start of
the first acquisition. Image reconstruction was done using an FC41 smooth convolu-
tion kernel, resulting in 512 x 512 x 320 voxels with a voxel size of 0.47 x 0.47 x 0.5
mm. NCCTs were acquired on the same scanner reconstructed with an FC26 kernel
yielding 512 x 512 x 302 voxels with a voxel size of 0.43 x 0.43 x 0.5 mm.

3.3.1 Preprocessing

All 4D-CTA timepoints ¢ > 0 were rigidly registered to the first 4D-CTA timepoint
(t = 0) to correct for potential head movement during acquisition. The registration
was performed using the method and parameter settings as described by Manniesing
et al.®®. The NCCT was rigidly registered to the same space of the first timepoint of
the 4D-CTA with Elastix® using similar settings. This registration step also resulted
in the same resolution for the NCCT with respect to the 4D-CTA. Finally, before
neural network training and prediction, each voxel HU value = was linearly scaled
by f(z) = (z 4+ 50)/250. This operation was reversed after training and prediction to
map it back to HU.
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Figure 3.3: Shows mean squared error (MSE) performance for the first ¢ = 0-n
timepoint averages of a 4D CT angiography image as a derivation for the non-contrast
CT (NCCT) target. This plot indicates that combining the first four timepoints (t=0-3)
approximates the NCCT derivation the best among the other timepoint averages.

3.4 Evaluation

3.4.1 AQuantitative evaluation

All methods were compared using the following regression error measures: mean
squared error (MSE), r? score, and structural similarity index (SSIM)''®. However,
the diagnostic relevant information of a NCCT is only found within the cranial cavity.
Hence, only the voxels within the cranial cavity mask (described in section 3.3.1)
were used for computing these quantitative metrics.

To test for statistically significant differences between methods, the MSE, r? scores,
and SSIM were first computed for all test set cases. Next, for each metric and
method, the normality of the scores was estimated using the Shapiro-Wilk test for
normality. If two competing methods were normally distributed, a subsequent paired
t—test was used to assess a significant difference between them, otherwise, a Wilcoxon
signed-rank test was used instead. The significance level was set to .05.

3.4.2 Baseline derivation models

A lower bound baseline was established using three naive derivation methods from
the 4D-CTA: taking the first timepoint (t=0), taking the mean of the first three time-
points (t=0-3), and taking the average over all timepoints (t=all). Taking the first
timepoint is an obvious approach for deriving a NCCT, since it is the 4D-CTA time-
point with the highest exposure and hence has the best signal-to-noise ratio. Also,
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Figure 3.4: Intensity histograms of Hounsfield units (HU) within the [—100, 300] do-
main averaged over the entire dataset of 39 patients. The dataset was examined
for different timepoint partitions within each 4D CT angiography (4D-CTA) (t=0, t=0-3,
and t=all) and the non-contrast CT (NCCT) for vessel and non-vessel tissues within
the cranial cavity. The table shows the average HU for the 4D-CTA partitions and
NCCT images.

the contrast agent is less expressed earlier in the time sequence, which is closer
to the signal intensity of the target NCCT. Thus, averaging the first few timepoints
reduces derivation noise within individual timepoints while avoiding the contrast sig-
nal from the later scans. Furthermore, t=all was used as a reference for having the
optimal noise reduction over timepoints, but this derivation includes a signal from
the contrast material present at later timepoints. Figure 3.3 shows the average MSE
performance by using the first n timepoints of the 4D-CTA as a derived NCCT, which
exposes t=0-3 as the optimal baseline.

An analysis of the cranial cavity intensity histograms over all patients within the
domain of [—100,300] HU on the 4D-CTA and NCCT shows a basic intensity bias
between the two imaging types. The intensity histograms can be found in Fig. 3.4
and are divided into vessel and non-vessel tissue type counts. All voxels with values
> 110 from the temporal variance of the 4D-CTA were assigned to the vessel class.

This bias must be accounted for when computing the quantitative evaluation met-
rics to avoid underestimating the derived image quality of these models. The bias
was estimated as the difference in average non-vessel tissue intensity of the NCCT
and 4D-CTA classes: —13.9, —14.1, and —17.9 HU for =0, t=0-3, and t=all, respec-
tively. The learned models in this work did not suffer from this bias because these
methods learned to estimate this bias from the data.
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3.5 Experiments

Four different types of experiments were performed in this study. The first set of
experiments assessed the best hyperparameter configuration of the network using
ablation experiments. The second set of experiments compared the best parameter-
ization of the stacked C-LSTM architecture with several naive baselines and compet-
itive CNN methods from the literature. In the third set of experiments, the best model
was used to investigate the trade-off between the number of timepoints used for the
derivation and the derived image quality. In the final set of experiments, the model
was further optimized and evaluated on a larger dataset with pathology cases to test
the scalability of the model.

3.5.1 Ablation experiments

A series of nine ablation experiments were performed using the parameterized stacked
C-LSTM architecture to investigate the contribution of the individual hyperparame-

ters: input convolution kernel size x,, hidden convolution kernel size x,, and the

number of C-LSTM stacks K. In the first six experiments, the optimal choice for

kernel sizes x, and x;, were determined by fixing the filter size f to 64 and the num-

ber of C-LSTM stacks K to one and varying the kernel sizes *, and =;,. In the final

three experiments, the optimal number of C-LSTM stacks was determined by fixing

*, and =, to the previous optimal setting for K = 1 while varying the number of stacks

K € {2,3,4}. All experiments used bidirectional C-LSTM stacks.

Each parameterization of the stacked C-LSTM architecture was trained from scratch
for 1500 iterations using dataset D% *™" from section 3.3. The metrics were computed
by averaging each metric (MSE, r?, and SSIM) within the brain mask over all test
set cases DY*. Since computing the test-set scores was very time-consuming, the
network was evaluated on the test-set of 16 cases only once every 250 iterations;
the best-performing iteration on the MSE was selected as the final model score. The
ablation experiments with their parameterizations and final scores can be found in
Table 3.1.

The first six experiments were used to determine the best hyperparameters for
the subsequent experiments. From these first experiments, the network with the
highest average metrics on r? and SSIM and the lowest average metrics on MSE
was selected if it was significantly better than the others. To determine the final best
hyperparameter settings, the same procedure was used but for all nine experiments.
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3.5.2 Baseline comparison

To position the performance of the best-trained parameterization of the stacked C-
LSTM architecture (obtained in the ablation experiments from section 3.5.1) was
compared with two state-of-the-art estimation methods (a 3D U-Net*® and the method
of Nie et al.'°?) and the naive baselines t=0, t=0-3, and t=all (section 3.4.2). All meth-
ods were applied to the same test set of dataset D4 (see section 3.3) and evaluated
on MSE, r2, and SSIM. The 3D U-Net and the method of Nie et al. were trained on
dataset D% for 1500 iterations each, closely matching the training for the C-LSTM.
Similarly, the best-performing models for the methods were estimated by picking the
best-scoring model at every 250th iteration on the test set D¢t

The method of Nie et al.’®? is a four-layer deep 3D convolutional network with
four 3D-convolutions with kernel sizes of 72, 53, 33, and 33 and filter sizes of 32,
64, 32, and 1, respectively. The network was trained using the RMSProp optimizer
while optimizing the MSE. The data was presented to the network in batches of two
samples, with each sample having the 19 4D-CTA timepoints encoded as channels
with 1283 voxels. The model was trained for 1500 iterations processing 50 batches
per iteration.

The 3D U-Net*° is a well-known model in medical imaging. The model has two
pathways: a downward analysis path — which analyses the data at various resolu-
tions by applying several two convolution layers followed by a single max pooling
operations — and an upward synthesis path — which reintegrates the lower resolution
information from the downward path to the original high-resolution output using de-
convolution and pairs of convolution operations. The 3D U-Net is typically applied to
image segmentation, but by removing the final softmax operation it can serve as a
multiscale regression model as well.

For this work, we took a 3D U-Net with 3 max-pooling and 3 corresponding up-
scale operations. For upscaling nearest neighbor, upsampling was used instead
of deconvolution. An initialization scheme by He et al.%” was used to initialize the
weights. The model was trained to minimize the MSE using the RMSProp optimizer
for 1500 iterations. During one iteration, 100 batches were processed consisting of a
single cropped 4D-CTA sequence of 19 data volumes of 116 x 132 x 132 voxels each.

3.5.3 Timepoint ablation experiments

One of the strengths of recurrent networks is that they can deal with sequences of
varying lengths. This applies to CT, since decreasing the number of timepoints would
decrease radiation exposure to the patient while providing valuable information for
optimizing the 4D-CTA acquisition protocol. In the following set of experiments, we
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utilized the best C-LSTM model found in the ablation experiments (section 3.5.1) to
estimate the trade-off of the derived image quality by ablating timepoints.

We evaluated our pre-trained model by applying it on inputs from the 16 test set
cases from dataset D%** with varying sequence lengths t=0-n, always starting with
the first timepoint t=0 up to t=n where n € {0, 1,. .., 18}; note that t=0-18 is equivalent
to including all timepoints (t=all). Next, the derived images were scored on MSE and
EV. Since the model was not optimized for handling varying timepoints during initial
training, additional training on the training set of D% *" for each of the corresponding
input sequence lengths was performed for 0, 100, 200, and 300 additional training
iterations.

3.5.4 Assessing scalability

The scalability of the method to larger datasets and cases with major pathology and
artifacts was assessed on a completely separate dataset D% of 80 training cases
and 83 test cases D%*. The best C-LSTM model, 3D U-Net, and the method of
Nie et al. were each trained for an additional 1500 iterations on the bigger training
set, and evaluated on a separate validation set of 16 cases at every 250th iteration.
For each of the three model types, the model scoring the best results based on the
average MSE, r2, and SSIM on the validation set D! from all evaluated iterations
was evaluated a final time on the full test set. The baseline method results were also
evaluated on the full test set D's* for comparison.

