
guarantees by construction
Types for deadlock and leak free concurrency • separation logics
for verified message passing • general and efficient coalgebraic
automata minimization • paradox-free probabilistic programming.

jules jacobs

Author: Jules Jacobs
Title: Guarantees by Construction

Radboud Dissertations Series
ISSN: 2950-2772 (Online); 2950-2780 (Print)

Published by RADBOUD UNIVERSITY PRESS
Postbus 9100, 6500 HA Nijmegen, The Netherlands
www.radbouduniversitypress.nl

Cover: Proefschrift AIO
Printing: DPN Rikken/Pumbo

ISBN: 9789493296541
DOI: 10.54195/9789493296541
Free download at: www.boekenbestellen.nl/radboud-university-press/dissertations

© 2024 Jules Jacobs

This is an Open Access book published under the terms of Creative Commons
Attribution- Noncommercial-NoDerivatives International license (CC BY-NC-ND
4.0). This license allows reusers to copy and distribute the material in any medium or
format in unadapted form only, for noncommercial purposes only, and only so long
as attribution is given to the creator, see http://creativecommons.org/licenses/by-
nc-nd/4.0/.

2

Author: Jules Jacobs
Title: Guarantees by Construction

Radboud Dissertations Series
ISSN: 2950-2772 (Online); 2950-2780 (Print)

Published by RADBOUD UNIVERSITY PRESS
Postbus 9100, 6500 HA Nijmegen, The Netherlands
www.radbouduniversitypress.nl

Cover: Proefschrift AIO
Printing: DPN Rikken/Pumbo

ISBN: 9789493296541
DOI: 10.54195/9789493296541
Free download at: www.boekenbestellen.nl/radboud-university-press/dissertations

© 2024 Jules Jacobs

This is an Open Access book published under the terms of Creative Commons
Attribution- Noncommercial-NoDerivatives International license (CC BY-NC-ND
4.0). This license allows reusers to copy and distribute the material in any medium or
format in unadapted form only, for noncommercial purposes only, and only so long
as attribution is given to the creator, see http://creativecommons.org/licenses/by-
nc-nd/4.0/.

2

Guarantees by Construction

Proefschrift

ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnicus prof. dr. J.M. Sanders,
volgens besluit van het college voor promoties

in het openbaar te verdedigen op maandag 24 juni 2024
om 16:30 uur precies

door

Jules Jacobs
geboren op 17 oktober 1989

te Nijmegen

3

Promotoren
Dr. Robbert Krebbers
Prof. dr. Herman Geuvers

Copromotor
Dr. Stephanie Balzer (Carnegie Mellon University, Verenigde Staten)

Manuscriptcomissie
Prof. dr. Frits Vaandrager (voorzitter)
Prof. dr. Silvia Ghilezan (University of Novi Sad, Servië)
Dr. Steven Holtzen (Northeastern University, Verenigde Staten)
Prof. dr. Ralf Jung (ETH Zürich, Zwitserland)
Prof. dr. Vasco T. Vasconcelos (Universidade de Lisboa, Portugal)

4

Promotoren
Dr. Robbert Krebbers
Prof. dr. Herman Geuvers

Copromotor
Dr. Stephanie Balzer (Carnegie Mellon University, Verenigde Staten)

Manuscriptcomissie
Prof. dr. Frits Vaandrager (voorzitter)
Prof. dr. Silvia Ghilezan (University of Novi Sad, Servië)
Dr. Steven Holtzen (Northeastern University, Verenigde Staten)
Prof. dr. Ralf Jung (ETH Zürich, Zwitserland)
Prof. dr. Vasco T. Vasconcelos (Universidade de Lisboa, Portugal)

4

Acknowledgments

First and foremost, I thank Robbert Krebbers and Stephanie Balzer. Without your
support, both technical and non-technical, this thesis would not have been possible.
My co-authors Jonas Kastberg Hinrichsen and Thorsten Wißmann helped develop
the material in this thesis. It was a pleasure to collaborate with you, and I hope to
do so again in the future.

I also thank Herman Geuvers, for his encouragement and helping me navigate
the academic world, Eelco Visser, for his research that inspired me to start a PhD,
Arjen Rouvoet, for helping me take a step back from daily research and think
about the bigger picture, and for his bouldering lessons, Ike Mulder, for the helpful
whiteboard discussions and for being a great office mate, Sriram Sankaranarayanan,
for his guidance in support of my first paper. During my PhD, I met many other
wonderful people: Dongho Lee, Cas van der Rest, Anton Golov, Jorge Pérez, Bas
van den Heuvel, Dan Frumin, Luís Caires, Pedro Rocha, Fabrizio Montesi, Bernardo
Toninho, Hans-Peter Deifel, Stefan Milius, Jurriaan Rot, Hubert Garavel, Sebastian
Junges, Marck van der Vegt, Joost-Pieter Katoen, Ahmad Salim Al-Sibahi, Sam Staton,
Christian Weilbach, Alex Lew, and many others. Some of you I met in person, others
only online, due to COVID. I thank you all for the interesting discussions, the fun
times, the feedback, and support.

I also thank the anonymous reviewers of my papers, and the members of the
manuscript committee for their time and effort in reviewing this thesis. Big thanks to
Frits Vaandrager, Ralf Jung, Silvia Ghilezan, Steven Holtzen, and Vasco Vasconcelos.
I am particularly grateful to Ralf Jung for going above and beyond in providing very
detailed feedback and suggestions.

Last but not least, I thank Jo, whose encouragement resulted in me starting a PhD,
Firat, for his unwavering support through thick and thin, my mom and dad, for
their unconditional love, Kamiel and Jef, for being awesome brothers, and Noah,
for being the cutest nephew. I love you all, and I look forward to seeing you in the
Netherlands soon.

5

Contents

Introduction
Introduction 12

i Types for deadlock and leak free concurrency
1 Connectivity Graphs: A Method for Proving Deadlock Freedom Based on

Separation Logic 32
1.1 Introduction . 32
1.2 Language and Operational Semantics 38
1.3 Key Ideas . 42

1.3.1 Generalizing The Progress and Preservation Method 43
1.3.2 Generalizing Heap Typings to Connectivity Graphs 44
1.3.3 Run-Time Typing Judgment Using Separation Logic 46
1.3.4 Well-Formedness of Configurations Using Connectivity Graphs 49
1.3.5 Proving Preservation Using Local Graph Transformations . . . 50
1.3.6 Proving Progress Using Waiting Induction 53

1.4 Connectivity Graphs and Waiting Induction in Detail 55
1.5 Local Graph Transformation Rules in Separation Logic 58
1.6 Extensions . 61

1.6.1 Unrestricted Types . 61
1.6.2 Equi-Recursive Types . 62
1.6.3 Partial Deadlock and Memory Leak Freedom via Reachability 63

1.7 Mechanization in Coq . 66
1.8 Related Work . 67
1.9 Future Work . 71

2 Higher-Order Leak and Deadlock Free Locks 72
2.1 Introduction . 72
2.2 Key Ideas and Examples . 76

2.2.1 Invariant for Leak and Deadlock Freedom 76
2.2.2 The Lock⟨τ a

b
⟩ Data Type and its Operations 79

2.2.3 Examples . 81
2.2.4 Sharing Multiple Locks with Lock Orders 86

2.3 The λlock Language . 86
2.3.1 Encoding Session-Typed Channels 90

2.4 The Deadlock and Leak Freedom Theorems 91
2.5 An Intuitive Description of the Proofs 95
2.6 The λlock++ Language: Sharing Multiple Locks with Lock Groups . . . 98

2.6.1 Examples of Using Lock Orders 99
2.6.2 References to Lock Groups . 102

6

Contents

Introduction
Introduction 12

i Types for deadlock and leak free concurrency
1 Connectivity Graphs: A Method for Proving Deadlock Freedom Based on

Separation Logic 32
1.1 Introduction . 32
1.2 Language and Operational Semantics 38
1.3 Key Ideas . 42

1.3.1 Generalizing The Progress and Preservation Method 43
1.3.2 Generalizing Heap Typings to Connectivity Graphs 44
1.3.3 Run-Time Typing Judgment Using Separation Logic 46
1.3.4 Well-Formedness of Configurations Using Connectivity Graphs 49
1.3.5 Proving Preservation Using Local Graph Transformations . . . 50
1.3.6 Proving Progress Using Waiting Induction 53

1.4 Connectivity Graphs and Waiting Induction in Detail 55
1.5 Local Graph Transformation Rules in Separation Logic 58
1.6 Extensions . 61

1.6.1 Unrestricted Types . 61
1.6.2 Equi-Recursive Types . 62
1.6.3 Partial Deadlock and Memory Leak Freedom via Reachability 63

1.7 Mechanization in Coq . 66
1.8 Related Work . 67
1.9 Future Work . 71

2 Higher-Order Leak and Deadlock Free Locks 72
2.1 Introduction . 72
2.2 Key Ideas and Examples . 76

2.2.1 Invariant for Leak and Deadlock Freedom 76
2.2.2 The Lock⟨τ a

b
⟩ Data Type and its Operations 79

2.2.3 Examples . 81
2.2.4 Sharing Multiple Locks with Lock Orders 86

2.3 The λlock Language . 86
2.3.1 Encoding Session-Typed Channels 90

2.4 The Deadlock and Leak Freedom Theorems 91
2.5 An Intuitive Description of the Proofs 95
2.6 The λlock++ Language: Sharing Multiple Locks with Lock Groups . . . 98

2.6.1 Examples of Using Lock Orders 99
2.6.2 References to Lock Groups . 102

6

contents

2.6.3 The Invariant for Lock Groups 102
2.6.4 Reachability for Lock Groups . 103

2.7 Mechanized Proofs . 104
2.8 Related Work . 105
2.9 Limitations and Future Work . 108
2.10 Conclusion . 109

3 Multiparty GV: Functional Multiparty Session Types with Certified
Deadlock Freedom 110
3.1 Introduction . 110
3.2 MPGV by Example . 113

3.2.1 Global and Local Types . 113
3.2.2 Combined Session and Channel Initialization 114
3.2.3 Interleaving and First-Class Endpoints 115
3.2.4 Participant Redirecting . 117
3.2.5 Choice and Recursive Session Types 117
3.2.6 Two Buyer Protocol . 118
3.2.7 Three Buyer Protocol and Session Delegation 119
3.2.8 Endpoints in Data Structures . 121
3.2.9 Deadlock Freedom of MPGV . 122

3.3 The Semantics of MPGV . 122
3.3.1 Syntax and Operational Semantics 122
3.3.2 Static Type System . 125

3.4 Translation from Binary to Multiparty 128
3.5 The Deadlock and Leak Freedom Theorem 130
3.6 Extension: Consistency without Global Types 132

3.6.1 Defining Consistency without Global Types 132
3.6.2 Global Types Imply Consistency 134

3.7 Proof of Deadlock and Leak Freedom 136
3.7.1 Runtime Type System . 137
3.7.2 The Buffer Invariant . 138
3.7.3 The Configuration Invariant . 139
3.7.4 Initialization and Preservation of the Invariant 140
3.7.5 Proof of the Reachability Theorem 142

3.8 Mechanization . 143
3.9 Related Work . 144

4 A Self-Dual Distillation of Session Types 149
4.1 Introduction . 149
4.2 The λ̄ language by example . 150
4.3 The λ̄ type system and operational semantics 155

4.3.1 Operational semantics . 156
4.4 Encoding session types in λ̄ . 158

4.4.1 Simulation of GV’s semantics with λ̄’s semantics 162
4.4.2 Summary . 163

7

contents

4.5 Deadlock freedom, leak freedom, and global progress 163
4.5.1 Global progress . 163
4.5.2 Structure of the global progress proof 165
4.5.3 Strengthened deadlock and memory leak freedom 167

4.6 Extending λ̄ with unrestricted and recursive types 169
4.7 Mechanization . 171
4.8 Related work . 172
4.9 Concluding remarks . 174

ii Separation Logics for Message Passing
5 Dependent Session Protocols in Separation Logic from First Principles 176

5.1 Introduction . 176
5.2 Layered Implementation of Channels 181

5.2.1 Base Language . 181
5.2.2 One-Shot Channels . 182
5.2.3 Session Channels . 183
5.2.4 Imperative Channels . 185
5.2.5 Emerging Linked List Buffers . 185

5.3 Layered Specifications and Verification 187
5.3.1 The Iris Separation Logic . 188
5.3.2 One-Shot Channels . 188
5.3.3 Subprotocols . 193
5.3.4 Session Channels . 195
5.3.5 Imperative Channels . 198

5.4 Guarded Recursion . 200
5.5 Self-Dual End . 202

5.5.1 Symmetric Close . 202
5.5.2 Send-Close . 203

5.6 Other Supported Features . 205
5.7 Mechanization . 206
5.8 Related Work . 206

6 Deadlock-Free Separation Logic: Linearity Yields Progress for Dependent
Higher-Order Message Passing 210
6.1 Introduction . 210
6.2 Linear Actris By Example . 215
6.3 The Proof Rules of Linear Actris . 220

6.3.1 Basic Separation Logic . 220
6.3.2 Channels and Protocols . 223
6.3.3 Subprotocols . 224
6.3.4 Guarded Recursive Protocols and Choice 225

6.4 From Multi-Shot to One-Shot Channels 226
6.4.1 Primitive One-Shot Channels . 226
6.4.2 Primitive One-Shot Logic . 226

8

contents

4.5 Deadlock freedom, leak freedom, and global progress 163
4.5.1 Global progress . 163
4.5.2 Structure of the global progress proof 165
4.5.3 Strengthened deadlock and memory leak freedom 167

4.6 Extending λ̄ with unrestricted and recursive types 169
4.7 Mechanization . 171
4.8 Related work . 172
4.9 Concluding remarks . 174

ii Separation Logics for Message Passing
5 Dependent Session Protocols in Separation Logic from First Principles 176

5.1 Introduction . 176
5.2 Layered Implementation of Channels 181

5.2.1 Base Language . 181
5.2.2 One-Shot Channels . 182
5.2.3 Session Channels . 183
5.2.4 Imperative Channels . 185
5.2.5 Emerging Linked List Buffers . 185

5.3 Layered Specifications and Verification 187
5.3.1 The Iris Separation Logic . 188
5.3.2 One-Shot Channels . 188
5.3.3 Subprotocols . 193
5.3.4 Session Channels . 195
5.3.5 Imperative Channels . 198

5.4 Guarded Recursion . 200
5.5 Self-Dual End . 202

5.5.1 Symmetric Close . 202
5.5.2 Send-Close . 203

5.6 Other Supported Features . 205
5.7 Mechanization . 206
5.8 Related Work . 206

6 Deadlock-Free Separation Logic: Linearity Yields Progress for Dependent
Higher-Order Message Passing 210
6.1 Introduction . 210
6.2 Linear Actris By Example . 215
6.3 The Proof Rules of Linear Actris . 220

6.3.1 Basic Separation Logic . 220
6.3.2 Channels and Protocols . 223
6.3.3 Subprotocols . 224
6.3.4 Guarded Recursive Protocols and Choice 225

6.4 From Multi-Shot to One-Shot Channels 226
6.4.1 Primitive One-Shot Channels . 226
6.4.2 Primitive One-Shot Logic . 226

8

contents

6.4.3 Encoding of Multi-Shot Channels 227
6.5 Why Linear Actris is Deadlock Free: Connectivity Graphs 228

6.5.1 General Approach . 229
6.5.2 The Invariant Properties . 230
6.5.3 Preserving the Invariant . 233

6.6 Formal Adequacy Proof . 234
6.6.1 The Step-Indexed Model of Propositions 235
6.6.2 The Invariant . 235
6.6.3 Weakest Preconditions . 236
6.6.4 Weakest Precondition Rules and Adequacy 238

6.7 Semantic Typing . 238
6.7.1 Type System . 238
6.7.2 From Semantic Type Soundness to Syntactic Type Soundness . 240

6.8 Related and Future Work . 241
6.8.1 Proof Methods for Deadlock Freedom 241
6.8.2 Comparison with Actris . 242
6.8.3 Mechanization of Session Types 243
6.8.4 Verification of Message-Passing Implementations 243
6.8.5 Linear Models of Separation Logic 244

iii Paradox-free probabilistic programming
7 Paradoxes of Probabilistic Programming 246

7.1 Introduction . 246
7.2 On the Event that Observe Conditions On 251
7.3 Three Types of Paradoxes . 254

7.3.1 Paradox of Type 1: Different Variables Observed in Different
Control Flow Paths . 254

7.3.2 Paradox of Type 2: Different Number of Observes in Different
Control Flow Paths . 256

7.3.3 Paradox of Type 3: Non-Linear Parameter Transformations . . 258
7.4 Avoiding Events of Measure Zero with Intervals 259

7.4.1 Conditioning on Measure Zero Events as a Limit of Positive
Measure Events . 260

7.5 Using Infinitesimal Numbers for Measure-Zero Observations 262
7.5.1 Intervals of Infinitesimal Width Make Paradoxes Disappear . . 266
7.5.2 On the Meaning of “Soft Conditioning” 268
7.5.3 Importance Sampling with Infinitesimal Probabilities 270
7.5.4 Observe on Points and on Intervals 271
7.5.5 Parameter Transformations as a Language Feature 271

7.6 Implementation in Julia . 275
7.7 Conclusion & Future Work . 276

9

contents

iv General and efficient automata minimization
8 Fast Coalgebraic Bisimilarity Minimization 278

8.1 Introduction . 278
8.2 Fast Coalgebraic Bisimilarity Minimization in a Nutshell 281

8.2.1 Behavioral Equivalence of States in F-automata, Generically . . 283
8.2.2 Minimizing F-automata, Generically: The Naive Algorithm . . 284
8.2.3 The Challenge: A Generic and Efficient Algorithm 286
8.2.4 Hopcroft’s Trick: The Key to Efficient Minimization 287
8.2.5 A Sketch of our Generic and Efficient Algorithm 288

8.3 Coalgebra and Bisimilarity, Formally . 290
8.4 Coalgebraic Partition Refinement . 292

8.4.1 Representing Abstract Data . 292
8.4.2 The Naive Method Coalgebraically 295
8.4.3 The Refinable Partition Data Structure 295
8.4.4 Optimized Algorithm . 299
8.4.5 Complexity Analysis . 300
8.4.6 Comparison to Related Work on the Algorithmic Level 301

8.5 Instances . 303
8.5.1 Instances also Supported by CoPaR 303
8.5.2 Instances not Supported by CoPaR 304

8.6 Benchmarks . 305
8.7 Conclusion and Future Work . 307

v Conclusion and Future Work
9 Conclusion and Future Work 312

vi
Bibliography 316
Coq formalization index 337
Research data management 341
Summary 342
Samenvatting 343
Curriculum vitae 344

10

contents

iv General and efficient automata minimization
8 Fast Coalgebraic Bisimilarity Minimization 278

8.1 Introduction . 278
8.2 Fast Coalgebraic Bisimilarity Minimization in a Nutshell 281

8.2.1 Behavioral Equivalence of States in F-automata, Generically . . 283
8.2.2 Minimizing F-automata, Generically: The Naive Algorithm . . 284
8.2.3 The Challenge: A Generic and Efficient Algorithm 286
8.2.4 Hopcroft’s Trick: The Key to Efficient Minimization 287
8.2.5 A Sketch of our Generic and Efficient Algorithm 288

8.3 Coalgebra and Bisimilarity, Formally . 290
8.4 Coalgebraic Partition Refinement . 292

8.4.1 Representing Abstract Data . 292
8.4.2 The Naive Method Coalgebraically 295
8.4.3 The Refinable Partition Data Structure 295
8.4.4 Optimized Algorithm . 299
8.4.5 Complexity Analysis . 300
8.4.6 Comparison to Related Work on the Algorithmic Level 301

8.5 Instances . 303
8.5.1 Instances also Supported by CoPaR 303
8.5.2 Instances not Supported by CoPaR 304

8.6 Benchmarks . 305
8.7 Conclusion and Future Work . 307

v Conclusion and Future Work
9 Conclusion and Future Work 312

vi
Bibliography 316
Coq formalization index 337
Research data management 341
Summary 342
Samenvatting 343
Curriculum vitae 344

10

I N T R O D U C T I O N

11

Introduction

In a world driven by computer systems, the importance of ensuring that these
systems function accurately and reliably cannot be overstated. As these systems
underpin critical infrastructure their failure or malfunction can result in catastrophic
consequences, both economically and in terms of human well-being. Additionally,
with the rise of cyber threats, a minor vulnerability can be exploited to compromise
or disable important systems.

Formal methods aim to improve this situation by providing a rigorous approach to
system design and verification that leans on mathematical reasoning and logic to
describe and ascertain the behavior of systems. Formal methods, at their core, are
driven by the pursuit of guarantees ensuring that systems behave as expected under
all circumstances, thereby providing the confidence and assurance required for their
adoption in various critical sectors. Often, these guarantees are manifested in the
form of theorems or properties that hold true for an algorithm or for a mathematical
model of a computer program.

While establishing full correctness theorems for all software would be ideal, this is
costly and time-consuming. Moreover, it requires a well-defined and unambiguous
per-program specification, which is not always readily available or sufficiently clear,
as the desired behavior of software programs may be difficult to quantify with a
mathematical formula. Moreover, many bugs that arise in practice violate general
properties that are desirable for all programs. For example, Microsoft and the
Chromium team report that 70% of bugs are memory safety violations Thomas
(2019); Chromium (2020).

Consequently, the common thread of this thesis is identifying and guaranteeing
properties that are generally desirable for all programs and do not require a separate
specification for each particular program. We focus on properties that can be
expressed with mathematical rigor, but can be guaranteed to hold without much
additional effort. We aim to assure these properties inherently via the tool used to
create the software system, rendering specific case-by-case validation easy or even
unnecessary. In other words, we aspire to ensure beneficial properties by construction.
Through this approach, we aim to bolster the efficiency, reliability, and overall quality
of systems in several areas of computer science.

guarantees by construction We take a guarantee obtained by construction to
mean a beneficial property that is mathematically assured by the tool used to create
the software system and does not require a detailed specification and verification
for every new system one creates with the tool. Examples of such properties are
abundant in computer science and include the following:

12

Introduction

In a world driven by computer systems, the importance of ensuring that these
systems function accurately and reliably cannot be overstated. As these systems
underpin critical infrastructure their failure or malfunction can result in catastrophic
consequences, both economically and in terms of human well-being. Additionally,
with the rise of cyber threats, a minor vulnerability can be exploited to compromise
or disable important systems.

Formal methods aim to improve this situation by providing a rigorous approach to
system design and verification that leans on mathematical reasoning and logic to
describe and ascertain the behavior of systems. Formal methods, at their core, are
driven by the pursuit of guarantees ensuring that systems behave as expected under
all circumstances, thereby providing the confidence and assurance required for their
adoption in various critical sectors. Often, these guarantees are manifested in the
form of theorems or properties that hold true for an algorithm or for a mathematical
model of a computer program.

While establishing full correctness theorems for all software would be ideal, this is
costly and time-consuming. Moreover, it requires a well-defined and unambiguous
per-program specification, which is not always readily available or sufficiently clear,
as the desired behavior of software programs may be difficult to quantify with a
mathematical formula. Moreover, many bugs that arise in practice violate general
properties that are desirable for all programs. For example, Microsoft and the
Chromium team report that 70% of bugs are memory safety violations Thomas
(2019); Chromium (2020).

Consequently, the common thread of this thesis is identifying and guaranteeing
properties that are generally desirable for all programs and do not require a separate
specification for each particular program. We focus on properties that can be
expressed with mathematical rigor, but can be guaranteed to hold without much
additional effort. We aim to assure these properties inherently via the tool used to
create the software system, rendering specific case-by-case validation easy or even
unnecessary. In other words, we aspire to ensure beneficial properties by construction.
Through this approach, we aim to bolster the efficiency, reliability, and overall quality
of systems in several areas of computer science.

guarantees by construction We take a guarantee obtained by construction to
mean a beneficial property that is mathematically assured by the tool used to create
the software system and does not require a detailed specification and verification
for every new system one creates with the tool. Examples of such properties are
abundant in computer science and include the following:

12

Introduction

• Type safety (Milner, 1978; Wright and Felleisen, 1994; Harper, 2016; Pierce, 2002)
in programming languages such as Java, which guarantees that a program will
not crash due to performing an illegal operation such as accessing freed memory,
or ML, which additionally avoids null pointer exceptions. Type safety means that
this property is guaranteed for every type checked program in the language. This
does not require a detailed specification of the program’s behavior, nor does it
require any costly programmer effort to validate, as type checking is done by the
compiler.

• Data race freedom in Rust (The Rust Team, 2023c), which is the additional
guarantee that programs will not modify and read the same memory location
concurrently, which would otherwise be undefined behavior. This property is
guaranteed for every well-typed Rust program, as proved by Jung et al. (2018a).

• Refinement for verified optimising C compilers such as CompCert (Leroy, 2006),
which formally guarantees that the generated code will behave as specified by
the semantics of the source language. This property can be particularly strong
for domain specific languages, such as parser generators (Knuth, 1965; Jourdan
et al., 2012), which guarantee that the generated parser will correctly parse any
input that conforms to the grammar.

• Time complexity, such as for regular expressions and LR(k) grammars (Knuth,
1965), which guarantee linear time parsing, or for Datalog (Ceri et al., 1989),
which guarantees polynomial time evaluation.

guiding principles Work in this direction is often guided by principles that
this thesis also aims to uphold, namely:

• Abstraction: the user of the system need not understand its details to use it
and benefit from its guarantees. The rules of the system should be simple and
easy to understand, even though the internal workings may be complex, and
the guarantees difficult to prove, e.g., the user of a parser generator need not
understand the details of the parsing algorithm to benefit from its correctness
and efficiency guarantees.

• Compositionality: the properties of compound systems follow from those of
its parts, rather than from a global analysis, e.g., a type checker analyses each
function in isolation, and the type safety of a compound program follows from the
safety of each function, rather than from a global analysis of the entire program.

• Efficiency: the system aims to be efficient in terms of its own operation, and in
terms of the operation of any further artifacts it may generate, e.g., a type checker
should scale well with respect to the size of the program, a compiler should
generate efficient code, and a regular expression matcher should run in linear
time with respect to the size of the input text.

13

Introduction

this thesis This thesis aims to extend guarantees by construction in four areas:
concurrency, separation logic, probabilistic programming, and automata theory.

• For concurrency, we aim to extend the guarantees provided by languages like
Rust, by designing new type systems that guarantee deadlock and memory leak
freedom.

• For separation logic (Reynolds, 2002; O’Hearn and Pym, 1999; O’Hearn et al.,
2001; O’Hearn, 2004; Brookes, 2004), we develop a new technique for proving the
soundness of separation logics for message passing (Hinrichsen et al., 2020), and
we design a new separation logic that guarantees deadlock and memory leak freedom.

• For probabilistic programming (Goodman et al., 2008; van de Meent et al., 2018),
we aim to change the modeling language so that programs are covariant under
general parameter transformations, such as a change of unit from inches to
meters, rendering the language paradox-free.

• For automata theory (Hopcroft et al., 2007), we aim to provide a general
bisimilarity minimization algorithm that can be instantiated for a class of
automata whose transition structure is specified by a functor, to yield algorithms
that compute the minimal automaton in log-linear time complexity and are efficient in
practice.

We shall now discuss each of these areas in more detail.

part 1 : types for deadlock and leak free concurrency

Systems programming is the practice of writing programs on the lower end of the
software stack. These programs need more precise control over memory allocation
and representation than provided by higher level languages that use automatic
garbage collection. Languages like C and C++ give the programmer full manual
control over memory allocation and representation, but this comes at the cost
of safety, as the programmer can easily make mistakes that lead to undefined
behavior, such as accessing deallocated memory. This is especially difficult to avoid
in concurrent programs, where multiple threads may access and modify the same
memory concurrently.

Rust1 addresses this difficulty with an ownership-based type system (Clarke
et al., 1998), which provides semi-automatic memory management, by deallocating
memory whenever a variable goes out of scope. The Rust compiler is able to statically
detect errors in this regard, such as the following:

fn foo() -> &i64 {

let x = vec![1,2,3];

1 We focus on Rust here because it is well-known, but this section applies more generally to languages with
ownership-based memory management.

14

Introduction

this thesis This thesis aims to extend guarantees by construction in four areas:
concurrency, separation logic, probabilistic programming, and automata theory.

• For concurrency, we aim to extend the guarantees provided by languages like
Rust, by designing new type systems that guarantee deadlock and memory leak
freedom.

• For separation logic (Reynolds, 2002; O’Hearn and Pym, 1999; O’Hearn et al.,
2001; O’Hearn, 2004; Brookes, 2004), we develop a new technique for proving the
soundness of separation logics for message passing (Hinrichsen et al., 2020), and
we design a new separation logic that guarantees deadlock and memory leak freedom.

• For probabilistic programming (Goodman et al., 2008; van de Meent et al., 2018),
we aim to change the modeling language so that programs are covariant under
general parameter transformations, such as a change of unit from inches to
meters, rendering the language paradox-free.

• For automata theory (Hopcroft et al., 2007), we aim to provide a general
bisimilarity minimization algorithm that can be instantiated for a class of
automata whose transition structure is specified by a functor, to yield algorithms
that compute the minimal automaton in log-linear time complexity and are efficient in
practice.

We shall now discuss each of these areas in more detail.

part 1 : types for deadlock and leak free concurrency

Systems programming is the practice of writing programs on the lower end of the
software stack. These programs need more precise control over memory allocation
and representation than provided by higher level languages that use automatic
garbage collection. Languages like C and C++ give the programmer full manual
control over memory allocation and representation, but this comes at the cost
of safety, as the programmer can easily make mistakes that lead to undefined
behavior, such as accessing deallocated memory. This is especially difficult to avoid
in concurrent programs, where multiple threads may access and modify the same
memory concurrently.

Rust1 addresses this difficulty with an ownership-based type system (Clarke
et al., 1998), which provides semi-automatic memory management, by deallocating
memory whenever a variable goes out of scope. The Rust compiler is able to statically
detect errors in this regard, such as the following:

fn foo() -> &i64 {

let x = vec![1,2,3];

1 We focus on Rust here because it is well-known, but this section applies more generally to languages with
ownership-based memory management.

14

Introduction

return &x[0];

}

The compiler rejects this function, because the backing array of the vector x is
deallocated when x goes out of scope, making the returned reference &x[0] invalid.

deadlocks and memory leaks Rust also enables fearless concurrent
programming (The Rust Team, 2023a) because its type system guarantees memory
safety and the absence of data races for concurrent programs. This is done via
carefully designed ownership types for concurrency constructs such as threads,
locks, and message passing channels.

Deadlocks. Concurrent programming in Rust is not completely fearless, however.
Rust programs can still deadlock, as the following example shows:

// Deadlock using Mutexes

fn swap(x: &Mutex<u32>, y: &Mutex<u32>)

{

let mut gx = x.lock();

let mut gy = y.lock();

let tmp = *gx;

*gx = *gy;

*gy = tmp;

}

let x = Mutex::new(1);

let y = Mutex::new(2);

fork { swap(x,y); }

fork { swap(y,x); }

This example uses locks, which are a common synchronization primitive in
concurrent programming. In Rust, locks are represented by the Mutex<T> type, which
represents a lock that protects a value of type T. The Mutex<T> type has a method lock,
which returns a mutable reference to the protected value. The lock is automatically
released when the mutable reference goes out of scope.

In the example, we first define the function swap, which takes two locks, and swaps
the values that they protect. We then create two locks x and y, and spawn two
threads that call swap on these locks. The program can deadlock if the two threads
acquire the locks in an unfortunate order: the first thread acquires x, and the second
thread acquires y. If the first thread then tries to acquire y, it will block until the
second thread releases y, but the second thread will never release y because it is
blocked on x.

The empirical study of Qin et al. (2020) on bugs in real-world Rust programs
found that these bugs occur often in practice. In fact, the authors conjecture that
deadlocks are exacerbated in Rust because locks are released implicitly when the

15

Introduction

lock goes out of scope, which makes it harder for programmers to reason about lock
lifetimes:

Even though problems like double locking and conflicting lock orders
are common in traditional languages too, Rust’s complex lifetime
rules combined with its implicit unlock mechanism make it harder for
programmers to write blocking bug-free code.

Locks are not the only construct that can lead to deadlock. Rust programs can also
deadlock when using message passing channels, as the following example shows:

// Deadlock using Channels

fn forward(x: Sender<u32>, y: Receiver<u32>)

{

let msg = y.receive();

x.send(msg);

}

let (sx,rx) = Channel::new();

let (sy,ry) = Channel::new();

fork { forward(sx,ry); }

fork { forward(sy,rx); }

This example uses message passing channels, which are another common
synchronization primitive in concurrent programming. In Rust, channels are
represented by the Sender<T> and Receiver<T> types, which represent the sending
and receiving ends of a channel that transmits values of type T. The Sender<T> type
has a method send, which sends a value over the channel, and the Receiver<T> type
has a method receive, which receives a value from the channel.

In the example, we first define the function forward, which takes a sender and a
receiver, and forwards a message from the receiver to the sender. We then create two
channels sx and sy, and spawn two threads that call forward on these channels. The
program will deadlock, because the first thread will block on ry.receive(), and the
second thread will block on rx.receive(). Neither thread will ever send a message,
so neither thread will ever unblock.

Memory leaks.
Whereas core Rust programs are guaranteed to be memory leak free, Rust

programs that use locks and channels can leak memory. Locks can leak memory
because locks in Rust provide shared mutable state that can be used to create cyclic
pointer graphs, which lead to leaks when used in combination with non-cycle-aware
reference counting, 2 as shown in the following examples:

// Memory leak using Arc<Mutex<T>>

enum List {

2 Memory can also be leaked with operations such as mem::forget and Rc::drop (The Rust Team, 2023b).

16

Introduction

lock goes out of scope, which makes it harder for programmers to reason about lock
lifetimes:

Even though problems like double locking and conflicting lock orders
are common in traditional languages too, Rust’s complex lifetime
rules combined with its implicit unlock mechanism make it harder for
programmers to write blocking bug-free code.

Locks are not the only construct that can lead to deadlock. Rust programs can also
deadlock when using message passing channels, as the following example shows:

// Deadlock using Channels

fn forward(x: Sender<u32>, y: Receiver<u32>)

{

let msg = y.receive();

x.send(msg);

}

let (sx,rx) = Channel::new();

let (sy,ry) = Channel::new();

fork { forward(sx,ry); }

fork { forward(sy,rx); }

This example uses message passing channels, which are another common
synchronization primitive in concurrent programming. In Rust, channels are
represented by the Sender<T> and Receiver<T> types, which represent the sending
and receiving ends of a channel that transmits values of type T. The Sender<T> type
has a method send, which sends a value over the channel, and the Receiver<T> type
has a method receive, which receives a value from the channel.

In the example, we first define the function forward, which takes a sender and a
receiver, and forwards a message from the receiver to the sender. We then create two
channels sx and sy, and spawn two threads that call forward on these channels. The
program will deadlock, because the first thread will block on ry.receive(), and the
second thread will block on rx.receive(). Neither thread will ever send a message,
so neither thread will ever unblock.

Memory leaks.
Whereas core Rust programs are guaranteed to be memory leak free, Rust

programs that use locks and channels can leak memory. Locks can leak memory
because locks in Rust provide shared mutable state that can be used to create cyclic
pointer graphs, which lead to leaks when used in combination with non-cycle-aware
reference counting, 2 as shown in the following examples:

// Memory leak using Arc<Mutex<T>>

enum List {

2 Memory can also be leaked with operations such as mem::forget and Rc::drop (The Rust Team, 2023b).

16

Introduction

Nil, Cons(u32, Arc<Mutex<List>>)

}

let x = Arc::new(Mutex::new(Nil));

*x.lock() = Cons(1,x.clone());

drop(x);

This example uses the Arc<Mutex<T>> type, which is a reference counted pointer to
a lock that protects a value of type T. Rust allows us to create a cycle of reference
counted pointers, which can cause a memory leak, as shown in the example.

The following example uses channels to create a memory leak:

// Memory leak using Channels

let (sx,rx) = Channel::new();

let (sy,ry) = Channel::new();

sx.send(ry);

sy.send(rx);

drop(sx);

drop(sy);

In this example, we create two channels sx and sy, and send each channel over the
other channel. We then drop both channels, but the channels will not be deallocated,
because they are still referenced by the other channel.

deadlock and memory leak freedom by construction The goal of
the first part of this thesis is to develop type systems for concurrent programming
without deadlocks and memory leaks. That is, we aim to develop a type system that
guarantees that all programs that pass the type checker are deadlock and memory
leak free. The type checker should nevertheless be expressive enough to verify
many common concurrent idioms. Furthermore, we aim to formally prove that the
type system is sound, i.e., that all programs that pass the type checker are indeed
deadlock and memory leak free.

To do so, we build on prior work. For our purpose, the most prominent area of
prior work is session types (Honda, 1993; Honda et al., 1998), which are types that
describe the communication protocol of a message-passing channel. With changes
to the original design, linear session type systems guarantee deadlock freedom and
memory leak freedom, even when channels are dynamically created and passed
around (Wadler, 2012; Caires and Pfenning, 2010). That is, session types allow us to
use channels as first-class values in a programming language, without sacrificing
deadlock freedom and memory leak freedom.

The goal of Part 1 of this thesis is to extend this line of work in several ways:

• Chapter 1 introduces a unified method for formally proving the soundness of
deadlock and leak free type systems, based on connectivity graphs.

17

Introduction

• Chapter 2 introduces a type system for locks that guarantees deadlock and
memory leak freedom.

• Chapter 3 introduces a type system for message passing concurrency between
multiple participants (Honda et al., 2008), that guarantees deadlock and memory
leak freedom, even when multiparty channels are dynamically created and passed
around.

• Chapter 4 introduces a type system for message passing concurrency inspired by
session types (Honda, 1993), but distilled to its essence.

formal proof The guarantees that we claim for these type systems are formally
proven. By formal proof, I mean mathematical proofs that are carried out in full
detail down to basic axioms of mathematics. As a result, such proofs can be checked
mechanically using a computer program. Machine-checked proofs require us to be
absolutely precise about our definitions, theorems, and proofs. We prefer machine-
checked proofs because proofs in previous work have not always been correct or
complete, and some theorems presented in the session types literature have in fact
turned out be false (Scalas and Yoshida, 2019).

The results of Part 1 and Part 2 of this thesis are formalized and machine-checked
with the Coq proof assistant (Coq Team, 2021), making use of the Iris separation
logic framework (Jung et al., 2018b; Krebbers et al., 2017b). Coq ensures that the
theorems that pass the proof checker are indeed mathematically valid.

The Coq proof assistant is a computer program that consists of three parts:

1. A language for precisely stating theorems.

2. A language for proving theorems.

3. A checker that verifies that a proof indeed proves the desired theorem, and
does not contain mistakes.

In Coq, one starts by stating the desired theorem (the “goal”). One then transforms
this goal with commands (“tactics”) that correspond to one step of mathematical
reasoning. Each tactic replaces a goal with zero or more new goals, which are
hopefully simpler than the original goal. The proof is complete when no more goals
remain. Coq’s tactics and proof checker are designed such that tactics can only be
applied on goals that are of the right shape. This ensures that the proof checker can
verify that the proof is correct.

To verify deadlock and leak freedom of the type systems of Part 1, we perform the
following steps in Coq:

1. We define the syntax of the programming language

2. We define the typing rules of the language

3. We define the operational semantics of the language, which specifies how
programs in the language execute

18

Introduction

• Chapter 2 introduces a type system for locks that guarantees deadlock and
memory leak freedom.

• Chapter 3 introduces a type system for message passing concurrency between
multiple participants (Honda et al., 2008), that guarantees deadlock and memory
leak freedom, even when multiparty channels are dynamically created and passed
around.

• Chapter 4 introduces a type system for message passing concurrency inspired by
session types (Honda, 1993), but distilled to its essence.

formal proof The guarantees that we claim for these type systems are formally
proven. By formal proof, I mean mathematical proofs that are carried out in full
detail down to basic axioms of mathematics. As a result, such proofs can be checked
mechanically using a computer program. Machine-checked proofs require us to be
absolutely precise about our definitions, theorems, and proofs. We prefer machine-
checked proofs because proofs in previous work have not always been correct or
complete, and some theorems presented in the session types literature have in fact
turned out be false (Scalas and Yoshida, 2019).

The results of Part 1 and Part 2 of this thesis are formalized and machine-checked
with the Coq proof assistant (Coq Team, 2021), making use of the Iris separation
logic framework (Jung et al., 2018b; Krebbers et al., 2017b). Coq ensures that the
theorems that pass the proof checker are indeed mathematically valid.

The Coq proof assistant is a computer program that consists of three parts:

1. A language for precisely stating theorems.

2. A language for proving theorems.

3. A checker that verifies that a proof indeed proves the desired theorem, and
does not contain mistakes.

In Coq, one starts by stating the desired theorem (the “goal”). One then transforms
this goal with commands (“tactics”) that correspond to one step of mathematical
reasoning. Each tactic replaces a goal with zero or more new goals, which are
hopefully simpler than the original goal. The proof is complete when no more goals
remain. Coq’s tactics and proof checker are designed such that tactics can only be
applied on goals that are of the right shape. This ensures that the proof checker can
verify that the proof is correct.

To verify deadlock and leak freedom of the type systems of Part 1, we perform the
following steps in Coq:

1. We define the syntax of the programming language

2. We define the typing rules of the language

3. We define the operational semantics of the language, which specifies how
programs in the language execute

18

Introduction

4. We define what deadlocks and leaks are

5. We write down a theorem in Coq, stating that for all programs that are valid
according to the typing rules, deadlocks and leaks never occur during the
execution of such programs

6. We prove this theorem using Coq’s tactics

These proofs can be quite long, because they must be carried out to the smallest
mathematical detail. If these proofs were included as an appendix, then this would
add an additional 780 pages to this thesis. Therefore, I have hosted the Coq proofs
on a separate web page https://apndx.org/thesis/.

The web page is interlinked with the thesis: gear icons (�) next to the definitions
and theorems in this PDF link to the corresponding formal proofs on the website,
and the formal proofs link back to the thesis.3 As hyperlinks are not clickable on
paper, I have also included an index (page 337) that provides the cross-reference.

We will now discuss each of the chapters of Part 1 in more detail.

Chapter 1: Connectivity Graphs: A Method for Proving Deadlock Freedom Based on
Separation Logic

Based on Jules Jacobs, Stephanie Balzer, Robbert Krebbers, POPL (2022)

Chapter 1 introduces the connectivity graphs method for proving the soundness
of deadlock and leak free type systems. That is, we want formally prove that if a
program type checks, then its run-time behavior is such that it never deadlocks and
never leaks memory. To state this theorem, we need to mathematically define what a
program is, what the type checker does, what the run-time behavior of programs is,
and what it means to deadlock or leak memory.

Despite the active developments in the mechanization of the meta-theory of binary
session types (Thiemann, 2019; Rouvoet et al., 2020; Hinrichsen et al., 2021; Tassarotti
et al., 2017; Goto et al., 2016; Ciccone and Padovani, 2020; Castro-Perez et al., 2020;
Gay and Vasconcelos, 2010), a mechanized proof of deadlock freedom for binary
session types with dynamic thread and channel creation and a dynamically changing
communication topology (due to higher-order channels) was still outstanding
because of the intricacies of reasoning about graphs in a mechanized setting. While
the semantics of global and local types of multiparty session types has recently been
mechanized (Castro-Perez et al., 2021), and thus global properties such as deadlock
freedom shown to hold, the result is confined to a single session without dynamic
thread and channel creation and without higher-order channels.

A concurrent program’s run-time state consists of a set of threads, and the current
state of the heap memory. The proofs of deadlock freedom have to establish that
the dependency structure among the threads (or processes) and channels (or locks)

3 The latter will only work when using a PDF viewer that supports external hyperlinks. The PDF viewers
that are built into web browsers uually support this.

19

Introduction

remains acyclic, even in the presence of dynamic thread spawning and higher-
order channels (Carbone and Debois, 2010). In order to reason formally about this
dependency structure at a higher level, we introduce connectivity graphs.

The key problem that connectivity graphs address is that each of the type systems
in Part 1 requires a separate and complex deadlock freedom proof. In particular,
deadlock freedom of these systems rests on acyclicity of the topology of interaction
between threads and the synchronization constructs such as locks and channels. This
type of reasoning is particularly involved when made fully formal, as we are then
unable to use our human graphical intuition to shortcut proof steps. Connectivity
graphs aim to solve this by providing a generic proof methodology for reasoning
about deadlock and leak freedom, such that the acyclicity reasoning has to be done
only once, and can then be applied to various deadlock free languages.

Connectivity graphs are an abstract representation of the communication topology
of concurrently interacting entities, which allows us to encapsulate generic principles
for reasoning about deadlock and leak freedom. Connectivity graphs are parametric
in their vertices (representing entities like threads and channels) and their edges
(representing connections between entities) with labels (representing interaction
protocols).

At a high level, the idea of connectivity graphs is to maintain the invariant that
the graph is acyclic in a certain strong sense. The acyclicity of the graph then rules
out memory that is leaked due to reference cycles, and it rules out deadlocks caused
by several threads cyclically waiting for each other.

In order to formalise this intuition, connectivity graphs provide two key tools for
proving deadlock and leak freedom:

First, they provide local graph transformations that preserve the acyclicity of the
connectivity graph. These graph transformations are formulated in separation
logic (Reynolds, 2002; O’Hearn et al., 2001), such that resource transfer inside the
separation logic corresponds to modification of the graph. Crucially, the linearity
of the separation logic guarantees that the acyclicity of the graph is preserved by
construction. This formally captures the essence of the connection between linearity
and acyclicity.

Second, they provide a waiting induction principle for acyclic connectivity graphs,
which allows us to prove global progress properties from local progress properties.
This formally captures the essence of the connection between acyclicity and deadlock
and leak freedom.

The connectivity graph proof method is used in Chapters 2 to 4 to prove deadlock
and leak freedom of the type systems presented there. The applicability to different
languages shows the versatility of the method.

20

Introduction

remains acyclic, even in the presence of dynamic thread spawning and higher-
order channels (Carbone and Debois, 2010). In order to reason formally about this
dependency structure at a higher level, we introduce connectivity graphs.