3.6 Results

3.6.1 Ablation experiments

Table 3.1 shows the results on the test set D¢** (16 cases) of the nine ablation ex-
periments with the parameterized stacked C-LSTM models after completing train-
ing. Within the six different kernel size parameterizations (exp. 1-6), experiments
3 and 5 significantly outperformed all the other methods on all the evaluated met-
rics (p < 0.05). There were no significant differences between experiments 3 and 5
(p > 0.05), therefore the simplest- and cheapest-to-compute kernel parameterization
from experiment 3 with x, = 33 and %, = 3% was used for the final three experiments
(7-9). The trained stacked C-LSTM model from experiment 7 with K = 2 significantly
outperformed all other experiments with p < 0.05 on all performance metrics.

Wall clock training times for the ablation experiments were approximately 6-7 days
for experiments 1-5, 13 days for experiments 6 and 7, and 18 and 23 days for exper-
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Table 3.1: Ablation experiments with the C-LSTM hyperparameters. The first 1-6 ex-
periments varied the convolution size parameters x, and x;; experiments 7-9 varied
the number of C-LSTM stacks K. The listed scores are the best average perfor-
mances on the test set after 1500 iterations of training on mean squared error (MSE),
r2, and structural similarity index (SSIM). Parameter f = 64 was fixed for all experi-

ments.
exp. *, *, K MSE 2 SSIM
1 ¥ 13 1 90.84 0500 0.292
2 3 13 1 8840 0.511 0.286
303 3 1 7504 0590 0.332
4 5 1 1 8860 0.511 0.283
5 52 3% 1 76.99 0.578 0.327
6 52 5% 1 93.37 0.486 0.239
7 03 3% 2 7088 0611 0.356
8§ 3 3 3 7815 0570 0.291
9 3% 3% 4 8727 0.519 0.285

Table 3.2: Baseline comparison of the best parameterization of the C-LSTM against
a trained 3D U-Net, a trained model based on Nie et al., and the baseline derivation
models (t=0, t=0-3. t=all). The listed scores were the best average performances on
the test set after 1500 iterations of training by mean squared error (MSE), r?, and struc-
tured similarity index (SSIM). The best C-LSTM model from experiment 7 (Table 3.1)
was used.

exp. MSE r? SSIM

c-lstm  70.88 +£20.73 0.61 £0.09 0.356 £ 0.06
u-net  105.03 £22.40 0.43+0.06 0.268 + 0.04
nie 191.954+39.96 -0.04 £0.05 0.064 £0.01
t=0 194.03 £ 53.87 -0.08 £0.28 0.263 £0.05
t=0-3 167.53 +£50.53 0.074+0.24 0.319 £0.06
t=all 288.68 £ 94.11 -0.63+£0.63 0.311£0.05

iments 8 and 9, respectively. Evaluation wall clock times for the first 5 experiments
varied from 7-16 mins/case, and the last 4 experiments took 36, 36, 56, and 65
mins/case, respectively.
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3.6.2 Baseline comparison

Table 3.2 and Figure 3.5 show quantitative performance results between the best
performing C-LSTM model, 3D U-Net, method of Nie et al., and the baselines: t=0,
t=0-3, and t=all. The performances of all methods differed significantly from each
other (p < 0.05), except for the method of Nie et al. and the t=0 baseline on MSE
and r?, and 3D U-Net and the t=0 baseline for the SSIM (p > 0.05). Also, the method
of Nie et al. and the t=0-3 baseline performances did not differ significantly on r2
(p > 0.05).
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Figure 3.5: Final results on the test set D% for all methods: our C-LSTM model,
the best-trained 3D U-Net, the best-trained model of Nie et al., and the 3 baseline
methods (t=0, t=0-3, t=all). Metrics from left to right: mean squared error (MSE), r2,
and structured similarity index (SSIM).

3.6.3 Timepoint ablation experiments

Figure 3.8 shows plots on the trade-off between removing timepoints from the input
4D-CTA and the derived image quality for the C-LSTM on MSE and SSIM. The upper
bounds for both MSE and SSIM suggest a slight reduction in derived image quality
after ablation of five timepoints at t=0-12. The line at 0 additional train iterations
suggests that additional fine-tuning is necessary as the number of ablated timepoints
increases, with an exponential decay in performance with the number of ablated
timepoints.

Wall clock training times for the timepoint ablation experiments scaled linearly with
the number of included timepoints 7" with the following function yielding the time in
hours per 300 training iterations: fiain(7') = 1.49 + 3.117". This yielded 4.59 hours for
T = 1 up until 57.43 hours of training time for 7" = 18, for the 300 training iterations.
Similarly, evaluation wall clock time scaled linearly in the number of processed time-
points 7" with the following formula given in minutes per case: foredict(1) = 4.64+1.147T,
from 5.78 mins/case for T' = 1 to 25.22 mins/case for T' = 18.
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Figure 3.6: Qualitative results on three different cases from the test set DS$** showing
slices of the intracranial tissue. From top to bottom for every two rows: an axial,
coronal, and sagittal slice. From left to right the following derivation models: t=all,
t=0, t=0-3, best 3D U-Net, best C-LSTM model from experiment 1, and the target
reference non-contrast CT (NCCT). Every second row depicts the difference image
between reference NCCT and the derived image from the row above it. The scales at
the right are in Hounsfield units (HU).

3.6.4 Assessing scalability

The performance of the C-LSTM model, 3D U-Net, and method of Nie et al. trained
on the larger dataset D%, and of the naive baselines t=0, t=0-3, and t=all evalu-
ated on the separate larger test set D$*! on the regression metrics can be found in
Table 3.3. One of 83 test NCCT cases suffered from major streak artifacts and was
a few millimeters off registration; this heavily skewed the results for all methods and
metrics in the analysis, hence it was treated as an outlier and excluded. Figure 3.9
lists the same metrics as data points for each case, partitioned per normal-appearing
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Figure 3.7: Qualitative assessment of six different patients with pathology from test
set D!, For each patient, two images from the same axial slice are shown with on
the left the best derived NCCT from the C-LSTM model and on the right the reference
NCCT. The left and center pairs are examples of adequate derivations for the present
pathology (hemorrhage, enlarged liquor, and parenchyma defects). In contrast, the
derived quality of the right pairs can be improved. That is: the hemorrhage in the top
right image should ideally be brighter to have higher contrast and for the bottom right
image the delineation of the parenchyma defect at the border of the skull should have
been more hypodense.

cases and cases with pathology. The best-performing C-LSTM model based on all
metrics on the validation set was found to be the model at the last iteration 1500. Sig-
nificant differences were found between the C-LSTM model and the baseline perfor-
mances for all metrics within normal cases, pathology cases, and all cases combined
(p < 0.05).

Qualitative visualizations of several slices of the derived NCCT images on test
set D!, their respective reference NCCT, and the related approximation error can
be found in Figure 3.6. Qualitative visualizations of pathology slices for the derived
NCCT images for the best model and the reference NCCT images can be found in
Figure 3.7.

Wall clock training times for training the C-LSTM was 15 days; evaluation was
performed with 36 mins/case on average.
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Figure 3.8: Assessment of the number of input timepoints on the C-LSTM model
performance for target NCCT derivation. On the leftmost graph: the number of used
timepoints t=0-n versus mean squared error (MSE). On the right graph: the number of
used timepoints t=0-n versus structural similarity index (SSIM). Different lines indicate
model performance after 0, 100, 200, and 300 training iterations starting with the
best C-LSTM model trained on 19 timepoints. The red dotted line gives the best
performance across all iterations.
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Figure 3.9: Score per case on the test set D (82 cases) for the following methods:
our C-LSTM model (red), and two of the three baseline methods t=0 (green) and
t=0-3 (blue). Metrics from left to right: mean squared error (MSE), r?, and structural
similarity index (SSIM). Each graph has been partitioned into normal cases (left) and
pathology cases (right).

3.7 Discussion

We have presented a stacked bidirectional C-LSTM architecture for deriving 3D im-
ages from 4D spatiotemporal data. The model was able to derive NCCT images from
4D spatiotemporal 4D-CTA data with better performance on MSE, r?, and SSIM than
three baseline methods and two other state-of-the-art deep learning methods (see
Table 3.2).

Figure 3.6 shows the ability of the C-LSTM model to encode both the spatial and
the temporal information. The vessels were completely suppressed in the final model
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Table 3.3: Comparison of the best C-LSTM parameterization against the baseline
derivation models (=0, t=0-3, t=all) and the two other state-of-the-art deep learning
derivation methods (3D u-nUet and Nie). The listed scores are the best average
performance on the test set after 1500 iterations of training on mean squared error
(MSE), r?, and structural similarity index (SSIM). One of 83 test cases was excluded
because it was a severe oultlier.

model MSE r SSIM
normal
c-Istm 58.744+10.20 0.601 +0.12 0.361 4+ 0.06
u-net 108.14 £40.49 0.286 £0.29 0.271 £0.04
nie 163.97 £45.36  -0.0563+0.06 0.062 4+ 0.01
t=0 177.04 £29.12 -0.224 +0.45 0.2554+0.04
t=0-3  153.26 +£31.56 -0.057 +0.39 0.309 + 0.05
t=all 260.90 + 62.04 -0.794 +£0.67 0.294 +0.05
pathology

c-Istm 72.83 +£36.77 0.532+0.15 0.330 £+ 0.07
u-net 118.12 +£54.29 0.244+0.32 0.254 £0.05
nie 174.51 £ 53.44 -0.1054+0.10 0.063 4+ 0.01
t=0 199.59 +58.02 -0.365+0.61 0.235 4 0.05
t=0-3  168.70 +£50.68 -0.153 +0.53 0.289 + 0.06
t=all 279.72 +78.01 -0.930 +£0.85 0.281 4+ 0.05

predictions, but the traces of calcification (small high-density spots on the NCCT and
the derived NCCT seen in the top row image) were not. Comparing the temporal
average of the 4D-CTA with the derived NCCT shows that the model was able to
overcome the general intensity bias between the 4D-CTA and the NCCT target. The
model also created better contrast of the cerebrospinal fluid at the giri and sulci with
the brain tissue. Furthermore, the derived NCCT contained much less noise and
produced a smoother result, which might be relevant for finding diagnostic markers.