The key problem that connectivity graphs address is that each of the type systems
in Part 1 requires a separate and complex deadlock freedom proof. In particular,
deadlock freedom of these systems rests on acyclicity of the topology of interaction
between threads and the synchronization constructs such as locks and channels. This
type of reasoning is particularly involved when made fully formal, as we are then
unable to use our human graphical intuition to shortcut proof steps. Connectivity
graphs aim to solve this by providing a generic proof methodology for reasoning
about deadlock and leak freedom, such that the acyclicity reasoning has to be done
only once, and can then be applied to various deadlock free languages.

Connectivity graphs are an abstract representation of the communication topology
of concurrently interacting entities, which allows us to encapsulate generic principles
for reasoning about deadlock and leak freedom. Connectivity graphs are parametric
in their vertices (representing entities like threads and channels) and their edges
(representing connections between entities) with labels (representing interaction
protocols).

At a high level, the idea of connectivity graphs is to maintain the invariant that
the graph is acyclic in a certain strong sense. The acyclicity of the graph then rules
out memory that is leaked due to reference cycles, and it rules out deadlocks caused
by several threads cyclically waiting for each other.

In order to formalise this intuition, connectivity graphs provide two key tools for
proving deadlock and leak freedom:

First, they provide local graph transformations that preserve the acyclicity of the
connectivity graph. These graph transformations are formulated in separation
logic (Reynolds, 2002; O’Hearn et al., 2001), such that resource transfer inside the
separation logic corresponds to modification of the graph. Crucially, the linearity
of the separation logic guarantees that the acyclicity of the graph is preserved by
construction. This formally captures the essence of the connection between linearity
and acyclicity.

Second, they provide a waiting induction principle for acyclic connectivity graphs,
which allows us to prove global progress properties from local progress properties.
This formally captures the essence of the connection between acyclicity and deadlock
and leak freedom.

The connectivity graph proof method is used in Chapters 2 to 4 to prove deadlock
and leak freedom of the type systems presented there. The applicability to different
languages shows the versatility of the method.

20

Introduction

Chapter 2: Higher-Order Leak and Deadlock Free Locks

Based on Jules Jacobs, Stephanie Balzer, POPL (2023)
Recipient of a POPL 2023 Distinguished Paper Award.

Chapter 2 contributes a programming language with a type system for locks that
guarantees that all programs are deadlock and leak free.

Balzer et al. (2019)’s Manifest Sharing provides a deadlock free type system for
locks that carefully controls ordering. Rocha and Caires (2021)’s PaT language
provides another deadlock free type system for locks that does not require ordering
constraints, and instead restricts the types of data that can be stored in locks. Inspired
by this work, we design a new language and type system for deadlock-free locks.

Locks in this type system are higher-order, meaning that programs can create
and pass around locks as first-class data, and locks themselves can be part of the
concurrently shared data that is protected by another lock. This makes the type
system expressive enough to verify many common concurrent idioms, including
fork/join, promises, shared mutable data structures, and the implementation of
session-typed channels in terms of locks.

Despite supporting all these features, all programs are guaranteed to be deadlock
free by type checking. Our type system does not impose any additional proof
obligations on the programmer, such as lock orders, the traditional approach to
guarantee deadlock freedom (Dijkstra, 1965). Instead, deadlock and leak freedom
are guaranteed purely by an ownership type system.

Nevertheless, our language is in some respects more expressive than lock orders;
there are programs that can be shown to be deadlock free with our type system, but
cannot be shown to be deadlock free with a lock order (i.e., deadlock-free programs
for which no lock order exists).

The converse is also true: there are programs for which a lock order exists, but
cannot be shown to be deadlock free with our type system. We therefore also
develop an extension that incorporates lock orders in our type system, combining
the strenghts of both approaches in a natural manner. This makes the type system
more expressive, at the cost of some complexity in the typing rules. Our simpler
type system is embedded as the special case when all lock orders are singletons.

Chapter 3: Multiparty GV: Functional Multiparty Session Types With Certified
Deadlock Freedom

Based on Jules Jacobs, Stephanie Balzer, Robbert Krebbers, ICFP (2022)

Chapter 3 combines the benefits of linear binary session types (Wadler, 2012) and
multiparty session types (Honda et al., 2008), which allow communication between
more than two participants.

Session type systems (Honda, 1993; Honda et al., 1998) allow type checking
programs that involve message-passing concurrency. Session types are protocols,

21

Introduction

which can be seen as sequences of send (!) and receive (?) actions. They are
associated with channels, and express in what order messages of what type should
be transferred. For example, the session type !Z.?B.end is given to a channel over
which an integer should be sent, after which a boolean is received. More complex
session types can be formed with operators for choice (⊕,&), recursion (µ), etc.

Aside from ensuring type safety, linear session type systems (Caires and Pfenning,
2010; Wadler, 2012) can ensure deadlock freedom. That means that well-typed
programs cannot end up in a state where all threads are waiting to receive a message
from another. Deadlock freedom has been extended to a large variety of session type
systems (Carbone and Debois, 2010; Fowler et al., 2021; Toninho et al., 2013; Toninho,
2015; Caires et al., 2013; Pérez et al., 2014; Lindley and Morris, 2015, 2016a, 2017;
Fowler et al., 2019; Das et al., 2018). The elegance of these session type systems is
that they give deadlock freedom essentially “for free” — the programmer obtains
the deadlock freedom guarantee from type checking alone.4 Moreover, session types
are compositional—once functions have been type checked, they can be composed
by merely establishing that the types agree. A final strength of session types is that
deadlock freedom is maintained in a higher-order setting where session types are
embedded in a functional programming language, where closures and channels can
be transferred as first-class data over channels.

Session types have further been extended to multiparty session types (Honda
et al., 2008, 2016). Whereas binary session types provide channels that allow
for communication between two participants, multiparty session types allow
for multiparty channels that enable direct interaction between more than two
participants. The actions in multiparty global session types are annotated with
the participants that the communication happens between:

[0 → 1]Z.[1 → 2]B.End

This session type says that party 0 sends an integer to party 1, and then party 1
sends a boolean to party 2. Multiparty session types guarantee deadlock freedom
via a consistency check on the global session type.

It may sound like multiparty session types are strictly more expressive than
binary session types, but this is not the case. Whereas multiparty session types do
guarantee deadlock freedom for one session, multiparty session types typically do
not guarantee deadlock freedom when more than one multiparty channel is involved,
unless restrictions are placed on the interleaving of messages (Coppo et al., 2013;
Bettini et al., 2008; Coppo et al., 2016). This is in constrast to binary session types,
where deadlock freedom is guaranteed even when channels are dynamically created
and passed around and used without restrictions, as in modern binary session-typed
functional programming languages like GV (Wadler, 2012). In short, multiparty

4 Note that these languages tie channel creation to thread creation in order to offer this guarantee. This is
the reason that deadlock freedom is not guaranteed in earlier session type systems such as the original
Honda-style session types (Honda, 1993; Honda et al., 1998) or in the original GV (Gay and Vasconcelos,
2010).

22

Introduction

which can be seen as sequences of send (!) and receive (?) actions. They are
associated with channels, and express in what order messages of what type should
be transferred. For example, the session type !Z.?B.end is given to a channel over
which an integer should be sent, after which a boolean is received. More complex
session types can be formed with operators for choice (⊕,&), recursion (µ), etc.

Aside from ensuring type safety, linear session type systems (Caires and Pfenning,
2010; Wadler, 2012) can ensure deadlock freedom. That means that well-typed
programs cannot end up in a state where all threads are waiting to receive a message
from another. Deadlock freedom has been extended to a large variety of session type
systems (Carbone and Debois, 2010; Fowler et al., 2021; Toninho et al., 2013; Toninho,
2015; Caires et al., 2013; Pérez et al., 2014; Lindley and Morris, 2015, 2016a, 2017;
Fowler et al., 2019; Das et al., 2018). The elegance of these session type systems is
that they give deadlock freedom essentially “for free” — the programmer obtains
the deadlock freedom guarantee from type checking alone.4 Moreover, session types
are compositional—once functions have been type checked, they can be composed
by merely establishing that the types agree. A final strength of session types is that
deadlock freedom is maintained in a higher-order setting where session types are
embedded in a functional programming language, where closures and channels can
be transferred as first-class data over channels.

Session types have further been extended to multiparty session types (Honda
et al., 2008, 2016). Whereas binary session types provide channels that allow
for communication between two participants, multiparty session types allow
for multiparty channels that enable direct interaction between more than two
participants. The actions in multiparty global session types are annotated with
the participants that the communication happens between:

[0 → 1]Z.[1 → 2]B.End

This session type says that party 0 sends an integer to party 1, and then party 1
sends a boolean to party 2. Multiparty session types guarantee deadlock freedom
via a consistency check on the global session type.

It may sound like multiparty session types are strictly more expressive than
binary session types, but this is not the case. Whereas multiparty session types do
guarantee deadlock freedom for one session, multiparty session types typically do
not guarantee deadlock freedom when more than one multiparty channel is involved,
unless restrictions are placed on the interleaving of messages (Coppo et al., 2013;
Bettini et al., 2008; Coppo et al., 2016). This is in constrast to binary session types,
where deadlock freedom is guaranteed even when channels are dynamically created
and passed around and used without restrictions, as in modern binary session-typed
functional programming languages like GV (Wadler, 2012). In short, multiparty

4 Note that these languages tie channel creation to thread creation in order to offer this guarantee. This is
the reason that deadlock freedom is not guaranteed in earlier session type systems such as the original
Honda-style session types (Honda, 1993; Honda et al., 1998) or in the original GV (Gay and Vasconcelos,
2010).

22

Introduction

session types do not possess all of the aforementioned benefits of binary/linear
session types when embedded in a functional language. Therefore, the world of
session types is bifurcated into two incompatible worlds. The aim of this chapter is
to unify these worlds, and combine the unique benefits of both.

We thus develop a new type system where (1) channels support n-to-n
communication with multiparty session types, and (2) channels are first-class values
in a functional language. Crucially, the type system guarantees leak and deadlock
freedom for all programs, when multiple multiparty channels are dynamically created
and passed around as first-class data. This includes uses that are higher-order, in the
sense that channels can be sent as messages over other channels, and captured in
closures that are themselves passed around as first-class data. This is the first type
system that combines the expressiveness of the binary session types of the functional
language GV (Wadler, 2012), with multiparty session types, while providing these
guarantees.

Chapter 4: A Self-Dual Distillation of Session Types

Based on Jules Jacobs, ECOOP (2022)

Chapter 4 distills binary session types to their essence, by casting them as a
minimal extension of linear λ-calculus with concurrent communication.

The session types community has looked for minimal systems that still capture
the essence of session types. These minimal systems typically decompose multi-step
session types into single-shot types. Kobayashi (2002b); Dardha et al. (2012, 2017)
give an encoding of session types into ordinary π-calculus types, and minimal session
types by Arslanagic et al. (2019) decompose multi-step session types into single-step
session types in a π-calculus. Single-shot synchronization primitives have also been
used in the implementation of a session-typed channel libraries (Scalas and Yoshida,
2016a; Padovani, 2017; Kokke and Dardha, 2021a).

This chapter provides a minimal version of session types in the context of lambda
calculus. Our extension of lambda calculus adds only a single new fork construct
for spawning threads, and adds no new operations other than fork, no new type
formers, and no explicit definition of session type duality. Instead, the language
uses the linear function function type former τ1 −◦ τ2 for communication between
threads, which is what we call self-dual to τ2 −◦ τ1.

We give fork the following type:

fork : ((τ1 −◦ τ2) −◦ 1) −◦ (τ2 −◦ τ1) (1)

where 1 is the unit type. That is, fork gets passed a closure that consumes a function
of type τ1 −◦ τ2, and fork returns a function of type τ2 −◦ τ1. When both functions
are called, the values of type τ1, τ2 are exchanged.

23

Introduction

Binary session types and their channel operations can be encoded in this language
in a type-preserving way. Because of the language’s minimality, the deadlock and
leak freedom proof is simplified considerably, relative to traditional session types.

part 2 : separation logics for verified message passing

In Part 2, we go beyond ensuring that our programs do not exhibit certain invalid
behaviors (like crashing, deadlocking, or leaking memory), and aim for functional
correctness, that is, the stronger property that our programs produce the correct
answer. In order to achieve this, we need to go beyond type systems (where checking
is done automatically by the type checker), and switch to program logics, in which
some amount of manual proof work is required. We thus trade automation for
obtaining stronger results. In particular, this part of the thesis builds on concurrent
separation logic (O’Hearn, 2004; Brookes, 2004), which is a particularly advanced form
of Hoare logic (Hoare, 1969) that is suitable for reasoning about concurrent programs
that use pointers and mutable state.

We focus on the development of program logics for the verification of message
passing programs. This is challenging, because fact that our program produces
the correct answer may rely on the correct behavior of several threads that run
concurrently and communicate via message passing channels. Bocchi et al. (2010);
Francalanza et al. (2011); Lozes and Villard (2012); Craciun et al. (2015); Oortwijn et al.
(2016); Hinrichsen et al. (2020, 2022) have developed program logics that incorporate
concepts from session types to verify increasingly sophisticated programs with
message-passing concurrency. The protocols of these program logics make it possible
to put logical conditions on the messages, allowing one to specify the contents (e.g.,
the message is an even number) instead of just the shape (e.g., it is an integer). The
state of the art is the Actris logic and its descendants (Hinrichsen et al., 2020, 2022;
Jacobs et al., 2023). Actris builds on the Iris separation logic framework (Jung et al.,
2015, 2016; Krebbers et al., 2017a; Jung et al., 2018b), which is a program logic that
allows for advanced reasoning about concurrent programs with shared mutable state,
and is mechanized in Coq (Coq Team, 2021). Actris combines the Iris separation
logic with dependent session protocols, which describe the communication protocol
of a message passing channel. Session protocols are a generalization of session
types, which allows the protocol state to depend on the values that are sent over
the channel, and allows the transfer of separation logic resources along with the
messages. This enables the Actris logic to reason about programs that use message
passing in combination with mutable state and locks.

Chapter 5: Dependent Session Protocols in Separation Logic from First Principles

Based on Jules Jacobs, Jonas Kastberg Hinrichsen, Robbert Krebbers, ICFP (2023)

Chapter 5 presents a variant of Actris, called MiniActris.

24

Introduction

Binary session types and their channel operations can be encoded in this language
in a type-preserving way. Because of the language’s minimality, the deadlock and
leak freedom proof is simplified considerably, relative to traditional session types.

part 2 : separation logics for verified message passing

In Part 2, we go beyond ensuring that our programs do not exhibit certain invalid
behaviors (like crashing, deadlocking, or leaking memory), and aim for functional
correctness, that is, the stronger property that our programs produce the correct
answer. In order to achieve this, we need to go beyond type systems (where checking
is done automatically by the type checker), and switch to program logics, in which
some amount of manual proof work is required. We thus trade automation for
obtaining stronger results. In particular, this part of the thesis builds on concurrent
separation logic (O’Hearn, 2004; Brookes, 2004), which is a particularly advanced form
of Hoare logic (Hoare, 1969) that is suitable for reasoning about concurrent programs
that use pointers and mutable state.

We focus on the development of program logics for the verification of message
passing programs. This is challenging, because fact that our program produces
the correct answer may rely on the correct behavior of several threads that run
concurrently and communicate via message passing channels. Bocchi et al. (2010);
Francalanza et al. (2011); Lozes and Villard (2012); Craciun et al. (2015); Oortwijn et al.
(2016); Hinrichsen et al. (2020, 2022) have developed program logics that incorporate
concepts from session types to verify increasingly sophisticated programs with
message-passing concurrency. The protocols of these program logics make it possible
to put logical conditions on the messages, allowing one to specify the contents (e.g.,
the message is an even number) instead of just the shape (e.g., it is an integer). The
state of the art is the Actris logic and its descendants (Hinrichsen et al., 2020, 2022;
Jacobs et al., 2023). Actris builds on the Iris separation logic framework (Jung et al.,
2015, 2016; Krebbers et al., 2017a; Jung et al., 2018b), which is a program logic that
allows for advanced reasoning about concurrent programs with shared mutable state,
and is mechanized in Coq (Coq Team, 2021). Actris combines the Iris separation
logic with dependent session protocols, which describe the communication protocol
of a message passing channel. Session protocols are a generalization of session
types, which allows the protocol state to depend on the values that are sent over
the channel, and allows the transfer of separation logic resources along with the
messages. This enables the Actris logic to reason about programs that use message
passing in combination with mutable state and locks.

Chapter 5: Dependent Session Protocols in Separation Logic from First Principles

Based on Jules Jacobs, Jonas Kastberg Hinrichsen, Robbert Krebbers, ICFP (2023)

Chapter 5 presents a variant of Actris, called MiniActris.

24

Introduction

We develop an account of dependent session protocols in concurrent separation
logic for a functional language with message-passing. MiniActris aims to retain
most features of Actris, while being simpler and easier to understand. Inspired by
minimalistic session calculi (Dardha et al., 2012), and building on Chapter 4, we
use a layered design: starting from mutable references, we build one-shot channels,
session channels, and finally Actris-style imperative channels. Whereas Actris’
soundness proof required advanced Iris mechanisms such as recursive domain
equations (America and Rutten, 1989; Birkedal et al., 2010) and higher-order ghost
state (Jung et al., 2016), MiniActris only requires basic Iris mechanisms to verify
that our one-shot channels satisfy one-shot protocols, and subsequently treats their
specification as a black box on top of which we can define dependent session
protocols.

MiniActris retains all the features of Actris 1.0 (Hinrichsen et al., 2020), and the
variance subprotocols of Actris 2.0 (Hinrichsen et al., 2021), but does not support
asynchronous subprotocols nor the Actris 2.0 ghost theory, as these features appear
to be incompatible with MiniActris’ design. By giving up on these features, we obtain
a number of advantages in terms of simplicity, elegance, and flexibility: support
for subprotocols and guarded recursion automatically transfers from the one-shot
protocols to the dependent session protocols, and we easily obtain various forms of
channel closing. Because the meta theory of our results is so simple, we are able to
give all definitions as part of this chapter, and mechanize all our results using the
Iris framework in less than 1000 lines of Coq.

An important part of the mechanisation is that we obtain Iris’ adequacy theorem
(Jung et al., 2018b, §6.4), which states that if we prove a Hoare triple for our program
using the rules of our logic, and if the precondition holds, then the run-time behavior
of the program is such that the program never crashes, and the postcondition holds
after the program terminates.

Chapter 6: Deadlock-Free Separation Logic: Linearity Yields Progress for Dependent
Higher-Order Message Passing

Based on Jules Jacobs, Jonas Kastberg Hinrichsen, Robbert Krebbers, (manuscript)

Chapter 6 introduces a linear concurrent separation logic, called LinearActris,
designed to guarantee deadlock and leak freedom for message-passing concurrency.
Much like Actris, LinearActris combines the strengths of session types and concurrent
separation logic, allowing for the verification of challenging higher-order program
with mutable state through dependent protocols. The key challenge is to prove the
adequacy theorem of LinearActris, which says that the logic indeed gives deadlock
and leak freedom “for free” from linearity. That is, the crucial difference between
LinearActris and Actris, is that proving a Hoare triple in LinearActris guarantees
not only that the program does not crash, but also that it does not deadlock or
leak memory. We prove this theorem by defining a step-indexed model (Appel and

25

Introduction

McAllester, 2001; Ahmed, 2004; Birkedal et al., 2011; Dreyer et al., 2011) of separation
logic, based on connectivity graphs (Chapter 1). Step-indexing allows for recursive
protocols, as well as term-level recursion without necessitating termination proofs.

To demonstrate the expressive power of LinearActris, we prove soundness of a
higher-order (GV-style) session type system using the logical approach to logical
relations (Appel et al., 2007; Dreyer et al., 2011; Jung et al., 2018a; Timany et al.,
2022). This shows that our logic is strong enough to verify the deadlock freedom of
all programs that can be verified by GV-style session types.

part 3 : paradox-free probabilistic programming

Probabilistic programming languages (Goodman and Stuhlmüller, 2014) allow us to
write statistical and machine learning models as computer programs that generate
samples from the model. Some examples of probabilistic programming languages
are Church (Goodman et al., 2008), Stan (Carpenter et al., 2017), Anglican (van de
Meent et al., 2018), Pyro (Bingham et al., 2018), Hakaru (Phan et al., 2019), and Dice
(Holtzen et al., 2020).

Probabilistic programs can model conditional probability distributions using
observe statements. These programs can be run by accumulating likelihood at each
observe statement, and using the likelihood to steer random choices and weigh
results with inference algorithms such as importance sampling or MCMC.

Chapter 7: Paradoxes of Probabilistic Programming

Based on Jules Jacobs, POPL (2021)

Chapter 7 is about paradoxes that can occur when using observe statements to
condition on measure-zero events, that is, events that can happen, but only with
probability zero. We argue that naive likelihood accumulation does not give desirable
semantics for such observe statements, particularly when the observe statement is
executed conditionally on random data.

These paradoxes lead to situations where the answer computed by a probabilistic
program depends on the units of measurement used in the program. That is, the
answer computed by a probabilistic program can depend on whether we measure
length in inches or in meters. This is undesirable, because the answer should not
depend on the units of measurement used in the program.

Consider the following example probabilistic program:

h = rand(Normal(1.7, 0.5))

if rand(Bernoulli(0.5))

observe(Normal(h, 0.1), 2.0)

end

26

Introduction

McAllester, 2001; Ahmed, 2004; Birkedal et al., 2011; Dreyer et al., 2011) of separation
logic, based on connectivity graphs (Chapter 1). Step-indexing allows for recursive
protocols, as well as term-level recursion without necessitating termination proofs.

To demonstrate the expressive power of LinearActris, we prove soundness of a
higher-order (GV-style) session type system using the logical approach to logical
relations (Appel et al., 2007; Dreyer et al., 2011; Jung et al., 2018a; Timany et al.,
2022). This shows that our logic is strong enough to verify the deadlock freedom of
all programs that can be verified by GV-style session types.

part 3 : paradox-free probabilistic programming

Probabilistic programming languages (Goodman and Stuhlmüller, 2014) allow us to
write statistical and machine learning models as computer programs that generate
samples from the model. Some examples of probabilistic programming languages
are Church (Goodman et al., 2008), Stan (Carpenter et al., 2017), Anglican (van de
Meent et al., 2018), Pyro (Bingham et al., 2018), Hakaru (Phan et al., 2019), and Dice
(Holtzen et al., 2020).

Probabilistic programs can model conditional probability distributions using
observe statements. These programs can be run by accumulating likelihood at each
observe statement, and using the likelihood to steer random choices and weigh
results with inference algorithms such as importance sampling or MCMC.

Chapter 7: Paradoxes of Probabilistic Programming

Based on Jules Jacobs, POPL (2021)

Chapter 7 is about paradoxes that can occur when using observe statements to
condition on measure-zero events, that is, events that can happen, but only with
probability zero. We argue that naive likelihood accumulation does not give desirable
semantics for such observe statements, particularly when the observe statement is
executed conditionally on random data.

These paradoxes lead to situations where the answer computed by a probabilistic
program depends on the units of measurement used in the program. That is, the
answer computed by a probabilistic program can depend on whether we measure
length in inches or in meters. This is undesirable, because the answer should not
depend on the units of measurement used in the program.

Consider the following example probabilistic program:

h = rand(Normal(1.7, 0.5))

if rand(Bernoulli(0.5))

observe(Normal(h, 0.1), 2.0)

end

26

Introduction

We first sample a value h (say, a person’s height) from a prior normally distributed
around 1.7 meters and then with probability 0.5 we observe a measurement normally
distributed around the height to be 2.0. Each time the program is run, it samples a
random value for h under the given observation. When averaging 10000 samples
each, a typical trace is 1.812 1.814 1.823 1.813 1.806. Suppose that we had measured
the height in centimeters instead of meters:

h = rand(Normal(170, 50))

if rand(Bernoulli(0.5))

observe(Normal(h, 10), 200)

end

We might naively expect this program to produce roughly the same output as the
previous program, but multiplied by a factor of 100 to account for the conversion of
meters to centimeters. Instead, we get 170.1 170.4 171.5 170.2 169.4.

The aim of this chapter is to extend probabilistic programming languages with a
semantics for observe statements that is unit-consistent, and more generally, covariant
under parameter transformations.

The key idea is to model measure-zero events as a limit of positive measure events,
and to accumulate infinitesimal probabilities rather than probability densities. This
resolves the paradoxes, and allows us to give a semantics for observe statements that
is unit-consistent. More generally, all programs that one can write in our language
are covariant under parameter transformations, by construction.

part 4 : general and efficient automaton minimization

The first automata minimization algorithm was by Moore (1956). This algorithm
takes as input a deterministic finite automaton, and computes which states are
equivalent (i.e., which states accept the same language). Moore’s algorithm run in
𝒪𝒪𝒪n2) time, where n is the number of states. Hopcroft (1971) developed a 𝒪𝒪𝒪n logn)
algorithm.

In Figure 1, three different types of automata are displayed: deterministic
finite automata, transition systems, and Markov chains. Each of these types of
automata comes with a notion of state equivalence, which tells us which states are
behaviourally equivalent. When two states are behaviourally equivalent, they can
be merged into one state, leading to a smaller automaton that is equivalent to the
original.

Minimization algorithms were developed for these and other automata types,
such as transition systems (without action labels) (Kanellakis and Smolka, 1983,
1990), labelled transition systems (Valmari, 2009), Markov chains (Valmari and
Franceschinis, 2010), Markov decision processes (Baier et al., 2000; Groote et al.,
2018), and weighted tree automata (Björklund et al., 2009, 2007).

27

Introduction

DFA Transition system Markov chain

1

2 3

4 5

a b

a

b

a

b

b

a

a

b

1

2 3

4 5

1

2 3

4 5

1
3

2
3

1
2

1
2

1
2

1
4

1
4

1
2

1
2

1

2 ≡ 3, 4 ≡ 5 1 ≡ 2, 3 ≡ 4 2 ≡ 3 ≡ 5

Figure 1: Examples of different automaton types and which states are equivalent.

Recently, those algorithms and system equivalences have been unified using a
coalgebraic generalization (Dorsch et al., 2017; Deifel et al., 2019; Wißmann et al.,
2021). This coalgebraic algorithm is parameterized by a functor that describes the
automaton type. Once instantiated, the algorithm can minimize automata of the
given type. This is useful, because there are many different automaton types.

Chapter 8: Fast Coalgebraic Bisimilarity Minimization

Based on Jules Jacobs, Thorsten Wißmann, POPL (2023)

Chapter 8 introduces an automata minimization algorithm that is more general,
efficient, and able to handle large systems.

In particular, we present a generic algorithm that minimizes coalgebras over an
arbitrary functor in the category of sets as long as the action on morphisms is sufficiently
computable. The algorithm makes at most 𝒪𝒪𝒪m logn) calls to the functor-specific
action, where n is the number of states and m is the number of transitions in the
coalgebra.

While more specialized algorithms can be asymptotically faster than our algorithm
(usually by a factor of 𝒪𝒪𝒪mn)), our algorithm is especially well suited to efficient
implementation, and our tool Boa often uses much less time and memory on existing
benchmarks, and can handle larger automata, despite being more generic.

In summary, we provide a generic bisimilarity minimization method that, when
instantiated with a functor that describes the automaton type, guarantees that a
minimal automaton is found after at most 𝒪𝒪𝒪m logn) calls to the functor.

28

Introduction

DFA Transition system Markov chain

1

2 3

4 5

a b

a

b

a

b

b

a

a

b

1

2 3

4 5

1

2 3

4 5

1
3

2
3

1
2

1
2

1
2

1
4

1
4

1
2

1
2

1

2 ≡ 3, 4 ≡ 5 1 ≡ 2, 3 ≡ 4 2 ≡ 3 ≡ 5

Figure 1: Examples of different automaton types and which states are equivalent.

Recently, those algorithms and system equivalences have been unified using a
coalgebraic generalization (Dorsch et al., 2017; Deifel et al., 2019; Wißmann et al.,
2021). This coalgebraic algorithm is parameterized by a functor that describes the
automaton type. Once instantiated, the algorithm can minimize automata of the
given type. This is useful, because there are many different automaton types.

Chapter 8: Fast Coalgebraic Bisimilarity Minimization

Based on Jules Jacobs, Thorsten Wißmann, POPL (2023)

Chapter 8 introduces an automata minimization algorithm that is more general,
efficient, and able to handle large systems.

In particular, we present a generic algorithm that minimizes coalgebras over an
arbitrary functor in the category of sets as long as the action on morphisms is sufficiently
computable. The algorithm makes at most 𝒪𝒪𝒪m logn) calls to the functor-specific
action, where n is the number of states and m is the number of transitions in the
coalgebra.

While more specialized algorithms can be asymptotically faster than our algorithm
(usually by a factor of 𝒪𝒪𝒪mn)), our algorithm is especially well suited to efficient
implementation, and our tool Boa often uses much less time and memory on existing
benchmarks, and can handle larger automata, despite being more generic.

In summary, we provide a generic bisimilarity minimization method that, when
instantiated with a functor that describes the automaton type, guarantees that a
minimal automaton is found after at most 𝒪𝒪𝒪m logn) calls to the functor.

28

Introduction

contributions to the scientific literature

1. Deadlock-Free Separation Logic: Linearity Yields Progress for Dependent
Higher-Order Message Passing (Chapter 6)
Jules Jacobs, Jonas Kastberg Hinrichsen, Robbert Krebbers, POPL (2024)

2. Dependent Session Protocols in Separation Logic from First Principles
(Chapter 5)
Jules Jacobs, Jonas Kastberg Hinrichsen, Robbert Krebbers, ICFP (2023)

3. Higher-Order Leak and Deadlock Free Locks (Chapter 2)
Jules Jacobs, Stephanie Balzer, POPL (2023)
(Recipient of the POPL Distinguished Paper Award)

4. Fast Coalgebraic Bisimilarity Minimization (Chapter 8)
Jules Jacobs, Thorsten Wißmann, POPL (2023)

5. Multiparty GV: Functional Multiparty Session Types With Certified
Deadlock Freedom (Chapter 2)
Jules Jacobs, Stephanie Balzer, Robbert Krebbers, ICFP (2022)

6. A Self-Dual Distillation of Session Types (Chapter 3)
Jules Jacobs, ECOOP (2022)

7. Connectivity Graphs: A Method for Proving Deadlock Freedom Based on
Separation Logic (Chapter 1)
Jules Jacobs, Stephanie Balzer, Robbert Krebbers, POPL (2022)

8. Long-term ovarian hormone deprivation alters functional connectivity, brain
neurochemical profile and white matter integrity in the Tg2576 amyloid
mouse model of Alzheimer’s disease (Not included in this thesis)
Firat Kara, Michael E. Belloy, Rick Voncken, Zahra Sarwari, Yadav Garima, Cynthia
Anckaerts, An Langbeen, Valerie Leysen, Disha Shah, Jules Jacobs, Julie Hamaide,
Peter Bols, Johan Van Audekerke, Jasmijn Daans, Caroline Guglielmetti, Kejal Kantarci,
Vincent Prevot, Steffen Roßner, Peter Ponsaerts, Annemie Van der Linden, Marleen
Verhoye, Neurobiology of Aging (2021)

9. Paradoxes of Probabilistic Programming (Chapter 7)
Jules Jacobs, POPL (2021)

29

Introduction

contribution statement The chapters of this thesis are revised versions
of peer-reviewed papers. These papers were co-authored with Stephanie Balzer,
Robbert Krebbers, Thorsten Wißmann, Jonas Kastberg Hinrichsen, and Firat Kara et
al. My own contribution to the papers this thesis is based on is as follows:

• For the four articles on deadlock and leak free type systems coauthored with
Stephanie Balzer and Robbert Krebbers (chapters 1, 2 and 3), I was responsible
for the key ideas, almost all of the mechanization, and most of the writing. For
chapter 4, I was the sole author.

• For the work on message passing in separation logic coauthored with Jonas
Kastberg Hinrichsen and Robbert Krebbers (chapters 5 and 6), I was responsible
for key ideas, key proofs, and a large part of the writing.

• For the work on probabilistic programming (chapter 7), I was the sole author.

• For the work on coalgebraic bisimilarity minimization coauthored with Thorsten
Wißmann (chapter 8), I was responsible for the central ideas of the algorithm
and data structures, the implementation and experiments, and a large part of the
writing.

• For the work on Alzheimer’s disease (not included in this thesis) coauthored
with Firat Kara et al., I was responsible for statistical data analysis.

30

Introduction

contribution statement The chapters of this thesis are revised versions
of peer-reviewed papers. These papers were co-authored with Stephanie Balzer,
Robbert Krebbers, Thorsten Wißmann, Jonas Kastberg Hinrichsen, and Firat Kara et
al. My own contribution to the papers this thesis is based on is as follows:

• For the four articles on deadlock and leak free type systems coauthored with
Stephanie Balzer and Robbert Krebbers (chapters 1, 2 and 3), I was responsible
for the key ideas, almost all of the mechanization, and most of the writing. For
chapter 4, I was the sole author.

• For the work on message passing in separation logic coauthored with Jonas
Kastberg Hinrichsen and Robbert Krebbers (chapters 5 and 6), I was responsible
for key ideas, key proofs, and a large part of the writing.

• For the work on probabilistic programming (chapter 7), I was the sole author.

• For the work on coalgebraic bisimilarity minimization coauthored with Thorsten
Wißmann (chapter 8), I was responsible for the central ideas of the algorithm
and data structures, the implementation and experiments, and a large part of the
writing.

• For the work on Alzheimer’s disease (not included in this thesis) coauthored
with Firat Kara et al., I was responsible for statistical data analysis.

30

Part I

T Y P E S F O R D E A D L O C K A N D L E A K F R E E
C O N C U R R E N C Y

Chapter 1

Connectivity Graphs: A Method for Proving Deadlock
Freedom Based on Separation Logic

abstract We introduce the notion of a connectivity graph—an abstract
representation of the topology of concurrently interacting entities, which allows us
to encapsulate generic principles of reasoning about deadlock freedom. Connectivity
graphs are parametric in their vertices (representing entities like threads and channels)
and their edges (representing references between entities) with labels (representing
interaction protocols). We prove deadlock and memory leak freedom in the style of
progress and preservation and use separation logic as a meta theoretic tool to treat
connectivity graph edges and labels substructurally. To prove preservation locally,
we distill generic separation logic rules for local graph transformations that preserve
acyclicity of the connectivity graph. To prove global progress locally, we introduce
a waiting induction principle for acyclic connectivity graphs. We mechanize our
results in Coq, and instantiate our method with a higher-order binary session-typed
language to obtain the first mechanized proof of deadlock and leak freedom.

1.1 introduction

Binary session types (Honda, 1993; Honda et al., 1998) are a type discipline
for specifying protocols of interactions in message-passing concurrent programs.
Session types have turned into an active area of research that enjoys strong
theoretical and practical foundations. The theoretical foundations include a Curry-
Howard correspondence between session-typed π-calculi and linear logic (Caires
and Pfenning, 2010; Wadler, 2012; Caires et al., 2013; Pérez et al., 2014; Toninho
et al., 2013; Lindley and Morris, 2015; Toninho, 2015) and session-typed λ-calculi
with mainstream programming language features (Lindley and Morris, 2016c, 2017;
Igarashi et al., 2017; Fowler et al., 2019). The practical foundations include libraries
for session types in mainstream programming languages (Dezani-Ciancaglini et al.,
2006; Pucella and Tov, 2008; Imai et al., 2010; Jespersen et al., 2015a; Lindley and
Morris, 2016b; Scalas and Yoshida, 2016b; Padovani, 2017; Imai et al., 2019; Kokke,
2019; Chen et al., 2022).

Session-typed languages come with strong guarantees: they not only enjoy type
safety (a.k.a. session fidelity) but all well-typed programs also enjoy deadlock freedom
(and consequently, global progress). The proofs of deadlock freedom have to establish
that the dependency structure among the threads (or processes) and channels (or
buffers) remains acyclic, even in the presence of dynamic thread spawning and

32

Chapter 1

Connectivity Graphs: A Method for Proving Deadlock
Freedom Based on Separation Logic

abstract We introduce the notion of a connectivity graph—an abstract
representation of the topology of concurrently interacting entities, which allows us
to encapsulate generic principles of reasoning about deadlock freedom. Connectivity
graphs are parametric in their vertices (representing entities like threads and channels)
and their edges (representing references between entities) with labels (representing
interaction protocols). We prove deadlock and memory leak freedom in the style of
progress and preservation and use separation logic as a meta theoretic tool to treat
connectivity graph edges and labels substructurally. To prove preservation locally,
we distill generic separation logic rules for local graph transformations that preserve
acyclicity of the connectivity graph. To prove global progress locally, we introduce
a waiting induction principle for acyclic connectivity graphs. We mechanize our
results in Coq, and instantiate our method with a higher-order binary session-typed
language to obtain the first mechanized proof of deadlock and leak freedom.

1.1 introduction

Binary session types (Honda, 1993; Honda et al., 1998) are a type discipline
for specifying protocols of interactions in message-passing concurrent programs.
Session types have turned into an active area of research that enjoys strong
theoretical and practical foundations. The theoretical foundations include a Curry-
Howard correspondence between session-typed π-calculi and linear logic (Caires
and Pfenning, 2010; Wadler, 2012; Caires et al., 2013; Pérez et al., 2014; Toninho
et al., 2013; Lindley and Morris, 2015; Toninho, 2015) and session-typed λ-calculi
with mainstream programming language features (Lindley and Morris, 2016c, 2017;
Igarashi et al., 2017; Fowler et al., 2019). The practical foundations include libraries
for session types in mainstream programming languages (Dezani-Ciancaglini et al.,
2006; Pucella and Tov, 2008; Imai et al., 2010; Jespersen et al., 2015a; Lindley and
Morris, 2016b; Scalas and Yoshida, 2016b; Padovani, 2017; Imai et al., 2019; Kokke,
2019; Chen et al., 2022).

Session-typed languages come with strong guarantees: they not only enjoy type
safety (a.k.a. session fidelity) but all well-typed programs also enjoy deadlock freedom
(and consequently, global progress). The proofs of deadlock freedom have to establish
that the dependency structure among the threads (or processes) and channels (or
buffers) remains acyclic, even in the presence of dynamic thread spawning and

32

1.1 introduction

higher-order channels (Carbone and Debois, 2010). Despite the active developments
in the mechanization of the meta-theory of binary session types (Thiemann, 2019;
Rouvoet et al., 2020; Hinrichsen et al., 2021; Tassarotti et al., 2017; Goto et al., 2016;
Ciccone and Padovani, 2020; Castro-Perez et al., 2020; Gay and Vasconcelos, 2010), a
mechanized proof of deadlock freedom for binary session types with dynamic thread
and channel creation and a dynamically changing communication topology (due
to higher-order channels) is still outstanding because of the intricacies of reasoning
about graphs in a mechanized setting. While the semantics of global and local types
of multiparty session types has recently been mechanized (Castro-Perez et al., 2021),
and thus global properties such as deadlock freedom shown to hold, the result
is confined to a single session without dynamic thread and channel creation and
without higher-order channels.

In this chapter we develop a parametric proof method for deadlock freedom of
concurrently computing entities that interact via shared resources on a dynamically
changing acyclic communication topology. We mechanize the proof method in the
Coq proof assistant, and instantiate it for a deadlock freedom proof for a variant
of GV (Wadler, 2012; Lindley and Morris, 2015), a functional language with higher-
order binary linear session types. Proof mechanization has the obvious benefit
of providing the peace of mind of a machine-checked proof. Another—maybe
even more important—benefit of mechanization is that it encourages us to develop
abstractions that encapsulate the reasoning about the acyclic dependency structure
of threads and channels, and that shield us from the intricacies of a language’s
operational semantics and type system.

The key ingredients that make our proof method parametric are our new notion of
a connectivity graph, to abstract over the dependency structure, and our meta theoretic
use of separation logic (O’Hearn et al., 2001), to link our abstract connectivity graph
to the concrete language’s operational semantics and type system. A connectivity
graph abstracts concurrent entities and shared resources as vertices and their possible
interactions as edges, which are labeled with protocol state. When instantiating the
connectivity graph for session types, threads and channels become vertices, channel
references become edges whose labels indicate the session type of the referenced
channel. By asserting acyclicity of the connectivity graph, circular dependencies
among the concurrent entities and shared resources are rendered impossible. This
guarantees that at any moment at least one interaction can happen (deadlock
freedom) and that all channels are deallocated when the program terminates
(memory leak freedom).

example Before we explain the parametric aspects of our proof method, let us
consider an example program to see connectivity graphs for linear session types in
action:

33

1.1 introduction

After both forks:

TC1 C2

T1 T2
! (? N). ? N

! N

? (? N). ! N ? N

After T2’s send:

TC1 C2

T1 T2
? N

! N

? (? N). ! N

? N

After T1’s receive:

TC1 C2

T1 T2

? N

! N

! N

? N

Figure 2: Connectivity graphs with run-time information for our example program (the End
markers have been elided from session types). Boxes depict threads (red boxes
are blocked threads, green dotted boxes are running threads). Blue cicles depict
channels. Black edges indicate references to channel endpoints, labeled with their
session type. Red triangles reveal the waiting dependency for each reference to a
channel endpoint: either the owner of the endpoint is waiting to receive a message
from the channel, or the channel is waiting for the owner of the endpoint to initiate
the next action (send or receive or close).

1 let c1 = fork (λ c1’, // c1’: ? (? N. End). ! N. End
2 let (c1’,c) = receive(c1’) // c1’: ! N. End, c: ? N. End
3 let (c,n) = receive(c); ...) // c1’: ! N. End, c: End
4
5 let c2 = fork (λ c2’, // c1: ! (? N. End). ? N. End, c2’: ? N. End
6 let c1 = send(c1,c2’); // c1: ? N. End
7 let (c1,m) = receive(c1); ...) // c1: End
8
9 // c2: ! N. End

10 let c2 = send(c2,10); ... // c2: End

T

T1

T2

The main thread (T) uses the fork construct to spawn two threads (T1 and T2)
with bidirectional channels (C1 and C2) connecting them to the main thread. The
endpoints c2 and c2’ of channel C2 (created on Line 5) have session types (! N. End)
and (? N. End), respectively. These dual session types express that a number should
be sent (!) over c2 and received (?) over c2’. The session types of channel C1 (created
on Line 1) are more interesting—they are higher-order. Endpoint c1 has session
type (! (? N. End). ? N. End), which expresses that first a channel of type (? N. End)
should be sent, after which a number can be received. The λ-expression of thread T2
captures endpoint c1, resulting in the ownership of c1 being transferred from thread
T to thread T2.

The first picture in Figure 2 displays the connectivity graph after both forks have
been executed, but no other steps have been performed yet. The solid red boxes
correspond to threads that are blocked on a receive, while the dotted green boxes
correspond to threads that can make progress. The small black arrowheads on
the edges indicate the direction of channel ownership: an edge from a thread to a
channel indicates that the thread owns an endpoint of that channel, and an edge from

34

1.1 introduction

After both forks:

TC1 C2

T1 T2
! (? N). ? N

! N

? (? N). ! N ? N

After T2’s send:

TC1 C2

T1 T2
? N

! N

? (? N). ! N

? N

After T1’s receive:

TC1 C2

T1 T2

? N

! N

! N

? N

Figure 2: Connectivity graphs with run-time information for our example program (the End
markers have been elided from session types). Boxes depict threads (red boxes
are blocked threads, green dotted boxes are running threads). Blue cicles depict
channels. Black edges indicate references to channel endpoints, labeled with their
session type. Red triangles reveal the waiting dependency for each reference to a
channel endpoint: either the owner of the endpoint is waiting to receive a message
from the channel, or the channel is waiting for the owner of the endpoint to initiate
the next action (send or receive or close).

1 let c1 = fork (λ c1’, // c1’: ? (? N. End). ! N. End
2 let (c1’,c) = receive(c1’) // c1’: ! N. End, c: ? N. End
3 let (c,n) = receive(c); ...) // c1’: ! N. End, c: End
4
5 let c2 = fork (λ c2’, // c1: ! (? N. End). ? N. End, c2’: ? N. End
6 let c1 = send(c1,c2’); // c1: ? N. End
7 let (c1,m) = receive(c1); ...) // c1: End
8
9 // c2: ! N. End

10 let c2 = send(c2,10); ... // c2: End

T

T1

T2

The main thread (T) uses the fork construct to spawn two threads (T1 and T2)
with bidirectional channels (C1 and C2) connecting them to the main thread. The
endpoints c2 and c2’ of channel C2 (created on Line 5) have session types (! N. End)
and (? N. End), respectively. These dual session types express that a number should
be sent (!) over c2 and received (?) over c2’. The session types of channel C1 (created
on Line 1) are more interesting—they are higher-order. Endpoint c1 has session
type (! (? N. End). ? N. End), which expresses that first a channel of type (? N. End)
should be sent, after which a number can be received. The λ-expression of thread T2
captures endpoint c1, resulting in the ownership of c1 being transferred from thread
T to thread T2.

The first picture in Figure 2 displays the connectivity graph after both forks have
been executed, but no other steps have been performed yet. The solid red boxes
correspond to threads that are blocked on a receive, while the dotted green boxes
correspond to threads that can make progress. The small black arrowheads on
the edges indicate the direction of channel ownership: an edge from a thread to a
channel indicates that the thread owns an endpoint of that channel, and an edge from

34

1.1 introduction

a channel to a channel indicates that an endpoint of the latter channel is stored in one
of the buffers of the former channel (an edge between two threads is not possible—all
references are to channels). The red triangles denote the waiting dependency. A
crucial property of the connectivity graph is that the waiting dependency remains
acyclic. Acyclicity enables us to find a thread that can make progress by starting at
any vertex and repeatedly following the red triangles. For example, when starting at
thread T1, which is blocked, we find that thread T2 can perform a step.