Figure 3.7 shows general good performance on the most important pathologies.
Both hemorrhages and major parenchyma defects can be clearly delineated. How-
ever, the results also show points for improvement. In some cases, the hemorrhages
on the derived NCCT do not have as good a contrast with the surrounding healthy
brain tissue as on the reference NCCT, which could potentially hinder detection. Also,
in some cases, the parenchyma defects near the border are less hypodense than on
the reference NCCT and could be falsely identified as normal tissue. These effects
are expected to be caused by having trained on predominantly normal cases. Also,
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within the pathology cases, the majority of intracranial tissue can be considered nor-
mal as well. Therefore, it is expected that focused training on pathology samples with
techniques like hard negative mining and increasing the number of pathology cases
for training will help to further improve the robustness of the method and solve the
currently observed issues.

Figure 3.5 shows the expected results between the baseline methods: t=0-3 per-
formed best followed by t=0; t=all performed the worst. The earlier timepoints (t=0,
t=0-3) showed less expression of the contrast agent — injection took place at approx-
imately the first timepoint t=0 and required some time to circulate — and generally
have a better signal-to-noise ratio, but a single timepoint (t=0) contains more noise
than averaging over multiple timepoints (t=0-3) at the start of the 4D-CTA sequence.

The U-Net and C-LSTM models outperformed all the baseline methods, and the
C-LSTM model outperformed all other trained models and baseline methods on all
used evaluation metrics. Training and validating the C-LSTM on a bigger dataset
showed similar performance, both for pathology and non-pathology cases Table 3.3.
These results suggest a promising performance bound. However, pathology cases
have only been validated as a whole and not on pathology-specific image quality.

The CNN baseline methods (the U-Net and the method of Nie et al.) use larger
subvolumes for training than the C-LSTM method. However, it is not expected that
a reduction in input subvolume size for training the CNN baseline methods will yield
significantly different results. The choice for the bigger sub-volumes was based on
the respective input sizes used for model training in their papers. The input sizes
have been optimized for their respective methods. Using the same input size for all
methods is expected to negatively influence the performance of the CNN baseline
methods.

The parameter ablation results in Table 3.1 show that the best-performing param-
eterization (experiment 7) of the stacked C-LSTM model was a two-stack C-LSTM
(K = 2) with an input kernel size of x, = 3% and recurrent kernel size of x, = 33.
The best parameterization improved the performance of experiment 3, which had
the same settings except that experiment 3 only used a single C-LSTM layer K = 1.
Conversely, experiments 8 and 9 suggest that stacking more than two layers (K > 2)
does not further improve the performance. We think that this effect is due to the expo-
nential increase in optimization cost. Hence, it is likely that additional training might
yield equivalent or better results. However, this was not feasible within this work. A
hidden kernel size of x, = 3° appeared to work better than one of 13. This was un-
expected because the registered 4D-CTA data did not show much motion between
timepoints, which would better justify the smaller recurrent kernel size. However,
upon closer examination, the bigger kernel size might compensate for minor intra-
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registration errors of the 4D-CTA timepoints with t> 0 to the first timepoint t=0. In
general, larger kernel sizes are thought to work better since they allow for smoothing
of the 4D-CTA image. Smoothing of the 4D-CTA will reduce the noise in the 4D-CTA.
This is also the best what can be done to approximate the target NCCT from the
4D-CTA because the noise from the target NCCT is different from the 4D-CTA noise
and cannot be estimated. Similarly, as with the K > 2 case, increasing the capacity
beyond 33 to 5° yielded worse performance within the allotted number of training iter-
ations due to the increased costs of optimization. In general, more stacks and bigger
kernel sizes might be best. However, keeping a good balance between the feasibility
of training optimization and regression performance, we found K = 2, an input kernel
size of x, = 33, and a recurrent kernel size of *, = 3% to work best.

The C-LSTM is better suited for spatiotemporal data than CNN and LSTM meth-
ods separately. While it is possible to parse sequential data using CNNs '€, it is not
a natural fit and requires some workarounds. Also, parsing spatiotemporal data with
only LSTM using flattened spatial data (*, = 1° and %, = z1%) would make it more dif-
ficult to encode translation-invariant spatial features (e.g., edges); this should result
in poorer performance as was observed in experiment 1 from the hyperparameter
ablation experiments in Table 3.1.

An interesting potential application of the C-LSTM model involves the optimization
of the 4D-CTA acquisition protocol. As shown in Figure 3.8, the C-LSTM model
results show that the final few timepoints t > 12 do not add much to the quantitative
quality of the derived images and could be discarded to reduce patients’ exposure
to ionizing radiation. However, this work is limited to predicting the NCCT from 4D-
CTA and the results might not translate to other prediction tasks from 4D-CTA like
blood flow calculations. Nevertheless, the same method could be used for those
applications as well under the condition that the model is first retrained for those
tasks. Another limitation is the relatively small dataset it was trained and tested on.
Note that, when starting with a pre-trained network, more optimization is required as
the number of timepoints used deviates from the original training set.

The stroke workup for patients admitted to the hospital with suspicion of stroke
could potentially be simplified wherein the majority of cases, a NCCT, a CTA, and
often a 4D-CTA are taken. Our method and the method of Smit et al.2® could be
used to respectively derive a NCCT and a CTA from a 4D-CTA. Removing the need
for a NCCT and a CTA, could potentially reduce radiation dose, workup time, and
contrast usage. Yet, it is important to carefully investigate all of these factors and
other factors like workup costs to assess the relevance for clinical routine adoption.
However, this is beyond the scope of this work.

Regarding the minority situation where patients with suspicion of stroke will have
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a hemorrhage (10% of all stroke patients) and patients are not eligible for alteplase
admission, the workup would involve additional dose, workup time, and contrast us-
age over a conventional single NCCT, which is indeed a disadvantage compared to
the conventional situation. However, if a 4D-CTA can now be used to derive a NCCT,
we can still omit the administration of alteplase based on any hemorrhages identified
on the derived NCCT. Furthermore, given this situation, it may be an added benefit
for patients with both hemorrhagic and ischemic strokes, since the taken 4D-CTA
images can be used to identify potential occlusions and estimate hemodynamics
without additional costs for which a single NCCT is inadequate.

The proposed C-LSTM models and training scheme are not limited to deriving
NCCT from 4D-CTA data and could be utilized for other applications involving spa-
tiotemporal data. This work employed a regression scheme for training, but it is
straightforward to make it into a segmentation scheme by adding a softmax to the
model and changing the loss. In a preliminary study, we showed the feasibility of
the C-LSTM model for whole volume training and prediction while maintaining con-
text and expressiveness using gradient checkpointing . The qualitative results from
Figure 3.6 show that the C-LSTM model was able to suppress the vessels within the
4D-CTA, but it might also be used to filter other information as well. Another potential
future direction is the use of the model for computing perfusion images.

A drawback of the proposed method is the computation time and memory require-
ments for training and prediction. It can take one or two weeks to train the best pa-
rameterization of the C-LSTM model from scratch; the evaluation can take up to forty
minutes, which is not practical in a clinical setting. However, the model could be eas-
ily parallelized to divide the computational overhead during prediction. Furthermore,
there is also speedup to be gained by implementing the model in more modern deep
learning frameworks, e.g., using half-precision for the GPU computations. Training
could be performed on larger inputs by using gradient checkpointing techniques '8
on each step function during the LSTM sequence. In conclusion, the computation
time and memory requirements imposed great resource constraints, which limited
the number of experiments. However, with modern solutions and better GPUs on the
horizon, these issues will become less of a concern.

To further the acceptance of the method as a replacement for a normal NCCT
scan, the evaluation of the derived images could be extended with a qualitative as-
sessment of diagnostic relevant information (e.g., hemorrhages, dense vessel signs,
and infarcts). This information could be graded for both the NCCT and the derived
NCCT by experienced radiologists to assess whether all diagnostically relevant in-
formation is still present in the derived NCCT. However, this would require a larger
dataset with more manually labeled pathology cases which is beyond the scope of
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this work.

To conclude, we have presented the first deep learning application of C-LSTM
for deriving 3D NCCT from 4D spatiotemporal CTA, which could potentially improve
the efficiency of stroke workup. The proposed C-LSTM models and training scheme
pose promising tools for handling spatiotemporal data in medical imaging and can
be used for other problems as well.
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Abstract

Reversible operations have recently been successfully applied to classification prob-
lems to reduce memory requirements during neural network training. This feature is
accomplished by removing the need to store the input activation for computing the
gradients at the backward pass and instead reconstructing them on demand. How-
ever, current approaches rely on custom implementations of backpropagation, which
limits applicability and extendibility. We present MemCNN, a novel PyTorch frame-
work that simplifies the application of reversible functions by removing the need for
customized backpropagation. The framework contains a set of practical generalized
tools, which can wrap common operations such as convolutions and batch normaliza-
tion and which take care of memory management. We validate the presented frame-
work by reproducing state-of-the-art experiments using MemCNN and by comparing
classification accuracy and training time on Cifar-10 and Cifar-100. Our MemCNN
implementations achieved similar classification accuracy and faster training times
while retaining compatibility with the default backpropagation facilities of PyTorch.
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Reversible functions, which allow exact retrieval of its input from its output, can re-
duce memory overhead when used within the context of training neural networks
using backpropagation. That is since only the output is required to be stored, inter-
mediate feature maps can be freed on the forward pass and recomputed from the out-
put on the backward pass when required. Recently, reversible functions have been
used with some success to extend the well-established residual network (ResNet)
for image classification from He et al. ''® to more memory-efficient invertible convolu-
tional neural networks 2-'22 showing competing performance on datasets like Cifar-
10, Cifar-100'2® and ImageNet®. However, the practical applicability and extendibility
of reversible functions for the reduction of memory overhead have been limited, since
current implementations require customized backpropagation, which does not work
conveniently with modern deep-learning frameworks and requires substantial man-
ual design.