When we continue by letting thread T2 perform the send operation on Line 6, the
send will move the endpoint c2’ into the buffer of C1. In general, the effect of the
send operation on the connectivity graph is as follows:

T C ?

v
C3C2C1

! τ. s
T C ?

v
C3C2C1

s

send(c, v)

On the left, thread T has ownership of the transmitted value v and the endpoint of
carrier channel C with session type ! τ. s. The value v could in general contain any
number of channel references (depicted as C1, C2, C3), for instance when it is a pair
of channels or a closure that has captured more than one channel. On the right, we
have the resulting connectivity graph that we obtain after the send operation has been
performed. The session type changes to s (i.e., the remainder of the protocol) and the
value v gets transferred to the buffer of C, so the incoming edges of the channels in
v are changed from T to C. Note that the red waiting triangles and the information
about whether a thread is blocked is not part of the connectivity graph because it
can be derived from the run-time configuration. We therefore depict the general
transformation rule without waiting triangles and use a neutral color for threads.
In our running example, the thread is T2, the channel is C1, and the value v is the
single channel C2. The second picture in Figure 2 displays the resulting connectivity
graph: the session type of T2 has advanced to (? N. End) and the incoming edge from
C2 to T2 has turned into an incoming edge from C2 to C1.

Next, we let thread T1 perform the recv operation on Line 2, which will move
the endpoint out of the buffer of channel C1 and bind it to variable c. The rule to
transform the connectivity graph for a receive operation is similar to send (the exact
rule can be found in Figure 9 in Section 1.3.5). The third picture in Figure 2 displays
the resulting connectivity graph, where we see that the session type of T1 advanced,
and that the outgoing edge from C1 to C2 has turned into an outgoing edge from
T1 to C2. Observe that the connectivity graph has a non-trivial structure—to find a
thread that can unblock T2, we need to follow multiple edges to end up in thread T.

progress and preservation As shown by the examples in Figure 2,
connectivity graphs describe the types and abstract reference topology of a program’s

35

1.1 introduction

execution configuration, but not the concrete expressions and values that constitute
the threads and channels. To prove a property about the operational semantics, we
need to define a relation that expresses that a configuration ρ is well-formed w.r.t. a
connectivity graph G. With that relation at hand, we can carry out a proof in the
style of progress and preservation (Wright and Felleisen, 1994; Harper, 2016; Pierce,
2002).

• Progress: If ρ is well-formed w.r.t. G, then either ρ is final (all threads have
terminated and all channels have been deallocated), or ρ can step (deadlock
freedom).

• Preservation: If ρ is well-formed w.r.t. G, and can take a step ρ � ρ′ in the
operational semantics, then we can transform G into G′ so that ρ′ is well-formed
w.r.t. G′.

It is important to point out that connectivity graphs generalize heap typings from
traditional progress and preservation proofs for type systems with mutable references
(Pierce, 2002; Harper, 2016). Whereas heap typings are flat (they merely give the
types of channels, which suffices for type safety), connectivity graphs additionally
describe the reference topology and ensure its acyclicity (needed for deadlock and
memory leak freedom).1

connectivity graphs as a parametric proof principle When trying to
formalize the above reasoning, we encounter two problems:

1. Due to linear types and concurrency, it is non-trivial to formalize the well-
formedness relation of configurations w.r.t. connectivity graphs. Definitions
easily end up cluttered with details about resource separation, which burdens
mechanization in a proof assistant.

2. Proving preservation and progress involves non-trivial reasoning about graphs.
For preservation we need to transform graphs (to type a post-configuration),
and for progress we need to traverse graphs (to find a thread that can step).
Reasoning about graphs is difficult in a proof assistant because graphs are not
inductively defined.

To address these problems, we use separation logic (O’Hearn et al., 2001) as
a meta theoretic tool to reason about graphs. Traditionally, separation logic is
used as a specification language to write pre- and postconditions for individual
programs in Hoare-style logics. Inspired by recent work that uses separation logic to
establish type safety using logical relations (Krebbers et al., 2017b; Jung et al., 2018a;
Hinrichsen et al., 2021) and intrinsically-typed interpreters and compilers (Rouvoet

1 In fact, in order to ensure that acyclicity is preserved as an invariant, we impose the stronger condition
that the undirected erasure of the graph is acyclic, i.e.,, the graph is an undirected forest when the direction
of the edges is erased.

36

1.1 introduction

execution configuration, but not the concrete expressions and values that constitute
the threads and channels. To prove a property about the operational semantics, we
need to define a relation that expresses that a configuration ρ is well-formed w.r.t. a
connectivity graph G. With that relation at hand, we can carry out a proof in the
style of progress and preservation (Wright and Felleisen, 1994; Harper, 2016; Pierce,
2002).

• Progress: If ρ is well-formed w.r.t. G, then either ρ is final (all threads have
terminated and all channels have been deallocated), or ρ can step (deadlock
freedom).

• Preservation: If ρ is well-formed w.r.t. G, and can take a step ρ � ρ′ in the
operational semantics, then we can transform G into G′ so that ρ′ is well-formed
w.r.t. G′.

It is important to point out that connectivity graphs generalize heap typings from
traditional progress and preservation proofs for type systems with mutable references
(Pierce, 2002; Harper, 2016). Whereas heap typings are flat (they merely give the
types of channels, which suffices for type safety), connectivity graphs additionally
describe the reference topology and ensure its acyclicity (needed for deadlock and
memory leak freedom).1

connectivity graphs as a parametric proof principle When trying to
formalize the above reasoning, we encounter two problems:

1. Due to linear types and concurrency, it is non-trivial to formalize the well-
formedness relation of configurations w.r.t. connectivity graphs. Definitions
easily end up cluttered with details about resource separation, which burdens
mechanization in a proof assistant.

2. Proving preservation and progress involves non-trivial reasoning about graphs.
For preservation we need to transform graphs (to type a post-configuration),
and for progress we need to traverse graphs (to find a thread that can step).
Reasoning about graphs is difficult in a proof assistant because graphs are not
inductively defined.

To address these problems, we use separation logic (O’Hearn et al., 2001) as
a meta theoretic tool to reason about graphs. Traditionally, separation logic is
used as a specification language to write pre- and postconditions for individual
programs in Hoare-style logics. Inspired by recent work that uses separation logic to
establish type safety using logical relations (Krebbers et al., 2017b; Jung et al., 2018a;
Hinrichsen et al., 2021) and intrinsically-typed interpreters and compilers (Rouvoet

1 In fact, in order to ensure that acyclicity is preserved as an invariant, we impose the stronger condition
that the undirected erasure of the graph is acyclic, i.e.,, the graph is an undirected forest when the direction
of the edges is erased.

36

1.1 introduction

et al., 2020, 2021), we also use separation logic but in the context of a progress and
preservation proof.

Our version of separation logic makes it possible to define the well-formedness
relation in a way that is local (i.e., talks about threads in isolation) and that hides
resources. To adopt separation logic for our connectivity graph, we must decide on
what to consider as a resource. The scenarios in Figure 2 suggest that we should
consider a vertex’s outgoing edges as resources, because then a graph transformation,
such as the one induced by moving endpoint c2’ into C1’s buffer, simply amounts
to an ownership transfer. To prove preservation, we distill a set of separation logic
rules for reasoning about graph transformations by simply transferring ownership
of resources. To prove progress, we distill a form of waiting induction to perform
induction on the connectivity graph to find a vertex that can perform a step.

All ingredients of our method (the definition of connectivity graph, the separation
logic, the graph transformations, and waiting induction) are parametric in the
vertices, edges and labels of the connectivity graph. This is crucial for mechanization:
we can encapsulate our proof method as a library that is independent of the concrete
programming language. We use our library in combination with the Iris Proof
Mode (Krebbers et al., 2017b, 2018)—which provides tactics for separation-logic
based reasoning—to effectively hide reasoning about graphs and resources in Coq.

contributions We present a parametric method for proving deadlock and
memory leak freedom of binary linear session-typed languages. Concretely:

• We introduce connectivity graphs as a generalization of heap typings in progress
and preservation proofs. In addition to typing, connectivity graphs track the
reference topology.

• We show how to use separation logic in a non-standard way as a language for
linking our abstract connectivity graphs to a concrete language’s operational
semantics and type system.

• We implement connectivity graphs as a library in the Coq proof assistant that
is parametric in the type of vertices and edges. Our library includes graph
transformations as separation logic rules to aid proving preservation, and a
principle of waiting induction over connectivity graphs to aid proving progress.

• We use our connectivity graph library to obtain the first mechanized proof of
deadlock and leak freedom for a binary session-typed λ-calculus with higher-
order channels, recursive types, and unrestricted types.

We start by introducing our language (Section 1.2), and explain our key ideas by
proving deadlock freedom for it (Section 1.3). Next, we present the parametric
aspects of our proof method (Sections 1.4 and 1.5). We then add extensions to our
language, and prove a stronger deadlock and memory leak freedom property than the
conventional formulation in terms of global progress (Section 1.6), and describe our

37

1.2 language and operational semantics

Coq mechanization (Section 1.7). We finish with related and future work (Sections 1.8
and 1.9). An archive of the Coq mechanization can be found at Jacobs et al. (2021),
and the most recent version at https://github.com/julesjacobs/cgraphs.

1.2 language and operational semantics

We present the core of our session-typed λ-calculus with concurrency and
asynchronous bidirectional channels (extensions with more features are described
in Section 1.6). This language is inspired by GV (Wadler, 2012; Lindley and Morris,
2015), but there are a couple of differences. First, we are more liberal and allow
both channel endpoints to be closed anytime, rather than only when a thread
terminates. For our proofs this extension poses no problem—it just means that our
connectivity graphs might become disconnected. Second, our operational semantics
uses a flat thread pool and heap rather than binders and structural congruences,
resembling more closely a realistic implementation of message passing. The syntax
of expressions of our core language is:

e ∈ Expr ::= x | () | n | (e, e) | λx. e | c | e e | let () = e in e | let (x1, x2) = e in e |
if e then e else e | fork(e) | send(e, e) | receive(e) | close(e) | · · ·

The literals include the unit value (), numbers n ∈ N, and channel endpoint
references c ∈ Chan (these enter expressions at run time, see the operational semantics
below). As usual in a linearly-typed language, we consider let-binding constructs
let () = e in e and let (x1, x2) = e in e for pattern matching on the unit value () and
pairs (e, e), respectively.

operational semantics . We use an asynchronous semantics with two buffers
per channel to guarantee that sends in either direction are non-blocking.2 This is
formally modeled as:

c ∈ Chan ::= #(a, t) h ∈ Heap ≜ Chan fin−⇀ ListVal

v ∈Val ::= () | n | (v, v) | λx. e | c ρ ∈ Cfg ≜ List Expr ×Heap

A heap h is a finite map from channel endpoint references to buffers (modeled as lists
of values). Channel endpoint references #(a, t) consist of an address a ∈ Addr and
a tag t ∈ {0, 1} denoting the endpoint. The operation #(n, t) ≜ #(n, 1 − t) gives the
opposite endpoint. Configurations (e,h) consist of a list of expressions e, modeling
the threads, and a heap h that is shared by these threads. The semantics of most
constructs is standard, so we focus on the message passing constructs:

2 Due to the session typing discipline, only one of the buffers is expected to be populated at any given
time. The two buffers are important to distinguish the origin of the messages, because otherwise an
asynchronous send followed by a receive creates a risk that the thread receives back its own message that
it just sent.

38

1.2 language and operational semantics

Coq mechanization (Section 1.7). We finish with related and future work (Sections 1.8
and 1.9). An archive of the Coq mechanization can be found at Jacobs et al. (2021),
and the most recent version at https://github.com/julesjacobs/cgraphs.

1.2 language and operational semantics

We present the core of our session-typed λ-calculus with concurrency and
asynchronous bidirectional channels (extensions with more features are described
in Section 1.6). This language is inspired by GV (Wadler, 2012; Lindley and Morris,
2015), but there are a couple of differences. First, we are more liberal and allow
both channel endpoints to be closed anytime, rather than only when a thread
terminates. For our proofs this extension poses no problem—it just means that our
connectivity graphs might become disconnected. Second, our operational semantics
uses a flat thread pool and heap rather than binders and structural congruences,
resembling more closely a realistic implementation of message passing. The syntax
of expressions of our core language is:

e ∈ Expr ::= x | () | n | (e, e) | λx. e | c | e e | let () = e in e | let (x1, x2) = e in e |
if e then e else e | fork(e) | send(e, e) | receive(e) | close(e) | · · ·

The literals include the unit value (), numbers n ∈ N, and channel endpoint
references c ∈ Chan (these enter expressions at run time, see the operational semantics
below). As usual in a linearly-typed language, we consider let-binding constructs
let () = e in e and let (x1, x2) = e in e for pattern matching on the unit value () and
pairs (e, e), respectively.

operational semantics . We use an asynchronous semantics with two buffers
per channel to guarantee that sends in either direction are non-blocking.2 This is
formally modeled as:

c ∈ Chan ::= #(a, t) h ∈ Heap ≜ Chan fin−⇀ ListVal

v ∈Val ::= () | n | (v, v) | λx. e | c ρ ∈ Cfg ≜ List Expr ×Heap

A heap h is a finite map from channel endpoint references to buffers (modeled as lists
of values). Channel endpoint references #(a, t) consist of an address a ∈ Addr and
a tag t ∈ {0, 1} denoting the endpoint. The operation #(n, t) ≜ #(n, 1 − t) gives the
opposite endpoint. Configurations (e,h) consist of a list of expressions e, modeling
the threads, and a heap h that is shared by these threads. The semantics of most
constructs is standard, so we focus on the message passing constructs:

2 Due to the session typing discipline, only one of the buffers is expected to be populated at any given
time. The two buffers are important to distinguish the origin of the messages, because otherwise an
asynchronous send followed by a receive creates a risk that the thread receives back its own message that
it just sent.

38

1.2 language and operational semantics

Pure reduction relation:

(λx. e) v�pure e[v/x]
let x = v in e�pure e[v/x]

let () = () in e�pure e

let (x1, x2) = (v1, v2) in e�pure e[v1/x1][v2/x2]
if n then e1 else e2 �pure e1 (if n ≠ 0)
if n then e1 else e2 �pure e2 (if n = 0)

Head reduction relation:

(e1,h)�head (e2,h, ϵ) (if e1 �pure e2)
(fork(v),h)�head (#(a, 1),h⊎ {(a, 0) ↦→ ϵ, (a, 1) ↦→ ϵ}, [v #(a, 0)])

(if (a, 0), (a, 1) ∉ dom(h))
(send(c, v),h⊎ {c ↦→ v})�head (c,h⊎ {c ↦→ v++ [v]}, ϵ)

(receive(c),h⊎ {c ↦→ [v] ++ v})�head ((c, v),h⊎ {c ↦→ v}, ϵ)
(close(c),h⊎ {c ↦→ ϵ})�head ((),h, ϵ)

Global reduction relation:

(ea ++ [K[e]] ++ eb,h)�global (ea ++ [K[e′]] ++ eb ++ e,h′)
(if (e,h)�head (e′,h′, e))

Evaluation contexts:

K ∈ Ctx ::= □ | (K, e) | (v,K) | K e | v K |
let x = K in e | let () = K in e | let (x1, x2) = K in e | if K then e1 else e2 |
fork(K) | send(K, e) | send(v,K) | receive(K) | close(K)

Figure 3: The operational semantics of our language.

39

1.2 language and operational semantics

// no counter party
let c1 = fork(λ c1’, ())
receive(c1)

T C1 T1

// protocol violation
let c1 = fork(λ c1’, receive(c1’); ...)
receive(c1)

T C1 T1

// circular dependency
let c1 = fork(λ c1’, send(c1’, c1’))
let (c1,c1’) = receive(c1)
let c2 = fork(λ c2’,

receive(c2’); send(c1’, 2); ...)
receive(c1); send(c2, 3)

T C1

T2C2

T1

// memory leak
let c1 = fork(λ c1’, ())
let c2 = fork(λ c2’, ())
send(c2, c1)
send(c1, c2)

T C1 T1

T2 C2

Figure 4: Examples of configurations that are deadlocked or have leaked.

fork(v) Allocates a new channel with endpoints cleft ≜ #(a, 0) and cright ≜ #(a, 1),
where a is a fresh address. It starts a new thread running v cleft (v should be a
function) and returns cright.

send(c , v) Places the message v into the buffer of the opposite endpoint c of c and
returns c.3 This construct does not block.

receive(c) Takes a message v out of the buffer of endpoint c and returns the pair
(c, v). If the buffer is empty, it blocks until a message is available.

close(c) Closes the endpoint c and returns the unit value (). This construct does
not block.

The formal definition of the semantics is given in Figure 3. It involves three reduction
relations: (1) pure reductions e�pure e′, (2) head-reductions (e,h)�head (e′,h′, e),
where e is a list of spawned threads (empty for all constructs but fork), and (3)
global reductions ρ�global ρ

′. Global reductions make use of standard call-by-value
evaluation contexts K ∈ Ctx.

deadlocks and memory leaks . Untyped programs in our language can
deadlock or have memory leaks. A configuration (e,h) is deadlocked if each expression

3 The reason why send returns the endpoint c is the session type system, which gives the endpoint a new
type, prescribing the remainder of the protocol. The same applies to the receive operation.

40

1.2 language and operational semantics

// no counter party
let c1 = fork(λ c1’, ())
receive(c1)

T C1 T1

// protocol violation
let c1 = fork(λ c1’, receive(c1’); ...)
receive(c1)

T C1 T1

// circular dependency
let c1 = fork(λ c1’, send(c1’, c1’))
let (c1,c1’) = receive(c1)
let c2 = fork(λ c2’,

receive(c2’); send(c1’, 2); ...)
receive(c1); send(c2, 3)

T C1

T2C2

T1

// memory leak
let c1 = fork(λ c1’, ())
let c2 = fork(λ c2’, ())
send(c2, c1)
send(c1, c2)

T C1 T1

T2 C2

Figure 4: Examples of configurations that are deadlocked or have leaked.

fork(v) Allocates a new channel with endpoints cleft ≜ #(a, 0) and cright ≜ #(a, 1),
where a is a fresh address. It starts a new thread running v cleft (v should be a
function) and returns cright.

send(c , v) Places the message v into the buffer of the opposite endpoint c of c and
returns c.3 This construct does not block.

receive(c) Takes a message v out of the buffer of endpoint c and returns the pair
(c, v). If the buffer is empty, it blocks until a message is available.

close(c) Closes the endpoint c and returns the unit value (). This construct does
not block.

The formal definition of the semantics is given in Figure 3. It involves three reduction
relations: (1) pure reductions e�pure e′, (2) head-reductions (e,h)�head (e′,h′, e),
where e is a list of spawned threads (empty for all constructs but fork), and (3)
global reductions ρ�global ρ

′. Global reductions make use of standard call-by-value
evaluation contexts K ∈ Ctx.

deadlocks and memory leaks . Untyped programs in our language can
deadlock or have memory leaks. A configuration (e,h) is deadlocked if each expression

3 The reason why send returns the endpoint c is the session type system, which gives the endpoint a new
type, prescribing the remainder of the protocol. The same applies to the receive operation.

40

1.2 language and operational semantics

Γ = {x ↦→ τ}
Γ ⊢ x : τ

.

∅ ⊢ () : 1

n ∈ N

∅ ⊢ n : N

Γ1 ⊢ e1 : τ1 Γ2 ⊢ e2 : τ2

Γ1 ⊎ Γ2 ⊢ (e1, e2) : τ1 × τ2

Γ ⊎ {x ↦→ τ1} ⊢ e : τ2

Γ ⊢ λx. e : τ1 −◦ τ2

Γ1 ⊢ e1 : τ1 −◦ τ2 Γ2 ⊢ e2 : τ1

Γ1 ⊎ Γ2 ⊢ e1 e2 : τ2

Γ1 ⊢ e1 : τ1 Γ2 ⊎ {x ↦→ τ1} ⊢ e2 : τ2

Γ1 ⊎ Γ2 ⊢ let x = e1 in e2 : τ2

Γ1 ⊢ e1 : 1 Γ2 ⊢ e2 : τ

Γ1 ⊎ Γ2 ⊢ let () = e1 in e2 : τ

Γ1 ⊢ e1 : τ1 × τ2 Γ2 ⊎ {x1 ↦→ τ1} ⊎ {x2 ↦→ τ2} ⊢ e2 : τ

Γ1 ⊎ Γ2 ⊢ let (x1, x2) = e1 in e2 : τ

Γ1 ⊢ e1 : N Γ2 ⊢ e2 : τ Γ2 ⊢ e3 : τ

Γ1 ⊎ Γ2 ⊢ if e1 then e2 else e3 : τ

Γ ⊢ e : s −◦ 1

Γ ⊢ fork(e) : s

Γ1 ⊢ e1 : ! τ. s Γ2 ⊢ e2 : τ

Γ1 ⊎ Γ2 ⊢ send(e1, e2) : s

Γ ⊢ e : ? τ. s

Γ ⊢ receive(e) : s× τ

Γ ⊢ e : End

Γ ⊢ close(e) : 1

Figure 5: The static type system of our language.

e ∈ e is a receive(c) that is waiting on an empty buffer c in the heap h. A configuration
(e,h) has leaked if each expression e ∈ e is a value, but the heap h is not empty,
meaning not all channels have been closed. In Figure 4 we show examples of both.
On the left we show the code, and on the right we show a graphical representation of
the resulting configuration. As in Section 1.1, boxes denote threads (i.e., expressions),
circles denote channels (i.e., buffer pairs), black arrows denote channel references,
and red triangles denote the waiting dependency. Concretely, a thread with a red
triangle pointing to a channel is waiting to receive a message from that channel, and
a channel with a red triangle pointing to a thread is waiting for the thread to send a
message along that channel.

The simplest form of deadlock is a thread attempting to receive a message from a
channel that nobody else has a reference to (first program). If threads violate the
usual protocol that one side receives and the other side sends a message, then a
deadlock can occur if both try to receive (second program). A deadlock can occur
even if all parties are locally well behaved, but cause a cyclic dependency (third
program). Note that even though the reference structure (black arrows) of this
example forms a directed acyclic graph, a deadlock occurs because the waiting
direction (red triangles) can be opposite of the reference direction (black arrows).
Finally, memory leaks can occur if channels are not properly closed (fourth program).

41

1.3 key ideas

session typing . A linear type system with session types can be used to rule out
deadlocks:4

τ ∈ Type ::= 1 | N | τ× τ | τ −◦ τ | s
s ∈ Session ::= End | ? τ. s | ! τ. s

A session type s denotes a sequence of actions, with ? τ indicating a receive, ! τ a
send, and End termination, where τ denotes the type of the message. The dual s of a
session type s is defined by flipping all sends (!) and receives (?):

End ≜ End ! τ. s ≜ ? τ. s ? τ. s ≜ ! τ. s

The rules of the type system are shown in Figure 5. Note that the type system is
higher-order because it allows sending any value over a channel, including functions
and channel endpoints.

Session types ensure deadlock and leak freedom by combining channel and thread
creation through the fork construct.5 Together with linear channel typing, this ensures
that the resulting reference structure is acyclic, even when viewed as an undirected
graph, in which edges may be traversed in either direction. Let us consider the
deadlocked programs in Figure 4. The first one is ruled out by ensuring that there
always exists a counter party (due to the absence of weakening). The second one is
ruled out by ensuring that all threads adhere to protocols (due to session duality).
The third one is ruled out by ensuring that the reference structure is acyclic (due to
the absence of contraction). The memory leak in the last example is ruled out by a
combination of these rules.

1.3 key ideas

Before we detail the abstractions that make our proof method parametric (Section 1.4
and Section 1.5), we describe a concrete instantiation of our method to our session-
typed language (Section 1.2). To do so, we first discuss the well-known method of
progress and preservation and the challenges in applying it to prove deadlock and
resource leak freedom (Section 1.3.1). To address these challenges, we introduce
connectivity graphs (Section 1.3.2) and describe how we use separation logic to
formalize run-time typing judgments for individual expressions (Section 1.3.3) and
a well-formedness predicate for configurations (Section 1.3.4). We finally show
how to use our proof method to prove preservation (Section 1.3.5) and progress
(Section 1.3.6).

4 For simplicity we let even integers be linear; in Section 1.6 we extend the type system with support for
unrestricted types.

5 If we had a new_chan : 1 −◦ (s× s) construct, then let (c1,c2) = new_chan () in let x = receive(c1) in . . .
would deadlock.

42

1.3 key ideas

session typing . A linear type system with session types can be used to rule out
deadlocks:4

τ ∈ Type ::= 1 | N | τ× τ | τ −◦ τ | s
s ∈ Session ::= End | ? τ. s | ! τ. s

A session type s denotes a sequence of actions, with ? τ indicating a receive, ! τ a
send, and End termination, where τ denotes the type of the message. The dual s of a
session type s is defined by flipping all sends (!) and receives (?):

End ≜ End ! τ. s ≜ ? τ. s ? τ. s ≜ ! τ. s

The rules of the type system are shown in Figure 5. Note that the type system is
higher-order because it allows sending any value over a channel, including functions
and channel endpoints.

Session types ensure deadlock and leak freedom by combining channel and thread
creation through the fork construct.5 Together with linear channel typing, this ensures
that the resulting reference structure is acyclic, even when viewed as an undirected
graph, in which edges may be traversed in either direction. Let us consider the
deadlocked programs in Figure 4. The first one is ruled out by ensuring that there
always exists a counter party (due to the absence of weakening). The second one is
ruled out by ensuring that all threads adhere to protocols (due to session duality).
The third one is ruled out by ensuring that the reference structure is acyclic (due to
the absence of contraction). The memory leak in the last example is ruled out by a
combination of these rules.

1.3 key ideas

Before we detail the abstractions that make our proof method parametric (Section 1.4
and Section 1.5), we describe a concrete instantiation of our method to our session-
typed language (Section 1.2). To do so, we first discuss the well-known method of
progress and preservation and the challenges in applying it to prove deadlock and
resource leak freedom (Section 1.3.1). To address these challenges, we introduce
connectivity graphs (Section 1.3.2) and describe how we use separation logic to
formalize run-time typing judgments for individual expressions (Section 1.3.3) and
a well-formedness predicate for configurations (Section 1.3.4). We finally show
how to use our proof method to prove preservation (Section 1.3.5) and progress
(Section 1.3.6).

4 For simplicity we let even integers be linear; in Section 1.6 we extend the type system with support for
unrestricted types.

5 If we had a new_chan : 1 −◦ (s× s) construct, then let (c1,c2) = new_chan () in let x = receive(c1) in . . .
would deadlock.

42

1.3 key ideas

1.3.1 Generalizing The Progress and Preservation Method

Traditionally, a language is said to be type safe if well typed programs do not get
stuck. For purely functional languages, like the Simply Typed Lambda Calculus
(STLC), this is stated as:

Theorem 1.3.1 (Type safety). If ∅ ⊢ e : τ and e�∗ e′, then either e′ is a value, or e′ can
step further (i.e., ∃e′′. e′ � e′′).

Type safety is often proved using the method of progress and preservation (Wright
and Felleisen, 1994; Harper, 2016; Pierce, 2002), which decomposes type safety into
two properties that imply it:

• Preservation: If ∅ ⊢ e : τ and e� e′, then ∅ ⊢ e′ : τ.

• Progress: If ∅ ⊢ e : τ, then either e is a value, or e can step (i.e., ∃e′′. e′ � e′′).

For pure languages like STLC, the proofs of these properties are straightforward:
both properties are proved by induction on the structure of the typing judgment
and/or the reduction relation.

For languages with mutable state or concurrency, the above properties must be
generalized to account for a program’s run-time configurations. In general, for a
language with expressions Expr we have a set ρ ∈ Cfg of configurations, an initial
configuration init ∈ Expr → Cfg, and a predicate final ∈ Cfg → Prop of configurations
that are considered to be safely terminated.

Theorem 1.3.2 (Generalized type safety). If ∅ ⊢ e : () and init(e) �∗ ρ, then either
final(ρ) or ρ can step further (i.e., ∃ρ′. ρ� ρ′).

Recall that for our session-typed language we have Cfg ≜ List Expr ×Heap. We let
final select configurations where all threads have terminated with a unit value, and
the heap is empty:

init(e) ≜ ([e], ∅) final(e,h) ≜ h = ∅ ∧ ∀i. ei = ()

By defining final this way, the type safety theorem expresses deadlock and memory
leak freedom.6 To see why, consider a configuration ρ = (e,h) that does not satisfy
final(ρ) and cannot step any further. It must either consist of threads e that have not
terminated but cannot step (indicating a deadlock), or of terminated threads e but a
non-empty heap h (indicating a memory leak).

For deadlock and resource leak freedom, we need to restrict expressions to have
a ground type. For example, an expression like fork(λx. close(x)) : End exhibits a
trivial memory leak because the channel endpoint returned by fork() is still active.

6 This kind of deadlock freedom is also known as global progress in the session type literature. In Section 1.6.3
we prove a stronger property that also rules out partial deadlocks.

43

1.3 key ideas

For simplicity, we use the unit type () in Theorem 1.3.2, but of course, other ground
types like N would suffice too.

The method of progress and preservation can be generalized to prove our
generalized type safety theorem (Theorem 1.3.2) by choosing a well-formedness
predicate wf ∈ Cfg → Prop that satisfies:

• Initialization: If ∅ ⊢ e : (), then wf(init(e)).

• Generalized preservation: If wf(ρ) and ρ� ρ′, then wf(ρ′).

• Generalized progress: If wf(ρ), then either final(ρ) or ρ can step further (i.e.,
∃ρ′. ρ� ρ′).

The primary challenge is to define a well-formedness predicate wf in such a way
that these properties can be proved. A naive definition of wf(e,h) would simply
demand each expression in the thread pool e and each buffer in the heap h to be
well typed. Unfortunately, this naive definition does not quite work:

1. Channel references #(a, t) enter the expressions e and heap h throughout the
execution of the program. The typing judgment Γ ⊢ e : τ of our type system
(Figure 5) does not account for channel references #(a, t) because they cannot
be written in source programs.

2. Whenever a channel reference #(a, t) appears in a thread or channel buffer, the
type of #(a, t) should match up with the values in the buffers at address a in
the heap h, and with the type #(a, 1 − t) of the other endpoint.

For the simpler case of proving type safety for the STLC with references, Harper
(2016) and Pierce (2002) remedy issue (1) by introducing a run-time typing judgment
Γ ;Σ ⊢ e : τ. This judgment extends the static typing judgment with a heap typing Σ,
which assigns types to heap addresses. Issue (2) is addressed because the heap typing
makes sure that the typing of each reference is consistent with the corresponding
value in the heap.

Unfortunately, adapting this approach to prove deadlock and resource freedom is
not as simple. Conventional heap typings only capture the typing of addresses, not
the acyclicity of the reference topology. The latter is crucial to prove “generalized
progress”, which states that the well-formedness predicate wf indeed implies
deadlock and resource leak freedom.

1.3.2 Generalizing Heap Typings to Connectivity Graphs

Our notion of connectivity graphs generalizes the notion of heap typings by
simultaneously keeping track of the types of channels in the heap, and providing an
abstract representation of the reference topology. In their full generality, connectivity

44

1.3 key ideas

For simplicity, we use the unit type () in Theorem 1.3.2, but of course, other ground
types like N would suffice too.

The method of progress and preservation can be generalized to prove our
generalized type safety theorem (Theorem 1.3.2) by choosing a well-formedness
predicate wf ∈ Cfg → Prop that satisfies:

• Initialization: If ∅ ⊢ e : (), then wf(init(e)).

• Generalized preservation: If wf(ρ) and ρ� ρ′, then wf(ρ′).

• Generalized progress: If wf(ρ), then either final(ρ) or ρ can step further (i.e.,
∃ρ′. ρ� ρ′).

The primary challenge is to define a well-formedness predicate wf in such a way
that these properties can be proved. A naive definition of wf(e,h) would simply
demand each expression in the thread pool e and each buffer in the heap h to be
well typed. Unfortunately, this naive definition does not quite work:

1. Channel references #(a, t) enter the expressions e and heap h throughout the
execution of the program. The typing judgment Γ ⊢ e : τ of our type system
(Figure 5) does not account for channel references #(a, t) because they cannot
be written in source programs.

2. Whenever a channel reference #(a, t) appears in a thread or channel buffer, the
type of #(a, t) should match up with the values in the buffers at address a in
the heap h, and with the type #(a, 1 − t) of the other endpoint.

For the simpler case of proving type safety for the STLC with references, Harper
(2016) and Pierce (2002) remedy issue (1) by introducing a run-time typing judgment
Γ ;Σ ⊢ e : τ. This judgment extends the static typing judgment with a heap typing Σ,
which assigns types to heap addresses. Issue (2) is addressed because the heap typing
makes sure that the typing of each reference is consistent with the corresponding
value in the heap.

Unfortunately, adapting this approach to prove deadlock and resource freedom is
not as simple. Conventional heap typings only capture the typing of addresses, not
the acyclicity of the reference topology. The latter is crucial to prove “generalized
progress”, which states that the well-formedness predicate wf indeed implies
deadlock and resource leak freedom.

1.3.2 Generalizing Heap Typings to Connectivity Graphs

Our notion of connectivity graphs generalizes the notion of heap typings by
simultaneously keeping track of the types of channels in the heap, and providing an
abstract representation of the reference topology. In their full generality, connectivity

44

1.3 key ideas

T1 C1
(0, s1)

C2

(1, s′1)

T2

(0, s2)

C5
(0, s3)

T5

(1, s′3)

T3
(1, s′2) C3

C4 T4

T6

(0, s4)

(0, s′4)

(0, s5)

Figure 6: An example of a connectivity graph. Brown boxes depict threads, and blue circles
depict channels.

graphs are represented as finite maps from pairs of vertices V to the labels L on the
edges between them:

G ∈ Cgraph(V, L) ≜
{
G ∈ V ×V fin−⇀ L

��G has no undirected cycles
}

To reason about our language defined in Section 1.2, we instantiate the vertices V
and edge labels L of a connectivity graph Cgraph(V, L) as follows:

ν ∈ V ::= Thread(i) | Chan(a) l ∈ L ≜ {0, 1} × Session

The vertices V are threads Thread(i) (with position i in the thread pool) or channels
Chan(a) (with address a in the heap). The edges are channel references and have
a label (t, s) ∈ L that consists of a tag t ∈ {0, 1}, indicating the channel endpoint
pointed to, and a session type s ∈ Session, indicating the endpoint’s session type. An
example of a connectivity graph is depicted in Figure 6. Note that the red triangles
that we used to depict the waiting directions in Figures 2 and 4 in Section 1.1 are not
part of the connectivity graph itself, because these can be derived from the run-time
configuration. The session types on the edges are part of the connectivity graph,
because they cannot be derived from the run-time configuration. In Theorem 1.3.4
we formalize how the red triangles are derived.

Connectivity graphs corresponding to configurations in our language have a
number of important properties. First, vertices Thread(i) can have an arbitrary
number of outgoing edges, but have no incoming edges. That is because threads can
own channel endpoints, but threads can never be owned. Second, vertices Chan(a)
can also have an arbitrary number of outgoing edges, but at most two incoming
edges. Outgoing edges are due to higher-order channels—a channel c1 can be sent
over another channel c2, resulting in an edge from c2 to c1 that models that c2

owns c1. Ingoing edges correspond to a channel’s endpoints, which can be at most
two. The number of incoming edges is one in case one channel endpoint has been
deallocated, but the other is still in use.

45

1.3 key ideas

A key ingredient of connectivity graphs is the acyclicity restriction. They should
be acyclic in the undirected sense: there must be no cycles even if we disregard the
direction of the edges. In other words, a connectivity graph must be an unrooted
undirected forest if we erase the direction of the edges. The third example in Figure 4
shows why acyclicity in the undirected sense is important.

To formally reason about ownership, we introduce the following functions:

out(G,ν) ∈ V fin−⇀ L in(G,ν) ∈ Multiset L

The outgoing edges out(G,ν) determine which resources vertex ν owns, whereas the
incoming edges in(G,ν) determine at which labels (i.e., types) the vertex ν is owned.
We use the above functions in the definitions of the run-time typing judgment
(Section 1.3.3) and the configuration well-formedness predicate (Section 1.3.4). We
represent the the outgoing edges out(G,ν) of a vertex ν as a finite map from vertices
to labels to track which resources a vertex ν owns and at which type. The incoming
edges in(G,ν) of a vertex ν, however, we represent as a multiset of labels because
it only matters at which type a vertex ν is owned, but not by whom (note that only
channel endpoints can be owned).

what is parametric in this section Connectivity graphs Cgraph(V, L) are
parametric over the type of vertices V and labels L. All theory about connectivity
graphs (including the separation logic) that we present throughout the rest of this
section is parametric. Connectivity graphs and their theory are thus modularly
separated from the operational semantics and type system of the language, which we
found to be essential for keeping the complexity of the mechanization manageable.

1.3.3 Run-Time Typing Judgment Using Separation Logic

In the previous section, we developed the notion of a connectivity graph as a
generalization of the heap typing, known from type safety proofs of the STLC with
references (Harper, 2016; Pierce, 2002). We now make this generalization precise,
develop a run-time typing judgment for our language, and show how we can use
separation logic to hide reasoning about linearity.

We start with the run-time judgment Γ ;Σ ⊢ e : τ, where Σ ∈ V fin−⇀ L provides the
session types of the free channel references in e. Channel references amount to edges
in our connectivity graph, and thus Σ becomes the set of outgoing edges out(G,ν)
associated with the threads and channels ν occurring in e. Let us consider the typing
rule for channel references and function application:

.

∅; {Chan(a) ↦→ (t, s)} ⊢ #(a, t) : s

Γ1;Σ1 ⊢ e1 : τ1 → τ2 Γ2;Σ2 ⊢ e2 : τ1

Γ1 ⊎ Γ2;Σ1 ⊎Σ2 ⊢ e1 e2 : τ2

46

1.3 key ideas

A key ingredient of connectivity graphs is the acyclicity restriction. They should
be acyclic in the undirected sense: there must be no cycles even if we disregard the
direction of the edges. In other words, a connectivity graph must be an unrooted
undirected forest if we erase the direction of the edges. The third example in Figure 4
shows why acyclicity in the undirected sense is important.

To formally reason about ownership, we introduce the following functions:

out(G,ν) ∈ V fin−⇀ L in(G,ν) ∈ Multiset L

The outgoing edges out(G,ν) determine which resources vertex ν owns, whereas the
incoming edges in(G,ν) determine at which labels (i.e., types) the vertex ν is owned.
We use the above functions in the definitions of the run-time typing judgment
(Section 1.3.3) and the configuration well-formedness predicate (Section 1.3.4). We
represent the the outgoing edges out(G,ν) of a vertex ν as a finite map from vertices
to labels to track which resources a vertex ν owns and at which type. The incoming
edges in(G,ν) of a vertex ν, however, we represent as a multiset of labels because
it only matters at which type a vertex ν is owned, but not by whom (note that only
channel endpoints can be owned).

what is parametric in this section Connectivity graphs Cgraph(V, L) are
parametric over the type of vertices V and labels L. All theory about connectivity
graphs (including the separation logic) that we present throughout the rest of this
section is parametric. Connectivity graphs and their theory are thus modularly
separated from the operational semantics and type system of the language, which we
found to be essential for keeping the complexity of the mechanization manageable.

1.3.3 Run-Time Typing Judgment Using Separation Logic

In the previous section, we developed the notion of a connectivity graph as a
generalization of the heap typing, known from type safety proofs of the STLC with
references (Harper, 2016; Pierce, 2002). We now make this generalization precise,
develop a run-time typing judgment for our language, and show how we can use
separation logic to hide reasoning about linearity.

We start with the run-time judgment Γ ;Σ ⊢ e : τ, where Σ ∈ V fin−⇀ L provides the
session types of the free channel references in e. Channel references amount to edges
in our connectivity graph, and thus Σ becomes the set of outgoing edges out(G,ν)
associated with the threads and channels ν occurring in e. Let us consider the typing
rule for channel references and function application:

.

∅; {Chan(a) ↦→ (t, s)} ⊢ #(a, t) : s

Γ1;Σ1 ⊢ e1 : τ1 → τ2 Γ2;Σ2 ⊢ e2 : τ1

Γ1 ⊎ Γ2;Σ1 ⊎Σ2 ⊢ e1 e2 : τ2

46

1.3 key ideas

(Emp)(Σ) ≜ (Σ = ∅) (P,Q ∈ iProp ≜ (V fin−⇀ L) → Prop)
(⌜ϕ⌝)(Σ) ≜ ϕ∧ (Σ = ∅) (Σ ∈ V fin−⇀ L)

(P ∧Q)(Σ) ≜ P(Σ) ∧Q(Σ)
(∃x. P(x))(Σ) ≜ ∃x. P(x)(Σ)
(own(Σ′))(Σ) ≜ (Σ = Σ′)

(P ∗Q)(Σ) ≜ ∃Σ1Σ2. dom(Σ1) ∩ dom(Σ2) = ∅ ∧ Σ = Σ1 ⊎Σ2 ∧ P(Σ1) ∧Q(Σ2)
(P −∗ Q)(Σ) ≜ ∀Σ′.

(
dom(Σ) ∩ dom(Σ′) = ∅ ∧ P(Σ′)

)
⇒ Q(Σ⊎Σ′)

Figure 7: Semantics of separation logic.

Because our language is linear, we insist that the Σ-context is a singleton in the
rule for channel references. In the rule for application, both contexts are split into
disjoint parts for the subexpressions. Unfortunately, this leads to a multiplication
of contexts and disjointness side conditions, because of the disjoint unions in the
conclusion. These side conditions cannot be ignored because we want to mechanize
our results. This is not a big issue for the variable context Γ since we mostly deal
with closed expressions (i.e., with Γ = ∅) because the operational semantics operates
on closed expressions. The Σ-context, however, is in general non-empty for run-time
expressions.

We use separation logic (O’Hearn et al., 2001) to hide the Σ-context and its
disjointness conditions. We work with separation logic propositions iProp ≜ (V fin−⇀
L) → Prop, which are predicates over a context Σ ∈ V fin−⇀ L of outgoing edges. Our
use of separation logic as an internal, meta theoretical tool is inspired by Rouvoet
et al. (2020) and contrasts with traditional uses which employ separation logic as
an external, user-visible tool when specifying programs in Hoare-style logics. The
separation logic connectives are defined in Figure 7. To assert that a separation logic
proposition P is true, is to assert that P(∅) is true. An important special case is that
P −∗ Q is true, if ∀Σ. P(Σ) ⇒ Q(Σ).

Instead of the ordinary typing judgment (Γ ;Σ ⊢ e : τ) ∈ Prop we define a separation-
logic based judgment (Γ ⊢ e : τ) ∈ iProp, so that (Γ ;Σ ⊢ e : τ) iff (Γ ⊢ e : τ)(Σ). The
preceding two rules are then reformulated as follows:

own(Chan(a) ↦→ (t, s))
∅ ⊢ #(a, t) : s

−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Γ1 ⊢ e1 : τ1 −◦ τ2 ∗ Γ2 ⊢ e2 : τ1

Γ1 ⊎ Γ2 ⊢ e1 e2 : τ2
−−−∗

The Σ-contexts are hidden by the separation logic connectives, and the disjointness
conditions on Σ are taken care of by the separating conjunction (∗). At a channel
reference, we use the own(Σ) connective, which asserts that the separation logic
resource is precisely Σ.

47

1.3 key ideas

⌜Γ = {x ↦→ τ}⌝
Γ ⊢ x : τ

−−−−−−−−−−−−−−−−−−∗
Emp

∅ ⊢ () : 1
−−−−−−−−−∗

⌜n ∈ N⌝

∅ ⊢ n : N
−−−−−−−−−−∗

Γ1 ⊢ e1 : τ1 ∗ Γ2 ⊢ e2 : τ2

Γ1 ⊎ Γ2 ⊢ (e1, e2) : τ1 × τ2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Γ1 ⊢ e1 : τ1 −◦ τ2 ∗ Γ2 ⊢ e2 : τ1

Γ1 ⊎ Γ2 ⊢ e1 e2 : τ2
−−−∗

Γ ⊎ {x ↦→ τ1} ⊢ e : τ2

Γ ⊢ λx. e : τ1 −◦ τ2
−−−−−−−−−−−−−−−−−−−−−−−−−∗

Γ1 ⊢ e1 : τ1 ∗ Γ2 ⊎ {x ↦→ τ1} ⊢ e2 : τ2

Γ1 ⊎ Γ2 ⊢ let x = e1 in e2 : τ2
−−−∗

Γ1 ⊢ e1 : 1 ∗ Γ2 ⊢ e2 : τ

Γ1 ⊎ Γ2 ⊢ let () = e1 in e2 : τ
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Γ1 ⊢ e1 : τ1 × τ2 ∗ Γ2 ⊎ {x1 ↦→ τ1} ⊎ {x2 ↦→ τ2} ⊢ e2 : τ

Γ1 ⊎ Γ2 ⊢ let (x1, x2) = e1 in e2 : τ
−−−∗

Γ1 ⊢ e1 : N ∗ (Γ2 ⊢ e2 : τ ∧ Γ2 ⊢ e3 : τ)
Γ1 ⊎ Γ2 ⊢ if e1 then e2 else e3 : τ

−−∗
Γ1 ⊢ e1 : ! τ. s ∗ Γ2 ⊢ e2 : τ

Γ1 ⊎ Γ2 ⊢ send(e1, e2) : s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Γ ⊢ e : ? τ. s

Γ ⊢ receive(e) : s× τ
−−−−−−−−−−−−−−−−−−−−−−−∗

Γ ⊢ e : s −◦ 1

Γ ⊢ fork(e) : s
−−−−−−−−−−−−−−−∗

Γ ⊢ e : End

Γ ⊢ close(e) : 1
−−−−−−−−−−−−−−−−∗

own(Chan(a) ↦→ (t, s))
∅ ⊢ #(a, t) : s

−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Figure 8: The separation-logic based run-time type system of our language.

An exception to the rule that contexts are split up disjointly (with ∗) is the
if e1 then e2 else e3 expression. Although the channel references occurring in e1

must be disjoint from those occurring in e2 and e3, the same endpoint is allowed
to occur in both e2 and e3, because only one of the branches will be executed.
This pattern too fits neatly in the separation logic methodology; we use separating
conjunction (∗) between e1 and e2, e3, but ordinary conjunction (∧) between e2 and
e3:

Γ1 ⊢ e1 : N ∗ (Γ2 ⊢ e2 : τ ∧ Γ2 ⊢ e3 : τ)
Γ1 ⊎ Γ2 ⊢ if e1 then e2 else e3 : τ

−−∗

Figure 8 contains the full definition of our run-time type system using separation
logic. Although it is possible to define the meaning of general inductive separation
logic inference rules via Tarski’s fixed point theorem, this generality is not necessary
here: the expressions in the premises of each rule are strictly smaller than the
expression in the conclusion, so the rules can be interpreted as being defined by
recursion on the expression. We use this approach in the Coq formalization, because
it has the additional benefit that we get the inversion rules for free.

A key strength of separation logic is that we can prove assertions using the
proof rules of the logic of Bunched Implications (BI) (O’Hearn and Pym, 1999).

48

1.3 key ideas

⌜Γ = {x ↦→ τ}⌝
Γ ⊢ x : τ

−−−−−−−−−−−−−−−−−−∗
Emp

∅ ⊢ () : 1
−−−−−−−−−∗

⌜n ∈ N⌝

∅ ⊢ n : N
−−−−−−−−−−∗

Γ1 ⊢ e1 : τ1 ∗ Γ2 ⊢ e2 : τ2

Γ1 ⊎ Γ2 ⊢ (e1, e2) : τ1 × τ2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Γ1 ⊢ e1 : τ1 −◦ τ2 ∗ Γ2 ⊢ e2 : τ1

Γ1 ⊎ Γ2 ⊢ e1 e2 : τ2
−−−∗

Γ ⊎ {x ↦→ τ1} ⊢ e : τ2

Γ ⊢ λx. e : τ1 −◦ τ2
−−−−−−−−−−−−−−−−−−−−−−−−−∗

Γ1 ⊢ e1 : τ1 ∗ Γ2 ⊎ {x ↦→ τ1} ⊢ e2 : τ2

Γ1 ⊎ Γ2 ⊢ let x = e1 in e2 : τ2
−−−∗

Γ1 ⊢ e1 : 1 ∗ Γ2 ⊢ e2 : τ

Γ1 ⊎ Γ2 ⊢ let () = e1 in e2 : τ
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Γ1 ⊢ e1 : τ1 × τ2 ∗ Γ2 ⊎ {x1 ↦→ τ1} ⊎ {x2 ↦→ τ2} ⊢ e2 : τ

Γ1 ⊎ Γ2 ⊢ let (x1, x2) = e1 in e2 : τ
−−−∗

Γ1 ⊢ e1 : N ∗ (Γ2 ⊢ e2 : τ ∧ Γ2 ⊢ e3 : τ)
Γ1 ⊎ Γ2 ⊢ if e1 then e2 else e3 : τ

−−∗
Γ1 ⊢ e1 : ! τ. s ∗ Γ2 ⊢ e2 : τ

Γ1 ⊎ Γ2 ⊢ send(e1, e2) : s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Γ ⊢ e : ? τ. s

Γ ⊢ receive(e) : s× τ
−−−−−−−−−−−−−−−−−−−−−−−∗

Γ ⊢ e : s −◦ 1

Γ ⊢ fork(e) : s
−−−−−−−−−−−−−−−∗

Γ ⊢ e : End

Γ ⊢ close(e) : 1
−−−−−−−−−−−−−−−−∗

own(Chan(a) ↦→ (t, s))
∅ ⊢ #(a, t) : s

−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Figure 8: The separation-logic based run-time type system of our language.

An exception to the rule that contexts are split up disjointly (with ∗) is the
if e1 then e2 else e3 expression. Although the channel references occurring in e1

must be disjoint from those occurring in e2 and e3, the same endpoint is allowed
to occur in both e2 and e3, because only one of the branches will be executed.
This pattern too fits neatly in the separation logic methodology; we use separating
conjunction (∗) between e1 and e2, e3, but ordinary conjunction (∧) between e2 and
e3:

Γ1 ⊢ e1 : N ∗ (Γ2 ⊢ e2 : τ ∧ Γ2 ⊢ e3 : τ)
Γ1 ⊎ Γ2 ⊢ if e1 then e2 else e3 : τ

−−∗

Figure 8 contains the full definition of our run-time type system using separation
logic. Although it is possible to define the meaning of general inductive separation
logic inference rules via Tarski’s fixed point theorem, this generality is not necessary
here: the expressions in the premises of each rule are strictly smaller than the
expression in the conclusion, so the rules can be interpreted as being defined by
recursion on the expression. We use this approach in the Coq formalization, because
it has the additional benefit that we get the inversion rules for free.

A key strength of separation logic is that we can prove assertions using the
proof rules of the logic of Bunched Implications (BI) (O’Hearn and Pym, 1999).

48

1.3 key ideas

For example, separating conjunction (∗) is associative and commutative, separating
conjunction (∗) has Emp as identity element, and magic wand (−∗) is the adjoint of
separating conjunction (∗). We use the Iris Proof Mode (Krebbers et al., 2017b, 2018)
to reason abstractly using the rules of separation logic in Coq (see Section 1.7 for
details).

what is parametric in this section. The definition of the separation logic
connectives and the proof rules for the separation logic are parametric in the types
of vertices V and labels L.

1.3.4 Well-Formedness of Configurations Using Connectivity Graphs

Now that we have a run-time typing judgment for a single expression, we are in a
position to define which configurations are well-formed. Recall that a configuration
is a pair (e,h) where e : List Expr is the thread pool and where h : Chan fin−⇀ ListVal is
the heap of channel buffers. We must certainly insist that all threads e are well-typed
expressions (of unit type), and that all the values inside the heap h are well-typed.
For the latter we have to ensure that a channel’s endpoints are of dual types, modulo
the messages queued up in the buffer. This requires us to consider the incoming edges
in(G,ν) of a vertex ν in addition to its outgoing edges out(G,ν). We can thus state
well-formedness of a configuration in terms of its connectivity graph.

A configuration is well-formed if there exists a connectivity graph such that
each thread and channel is locally well-formed with respect to its vertex in the
graph:

wf(e,h) ≜ ∃G : Cgraph(V, L). ∀ν ∈ V . wf local
(e,h)(ν, in(G,ν))(out(G,ν))

Here, wf local
(e,h) : V × Multiset L → iProp gives the local well-formedness condition for

each vertex. It has two explicit arguments (the vertex ν ∈ V and its incoming edges
in(G,ν) ∈ Multiset L), and an extra argument out(G,ν) ∈ V fin−⇀ L that will form
the vertex’ local Σ-context, which is implicit in the type signature of wf local because
iProp ≜ (V fin−⇀ L) → Prop.

A thread is locally well-formed if it is well-typed (with the implicit Σ-context
given by its outgoing edges), and has no incoming edges (because threads cannot be
owned):

wf local
(e,h)(Thread(i),∆) ≜

{
⌜∆ = ∅⌝ ∗ ∅ ⊢ ei : 1 if i < | e|
⌜∆ = ∅⌝ otherwise

Note that wf quantifies over any vertex ν ∈ V, and we thus have to consider any
thread index i, including those i ⩾ | e| that are not yet in use. For such indexes, we
use the separation logic proposition ⌜∆ = ∅⌝ to assert that both the incoming and

49

1.3 key ideas

outgoing edges are empty. The latter is implicit by the semantics of ⌜∆ = ∅⌝ (see
Figure 7).

A channel is locally well-formed if the buffers are well-typed (with the implicit
Σ-context given by its outgoing edges), and have matching incoming edges match
the types of the endpoints:

wf local
(e,h)(Chan(a),∆) ≜




∃s0, s1, s. ⌜∆ = {(0, s0), (1, s1)}⌝ ∗
⊢buf h(a, 0) : (s0, s) ∗
⊢buf h(a, 1) : (s1, s)

if #(a, 0), #(a, 1) ∈ dom(h)

∃b, s. ⌜∆ = {(t, s)}⌝ ∗
⊢buf h(a, t) : (s, End)

if #(a, t) ∈ dom(h)
and #(a, 1 − t) ∉ dom(h)

⌜∆ = ∅⌝ otherwise

In this definition we have to consider three cases. The first case corresponds to
the situation in which both buffers are still in use. In that case, there must be two
incoming edges in the connectivity graph, labeled with session types that are dual
modulo the values in the buffers. For instance, if the left endpoint has session
type ? τ1. ? τ2. s and the right endpoint has session type s, then the buffer of the left
endpoint must be [v1, v2] with ⊢ v1 : τ1 and ⊢ v2 : τ2. The second case corresponds to
the situation in which one buffer has been deallocated. The third case corresponds
to the situation in which the channel is not allocated (or both buffers have been
deallocated).

The buffer typing judgment ⊢buf v : (s1, s2) is inductively defined by the following
rules:

Emp

⊢buf ϵ : (s, s)
−−−−−−−−−−−−−−−∗

∅ ⊢ v : τ ∗ ⊢buf v : (s1, s2)
⊢buf ([v] ++ v) : (? τ. s1, s2)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

These rules express that ⊢buf v : (s1, s2) holds if s1 is equal to prefixing s2 with the
types of the values v in the buffer. Note that similar to the other run-time judgments,
the buffer typing judgment is defined in separation logic, which implicitly ensures
that the Σ-environment is distributed disjointly over the values in the buffer.

what is parametric in this section. The definition of wf is parametric in
the type of vertices V and labels L, but also a local well-formedness predicate wf local that
captures the language-specific information by linking the incoming and outgoing
edges of each vertex to their run-time counterpart.

1.3.5 Proving Preservation Using Local Graph Transformations

Now that we have defined the well-formedness predicate wf(e,h), we must prove
that it is preserved by the operational semantics: if (e,h)�global (e′,h′), then wf(e,h)

50

1.3 key ideas

outgoing edges are empty. The latter is implicit by the semantics of ⌜∆ = ∅⌝ (see
Figure 7).

A channel is locally well-formed if the buffers are well-typed (with the implicit
Σ-context given by its outgoing edges), and have matching incoming edges match
the types of the endpoints:

wf local
(e,h)(Chan(a),∆) ≜




∃s0, s1, s. ⌜∆ = {(0, s0), (1, s1)}⌝ ∗
⊢buf h(a, 0) : (s0, s) ∗
⊢buf h(a, 1) : (s1, s)

if #(a, 0), #(a, 1) ∈ dom(h)

∃b, s. ⌜∆ = {(t, s)}⌝ ∗
⊢buf h(a, t) : (s, End)

if #(a, t) ∈ dom(h)
and #(a, 1 − t) ∉ dom(h)

⌜∆ = ∅⌝ otherwise

In this definition we have to consider three cases. The first case corresponds to
the situation in which both buffers are still in use. In that case, there must be two
incoming edges in the connectivity graph, labeled with session types that are dual
modulo the values in the buffers. For instance, if the left endpoint has session
type ? τ1. ? τ2. s and the right endpoint has session type s, then the buffer of the left
endpoint must be [v1, v2] with ⊢ v1 : τ1 and ⊢ v2 : τ2. The second case corresponds to
the situation in which one buffer has been deallocated. The third case corresponds
to the situation in which the channel is not allocated (or both buffers have been
deallocated).

The buffer typing judgment ⊢buf v : (s1, s2) is inductively defined by the following
rules:

Emp

⊢buf ϵ : (s, s)
−−−−−−−−−−−−−−−∗

∅ ⊢ v : τ ∗ ⊢buf v : (s1, s2)
⊢buf ([v] ++ v) : (? τ. s1, s2)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

These rules express that ⊢buf v : (s1, s2) holds if s1 is equal to prefixing s2 with the
types of the values v in the buffer. Note that similar to the other run-time judgments,
the buffer typing judgment is defined in separation logic, which implicitly ensures
that the Σ-environment is distributed disjointly over the values in the buffer.

what is parametric in this section. The definition of wf is parametric in
the type of vertices V and labels L, but also a local well-formedness predicate wf local that
captures the language-specific information by linking the incoming and outgoing
edges of each vertex to their run-time counterpart.

1.3.5 Proving Preservation Using Local Graph Transformations

Now that we have defined the well-formedness predicate wf(e,h), we must prove
that it is preserved by the operational semantics: if (e,h)�global (e′,h′), then wf(e,h)

50

1.3 key ideas

T1 C ?

v
C3C2C1

! τ. s
T1 C ?

v
C3C2C1

s

send(c, v)

? C T2

v
C3C2C1

? τ. s
? C T2

v
C3C2C1

s

receive(c)

T1

v
C3C2C1

T1 C T2

v
C3C2C1

s s

fork(v)

T1 C ?
End

T1 C ?
close(c)

Figure 9: The operational steps and the corresponding connectivity graph transformations.

implies wf(e′,h′). Recall that the well-formedness predicate wf(e,h) intuitively means
“there exists a connectivity graph G describing the configuration (e,h)”, so when the
configuration steps to a new configuration (e′,h′), we must show that there exists a
new connectivity graph G′ that describes (e′,h′).

If the head step is a pure step, then the new connectivity graph is exactly the same
as the old one, and the preservation of the well-formedness predicate follows by a
standard case analysis of the possible pure steps, because the heap does not change
and no new threads are spawned.

Operational steps that involve channel operations are the interesting cases because
they may alter the connectivity graph. Figure 9 provides a schematic overview. We
focus on the send(c, v) operation, which moves the value v from the thread into the
buffer of channel c. The session type in the label on the edge corresponding to c itself
must change from ! τ. s to s. Additionally, if the value v contains channel references,
the connectivity graph must change to reflect this. The changes to the connectivity
graph for send and the other channel operations are depicted in Figure 9.

Once we have chosen the appropriate new connectivity graph G′, we have to prove
that this graph indeed describes the new configuration (e′,h′). This amounts to
showing that the local well-formedness condition wf local

(e′,h′)(ν, in(G′,ν))(out(G′,ν)) is
re-established for every vertex ν.

51

1.3 key ideas

For send(c, v) the parts of the (e,h)-configuration and (e′,h′)-configuration are:

ei = K[send(c, v)] h(c) = v
e′i = K[c] h′(c) = v++ [v]

The thread pool and heap do not change at other locations. After this change to the
configuration and the corresponding change to the connectivity graph (as depicted
in Figure 9), we classify the vertices into three types and explain how the local
well-formedness wf local

(e′,h′) is restored.

1. For the vertices ν′ where neither the corresponding part of the configuration
nor the incoming and outgoing edges change, wf local

(e,h)(ν′, in(G,ν′))(out(G,ν′))
remains valid.

2. For the vertices ν′ that correspond to channels referenced inside the message v,
the owner changes from Thread(i) to Chan(c.1) (corresponding to T1 and C in
the figure). These vertices are not affected either, because in(G,ν′) = in(G′,ν′).
Since in(G,ν′) and in(G′,ν′) are multisets of labels, they are thus not affected by
the change of owner.

3. The vertices ν1 = Thread(i) and ν2 = Chan(c.1) (corresponding to T1 and C
in the figure) are the vertices that are truly affected. Re-establishing their
wf local

(e′,h′)(ν12, in(G′,ν12))(out(G′,ν12)) requires some language-specific reasoning,
because both their part of the configuration and their incoming and outgoing
edges change.

There is another proof obligation that we need to meet: the connectivity graph
has to remain acyclic when we do these local transformations.

Even though Figure 9 looks hopelessly language specific, we show that we
can use our separation logic to distill abstract rules for local graph transformations
(Section 1.5). These rules involve the transfer of resources between the old local
well-formedness predicates wf local

(e,h)(ν, in(G,ν)) and the new local well-formedness

predicates wf local
(e′,h′)(ν, in(G′,ν)) (for the affected vertices ν in question). To distill

these rules, it is crucial that the local well-formedness predicate is a separation logic
proposition, which enables reasoning using the abstract proof rules of separation
logic, without explicitly having to reference the graph, nor having to explicitly
establish acyclicity, nor having to deal with disjointness conditions. The reasoning
left to the user of the rule is purely local and precisely the language-specific reasoning
that cannot be done generically. The result is that the preservation proof appears to
perform no graph reasoning at all: at no point in the preservation proof is there any
value of type G,G′ : Cgraph(V, L) in the proof context.

what is parametric in this section. The separation-logic based rules for
local graph transformations (Section 1.5) are parametric in the type of vertices V and
labels L, and the local well-formedness predicate.

52

1.3 key ideas

For send(c, v) the parts of the (e,h)-configuration and (e′,h′)-configuration are:

ei = K[send(c, v)] h(c) = v
e′i = K[c] h′(c) = v++ [v]

The thread pool and heap do not change at other locations. After this change to the
configuration and the corresponding change to the connectivity graph (as depicted
in Figure 9), we classify the vertices into three types and explain how the local
well-formedness wf local

(e′,h′) is restored.

1. For the vertices ν′ where neither the corresponding part of the configuration
nor the incoming and outgoing edges change, wf local

(e,h)(ν′, in(G,ν′))(out(G,ν′))
remains valid.

2. For the vertices ν′ that correspond to channels referenced inside the message v,
the owner changes from Thread(i) to Chan(c.1) (corresponding to T1 and C in
the figure). These vertices are not affected either, because in(G,ν′) = in(G′,ν′).
Since in(G,ν′) and in(G′,ν′) are multisets of labels, they are thus not affected by
the change of owner.

3. The vertices ν1 = Thread(i) and ν2 = Chan(c.1) (corresponding to T1 and C
in the figure) are the vertices that are truly affected. Re-establishing their
wf local

(e′,h′)(ν12, in(G′,ν12))(out(G′,ν12)) requires some language-specific reasoning,
because both their part of the configuration and their incoming and outgoing
edges change.

There is another proof obligation that we need to meet: the connectivity graph
has to remain acyclic when we do these local transformations.

Even though Figure 9 looks hopelessly language specific, we show that we
can use our separation logic to distill abstract rules for local graph transformations
(Section 1.5). These rules involve the transfer of resources between the old local
well-formedness predicates wf local

(e,h)(ν, in(G,ν)) and the new local well-formedness

predicates wf local
(e′,h′)(ν, in(G′,ν)) (for the affected vertices ν in question). To distill

these rules, it is crucial that the local well-formedness predicate is a separation logic
proposition, which enables reasoning using the abstract proof rules of separation
logic, without explicitly having to reference the graph, nor having to explicitly
establish acyclicity, nor having to deal with disjointness conditions. The reasoning
left to the user of the rule is purely local and precisely the language-specific reasoning
that cannot be done generically. The result is that the preservation proof appears to
perform no graph reasoning at all: at no point in the preservation proof is there any
value of type G,G′ : Cgraph(V, L) in the proof context.

what is parametric in this section. The separation-logic based rules for
local graph transformations (Section 1.5) are parametric in the type of vertices V and
labels L, and the local well-formedness predicate.

52

1.3 key ideas

1.3.6 Proving Progress Using Waiting Induction

To prove progress, we have to show that if wf(e,h) holds, then either final(e,h) holds
(i.e., ei = () for all i and h = ∅), or the configuration can step. This is equivalent to
saying that:

wf(e,h) and active(e,h) ≠ ∅ implies that (e,h) can step

Here, active(e,h) is the set of threads and channels that have not yet terminated and
not yet been fully deallocated, respectively.

Definition 1.3.3 (Active �). The set of active vertices in configuration (e,h) is formally
defined as

active(e,h) ≜ {Thread(i) | ei ≠ ()} ∪ {Chan(a) | h(a, 0) ≠ ⊥∨ h(a, 1) ≠ ⊥}

If active(e,h) ≠ ∅, then there exists a vertex ν ∈ active(e,h) for which we must
find a thread that can step. If the vertex ν is a thread that can step, we are done.
The difficulty is that ν may be a thread that is blocked on a receive(c), where the
corresponding buffer of c in heap h is empty. If the configuration is well-formed,
then we will presumably be able to find a non-blocked thread connected to the other
endpoint of c, since that side will eventually be responsible for sending a message
to c. However, the thread holding the other endpoint of c may be blocked itself,
waiting on a receive on a different channel. Also, the endpoint c may not even be
held by another thread; it could be stored in the buffer of some other channel c′.

Our way out is to use the connectivity graph: starting from vertex ν, we search for
another thread that can step. To organize this search process, we annotate edges of
the connectivity graph with a waiting direction (as also done in Section 1.1), depicted
as red triangles in Figure 10. The waiting direction is formalized using the notion of
being blocked.

Definition 1.3.4 (Blocked �). A vertex ν1 is blocked on vertex ν2 in configuration
(e,h) if ν1 is a thread that is trying to receive from channel ν2 whose buffer is empty.
Formally:

blocked(e,h)(ν1,ν2) ≜ ∃i,a, t,K. ν1 = Thread(i) ∧ ν2 = Chan(a) ∧
ei = K[receive(#(a, t))] ∧ h(a, t) = ϵ

The waiting direction (red triangle) ν1 →l
G

ν2 of an edge coincides with its
ownership direction (black arrowhead) if ν1 is blocked on ν2. Otherwise, it is
opposite to the ownership direction.

To find a thread that can step from ν ∈ active(e,h), we follow edges in the waiting
direction until we arrive at a vertex that has no outgoing waiting edges. As one
can see in Figure 10, if we follow the waiting direction (red triangles) from any start
vertex ν, we always end up in a thread that can step (green dotted square). To prove

53

1.3 key ideas

T1 C1
(0, s1)

C2

(1, s′1)

T2

(0, s2)

C5
(0, s3)

T5

(1, s′3)

T3
(1, s′2) C3

C4 T4

T6

(0, s4)

(0, s′4)

(0, s5)

Threads: Channels:

Thread T1 has a reference
to C1 and is blocked on C1:

Thread T1 has a reference to
C1 but is not blocked on C1:

(but could be blocked
on another channel)

Channel C1 has a reference
to C2 in its buffers:

T1 T1 T1
Blocked Running Terminated

C1

T1 C1

T1 C1

T1 C1

C1 C2

Figure 10: The connectivity graph from Figure 6 annotated with red triangles for the waiting
direction.

that we can always find a thread that can step by simply following the waiting edges
from any starting vertex, we have to show that:

1. If the current vertex ν is a thread, it can either step, or it has an outgoing
waiting edge.

2. If the current vertex ν is a channel, it always has an outgoing waiting edge.

3. The search process terminates, because the graph is acyclic as an undirected
graph.

to show (1): We show that active threads ν can step or have an outgoing waiting
arrow by induction on typing. The interesting cases are the channel operations,
and receive in particular, so suppose that the thread’s expression is K[receive(v)].
By run-time typing, we know that v is a channel reference #(a, t), and the typing
rule for receive(v) gives us the separation logic resource own({Chan(a) ↦→ (t, ? τ. s)}).
From this it follows that the thread has an outgoing edge to Chan(a), and hence
Chan(a) has an incoming edge with the label (t, ? τ. s). From the channel’s local
well-formedness predicate, it follows that the required buffer exists in the heap. If
the buffer is non-empty, then the receive can proceed, so the configuration can step.
If the buffer is empty, we have an outgoing waiting arrow from the thread to the
channel, so the search process can continue.

to show (2): The channel ν is active, so it has a buffer, so it must have a
corresponding incoming edge in the graph by the definition of the local well-
formedness predicate for channels. If that incoming edge comes from a vertex
ν′, and that vertex ν′ is not blocked on ν, we are done. That is because then the
waiting direction is pointing from ν to ν′, and we can continue the search process
from ν′. If ν′ is a thread currently blocked on ν, then the session type on that edge
must be a receive. It follows from the channel’s local well-formedness predicate that

54

1.3 key ideas

T1 C1
(0, s1)

C2

(1, s′1)

T2

(0, s2)

C5
(0, s3)

T5

(1, s′3)

T3
(1, s′2) C3

C4 T4

T6

(0, s4)

(0, s′4)

(0, s5)

Threads: Channels:

Thread T1 has a reference
to C1 and is blocked on C1:

Thread T1 has a reference to
C1 but is not blocked on C1:

(but could be blocked
on another channel)

Channel C1 has a reference
to C2 in its buffers:

T1 T1 T1
Blocked Running Terminated

C1

T1 C1

T1 C1

T1 C1

C1 C2

Figure 10: The connectivity graph from Figure 6 annotated with red triangles for the waiting
direction.

that we can always find a thread that can step by simply following the waiting edges
from any starting vertex, we have to show that:

1. If the current vertex ν is a thread, it can either step, or it has an outgoing
waiting edge.

2. If the current vertex ν is a channel, it always has an outgoing waiting edge.

3. The search process terminates, because the graph is acyclic as an undirected
graph.

to show (1): We show that active threads ν can step or have an outgoing waiting
arrow by induction on typing. The interesting cases are the channel operations,
and receive in particular, so suppose that the thread’s expression is K[receive(v)].
By run-time typing, we know that v is a channel reference #(a, t), and the typing
rule for receive(v) gives us the separation logic resource own({Chan(a) ↦→ (t, ? τ. s)}).
From this it follows that the thread has an outgoing edge to Chan(a), and hence
Chan(a) has an incoming edge with the label (t, ? τ. s). From the channel’s local
well-formedness predicate, it follows that the required buffer exists in the heap. If
the buffer is non-empty, then the receive can proceed, so the configuration can step.
If the buffer is empty, we have an outgoing waiting arrow from the thread to the
channel, so the search process can continue.

to show (2): The channel ν is active, so it has a buffer, so it must have a
corresponding incoming edge in the graph by the definition of the local well-
formedness predicate for channels. If that incoming edge comes from a vertex
ν′, and that vertex ν′ is not blocked on ν, we are done. That is because then the
waiting direction is pointing from ν to ν′, and we can continue the search process
from ν′. If ν′ is a thread currently blocked on ν, then the session type on that edge
must be a receive. It follows from the channel’s local well-formedness predicate that

54

1.4 connectivity graphs and waiting induction in detail

the other endpoint has not yet been closed, and thus there is another incoming edge.
It cannot be the case that both buffers are empty and the other edge is also a receive,
because that would violate duality. Thus, the other edge is coming from a vertex ν′′

that is not a thread currently blocked on us. So there is a waiting edge from ν to ν′′,
and we can continue the search process from ν′′.

to show (3): Although (3) is intuitively obvious if one looks at a picture such
as Figure 10, one has two difficulties in a formal setting. Firstly, showing that
such a search process actually terminates requires formally reasoning about the
(undirected) acyclicity of graphs. We refer the interested reader to our appendix and
Coq mechanization for details (Jacobs et al., 2021). Secondly, one has to restructure
the argument in order to even formally state what it means that “the search process
terminates”. Our key idea is that the progress proof can be proved with an inductive
argument, with a non-standard graph induction principle.

We call this induction principle for connectivity graphs waiting induction. The
induction principle says that in order to prove P(ν) for all vertices ν ∈ V, we can
assume that P(ν′) already holds for all vertices ν′ that ν is waiting for. Note the
similarity with strong induction on natural numbers: in order to prove P(n) for all
n ∈ N, we can assume that P(n′) already holds for all n′ < n.

We restructure the progress proof by applying our waiting induction principle at
the start. Whenever we said “continue the search process” in the argument above,
we can apply the inductive hypothesis. The induction principle is formally stated
and discussed in more detail in Section 1.4.

what is parametric in this section. The waiting induction principle
is parametric in the types of vertices V and labels L. This induction principle
encapsulates the acyclicity reasoning, so that the progress proof can focus on the
language-specific reasoning.

1.4 connectivity graphs and waiting induction in detail

Reasoning about graphs in a progress and preservation proof is non-standard,
and reasoning about graphs in a proof assistant is more involved than reasoning
about inductively-defined types like lists or maps that are normally used to define
heap typings. We therefore factor graph reasoning out into a connectivity graph
library that is parametric in vertices V and labels L. In this section we explain the
foundations of this library by presenting the formal definition of acyclicity, a selected
set of primitive rules (which are used to prove soundness of our separation-logic
based graph transformations in Section 1.5 for proving preservation), as well as
our principle of waiting induction (for proving progress). We hope to convince the
reader that our graph-based approach is feasible—even in a mechanized setting in a
proof assistant.

55

1.4 connectivity graphs and waiting induction in detail

Recall the informal definition of connectivity graphs Cgraph from Section 1.3.2:

Cgraph(V, L) ≜
{
G ∈ V ×V fin−⇀ L

��G has no undirected cycles
}

To define “G has no undirected cycles” formally, we need to introduce some basic
notions about graphs. We let graph(V, L) ≜ V × V fin−⇀ L be graphs without the
acyclicity restriction. The notation ν1 →l

G
ν2 expresses that there is an edge from

vertex ν1 to ν2 with label l (i.e., we have G(ν1,ν2) = l). The notation ν1 ↔G ν2

expresses that there is an edge from ν1 to ν2 or from ν2 to ν1. The notation ν1 ↔∗
G

ν2

expresses that vertices ν1 and ν2 are connected by a (possibly empty) path from ν1

to ν2 where we may follow edges in either direction, and ν1 /↔∗
G ν2 expresses that

there is no such path.

Definition 1.4.1 (Undirected acyclicity �). A graph G ∈ graph(V, L) has no undirected
cycles if:

1. The undirected erasure Ḡ = {{ν1,ν2} | ν1 ↔G ν2}, where we forget the labels
and directions of the edges, is acyclic. See Jacobs et al. (2021) for details about
the formalization of acyclicity of undirected graphs and the undirected erasure.

2. There are no short loops, i.e., we do not both have ν1 →l
G

ν2 and ν2 →l′
G

ν1.

Our reasoning about the acyclicity of graphs rests on two primitive lemmas:

Lemma 1.4.2 (Graph insertion �). If G ∈ graph(V, L) is a graph with no undirected
cycles and ν1 /↔∗

G ν2, then G∪ {ν1 →l ν2} has no undirected cycles.

Lemma 1.4.3 (Graph deletion �). If G ∈ graph(V, L) is a graph with no undirected cycles
and ν1 →l

G
ν2, then ν1 /↔∗

H ν2 in the graph H ≜ G \ {ν1 →l ν2}.

We build a library of derived lemmas on top of these two primitive lemmas.
A lemma that is crucial for proving the correctness of our separation logic rules
in Section 1.5 is the exchange lemma, which is used to exchange separation logic
resources between vertices of the graph:

Lemma 1.4.4 (Graph exchange �). Let G,H ∈ graph(V, L) be graphs and let ν1,ν2 ∈ V
be vertices. If

1. G has no undirected cycles,

2. ν1 /↔∗
G ν2,

3. out(G,ν1) ⊎ out(G,ν2) = out(H,ν1) ⊎ out(H,ν2), and

4. out(G,ν) = out(H,ν) for all ν ∈ V \ {ν1,ν2}.

Then:

1. H has no undirected cycles,

56

1.4 connectivity graphs and waiting induction in detail

Recall the informal definition of connectivity graphs Cgraph from Section 1.3.2:

Cgraph(V, L) ≜
{
G ∈ V ×V fin−⇀ L

��G has no undirected cycles
}

To define “G has no undirected cycles” formally, we need to introduce some basic
notions about graphs. We let graph(V, L) ≜ V × V fin−⇀ L be graphs without the
acyclicity restriction. The notation ν1 →l

G
ν2 expresses that there is an edge from

vertex ν1 to ν2 with label l (i.e., we have G(ν1,ν2) = l). The notation ν1 ↔G ν2

expresses that there is an edge from ν1 to ν2 or from ν2 to ν1. The notation ν1 ↔∗
G

ν2

expresses that vertices ν1 and ν2 are connected by a (possibly empty) path from ν1

to ν2 where we may follow edges in either direction, and ν1 /↔∗
G ν2 expresses that

there is no such path.

Definition 1.4.1 (Undirected acyclicity �). A graph G ∈ graph(V, L) has no undirected
cycles if:

1. The undirected erasure Ḡ = {{ν1,ν2} | ν1 ↔G ν2}, where we forget the labels
and directions of the edges, is acyclic. See Jacobs et al. (2021) for details about
the formalization of acyclicity of undirected graphs and the undirected erasure.

2. There are no short loops, i.e., we do not both have ν1 →l
G

ν2 and ν2 →l′
G

ν1.

Our reasoning about the acyclicity of graphs rests on two primitive lemmas:

Lemma 1.4.2 (Graph insertion �). If G ∈ graph(V, L) is a graph with no undirected
cycles and ν1 /↔∗

G ν2, then G∪ {ν1 →l ν2} has no undirected cycles.

Lemma 1.4.3 (Graph deletion �). If G ∈ graph(V, L) is a graph with no undirected cycles
and ν1 →l

G
ν2, then ν1 /↔∗

H ν2 in the graph H ≜ G \ {ν1 →l ν2}.

We build a library of derived lemmas on top of these two primitive lemmas.
A lemma that is crucial for proving the correctness of our separation logic rules
in Section 1.5 is the exchange lemma, which is used to exchange separation logic
resources between vertices of the graph:

Lemma 1.4.4 (Graph exchange �). Let G,H ∈ graph(V, L) be graphs and let ν1,ν2 ∈ V
be vertices. If

1. G has no undirected cycles,

2. ν1 /↔∗
G ν2,

3. out(G,ν1) ⊎ out(G,ν2) = out(H,ν1) ⊎ out(H,ν2), and

4. out(G,ν) = out(H,ν) for all ν ∈ V \ {ν1,ν2}.

Then:

1. H has no undirected cycles,

56

1.4 connectivity graphs and waiting induction in detail

2. ν1 /↔∗
H ν2, and

3. in(G,ν) = in(H,ν) for all ν ∈ V.

This lemma is quite a mouthful, so let us go over it step by step. We start with a
graph G and we want to exchange outgoing edges between two unconnected vertices
ν1 and ν2 to obtain a graph H in which the union of the outgoing edges of ν1 and
ν2 stays the same. The lemma tells us that this operation maintains undirected
acyclicity and that ν1 and ν2 are unconnected. Furthermore, the labels of incoming
edges stay the same for all vertices.

Note that this property only holds because in(G,ν) is a multiset rather than a map
that stores the vertices, like we did for out(G,ν). The fact that the local invariants
are unaware of the vertices of origin of the incoming edges is what enables local
reasoning: exchange of edges only affects the local invariants of ν1 and ν2. In
particular, for a channel it does not matter if its owner changes due to an exchange
of resources, because it only matters at which type the channel is owned.

A typical pattern is to compose the lemma for exchange with with lemma for
insertion and deletion. For instance, given an edge ν1 →l

G
ν2, we can first delete the

edge using Theorem 1.4.2 to obtain ν1 /↔∗
H ν2. Then we can apply Theorem 1.4.4 to

exchange some of the outgoing edges of ν1 and ν2, and then we can re-insert a new
edge ν1 →l′ ν2 with a new label l using Theorem 1.4.2.

The lemmas for insertion and deletion (Theorems 1.4.2 and 1.4.3) can not only
be used to prove the acyclicity of modified connectivity graphs, but also to prove
structural properties of connectivity graphs. The simplest example is a lemma that
connectivity graphs have no self loops, which we give here as an illustration that the
lemmas for insertion and deletion suffice.7

Lemma 1.4.5 (No self loops �). A connectivity graph G ∈ Cgraph(V, L) has no self loops
ν →l

G
ν.

Proof. Suppose that ν →l
G

ν. By Theorem 1.4.3, ν /↔∗
G′ ν in the connectivity graph

G′ ≜ G \ {ν →l ν}. Since every vertex is connected to itself (by definition), we have
a contradiction. □

Another example of a structural property that follows from the lemmas for
insertion and deletion is the separation lemma. In Section 1.5 this lemma will
play an important role in enabling our use of separation logic, where the separating
conjunction requires that resources are disjoint.

Lemma 1.4.6 (Separation �). If G ∈ Cgraph(V, L) and ν1 /↔∗
G ν2 or ν1 ↔G ν2, then

the outgoing edges of ν1 and ν2 are disjoint, i.e., dom(out(G,ν1)) ∩ dom(out(G,ν2)) = ∅.

Lastly, we have our generic principle of waiting induction that is key to our
progress proof.

7 We do actually need this lemma at various points in the Coq proofs of the lemmas in Section 1.5.

57

1.5 local graph transformation rules in separation logic

Lemma 1.4.7 (Waiting induction �). Let G ∈ Cgraph(V, L) be a connectivity graph,
P ∈ V → Prop a predicate over V, and R : V ×V → Prop a binary relation over V.

Then in order to prove ∀ν ∈ V. P(ν) it suffices to prove:

∀ν ∈ V.
(
∀ν′ ∈ V. (ν →l

G ν′ ∧ R(ν,ν′)) ⇒ P(ν′)
)
⇒(

∀ν′ ∈ V. (ν′ →l
G ν∧¬R(ν′,ν)) ⇒ P(ν′)

)
⇒ P(ν)

In other words, to prove P(ν), we can assume that P(ν′) already holds for outgoing
neighbors of ν′ of ν that are in relation R(ν,ν′), and we can also assume that P(ν′)
holds for incoming neighbors ν′ of ν that are not in relation R(ν′,ν).

Thus, for neighbors ν →l ν′, either the proof of P(ν) can assume P(ν′), or vice versa,
but not both, and the relation R(ν,ν′) determines which. This induction principle
is well founded due to the acyclicity of connectivity graphs. We prove this lemma
using a similar lemma for undirected graphs, which we detail in Jacobs et al. (2021).

We call the lemma waiting induction because (1) we choose R ≜ blocked(e,h) from
Section 1.3.6 and thus R is the waiting relation in our application, and (2) because
of the similarity to induction on natural numbers: in order to prove P(n) we can
assume that P(n− 1) already holds, if n ≠ 0.

1.5 local graph transformation rules in separation logic

We now generalize the well-formedness predicate wf from Section 1.3.4 to become
parametric in the vertices V and labels L, which involves making it parametric in
the local well-formedness predicate to abstract from language-specific aspects. We
state separation-logic based rules for the parametric well-formedness predicate so
that preservation can be proved using local reasoning. After an initial attempt
at a monolithic proof of preservation, we found our approach of separating the
graph reasoning from the local language-specific reasoning to be indispensable for
mechanization.

Given a local well-formedness predicate P : V ×Multiset L → iProp, we define the
generic global well-formedness predicate wf(P) as follows:

wf(P) ≜ ∃G : Cgraph(V, L). ∀ν ∈ V. P(ν, in(G,ν))(out(G,ν))

We can instantiate the above definition with P ≜ wf local
(e,h) to obtain the well-formedness

predicate from Section 1.3.4 that was tied to our concrete language.
Recall from Section 1.3.5 that preservation means: if (e,h) �global (e′,h′), then

wf(wf local
(e,h)) implies wf(wf local

(e′,h′)). We now present a set of graph transformation rules
for proving results “wf(P) implies wf(P′)” where P and P′ are arbitrary local well-
formedness predicates, instead of a concrete local well-formedness predicate. These
graph transformation rules perform a transformation of the graph under the hood,
but the graphs are encapsulated by the definition of wf, and the rules thus do not

58

1.5 local graph transformation rules in separation logic

Lemma 1.4.7 (Waiting induction �). Let G ∈ Cgraph(V, L) be a connectivity graph,
P ∈ V → Prop a predicate over V, and R : V ×V → Prop a binary relation over V.

Then in order to prove ∀ν ∈ V. P(ν) it suffices to prove:

∀ν ∈ V.
(
∀ν′ ∈ V. (ν →l

G ν′ ∧ R(ν,ν′)) ⇒ P(ν′)
)
⇒(

∀ν′ ∈ V. (ν′ →l
G ν∧¬R(ν′,ν)) ⇒ P(ν′)

)
⇒ P(ν)

In other words, to prove P(ν), we can assume that P(ν′) already holds for outgoing
neighbors of ν′ of ν that are in relation R(ν,ν′), and we can also assume that P(ν′)
holds for incoming neighbors ν′ of ν that are not in relation R(ν′,ν).

Thus, for neighbors ν →l ν′, either the proof of P(ν) can assume P(ν′), or vice versa,
but not both, and the relation R(ν,ν′) determines which. This induction principle
is well founded due to the acyclicity of connectivity graphs. We prove this lemma
using a similar lemma for undirected graphs, which we detail in Jacobs et al. (2021).

We call the lemma waiting induction because (1) we choose R ≜ blocked(e,h) from
Section 1.3.6 and thus R is the waiting relation in our application, and (2) because
of the similarity to induction on natural numbers: in order to prove P(n) we can
assume that P(n− 1) already holds, if n ≠ 0.

1.5 local graph transformation rules in separation logic

We now generalize the well-formedness predicate wf from Section 1.3.4 to become
parametric in the vertices V and labels L, which involves making it parametric in
the local well-formedness predicate to abstract from language-specific aspects. We
state separation-logic based rules for the parametric well-formedness predicate so
that preservation can be proved using local reasoning. After an initial attempt
at a monolithic proof of preservation, we found our approach of separating the
graph reasoning from the local language-specific reasoning to be indispensable for
mechanization.

Given a local well-formedness predicate P : V ×Multiset L → iProp, we define the
generic global well-formedness predicate wf(P) as follows:

wf(P) ≜ ∃G : Cgraph(V, L). ∀ν ∈ V. P(ν, in(G,ν))(out(G,ν))

We can instantiate the above definition with P ≜ wf local
(e,h) to obtain the well-formedness

predicate from Section 1.3.4 that was tied to our concrete language.
Recall from Section 1.3.5 that preservation means: if (e,h) �global (e′,h′), then

wf(wf local
(e,h)) implies wf(wf local

(e′,h′)). We now present a set of graph transformation rules
for proving results “wf(P) implies wf(P′)” where P and P′ are arbitrary local well-
formedness predicates, instead of a concrete local well-formedness predicate. These
graph transformation rules perform a transformation of the graph under the hood,
but the graphs are encapsulated by the definition of wf, and the rules thus do not

58

1.5 local graph transformation rules in separation logic

mention any graphs. Instead, the premises of these graph transformation rules ask
the user of the rule to prove local separation logic entailments involving P and P′.

The first of these graph transformation rules allows the user to exchange separation
logic resources between two vertices ν1,ν2 ∈ V in order to prove that wf(P) implies
wf(P′):

Lemma 1.5.1 (Exchange �). Let ν1,ν2 ∈ V. To prove wf(P) implies wf(P′), it suffices to
prove:8

1. P(ν,∆) −∗ P′(ν,∆) for all ν ∈ V \ {ν1,ν2} and ∆ ∈ Multiset L

2. P(ν1,∆1) −∗ ∃l. own(ν2 ↦→ l) ∗ ∀∆2 ∈ Multiset L.

(P(ν2, {l} ⊎∆2) −∗ ∃l′. (own(ν2 ↦→ l′) −∗ P′(ν1,∆1)) ∗ P′(ν2, {l′} ⊎∆2))
for all ∆1 ∈ Multiset L

This rule generalizes the transformations for send and receive from Figure 9 where
resources are exchanged between two vertices. We go over the premises of the rule
in detail:

1. The first premise asks the user of the rule to prove the local implication
P(ν,∆) −∗ P′(ν,∆) for the vertices ν ∈ V \ {ν1,ν2} that are not involved in the
exchange.

2. The second premise first gives the user access to the local resources P(ν1,∆1) of
vertex ν1. The rule then asks the user to prove that there exists an edge ν1 →l

G

ν2, by showing that ∃l. own(ν2 ↦→ l) ∗ · · · follows from the local resources of
ν1. The rule then gives the user access to the local resources P(ν2, {l} ⊎∆2)
of vertex ν2, where we have obtained the information that the label {l} is
part of the incoming edge label multiset of ν2. The rule then allows the user
to pick a new label l′ for the edge ν1 →l′ ν2. Subsequently, the user has to
restore the local resources of ν1 and ν2 for the new P′. For restoring the local
resources P′(ν1,∆1), the user additionally gets the own(ν2 ↦→ l′) of the new
edge. For restoring the local resources P′(ν2, {l′} ⊎∆2), we get the new label in
the incoming edge label multiset.

It may seem like this rule only allows us to change the label on the edge ν1 →l
G

ν2

from l to l′, but the rule in fact allows us to arbitrarily exchange separation logic
resources (i.e., outgoing edges) between ν1 and ν2. The way this works is that the
rule gives us access to the old local resources of both ν1 and ν2, and it asks us
to prove the separating conjunction of the new local resources of both ν1 and ν2.
The proof rules of separation logic allow us to use resources stored in the old local
resources of ν1 to prove the new local resources of ν2, and vice versa. Thus, the graph
transformation that is applied internally in the rule depends on which proof of the
separation logic entailment is provided by the user of the rule.

8 Recall that proving P ∈ iProp means proving P(∅) (see Section 1.3.3), but in practice (and in Coq) this is
done using the proof rules of separation logic.

59

1.5 local graph transformation rules in separation logic

a note on the proof of the transformation rule . That the
transformation rule is able to offer us access to both local resources simultaneously
relies crucially on the acyclicity of the graph. The acyclicity, and the existence of an
edge between the two vertices, is what allows us to apply the separation lemma
(Theorem 1.4.6) that allows us to construct the separating conjunction of the two
local resources. In the proof of the rule we re-establish the validity of the resources
and the acyclicity of the graph using the exchange lemma (Theorem 1.4.4).

In addition to the preceding transformation rule for changing the label on an edge
(and exchanging resources), we have a transformation rule for removing an edge
(after exchanging resources). This rule is used in the close case of the preservation
proof:

Lemma 1.5.2 (Deallocation �). Let ν1,ν2 ∈ V. To prove wf(P) implies wf(P′), it suffices
to prove:

1. P(ν,∆) −∗ P′(ν,∆) for all ν ∈ V \ {ν1,ν2} and ∆ ∈ Multiset L

2. P(ν1,∆1) −∗ ∃l. own(ν2 ↦→ l) ∗ ∀∆2 ∈ Multiset L.

(P(ν2, {l} ⊎∆2) −∗ P′(ν1,∆1) ∗ P′(ν2,∆2)) for all ∆1 ∈ Multiset L

We have the following two transformation rules for inserting an outgoing/incoming
edge between ν1 and ν2, respectively. To maintain acyclicity, we have to show that
ν2 has no existing incoming or outgoing edges. Like the preceding rules, these
rules also allow us to transfer resources to ν2. The first lemma below adds an edge
ν1 → ν2 and the second lemma adds an edge ν2 → ν1.