The reversible residual network (RevNet) of Gomez et al. 120 is a variant on ResNet,
which hooks into its sequential structure of residual blocks and replaces them with
reversible blocks, that creates an explicit inverse for the residual blocks based on the
equations from Dinh et al. >* on nonlinear independent components estimation. The
reversible block takes arbitrary nonlinear functions F and G and renders them invert-
ible. Their experiments show that RevNet scores similar classification performance
on Cifar-10, Cifar-100, and ImageNet, with less memory overhead.

Reversible architectures like RevNet have subsequently been studied in the frame-
work of ordinary differential equations (ODE)'?'. Three reversible neural networks
based on Hamiltonian systems are proposed, which are similar to the RevNet, but
have a specific choice for the nonlinear functions F and G which are shown stable
during training within the ODE framework on Cifar-10 and Cifar-100.

The i-RevNet architecture extends the RevNet architecture by also making the
downscale operations invertible Jacobsen et al. 22, effectively creating a fully invert-
ible architecture up until the last layer, while still showing good classification accuracy
compared to ResNet on ImageNet. One particularly interesting finding shows that
bottlenecks are not a necessary condition for training neural networks, which shows
that the study of invertible networks can lead to a better understanding of neural
network training in general.

The different reversible architectures proposed in the literature'2-'22 have alll
been modifications of the ResNet architecture and all have been implemented in Ten-
sorFlow 25, However, these implementations rely on custom backpropagation, which
limits creating novel invertible networks and application of the concepts beyond the
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application architecture. Our proposed framework MemCNN overcomes this issue
by being compatible with the default backpropagation facilities of PyTorch. Further-
more, PyTorch offers convenient features over other deep learning frameworks like a
dynamic computation graph and simple inspection of gradients during backpropaga-
tion, which facilitates inspection of invertible operations in neural networks.

In this work, we present MemCNN' a novel PyTorch 26 implementation which sim-
plifies the use of reversible functions by removing the need for a customized back-
propagation. MemCNN provides tools to drop-in memory-saving reversible functions
within conventional PyTorch neural networks. Furthermore, it provides wrappers to
convert arbitrary nonlinear functions to memory-saving reversible functions. We have
validated the presented framework by implementing two state-of-the-art architectures
(ResNet and RevNet) utilizing MemCNN, which are included in the GitHub repository,
and compare them to existing state-of-the-art implementations in TensorFlow 25 on
the Cifar-10 and Cifar-100 classification tasks on accuracy and training time. Our
framework was found to achieve similar classification accuracy and faster training
times. Validation experiments described in this work are included in the framework
as well.

4.2 Methods

4.2.1 The reversible block

The core operator of MemCNN is the reversible block which is an operator that
takes a function f and outputs a function R : X — Y, and an inverse function
R™' : Y — X which resembles an invertible version of f. Here, + € X and
y € Y can be arbitrary tensors with the same size and number of dimensions, i.e.,
shape(z) = shape(y). Additionally, it must be possible to partition the input z = (1, z)
and output tensors y = (y1, y2) in half, where each partition has the same shape, i.e.,
shape(z;) = shape(z2) = shape(y;) = shape(yz). Formally, the reversible block oper-
ation (4.1), its inverse (4.2), and its partition constraints (4.3) provide a sufficiently
general framework for implementing reversible operations.

For example, if one wants to create a reversible block performing a convolution
followed by a RelLu f, the input z € X is partitioned in (z;,2,) of equal sizes to
which this convolution block f is applied twice (say F and G). The Reversible Block
takes these two operators (F and G) and outputs a "resblock"-like version R of the
operator and an explicit inverse R~'. Effectively the learnable function f is replaced
by a learnable approximation R with an explicit inverse R~!.

"MemCNN is available at: https://github.com/silvandeleemput/memcnn
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R(z) =y (4.1)
R (y) =z,
with
shape(x;) = shape(xy) = shape(y;) = shape(ys) (4.3)

4.2.2 Couplings

Using the above definitions we provide two different implementations for the re-
versible block in MemCNN, which we will call ‘couplings’. A coupling provides a
reversible mapping from (z1,22) to (y1,v2). MemCNN supports two couplings: the
additive coupling and the affine coupling.

2 X2WY2

(F) @

N\
X1 Y1 X1MY1

Figure 4.1: Graphical representation of additive coupling. The left graph shows the
forward computations and the right graph shows its inverse. First, input z; and F(xz2)
are added to form y;, next x5 and G(y;) are added to form y,. Going backwards,
first, G(y1) is subtracted from y to obtain z2; subsequently, F(z2) is subtracted from

Additive coupling

X2

y1 to obtain x;. Here, + and — stand for respectively element-wise summation and
element-wise subtraction.

Equation 4.4 represents the additive coupling, which follows the equations of Dinh
et al.®* and Gomez et al. 2. These support a reversible implementation through
arbitrary (nonlinear) functions 7 and G. These functions can be convolutions, Relus,
etc., as long as they have matching input and output shapes. The additive coupling
is obtained by first computing y; from input partitions z;, x; and function F and sub-
sequently y, is computed from partitions y;, 2z, and function G. Next, (4.4) can be
rewritten to obtain an exact inverse function as shown in (4.5). Figure 4.1 shows a
graphical representation of the additive coupling and its inverse.

Y1 = 21+ F(22), (4.4) zo = Yyo — G(y1), (4.5)

Y2 = x9 + G(11) xy =y — F(xz)
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Affine coupling

Figure 4.2: Graphical representation of the affine coupling. The left graph shows
the forward computations and the right graph shows its inverse. Here, ®, /,+, —, and
e stand for element-wise multiplication, element-wise division, element-wise addition,
element-wise subtraction, and element-wise exponentiation with base e respectively.
First, s,¢ are computed for F(x2), next input z; is element-wise multiplied with e°
and added to ¢ to form y;, subsequently s',¢ are computed for G(y1) and then x4 is
element-wise multiplied with ¢ and added to ¢’ to form ..

Equation 4.6 gives the affine coupling, introduced by Dinh et al. " and later used by
Kingma and Dhariwal 128, which is more expressive than the additive coupling. The
affine coupling, similar to the additive coupling, supports reversible implementations
through arbitrary (nonlinear) functions 7 and G. It also first computes y; from input
partitions 1, x5, and function F and subsequently it computes y, from partitions ¥, 22
and function G. The difference with the additive coupling is that now the functions
F = (s,t) and G = (¢',t') each produce two equally sized partitions for scaling and
translation, so shape(x;) = shape(s) = shape(t) = shape(s’) = shape(¢') holds. These
components are then used to compute the output using element-wise product (©)
and element-wise exponentiation with base e and element-wise addition (+). Equa-
tion 4.6 can be rewritten to obtain an exact inverse function as shown in equation 4.7,
which uses element-wise division (/) and element-wise subtraction (—). Figure 4.2
shows a graphical representation of the affine coupling and its inverse.

y1 =210 +t with F(xy) = (s,1) Ty = (yo — t') /e with G(y,) = (s', 1)
Yo =2y @ e + 1" with G(y) = (5, ') x = (yn —t)/e® with F(xsg) = (s,t)
(4.6) (4.7)

Implementation details

The reversible block has been implemented as a torch.nn.Module which wraps
other PyTorch modules of arbitrary complexity for coupling functions F and G. Each
memory-saving coupling is implemented using at least one torch. autograd.Function,
which provides a custom forward and backward pass that works with the automatic
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differentiation system of PyTorch. Memory savings are implemented at the level of
the reversible block and are achieved by setting the size of the underlying tensor
storage to zero for inputs on the forward pass and restoring the storage size to the
original size on the backward pass once it is required for computing gradients.

4.2.3 Building larger networks

X2 »2 2 Y2 o
x Coupling /y o Coupling 1y §
X Vi y o Y
Reversible block Reversible block

Figure 4.3: Graphical representation of chaining multiple reversible block layers.

The reversible block R can be chained by subsequent reversible blocks, e.g.,
R; o Ry o Ry for reversible blocks Ry, Ry, R, which creates a fully reversible chain
of operations (see Figure 4.3). Additionally, reversible blocks can be mixed with reg-
ular functions f, e.g., f o R or R o f for reversible block R and regular function f.
Note that mixing regular functions with reversible blocks often breaks the invertibility
of reversible chains.

4.2.4 Memory savings

Technique Authors Memory . Computa.tlonal
Complexity = Complexity

Naive O(L) O(L)

Checkpointing 129 O(VL) O(L)

Recursive 118 O(log L) O(Llog L)

Additive coupling 120 0o(1) O(L)

Affine coupling 127 0o(1) O(L)

Table 4.1: Comparison of memory and computational complexity for training a resid-
ual network (ResNet) between various memory saving techniques (extended table
from Gomez et al. 120). L depicts the number of residual layers in the ResNet.

The reversible block model has an advantageous memory footprint when chained in
a sequence when training neural networks. After computing each R(x) = y by (4.1)
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on the forward pass, input = can be freed from memory and be recomputed on the
backward pass, using the inverse function R~1(y) = = from (4.2). Once the input is
restored, the gradients for the weights and the inputs can be recomputed as normal
using the PyTorch ‘autograd’ solver. This effectively yields a memory complexity of
O(1) in the number of chained reversible blocks. Table 4.1 shows a comparison of
memory versus computational complexity for different memory-saving techniques.