Lemma 1.5.3 (Allocation out �). Let ν1,ν2 ∈ V. To prove wf(P) implies wf(P′), it
suffices to prove:

1. P(ν,∆) −∗ P′(ν,∆) for all ν ∈ V \ {ν1,ν2} and ∆ ∈ Multiset L

2. P(ν2,∆2) −∗ ⌜∆2 = ∅⌝ for all ∆2 ∈ Multiset L

3. P(ν1,∆1) −∗ ∃l′. (own(ν2 ↦→ l′) −∗ P′(ν1,∆1)) ∗ P′(ν2, {l′}) for all ∆1 ∈ Multiset L

Lemma 1.5.4 (Allocation in �). Let ν1,ν2 ∈ V. To prove wf(P) implies wf(P′), it suffices
to prove:

1. P(ν,∆) −∗ P′(ν,∆) for all ν ∈ V \ {ν1,ν2} and ∆ ∈ Multiset L

2. P(ν2,∆2) −∗ ⌜∆2 = ∅⌝ for all ∆2 ∈ Multiset L

3. P(ν1,∆1) −∗ ∃l′. P′(ν1,∆1 ⊎ {l′}) ∗ (own(ν1 ↦→ l′) −∗ P′(ν2, ∅)) for all ∆1 ∈
Multiset L

Lastly, we have a derived transformation rule that adds two new edges ν1 →l′1 ν2

and ν2 ←l′2 ν3. We use this rule in the fork case of the preservation proof.

60

1.5 local graph transformation rules in separation logic

a note on the proof of the transformation rule . That the
transformation rule is able to offer us access to both local resources simultaneously
relies crucially on the acyclicity of the graph. The acyclicity, and the existence of an
edge between the two vertices, is what allows us to apply the separation lemma
(Theorem 1.4.6) that allows us to construct the separating conjunction of the two
local resources. In the proof of the rule we re-establish the validity of the resources
and the acyclicity of the graph using the exchange lemma (Theorem 1.4.4).

In addition to the preceding transformation rule for changing the label on an edge
(and exchanging resources), we have a transformation rule for removing an edge
(after exchanging resources). This rule is used in the close case of the preservation
proof:

Lemma 1.5.2 (Deallocation �). Let ν1,ν2 ∈ V. To prove wf(P) implies wf(P′), it suffices
to prove:

1. P(ν,∆) −∗ P′(ν,∆) for all ν ∈ V \ {ν1,ν2} and ∆ ∈ Multiset L

2. P(ν1,∆1) −∗ ∃l. own(ν2 ↦→ l) ∗ ∀∆2 ∈ Multiset L.

(P(ν2, {l} ⊎∆2) −∗ P′(ν1,∆1) ∗ P′(ν2,∆2)) for all ∆1 ∈ Multiset L

We have the following two transformation rules for inserting an outgoing/incoming
edge between ν1 and ν2, respectively. To maintain acyclicity, we have to show that
ν2 has no existing incoming or outgoing edges. Like the preceding rules, these
rules also allow us to transfer resources to ν2. The first lemma below adds an edge
ν1 → ν2 and the second lemma adds an edge ν2 → ν1.

Lemma 1.5.3 (Allocation out �). Let ν1,ν2 ∈ V. To prove wf(P) implies wf(P′), it
suffices to prove:

1. P(ν,∆) −∗ P′(ν,∆) for all ν ∈ V \ {ν1,ν2} and ∆ ∈ Multiset L

2. P(ν2,∆2) −∗ ⌜∆2 = ∅⌝ for all ∆2 ∈ Multiset L

3. P(ν1,∆1) −∗ ∃l′. (own(ν2 ↦→ l′) −∗ P′(ν1,∆1)) ∗ P′(ν2, {l′}) for all ∆1 ∈ Multiset L

Lemma 1.5.4 (Allocation in �). Let ν1,ν2 ∈ V. To prove wf(P) implies wf(P′), it suffices
to prove:

1. P(ν,∆) −∗ P′(ν,∆) for all ν ∈ V \ {ν1,ν2} and ∆ ∈ Multiset L

2. P(ν2,∆2) −∗ ⌜∆2 = ∅⌝ for all ∆2 ∈ Multiset L

3. P(ν1,∆1) −∗ ∃l′. P′(ν1,∆1 ⊎ {l′}) ∗ (own(ν1 ↦→ l′) −∗ P′(ν2, ∅)) for all ∆1 ∈
Multiset L

Lastly, we have a derived transformation rule that adds two new edges ν1 →l′1 ν2

and ν2 ←l′2 ν3. We use this rule in the fork case of the preservation proof.

60

1.6 extensions

Lemma 1.5.5 (Allocation out and in �). Let ν1,ν2,ν3 ∈ V. To prove wf(P) implies
wf(P′), it suffices to prove:

1. P(ν,∆) −∗ P′(ν,∆) for all ν ∈ V \ {ν1,ν2,ν3} and ∆ ∈ Multiset L

2. P(ν,∆) −∗ ⌜∆ = ∅⌝ for all ν ∈ {ν2,ν3} and ∆ ∈ Multiset L

3. P(ν1,∆1) −∗ ∃l′1, l′2. (own(ν2 ↦→ l′1) −∗ P′(ν1,∆1 ⊎ {l′})) ∗ P′(ν2, {l′1, l′2}) ∗
(own(ν2 ↦→ l′2) −∗ P′(ν3, ∅))

for all ∆1 ∈ Multiset L

This rule can be proved by applying both allocation out and allocation in. It pays
off to prove this in the generic setting, because the intermediate state (in which the
channel has been allocated but not yet the thread that will hold the other endpoint)
is not well-formed according to our wf local. Instead, we prove wf(P) =⇒ wf(P′)
by carefully choosing Q and proving wf(P) =⇒ wf(Q) using Theorem 1.5.3, and
wf(Q) =⇒ wf(P′) using Theorem 1.5.4.

1.6 extensions

The programming language for which we have mechanized deadlock and memory
leak freedom in Coq (Jacobs et al., 2021) supports more features than described in
Section 1.2. First, it has more standard features such as sum types, which we do
not describe because their rules are standard and the modification of the proof is
straightforward. Second, it has unrestricted (non-linear) types, including unrestricted
products and sums, and an unrestricted function type (Section 1.6.1) and general
equi-recursive functional types (which can encode algebraic data types) and equi-
recursive recursive session types (which can encode infinite protocols) (Section 1.6.2).
Furthermore, we prove a deadlock freedom property that is stronger than global
progress and also rules out partial deadlock (Section 1.6.3).

1.6.1 Unrestricted Types

We make the types used for conventional functional programming (such as product,
sum, and function types) unrestricted (i.e., non-linear) if their components are
unrestricted. Instead of introducing separate linear and non-linear products and
sums, we introduce the judgment “τ unrestricted” on types τ, which holds if all
the components of τ are unrestricted. Formally, the base types 0, 1 and N are
unrestricted, and τ1 × τ2 and τ1 + τ2 are unrestricted if τ1 and τ2 are unrestricted.
The type τ1 −◦ τ2 is always linear (i.e., not unrestricted), even if τ1 and τ2 are
unrestricted, because the closure may capture linear variables. We introduce the
type τ1 → τ2 of unrestricted functions, which is always unrestricted (even if τ1 and
τ2 are linear), and whose closures are only allowed to capture unrestricted variables.
Selected typing rules are shown in Figure 11. The typing rules involve the disjointness

61

1.6 extensions

Γ unrestricted

{x ↦→ τ} ⊎ Γ ⊢ x : τ

n ∈ N Γ unrestricted

Γ ⊢ n : N

Γ1 ⊥ Γ2 Γ1 ⊢ e1 : τ1 Γ2 ⊢ e2 : τ2

Γ1 ∪ Γ2 ⊢ (e1, e2) : τ1 × τ2

Γ ⊎ {x ↦→ τ1} ⊢ e : τ2 Γ unrestricted

Γ ⊢ λx. e : τ1 → τ2

Γ1 ⊥ Γ2 Γ1 ⊢ e1 : τ1 → τ2 Γ2 ⊢ e2 : τ1

Γ1 ∪ Γ2 ⊢ e1 e2 : τ2

Figure 11: Selected typing rules for unrestricted types.

relation Γ1 ⊥ Γ2, which expresses that Γ1 and Γ2 might share unrestricted variables,
but otherwise do not overlap. Formally:

Γ1 ⊥ Γ2 ≜ ∀x ∈ dom(Γ1) ∩ dom(Γ2). Γ1(x) = Γ2(x) ∧ Γ1(x) unrestricted

changes to the proof . In order to reason about unrestricted values in the
separation logic, we add a standard box modality �P, defined as (�P)(Σ) ≜ P(∅) ∧
Σ = ∅. The box modality asserts that P does not use any linear resources, which
allows it to support proof rules for deletion (�P −∗ Emp) and duplication (�P −∗
�P ∗�P). Lastly, we have the rule �P −∗ P to open the box. We use the box modality
in the run-time typing rule for the unrestricted function type:

� (Γ ⊎ {x ↦→ τ1} ⊢ e : τ2) ∗ ⌜Γ unrestricted⌝

Γ ⊢ λx. e : τ1 → τ2
−−−∗

The box modality makes sure that the closure cannot capture any channels at
run-time.

We prove (Γ ⊢ e : τ) −∗ � (Γ ⊢ e : τ) if τ unrestricted. This entailment says that
run-time typing judgments for expressions e of unrestricted type τ can be freely
deleted and duplicated in the separation logic sense. This is crucial for the main
change to our proof—the substitution lemma—in which we now have to consider
the case that the type is unrestricted, and that a variable could be substituted in
multiple or zero places. We use the preceding entailment and the laws of the box
modality to adapt the proof of the substitution lemma.

1.6.2 Equi-Recursive Types

We extend our type system with equi-recursive functional (µα.τ) and session types
(µα.s), in order to be able to encode algebraic data types and infinite protocols,

62

1.6 extensions

Γ unrestricted

{x ↦→ τ} ⊎ Γ ⊢ x : τ

n ∈ N Γ unrestricted

Γ ⊢ n : N

Γ1 ⊥ Γ2 Γ1 ⊢ e1 : τ1 Γ2 ⊢ e2 : τ2

Γ1 ∪ Γ2 ⊢ (e1, e2) : τ1 × τ2

Γ ⊎ {x ↦→ τ1} ⊢ e : τ2 Γ unrestricted

Γ ⊢ λx. e : τ1 → τ2

Γ1 ⊥ Γ2 Γ1 ⊢ e1 : τ1 → τ2 Γ2 ⊢ e2 : τ1

Γ1 ∪ Γ2 ⊢ e1 e2 : τ2

Figure 11: Selected typing rules for unrestricted types.

relation Γ1 ⊥ Γ2, which expresses that Γ1 and Γ2 might share unrestricted variables,
but otherwise do not overlap. Formally:

Γ1 ⊥ Γ2 ≜ ∀x ∈ dom(Γ1) ∩ dom(Γ2). Γ1(x) = Γ2(x) ∧ Γ1(x) unrestricted

changes to the proof . In order to reason about unrestricted values in the
separation logic, we add a standard box modality �P, defined as (�P)(Σ) ≜ P(∅) ∧
Σ = ∅. The box modality asserts that P does not use any linear resources, which
allows it to support proof rules for deletion (�P −∗ Emp) and duplication (�P −∗
�P ∗�P). Lastly, we have the rule �P −∗ P to open the box. We use the box modality
in the run-time typing rule for the unrestricted function type:

� (Γ ⊎ {x ↦→ τ1} ⊢ e : τ2) ∗ ⌜Γ unrestricted⌝

Γ ⊢ λx. e : τ1 → τ2
−−−∗

The box modality makes sure that the closure cannot capture any channels at
run-time.

We prove (Γ ⊢ e : τ) −∗ � (Γ ⊢ e : τ) if τ unrestricted. This entailment says that
run-time typing judgments for expressions e of unrestricted type τ can be freely
deleted and duplicated in the separation logic sense. This is crucial for the main
change to our proof—the substitution lemma—in which we now have to consider
the case that the type is unrestricted, and that a variable could be substituted in
multiple or zero places. We use the preceding entailment and the laws of the box
modality to adapt the proof of the substitution lemma.

1.6.2 Equi-Recursive Types

We extend our type system with equi-recursive functional (µα.τ) and session types
(µα.s), in order to be able to encode algebraic data types and infinite protocols,

62

1.6 extensions

respectively. We extend the type system with the following rule for unfolding
recursive types:

Γ ⊢ e : τ1 τ1 ≡ τ2

Γ ⊢ e : τ2

The congruence relation (≡) relates types up to unfolding of µα.τ ≡ τ[µα.τ/α].
Our mechanization (Section 1.7) is somewhat more general: we use a coinductive
definition of types to allow mutual recursion and recursion through the message
type as well as the tail. We also extend unrestricted types to allow recursive types to
be unrestricted. We can encode algebraic data types such as lists by using sums and
products and recursive types.

changes to the proof . We do not add a rule for unfolding recursive types to
the run-time type system. Rather, we define the run-time type system in a syntax
directed way so that all constructors respect the congruence relation (≡), and then
prove a version of the unfolding rule:

Lemma 1.6.1. If Γ1 ≡ Γ2 and τ1 ≡ τ2, then (Γ1 ⊢ e : τ1) −∗ (Γ2 ⊢ e : τ2).

example . The combination of equi-recursive and unrestricted types allows us
to type check the call-by-value Y-combinator for constructing recursive functions
of type τ1 → τ2. Defining recursive functions in terms of a self-referential type is
standard (Harper, 2016):

Y : ((τ1 → τ2) → (τ1 → τ2)) → (τ1 → τ2)
Y ≜ λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))

We use the recursive type µα.(α → (τ1 → τ2)) for x and the type (τ1 → τ2) →
(τ1 → τ2) for f. Note that while τ1 and τ2 can be restricted (linear) types, we must
use an unrestricted function type for f and x in order to type check the multiple
uses of f and x. In fact, a fixed-point combinator for constructing functions τ1 −◦ τ2

with linear function type would violate type safety. Intuitively, a recursive function
is allowed to manipulate both linear and non-linear resources, but the definition of a
recursive function is not allowed to capture linear resources in its closure because
this closure will be invoked multiple times.

1.6.3 Partial Deadlock and Memory Leak Freedom via Reachability

In the context of session-typed languages with non-termination (e.g., due to recursive
types), deadlock freedom is typically stated as global progress, which we prove in
Section 1.3.6. Global progress guarantees that the configuration can either take
a step, or is in a final state where all threads have successfully terminated and

63

1.6 extensions

all channels have been deallocated. Although global progress rules out whole-
program deadlocks, as well as memory leaks when all threads have terminated, it
admits partial deadlocks as long there is still a thread that can step (e.g., is in an
infinite loop). Linear session types actually rule out partial deadlocks and memory
leaks even when some threads are still running. Although deadlock freedom and
memory leak freedom may seem like separate properties, we state two properties that
simultaneously generalize both, namely partial deadlock/leak freedom (Theorem 1.6.4)
and full reachability (Theorem 1.6.6). We prove that these properties are equivalent
(Theorem 1.6.7) and show that full reachability can be proven using the waiting
induction principle of our proof method (Theorem 1.6.8). Finally, we show that they
imply global progress.

In order to arrive at a simultaneous generalization of deadlock and memory leak
freedom, consider pure memory leaks and pure deadlocks:

• A pure memory leak is one in which we have a set S of channels, such that all
endpoints of the channels in S are held by the buffers of channels in the same set
S.

• A pure deadlock is a set S of both threads and channels with empty buffers, such
that all threads in S are blocked on one of the channels in the set S, and all of the
endpoints of the channels in S are held by threads in the set S.

In general, we can have a mixed partial deadlock/leak situation that is neither a
pure memory leak nor a pure deadlock. Intuitively, a partial deadlock and memory
leak is a set S of threads and channels such that all threads in S are blocked on one
of the channels in S, and all endpoints of channels in S are held by threads and
channels in S. To make this formal, we define the set of vertices refs(e,h)(ν) ⊆ V that
a vertex ν references.

Definition 1.6.2. �

refs(e,h)(Thread(i)) ≜ {Chan(a′) | channel #(a′, t) occurs in ei}
refs(e,h)(Chan(a)) ≜ {Chan(a′) | channel #(a′, t) occurs in h(#(a, 0)) or h(#(a, 1))}

With this function at hand, we can define partial deadlock and memory leak
freedom.

Definition 1.6.3 (Partial deadlock/leak �). Given a configuration (e,h), a subset
S ⊆ V of the threads and channels is in a partial deadlock/leak if the following
conditions hold:

1. We have ∅ ⊂ S ⊆ active(e,h) (see Theorem 1.3.3 for the definition of active).

2. For all threads Thread(i) ∈ S, the expression ei cannot step in the heap h.

3. If Thread(i) ∈ S and blocked(e,h)(Thread(i), Chan(a)), then Chan(a) ∈ S (see
Theorem 1.3.4 for the definition of blocked).

64

1.6 extensions

all channels have been deallocated. Although global progress rules out whole-
program deadlocks, as well as memory leaks when all threads have terminated, it
admits partial deadlocks as long there is still a thread that can step (e.g., is in an
infinite loop). Linear session types actually rule out partial deadlocks and memory
leaks even when some threads are still running. Although deadlock freedom and
memory leak freedom may seem like separate properties, we state two properties that
simultaneously generalize both, namely partial deadlock/leak freedom (Theorem 1.6.4)
and full reachability (Theorem 1.6.6). We prove that these properties are equivalent
(Theorem 1.6.7) and show that full reachability can be proven using the waiting
induction principle of our proof method (Theorem 1.6.8). Finally, we show that they
imply global progress.

In order to arrive at a simultaneous generalization of deadlock and memory leak
freedom, consider pure memory leaks and pure deadlocks:

• A pure memory leak is one in which we have a set S of channels, such that all
endpoints of the channels in S are held by the buffers of channels in the same set
S.

• A pure deadlock is a set S of both threads and channels with empty buffers, such
that all threads in S are blocked on one of the channels in the set S, and all of the
endpoints of the channels in S are held by threads in the set S.

In general, we can have a mixed partial deadlock/leak situation that is neither a
pure memory leak nor a pure deadlock. Intuitively, a partial deadlock and memory
leak is a set S of threads and channels such that all threads in S are blocked on one
of the channels in S, and all endpoints of channels in S are held by threads and
channels in S. To make this formal, we define the set of vertices refs(e,h)(ν) ⊆ V that
a vertex ν references.

Definition 1.6.2. �

refs(e,h)(Thread(i)) ≜ {Chan(a′) | channel #(a′, t) occurs in ei}
refs(e,h)(Chan(a)) ≜ {Chan(a′) | channel #(a′, t) occurs in h(#(a, 0)) or h(#(a, 1))}

With this function at hand, we can define partial deadlock and memory leak
freedom.

Definition 1.6.3 (Partial deadlock/leak �). Given a configuration (e,h), a subset
S ⊆ V of the threads and channels is in a partial deadlock/leak if the following
conditions hold:

1. We have ∅ ⊂ S ⊆ active(e,h) (see Theorem 1.3.3 for the definition of active).

2. For all threads Thread(i) ∈ S, the expression ei cannot step in the heap h.

3. If Thread(i) ∈ S and blocked(e,h)(Thread(i), Chan(a)), then Chan(a) ∈ S (see
Theorem 1.3.4 for the definition of blocked).

64

1.6 extensions

4. If Chan(a) ∈ S and Chan(a) ∈ refs(e,h)(ν), then ν ∈ S.

Definition 1.6.4 (Partial deadlock/leak freedom �). A configuration (e,h) is
deadlock/leak free if no S ⊆ V is in a partial deadlock/leak in (e,h).

In order to prove that well-formed configurations have no partial deadlock/leak,
we prove another property that we call full reachability, which we show to be
equivalent to partial deadlock/leak freedom. Full reachability has the advantage
that it can be proved directly using waiting induction. It takes inspiration from the
notion of reachability used in garbage collection and memory management, namely
that data is said to be reachable if it can be reached by transitively following pointers,
starting from any thread’s stack frames. Memory leak freedom can then be stated as:
all data in the configuration is reachable, i.e., there is never any leaked memory. To
incorporate deadlock freedom into this, we strengthen the definition of reachability
to only start from stack frames of threads that can step. However, if a thread T1 is
blocked on channel C, and the other endpoint of C is held by still running thread T2,
then data held by T1 should also be considered transitively reachable: even though
this data is held by a thread that (currently) cannot step, further interaction of T2
with the channel C may unblock T1. We formalize this using the following inductive
definition:

Definition 1.6.5 (Reachability �). We inductively define the vertices that are reachable
in (e,h):

1. Thread(i) is reachable if either

• the expression ei can step in the heap h, or

• there exists an a such that blocked(e,h)(Thread(i), Chan(a)) and Chan(a) is
reachable.

2. Chan(a) is reachable if there exists a reachable ν such that Chan(a) ∈ refs(e,h)(ν).

It is important that reachability is an inductive definition—a coinductive definition
would trivially consider all cycles to be reachable.

Definition 1.6.6 (Full reachability �). A configuration (e,h) is fully reachable if all
ν ∈ active(e,h) are reachable in (e,h).

We show equivalence of partial deadlock/leak freedom and full reachability:

Theorem 1.6.7. � A configuration (e,h) is deadlock/leak free if and only if it is fully
reachable.

For (⇒), we show that none of the objects in a deadlock/leak are reachable, and
for (⇐), we show that the set of all non-reachable objects is a deadlock/leak.

Theorem 1.6.8 (Full reachability �). If wf(e,h), then (e,h) is fully reachable.

65

1.7 mechanization in coq

This proof goes by waiting induction with R ≜ blocked(e,h) and closely resembles
the global progress proof in Section 1.3.6. By using the equivalence between
full reachability and partial deadlock/leak freedom, we also obtain that a partial
deadlock/leak cannot occur, and can re-prove global progress using reachability.

Corollary 1.6.9 (Partial deadlock/leak freedom �). If wf(e,h), then (e,h) is
deadlock/leak free.

Corollary 1.6.10 (Global progress’ �). If wf(e,h) and active(e,h) ≠ ∅, then (e,h) can
step.

The proof of Theorem 1.6.10 uses Theorem 1.6.8, which gives that active objects
are reachable. We then find a thread that can step by straightforward induction on
the reachability predicate. Alternatively, we can go via Theorem 1.6.9: if none of the
threads can step, then the set of all active threads and channels is a deadlock/leak.

Combined with the proofs that the initial configuration ρ of well-typed program
satisfies wf(ρ), and that wf(ρ) is preserved by the operational semantics (Section 1.3.5),
we obtain partial deadlock/leak freedom, full reachability, and global progress for
any well-typed program.

1.7 mechanization in coq

Using the Coq proof assistant (Coq Team, 2021) we have mechanized the generic
connectivity graph method and its concrete instantiation to our session-typed
language. Our mechanization starts with a library for undirected graphs and
their acyclicity described in Jacobs et al. (2021). On top of this, we build a library for
connectivity graphs and waiting induction (Section 1.4). We combine connectivity
graphs with separation logic (Section 1.3.3) to define the generic well-formedness
predicate and the separation logic local transformation lemmas (Section 1.5). We
instantiate our library by formalizing the language from Section 1.2 with its
extensions from Section 1.6. This involves defining the syntax, type system, and
operational semantics. For the language-specific parts of our deadlock and leak
freedom proof, we define the run-time type system (Section 1.3.3) and the local
well-formedness condition (Section 1.3.4). We then prove preservation using our
local transformation rules in separation logic (Section 1.3.5), and progress using
our principle of waiting induction (Section 1.3.6). We have also mechanized all the
extensions (Section 1.6), including unrestricted types (Section 1.6.1), equi-recursive
types (Section 1.6.2), and the theorems about reachability and partial deadlock/leak
freedom (Section 1.6.3).

line counts The parametric connectivity graph library is 4999 LOC, the
language definition is 451 LOC, and the language-specific deadlock and leak freedom
proofs are 1688 LOC.

66

1.7 mechanization in coq

This proof goes by waiting induction with R ≜ blocked(e,h) and closely resembles
the global progress proof in Section 1.3.6. By using the equivalence between
full reachability and partial deadlock/leak freedom, we also obtain that a partial
deadlock/leak cannot occur, and can re-prove global progress using reachability.

Corollary 1.6.9 (Partial deadlock/leak freedom �). If wf(e,h), then (e,h) is
deadlock/leak free.

Corollary 1.6.10 (Global progress’ �). If wf(e,h) and active(e,h) ≠ ∅, then (e,h) can
step.

The proof of Theorem 1.6.10 uses Theorem 1.6.8, which gives that active objects
are reachable. We then find a thread that can step by straightforward induction on
the reachability predicate. Alternatively, we can go via Theorem 1.6.9: if none of the
threads can step, then the set of all active threads and channels is a deadlock/leak.

Combined with the proofs that the initial configuration ρ of well-typed program
satisfies wf(ρ), and that wf(ρ) is preserved by the operational semantics (Section 1.3.5),
we obtain partial deadlock/leak freedom, full reachability, and global progress for
any well-typed program.

1.7 mechanization in coq

Using the Coq proof assistant (Coq Team, 2021) we have mechanized the generic
connectivity graph method and its concrete instantiation to our session-typed
language. Our mechanization starts with a library for undirected graphs and
their acyclicity described in Jacobs et al. (2021). On top of this, we build a library for
connectivity graphs and waiting induction (Section 1.4). We combine connectivity
graphs with separation logic (Section 1.3.3) to define the generic well-formedness
predicate and the separation logic local transformation lemmas (Section 1.5). We
instantiate our library by formalizing the language from Section 1.2 with its
extensions from Section 1.6. This involves defining the syntax, type system, and
operational semantics. For the language-specific parts of our deadlock and leak
freedom proof, we define the run-time type system (Section 1.3.3) and the local
well-formedness condition (Section 1.3.4). We then prove preservation using our
local transformation rules in separation logic (Section 1.3.5), and progress using
our principle of waiting induction (Section 1.3.6). We have also mechanized all the
extensions (Section 1.6), including unrestricted types (Section 1.6.1), equi-recursive
types (Section 1.6.2), and the theorems about reachability and partial deadlock/leak
freedom (Section 1.6.3).

line counts The parametric connectivity graph library is 4999 LOC, the
language definition is 451 LOC, and the language-specific deadlock and leak freedom
proofs are 1688 LOC.

66

1.8 related work

external dependencies and coq features that we use We use the std++
extended standard library for its results on data structures like lists and finite maps
(Coq-std++ Team, 2021). We use the Iris Proof Mode for tactics-based separation
logic proofs (Krebbers et al., 2017b, 2018). To represent recursive types (Section 1.6.2),
we use the technique by Gay et al. (2020) based on coinductive types combined with
Coq’s generalized rewriting mechanism to reason up to the congruence ≡ (Sozeau,
2009).

1.8 related work

session types The line of works most closely related to ours are derivatives
of Wadler (2012)’s GV, a linear functional language with session types inspired by
Gay and Vasconcelos (2010). Whereas Gay and Vasconcelos’s calculus does not
enjoy the property of deadlock freedom, Wadler’s GV and its derivatives (Lindley
and Morris, 2015, 2016c, 2017; Fowler et al., 2019, 2021) do. For Wadler’s GV,
deadlock freedom follows from its translation to CP (Classical Processes) Wadler
(2012), for which deadlock freedom holds by cut elimination. Lindley and Morris
(2015) then concretize the progress statement by introducing the definition of
a deadlocked configuration and proving deadlock freedom using a small-step
operational semantics. They also give translations between GV and CP and
show that both directions of the translation preserve reductions, unlike previous
translations from GV to CP. Subsequently, Lindley and Morris (2015)’s GV has been
extended to support least and greatest fixed points (Lindley and Morris, 2016c),
exceptions (Fowler et al., 2019), and polymorphism (Lindley and Morris, 2017). A
recent extension of GV (Fowler et al., 2021) moreover simplifies GV’s meta theory
by making process equivalence type preserving. The extension adopts the idea of a
hypersequent (Avron, 1991) from (Montesi and Peressotti, 2018; Kokke et al., 2019),
yielding Hypersequent GV (HGV).

Like the GV derivatives, our language is a functional language with session-typed
channels. Our notion of a connectivity graph moreover bears a resemblance to
HGV’s abstract process structure (APS), introduced to reason about the acyclic forest
structure of a process configuration. However, whereas abstract process structures
are defined over hyperenvironments and channel names, our connectivity graph
is parametric in its vertices, labels, and edges. More importantly, our connectivity
graph is at the core of a proof method for deadlock freedom, fully mechanized
in Coq, that uses separation logic and is parametric in its key results. Besides
these conceptual differences, there are various technical differences between our
formalization and GV formalizations, and even among the different GV variants
(such as a synchronous versus an asynchronous semantics). Our formalization
uses a standard operational semantics whereas many GV variants use structural
congruences and binders for channnel names. In our graph, not only the threads but
also channels are vertices, and the edges are directed. Since reasoning about syntax
up to equivalence (e.g., structural congruence or α-equivalence) is cumbersome in a

67

1.8 related work

proof assistant like Coq, we believe that our operational semantics is better suited
for mechanization (and perhaps closer to how these structures are represented on
real computers). Orthogonally, we do not tie channel closing to thread termination
and allow close everywhere. As a result our language readily accommodates a forest
topology without the need for a special connective, such as mix as used by Fowler
et al. (2021).

Earlier non-mechanized work has proved deadlock freedom for a π-calculus using
a graphical approach (Carbone and Debois, 2010). This is the earliest work that
we are aware of that describes an explicit connection between deadlock freedom
and acyclicity of a graph. Their graphical representation is, however, an undirected
graph between processes, whereas our connectivity graphs (when instantiated for
our language) are directed graphs between threads and channels. Furthermore, their
graphs are unlabeled, whereas our connectivity graphs are labeled with session
types.

More distantly, our language is related to Toninho et al. (2013); Toninho (2015)’s
language SILL, which embeds session-typed processes into a functional core
language via a contextual monad. The language is based on the Curry-Howard
correspondence established by between intuitionistic linear logic and session-typed
π-calculus. Deadlock freedom of SILL follows thus as a consequence. Due to its
modal separation, SILL does not allow mixing of functional and session terms freely,
in contrast to GV and our language. The seminal paper by Caires and Pfenning (2010)
and Toninho (2015)’s thesis spurred a series of derivatives, similarly to Wadler’s CP
and GV, accommodating, for example, polymorphism (Caires et al., 2013; Pérez et al.,
2014), work analysis (Das et al., 2018), and information flow control (Derakhshan
et al., 2021). Due to their connection to intuitionistic linear logic, all these works
guarantee deadlock freedom. However, unlike ours, none of these deadlock freedom
proofs have been mechanized in a proof assistant.

A derivative of SILL, SILLS (Balzer and Pfenning, 2017), introduces a controlled
form of aliasing through a stratification of linear and shared session types with
adjoint modalities (Pfenning and Griffith, 2015; Benton, 1994; Reed, 2009b) to support
multiple-client scenarios. Whereas the resulting language reclaims the expressiveness
of the untyped asynchronous π-calculus for session-typed languages (Balzer et al.,
2018), it also sacrifices deadlock freedom (rectified by its successor SILL+

S
(Balzer

et al., 2019)). Recent extensions of classical linear logic session types contribute
another approach to softening the rigidity of linear session types to support multiple
client sessions and nondeterminism (Qian et al., 2021) and memory cells and
nondeterministic updates (Rocha and Caires, 2021), respectively. Whereas neither of
these recent approaches reclaim the full expressiveness of unrestricted sharing, they
keep the logical foundation intact and thus uphold deadlock freedom. However,
none of these works have been mechanized in a proof assistant.

Prior to the development of logic-based session types (Caires and Pfenning, 2010;
Wadler, 2012), deadlock freedom in session-typed calculi (Vasconcelos, 2012) was
guaranteed only for processes interacting on a single session—interleaving of blocking

68

1.8 related work

proof assistant like Coq, we believe that our operational semantics is better suited
for mechanization (and perhaps closer to how these structures are represented on
real computers). Orthogonally, we do not tie channel closing to thread termination
and allow close everywhere. As a result our language readily accommodates a forest
topology without the need for a special connective, such as mix as used by Fowler
et al. (2021).

Earlier non-mechanized work has proved deadlock freedom for a π-calculus using
a graphical approach (Carbone and Debois, 2010). This is the earliest work that
we are aware of that describes an explicit connection between deadlock freedom
and acyclicity of a graph. Their graphical representation is, however, an undirected
graph between processes, whereas our connectivity graphs (when instantiated for
our language) are directed graphs between threads and channels. Furthermore, their
graphs are unlabeled, whereas our connectivity graphs are labeled with session
types.

More distantly, our language is related to Toninho et al. (2013); Toninho (2015)’s
language SILL, which embeds session-typed processes into a functional core
language via a contextual monad. The language is based on the Curry-Howard
correspondence established by between intuitionistic linear logic and session-typed
π-calculus. Deadlock freedom of SILL follows thus as a consequence. Due to its
modal separation, SILL does not allow mixing of functional and session terms freely,
in contrast to GV and our language. The seminal paper by Caires and Pfenning (2010)
and Toninho (2015)’s thesis spurred a series of derivatives, similarly to Wadler’s CP
and GV, accommodating, for example, polymorphism (Caires et al., 2013; Pérez et al.,
2014), work analysis (Das et al., 2018), and information flow control (Derakhshan
et al., 2021). Due to their connection to intuitionistic linear logic, all these works
guarantee deadlock freedom. However, unlike ours, none of these deadlock freedom
proofs have been mechanized in a proof assistant.

A derivative of SILL, SILLS (Balzer and Pfenning, 2017), introduces a controlled
form of aliasing through a stratification of linear and shared session types with
adjoint modalities (Pfenning and Griffith, 2015; Benton, 1994; Reed, 2009b) to support
multiple-client scenarios. Whereas the resulting language reclaims the expressiveness
of the untyped asynchronous π-calculus for session-typed languages (Balzer et al.,
2018), it also sacrifices deadlock freedom (rectified by its successor SILL+

S
(Balzer

et al., 2019)). Recent extensions of classical linear logic session types contribute
another approach to softening the rigidity of linear session types to support multiple
client sessions and nondeterminism (Qian et al., 2021) and memory cells and
nondeterministic updates (Rocha and Caires, 2021), respectively. Whereas neither of
these recent approaches reclaim the full expressiveness of unrestricted sharing, they
keep the logical foundation intact and thus uphold deadlock freedom. However,
none of these works have been mechanized in a proof assistant.

Prior to the development of logic-based session types (Caires and Pfenning, 2010;
Wadler, 2012), deadlock freedom in session-typed calculi (Vasconcelos, 2012) was
guaranteed only for processes interacting on a single session—interleaving of blocking

68

1.8 related work

actions on different sessions could easily result in deadlocks. To address limitations
of classical binary session types, Honda et al. (2008) introduced multiparty session
types, where sessions are described by so-called global types that capture the
interactions between an arbitrary number of session participants. Given some
well-formedness constraints, global types can ensure that a collection of processes
correctly implement the global behavior in a deadlock-free way. However, these
global type-based approaches do not ensure deadlock freedom in the presence of
higher-order channels, interleaved sessions, dynamic channel creation, or dynamic
thread creation. To remedy the deficiency various extensions at increasing degrees
of complexity were introduced. For example, Bettini et al. (2008) and Coppo et al.
(2016) track usage orders among interleaved multiparty sessions, ruling out cyclic
dependencies but also restricting recursion. Our approach instead supports higher-
order channels, general recursion, and deadlock freedom solely using a linear type
system, by restricting to binary sessions.

separation logic Separation logic (O’Hearn et al., 2001) is conventionally used
in Hoare-style program logics for proving functional correctness, while we use it to
define and reason about (run-time) typing judgments. In conventional separation
logic, propositions are predicates over heaps (possibly extended with permissions,
ghost state, etc.), whereas we consider predicates over the outgoing edges of a
connectivity graph (which contain types instead of values). The idea of using
separation logic to define typing judgments for linear languages has been explored
by Rouvoet et al. (2020, 2021) in the context of intrinsically-typed programming
in Agda. They present separation-logic based programming abstractions to hide
types of references in intrinsically-typed interpreters, and to hide types of labels
in intrinsically-typed compilers. As a case study, Rouvoet et al. (2020) use their
abstractions to define an intrinsically-typed interpreter for a small session-typed
language that guarantees type safety by construction (but not deadlock or resource
leak freedom).

Separation logic has also been used to define logical relation models of affine
type systems. For example, logical relations in the Iris separation logic (Jung et al.,
2015, 2018b) have been used for proving memory safety and data race freedom of
Rust (Jung et al., 2018a), as well as type safety of session types (Hinrichsen et al.,
2021). To extend the logical-relations based approach to prove deadlock freedom, a
full-fledged separation logic that is capable of proving deadlock freedom is needed.
While separation logics and Hoare logics with support for deadlock freedom exist,
e.g., (Hamin and Jacobs, 2018; Le et al., 2013; Zhang et al., 2016), they use lock-orders,
whose logical expressivity is different from session types. Some separation logics
have support for pointed-by assertions (Kassios and Kritikos, 2013), which can be
used to reason about memory leak freedom.

Various extensions of separation logic that incorporate session-type based
mechanisms to reason about message-passing programs have been developed, e.g.,
Francalanza et al. (2011); Lozes and Villard (2012); Craciun et al. (2015); Oortwijn

69

1.8 related work

et al. (2016); Hinrichsen et al. (2020, 2021). The goal of these logics is different from
ours—they are full-fledged Hoare logics aimed at proving functional correctness
instead of deadlock freedom. On the other hand, we use the assertion layer of
separation to hide bookkeeping in the definition of run-time typing judgments, and
to describe connectivity graph transformations in an abstract and generic way.

mechanized results of session types Thiemann (2019) proves type safety
of a linear λ-calculus with session types that is inspired by GV. They do not prove
deadlock or memory leak freedom. Their mechanization involves an extensive
amount of bookkeeping to keep track of resources. Rouvoet et al. (2020) streamlined
this approach via separation logic (see discussion above).

Hinrichsen et al. (2021) prove type safety for a comprehensive session-typed
language with locks, subtyping and polymorphism using Iris in Coq. Their type
system is affine, which means that deadlocks are considered safe (their receive
operation will spin if the buffer is empty). Their proof is based is on logical relations
instead of progress and preservation (see discussion above).

Tassarotti et al. (2017) prove correctness of a compiler for an affine session-typed
language using Iris in Coq. The operational semantics of their source language is
similar to ours, while channels are compiled to an implementation involving linked
lists in the target. Their compiler is proved to be termination preserving, so a target
program deadlocks iff the source deadlocks.

More distantly, there also exist various mechanized results involving π-calculus.
Goto et al. (2016) prove type safety for a π-calculus with a polymorphic session type
system in Coq. Their type system allows dropping channels, and hence does not
enjoy deadlock nor memory leak freedom. Ciccone and Padovani (2020) mechanize
dependent binary session session types by embedding them into a π-calculus in
Agda. They prove subject reduction (i.e., preservation) and that typing is preserved
by structural congruence. Neither deadlock freedom nor leak freedom is proved.
Castro-Perez et al. (2020) present a framework for locally-nameless representations
of π-calculus in Coq. They use their framework to prove subject reduction (i.e.,
preservation) of a type system for binary session types. Neither deadlock freedom
nor leak freedom is proved. Their framework is used by Castro-Perez et al. (2021)
to mechanize a DSL for multiparty communication in Coq based on asynchronous
multiparty session types. They prove deadlock freedom w.r.t. a global type, but do
not prove deadlock freedom in the presence of higher-order channels, interleaved
sessions, dynamic channel creation, or dynamic thread creation.

Gay et al. (2020) study various notions of duality in Agda, and show that
distribution laws for duality over the recursion operator are unsound. Unlike
the other mechanized results discussed so far, they focus on the static instead of
dynamic semantics of session types. We have adapted their approach of using
coinductive types for mechanizing general recursive session types (see Section 1.7).
Keizer et al. (2021) use coalgebras to model session types in a non-mechanized
setting.

70

1.8 related work

et al. (2016); Hinrichsen et al. (2020, 2021). The goal of these logics is different from
ours—they are full-fledged Hoare logics aimed at proving functional correctness
instead of deadlock freedom. On the other hand, we use the assertion layer of
separation to hide bookkeeping in the definition of run-time typing judgments, and
to describe connectivity graph transformations in an abstract and generic way.

mechanized results of session types Thiemann (2019) proves type safety
of a linear λ-calculus with session types that is inspired by GV. They do not prove
deadlock or memory leak freedom. Their mechanization involves an extensive
amount of bookkeeping to keep track of resources. Rouvoet et al. (2020) streamlined
this approach via separation logic (see discussion above).

Hinrichsen et al. (2021) prove type safety for a comprehensive session-typed
language with locks, subtyping and polymorphism using Iris in Coq. Their type
system is affine, which means that deadlocks are considered safe (their receive
operation will spin if the buffer is empty). Their proof is based is on logical relations
instead of progress and preservation (see discussion above).

Tassarotti et al. (2017) prove correctness of a compiler for an affine session-typed
language using Iris in Coq. The operational semantics of their source language is
similar to ours, while channels are compiled to an implementation involving linked
lists in the target. Their compiler is proved to be termination preserving, so a target
program deadlocks iff the source deadlocks.

More distantly, there also exist various mechanized results involving π-calculus.
Goto et al. (2016) prove type safety for a π-calculus with a polymorphic session type
system in Coq. Their type system allows dropping channels, and hence does not
enjoy deadlock nor memory leak freedom. Ciccone and Padovani (2020) mechanize
dependent binary session session types by embedding them into a π-calculus in
Agda. They prove subject reduction (i.e., preservation) and that typing is preserved
by structural congruence. Neither deadlock freedom nor leak freedom is proved.
Castro-Perez et al. (2020) present a framework for locally-nameless representations
of π-calculus in Coq. They use their framework to prove subject reduction (i.e.,
preservation) of a type system for binary session types. Neither deadlock freedom
nor leak freedom is proved. Their framework is used by Castro-Perez et al. (2021)
to mechanize a DSL for multiparty communication in Coq based on asynchronous
multiparty session types. They prove deadlock freedom w.r.t. a global type, but do
not prove deadlock freedom in the presence of higher-order channels, interleaved
sessions, dynamic channel creation, or dynamic thread creation.

Gay et al. (2020) study various notions of duality in Agda, and show that
distribution laws for duality over the recursion operator are unsound. Unlike
the other mechanized results discussed so far, they focus on the static instead of
dynamic semantics of session types. We have adapted their approach of using
coinductive types for mechanizing general recursive session types (see Section 1.7).
Keizer et al. (2021) use coalgebras to model session types in a non-mechanized
setting.

70

1.9 future work

More distantly related are mechanized versions of cut elimination of linear
logic (Reed, 2009a; Chaudhuri et al., 2019), which by Curry-Howard relates to
deadlock freedom of intuitionistic session types. The authors were incentivized
by mistakes in various existing, non-mechanized proofs. However, whereas a cut
elimination proof concerns a logical inference system only, our proof of deadlock
freedom encompasses a typed programming language with operational semantics,
requiring us to reason not only about its statics but also it execution semantics.
Moreover, our language includes features such as recursive types (Section 1.6.2) that
break cut elimination.

Mechanization results, lastly, also exist for choreographic languages (Montesi,
2021). Cruz-Filipe et al. (2021a) mechanize choreography compilation in Coq for
the choreographic language Core Choreographies (CC) introduced by Cruz-Filipe
et al. (2021b). CC supports recursion and its semantics has been formalized in Coq
by Cruz-Filipe et al. (2021b). Key results of the formalization include determinism,
confluence, and deadlock-freedom by design as well as Turing completeness.

process calculi The addition of channel usage information to types in a
concurrent, message-passing setting was pioneered by Kobayashi (1997); Igarashi
and Kobayashi (1997); Kobayashi et al. (1999), who applied the idea to deadlock
prevention in the π-calculus and later to more general properties (Igarashi and
Kobayashi, 2001, 2004), giving rise to a generic system that can be instantiated to
produce a variety of concrete typing disciplines for the π-calculus. Typically, types
are augmented with the relative ordering of channel actions, with the type system
ensuring that the transitive closure of such orderings forms a strict partial order,
ensuring deadlock-freedom. Building on this, Kobayashi (2002a) proposed type
systems that ensure a stronger property, dubbed lock freedom, and variants that are
amenable to type inference (Kobayashi et al., 2000). Kobayashi (2006) extended this
to account for recursive processes and type inference. Kobayashi-style systems have
also been adopted for session-typed languages (Dardha and Gay, 2018; Balzer et al.,
2019).

1.9 future work

We have used our connectivity graph method to give a mechanized proof of deadlock
and memory-leak freedom for binary session types. Since connectivity graphs are
not restricted to two incoming edges per channel, we would like to explore language
designs with a version of multiparty session types that supports dynamic thread
and channel creation, and higher order channels, but still enjoys global progress
from typing in a manner similar to binary session types (i.e., without additional
mechanisms such as orders or priorities). Second, we would like to explore whether
other concurrency mechanisms such as locks and barriers could be handled by our
method.

71

Chapter 2

Higher-Order Leak and Deadlock Free Locks

abstract Reasoning about concurrent programs is challenging, especially if data
is shared among threads. Program correctness can be violated by the presence of
data races—whose prevention has been a topic of concern both in research and in
practice. The Rust programming language is a prime example, putting the slogan
fearless concurrency in practice by not only employing an ownership-based type
system for memory management, but also using its type system to enforce mutual
exclusion on shared data. Locking, unfortunately, not only comes at the price of
deadlocks but shared access to data may also cause memory leaks.

This chapter develops a theory of deadlock and leak freedom for higher-order locks
in a shared memory concurrent setting. Higher-order locks allow sharing not only
of basic values but also of other locks and channels, and are themselves first-class
citizens. The theory is based on the notion of a sharing topology, administrating
who is permitted to access shared data at what point in the program. The paper
first develops higher-order locks for acyclic sharing topologies, instantiated in a
λ-calculus with higher-order locks and message-passing concurrency. The paper
then extends the calculus to support circular dependencies with dynamic lock orders,
which we illustrate with a dynamic version of Dijkstra’s dining philosophers problem.
Well-typed programs in the resulting calculi are shown to be free of deadlocks and
memory leaks, with proofs mechanized in the Coq proof assistant.

2.1 introduction

Today’s applications are inherently concurrent, necessitating programming languages
and constructs that support spawning of threads and sharing of resources. Sharing
of resources among threads, a sine qua non for many applications, is the source
of many concurrency-related software bugs. The issue is the possibility of a race
condition, if simultaneous write and read accesses are performed to shared data. To
rule out data races, locks can be employed, forcing simultaneous accesses to happen
in mutual exclusion from each other. Locking unfortunately not only comes at the
cost of deadlocks, but shared access to data may also cause memory leaks.