4.3 Experiments and results

Table 4.2: Accuracy (acc.) and training time (time, in hours:minutes) comparison
of the PyTorch implementation (MemCNN) versus the Tensorflow implementation
from Gomez et al. 120 on Cifar-10 and Cifar-100. 23

Tensorflow PyTorch
Cifar-10 Cifar-100 Cifar-10 Cifar-100
Model acc. time acc. time acc. time acc. time

resnet-32 92.74 2:04 69.10 1:58 92.86 1:51 69.81 1:51
resnet-110 93.99 4:11 73.30 6:44 093.55 2:51 72.40 2:39
resnet-164 94.57 11:05 76.79 10:59 94.80 4:59 76.47 3:45
revnet-38 93.14 2:17 7117 2:20 92.80 2:09 69.90 2:16
revnet-110 94.02 6:59 74.00 7:03 94.10 3142 73.30 3:50
revnet-164 94.56 13:09 76.39 13:12 9490 7:21 76.90 7:17

To validate MemCNN, we reproduced the experiments from Gomez et al. '?° on Cifar-
10 and Cifar-100"2® using their Tensorflow '25 implementation on GitHub?, and made
a direct comparison with our PyTorch implementation on accuracy and train time. We
have tried to keep all the experimental settings, like data loading, loss function, train
procedure, and training parameters, as similar as possible. All experiments were
performed on a single NVIDIA GeForce GTX 1080 with 8GB of RAM. The results
are listed in Table 4.2. Model performance of our PyTorch implementation obtained
similar accuracy to the TensorFlow implementation with less training time on Cifar-
10 and Cifar-100. All models and experiments are included in MemCNN and can be
rerun for reproducibility.

Table 4.3 shows the average memory usage during model training using Mem-
CNN. The results show significant memory savings using the invertible operations as

2https://github.com/renmengye/revnet-public
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Table 4.3: GPU VRAM memory usage using the MemCNN implementation during
training for all models. All models were trained on a NVIDIA GeForce GTX 1080
with 8GB of RAM. Significant memory savings were observed when using reversible
operations as the number of layers increased.

Model Layers GPU VRAM
resnet 32 766 MB
resnet 110 1357 MB
resnet 164 3083 MB
revnet 38 677 MB
revnet 110 706 MB
revnet 164 1226 MB

the number of layers increases for ResNet without the use of invertible operations.

4.4 Works using MemCNN

MemCNN has recently been used to create reversible GANs for memory-efficient
image-to-image translation by Ouderaa and Worrall'*°. Image-to-image translation
considers the problem of mapping both X — Y and Y — X given two image domains
X and Y using either paired or unpaired examples. In this work, the CycleGAN'%°
model has been enlarged and extended with an invertible core using the reversible
block, which they call RevGAN. Since the invertible core is weight-tied, training the
model for the mapping X — Y automatically trains the model for mapping ¥ — X.
They show similar or increased performance of RevGAN with respect to similar non-
invertible models like the CycleGAN with less memory overhead during training. The
RevGAN model has also been applied to chest CT images'®'.

4.5 Conclusion

We have presented MemCNN, a novel PyTorch framework, for creating and applying
reversible operations for neural networks. It shows similar accuracy on Cifar-10 and
Cifar-100 datasets with the current state-of-the-art method for reversible operations
in Tensorflow and provides overall faster training times. The main features of the
framework are smooth integration of reversible functions with other non-reversible
functions by removing the need for a custom backpropagation and simple wrapping
of arbitrary complex non-invertible nonlinear functions. The presented framework is
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intended to facilitate the study and application of invertible functions in the context of
neural networks.
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In this thesis, various deep-learning methods are presented to facilitate the analysis
of 4D-CTA images in the context of stroke imaging. The first method focuses on
the segmentation of the vasculature, white matter, gray matter, and cerebrospinal
fluid in the cerebrum (Chapter 2). Secondly, a reconstruction method using a con-
volutional LSTM for a non-contrast CT (NCCT) from a 4D-CTA image is presented,
which shows promising results (Chapter 3). Third, a PyTorch framework called Mem-
CNN allows making arbitrary deep learning operations memory-efficient (Chapter 4).
The presented methods and tools were initially developed to improve computer-aided
diagnosis systems aimed at acute stroke analysis and to aid radiologists in reading
4D-CTA images. Not all of the work in this thesis is already directly usable in the clini-
cal setting, but the results show promise and provide interesting insights and a basis
for future research. The following sections elaborate on deep learning techniques
and 4D-CTA scans for stroke imaging, discuss the presented methods, and present
possible future research directions.

5.1 4D-CTA for acute stroke imaging

Within Chapter 2 and Chapter 3 the main focus was on 4D-CTA imaging for stroke
imaging. However, this is currently not mainstream as it is not required by the stan-
dard stroke workup guidelines for thrombolytic treatment and thrombectomy deci-
sions, and the current clinical acute stroke workup at most medical centers rely
mostly on non-contrast CT (NCCT) and CT Angiography (CTA) imaging instead of
4D-CTA. However, it has been generally acknowledged that the additional diagnostic
and prognostic information can help support clinical decision-making, mainly for the
identification of potential patients eligible for endovascular treatment between 6-24
hours of symptom onset'®2. Also, while NCCT and CTA imaging also provide nec-
essary information for stroke treatment, the benefit of 4D-CTA for stroke patient out-
come and patient treatment selection has only recently been shown in various clinical
trials7>~75. Also, 4D-CTA requires high-end scanners, and not all hospitals have such
equipment available in the emergency care department where stroke patients arrive.
Likely, the stroke guidelines will further change in favor of more advanced imaging
like 4D-CTA with insights gained from new research and large ongoing trials 3335,
There is an increasing advocacy for using more 4D imaging within the stroke
setting, because of the added dynamic information allowing for collateral flow estima-
tion, which helps with the detection of vessel occlusions, core, and penumbra, and
subsequent better treatment planning. Beyond these obvious use cases, 4D imag-
ing also has great potential for the analysis of the vasculature and risk profiling '3,
the analysis of brain tissue for better differentiation of the white- and gray matter '3’
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(see also Chapter 2 of this thesis), help with studying and visualization of the blood
flow dynamics'®, and individualized patient management based on extracted tis-
sue values'®®. Furthermore, recent clinical evaluations of imaging for stroke-workup
have argued for increased use of 4D-CTA for perfusion imaging after endovascular
treatment procedures to predict long-term outcomes and identify opportunities for
adjuvant therapy '4%-'42_ But there is also advocacy for using more advanced imaging
(like 4D-CTA) within the early time window (within 4.5 hours of symptom onset) since
detecting early ischemia signs on a NCCT scan is notoriously difficult 43,

CTA imaging has high sensitivity and specificity for large proximal vessel occlu-
sions but has lesser reliability for more distal occlusions, which has led to the rise
of multiphase CTA (mCTA) '44-146_ Multiphase CTA consists of a bolus-triggered sin-
gle CTA head-neck acquisition, followed by two head CTA acquisitions. This type
of imaging, just like the 4D-CTA, has multiple acquisitions over time, hence adding
dynamic information for better estimating the blood flow. While the mCTA has less
radiation dose, lower costs, and wider availability, the 4D-CTA has a better imaging
resolution and can also be used to estimate capillary and venule level filling.

Currently, within the stroke setting there is no consensus on standardization for
advanced imaging like 4D-CTA'3. This is also one of the main reasons that, de-
spite its potential, the 4D-CTA is currently not used that much in clinical practice, and
general adaptation will require more automatization and standardization of imaging
and stroke workup protocols'3®. For example, a practical limitation of the 4D-CTA
data used for the works in this thesis typically only covered the brain and not the
head-neck area as typically is the case for CTA. However, this practical issue could
be addressed since research from our group has demonstrated the feasibility of ac-
quiring a full head-neck 4D-CTA in the One-Step-Stroke protocol 147148,

It can be argued that all the information of a CTA is also present within a properly
acquired 4D-CTA scan. It has been shown for instance that the CTA can be derived
from the 4D-CTA by a maximum intensity projection2. This observation is relevant in
the context where both a CTA and a 4D-CTA scan are acquired; costs and patient ex-
posure to ionizing radiation could be reduced by only administering a 4D-CTA scan.
This could also speed up the workflow, which is important for stroke patients because
‘time is brain’. The individual timepoints within a 4D-CTA are typically acquired with
less radiation than conventional stoke imaging like a NCCT or a CTA. However, the
temporal information in a 4D-CTA image can be optimally estimated by computing a
weighted temporal average (WTA) over all the timepoints weighted by their radiation
dose to retrieve the optimal signal-to-noise where the total radiation dose encom-
passes the upper boundary of the image quality®?. This essentially entails that it is
possible to retrieve high-quality diagnostic images from 4D-CTA using less radiation
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per timepoint than conventional CT techniques as long as the total radiation dose is
sufficient.

5.2 Deep learning for acute stroke imaging

Medical image analysis has in the past decade rapidly shifted from traditional ma-
chine learning methods to deep learning®'. Mostly due to the availability of larger
datasets, parallelized computing power in the form of GPUs and other specialized
hardware like TPUs, simplicity of application, and increased task performance. Within
acute stroke imaging increasingly more data is available and the data gets increas-
ingly larger and more complex. Meanwhile, the workload on radiologists is increasing
worldwide and hence the time to analyze and process scans becomes less. Further-
more, with an increasingly aging population, the number of stroke patients is esti-
mated to increase by 20-27% in the next 10-30 years in the European Union and
the United States as well %10, Hence, deep learning could potentially be utilized
to speed up and alleviate tedious tasks of the radiologist, either serving as an ex-
tra set of eyes on the scan or potentially even operating as an expert reader that
autonomously performs certain reading and or reporting tasks in the future.