This chapter develops a λ-calculus with higher-order locks and message-passing
concurrency, where well-typed programs are free of memory leaks and deadlocks.
Whereas there exist type systems for memory safety—most notably Rust (Matsakis
and Klock, 2014; Jung et al., 2018a), incorporating ideas of ownership types (Clarke
et al., 1998; Müller, 2002) and region management (Tofte and Talpin, 1997; Grossman

72

Chapter 2

Higher-Order Leak and Deadlock Free Locks

abstract Reasoning about concurrent programs is challenging, especially if data
is shared among threads. Program correctness can be violated by the presence of
data races—whose prevention has been a topic of concern both in research and in
practice. The Rust programming language is a prime example, putting the slogan
fearless concurrency in practice by not only employing an ownership-based type
system for memory management, but also using its type system to enforce mutual
exclusion on shared data. Locking, unfortunately, not only comes at the price of
deadlocks but shared access to data may also cause memory leaks.

This chapter develops a theory of deadlock and leak freedom for higher-order locks
in a shared memory concurrent setting. Higher-order locks allow sharing not only
of basic values but also of other locks and channels, and are themselves first-class
citizens. The theory is based on the notion of a sharing topology, administrating
who is permitted to access shared data at what point in the program. The paper
first develops higher-order locks for acyclic sharing topologies, instantiated in a
λ-calculus with higher-order locks and message-passing concurrency. The paper
then extends the calculus to support circular dependencies with dynamic lock orders,
which we illustrate with a dynamic version of Dijkstra’s dining philosophers problem.
Well-typed programs in the resulting calculi are shown to be free of deadlocks and
memory leaks, with proofs mechanized in the Coq proof assistant.

2.1 introduction

Today’s applications are inherently concurrent, necessitating programming languages
and constructs that support spawning of threads and sharing of resources. Sharing
of resources among threads, a sine qua non for many applications, is the source
of many concurrency-related software bugs. The issue is the possibility of a race
condition, if simultaneous write and read accesses are performed to shared data. To
rule out data races, locks can be employed, forcing simultaneous accesses to happen
in mutual exclusion from each other. Locking unfortunately not only comes at the
cost of deadlocks, but shared access to data may also cause memory leaks.

This chapter develops a λ-calculus with higher-order locks and message-passing
concurrency, where well-typed programs are free of memory leaks and deadlocks.
Whereas there exist type systems for memory safety—most notably Rust (Matsakis
and Klock, 2014; Jung et al., 2018a), incorporating ideas of ownership types (Clarke
et al., 1998; Müller, 2002) and region management (Tofte and Talpin, 1997; Grossman

72

2.1 introduction

et al., 2002)—memory safety only ensures that no dangling pointers are dereferenced,
but does not rule out memory leaks. Similarly, type systems for deadlock and
leak freedom have been developed, pioneered by Kobayashi (1997); Igarashi and
Kobayashi (1997); Kobayashi et al. (1999) in the context of the π-calculus and by
Caires and Pfenning (2010); Wadler (2012) in the context of linear logic session types.
Our work builds on the latter and extends it with the capability to share resources
as present in a shared memory setting.

It may come as a surprise that locking not only can cause deadlocks but also
memory leaks. We give an example of a memory leak caused by a mutex in Rust
below:

struct X { x: Option<Arc<Mutex<X>>> } // type that will be stored in the mutex

let m1 = Arc::new(Mutex::new(X { x: None })); // create mutex with empty payload

let m2 = m1.clone(); // a second reference to the mutex, incrementing refcount

let mut g = m1.lock(); // acquire the mutex, giving access to the contents

*g = X { x: Some(m2) }; // mutate the contents to store m2 in the mutex

drop(g); // release the lock

drop(m1); // drop the reference to the mutex, decrementing the refcount

On the first line, we declare a recursive struct, that optionally contains a reference to
a mutex that is reference counted. On the second line, we then create such a mutex,
initially with empty payload. We then clone the reference to the mutex, raising the
reference count to 2. Finally, we lock the mutex through the first reference and store
the second reference in it, transferring ownership of m2 to the mutex. On the last line,
we release the mutex and drop the reference to m1. This decrements the reference
count to 1, but there still exists a self-reference from inside the mutex, leading to a
memory leak.

It is tempting to conclude from the above example that recursive types are
necessary to create memory leaks. This is not the case, however. Instead of storing
the mutex inside the mutex directly, one can store a closure of type unit -> unit that
captures the mutex in its lexical environment.

Memory leaks can moreover be caused by channels, as illustrated by the below
Rust code:

struct Y { y: Receiver<Y> } // declare type that will be sent over the channel

let (s,r) = mpsc::channel(); // create a channel with sender s and receiver r

s.send(Y { y: r }); // put the receiver in the buffer of the channel

drop(s); // drop the reference to the sender; but memory is leaked

On the first line, we declare a recursive struct with a reference to a receiver endpoint
of a channel. On the second line, we then allocate a channel, which gives us a sender
s and receiver r. We then send the receiver along the sender, transferring it into the
channel’s buffer. When we drop the sender, the reference to the receiver still exists
from within the buffer, creating a memory leak.

73

2.1 introduction

Unsurprisingly, we can use the same concurrency constructs to also cause
deadlocks. For example, a thread my allocate a new channel, keep both the sender
and the receiver reference, and attempt to receive from the receiver before sending
along the sender:

let (s,r) = mpsc::channel(); // create a new channel

r.recv(); // this call blocks on receiving a message, deadlock!

s.send(3); // the message is sent, but too late

Similarly, mutexes can give rise to deadlocks. Consider the following swap function:

fn swap(m1: &Mutex<i32>, m2: &Mutex<i32>) {

let mut g1 = m1.lock(); // acquire first mutex

let mut g2 = m2.lock(); // acquire second mutex

let tmp = *g1; // obtain the contents stored in m1

*g1 = *g2; // replace the contents of m1 with the contents of m2

*g2 = tmp; // replace the contents of m2 with the original contents of m1

drop(g1); drop(g2) // release the locks

}

This function takes two references to mutexes, locks both, and swaps their contents.
Now let’s consider the below code that calls this function:

let m1 = Arc::new(Mutex::new(1)); // create a new mutex

let m2 = m1.clone(); // create a second reference to the mutex

swap(&m1,&m2); // deadlock!

The code allocates a mutex, yielding the reference m1, and then creates an alias m2

to the same mutex. Then it calls function swap with m1 and m2 as arguments. The
function will deadlock upon the second acquire, which will block until the first one is
released. This last example also demonstrates that reasoning about deadlocks—and
for that matter memory leaks—is not inherently local. Both the function swap and
the above code are benign on their own but problematic when composed.

The above examples use the API constructs Arc<Mutex<T>> and Rc<RefCell<T>>

to cause memory leaks and deadlocks, suggesting that substructural typing is
insufficient to rule out memory leaks and deadlocks, but that memory leak and
deadlock freedom must be accounted for at the level of API design. Based on this
observation, we develop a λ-calculus for shared memory concurrency with a lock
data type, guaranteeing absence of memory leaks and deadlocks by type checking.
Memory leaks are especially bothersome for resource-intensive applications, and
deadlocks can prevent an entire application from being productive. We phrase our
lock API and type system in a λ-calculus setting to keep it independent of an actual
target language, yet readily adoptable by any language with similar features. Locks
in our calculus are higher-order, allowing them to store not only basic values but also
other locks. This feature enables us to encode session typed channels (Honda, 1993;
Honda et al., 1998). These channels are also higher-order, and can thus be stored in
locks and sent over each other as well.

74

2.1 introduction

Unsurprisingly, we can use the same concurrency constructs to also cause
deadlocks. For example, a thread my allocate a new channel, keep both the sender
and the receiver reference, and attempt to receive from the receiver before sending
along the sender:

let (s,r) = mpsc::channel(); // create a new channel

r.recv(); // this call blocks on receiving a message, deadlock!

s.send(3); // the message is sent, but too late

Similarly, mutexes can give rise to deadlocks. Consider the following swap function:

fn swap(m1: &Mutex<i32>, m2: &Mutex<i32>) {

let mut g1 = m1.lock(); // acquire first mutex

let mut g2 = m2.lock(); // acquire second mutex

let tmp = *g1; // obtain the contents stored in m1

*g1 = *g2; // replace the contents of m1 with the contents of m2

*g2 = tmp; // replace the contents of m2 with the original contents of m1

drop(g1); drop(g2) // release the locks

}

This function takes two references to mutexes, locks both, and swaps their contents.
Now let’s consider the below code that calls this function:

let m1 = Arc::new(Mutex::new(1)); // create a new mutex

let m2 = m1.clone(); // create a second reference to the mutex

swap(&m1,&m2); // deadlock!

The code allocates a mutex, yielding the reference m1, and then creates an alias m2

to the same mutex. Then it calls function swap with m1 and m2 as arguments. The
function will deadlock upon the second acquire, which will block until the first one is
released. This last example also demonstrates that reasoning about deadlocks—and
for that matter memory leaks—is not inherently local. Both the function swap and
the above code are benign on their own but problematic when composed.

The above examples use the API constructs Arc<Mutex<T>> and Rc<RefCell<T>>

to cause memory leaks and deadlocks, suggesting that substructural typing is
insufficient to rule out memory leaks and deadlocks, but that memory leak and
deadlock freedom must be accounted for at the level of API design. Based on this
observation, we develop a λ-calculus for shared memory concurrency with a lock
data type, guaranteeing absence of memory leaks and deadlocks by type checking.
Memory leaks are especially bothersome for resource-intensive applications, and
deadlocks can prevent an entire application from being productive. We phrase our
lock API and type system in a λ-calculus setting to keep it independent of an actual
target language, yet readily adoptable by any language with similar features. Locks
in our calculus are higher-order, allowing them to store not only basic values but also
other locks. This feature enables us to encode session typed channels (Honda, 1993;
Honda et al., 1998). These channels are also higher-order, and can thus be stored in
locks and sent over each other as well.

74

2.1 introduction

While higher-order locks and channels increase the expressivity of our calculus
and scale it to realistic application scenarios, they also challenge our goal to ensure
deadlock and leak freedom by type checking. Our approach is to account for an
application’s sharing topology, which tracks, for every lock, (i) who has references to
the lock, (ii) who is responsible for releasing the lock, and (iii) who is responsible
for deallocating the lock. The fundamental invariant that we place on the sharing
topology demands that there never exist any circular dependencies among these
responsibilities at any point in the execution of a program.

We first develop the calculus λlock, which enforces this invariant preemptively, by
demanding that the sharing topology be acyclic. As a result, λlock enjoys memory
leak and deadlock freedom, with corresponding theorems and proofs developed
in Section 2.4 and Section 2.5, respectively. We then introduce the calculus λlock++,
an extension of λlock that supports circular resource dependencies, as famously
portrayed by Dijkstra’s dining philosophers problem, while preserving memory leak
and deadlock freedom. λlock++ permits cyclic sharing dependencies within lock groups
using a lock order, but satisfies the sharing topology’s fundamental invariant between
different lock groups. These orders are purely local to a lock group and can change
dynamically by the addition or removal of locks to and from a group. Local orders
are compositional in that they remove the need for local orders to comply with each
other or a global lock order when acquiring locks from distinct groups. The proofs
of memory leak and deadlock freedom for λlock and λlock++ are mechanized in the
Coq proof assistant and detailed in Section 2.7.

in summary, this chapter contributes

• A notion of acyclic sharing topology to rule out circular dependencies without
any restriction on the order in which operations must be performed,

• the language λlock with higher-order locks for shared memory concurrency and
type system based on the sharing topology to ensure memory leak freedom and
deadlock freedom,

• an encoding of session-typed message-passing channels in terms of locks,

• the language λlock++, an extension supporting cyclic unbounded process networks,

• proofs of deadlock and memory leak freedom for well-typed λlock and λlock++

programs, mechanized in Coq.

75

2.2 key ideas and examples

2.2 key ideas and examples

This section develops the notion of a sharing topology underlying our calculus and
illustrates its type system based on examples. We start by deriving the fundamental
invariant to be preserved by the sharing topology in several steps, distilling several
key principles. We first focus on acyclic sharing topologies, resulting in the calculus
λlock, which we then extend to account for cyclic sharing dependencies, resulting in
the calculus λlock++.

2.2.1 Invariant for Leak and Deadlock Freedom

The examples of memory leaks and deadlocks discussed in Section 2.1 all share
a common pattern: a thread has several references to the same lock, introducing
self-referential responsibilities for releasing and deallocating locks. Our goal is
to devise a system that allows threads to reason locally about shared resources
and, in particular, to give threads complete freedom to acquire and release any
lock they reference. Our approach thus opts for restricting the propagation of lock
references by an individual thread rather than their use. To forbid the self-referential
scenarios discussed in Section 2.1, the fundamental invariant of the sharing topology
must satisfy the following principle:

Principle 1: Each thread only holds one reference to any given lock.

To satisfy this principle our calculus treats locks linearly, ensuring that references to
locks cannot be duplicated within a thread.

The above principle is obviously not yet sufficient for ruling out deadlocks, as
deadlocks can also result when two threads compete for resources. For example,
consider two threads T1 and T2 with references to locks l1 and l2. A deadlock can
arise if thread T1 tries to acquire lock l1 and then l2, and thread T2 tries to acquire
lock l2 and then lock l1. Therefore, the fundamental invariant must also satisfy the
following principle (which Section 2.6 relaxes by permitting sharing of a group of
locks rather than an individual lock):

Principle 2: Any two threads may share at most one lock.

This principle is still not yet sufficient for ruling out deadlocks. Consider an
example with 3 threads T1,T2,T3, and 3 locks l1,l2,l3, where:

• thread T1 acquires l1 and then l2

• thread T2 acquires l2 and then l3

• thread T3 acquires l3 and then l1

If a schedule allows each thread to acquire their first lock, the threads will
subsequently deadlock when trying to acquire their second lock. Note, however,
that the preceding principle is satisfied: thread T1 and T2 only share lock l2, thread

76

2.2 key ideas and examples

2.2 key ideas and examples

This section develops the notion of a sharing topology underlying our calculus and
illustrates its type system based on examples. We start by deriving the fundamental
invariant to be preserved by the sharing topology in several steps, distilling several
key principles. We first focus on acyclic sharing topologies, resulting in the calculus
λlock, which we then extend to account for cyclic sharing dependencies, resulting in
the calculus λlock++.

2.2.1 Invariant for Leak and Deadlock Freedom

The examples of memory leaks and deadlocks discussed in Section 2.1 all share
a common pattern: a thread has several references to the same lock, introducing
self-referential responsibilities for releasing and deallocating locks. Our goal is
to devise a system that allows threads to reason locally about shared resources
and, in particular, to give threads complete freedom to acquire and release any
lock they reference. Our approach thus opts for restricting the propagation of lock
references by an individual thread rather than their use. To forbid the self-referential
scenarios discussed in Section 2.1, the fundamental invariant of the sharing topology
must satisfy the following principle:

Principle 1: Each thread only holds one reference to any given lock.

To satisfy this principle our calculus treats locks linearly, ensuring that references to
locks cannot be duplicated within a thread.

The above principle is obviously not yet sufficient for ruling out deadlocks, as
deadlocks can also result when two threads compete for resources. For example,
consider two threads T1 and T2 with references to locks l1 and l2. A deadlock can
arise if thread T1 tries to acquire lock l1 and then l2, and thread T2 tries to acquire
lock l2 and then lock l1. Therefore, the fundamental invariant must also satisfy the
following principle (which Section 2.6 relaxes by permitting sharing of a group of
locks rather than an individual lock):

Principle 2: Any two threads may share at most one lock.

This principle is still not yet sufficient for ruling out deadlocks. Consider an
example with 3 threads T1,T2,T3, and 3 locks l1,l2,l3, where:

• thread T1 acquires l1 and then l2

• thread T2 acquires l2 and then l3

• thread T3 acquires l3 and then l1

If a schedule allows each thread to acquire their first lock, the threads will
subsequently deadlock when trying to acquire their second lock. Note, however,
that the preceding principle is satisfied: thread T1 and T2 only share lock l2, thread

76

2.2 key ideas and examples

T2 and T3 only share lock l3, and tread T3 and T1 only share lock l1. Thus, if we
want to uphold thread local reasoning, while guaranteeing that thread composition
preserves deadlock freedom, we must impose a stronger invariant, constraining the
sharing topology:

Principle 3: If we consider the graph where threads are connected to the locks
they hold a reference to, this graph must not have a cycle.

Our calculus enforces this principle by the following lock and thread operations,
which bear a resemblance to channels in linear logic session types based on cut
elimination (Caires and Pfenning, 2010; Wadler, 2012):

• new to create a new lock. Threads are free to use this operation. Because the lock
is created, the creating thread is the only one to have a reference to it.

• acquire to acquire a lock. This operation can be called at any time, but the type
system must ensure that the same lock cannot be acquired multiple times via the
same reference.

• release to release the lock. This operation can be called at any time, and the type
system must ensure that it is called eventually for any acquired lock.

• fork, which forks off a new thread, and allows the programmer to create a new
reference to one lock from the parent thread and share it with the child thread.

Although the fork construct allows duplicating a lock reference, the newly created
reference must be passed to the forked off thread, creating a new edge between the
new thread and the lock. If we restrict sharing of a lock between a parent and child
thread to exactly one lock, the graph arising from the reference structure between
threads and locks remains acyclic. For example, consider the threads T1,T2,T3 and
locks l1 and l2 such that:

• threads T1 and T2 share lock l1

• threads T1 and T3 share lock l2

If T1 spawns T4 and provides a reference to l1, the resulting reference structure
remains acyclic: T1 is connected to l1 and l2, with the former being connected to T2

and T4 and the latter being connected to T3. However, if we allowed T1 to share both
l1 and l2 with T4, the graph becomes cyclic: T1 is connected to T4 both via l1 and l2.

The type system that we sketch in the next section and detail in Section 2.3 enforces
the above rules and thus upholds the principles derived so far to rule out deadlocks.
A reader may wonder whether these principles are strong enough for asserting
deadlock freedom in the presence of higher-order locks, allowing us to store locks
in locks. For example, we can easily transfer a lock l1 from thread T1 to thread T2

by storing it in a lock l2 shared between T1 and T2, allowing T2 to retrieve l1 by
acquiring l2. This scenario is indeed possible and turns out not to be a problem.

77

2.2 key ideas and examples

While not immediately obvious, this transfer actually preserves acyclicity of the
sharing topology. To account for the possibility of references between locks, we
refine our invariant as follows:

Principle 4: If we consider the graph where threads are connected to the locks
they hold a reference to, and locks are connected to locks they hold a reference to,
this graph must not have a cycle.

Principle 4 amounts to an invariant that is sufficient to ensure deadlock freedom.
Section 2.5 details that a well-typed λlock program preserves this invariant along
transitions. The next question to explore is whether this invariant is also sufficient to
ensure memory leak freedom.

It seems that the above invariant is sufficient for ruling out the examples of memory
leaks portrayed in Section 2.1, because they are all instances of self-referential
structures, prevented by the above invariant. However, to answer this question
entirely, we have to remind ourselves of our definition of a sharing topology given
in Section 2.1:

Definition 2.2.1. A sharing topology tracks, for every lock, (i) who has references to
the lock, (ii) who is responsible for releasing the lock, and (iii) who is responsible for
deallocating the lock.

So far, we have only accommodated the first two ingredients, but yet have to establish
responsibility of lock deallocation.

To get started, let us first explore the question of "how to ever safely get rid of a
lock". Obviously, we should not attempt to drop a reference to a lock that we have
acquired, because then this lock would never be released, blocking any other threads
that are trying to acquire that lock. So, is it then safe to drop a reference to a lock
that we have not currently acquired? As a matter of fact even this is not safe, if we
allow storing linear data in locks. For example, we could then easily discard a linear
value v as follows, which would defeat the purpose of linear typing:

1. Create a new lock and acquire it.

2. Put the linear value v in the lock.

3. Release the lock.

4. Drop the reference to the lock.

We thus face the following conundrum: if we allow dropping references to an
acquired lock, then we cannot leak data, but we get deadlocks, and if we allow
dropping references to a non-acquired lock, then we can leak data (which then
allows us to create deadlocks anyway).

It seems that we have to circle back to Theorem 2.2.1 and find a way to designate
one reference among all the references to a lock as the one that carries the
responsibility for deallocation. For this purpose we differentiate lock references

78

2.2 key ideas and examples

While not immediately obvious, this transfer actually preserves acyclicity of the
sharing topology. To account for the possibility of references between locks, we
refine our invariant as follows:

Principle 4: If we consider the graph where threads are connected to the locks
they hold a reference to, and locks are connected to locks they hold a reference to,
this graph must not have a cycle.

Principle 4 amounts to an invariant that is sufficient to ensure deadlock freedom.
Section 2.5 details that a well-typed λlock program preserves this invariant along
transitions. The next question to explore is whether this invariant is also sufficient to
ensure memory leak freedom.

It seems that the above invariant is sufficient for ruling out the examples of memory
leaks portrayed in Section 2.1, because they are all instances of self-referential
structures, prevented by the above invariant. However, to answer this question
entirely, we have to remind ourselves of our definition of a sharing topology given
in Section 2.1:

Definition 2.2.1. A sharing topology tracks, for every lock, (i) who has references to
the lock, (ii) who is responsible for releasing the lock, and (iii) who is responsible for
deallocating the lock.

So far, we have only accommodated the first two ingredients, but yet have to establish
responsibility of lock deallocation.

To get started, let us first explore the question of "how to ever safely get rid of a
lock". Obviously, we should not attempt to drop a reference to a lock that we have
acquired, because then this lock would never be released, blocking any other threads
that are trying to acquire that lock. So, is it then safe to drop a reference to a lock
that we have not currently acquired? As a matter of fact even this is not safe, if we
allow storing linear data in locks. For example, we could then easily discard a linear
value v as follows, which would defeat the purpose of linear typing:

1. Create a new lock and acquire it.

2. Put the linear value v in the lock.

3. Release the lock.

4. Drop the reference to the lock.

We thus face the following conundrum: if we allow dropping references to an
acquired lock, then we cannot leak data, but we get deadlocks, and if we allow
dropping references to a non-acquired lock, then we can leak data (which then
allows us to create deadlocks anyway).

It seems that we have to circle back to Theorem 2.2.1 and find a way to designate
one reference among all the references to a lock as the one that carries the
responsibility for deallocation. For this purpose we differentiate lock references

78

2.2 key ideas and examples

into an owning reference, which carries the responsibility to deallocate the lock, and
client references, which can be dropped. Naturally, there must exist exactly one
owning reference. An owning reference can only be dropped after the lock has been
deallocated. To deallocate the lock, the owner must first wait for all the clients to
drop their references and then retrieve the contents of the lock.

This brings us to our final invariant:

Principle 5: If we consider the graph where threads are connected to the locks
they hold a reference to, and locks are connected to locks they hold a reference to,
this graph must not have a cycle. Furthermore, each lock must have precisely one
owning reference, and zero or more client references.

2.2.2 The Lock⟨τ a
b
⟩ Data Type and its Operations

Let us now investigate what a lock API and type system based on these principles
look like. A detailed discussion of the resulting language λlock is given in Section 2.3.

We introduce the following type of lock references:

Lock⟨τ a
b⟩

where

• τ ∈ Type is the type of values stored in the lock.

• a ∈ {0, 1} indicates whether we are the owner (a = 1) or a client (a = 0).

• b ∈ {0, 1} indicates whether we have acquired the lock (b = 1) or not (b = 0).

λlock supports the following operations to acquire and release locks:

acquire : Lock⟨τ a
0 ⟩ → Lock⟨τ a

1 ⟩ × τ

release : Lock⟨τ a
1 ⟩ × τ → Lock⟨τ a

0 ⟩

These operations are linear and hence consume their argument. Both operations
return the lock argument reference at a different type, reflecting whether the lock is
currently acquired or not. The acquire operation gives the user full access to the τ

value protected by the lock, and the release operation requires the user to put back a
τ value. Acquire and release operations work for a ∈ {0, 1}, so both clients and the
owner are allowed to acquire and release the lock. We find it helpful to think of a
lock as a shared "locker" or container to exchange valuables. Using this metaphor,
we can perceive an acquire as opening the closed locker to retrieve the valuable and
a release as closing an open locker to store the valuable. If a reference ℓ is of type
Lock⟨τ a

1 ⟩, indicating that the locker has been opened, the holder of the reference is
responsible for eventually putting back the valuable using a release. If a reference ℓ

is of type Lock⟨τ a
0 ⟩, indicating that the locker has not been opened via the reference

ℓ, the holder of the reference is allowed to try to acquire the locker.

79

2.2 key ideas and examples

Let us now look at how locks are created and destroyed. We have three operations,
one for creating a lock, one for deallocating a lock via its owning reference, and one
for dropping a client reference to a lock:

new : 1 → Lock⟨τ 1
1⟩

wait : Lock⟨τ 1
0⟩ → τ

drop : Lock⟨τ 0
0⟩ → 1

The operation new creates an owning reference. The operation wait on the owning
reference waits for all clients to finish and then returns ownership of the value τ

stored in the lock (and frees the memory associated with the lock). The operation
drop on a client reference yields unit, effectively not returning anything. The drop
operation could potentially be automatically inserted by a compiler, as it is done
by the Rust compiler, for example, but we prefer to be explicit. Note that both wait
and drop require the lock to be in a non-acquired (a.k.a., closed) state, which means
that a thread holding an open lock reference must fulfill its obligation to put a value
back into the lock using release before it is allowed to use drop or wait on that lock
reference. This ensures that drop and wait cannot cause another thread’s acquire to
deadlock. The details of deadlock freedom can be found in Sections 2.4 and 2.5.

Client references are created upon fork:

fork : Lock⟨τ a1+a2
b1+b2

⟩ × (Lock⟨τ a2
b2
⟩ −◦ 1) → Lock⟨τ a1

b1
⟩

It may be helpful to consider an example, where ℓ has type Lock⟨τ a1+a2
b1+b2

⟩:

let ℓ1 : Lock⟨τ a1
b1
⟩ = fork(ℓ, λℓ2 : Lock⟨τ a2

b2
⟩. (· · ·))

The fork operation consumes the original lock reference ℓ, and splits it into two
references, ℓ1 and ℓ2. The reference ℓ1 is returned to the main thread, and the
reference ℓ2 is passed to the child thread. The child thread runs the code indicated
by (· · ·), which has access to ℓ2. In terms of types,

Lock⟨τ a1+a2
b1+b2

⟩ is split into

{
Lock⟨τ a1

b1
⟩

Lock⟨τ a2
b2
⟩

such that a1 + a2 ⩽ 1 and b1 + b2 ⩽ 1. This condition ensures that if the original
reference ℓ is an owner reference and thus of type Lock⟨τ 1

b
⟩, it can only be split into

an owner reference and client reference. Conversely, if the original lock reference ℓ

is a client reference and thus of type Lock⟨τ 0
b
⟩, it can only be split into two client

references. Similarly, if the original reference ℓ is acquired and thus of type Lock⟨τ a
1 ⟩,

only one of the new references is acquired. If the original reference ℓ is not acquired
and thus of type Lock⟨τ a

0 ⟩, the two new references are not acquired either.

80

2.2 key ideas and examples

Let us now look at how locks are created and destroyed. We have three operations,
one for creating a lock, one for deallocating a lock via its owning reference, and one
for dropping a client reference to a lock:

new : 1 → Lock⟨τ 1
1⟩

wait : Lock⟨τ 1
0⟩ → τ

drop : Lock⟨τ 0
0⟩ → 1

The operation new creates an owning reference. The operation wait on the owning
reference waits for all clients to finish and then returns ownership of the value τ

stored in the lock (and frees the memory associated with the lock). The operation
drop on a client reference yields unit, effectively not returning anything. The drop
operation could potentially be automatically inserted by a compiler, as it is done
by the Rust compiler, for example, but we prefer to be explicit. Note that both wait
and drop require the lock to be in a non-acquired (a.k.a., closed) state, which means
that a thread holding an open lock reference must fulfill its obligation to put a value
back into the lock using release before it is allowed to use drop or wait on that lock
reference. This ensures that drop and wait cannot cause another thread’s acquire to
deadlock. The details of deadlock freedom can be found in Sections 2.4 and 2.5.

Client references are created upon fork:

fork : Lock⟨τ a1+a2
b1+b2

⟩ × (Lock⟨τ a2
b2
⟩ −◦ 1) → Lock⟨τ a1

b1
⟩

It may be helpful to consider an example, where ℓ has type Lock⟨τ a1+a2
b1+b2

⟩:

let ℓ1 : Lock⟨τ a1
b1
⟩ = fork(ℓ, λℓ2 : Lock⟨τ a2

b2
⟩. (· · ·))

The fork operation consumes the original lock reference ℓ, and splits it into two
references, ℓ1 and ℓ2. The reference ℓ1 is returned to the main thread, and the
reference ℓ2 is passed to the child thread. The child thread runs the code indicated
by (· · ·), which has access to ℓ2. In terms of types,

Lock⟨τ a1+a2
b1+b2

⟩ is split into

{
Lock⟨τ a1

b1
⟩

Lock⟨τ a2
b2
⟩

such that a1 + a2 ⩽ 1 and b1 + b2 ⩽ 1. This condition ensures that if the original
reference ℓ is an owner reference and thus of type Lock⟨τ 1

b
⟩, it can only be split into

an owner reference and client reference. Conversely, if the original lock reference ℓ

is a client reference and thus of type Lock⟨τ 0
b
⟩, it can only be split into two client

references. Similarly, if the original reference ℓ is acquired and thus of type Lock⟨τ a
1 ⟩,

only one of the new references is acquired. If the original reference ℓ is not acquired
and thus of type Lock⟨τ a

0 ⟩, the two new references are not acquired either.

80

2.2 key ideas and examples

The standard rules of binding and scope apply to the lambda used in a fork as
well. For example, we can transfer linear resources from the main thread to a child
thread, e.g., the resource bound to the linear variable r in the following example:

let ℓ = new() in

let r = new() in

let ℓ1 = fork(ℓ, λℓ2. (· · · r · · ·)) in (· · ·)

Here, the resources r can no longer be used in the main thread because of linearity.
These are all the constructs of λlock that concern locks. Section 2.3 details how

we integrate λlock with session-typed channels, facilitating the exchange of locks
between threads not only by storing them into other locks, but also by sending them
along channels, possibly as part of a compound data structure. Channels, of course,
are first-class as well, allowing them to be sent over each other and stored in locks.
Given the range of possibilities of how the sharing topology of a program can change
dynamically, a reader may be surprised that λlock asserts memory leak and deadlock
freedom by type checking. After all, as usual, the devil is in the details! The formal
statement of memory leak and deadlock freedom is given in Section 2.4, and their
proof is sketched in Section 2.5. For the full details, the reader is referred to the
mechanization Section 2.7.

2.2.3 Examples

We now look at a few examples that illustrate the use of lock operations.

Locks as mutable references

A lock without any client references can be viewed as a linear mutable reference cell.
We can create such a reference cell with ℓ = release(new(), v), read its value with
acquire(ℓ), and write into it a new value with release(ℓ, v). We can also deallocate
the reference with wait(ℓ), which gives us back the value.

let ℓ = release(new(), 1) in

let ℓ,n = acquire(ℓ) in

let ℓ = release(ℓ,n+ 1) in

let m = wait(ℓ)

81

2.2 key ideas and examples

If the values we store in the cell are of unrestricted type (duplicable and
droppable), we can implement references with ref, get, and set as follows:

ref : τ → Lock⟨τ 1
0⟩

ref(v) ≜ release(new(), v)

get : Lock⟨τ a
0 ⟩ → Lock⟨τ a

0 ⟩ × τ where τ unr

get(ℓ) ≜ let ℓ, v = acquire(ℓ) in (release(ℓ, v), v)

set : Lock⟨τ a
0 ⟩ × τ → Lock⟨τ a

0 ⟩ where τ unr

set(ℓ, v) ≜ let ℓ, v′ = acquire(ℓ) in release(ℓ, v)

Similarly, we can atomically exchange the value as follows or apply a function to the
value as follows:

xchng : Lock⟨τ a
0 ⟩ × τ → Lock⟨τ a

0 ⟩ × τ

xchng(ℓ, v) ≜ let ℓ, v′ = acquire(ℓ) in (release(ℓ, v), v′)

modify : Lock⟨τ a
0 ⟩ × (τ −◦ τ) → Lock⟨τ a

0 ⟩
modify(ℓ, f) ≜ let ℓ, v = acquire(ℓ) in release(ℓ, f v)

These operations work even for linear values, since neither v nor v′ are duplicated or
dropped.

Fork-join / futures / promises

In the generalised fork-join model with futures / promises, the parent thread can
spawn a child thread to do some work, and later synchronize with the child to obtain
the result. Our lock operations directly support this:

• The parent thread creates a new lock using ℓ = new().

• The parent forks off the child thread, sharing an opened client reference to ℓ with
the child.

• The parent thread continues doing other work, and eventually calls wait(ℓ) on
the lock.

• When the child thread is done with the work, it calls release(ℓ, v) with the result
v.

This is illustrated in the following program:

let ℓ = fork(new(), λℓ. · · · drop(release(ℓ, v)) · · ·) in

· · ·
let v = wait(ℓ)

82

2.2 key ideas and examples

If the values we store in the cell are of unrestricted type (duplicable and
droppable), we can implement references with ref, get, and set as follows:

ref : τ → Lock⟨τ 1
0⟩

ref(v) ≜ release(new(), v)

get : Lock⟨τ a
0 ⟩ → Lock⟨τ a

0 ⟩ × τ where τ unr

get(ℓ) ≜ let ℓ, v = acquire(ℓ) in (release(ℓ, v), v)

set : Lock⟨τ a
0 ⟩ × τ → Lock⟨τ a

0 ⟩ where τ unr

set(ℓ, v) ≜ let ℓ, v′ = acquire(ℓ) in release(ℓ, v)

Similarly, we can atomically exchange the value as follows or apply a function to the
value as follows:

xchng : Lock⟨τ a
0 ⟩ × τ → Lock⟨τ a

0 ⟩ × τ

xchng(ℓ, v) ≜ let ℓ, v′ = acquire(ℓ) in (release(ℓ, v), v′)

modify : Lock⟨τ a
0 ⟩ × (τ −◦ τ) → Lock⟨τ a

0 ⟩
modify(ℓ, f) ≜ let ℓ, v = acquire(ℓ) in release(ℓ, f v)

These operations work even for linear values, since neither v nor v′ are duplicated or
dropped.

Fork-join / futures / promises

In the generalised fork-join model with futures / promises, the parent thread can
spawn a child thread to do some work, and later synchronize with the child to obtain
the result. Our lock operations directly support this:

• The parent thread creates a new lock using ℓ = new().

• The parent forks off the child thread, sharing an opened client reference to ℓ with
the child.

• The parent thread continues doing other work, and eventually calls wait(ℓ) on
the lock.

• When the child thread is done with the work, it calls release(ℓ, v) with the result
v.

This is illustrated in the following program:

let ℓ = fork(new(), λℓ. · · · drop(release(ℓ, v)) · · ·) in

· · ·
let v = wait(ℓ)

82

2.2 key ideas and examples

Note how the type system ensures deadlock and leak freedom:

• Initially, new : Lock⟨τ 1
1⟩, i.e., the lock is an open owner reference.

• When we fork, we split the lock up into Lock⟨τ 1
0⟩ and Lock⟨τ 0

1⟩.

• The closed and owning reference of type Lock⟨τ 1
0⟩ goes to the parent, who

eventually waits for the result.

• The open and client reference of type Lock⟨τ 0
1⟩ goes to the child, who must put

a value in it in order to drop it.

Of course, the client is free to pass around its reference to the lock, which acts as a
future/promise, so that somebody else can fulfill the obligation to release the lock
by putting a value in it.

Concurrently shared data

The parent thread can spawn multiple child threads and create a new lock for each,
as in the fork-join pattern. However, the parent can also create one lock, put an
initial data structure v in it, and share lock references with several children, who
may each acquire and mutate the lock’s contents repeatedly:

let ℓ = release(new(), v) in

let ℓ = fork(ℓ, λℓ. · · ·) in

let ℓ = fork(ℓ, λℓ. · · ·) in

let ℓ = fork(ℓ, λℓ. · · ·) in

· · ·
let v′ = wait(ℓ)

Children are of course free to fork off children of their own, all sharing access to
the same lock ℓ.

Bank example

Consider three bank accounts whose balances are stored in locks ℓ1, ℓ2, ℓ3. The main
thread acts as the bank, spawns three clients, and gives them access to their bank
account so that they can deposit and withdraw money from it:

let ℓ1 = fork(release(new(), 0), λℓ1. · · · client 1 · · ·) in

let ℓ2 = fork(release(new(), 0), λℓ2. · · · client 2 · · ·) in

let ℓ3 = fork(release(new(), 0), λℓ3. · · · client 3 · · ·) in

· · ·
let ℓ1, ℓ2 = transaction(ℓ1, ℓ2, 50) in · · ·

83

2.2 key ideas and examples

The bank does a transaction between ℓ1 and ℓ2:

transaction : Lock⟨int a0 ⟩ × Lock⟨int a0 ⟩ × int −◦ Lock⟨int a0 ⟩ × Lock⟨int a0 ⟩
transaction(ℓ1, ℓ2, amount) ≜

let ℓ1, balance1 = acquire(ℓ1) in

let ℓ2, balance2 = acquire(ℓ2) in

if balance1 ⩾ amount then

(release(ℓ1, balance1 − amount), release(ℓ2, balance2 + amount))
else

(release(ℓ1, balance1), release(ℓ2, balance2))

Note that we did not have to keep track of any lock orders, or had to do any
other analysis to show that this does not deadlock, regardless of what the rest of the
program does. In Section 2.6 we introduce lock groups, which allow us to extend
this example to multiple bank threads sharing multiple locks, still ensuring deadlock
and memory leak freedom.

Shared mutable recursive data structures

We can define a recursive type tree where each node is protected by a lock and stores
a value of type τ:

tree ≜ Lock⟨1 + tree× τ× tree 1
0⟩

These trees own their children. In order to operate over such trees conurrently, we
define the type tree′ of client references to trees:

tree′ ≜ Lock⟨1 + tree× τ× tree 0
0⟩

The main thread can now allocate a tree, and share multiple client references of type
tree′ with child threads. Using a client reference we can not only modify the root,
but we can also traverse the tree. For instance, to try and obtain a client reference to

84

2.2 key ideas and examples

The bank does a transaction between ℓ1 and ℓ2:

transaction : Lock⟨int a0 ⟩ × Lock⟨int a0 ⟩ × int −◦ Lock⟨int a0 ⟩ × Lock⟨int a0 ⟩
transaction(ℓ1, ℓ2, amount) ≜

let ℓ1, balance1 = acquire(ℓ1) in

let ℓ2, balance2 = acquire(ℓ2) in

if balance1 ⩾ amount then

(release(ℓ1, balance1 − amount), release(ℓ2, balance2 + amount))
else

(release(ℓ1, balance1), release(ℓ2, balance2))

Note that we did not have to keep track of any lock orders, or had to do any
other analysis to show that this does not deadlock, regardless of what the rest of the
program does. In Section 2.6 we introduce lock groups, which allow us to extend
this example to multiple bank threads sharing multiple locks, still ensuring deadlock
and memory leak freedom.

Shared mutable recursive data structures

We can define a recursive type tree where each node is protected by a lock and stores
a value of type τ:

tree ≜ Lock⟨1 + tree× τ× tree 1
0⟩

These trees own their children. In order to operate over such trees conurrently, we
define the type tree′ of client references to trees:

tree′ ≜ Lock⟨1 + tree× τ× tree 0
0⟩

The main thread can now allocate a tree, and share multiple client references of type
tree′ with child threads. Using a client reference we can not only modify the root,
but we can also traverse the tree. For instance, to try and obtain a client reference to

84

2.2 key ideas and examples

the left child (if any), we acquire the lock, create a client reference to the left child
(using fork), and release the lock:

left : tree′ −◦ 1 + tree′

left(ℓ) ≜

let ℓ, t = acquire(ℓ) in

match t with

inL() ⇒ release(ℓ, inL()); inL()
inR(ℓ1, x, ℓ2) ⇒ inR(fork(ℓ1, λℓ1. release(ℓ, inR(ℓ1, x, ℓ2))))
end

Note that fork operates as an administrative device here; when we acquire the lock
ℓ we obtain owning references ℓ1, ℓ2 to the children, and fork allows us to obtain a
client reference for ℓ1 while putting the owning references back in the lock ℓ. One
would not actually fork a thread in a real implementation.

Because we immediately release the lock after obtaining a child reference, we
can have multiple threads operate on different parts on the tree concurrently, while
guaranteeing leak and deadlock freedom.

Client-server

Our language also comes equipped with linear channels for message-passing
concurrency that can be session-typed, thanks to our encoding detailed in
Section 2.3.1. Using locks, we can share a channel endpoint among multiple
participants, which allows us to implement a client-server pattern, as is possible in
the deadlock-free fragment of manifest sharing (Balzer and Pfenning, 2017).

let c = (· · · create new server channel · · ·) in

let ℓ = release(new(), c) in

let ℓ = fork(ℓ, λℓ. · · ·) in

let ℓ = fork(ℓ, λℓ. · · ·) in

· · ·
let c = wait(ℓ)

Each client can temporarily take the lock, which allows it to interact with the server.
As in (Balzer et al., 2019), typing ensures that a lock must be released to the same
protocol state at which it was previously acquired, ensuring type safety.

Locks over channels

The preceding example involves putting channels in locks, but we can also send locks
over channels. For instance, one can send an open lock acting like a future/promise

85

2.3 the λlock language

to another thread, so that the other thread gets the obligation to fulfill the promise
by storing a value in the lock.

Encoding session-typed channels

In Section 2.3.1 we show that we can implement session-typed channels using our
locks.

2.2.4 Sharing Multiple Locks with Lock Orders

The simple system illustrated above is restricted to sharing only one lock at each
fork. We lift this restriction in Section 2.6 by introducing lock groups. Lock groups
consist of multiple locks, and one is allowed to share an entire lock group at each
fork. In turn, we must introduce another mechanism to ensure leak and deadlock
freedom within a lock group. We do this by imposing a lock order on the locks of a
lock group, and requiring that the locks are acquired in increasing order. A similar
condition takes care that there is no deadlock between several waits or between
wait and acquire. In Section 2.6.1 we provide examples of the use of lock orders. In
particular, we can handle a version of Dijkstra’s dining philosophers problem with a
dynamic number of participants dependent on a run-time variable n.

Importantly, deadlock freedom between lock groups is taken care of by the sharing
topology, so one is always free to acquire locks from different lock groups, and do
transactions between different lock groups in that manner. This makes lock groups
more compositional than standard global lock orders that require a global order on
the entire system whenever multiple locks are acquired.

2.3 the λlock language

We give a formal description of λlock’s syntax, type system, and operational semantics.
The base of λlock is a linear λ-calculus, extended with unrestricted types (whose
values can be freely duplicated, dropped, and deallocated) and recursive types:

τ ∈ Type ≜ 0 | 1 | τ+ τ | τ× τ | τ −◦ τ | τ → τ | Lock⟨τ a
b⟩ | µx.τ | x �

We distinguish linear functions τ1 −◦ τ2 from unrestricted functions τ1 → τ2.
Unrestricted functions can be freely duplicated and discarded, and hence can only
capture unrestricted variables. Linear functions, on the other hand, must be treated
linearly, and hence can close over both linear and unrestricted variables. Rather
than distinguishing sums and products into linear and unrestricted, we consider
sums and products to be unrestricted if their components are. Similarly, we consider
recursive types to be unrestricted if their coinductive unfoldings are (see Section 2.7).
The empty type 0 and unit type 1 are always unrestricted. The lock type Lock⟨τ a

b
⟩

is always linear, regardless of whether τ is.

86

2.3 the λlock language

to another thread, so that the other thread gets the obligation to fulfill the promise
by storing a value in the lock.

Encoding session-typed channels

In Section 2.3.1 we show that we can implement session-typed channels using our
locks.

2.2.4 Sharing Multiple Locks with Lock Orders

The simple system illustrated above is restricted to sharing only one lock at each
fork. We lift this restriction in Section 2.6 by introducing lock groups. Lock groups
consist of multiple locks, and one is allowed to share an entire lock group at each
fork. In turn, we must introduce another mechanism to ensure leak and deadlock
freedom within a lock group. We do this by imposing a lock order on the locks of a
lock group, and requiring that the locks are acquired in increasing order. A similar
condition takes care that there is no deadlock between several waits or between
wait and acquire. In Section 2.6.1 we provide examples of the use of lock orders. In
particular, we can handle a version of Dijkstra’s dining philosophers problem with a
dynamic number of participants dependent on a run-time variable n.

Importantly, deadlock freedom between lock groups is taken care of by the sharing
topology, so one is always free to acquire locks from different lock groups, and do
transactions between different lock groups in that manner. This makes lock groups
more compositional than standard global lock orders that require a global order on
the entire system whenever multiple locks are acquired.

2.3 the λlock language

We give a formal description of λlock’s syntax, type system, and operational semantics.
The base of λlock is a linear λ-calculus, extended with unrestricted types (whose
values can be freely duplicated, dropped, and deallocated) and recursive types:

τ ∈ Type ≜ 0 | 1 | τ+ τ | τ× τ | τ −◦ τ | τ → τ | Lock⟨τ a
b⟩ | µx.τ | x �

We distinguish linear functions τ1 −◦ τ2 from unrestricted functions τ1 → τ2.
Unrestricted functions can be freely duplicated and discarded, and hence can only
capture unrestricted variables. Linear functions, on the other hand, must be treated
linearly, and hence can close over both linear and unrestricted variables. Rather
than distinguishing sums and products into linear and unrestricted, we consider
sums and products to be unrestricted if their components are. Similarly, we consider
recursive types to be unrestricted if their coinductive unfoldings are (see Section 2.7).
The empty type 0 and unit type 1 are always unrestricted. The lock type Lock⟨τ a

b
⟩

is always linear, regardless of whether τ is.

86

2.3 the λlock language

�
Γ unr

Γ ⊢ new() : Lock⟨τ 1
1⟩

Γ ⊢ e : Lock⟨τ 0
0⟩

Γ ⊢ drop(e) : 1

Γ ⊢ e : Lock⟨τ 1
0⟩

Γ ⊢ wait(e) : τ

Γ ≡ Γ1 · Γ2 Γ1 ⊢ e1 : Lock⟨τ a1+a2
b1+b2

⟩ Γ2 ⊢ e2 : Lock⟨τ a2
b2
⟩ −◦ 1

Γ ⊢ fork(e1, e2) : Lock⟨τ a1
b1
⟩

Γ ⊢ e : Lock⟨τ a
0 ⟩

Γ ⊢ acquire(e) : Lock⟨τ a
1 ⟩ × τ

Γ ≡ Γ1 · Γ2 Γ1 ⊢ e1 : Lock⟨τ a
1 ⟩ Γ2 ⊢ e2 : τ

Γ ⊢ release(e1, e2) : Lock⟨τ a
0 ⟩

Figure 12: λlock’s lock typing rules.

Our language λlock has the following syntax:

e ∈ Expr ::= x | () | (e, e) | inL(e) | inR(e) | λx. e | e e | let (x1, x2) = e in e | �

match e with ⊥ end | match e with inL(x1) ⇒ e1; inR(x2) ⇒ e2 end |
new() | fork(e, e) | acquire(e) | release(e, e) | drop(e) | wait(e)

The typing rules for the lock operations can be found in Figure 12, and the typing
rules for the base language can be found in Figure 13. We use the judgments
Γ unr and Γ ≡ Γ1 · Γ2 to handle linear and unrestricted types: Γ unr means that all
types in Γ are unrestricted, and Γ ≡ Γ1 · Γ2 splits up Γ into Γ1 and Γ2 disjointly for
variables of linear type, while allowing variables of unrestricted type to be shared
by both Γ1 and Γ2. We do not include a constructor for recursive functions, because
recursive functions can already be encoded in terms of recursive types, using the
Y-combinator.1

The rules for the operational semantics can be found in Figure 14. We use a small
step operational semantics built up in two layers. The first layer defines values,
evaluation contexts, and reductions for pure expressions. The values are standard
for λ-calculus, except for ⟨k⟩, which indicates a reference/pointer to a lock identified
by the number k.

The second layer operates on a configuration, which is a collection of threads and
locks, each identified with a natural number. A thread Thread(e) comprises the
expression e that it executes, and a lock Lock(refcnt, None | Some(v)) comprises
a reference count refcnt (i.e., the number of client references) and either None,
indicating that the lock has been acquired and currently contains no value, or
Some(v), indicating that the lock is currently closed and is holding the value v.

The stepping rules for the configuration are as follows, as labeled in Figure 14.

pure Perform a pure reduction in an evaluation context.

1 Of course, for efficiency of an implementation one wants direct support for recursion.

87

2.3 the λlock language

�
Γ unr

Γ , x :τ ⊢ x : τ

Γ , x :τ1 ⊢ e : τ2

Γ ⊢ λx. e : τ1 −◦ τ2

Γ ≡ Γ1 · Γ2 Γ1 ⊢ e1 : τ1 −◦ τ2 Γ2 ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2

Γ unr Γ , x :τ1 ⊢ e : τ2

Γ ⊢ λx. e : τ1 → τ2

Γ ≡ Γ1 · Γ2 Γ1 ⊢ e1 : τ1 → τ2 Γ2 ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2

Γ , x :τ1 ⊢ e : τ2

Γ ⊢ λx. e : τ1 −◦ τ2

Γ ≡ Γ1 · Γ2 Γ1 ⊢ e1 : τ1 −◦ τ2 Γ2 ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2

Γ unr

Γ ⊢ () : 1

Γ ≡ Γ1 · Γ2 Γ1 ⊢ e1 : τ1 Γ2 ⊢ e2 : τ2

Γ ⊢ (e1, e2) : τ1 × τ2

Γ ≡ Γ1 · Γ2 Γ1 ⊢ e1 : τ1 × τ2 Γ2, x1 :τ1, x2 :τ2 ⊢ e2 : τ3

Γ ⊢ let x1, x2 = e1 in e2 : τ3

Γ unr Γ ⊢ e : 0

Γ ⊢ match e with ⊥ end : τ

Γ ⊢ e : τ1

Γ ⊢ inL(e) : τ1 + τ2

Γ ⊢ e : τ2

Γ ⊢ inR(e) : τ1 + τ2

Γ ≡ Γ1 · Γ2 Γ1 ⊢ e : τ1 + τ2 Γ2, x1 :τ1 ⊢ e1 : τ′ Γ2, x2 :τ2 ⊢ e2 : τ′

Γ ⊢ match e with inL(x1) ⇒ e1; inR(x2) ⇒ e2 end : τ′

Figure 13: λlock’s base linear λ-calculus with sums & products and linear & unrestricted
functions.

88

2.3 the λlock language

�
Γ unr

Γ , x :τ ⊢ x : τ

Γ , x :τ1 ⊢ e : τ2

Γ ⊢ λx. e : τ1 −◦ τ2

Γ ≡ Γ1 · Γ2 Γ1 ⊢ e1 : τ1 −◦ τ2 Γ2 ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2

Γ unr Γ , x :τ1 ⊢ e : τ2

Γ ⊢ λx. e : τ1 → τ2

Γ ≡ Γ1 · Γ2 Γ1 ⊢ e1 : τ1 → τ2 Γ2 ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2

Γ , x :τ1 ⊢ e : τ2

Γ ⊢ λx. e : τ1 −◦ τ2

Γ ≡ Γ1 · Γ2 Γ1 ⊢ e1 : τ1 −◦ τ2 Γ2 ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2

Γ unr

Γ ⊢ () : 1

Γ ≡ Γ1 · Γ2 Γ1 ⊢ e1 : τ1 Γ2 ⊢ e2 : τ2

Γ ⊢ (e1, e2) : τ1 × τ2

Γ ≡ Γ1 · Γ2 Γ1 ⊢ e1 : τ1 × τ2 Γ2, x1 :τ1, x2 :τ2 ⊢ e2 : τ3

Γ ⊢ let x1, x2 = e1 in e2 : τ3

Γ unr Γ ⊢ e : 0

Γ ⊢ match e with ⊥ end : τ

Γ ⊢ e : τ1

Γ ⊢ inL(e) : τ1 + τ2

Γ ⊢ e : τ2

Γ ⊢ inR(e) : τ1 + τ2

Γ ≡ Γ1 · Γ2 Γ1 ⊢ e : τ1 + τ2 Γ2, x1 :τ1 ⊢ e1 : τ′ Γ2, x2 :τ2 ⊢ e2 : τ′

Γ ⊢ match e with inL(x1) ⇒ e1; inR(x2) ⇒ e2 end : τ′

Figure 13: λlock’s base linear λ-calculus with sums & products and linear & unrestricted
functions.

88

2.3 the λlock language

v ∈Val ::= () | (v, v) | inL(v) | inR(v) | λx. e | ⟨k⟩ �

K ∈ Ctx ::= □ | (K, e) | (v,K) | inL(K) | inR(K) | K e | v K | let x1, x2 = K in e �

| match K with ⊥ end | match K with inL(x1) ⇒ e1; inR(x2) ⇒ e2 end
| new(K) | fork(K, e) | fork(v,K) | acquire(K) | release(K, e)
| release(v,K) | drop(K) | wait(K)

match inL(v) with inL(x1) ⇒ e1 | inR(x2) ⇒ e2 end�pure e1[v/x1] �

match inR(v) with inL(x1) ⇒ e1 | inR(x2) ⇒ e2 end�pure e2[v/x2]
let x1, x2 = (v1, v2) in e�pure e[v1/x1][v2/x2]

(λx. e) v�pure e[v/x]

ρ ∈ Cfg ≜ N fin−⇀ Thread(e) | Lock(refcnt, None | Some(v)) � �

e1 �pure e2 =⇒

n ↦→ Thread(K[e1])


n
�


n ↦→ Thread(K[e2])


(pure)


n ↦→ Thread(K[new()])


n
�


n ↦→ Thread(K[⟨k⟩])
k ↦→ Lock(0, None)


(new)


n ↦→ Thread(K[fork(⟨k⟩ , v)])
k ↦→ Lock(refcnt, x)


k
�




n ↦→ Thread(K[⟨k⟩])
m ↦→ Thread(v ⟨k⟩)
k ↦→ Lock(1 + refcnt, x)




(fork)


n ↦→ Thread(K[acquire(⟨k⟩)])
k ↦→ Lock(refcnt, Some(v))


k
�


n ↦→ Thread(K[(⟨k⟩ , v)])
k ↦→ Lock(refcnt, None)


(acquire)


n ↦→ Thread(K[release(⟨k⟩ , v)])
k ↦→ Lock(refcnt, None)


k
�


n ↦→ Thread(K[⟨k⟩])
k ↦→ Lock(refcnt, Some(v))


(release)


n ↦→ Thread(K[drop(⟨k⟩)])
k ↦→ Lock(1 + refcnt, x)


k
�


n ↦→ Thread(K[()])
k ↦→ Lock(refcnt, x)


(drop)


n ↦→ Thread(K[wait(⟨k⟩)])
k ↦→ Lock(0, Some(v))


k
�


n ↦→ Thread(K[v])


(wait)


n ↦→ Thread(())


n
�


(exit)

ρ1
i
� ρ2 =⇒ ρ1 ⊎ ρ′

i
� ρ2 ⊎ ρ′ (frame)

Figure 14: λlock’s operational semantics.

89

2.3 the λlock language

new Allocate a new lock at a fresh position k, and return a reference ⟨k⟩ to the
thread.

fork Fork off a new thread, while duplicating the reference to lock k, passing ⟨k⟩
back to the main thread, as well as to the new child thread.

acquire If the lock currently contains Some(v), then the acquire can proceed, and
returns the value to the thread and puts None in the lock.

release Does the opposite: replaces None in the lock with Some(v), where v is
the value provided to the release operation.

drop Deletes a reference to the lock, decrementing its reference count.

wait When the reference count is 0 and there is a Some(v) in the lock, the operation
can proceed and removes the lock from the configuration, while giving the
value to the thread.

exit When a thread has terminated with a unit value, we remove the thread from
the configuration.

frame Closes the set of preceding rules under disjoint union with a remaining
configuration. This allows the preceding rules to take place within a large
configuration.

2.3.1 Encoding Session-Typed Channels

One can implement session-typed channels using our locks. Consider basic session
types (Honda, 1993; Wadler, 2012; Lindley and Morris, 2015):

s ∈ Session ::= !τ.s | ?τ.s | s& s | s⊕ s | End! | End?

We can implement the usual channel operations as follows:

forkC(f) ≜ fork(new(), f)
sendC(c, v) ≜ fork(new(), λc′. drop(release(c, (c′, v))))
receiveC(c) ≜ wait(c)

tellL(c) ≜ fork(new(), λc′. drop(release(c, inL(c′))))
tellR(c) ≜ fork(new(), λc′. drop(release(c, inR(c′))))

ask(c) ≜ wait(c)
closeC(c) ≜ drop(release(c, ()))
waitC(c) ≜ wait(c)

Of course, implementing channels this way is inefficient, because a tiny thread is
forked every time we send a message. Thus, it is still worth having native channels,

90

2.3 the λlock language

new Allocate a new lock at a fresh position k, and return a reference ⟨k⟩ to the
thread.

fork Fork off a new thread, while duplicating the reference to lock k, passing ⟨k⟩
back to the main thread, as well as to the new child thread.

acquire If the lock currently contains Some(v), then the acquire can proceed, and
returns the value to the thread and puts None in the lock.

release Does the opposite: replaces None in the lock with Some(v), where v is
the value provided to the release operation.

drop Deletes a reference to the lock, decrementing its reference count.

wait When the reference count is 0 and there is a Some(v) in the lock, the operation
can proceed and removes the lock from the configuration, while giving the
value to the thread.

exit When a thread has terminated with a unit value, we remove the thread from
the configuration.

frame Closes the set of preceding rules under disjoint union with a remaining
configuration. This allows the preceding rules to take place within a large
configuration.

2.3.1 Encoding Session-Typed Channels

One can implement session-typed channels using our locks. Consider basic session
types (Honda, 1993; Wadler, 2012; Lindley and Morris, 2015):

s ∈ Session ::= !τ.s | ?τ.s | s& s | s⊕ s | End! | End?

We can implement the usual channel operations as follows:

forkC(f) ≜ fork(new(), f)
sendC(c, v) ≜ fork(new(), λc′. drop(release(c, (c′, v))))
receiveC(c) ≜ wait(c)

tellL(c) ≜ fork(new(), λc′. drop(release(c, inL(c′))))
tellR(c) ≜ fork(new(), λc′. drop(release(c, inR(c′))))

ask(c) ≜ wait(c)
closeC(c) ≜ drop(release(c, ()))
waitC(c) ≜ wait(c)

Of course, implementing channels this way is inefficient, because a tiny thread is
forked every time we send a message. Thus, it is still worth having native channels,

90

2.4 the deadlock and leak freedom theorems

or a compiler that supports a version of fork that does not actually spawn a new
thread, but runs the body immediately (though care must be taken not to introduce
deadlocks). To type these operations, we use the following definition of session types
in terms of locks, where s is the dual of s:

!τ.s ≜ Lock⟨s× τ 0
1⟩

?τ.s ≜ Lock⟨s× τ 1
0⟩

s1 & s2 ≜ Lock⟨s1 + s2
0
1⟩

s1 ⊕ s2 ≜ Lock⟨s1 + s2
1
0⟩

End! ≜ Lock⟨1 0
1⟩

End? ≜ Lock⟨1 1
0⟩

This encoding resembles the encodings of (Kobayashi, 2002b; Dardha et al., 2012,
2017). After encoding session types this way, we can type check the channel
operations with the standard session typing rules:

forkC : (s −◦ 1) −◦ s

closeC : End! −◦ 1

waitC : End? −◦ 1

sendC : !τ.s× τ −◦ s

receiveC : ?τ.s −◦ s× τ

tellL : s1 & s2 −◦ s1

tellR : s1 & s2 −◦ s2

ask : s1 ⊕ s2 −◦ s1 + s2

Because we can encode these session-typed channels in our deadlock and memory
leak free language, this automatically shows that these session-typed channels are
deadlock and memory leak free. Note that the encoding of session types relies in an
essential way on higher-order locks.

2.4 the deadlock and leak freedom theorems

Our goal was to make λlock deadlock and memory leak free. We will now make this
more precise. Firstly, let us look at how the usual notion of type safety can be adapted
to a language with blocking constructs. Type safety for a single threaded language
says that if we start with a well-typed program, then the execution of the program
does not get stuck until we terminate with a value. If we have multiple threads, we
could say that this has to hold for every thread, but if we have blocking constructs this
is clearly not true: a thread can temporarily get stuck while blocking. We therefore
modify the notion of type safety to say that each thread can always make progress,

91

2.4 the deadlock and leak freedom theorems

except if the thread is legitimately blocked, i.e., blocked on an operation that is
supposed to block, like acquire.

This, of course, is not a strong enough property for our purposes. To rule out
deadlocks, we want to say that even if some threads are blocked, there is always
at least one thread that can make progress. Furthermore, we wish to say that if all
threads terminate, then all memory has been deallocated. Because of the way we
have set up our operational semantics, we can formulate this simply as saying: if the
configuration cannot step, then it must be empty.

Let us consider the formal statement of global progress:

Theorem 2.4.1 (Global progress �).

If ∅ ⊢ e : 1, and
{
0 ↦→ Thread(e)

}
�

∗
ρ, then either ρ =

{}
or ∃ρ′. ρ� ρ′.

Global progress rules out whole-program deadlocks, and it ensures that all locks
have been deallocated when the program terminates. However, it does not guarantee
anything as long as there is still a single thread that can step. Thus it only guarantees
a weak form of deadlock freedom, and it only guarantees memory leak freedom
when the program terminates, not during execution.

To formulate stronger forms of deadlock and leak freedom, we take an approach
similar to the approaches previously taken for session types (Jacobs et al., 2022b).
Namely, we define the relation i waitingρ j, which says that i ∈ dom(ρ) is waiting
for j ∈ dom(ρ). Intuitively, in the graph of connections between objects in the
configuration (i.e., between threads and locks, and between locks and locks), we give
each such connection a waiting direction, so that either i waitingρ j, or j waitingρ i.
We define this relation such that if i is a thread, and currently about to execute a lock
operation, then i waitingρ j. Furthermore, in all other cases, we say that j waitingρ i,
if there is some reference from i to j or from j to i.

Consider our operational semantics stepping rule ρ
i
� ρ′: this step relation is

annotated with a number i, indicating which object in the configuration we consider
responsible for the step. The waiting relation sets up a blame game with respect
to this step relation: whenever we ask some object i why the configuration isn’t
making progress, i should either respond that it can make the configuration step

(i.e., ∃ρ′, ρ i
� ρ′), or i should blame somebody else, by showing ∃j, i waitingρ j.

We can then continue to ask j why the configuration isn’t making progress, and
so on. Since we maintain the invariant that the graph of connections is acyclic, it
is not possible that the blame game loops back to the original i in a cycle, since
then we’d either have a cycle in the reference structure. Furthermore, the blame
game cannot revisit i via the same edge that was used to leave i either, since then
we’d have i waitingρ j and j waitingρ i for some j, which is impossible due to the
way we’ve defined waitingρ . Therefore we conclude that the blame game must
eventually terminate at some j ∈ dom(ρ) who shows that the configuration can step.

Importantly, this gives us a stronger theorem, namely that if we start at any
i ∈ dom(ρ), there is some j transitively connected to i via waiting dependencies, such that

92

2.4 the deadlock and leak freedom theorems

except if the thread is legitimately blocked, i.e., blocked on an operation that is
supposed to block, like acquire.

This, of course, is not a strong enough property for our purposes. To rule out
deadlocks, we want to say that even if some threads are blocked, there is always
at least one thread that can make progress. Furthermore, we wish to say that if all
threads terminate, then all memory has been deallocated. Because of the way we
have set up our operational semantics, we can formulate this simply as saying: if the
configuration cannot step, then it must be empty.

Let us consider the formal statement of global progress:

Theorem 2.4.1 (Global progress �).

If ∅ ⊢ e : 1, and
{
0 ↦→ Thread(e)

}
�

∗
ρ, then either ρ =

{}
or ∃ρ′. ρ� ρ′.

Global progress rules out whole-program deadlocks, and it ensures that all locks
have been deallocated when the program terminates. However, it does not guarantee
anything as long as there is still a single thread that can step. Thus it only guarantees
a weak form of deadlock freedom, and it only guarantees memory leak freedom
when the program terminates, not during execution.

To formulate stronger forms of deadlock and leak freedom, we take an approach
similar to the approaches previously taken for session types (Jacobs et al., 2022b).
Namely, we define the relation i waitingρ j, which says that i ∈ dom(ρ) is waiting
for j ∈ dom(ρ). Intuitively, in the graph of connections between objects in the
configuration (i.e., between threads and locks, and between locks and locks), we give
each such connection a waiting direction, so that either i waitingρ j, or j waitingρ i.
We define this relation such that if i is a thread, and currently about to execute a lock
operation, then i waitingρ j. Furthermore, in all other cases, we say that j waitingρ i,
if there is some reference from i to j or from j to i.

Consider our operational semantics stepping rule ρ
i
� ρ′: this step relation is

annotated with a number i, indicating which object in the configuration we consider
responsible for the step. The waiting relation sets up a blame game with respect
to this step relation: whenever we ask some object i why the configuration isn’t
making progress, i should either respond that it can make the configuration step

(i.e., ∃ρ′, ρ i
� ρ′), or i should blame somebody else, by showing ∃j, i waitingρ j.

We can then continue to ask j why the configuration isn’t making progress, and
so on. Since we maintain the invariant that the graph of connections is acyclic, it
is not possible that the blame game loops back to the original i in a cycle, since
then we’d either have a cycle in the reference structure. Furthermore, the blame
game cannot revisit i via the same edge that was used to leave i either, since then
we’d have i waitingρ j and j waitingρ i for some j, which is impossible due to the
way we’ve defined waitingρ . Therefore we conclude that the blame game must
eventually terminate at some j ∈ dom(ρ) who shows that the configuration can step.

Importantly, this gives us a stronger theorem, namely that if we start at any
i ∈ dom(ρ), there is some j transitively connected to i via waiting dependencies, such that

92

2.4 the deadlock and leak freedom theorems

j can make the configuration step. This will rule out that a subset of the configuration
has been leaked or deadlocked, because in that case there would be no such transitive
path to a thread that can step.

In contrast to Jacobs et al. (2022b), we define these notions more generically, so
that we only need to prove one language specific theorem, from which all the other
properties that we wish to establish follow generically, without further dependence
on the particular language under consideration.

Let us now look at this in more formal detail. A language specific piece of
information we need is the relation e blocked k, which says that expression e is
blocked on the object identified by k. Note that unlike the waiting relation, this
relation does not depend on the configuration; whether an expression e is blocked
can be determined from the expression itself:

Definition 2.4.2. � We have e blocked k if e is of the form K[e0] for some evaluation
context K, and e0 is one of fork(⟨k⟩ , v), acquire(⟨k⟩), release(⟨k⟩ , v), drop(⟨k⟩),
wait(⟨k⟩), for some value v.

Note that we formally include all the lock operations in the blocked relation,
even the ones that are conventionally not thought of as blocking. The reason we
do this is because we consider the locks to be responsible for the step operations
involving the lock, and not the thread, as can be seen from the annotations i on the

step relation ρ
i
� ρ′ in the operational semantics (Figure 14). This streamlines the

formal statements because they become more uniform.
Secondly, we need to be able to determine all the outgoing references for an object

in the configuration:

Definition 2.4.3. � We have the function refsρ(i) ⊆ dom(ρ), which gives the set of
all references ⟨k⟩ stored inside ρ(i). We omit the formal definition here, as this can
be defined using a straightforward recursion on expressions and values.

This allows us to define the waiting relation:

Definition 2.4.4. � We have i waitingρ j if either:

1. ρ(i) = Thread(e) and e blocked j.

2. i ∈ refsρ(j) and not ρ(j) = Thread(e) with e blocked i.

That is, threads are waiting for the objects they are blocked on, and if an object
has an incoming reference and this reference is not from a thread blocked on that
object, then the object is considered to be waiting for the source of the incoming
reference. Specifically, if a thread has a reference to a lock, and the thread is not
currently about to execute an operation with this lock, then the lock is said to be
waiting for the thread. Similarly, if a lock holds a reference to a lock, then the second
lock is considered to be waiting for the first.

Using the waiting relation notion, we can formally define what a partial
deadlock/leak is. Intuitively, a partial deadlock is a subset of the objects in the

93

2.4 the deadlock and leak freedom theorems

configuration, none of which can step, such that if an object in the deadlock is
waiting, then it must be waiting for another object in the deadlock.

Definition 2.4.5 (Partial deadlock/leak �). Given a configuration ρ, a non-empty
subset S ⊆ dom(ρ) is in a partial deadlock/leak if these two conditions hold:

1. No i ∈ S can step, i.e., for all i ∈ S, ¬∃ρ′. ρ i
� ρ′

2. If i ∈ S and i waitingρ j then j ∈ S

This notion also incorporates memory leaks: if there is some lock that is not
referenced by a thread or other lock, then the singleton set of that lock is a partial
deadlock/leak. Furthermore, if we have a set of locks that all reference only each
other circularly, then this is considered to be a partial deadlock/leak. Similarly, a
single thread that is not synchronizing on a lock, is considered to be in a singleton
deadlock if it cannot step.

Definition 2.4.6 (Partial deadlock/leak freedom �). A configuration ρ is
deadlock/leak free if no S ⊆ dom(ρ) is in a partial deadlock/leak.

We can reformulate this to look more like the standard notion of memory leak
freedom, namely reachability:

Definition 2.4.7 (Reachability �). We inductively define the threads and locks that
are reachable in ρ: j0 ∈ N is reachable in ρ if there is some sequence j1, j2, ..., jk (with
k ⩾ 0) such that j0 waitingρ j1, and j1 waitingρ j2, ..., and jk−1 waitingρ jk, and finally

jk can step in ρ, i.e., ∃ρ′. ρ jk
� ρ′.

Intuitively, an element of the configuration is reachable if it can step, or if it has a
transitive waiting dependency on some other element that can step. This notion is
stronger than the usual notion of reachability, which considers objects to be reachable
even if they are only reachable from threads that are blocked.

Definition 2.4.8 (Full reachability �). A configuration ρ is fully reachable if all
i ∈ dom(ρ) are reachable in ρ.

As in (Jacobs et al., 2022b), our strengthened formulations of deadlock freedom
and full reachability are equivalent for λlock:

Theorem 2.4.9. � A configuration ρ is deadlock/leak free if and only if it is fully reachable.

In contrast to (Jacobs et al., 2022b), we have carefully set up our definitions so
that this theorem holds fully generically, i.e., independent of any language specific
properties.

These notions also imply global progress and type safety:

Definition 2.4.10. �

A configuration ρ satisfies global progress if ρ = ∅ or ∃ρ′, i. ρ i
� ρ′.

94

2.4 the deadlock and leak freedom theorems

configuration, none of which can step, such that if an object in the deadlock is
waiting, then it must be waiting for another object in the deadlock.

Definition 2.4.5 (Partial deadlock/leak �). Given a configuration ρ, a non-empty
subset S ⊆ dom(ρ) is in a partial deadlock/leak if these two conditions hold:

1. No i ∈ S can step, i.e., for all i ∈ S, ¬∃ρ′. ρ i
� ρ′

2. If i ∈ S and i waitingρ j then j ∈ S

This notion also incorporates memory leaks: if there is some lock that is not
referenced by a thread or other lock, then the singleton set of that lock is a partial
deadlock/leak. Furthermore, if we have a set of locks that all reference only each
other circularly, then this is considered to be a partial deadlock/leak. Similarly, a
single thread that is not synchronizing on a lock, is considered to be in a singleton
deadlock if it cannot step.

Definition 2.4.6 (Partial deadlock/leak freedom �). A configuration ρ is
deadlock/leak free if no S ⊆ dom(ρ) is in a partial deadlock/leak.

We can reformulate this to look more like the standard notion of memory leak
freedom, namely reachability:

Definition 2.4.7 (Reachability �). We inductively define the threads and locks that
are reachable in ρ: j0 ∈ N is reachable in ρ if there is some sequence j1, j2, ..., jk (with
k ⩾ 0) such that j0 waitingρ j1, and j1 waitingρ j2, ..., and jk−1 waitingρ jk, and finally

jk can step in ρ, i.e., ∃ρ′. ρ jk
� ρ′.

Intuitively, an element of the configuration is reachable if it can step, or if it has a
transitive waiting dependency on some other element that can step. This notion is
stronger than the usual notion of reachability, which considers objects to be reachable
even if they are only reachable from threads that are blocked.

Definition 2.4.8 (Full reachability �). A configuration ρ is fully reachable if all
i ∈ dom(ρ) are reachable in ρ.

As in (Jacobs et al., 2022b), our strengthened formulations of deadlock freedom
and full reachability are equivalent for λlock:

Theorem 2.4.9. � A configuration ρ is deadlock/leak free if and only if it is fully reachable.

In contrast to (Jacobs et al., 2022b), we have carefully set up our definitions so
that this theorem holds fully generically, i.e., independent of any language specific
properties.

These notions also imply global progress and type safety:

Definition 2.4.10. �

A configuration ρ satisfies global progress if ρ = ∅ or ∃ρ′, i. ρ i
� ρ′.

94

2.5 an intuitive description of the proofs

Definition 2.4.11. �

A configuration ρ is safe if for all i ∈ dom(ρ), ∃ρ′, i. ρ i
� ρ′, or ∃j. i waitingρ j.

That is, global progress holds if there is any element of the configuration that
can step, and safety holds if all elements of the configuration can either step, or are
legally blocked (i.e., waiting for someone else).

Theorem 2.4.12. � �

If a configuration ρ is fully reachable, then ρ has the progress and safety properties.

We thus only need to prove one language specific theorem, namely that all
configurations that arise from well-typed programs are fully reachable:

Theorem 2.4.13. �

If ∅ ⊢ e : 1 and
{
0 ↦→ Thread(e)

}
�

∗
ρ′, then ρ′ is fully reachable.

Once we have this theorem, the other theorems follow.
In the next section (Section 2.5) we give a high-level overview of how the theorem

is proved.

2.5 an intuitive description of the proofs

In this section we give a high-level overview of the proof of Theorem 2.4.13. We keep
the discussion high-level and intuitive because the full details are in the mechanized
proofs (Section 2.7).

Recall that Theorem 2.4.13 says that if we start with a well-typed program, then
every object in the configuration always remains reachable (Theorem 2.4.7). In order
to show this, we will structure the proof in the style of progress and preservation: we
first define an invariant on the configuration, showing that the invariant is preserved
by the operational semantics (analogous to preservation), and then show that
configurations that satisfy the invariant are fully reachable (analogous to progress).
Thus, our first task is to come up with a suitable invariant.

As we have seen in Section 2.2, our invariant must ensure that the sharing topology
in the configuration is acyclic. That is, if one considers the graph where the threads
and locks are vertices, and there is an (undirected) edge between two vertices if there
is a reference between them (in either direction), then this graph shall remain acyclic.

Another aspect of our invariant is well-typedness: we must ensure that
the expressions of every thread, and the values in every lock, are well-typed.
Furthermore, if there are lock references ⟨k⟩ in expressions or values, then the
type assigned to these must be consistent with the type of values actually stored in
the lock.

However, the type of lock references is, in general, ⟨k⟩ : Lock⟨τ a
b
⟩. The invariant

must also account for the consistency of the a and b of the different references to

the same lock. We require the following conditions for a lock
{
k ↦→ Lock(refcnt, v)

}

in the configuration:

95

2.5 an intuitive description of the proofs

• Out of all the references ⟨k⟩ appearing in the configuration, precisely one has
a = 1.

• Out of all the references ⟨k⟩ appearing in the configuration, at most one has
b = 1. Furthermore, if v = Some(v′), we must have b = 0 for all references, and if
v = None, we must have precisely one reference with b = 1.

• The number of references with a = 0 must be consistent with refcnt.

We capture the acyclicity condition, the well-typedness condition, and the lock
conditions in a predicate inv(ρ) on configurations, which states that the configuration
ρ satisfies these conditions. Our invariant is that this predicate holds throughout
execution. Formally, we have to show:

Theorem 2.5.1 (Preservation �). If ρ
i
� ρ′ then inv(ρ) =⇒ inv(ρ′)

The proof of this theorem involves careful mathematical reasoning about the
sharing topology: we must show that each lock operation, although it may modify
the structure of the graph, ensures that if the graph of ρ was acyclic, then the graph
of ρ′ is also acyclic, provided the program we are executing is well-typed in the
linear type system.

Secondly, we must ensure that all operations leave all the expressions and values
in the configuration well-typed, and maintain the correctness conditions for the
references to each lock.

Having done this, it remains to show that if a configuration satisfies our invariant,
then every object in the configuration is reachable:

Theorem 2.5.2 (Reachability �). If inv(ρ), then ρ is fully reachable.

Recall Theorem 2.4.7 of reachability: an object j0 in the configuration is reachable,
if there is some sequence j1, j2, ..., jk (with k ⩾ 0) such that j0 waitingρ j1, and

j1 waitingρ j2, ..., and jk−1 waitingρ jk, and finally jk can step in ρ, i.e., ∃ρ′. ρ jk
� ρ′.

Thus, proving Theorem 2.5.2 amounts to constructing such a sequence and showing
that the final element in the sequence can step. To construct this sequence, we must
rely on the acyclicity of the sharing topology in an essential way.

We do this by formulating our strategy for constructing such a sequence with
respect to that graph: we start at the vertex j0, check whether j0 can itself step, and
if not, show that there must exist some j1 such that j0 waitingρ j1. We then repeat
this process iteratively.

There is a danger that this process does not terminate (i.e., goes in a cycle, since
the configuration is finite), but by being careful we can avoid this danger:

1. We make sure, that if we step from ji to ji+1, that there is an edge between ji
and ji+1.

2. We make sure that if we just stepped from ji to ji+1, we will not immediately
step back.

96

2.5 an intuitive description of the proofs

• Out of all the references ⟨k⟩ appearing in the configuration, precisely one has
a = 1.

• Out of all the references ⟨k⟩ appearing in the configuration, at most one has
b = 1. Furthermore, if v = Some(v′), we must have b = 0 for all references, and if
v = None, we must have precisely one reference with b = 1.

• The number of references with a = 0 must be consistent with refcnt.

We capture the acyclicity condition, the well-typedness condition, and the lock
conditions in a predicate inv(ρ) on configurations, which states that the configuration
ρ satisfies these conditions. Our invariant is that this predicate holds throughout
execution. Formally, we have to show:

Theorem 2.5.1 (Preservation �). If ρ
i
� ρ′ then inv(ρ) =⇒ inv(ρ′)

The proof of this theorem involves careful mathematical reasoning about the
sharing topology: we must show that each lock operation, although it may modify
the structure of the graph, ensures that if the graph of ρ was acyclic, then the graph
of ρ′ is also acyclic, provided the program we are executing is well-typed in the
linear type system.

Secondly, we must ensure that all operations leave all the expressions and values
in the configuration well-typed, and maintain the correctness conditions for the
references to each lock.

Having done this, it remains to show that if a configuration satisfies our invariant,
then every object in the configuration is reachable:

Theorem 2.5.2 (Reachability �). If inv(ρ), then ρ is fully reachable.

Recall Theorem 2.4.7 of reachability: an object j0 in the configuration is reachable,
if there is some sequence j1, j2, ..., jk (with k ⩾ 0) such that j0 waitingρ j1, and

j1 waitingρ j2, ..., and jk−1 waitingρ jk, and finally jk can step in ρ, i.e., ∃ρ′. ρ jk
� ρ′.

Thus, proving Theorem 2.5.2 amounts to constructing such a sequence and showing
that the final element in the sequence can step. To construct this sequence, we must
rely on the acyclicity of the sharing topology in an essential way.

We do this by formulating our strategy for constructing such a sequence with
respect to that graph: we start at the vertex j0, check whether j0 can itself step, and
if not, show that there must exist some j1 such that j0 waitingρ j1. We then repeat
this process iteratively.

There is a danger that this process does not terminate (i.e., goes in a cycle, since
the configuration is finite), but by being careful we can avoid this danger:

1. We make sure, that if we step from ji to ji+1, that there is an edge between ji
and ji+1.

2. We make sure that if we just stepped from ji to ji+1, we will not immediately
step back.

96

2.5 an intuitive description of the proofs

These two conditions together ensure that our stepping process is well-founded: if
we step along edges in an acyclic graph and never turn around and step back, then
we must eventually arrive at some vertex with only one adjacent edge, from which
we just came, and we are then forced to stop.

Thus, in order to prove Theorem 2.5.2, it is sufficient to come up with a stepping
strategy, and show that it satisfies these two conditions. This strategy, roughly
speaking, works as follows:

• If we are currently at a thread i with ρ(i) = Thread(e), then by well-typedness
of the expression e we can show that the thread can either take a step, or it is
currently attempting to execute a lock operation on some lock ⟨k⟩. In the former
case, we are done. In the latter case, we have i waitingρ k, so we step to vertex
k, and continue building our sequence of transitive waiting dependencies from
there.

• If we are currently at a lock k with ρ(k) = Lock(refcnt, v), we can show, from the
invariant we maintain about locks, that we are in one of the following situations:

1. We have v = None and there is an incoming reference ⟨k⟩ from some
j ∈ dom(ρ) with ⟨k⟩ : Lock⟨τ a

1 ⟩, i.e., an opened reference.

2. We have v = Some(v′) and refcnt = 0, and there an incoming reference ⟨k⟩
from some j ∈ dom(ρ) with ⟨k⟩ : Lock⟨τ 1

0⟩, i.e., a closed owner reference.

3. We have v = Some(v′) and refcnt ≠ 0, and there an incoming reference ⟨k⟩
from some j ∈ dom(ρ) with ⟨k⟩ : Lock⟨τ 0

0⟩, i.e., a closed client reference.

In each case, if j is a lock, then we are immediately done because we can show
i waitingρ j and step to j. If j is a thread, then we have two cases:

– The thread is waiting for us, i.e., trying to do a lock operation with ⟨k⟩. In this
case, the above information guarantees that this lock operation can proceed:

1. In the first case with v = None, we know that the only lock operations
that are allowed by the type ⟨k⟩ : Lock⟨τ a

1 ⟩ are release and fork, both of
which can proceed. In particular, since the lock is open, the wait operation,
which could block, is not permitted.

2. In the second case with v = Some(v′) and refcnt = 0, we have a
closed owner reference, so the only potentially blocking operation that is
permitted is wait, which can proceed since refcnt = 0.

3. In the third case with v = Some(v′) and refcnt ≠ 0, we have a closed client
reference, so none of the operations permitted are blocking.

– The thread is not waiting for us, i.e., we are waiting for the thread. So we
step to the thread, and continue building our sequence of transitive waiting
dependencies from there.

This concludes the sketch of the proofs of Theorem 2.5.1 and Theorem 2.5.2, which
together can be used to prove our main Theorem 2.4.13, from which all the other

97

2.6 the λlock++ language : sharing multiple locks with lock groups

theorems in Section 2.4 follow. Although the description of the proofs here omit
many details, particularly with respect to the preservation of acyclicity of the sharing
topology, the description is nevertheless faithful to how the mechanized Coq proof
is done.

2.6 the λlock++ language : sharing multiple locks with lock groups

The language λlock we have seen so far only allows us to share one lock with a child
thread when we fork. To alleviate this restriction we now develop λlock++, which
allows us to share more than one lock with a child thread. This allows us to handle
locally cyclic connections.

The mechanism by which λlock++ allows this is lock groups. The locks of λlock store
one pair (refcnt, None | Some(v)) of a reference count and an optional value, whereas
the lock groups of λlock++ store a collection of such pairs. Whereas the type of locks
in λlock is Lock⟨τ a

b
⟩, the type of a lock group in λlock++ is:

LockG⟨τ1
a1
b1

, . . . , τn
an

bn
⟩

That is, we generalize the data within the brackets from one item to n items, but each
item still consists of a triple τa

b
where τ indicates the type of that lock, a indicates

whether we are the owner of that lock, and b indicates whether we have currently
acquired that lock.

We are allowed to freely create and destroy empty lock groups:

newgroupG : 1 → LockG⟨⟩
dropgroupG : LockG⟨⟩ → 1

Once we have a lock group, we are able to create a new lock in the lock group,
choosing at which position i to place it in the list:

newlockG[i] : LockG⟨g1, g2⟩ → LockG⟨g1, τ1
1, g2⟩ where i = | g1|

Similarly, we are able to drop a lock from the group, provided it is a client reference:

droplockG[i] : LockG⟨g1, τ0
0, g2⟩ → LockG⟨g1, g2⟩ where i = | g1|

The more interesting operation is acquire, which acquires one of the locks in the
group:

acquireG[i] : LockG⟨g1, τa0 , g2⟩ → LockG⟨g1, τa1 , g2⟩ × τ where i = | g1| and closed g2

98

2.6 the λlock++ language : sharing multiple locks with lock groups

theorems in Section 2.4 follow. Although the description of the proofs here omit
many details, particularly with respect to the preservation of acyclicity of the sharing
topology, the description is nevertheless faithful to how the mechanized Coq proof
is done.

2.6 the λlock++ language : sharing multiple locks with lock groups

The language λlock we have seen so far only allows us to share one lock with a child
thread when we fork. To alleviate this restriction we now develop λlock++, which
allows us to share more than one lock with a child thread. This allows us to handle
locally cyclic connections.

The mechanism by which λlock++ allows this is lock groups. The locks of λlock store
one pair (refcnt, None | Some(v)) of a reference count and an optional value, whereas
the lock groups of λlock++ store a collection of such pairs. Whereas the type of locks
in λlock is Lock⟨τ a

b
⟩, the type of a lock group in λlock++ is:

LockG⟨τ1
a1
b1

, . . . , τn
an

bn
⟩

That is, we generalize the data within the brackets from one item to n items, but each
item still consists of a triple τa

b
where τ indicates the type of that lock, a indicates

whether we are the owner of that lock, and b indicates whether we have currently
acquired that lock.

We are allowed to freely create and destroy empty lock groups:

newgroupG : 1 → LockG⟨⟩
dropgroupG : LockG⟨⟩ → 1

Once we have a lock group, we are able to create a new lock in the lock group,
choosing at which position i to place it in the list:

newlockG[i] : LockG⟨g1, g2⟩ → LockG⟨g1, τ1
1, g2⟩ where i = | g1|

Similarly, we are able to drop a lock from the group, provided it is a client reference:

droplockG[i] : LockG⟨g1, τ0
0, g2⟩ → LockG⟨g1, g2⟩ where i = | g1|

The more interesting operation is acquire, which acquires one of the locks in the
group:

acquireG[i] : LockG⟨g1, τa0 , g2⟩ → LockG⟨g1, τa1 , g2⟩ × τ where i = | g1| and closed g2

98

2.6 the λlock++ language : sharing multiple locks with lock groups

Acquire requires that we obey the lock order, that is, we cannot acquire a lock in the
group if there is an opened lock to its right in the type-level list. This condition is
necessary to prevent acquire-acquire deadlocks. The rule for release is as folows:

releaseG[i] : LockG⟨g1, τa1 , g2⟩ × τ → LockG⟨g1, τa0 , g2⟩ where i = | g1|

The condition for wait has to be even more stringent than the rule for acquire:

waitG[i] : LockG⟨g1, τ1
0, g2⟩ → LockG⟨g1, g2⟩ × τ

where closed g1, g2, owners g2 and i = | g1|

The condition says that we can only wait if all locks are closed (to prevent acquire-
wait deadlocks on different locks in the group), and we must obey the lock order
with respect to the owners, that is, we cannot wait if there is a client to the right (to
prevent wait-wait deadlocks on different locks).

The rule for fork allows us to share an entire lock group with the child thread:

forkG : LockG⟨g⟩ × (LockG⟨g1⟩ −◦ 1) → LockG⟨g2⟩ where split g into g1, g2

The relation split g into g1, g2 specifies that locks are split as in λlock, but elementwise
for each lock:

τ
a1+a2
b1+b2

∈ g is split into

{
τ
a1
b1

∈ g1

τ
a2
b2

∈ g2

The rules for λlock++ are summarized in Figure 15. In summary, λlock++ organises
locks into lock groups, which can be grown and shrunk dynamically.

2.6.1 Examples of Using Lock Orders

The key improvement over λlock is that λlock++’s forkG allows us to share an entire
lock group, with potentially multiple locks:

let ℓ = newgroupG() in

let ℓ = newlockG[0](ℓ) in

let ℓ = newlockG[1](ℓ) in

let ℓ = forkG(ℓ, λℓ. · · ·) in · · ·

In a λlock++ version of the bank example (Section 2.2.3), this would allow us to have
multiple bank threads that each do transactions over multiple locks, guaranteeing
deadlock freedom because the type system ensures that the banks acquire the locks
according to the lock order.

99

2.6 the λlock++ language : sharing multiple locks with lock groups

�
Γ unr

Γ ⊢ newgroupG() : LockG⟨⟩
Γ ⊢ e : LockG⟨⟩

Γ ⊢ dropgroupG(e) : 1

Γ ⊢ e : LockG⟨g1, g2⟩ i = | g1|
Γ ⊢ newlockG[i](e) : LockG⟨g1, τ1

1, g2⟩
Γ ⊢ e : LockG⟨g1, τ0

0, g2⟩ i = | g1|
Γ ⊢ droplockG[i](e) : LockG⟨g1, g2⟩

Γ ⊢ e : LockG⟨g1, τ1
0, g2⟩ closed g1, g2, owners g2 i = | g1|

Γ ⊢ waitG[i](e) : LockG⟨g1, g2⟩ × τ

Γ ≡ Γ1 · Γ2 Γ1 ⊢ e1 : LockG⟨g⟩ Γ2 ⊢ e2 : LockG⟨g1⟩ −◦ 1 split g into g1, g2

Γ ⊢ forkG(e1, e2) : LockG⟨g2⟩

Γ ⊢ e : LockG⟨g1, τa0 , g2⟩ i = | g1| closed g2

Γ ⊢ acquireG[i](e) : LockG⟨g1, τa1 , g2⟩ × τ

Γ ≡ Γ1 · Γ2 Γ1 ⊢ e1 : LockG⟨g1, τa1 , g2⟩ Γ2 ⊢ e2 : τ i = | g1|
Γ ⊢ releaseG[i](e1, e2) : LockG⟨g1, τa0 , g2⟩

Figure 15: λlock++’s lock group typing rules.

Dining philosophers

We can use lock groups for a dynamic version of Dijkstra’s dining philosophers
(a.k.a., a unbounded process network (Giachino et al., 2014; Kobayashi and Laneve,
2017)), where the number n of philosophers is chosen dynamically.

dine : LockG⟨inta1
0 , inta2

0 ⟩ −◦ 1

dine(ℓ) ≜

let ℓ, x = acquireG[0](ℓ) in

let ℓ,y = acquireG[1](ℓ) in

let ℓ = releaseG[0](ℓ,y) in

let ℓ = releaseG[1](ℓ, x) in dine(ℓ)

phil : int × LockG⟨inta1
0 , inta2

0 ⟩ −◦ 1

phil(0, ℓ) ≜ dine(ℓ)
phil(n+ 1, ℓ) ≜

let ℓ = releaseG[2](newlockG[2](ℓ), 42) in

let ℓ = forkG(ℓ, λℓ. dine(droplockG[0](ℓ))) in

phil(n, droplockG[1](ℓ))

100

2.6 the λlock++ language : sharing multiple locks with lock groups

�
Γ unr

Γ ⊢ newgroupG() : LockG⟨⟩
Γ ⊢ e : LockG⟨⟩

Γ ⊢ dropgroupG(e) : 1

Γ ⊢ e : LockG⟨g1, g2⟩ i = | g1|
Γ ⊢ newlockG[i](e) : LockG⟨g1, τ1

1, g2⟩
Γ ⊢ e : LockG⟨g1, τ0

0, g2⟩ i = | g1|
Γ ⊢ droplockG[i](e) : LockG⟨g1, g2⟩

Γ ⊢ e : LockG⟨g1, τ1
0, g2⟩ closed g1, g2, owners g2 i = | g1|

Γ ⊢ waitG[i](e) : LockG⟨g1, g2⟩ × τ

Γ ≡ Γ1 · Γ2 Γ1 ⊢ e1 : LockG⟨g⟩ Γ2 ⊢ e2 : LockG⟨g1⟩ −◦ 1 split g into g1, g2

Γ ⊢ forkG(e1, e2) : LockG⟨g2⟩

Γ ⊢ e : LockG⟨g1, τa0 , g2⟩ i = | g1| closed g2

Γ ⊢ acquireG[i](e) : LockG⟨g1, τa1 , g2⟩ × τ

Γ ≡ Γ1 · Γ2 Γ1 ⊢ e1 : LockG⟨g1, τa1 , g2⟩ Γ2 ⊢ e2 : τ i = | g1|
Γ ⊢ releaseG[i](e1, e2) : LockG⟨g1, τa0 , g2⟩

Figure 15: λlock++’s lock group typing rules.