For deep learning applications for stroke imaging various additional challenges
arise. First of all, the processing speed of the stroke imaging applications is impor-
tant, since timely diagnosis of stroke symptoms is crucial for successful patient out-
come. Furthermore, the imaging data scale ranges from high-resolution NCCT and
CTA scans to 4D dynamic CT scans, the domain has diverse and high-dimensional
images for which small details might matter, which complicates fast processing and
model training. That is, having large scans, with many voxels and dimensions gen-
erally leads to longer processing times and risks running into memory limits during
model training with the available VRAM of the available GPUs. Research in this
thesis has addressed these issues in several ways.

5.3 Beyond acute stroke imaging

While the main focus of this thesis has been researching and developing techniques
for the acute stroke imaging setting, the work in this thesis is not necessarily lim-
ited to stroke imaging. 4D data can be found in other medical imaging domains and
even beyond the medical imaging domain. Medical imaging will likely become in-
creasingly dependent on 4D data in general. For example: 4D magnetic resonance
imaging (MRI) and perfusion techniques for other organs. Hence techniques that are
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developed for 4D stroke data likely translate to other organs and imaging modalities
as well. Also, since the available data and the complexity of the data are increasing
for many non-medical applications as well it is expected that techniques for dealing
with high dimensional 4D data will become increasingly important for non-medical
deep learning applications. In particular two points should be highlighted: ways to
efficiently (quickly) extract relevant patterns from high dimensional data and ways to
reduce the memory footprint during network training.

Chapter 2 and Chapter 3 deal with how to extract relevant patterns directly from
4D data without performing any data reduction techniques beforehand. Working di-
rectly with 4D data generally makes the learning process more difficult and more
time-consuming. However, an important benefit of this practice would be that the
presented model can learn what data is relevant and/or could learn to perform di-
mensionality reduction on its own, preventing human-engineered biases. In the fu-
ture, more research could focus on deep learning architectures for dealing with high-
dimensional data as finding common deep learning techniques could be beneficial
for many current and future applications.

Chapter 2 presents an optimized deep-learning method to segment white matter,
gray matter, cerebrospinal fluid, and the vasculature for a whole brain 4D-CTA scan
in 5 minutes on a GPU. Besides enabling the segmentation of essential functional
brain areas, the model can learn relevant features directly from the 4D data instead
of relying on manually derived 3D feature images, like a weighted temporal average
(WTA) or weighted temporal variance (WTV). The presented model also shows better
performance than the currently established state-of-the-art models. The method also
should be able to produce better segmentations for the white matter and gray mat-
ter than can be achieved on a single CTA acquisition, since the additional dynamic
information can be used to better delineate the vessels from the other functional
structures. The model is also not limited to application to 4D-CTA scans and could
be applied to other scans and imaging domains as well, although model retraining
would be necessary.

In Chapter 3 a deep learning method using 4D spatiotemporal convolutional
LSTM is presented that allows reconstructing a 3D NCCT scan from a 4D-CTA scan.
The model proves useful to investigate the utility and information contained within
the 4D-CTA with respect to NCCT and CTA scans. While it seems likely that a CTA
could potentially be replaced with a 4D-CTA acquisition, since it essentially contains
almost the same information, it isn’t commonly thought that an NCCT could poten-
tially also be replaced by a 4D-CTA acquisition. However, the results of the model
after having trained on several sets of coregistered NCCT / 4D-CTA pairs, show that
this actually might be possible. If carefully evaluated, the stroke workup could po-
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tentially be simplified by replacing the NCCT and CTA scans with a single 4D-CTA
acquisition and deriving all the relevant information directly from the 4D-CTA using
similar methods, reducing costs and reducing patient exposure to ionizing radiation.
Yet, the big drawback is that this goes against standard practice.

In Chapter 4 a way to reduce the memory footprint during neural network train-
ing was investigated. Memory requirements for neural network training, especially
for high dimensional data like 4D, can be quite steep because the backward pass
requires retaining the activations for each of its computations in memory. The con-
sequence of this is that usually, some compromises have to be made by the deep
learning practitioner regarding the network size, training speed, and target hardware
during network design to deal with these constraints. In general memory footprint re-
duction techniques for deep learning network training (and inference as well) will be
very helpful in making deep learning more practical and less of a burden on hardware
and the environment.

For the works from Chapter 2 and Chapter 3 it should be noted that in both
cases the maximum of 12 GB VRAM on a GPU, the ones available at the time of this
research, used to train the models was quickly reached due to the large data size
of the 4D-CTA data. Having practical memory limitations during model training can
severely limit the possibilities of experimentation and/or limit the spatial or temporal
contextual information given to a model. Thus, it became apparent that finding a way
to reduce memory requirements during training would be important for deep learning
practitioners. Reducing memory requirements will allow for larger models, process-
ing larger inputs, and reducing the required technical workarounds and skills from
the practitioner. Hence, in Chapter 4 a deep learning framework implemented in Py-
Torch for allowing memory-efficient invertible operations was proposed. The PyTorch
framework allows to wrap arbitrary invertible operations and renders them memory
efficient, by discarding the activations during the forward pass of the training and
recomputing them from the output during the backward pass using the inverse of the
deep learning operation. Subsequently, largely based on the work from Gomez et
al.'®, using so-called coupling operations, arbitrary non-invertible operations could
be converted to invertible operations to render them memory efficient in the same
way. We have made the software libraries created during this research freely avail-
able with a permissive open-source license, allowing others to use and build upon
these ideas.
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5.4 Future research

The work in this thesis provides a basis to further investigate and develop algorithms
for the analysis of 4D-CTA. The methods from Chapter 2 and Chapter 3 can be
used to analyze 4D data directly, but should be further validated on larger datasets
and on more cases including pathologies and foreign objects. Especially the work
from Chapter 3 should be extended and investigated using an observer study to
find out the quality of the reconstructed NCCT with respect to a conventional NCCT.
The MemCNN framework from Chapter 4 offers many directions for research into
memory savings and invertible operations within deep learning and offers several
opportunities for creating memory-efficient deep learning models.

The segmentation method from Chapter 2 could be further improved by using
additional training data and including tissue classes for pathology or foreign objects,
such as core, penumbra, bleedings, clips, drains, calcifications, and bone if suffi-
ciently annotated data for each class is collected. Also, scans from different scanners
and acquisition protocols should be added to the training set. A remaining challenge
here is the acquisition of a proper reference standard, which is validated by several
radiologists to achieve a consensus among the tissue type labels. The segmentation
model should be compared with other newer state-of-the-art segmentation frame-
works like nnU-Net'" to further validate the found architectural improvements and
training method. Finally, since the model is not limited to the segmentation of struc-
tures in 4D-CTA only, it can be applied in other domains to test its segmentation
performance against other methods.

The technical work from Chapter 3 should be further tested in an observer study
to verify the usability of the method for clinical practice, which could move the field
towards one-step stroke image analysis. Experienced radiologists could grade the
quality of a regular NCCT and the reconstructed NCCT scans to see if the latter could
be used as a replacement by evaluating, for example, diagnostic relevant information
and/or image quality. Early experiments that we carried out in our group showed a
potential problem with the reconstructed areas around the cerebellum, which might
be due to the reduced individual quality of each timepoint within the 4D-CTA, but is
typically an important area within an NCCT to inspect. Another important factor is
that a typical hemorrhage is an important bright-appearing phenomenon to look for
on NCCT scans. However, the reconstructed NCCT partly focuses on the suppres-
sion of bright-appearing vasculature, hence proper validation and potential additional
training should be performed to ensure proper behavior. Potentially, these limitations
could be addressed by collecting a much larger and more diverse set of training data.
New training data in the form of NCCT and 4D-CTA images can also be acquired us-
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ing modern reconstruction kernels for CT, which in turn should result in better-quality
reconstructions after model training.

The convolutional LSTM model used in Chapter 3 provides an interesting direc-
tion for dealing with the spatiotemporal dynamic nature of 4D-CTA data. The convo-
lutional component of the model is typically efficient in dealing with spatial features,
whereas the recurrent part of the model is typically used to deal with temporal fea-
tures. In our work, we fixed the number of timepoints to 19 as this was common
protocol within our hospital, but the model is not limited to a fixed number of time-
points and could help determine the necessary number of acquisitions required for
optimal signal retrieval from a 4D-CTA.

A lot of factors about C-LSTM models require more research. For example, how
to best train and optimize them, how to design them best, and for which applica-
tions they are most suited. Furthermore, since the model is not as popular as con-
ventional CNNs, a broad range of applications using the model are still unexplored.
Subsequent research can focus on applying such models for 3D image analysis, pro-
cessing 2D slices using the recurrent mechanism to process the slices sequentially.
Here lies a great potential for increasing the receptive field of the model network
along the axis chosen for recursion. Also, the model should have the capacity to cap-
ture long-term dependencies in the data better, which could be helpful for ordered
segmentation labeling tasks. Processing 3D images in this manner could also help to
reduce memory requirements during training''”, by for example checkpointing''® var-
ious steps within the recurrent mechanism. Finally, in recent years, the transformer
model %2 has become successful and popular for dealing with sequential data like
next token prediction. It would be interesting to investigate if a similar model can
be adapted and or extended to handle medical images with temporal or sequential
components.

The freely available MemCNN PyTorch framework from Chapter 4 provides a
simple interface for creating memory-efficient operations for model network training
and has shown a few successful applications '3%'3!, The applied work with MemCNN
highlights the applicability of invertible operations for generative adversarial deep
learning networks for domain adaptation in particular, due to their built-in invertible
nature. However, several factors limit the usability of the framework. First of all,
making an operation invertible imposes restrictions on the input and output size of
an operation: the input and output tensors have to possess the same number of
elements. Secondly, the coupling operations alter the output signal significantly to
ensure invertibility, which hinders the interpretability of the operations. Finally, within
the domain of medical image analysis where segmentation models with many short-
cut connections are popular (e.g., U-Net%') the applicability of invertible operations
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is limited since the interconnected nature of those architectures limits the number
of activations that can be rendered memory-efficient (i.e., it works best if all opera-
tions can be coupled in series). Hence, more research is needed to apply invertible
operations for popular models like U-Net and to investigate if it is possible to make
operations invertible that do not have the same number of elements in the input
and output. In conclusion, more work is needed to further understand and interpret
invertible operations in the context of deep learning.

Further advances in memory optimizing methods and the availability of better and
more specialized hardware will allow training on bigger datasets and data. This is a
nice prospect as the number of 4D-CTA scans acquired keeps growing, and with the
addition of even higher resolution scanners, each 4D-CTA scan itself keeps growing
in size. While hardware is improving and data size is growing, we are faced with the
continuous challenge of collecting good-quality reference standards for all the avail-
able data. Here we can take advantage of what we have already built. Pre-trained
models like the one from Chapter 2 can be used to weakly label existing data, which
can be manually corrected by (preferably multiple) expert readers. The newly labeled
data can subsequently be used to retrain or tune the models. However, organizing
and implementing such efforts in a multi-center setting remains a challenge.

5.5 Concluding remarks

In this thesis, | have presented various deep-learning methods for the analysis of
4D-CTA scans for acute stroke imaging. Furthermore, | provide a deep-learning Py-
Torch framework called MemCNN for deep-learning practitioners to reduce memory
requirements during neural network training. The methods and tools presented in
this thesis can serve as a basis for subsequent research and for the development of
better methods for 4D-CTA in the context of stroke image analysis.
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Summary

Acute stroke is the second leading cause of death and is the third leading cause of
disability worldwide. Stroke is caused by a disturbance of blood flow in the brain
which can result in a loss of brain function. Hemorrhagic stroke refers to the rup-
ture of blood vessels in the brain, which comprises approximately 13% of all stroke
cases?. Ischemic stroke is caused by the blockage of blood vessels by a thrombus,
usually in the form of a blood clot, which accounts for approximately 87% of all stroke
cases?. Survivors of stroke often suffer from various complications both neurological
and physical and it is estimated that 6.5 million people will die as a result of stroke
each year’.

Computed tomography (CT) is the primary imaging modality for quick assess-
ment of cerebral conditions due to its widespread availability, low cost, and high
speed*. A non-contrast CT (NCCT) scan can provide a quick visualization of the
brain areas and help to identify potential pathology like hemorrhagic strokes. Other
techniques like CT angiography (CTA), which involves the injection of a radiocon-
trast agent briefly before making the scan, allow to visualize and assess the cerebral
vasculature. Four-dimensional CTA (4D-CTA) encompasses multiple scans in rapid
succession over time while still relying on the injection of a radiocontrast agent. This
results in a dynamic sequence of 3D images, which allow visualization and assess-
ment of cerebral blood flow and volume in patients suspected of acute stroke.

Patients suffering from a stroke require fast diagnosis and treatment to minimize
brain damage and maximize patient outcomes. Hence, because of the quick acquisi-
tion speed, CT is the standard image modality for acute stroke imaging. The first diag-
nostic priority is to differentiate between hemorrhagic and ischemic stroke for which
a non-contrast CT (NCCT) scan is performed. When a hemorrhagic stroke or lesions
can be ruled out, CTA and/or 4D-CTA scans can be taken to identify blood-deprived
areas in the brain and find potential causes and locations of thrombi. 4D-CTA ac-
quisitions contain additional dynamic information over CTA, which makes them an
interesting yet challenging source of information for stroke image analysis.

The amount of work analyzing images carried out by neuroradiologists is getting
increasingly time-consuming and tedious due to an increasing number of patients,
the increase of imaging data, and the increase of data with higher spatial and tem-
poral resolutions. Hence, machine learning methods that can support radiologists,
for example with computer-aided diagnosis (CAD) systems, and automate parts of
the diagnosis are becoming increasingly relevant. In particular deep learning, which
are a set of machine learning methods that allow learning task-related features di-
rectly from data without requiring algorithm developers to explicitly provide or extract
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task-relevant features beforehand.

Deep learning models are data-driven algorithms that have to be optimized for a
certain goal using a training process to perform well on one or more performance
metrics. Deep learning methods are often characterized by requiring a lot of pro-
cessing power and will often demand specialized hardware like graphics processing
units (GPUs) and tensor processing units (TPUs) to perform model inference and
especially model training in a timely manner. For processing large inputs, like the
4D-CTA acquisitions in this thesis, the current state-of-the-art training methods of
deep learning models generally require allocating a lot of memory on the specialized
hardware, which often limits the scope of the deep learning applications and forces
practitioners to make concessions in their approach.

In this thesis, two different deep learning methods are presented for the analysis
of 4D-CTA images. The first method is focused on brain tissue segmentation and
the second is on NCCT reconstruction. Finally, a deep learning framework called
MemCNN is presented which allows for memory-efficient training of deep learning
networks.

Chapter 2 describes a method for 3D segmentation of white matter, gray matter,
cerebrospinal fluid, and cerebral vasculature in 4C CT images. A modified U-Net
deep learning architecture was trained and validated on 42 4D-CTA acquisitions of
the brain of patients with suspicion of acute ischemic stroke, for which the data was
annotated by two trained observers using 2D sparse annotations. The model per-
formance was validated on dice coefficient, contour mean distance, and absolute
volume difference. Finally, the performance of the model was estimated on a sep-
arate fully annotated test set of 5 cases by the same observers. The performance
metrics were found to be similar to the average interobserver variability scores and
that it was outperforming the current state-of-the-art. The results showed that the
modifications made to the U-Net contributed to significantly better segmentation per-
formance and that it is possible to learn a state-of-the-art model directly end-to-end
from the 4D data without using intermediate 3D representations like the weighted
temporal average (WTA) and weighted temporal variance (WTV).

Chapter 3 presents a method for performing a 3D non-contrast CT reconstruction
from 4D-CTA data using a stacked bidirectional convolutional LSTM (C-LSTM) net-
work. This method could potentially be used to simplify the imaging workup in acute
stroke resulting in reduced workup time and radiation dose. Several parameteriza-
tions of the C-LSTM network were trained on a set of 17 4D-CTA/NCCT pairs to learn
to derive an NCCT from a 4D-CTA and were subsequently quantitatively evaluated
on a cohort of 16 pairs. The results show that the C-LSTM model clearly outperforms
the baseline and other competitive convolutional neural network methods. The work
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shows good scalability and performance of the method by continued training and test-
ing on an independent dataset which includes pathology of 80 and 83 4D-CTA/NCCT
pairs, respectively. The presented C-LSTM model is, therefore, a promising general
deep-learning approach to learning from high-dimensional spatiotemporal medical
images.

Chapter 4 describes MemCNN, a PyTorch framework that provides tools for in-
vertible deep learning operations. Invertible deep learning operations have recently
been successfully applied to classification problems to reduce memory requirements
during neural network training. The core functionality is implemented as a cus-
tomized backpropagation step that can be used for any invertible PyTorch function
which takes care of memory management. In addition, MemCNN provides a set
of couplings to convert non-invertible operations into invertible operations, such as
convolutions and batch normalization. The presented framework was validated by
reproducing state-of-the-art experiments by comparing classification accuracy and
training time on Cifar-10 and Cifar-100. MemCNN implementations achieved similar
classification accuracy and faster training times while retaining compatibility with the
default backpropagation facilities of PyTorch.

In summary, the methods presented in this thesis form a basis for the further
development of algorithms for the automatic analysis of 4D-CTA in stroke imaging.
The cerebral vasculature and other relevant brain areas can be automatically seg-
mented and labeled, an NCCT can be automatically derived from a 4D-CTA poten-
tially simplifying the stroke workup, and more memory-efficient network training can
be achieved using the presented open-source MemCNN PyTorch framework. Fur-
ther research and developments in this field should lead to more systems and tools
that can ultimately find their way into clinical environments, where they can support
clinical physicians with disease diagnosis and treatment planning.
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De acute beroerte is wereldwijd de twee na grootste oorzaak van overlijden en is de
drie na grootste oorzaak van invaliditeit'. Een beroerte wordt veroorzaakt door een
verstoring van de bloedstroom in de hersenen die kan leiden tot verlies van hersen-
functie. Een hemorragische beroerte is een breuk van de bloedvaten in de hersenen
en komt in ongeveer 13% van alle beroertes voor2. Een ischemische beroerte wordt
veroorzaakt door een verstopping van de bloedvaten, meestal door een bloedprop,
en is verantwoordelijk voor ongeveer 87% van alle beroertes?. Patiénten die een be-
roerte hebben gehad hebben vaak last van verschillende neurologische en fysieke
complicaties. Er wordt geschat dat er elk jaar 6.5 miljoen mensen sterven aan een
beroerte’.

Computertomografie (CT) is de primaire beeldvormingsmodaliteit voor het snel
beoordelen van hersenaandoeningen vanwege de brede inzetbaarheid, de lage kos-
ten, en de hoge snelheid van scannen*. Een standaard CT-scan zonder contrast
(NCCT) geeft een snelle visualizatie van hersengebieden en kan helpen bij het
identificeren van potentiele aandoeningen zoals hemorragische beroertes. Andere
technieken zoals CT-angiografie (CTA), waarbij een injectie met radiocontrastmiddel
wordt gebruikt kort voordat de scan wordt gemaakt, maken het mogelijk om de cere-
brale bloedvaten te visualizeren. Vierdimensionale CTA (4D-CTA) bestaat uit meer-
dere scans die kort na de injectie met radiocontrastmiddel genomen worden. Dit
resulteert in een dynamische sequentie van 3D beelden, die kan helpen bij de visua-
lizatie en kwantificatie van de cerebrale bloedstroom en eventuele perfusiedefecten
bij patiénten met een verdenking op een acute beroerte.

Patiénten met een beroerte hebben een snelle diagnose en behandeling nodig
om zo de hersenschade te beperken met daardoor het beste perspectief op her-
stel. Dankzij de snelle acquisitietijden is CT de standaard beeldvormingsmodaliteit
voor het beoordelen van acute beroertes. De eeste diagnostische prioriteit is om
het verschil tussen een hemorragische en een ischemische beroerte vast te stellen,
waarvoor een CT-scan zonder contrast (NCCT) wordt gemaakt. Als hemorragische
beroerte of andere pathalogische aandoeningen kunnen worden uitgesloten, worden
CTA- en/of 4D-CTA-scans afgenomen om te zien welke hersengebieden een tekort
aan bloedtoevoer hebben en zo potentiéle oorzaken zoals bloedproppen te lokali-
seren. In vergelijking met CTA hebben 4D-CTA scans het bijkomende voordeel dat
ze dynamische informatie vastleggen. Dit maakt de 4D-CTA scan een interessante
maar uitdagende bron van beeldinformatie voor de analyse van beroertes.

De hoeveelheid beelden die de neuroradiologen moeten analyseren neemt toe
door het stijgende aantal patiénten, de toename van beelddata, en de toename van
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beelddata met hogere spatiéle en temporele resoluties. Het is daarom van belang
om meer werk uit handen van de radioloog te nemen en om het werk te versimpelen
door geautomatiseerde ondersteuning te bieden met behulp van computer aided
diagnosis (CAD) systemen en machine learning toepassingen. Deep learning is een
vorm van machine learning die in staat is om taakgerelateerde kenmerken direct
uit de data te leren zonder dat een programmeur deze expliciet meegeeft aan een
algoritme.

Deep learning algoritmes zijn datagebaseerde algoritmes die moeten worden ge-
optimaliseerd voor een bepaald doel door middel van een trainprocedure, zodat ze
goed scoren op één of meer prestatiemetingen. Deep learning algoritmes vereisen
vaak aanzienlijke computerkracht, waardoor deze algoritmes meestal op gespeciali-
seerde hardware zoals graphic processing units (GPUs) en tensor processing units
(TPUs) worden uitgevoerd zodat inferentie en vooral de trainprocedures enigzins
snel verlopen. De state-of-the-art deep learning algoritmes vragen ook veel geheu-
gen voor het verwerken van grote invoer, zoals de 4D-CTA beelden in dit proefschrift.
Dit beperkt de omvang van de mogelijke deep learning applicaties en dwingt de al-
goritmemakers tot concessies.

In dit proefschrift worden twee verschillende deep learning methodes beschreven
voor de analyse van 4D-CTA-beelden. De eerste methode is gericht op de segmen-
tatie van beroertegerelateerde hersengebieden en de tweede methode is gericht op
het reconstrueren van een NCCT-beeld uit een 4D-CTA-hersenscan. Daarnaast pre-
senteren we in dit proefschrift een open-source deep learning PyTorch framework
genaamd MemCNN, waarmee geheugenefficiénte deep learning netwerken kunnen
worden gemaakt en getraind.

Hoofdstuk 2 beschrijft een deep learning methode voor het segmenteren van de
witte materie, de grijze materie, de cerebrospinale vloeistof, en het hersenvatenstel-
sel op 4D-CTA-beelden. Hiervoor werd een gemodificeerd 3D U-Net deep learning
netwerk getraind en gevalideerd op 42 4D-CTA-hersenscans van patiénten met een
verdenking op een acute ischemische beroerte. De data werden geannoteerd door
twee getrainde beoordelaars (observers) door gebruik te maken van één enkele 2D
plak per scan. Het model werd geévalueerd met behulp van dice coefficient, contour
mean distance, en absolute volume difference als uitkomstmaten en werd boven-
dien geévalueerd op een aparte volledig geannoteerde testset van 5 hersenscans.
De uitkomstmaten bleken vergelijkbaar met de gemiddelde verschillen tussen de ob-
servers en waren beter dan de huidige state-of-the-art. De resultaten lieten verder
zien dat de aanpassingen aan het 3D U-Net tot significant betere segmentaties lei-
den en dat het mogelijk is om het model direct uit 4D data te leren zonder afgeleide
3D beelden zoals de weighted temporal average (WTA) en de weighted temporal
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variance (WTV) te gebruiken.

Hoofdstuk 3 toont een methode om een 3D CT hersenscan zonder contrast te re-
construeren uit een 4D-CTA-hersenscan door gebruik te maken van meerdere gesta-
pelde bidirectional convolutional LSTM (C-LSTM) deep learning netwerken. De ge-
presenteerde methode kan in potentie gebruikt worden om de huidige richtlijnen voor
beeldanalyse op het gebied van beroerte bij te stellen en zo een versimpeling, reduc-
tie van doorlooptijd, en reductie van toegediende straling te realiseren. Verschillende
C-LSTM netwerken werden getraind op 17 4D-CTA/NCCT-paren en werden vervol-
gens kwantitatief en kwalitatief geévalueerd op een aparte cohort van 16 paren. De
resultaten lieten zien dat het C-LSTM-model betere resultaten behaalt dan competi-
tieve deep learning methodes. Verder lieten we zien dat de methode ook kan worden
opgeschaald naar grotere datasets met pathologie, door de getrainde methode ver-
der te trainen op een aparte onafhankelijke dataset met 80 4D-CTA/NCCT-paren en
door dit te evaluaten op 83 paren. De gepresenteerde deep-learning methode lijkt
dan ook veelbelovend om toe te passen op hoogdimensionale spatiotemporele me-
dische afbeeldingen.

Hoofdstuk 4 beschrijft MemCNN: een open-source PyTorch framework voor het
maken en trainen van inverteerbare deep learning netwerken. Inverteerbare deep
learning netwerken zijn recentelijk met succes toegepast op classificatieproblemen
om gedurende het trainen van neurale netwerken geheugenvereisten te verminde-
ren. De kernfunctionaliteit van MemCNN is een aangepaste geheugenefficiénte
backpropagationstap die werkt op willekeurige inverteerbare PyTorch functies die
het geheugengebruik reguleert. Daarnaast biedt MemCNN een tweetal koppelingen
(in de vorm van PyTorch functies) om niet-inverteerbare operaties om te zetten in in-
verteerbare operaties, zoals convoluties en batch normalisatie. Het raamwerk is ge-
valideerd door een aantal state-of-the-art experimenten te reproduceren op de Cifar-
10 en Cifar-100 datasets en door de classificatienauwkeurigheid en de benodigde
trainingstijd te beoordelen. De implementaties die gebruik maakten van MemCNN
behaalden een vergelijkbare classificatienauwkeurigheid en snellere trainingstijden.
Doordat MemCNN gebruikt kan worden met de standaard backpropagation van Py-
Torch, is het makkelijk te gebruiken en toe te passen voor bestaande neurale netwer-
ken.

De gepresenteerde methodes in dit proefschrift vormen een basis voor de verdere
ontwikkeling van algoritmes voor de automatische analyse van 4D-CTA-hersenscans
voor beroertes. Het hersenvatenstelsel en andere relevante hersenstructuren kun-
nen automatisch worden gesegmenteerd en gelabeled, een NCCT kan automatisch
worden berekend van een 4D-CTA-hersenscan wat mogelijk kan leiden tot vereen-
voudiging van de beroertebeeldvormingsrichtlijnen, en deep learning netwerken kun-
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nen op een geheugenefficiénte wijze worden getraind met behulp van de open-
source MemCNN PyTorch framework. Verder onderzoek en ontwikkelingen op dit
gebied zullen leiden tot het maken van systemen die uiteindelijk hun weg zullen vin-
den in de klinische werkomgeving waar ze de artsen kunnen helpen met het stellen
van nauwkeurige diagnoses en het inschatten van prognoses.
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Data management

All the primary and secondary data obtained during my PhD at the Radboud univer-
sity medical center (Radboudumc) have been captured as anonymized data archives
which are centrally stored and backed up daily on the local Radboudumc server. All
data archives are accessible by the associated senior staff members. For each pub-
lished article, the source code, package dependencies, and additional files such as
method parameters are compiled and stored in specialized containers that can be
run on local and cloud-based hardware. This ensures that the published method
can be used to reproduce all results or be used on previously unseen data. All
project source code and documentation, including an in-depth description of the ex-
periments performed, is backed up using a secure cloud-based service with version
control. Our research group provides a platform for grand challenges in medical
image analysis which allows other researchers to easily compare the performance
of their algorithms using an automated evaluation of a dataset corresponding to a
publication. All aforementioned practices adhere to the FAIR data principles.
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PhD portfolio

Name PhD candidate: S.C. van de Leemput

Department: Radiology and Nuclear Medicine . X
Graduate School: Radboud Institute for Health Sciences Institute for Health Sciences
PhD period: 01-08-2015 - 01-08-2019 Radboudu m C
Promotors: Prof. dr. M. Prokop

Prof. dr. ir. B. van Ginneken
Copromotor: Dr. ir. R. Manniesing

| Years) | ECTS

Training activities

a) Courses & Workshops

- Scientific Integrity 2018 1.0
- Scientific Writing for PhD Candidates 2016 3.0
- Deep Learning 101 Workshop 2016 3.0
- RIHS introduction course for PhD students 2016 1.0
- NFBIA Front End Vision 2015 6.0
- NFBIA Summer School 2015 1.5
- General introduction day Radboudumc 2015 0.3
b) Seminars & lectures

- NFBIA symposium 2017 0.3
- Annual DIAG-FME symposium 2016 1.0
c) Symposia & congresses

- NeurIPS Conference on Neural Information Processing Systemst 2018 3.0
- MIDL International Conference on Medical Imaging with Deep Learningf 2018 2.0
- ICLR International Conference on Learning Representationsi 2018 3.0
- ECR European Congress of Radiology 1 2017 3.0
d) Other

- Weekly research meeting 2015-2019 7.0
- Weekly DIAG discussion hour 2015-2019 7.0
Total 42.1

tIndicates a poster and an oral presentation
fIndicates a poster presentation
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