Dining philosophers

We can use lock groups for a dynamic version of Dijkstra’s dining philosophers
(a.k.a., a unbounded process network (Giachino et al., 2014; Kobayashi and Laneve,
2017)), where the number n of philosophers is chosen dynamically.

dine : LockG⟨inta1
0 , inta2

0 ⟩ −◦ 1

dine(ℓ) ≜

let ℓ, x = acquireG[0](ℓ) in

let ℓ,y = acquireG[1](ℓ) in

let ℓ = releaseG[0](ℓ,y) in

let ℓ = releaseG[1](ℓ, x) in dine(ℓ)

phil : int × LockG⟨inta1
0 , inta2

0 ⟩ −◦ 1

phil(0, ℓ) ≜ dine(ℓ)
phil(n+ 1, ℓ) ≜

let ℓ = releaseG[2](newlockG[2](ℓ), 42) in

let ℓ = forkG(ℓ, λℓ. dine(droplockG[0](ℓ))) in

phil(n, droplockG[1](ℓ))

100

2.6 the λlock++ language : sharing multiple locks with lock groups

We can start the philosophers by running the following code:

let ℓ = newgroupG() in

let ℓ = releaseG[0](newlockG[0](ℓ), 42) in

let ℓ = releaseG[1](newlockG[1](ℓ), 42) in

let ℓ = forkG(ℓ, λℓ. dine(ℓ)) in phil(n, ℓ)

The code sets up a ring of forks (the locks) and philosophers (the dining threads)
between them. It helps to think of the ring as a long line of forks, which is closed by
making a philosopher dine with the first and last forks in the line. Intuitively, the
phil function takes a lock group with two forks: the very first fork in the line, and the
last fork in the line so far. The function then creates a new fork at the end of the line,
and makes a new philosopher dine with the last two forks. We then forget about the
penultimate fork, and make a recursive call. At the end of the recursion, we close the
loop by making a philosopher dine with the very first fork and the last. To initialize
this process, we create the first two forks in the line. We make a philosopher dine
with these forks, and use phil to make the line and close the loop. Note that there
will be n+ 2 locks in the lock group overall, but the local view of any reference has
at most 3 locks visible at any time.

Growing the table

To illustrate the dynamic nature of lock groups and their lock orders, we can modify
the above code to dynamically grow the number of philosophers at the circular
table. To do so, replace the recursive call of dine(ℓ) with phil(2, ℓ), making dine and
phil mutually recursive. Now, after a philosopher is done dining (i.e., acquring and
releasing their two locks), the philosopher replaces itself with 3 dining philosophers,
thus growing the circle by 2.

Growing the table, fractally

To further illustrate the dynamic nature, consider replacing the recursive call dine(ℓ)
with the following code:

phil(2, forkG(ℓ, λℓ. phil(2, ℓ)))

After dining, the philosopher replaces itself with 6 philosophers, arranged in two
parallel lines. The leftmost philosophers in the two lines both use the left-hand lock
of the original philosopher, and the rightmost philosophers in the two lines both use
the right-hand lock of the original philosopher.

Of course, each of these philosophers is running the same code, and after dining
they will in turn replace themselves with such parallel lines, according to the
following substitution:

101

2.6 the λlock++ language : sharing multiple locks with lock groups

=⇒

In this picture, the squares are forks (locks) and the circles are philosophers
(threads). Some forks are now accessed by more than 2 philosophers, and the number
of philosophers accessing a fork can grow dynamically. Which philosopher dines and
splits is non-deterministic, and thus the initial table of 42 grows non-deterministically
in fractal and intricately interconnected circular patterns. Nevertheless, the type
system of λlock++ guarantees deadlock freedom by construction.

Multiple lock groups

Note that so far we have used only a single lock group. The expressiveness of λlock

for multiple locks based on the sharing topology is still available for λlock++, but now
for multiple lock groups. The reader may wonder how the expressivity of pure lock
orders with a single lock group of λlock++ compares with the expressivity of the pure
sharing topology of λlock. The two mechanisms are orthogonal, and one is not strictly
more powerful than the other, because two locks in the same lock group always need
to be locked in the given order, whereas two independent locks can be locked in any
order.

2.6.2 References to Lock Groups

Operationally, λlock++ works precisely like λlock, except that each lock group now
stores a collection of locks, each of which is identified by an id (a natural number).
Each reference to a lock group may only have partial knowledge of which locks
are present in the group, because new locks may have been added concurrently by
other threads that hold a reference to the same lock group. However, note that the
operations newlockG[i], droplockG[i], acquireG[i] and releaseG[i] refer to a lock
by index i, which is the index of the local view of the lock group. Therefore, each
reference to a lock group now consists not just of ⟨k⟩, but in fact of ⟨k | i0, i1, . . . , in⟩,
where k identifies the lock group, and i0, i1, . . . , in identifies which locks in the lock
group this reference knows about. Thus, when we have ⟨k | i0, i1, . . . , in⟩ : LockG⟨g⟩,
we have | g| = n.

2.6.3 The Invariant for Lock Groups

The invariant for lock groups is very similar to the one for locks. The sharing
topology does not distinguish between the individual locks in a group, but treats
them as an atomic whole. Thus, we may have edges between threads and lock groups,
and between lock groups and lock groups, and this graph must be acyclic. The local
invariant for a lock group with respect to the types ⟨k | i0, i1, . . . , in⟩ : LockG⟨g⟩

102

2.6 the λlock++ language : sharing multiple locks with lock groups

=⇒

In this picture, the squares are forks (locks) and the circles are philosophers
(threads). Some forks are now accessed by more than 2 philosophers, and the number
of philosophers accessing a fork can grow dynamically. Which philosopher dines and
splits is non-deterministic, and thus the initial table of 42 grows non-deterministically
in fractal and intricately interconnected circular patterns. Nevertheless, the type
system of λlock++ guarantees deadlock freedom by construction.

Multiple lock groups

Note that so far we have used only a single lock group. The expressiveness of λlock

for multiple locks based on the sharing topology is still available for λlock++, but now
for multiple lock groups. The reader may wonder how the expressivity of pure lock
orders with a single lock group of λlock++ compares with the expressivity of the pure
sharing topology of λlock. The two mechanisms are orthogonal, and one is not strictly
more powerful than the other, because two locks in the same lock group always need
to be locked in the given order, whereas two independent locks can be locked in any
order.

2.6.2 References to Lock Groups

Operationally, λlock++ works precisely like λlock, except that each lock group now
stores a collection of locks, each of which is identified by an id (a natural number).
Each reference to a lock group may only have partial knowledge of which locks
are present in the group, because new locks may have been added concurrently by
other threads that hold a reference to the same lock group. However, note that the
operations newlockG[i], droplockG[i], acquireG[i] and releaseG[i] refer to a lock
by index i, which is the index of the local view of the lock group. Therefore, each
reference to a lock group now consists not just of ⟨k⟩, but in fact of ⟨k | i0, i1, . . . , in⟩,
where k identifies the lock group, and i0, i1, . . . , in identifies which locks in the lock
group this reference knows about. Thus, when we have ⟨k | i0, i1, . . . , in⟩ : LockG⟨g⟩,
we have | g| = n.

2.6.3 The Invariant for Lock Groups

The invariant for lock groups is very similar to the one for locks. The sharing
topology does not distinguish between the individual locks in a group, but treats
them as an atomic whole. Thus, we may have edges between threads and lock groups,
and between lock groups and lock groups, and this graph must be acyclic. The local
invariant for a lock group with respect to the types ⟨k | i0, i1, . . . , in⟩ : LockG⟨g⟩

102

2.6 the λlock++ language : sharing multiple locks with lock groups

of all the references to the lock group, is also similar. Elementwise, we insist the
same as for single locks: each lock must have precisely one owning reference, and
the reference count of each lock must agree with the number of client references.
Furthermore, whether the lock stores None | Some(v) must agree with the existence
of an open reference. In other words, the invariant for a lock group is the same as
for single locks, but elementwise.

The key difference is that for lock groups, we insist that the order of the lists
I = i0, i1, . . . , in of the lock references of the various references must agree. That is,
there is some list Iall such that the I of every client reference ⟨k | I⟩ to the lock group
is a subsequence of it.

This invariant is preserved by all the operations:

• Inserting a new lock into the group inserts it into Iall as well.

• Deleting a lock using waitG[i] deletes it from Iall as well.

• Dropping a client reference to a lock has no effect on Iall; we only need to ajust
the subsequence witness of that reference.

• Acquiring and releasing a lock has no effect on Iall.

• Forking a lock group has no effect on Iall, since the two newly split references
have the locks in the same order as the original reference.

In summary, the references to the lock group have a partial but consistent view of
the lock order.

2.6.4 Reachability for Lock Groups

We wish to generalize the theorems of Section 2.4 to λlock++. This turns out to be very
easy: only the definition of blocked (Theorem 2.4.2) depended on the details of λlock.
We adjust it so that a thread is considered blocked on a lock group if it is trying to
perform one of λlock++’s lock group operations on it.

In Section 2.5 we have seen that the difficult case of the reachability proof is to
establish reachability of the locks, or in our case now, a lock group. The reachability
proof for a lock comes down to showing that it is impossible that every reference
to the lock is blocked on it. Let us thus see why this also holds for lock groups.
Suppose that there is some reference to the lock group. If this reference is doing
anything other than acquire or wait on this lock group, then it is not blocked, and
hence we’re done. If it is blocked, we have the following two cases:

The case of acquire

Consider the case when this reference is doing an acquire of some lock i in the
group. If this acquire can’t proceed, the lock must have already been acquired, via
some other reference. Consider, now, the thread holding that reference (if it is held

103

2.7 mechanized proofs

by a lock, we are also immediately done). If that thread is not blocked on this lock
group, we’re done. If it is blocked on this lock group, it could be doing an acquire,
or a wait. In fact, it is not possible that the thread is doing a wait operation, because
the typing rule of wait says that all the locks must be closed, and if it has acquired
a lock in the group, this condition is violated. Hence, the thread must be doing
an acquire of some lock j in the group. It seems that we’re now back to where we
started. However, due to the typing rule of acquire, the lock j must be higher in the
lock order than lock i. Thus, we have made progress, in the sense that we have gone
up in the lock order. Hence, if we keep repeating this reasoning, we go up and up in
the lock order, until we’re at the end, and then the thread can’t be doing any acquire
(formally, we phrase this using induction). In summary, if some thread is doing an
acquire, then there must be some reference into the lock group that is not blocked
on the lock group, and we’re done.

The case of wait

Now consider the case when the reference is doing a wait on some lock i in the
group. If this wait cannot proceed, then the refcount of that lock must be nonzero,
so there must also be some client reference to i. Consider, now, the thread holding
that reference (if it is held by a lock, we are also immediately done). If that thread
is not blocked on this lock group, we’re done. If it is blocked on this lock group, it
could be doing an acquire, or a wait. If it’s doing an acquire, we’re done, by the
preceding paragraph. Hence, suppose that the thread is doing a wait on some lock j

in the group. It seems that we’re now back to where we started. However, due to the
typing rule of wait, the lock j must be higher in the lock order than lock i. Hence, by
repeating this reasoning, we go up in the lock order, and eventually we’re done. In
summary, if some thread is doing a wait, then there must be some reference into the
lock group that is not blocked on the lock group, and we’re done.

2.7 mechanized proofs

All of our theorems (Theorem 2.4.9, Theorem 2.4.12, Theorem 2.4.13, Theorem 2.5.1,
and Theorem 2.5.2) have been mechanized in the Coq proof assistant (Coq Team,
2021), for both λlock (�) and λlock++ (�). The mechanization is structured as follows:

• The λlock/λlock++ language definition: expressions, static type system (with
unrestricted and recursive types), and operational semantics.

• The configuration invariant, stating that the configuration remains well typed,
that the sharing topology is acyclic, and that the lock invariants hold for every
lock / lock group.

• Proof that the invariant is preserved by the operational semantics (Theorem 2.5.1).

104

2.7 mechanized proofs

by a lock, we are also immediately done). If that thread is not blocked on this lock
group, we’re done. If it is blocked on this lock group, it could be doing an acquire,
or a wait. In fact, it is not possible that the thread is doing a wait operation, because
the typing rule of wait says that all the locks must be closed, and if it has acquired
a lock in the group, this condition is violated. Hence, the thread must be doing
an acquire of some lock j in the group. It seems that we’re now back to where we
started. However, due to the typing rule of acquire, the lock j must be higher in the
lock order than lock i. Thus, we have made progress, in the sense that we have gone
up in the lock order. Hence, if we keep repeating this reasoning, we go up and up in
the lock order, until we’re at the end, and then the thread can’t be doing any acquire
(formally, we phrase this using induction). In summary, if some thread is doing an
acquire, then there must be some reference into the lock group that is not blocked
on the lock group, and we’re done.

The case of wait

Now consider the case when the reference is doing a wait on some lock i in the
group. If this wait cannot proceed, then the refcount of that lock must be nonzero,
so there must also be some client reference to i. Consider, now, the thread holding
that reference (if it is held by a lock, we are also immediately done). If that thread
is not blocked on this lock group, we’re done. If it is blocked on this lock group, it
could be doing an acquire, or a wait. If it’s doing an acquire, we’re done, by the
preceding paragraph. Hence, suppose that the thread is doing a wait on some lock j

in the group. It seems that we’re now back to where we started. However, due to the
typing rule of wait, the lock j must be higher in the lock order than lock i. Hence, by
repeating this reasoning, we go up in the lock order, and eventually we’re done. In
summary, if some thread is doing a wait, then there must be some reference into the
lock group that is not blocked on the lock group, and we’re done.

2.7 mechanized proofs

All of our theorems (Theorem 2.4.9, Theorem 2.4.12, Theorem 2.4.13, Theorem 2.5.1,
and Theorem 2.5.2) have been mechanized in the Coq proof assistant (Coq Team,
2021), for both λlock (�) and λlock++ (�). The mechanization is structured as follows:

• The λlock/λlock++ language definition: expressions, static type system (with
unrestricted and recursive types), and operational semantics.

• The configuration invariant, stating that the configuration remains well typed,
that the sharing topology is acyclic, and that the lock invariants hold for every
lock / lock group.

• Proof that the invariant is preserved by the operational semantics (Theorem 2.5.1).

104

2.8 related work

• Proof that configurations satifsying the invariant are fully reachable
(Theorem 2.5.2).

• Proofs that full-reachability is equivalent to deadlock/leak freedom, and that
they imply type safety and global progress (Theorem 2.4.9, Theorem 2.4.12).

In order to handle recursive types, we use the coinductive method of Gay et al.
(2020). The mechanization uses a graph library to reason about the graph underlying
the sharing topology (Jacobs et al., 2022b) and depends on Iris, mainly for the Iris
proof mode (Jung et al., 2015; Krebbers et al., 2017b; Jung et al., 2018b), as well as on
the stdpp extended standard library for Coq (Coq-std++ Team, 2021).

2.8 related work

Related work on deadlock freedom spans both shared memory and message-passing
concurrency as well as type systems and program logics. Related work on memory
leak freedom seems to be confined to the purely linear setting. While memory safety
has been studied both in research (Tofte and Talpin, 1997; Grossman et al., 2002) and
in practice, with Rust as the most prominent example (Jung et al., 2018a), memory
safety does not entail memory leak freedom.

session types Conceptually, our work is most closely related to the family
of binary session types (Toninho et al., 2013; Toninho, 2015; Lindley and Morris,
2015; Caires et al., 2016; Lindley and Morris, 2016c, 2017; Fowler et al., 2019; Kokke
et al., 2019; Fowler et al., 2021; Jacobs et al., 2022b) that build on the Curry-Howard
correspondence between linear logic and the session-typed π-calculus (Caires and
Pfenning, 2010; Wadler, 2012). Like these systems, our type system uses linearity
to restrict the propagation of references to rule out circular waiting dependencies
among a program’s run-time objects. Our fork construct, moreover, resembles
process spawning (a.k.a., cut) in that it connects a parent and a child thread with
exactly one lock (group). However, our fork construct differs in that it allows a
parent thread to share the same lock (group) among repeatedly forked off children
(e.g., example in Section 2.2.3), permitting aliases to a lock (group) to exist and
threads with such aliases to affect each other. We remark that the linear exponential,
supported by some linear session types, has a copying and not a sharing semantics.

Traditional session types, both binary (Honda, 1993; Honda et al., 1998) and
multiparty (Honda et al., 2008), suffer from deadlock. Carbone and Debois (2010)
were the first to explore the benefits of acyclicity of the underlying communication
topology for deadlock freedom. These ideas, combined with insights gained from the
Curry-Howard correspondence between linear logic and the session-typed π-calculus
(Caires and Pfenning, 2010; Wadler, 2012), gave rise to a series of work to establish
deadlock freedom for multiparty session types (Carbone et al., 2015, 2016, 2017;
Castro-Perez et al., 2021; Jacobs et al., 2022b). While our notion of sharing topology

105

2.8 related work

draws inspiration from these works, our type system offers unrestricted sharing
through locks.

Recently, Qian et al. (2021) and Rocha and Caires (2021) have inhaled the linear
exponential a slightly different semantics. In particular, Qian et al. (2021) observe
that the established interpretation of the linear exponential (Wadler, 2012) fails
to faithfully encode client-server interactions, where clients are served in a non-
deterministic fashion. The authors complement the linear exponential with a
coexponential to fill this gap. Like acquires in our language, Qian et al. (2021)’s
coexponential is the source of non-determinism. However, the coexponential still
has a copying semantics, ruling out various sharing scenarios, such as dining
philosophers (see Section 2.6.1).

Closer to our base calculus λlock is Rocha and Caires (2021)’s PaT language with
reference cells. PaT’s reference cells have constructs for reading a cell’s contents,
updating it, and locking it, while remaining deadlock-free. To account for the
non-determinism resulting from an update, the authors introduce non-deterministic
sums from differential linear logic (Ehrhard and Regnier, 2006; Ehrhard, 2018). A
similarity between PaT and λlock is the reliance on acyclicity for deadlock freedom
not just for sessions, but also for reference cells. PaT ensures acyclicity with co-
contraction rules for its share construct, which serves a similar purpose as λlock’s
fork, with the difference that PaT is situated in a π-calculus, rather than a λ-calculus
like λlock. Like fork, the typing rules of share distribute the lock’s open/closed state
over parallel processes, ensuring that only a single process is interacting with an
opened lock. In contrast to PaT’s reference cells, which can only store unrestricted
values (i.e., values that can be freely copied and discarded, such as natural numbers),
λlock’s locks can store arbitrary linear values, including values representing non-
affine obligations. Locking and unlocking transfers full ownership over the contents,
including obligations, such as the obligation to close a lock or send a message on a
channel. In terms of our invariants (Section 2.2, principles 1-5, and Section 2.5), these
obligations emerge as edges between two locks as well as the need to introduce the
owner/client distinction in addition to the open/closed distinction. Moreover, our
extended language λlock++ supports cyclic sharing topologies, which are beyond the
reach of reference cells.

Among the extensions of linear logic session types with non-determinism and
notions of sharing, manifest sharing (Balzer and Pfenning, 2017; Balzer et al., 2018,
2019) is the work closest to ours. Manifest sharing introduces an adjoint formulation
of linear and shared session types, with the latter resembling our locks, which can be
freely shared and must be communicated with by entering a critical section. Mutual
exclusion is enforced by adjoint modalities, with an acquire and release semantics.
While the original system (Balzer and Pfenning, 2017; Balzer et al., 2018) can suffer
from deadlocks, Balzer et al. (2019) augment manifest sharing with partial orders
to rule out deadlocks. In contrast to our locks, shared processes in (Balzer et al.,
2019) cannot store any linear resources. Moreover, while Balzer et al. (2019)’s system
supports order-polymorphic processes, ensuring compositionality, local orders must

106

2.8 related work

draws inspiration from these works, our type system offers unrestricted sharing
through locks.

Recently, Qian et al. (2021) and Rocha and Caires (2021) have inhaled the linear
exponential a slightly different semantics. In particular, Qian et al. (2021) observe
that the established interpretation of the linear exponential (Wadler, 2012) fails
to faithfully encode client-server interactions, where clients are served in a non-
deterministic fashion. The authors complement the linear exponential with a
coexponential to fill this gap. Like acquires in our language, Qian et al. (2021)’s
coexponential is the source of non-determinism. However, the coexponential still
has a copying semantics, ruling out various sharing scenarios, such as dining
philosophers (see Section 2.6.1).

Closer to our base calculus λlock is Rocha and Caires (2021)’s PaT language with
reference cells. PaT’s reference cells have constructs for reading a cell’s contents,
updating it, and locking it, while remaining deadlock-free. To account for the
non-determinism resulting from an update, the authors introduce non-deterministic
sums from differential linear logic (Ehrhard and Regnier, 2006; Ehrhard, 2018). A
similarity between PaT and λlock is the reliance on acyclicity for deadlock freedom
not just for sessions, but also for reference cells. PaT ensures acyclicity with co-
contraction rules for its share construct, which serves a similar purpose as λlock’s
fork, with the difference that PaT is situated in a π-calculus, rather than a λ-calculus
like λlock. Like fork, the typing rules of share distribute the lock’s open/closed state
over parallel processes, ensuring that only a single process is interacting with an
opened lock. In contrast to PaT’s reference cells, which can only store unrestricted
values (i.e., values that can be freely copied and discarded, such as natural numbers),
λlock’s locks can store arbitrary linear values, including values representing non-
affine obligations. Locking and unlocking transfers full ownership over the contents,
including obligations, such as the obligation to close a lock or send a message on a
channel. In terms of our invariants (Section 2.2, principles 1-5, and Section 2.5), these
obligations emerge as edges between two locks as well as the need to introduce the
owner/client distinction in addition to the open/closed distinction. Moreover, our
extended language λlock++ supports cyclic sharing topologies, which are beyond the
reach of reference cells.

Among the extensions of linear logic session types with non-determinism and
notions of sharing, manifest sharing (Balzer and Pfenning, 2017; Balzer et al., 2018,
2019) is the work closest to ours. Manifest sharing introduces an adjoint formulation
of linear and shared session types, with the latter resembling our locks, which can be
freely shared and must be communicated with by entering a critical section. Mutual
exclusion is enforced by adjoint modalities, with an acquire and release semantics.
While the original system (Balzer and Pfenning, 2017; Balzer et al., 2018) can suffer
from deadlocks, Balzer et al. (2019) augment manifest sharing with partial orders
to rule out deadlocks. In contrast to our locks, shared processes in (Balzer et al.,
2019) cannot store any linear resources. Moreover, while Balzer et al. (2019)’s system
supports order-polymorphic processes, ensuring compositionality, local orders must

106

2.8 related work

comply with a global order at run-time, whereas lock group orders in λlock++ are
independent of each other. Lastly, Balzer et al. (2019)’s system does not support
unbounded process networks (see Section 2.6.1), whereas λlock++ does.

usages and obligations The addition of channel usage information to types
in a concurrent, message-passing setting was pioneered by Kobayashi (1997); Igarashi
and Kobayashi (1997), who applied the idea to deadlock prevention in the π-calculus
as well as race freedom (Igarashi and Kobayashi, 2001, 2004). Typically, types are
augmented with the relative ordering of channel actions, with the type system
ensuring that the transitive closure of such orderings forms a strict partial order.
Building on this, Kobayashi (2002a) proposed type systems that ensure a stronger
property, dubbed lock freedom, and variants that are amenable to type inference
(Kobayashi et al., 2000; Kobayashi, 2005). Kobayashi (2006) extended this to account
for recursive processes and type inference. The most advanced system (Giachino
et al., 2014; Kobayashi and Laneve, 2017) in this series supports unbounded process
networks, allowing dynamic creation of circular topologies.

Padovani (2014) contributes a simplified account of Kobayashi-style orders, albeit
at the cost of expressivity, which, assuming linear channel usage, gets by with a single
priority rather than usage information. Padovani (2014)’s system supports priority
polymorphism to support cyclic interleavings of recursive processes. Padovani’s
system also served as a source of inspiration for the development of a functional
language with session types by Dardha and Gay (2018); Kokke and Dardha (2021c).
The authors’ system focuses on the integration with a functional language, and
currently lacks support of recursive circular behavior. Kobayashi-style orders have
also been adopted in the multiparty session type setting (Coppo et al., 2013; Bettini
et al., 2008; Coppo et al., 2016) to establish global progress in the presence of
multiparty session interleavings.

Like Giachino et al. (2014); Kobayashi and Laneve (2017)’s system, our extended
system λlock++ supports unbounded process networks (see Section 2.6.1). However,
the two systems differ conceptually: whereas our approach is primarily guided by
topology, Kobayashi-style orders are guided by orders. As a result, the systems
differ in technical details and user experience. For example, our core language λlock

does not require any additional annotations, deadlock freedom simply follows from
thread-local linearity. On the other hand, λlock++ does require lock orders. These
orders, however, are purely local to a lock group, and there is no need for local
orders to comply with each other or a global lock order, or any other condition across
groups, when acquiring locks from distinct groups. To the best of our knowledge,
this feature is novel and increases compositionality.

program logics Our work is tangentially related to works using Hoare logics
with lock orders (Leino et al., 2010; Hamin and Jacobs, 2018) for deadlock freedom
and work using concurrent separation logic (da Rocha Pinto et al., 2014; Jung et al.,
2015, 2018b; Nanevski et al., 2019; D’Osualdo et al., 2021a; Farka et al., 2021) for

107

2.9 limitations and future work

program verification. Our focus is on type-based, and thus automated verification.
A fully fledged separation logic that is capable of proving deadlock freedom using
sharing topologies is still missing. This is something we hope to explore in the
future.

2.9 limitations and future work

No decidable type system is without its limitations, and λlock++ is no exception. To
our understanding, the main limitations of λlock and λlock++ are as follows:

Lock group references have static size.

While locks can be added to a lock group dynamically, controlled by a run-time
variable n (e.g., in dynamic dining philosophers), the number of locks that can be
accessed via a single lock group reference at any given point in the program is statically
determined by the length of the type-level list (e.g., in dining philosophers, each
philosopher accesses two locks). This type dependency curtails expressivity when
a lock group reference is used in a loop, requiring the type to be invariant across
iterations and thus fixing simultaneous access to a statically predetermined number
of locks in a lock group, rather than adjusting that number dynamically.

DAG-shaped mutable data structures.

The simple locks of λlock can be used as mutable reference cells. The operational
semantics employs reference counting memory management. Reference counting
guarantees memory leak freedom as long as the data has the shape of a directed
acyclic graph (DAG), and is often used that way. In a DAG, as opposed to a tree,
a node may have multiple parents. In λlock, a node can have multiple parents as
well, but these parents are always disjoint. Thus, in terms of data shapes that can
be expressed, λlock supports a strict superset of tree-shapes, but a strict subset of
DAG-shapes. It would be nice to relax this restriction and support general DAGs,
but we do not know how to do so without introducing the possibility of deadlock.
The issue is that we could potentially obtain a duplicate reference to the same lock
via different paths in the DAG, which can be used to create deadlocks.

Rust’s unsafe

Rust has the unsafe mechanism for code that violates the rules of the borrow checker,
to be used if the programmer promises that the code is safe and upholds Rust’s
invariants (Jung et al., 2018a). One could analogously imagine an unsafe construct
for λlock that allows the programmer to violate the linearity restriction and freely
duplicate a lock, if the programmer promises that the code is safe and upholds
λlock’s invariants. The open problem would be characterizing the invariants that the
programmer would be responsible for upholding in their unsafe code, such that

108

2.9 limitations and future work

program verification. Our focus is on type-based, and thus automated verification.
A fully fledged separation logic that is capable of proving deadlock freedom using
sharing topologies is still missing. This is something we hope to explore in the
future.

2.9 limitations and future work

No decidable type system is without its limitations, and λlock++ is no exception. To
our understanding, the main limitations of λlock and λlock++ are as follows:

Lock group references have static size.

While locks can be added to a lock group dynamically, controlled by a run-time
variable n (e.g., in dynamic dining philosophers), the number of locks that can be
accessed via a single lock group reference at any given point in the program is statically
determined by the length of the type-level list (e.g., in dining philosophers, each
philosopher accesses two locks). This type dependency curtails expressivity when
a lock group reference is used in a loop, requiring the type to be invariant across
iterations and thus fixing simultaneous access to a statically predetermined number
of locks in a lock group, rather than adjusting that number dynamically.

DAG-shaped mutable data structures.

The simple locks of λlock can be used as mutable reference cells. The operational
semantics employs reference counting memory management. Reference counting
guarantees memory leak freedom as long as the data has the shape of a directed
acyclic graph (DAG), and is often used that way. In a DAG, as opposed to a tree,
a node may have multiple parents. In λlock, a node can have multiple parents as
well, but these parents are always disjoint. Thus, in terms of data shapes that can
be expressed, λlock supports a strict superset of tree-shapes, but a strict subset of
DAG-shapes. It would be nice to relax this restriction and support general DAGs,
but we do not know how to do so without introducing the possibility of deadlock.
The issue is that we could potentially obtain a duplicate reference to the same lock
via different paths in the DAG, which can be used to create deadlocks.

Rust’s unsafe

Rust has the unsafe mechanism for code that violates the rules of the borrow checker,
to be used if the programmer promises that the code is safe and upholds Rust’s
invariants (Jung et al., 2018a). One could analogously imagine an unsafe construct
for λlock that allows the programmer to violate the linearity restriction and freely
duplicate a lock, if the programmer promises that the code is safe and upholds
λlock’s invariants. The open problem would be characterizing the invariants that the
programmer would be responsible for upholding in their unsafe code, such that

108

2.10 conclusion

deadlock and leak freedom is guaranteed even when their unsafe code is mixed with
other code. A mechanized meta theory will require extending tools like Iris with
support for deadlock and leak freedom based on sharing topologies.

2.10 conclusion

We have presented λlock, a language with locks where deadlock and memory leak
freedom is guaranteed by type checking. Deadlock and leak freedom are ensured by
restricting the sharing topology between locks and threads. This enables the λlock

type system to be free of additional checks, such as lock orders.
The locks in λlock are higher-order, meaning that we can store arbitary linear values

in locks, and locks themselves are completely first class entities. In particular, we
can store locks in locks. This is a crucial ingredient that allows us to implement
session-typed channels in terms of locks.

We have also presented λlock++, which extends λlock with lock groups, and allows
sharing multiple locks with the child thread when we fork. This is kept deadlock
free by requiring the acquire and wait operations to happen in accordance with the
lock order local to the group. Crucially, there is no global order, and different lock
groups can be interacted with completely independently; locks from different lock
groups can be acquired simultaneously without restrictions.

We hope that this is a step toward the end goal of having an expressive concurrent
language where deadlock and leak freedom follow from the type system. As a next
step toward this, we would like to distill more general principles that allow us to
design concurrent languages based on the sharing topology.

109

Chapter 3

Multiparty GV: Functional Multiparty Session Types with
Certified Deadlock Freedom

abstract Session types have recently been integrated with functional languages,
bringing message-passing concurrency to functional programming. Channel
endpoints then become first-class and can be stored in data structures, captured in
closures, and sent along channels. Representatives of the GV (Wadler’s “Good
Variation”) session type family are of particular appeal because they not only
assert session fidelity but also deadlock freedom, inspired by a Curry-Howard
correspondence to linear logic. A restriction of current versions of GV, however,
is the focus on binary sessions, limiting concurrent interactions within a session
to two participants. This chapter introduces Multiparty GV (MPGV), a functional
language with multiparty session types, allowing concurrent interactions among
several participants. MPGV upholds the strong guarantees of its ancestor GV,
including deadlock freedom, despite session interleaving and delegation. MPGV has
a novel redirecting construct for modular programming with first-class endpoints,
thanks to which we give a type-preserving translation from binary session types to
MPGV to show that MPGV is strictly more general than binary GV. All results in
this chapter have been mechanized using the Coq proof assistant.

3.1 introduction

Session types are a type discipline for message-passing concurrency. Originally
developed in the context of process calculi by Honda (1993); Honda et al. (1998),
they were later generalized to object-oriented (Dezani-Ciancaglini et al., 2006) and
functional languages (Gay and Vasconcelos, 2010) leading to implementations in
mainstream languages like Haskell (Pucella and Tov, 2008; Imai et al., 2010; Lindley
and Morris, 2016b), Scala (Scalas and Yoshida, 2016b), OCaml (Padovani, 2017; Imai
et al., 2019), and Rust (Jespersen et al., 2015a; Kokke, 2019; Chen et al., 2022).

A particularly exciting development is the GV (“Good Variation”) session type
family, pioneered by Gay and Vasconcelos (2010), later coined GV and refined by
Wadler (2012), and further developed by e.g., Lindley and Morris (2015, 2016c, 2017);
Fowler et al. (2019, 2021); Kokke and Dardha (2021c); Jacobs et al. (2022b). The GV
family combines session types with functional programming by treating session-
typed channels as first-class data, similar to references in ML. Channels can be stored
in data structures (like lists), captured by closures, and sent along channels (even
when contained in data structures, thus generalizing delegation). Similarly, the

110

Chapter 3

Multiparty GV: Functional Multiparty Session Types with
Certified Deadlock Freedom

abstract Session types have recently been integrated with functional languages,
bringing message-passing concurrency to functional programming. Channel
endpoints then become first-class and can be stored in data structures, captured in
closures, and sent along channels. Representatives of the GV (Wadler’s “Good
Variation”) session type family are of particular appeal because they not only
assert session fidelity but also deadlock freedom, inspired by a Curry-Howard
correspondence to linear logic. A restriction of current versions of GV, however,
is the focus on binary sessions, limiting concurrent interactions within a session
to two participants. This chapter introduces Multiparty GV (MPGV), a functional
language with multiparty session types, allowing concurrent interactions among
several participants. MPGV upholds the strong guarantees of its ancestor GV,
including deadlock freedom, despite session interleaving and delegation. MPGV has
a novel redirecting construct for modular programming with first-class endpoints,
thanks to which we give a type-preserving translation from binary session types to
MPGV to show that MPGV is strictly more general than binary GV. All results in
this chapter have been mechanized using the Coq proof assistant.

3.1 introduction

Session types are a type discipline for message-passing concurrency. Originally
developed in the context of process calculi by Honda (1993); Honda et al. (1998),
they were later generalized to object-oriented (Dezani-Ciancaglini et al., 2006) and
functional languages (Gay and Vasconcelos, 2010) leading to implementations in
mainstream languages like Haskell (Pucella and Tov, 2008; Imai et al., 2010; Lindley
and Morris, 2016b), Scala (Scalas and Yoshida, 2016b), OCaml (Padovani, 2017; Imai
et al., 2019), and Rust (Jespersen et al., 2015a; Kokke, 2019; Chen et al., 2022).

A particularly exciting development is the GV (“Good Variation”) session type
family, pioneered by Gay and Vasconcelos (2010), later coined GV and refined by
Wadler (2012), and further developed by e.g., Lindley and Morris (2015, 2016c, 2017);
Fowler et al. (2019, 2021); Kokke and Dardha (2021c); Jacobs et al. (2022b). The GV
family combines session types with functional programming by treating session-
typed channels as first-class data, similar to references in ML. Channels can be stored
in data structures (like lists), captured by closures, and sent along channels (even
when contained in data structures, thus generalizing delegation). Similarly, the

110

3.1 introduction

SILL family of session type languages (Toninho et al., 2013; Pfenning and Griffith,
2015; Toninho, 2015) integrates a process language via a contextual monad with an
unrestricted functional language.

Aside from a tight integration with functional programming, a key strength of GV
and SILL representatives is that they do not only guarantee type safety (“well-typed
programs cannot get stuck due to illegal operations”), but also deadlock freedom or
global progress (“well-typed programs cannot end up waiting for each other”). This
result follows from adopting a session initialization pattern based on cut, inspired
by the Curry-Howard correspondence between linear logic and the session-typed
π-calculus (Caires and Pfenning, 2010; Wadler, 2012). Such a pattern combines session
creation and thread spawning to avoid deadlocks. The family of session types
based on the pioneering work by Honda (1993); Honda et al. (1998), in contrast,
separates session creation from thread (process) spawning and thus does not prevent
deadlocks. A cut-based initialization pattern also seamlessly integrates with channels
as first-class data.

The restriction of interactions to two participants, present in GV, SILL, and session
types based on the pioneering work by Honda (1993); Honda et al. (1998), led to
the development of multiparty session types (Honda et al., 2008, 2016). Multiparty
session types allow an arbitrary but statically determined number of participants
(“roles”) to engage in a session. The key ingredient of multiparty session types is a
global type that defines a protocol from the perspective of the entire session, from
which local types for each participant can be generated. A global type not only
increases expressivity but also establishes deadlock freedom for a system consisting
of a single session.

The development of GV-style session types and multiparty session types has
mostly happened independently of each other. There exists no system that combines
the flexibility of functional programming with the expressivity of multiparty session
types. This chapter introduces Multiparty GV (MPGV)—a linear lambda calculus
with first-class multiparty sessions and dynamic thread and channel initialization.
Deadlock freedom is guaranteed purely by linear type checking and an n-ary “fork”
inspired by a cut-based initialization pattern. MPGV complements linear sessions
with standard unrestricted functional types and language features, such as general
recursive functions and algebraic data types. The integration of multiparty session
types into a GV-style functional language brings a number of challenges:

deadlock freedom . Although global types guarantee deadlock freedom for a
single multiparty session, global types alone cannot guarantee deadlock freedom for
interleaved multiparty sessions. To establish deadlock freedom in the presence of
dynamic session spawning and session delegation, where participants can engage
in several multiparty sessions simultaneously, Kobayashi-style “orders/priorities”
(Kobayashi, 1997, 2002a, 2006) have been used to rule out cyclic dependencies among
channel actions. The resulting interaction type systems (Coppo et al., 2013; Bettini
et al., 2008; Coppo et al., 2016) are complementary in terms of expressivity compared

111

3.1 introduction

to GV. They are more powerful in the sense that they allow cyclic communication
topologies within and between sessions. However, well-typed programs in GV
cannot be translated into these systems because orders/priorities are static and
sessions are not first-class data.

In this chapter we take the GV approach to deadlock freedom—MPGV features
an n-ary “fork” that combines the creation of n threads and multiparty session for n
participants. While this makes the MPGV type system and operational semantics
simple, proving that it in fact guarantees deadlock freedom is challenging. To handle
dynamic thread and channel creation, direct-style deadlock freedom proofs of GV
(like those by Lindley and Morris (2015); Fowler et al. (2021); Jacobs et al. (2022b))
crucially rely on the communication topology remaining acyclic during program
execution. For multiparty session types this is not the case—the communication
topology between sessions is acyclic, but the communication topology within a session
is not. The key insight of our work is to represent the cyclic communication topology
within sessions as an acyclic graph at the logical level, without needing central
coordination in the operational semantics.

participant redirecting . Binary session types specify the types of data
that is being sent and received, while local multiparty session types also specify
the participants names to/from whom that data is received. These names make
programming with first-class sessions non modular since the exact participants are
fixed in type signatures. Suppose that one has library functions f and g such that
f returns a session of a certain session type, and g expects an argument with that
same session type, but with different participant names. We introduce a “redirecting”
construct, which allows an endpoint to be passed to functions where different
participant names are expected. Using this construct, we give a type-preserving
translation from binary session types into MPGV, showing that MPGV restricted to
two participants per session is at least as expressive as GV.

mechanization The complexities of session types, especially in the multiparty
setting, and the existence of published broken proofs—including the failure of
subject reduction for several multiparty systems, as shown by Scalas and Yoshida
(2019)—gave the impetus for mechanization. Whereas there exists extensive work
on mechanizing the meta-theory of binary session types (Thiemann, 2019; Rouvoet
et al., 2020; Hinrichsen et al., 2021; Tassarotti et al., 2017; Goto et al., 2016; Ciccone
and Padovani, 2020; Castro-Perez et al., 2020; Gay et al., 2020), deadlock freedom
for binary session types has only recently been mechanized by Jacobs et al. (2022b).
For multiparty session types, the only mechanization is Zooid by Castro-Perez et al.
(2021), which mechanizes the trace semantics of a single multiparty session and
proves that it conforms to its global type. In the spirit of this line of work, we
provide a full mechanization of all our results with the Coq proof assistant.

112

3.1 introduction

to GV. They are more powerful in the sense that they allow cyclic communication
topologies within and between sessions. However, well-typed programs in GV
cannot be translated into these systems because orders/priorities are static and
sessions are not first-class data.

In this chapter we take the GV approach to deadlock freedom—MPGV features
an n-ary “fork” that combines the creation of n threads and multiparty session for n
participants. While this makes the MPGV type system and operational semantics
simple, proving that it in fact guarantees deadlock freedom is challenging. To handle
dynamic thread and channel creation, direct-style deadlock freedom proofs of GV
(like those by Lindley and Morris (2015); Fowler et al. (2021); Jacobs et al. (2022b))
crucially rely on the communication topology remaining acyclic during program
execution. For multiparty session types this is not the case—the communication
topology between sessions is acyclic, but the communication topology within a session
is not. The key insight of our work is to represent the cyclic communication topology
within sessions as an acyclic graph at the logical level, without needing central
coordination in the operational semantics.

participant redirecting . Binary session types specify the types of data
that is being sent and received, while local multiparty session types also specify
the participants names to/from whom that data is received. These names make
programming with first-class sessions non modular since the exact participants are
fixed in type signatures. Suppose that one has library functions f and g such that
f returns a session of a certain session type, and g expects an argument with that
same session type, but with different participant names. We introduce a “redirecting”
construct, which allows an endpoint to be passed to functions where different
participant names are expected. Using this construct, we give a type-preserving
translation from binary session types into MPGV, showing that MPGV restricted to
two participants per session is at least as expressive as GV.

mechanization The complexities of session types, especially in the multiparty
setting, and the existence of published broken proofs—including the failure of
subject reduction for several multiparty systems, as shown by Scalas and Yoshida
(2019)—gave the impetus for mechanization. Whereas there exists extensive work
on mechanizing the meta-theory of binary session types (Thiemann, 2019; Rouvoet
et al., 2020; Hinrichsen et al., 2021; Tassarotti et al., 2017; Goto et al., 2016; Ciccone
and Padovani, 2020; Castro-Perez et al., 2020; Gay et al., 2020), deadlock freedom
for binary session types has only recently been mechanized by Jacobs et al. (2022b).
For multiparty session types, the only mechanization is Zooid by Castro-Perez et al.
(2021), which mechanizes the trace semantics of a single multiparty session and
proves that it conforms to its global type. In the spirit of this line of work, we
provide a full mechanization of all our results with the Coq proof assistant.

112

3.2 mpgv by example

contributions and outline Our main contribution is MPGV—the first
deadlock-free linear lambda calculus with first-class multiparty sessions, dynamic
thread and channel initialization, and functional features like general recursive
functions and algebraic data types. Concretely:

• We explain the key ideas behind MPGV in the context of new and existing
examples (Section 3.2).

• We formalize the type system and operational semantics of MPGV (Section 3.3).

• We give a type-preserving embedding of GV-style binary session types into
MPGV, using our new redirecting construct, showing that MPGV goes strictly
beyond binary session types (Section 3.4).

• We prove a combined partial deadlock and memory-leak freedom theorem for
multiparty session types that also subsumes type safety and global progress
(Section 3.5 and Section 3.7).

• Inspired by Scalas and Yoshida (2019), we extend MPGV with a more flexible
notion of consistency that does not rely on global types (Section 3.6).

• We mechanize all our results in the Coq proof assistant (Section 3.8).

3.2 mpgv by example

We introduce MPGV’s features, based on examples (Section 3.2.1–Section 3.2.8), and
provide the main intuitions for how MPGV guarantees deadlock freedom for cyclic
intra-session topologies (Section 3.2.9).

3.2.1 Global and Local Types

Similar to original multiparty session types (Honda et al., 2008), sessions in MPGV
can be described by a global type. A simple example of a global type is:1

G ≜ [0 → 1]N.[1 → 2]N.[2 → 0]N.End.

This global type says that participant 0 first sends a value of natural number type N
to participant 1, then 1 sends a N to 2, then 2 sends a N to 0, and finally the protocol
ends. The global type G induces local types for each participant p via projections
G ⇂ p:

G ⇂ 0 = ![1]N.?[2]N.End G ⇂ 1 = ?[0]N.![2]N.End G ⇂ 2 = ?[1]N.![0]N.End

1 The term global type is a bit of a misnomer: it is only global to a given communication session between
multiple participants, in contrast to a local type, which is local to a participant. A global type is not global
to the whole program, because a program in MPGV can have multiple communication sessions.

113

3.2 mpgv by example

The local type ![p]τ.L indicates that the next action should be sending a value v

of type τ to participant p, to then continue with L. Dually, ?[p]τ.L indicates that
the next action should be receiving a value v of type τ from participant p, to then
continue with L. Finally, End states that the protocol has finished and the participant’s
endpoint should be closed.

3.2.2 Combined Session and Channel Initialization

With our simple global type G at hand, we now give a program that implements this
global type:

let c0 : ![1]N.?[2]N.End = fork(service1, service2) in

let c0 : ?[2]N.End = send[1](c0, 99) in

let (c0,n) : End× N = receive[2](c0) in

close(c0)

The fork operation simultaneously forks off 2 threads and creates 3 channel
endpoints for the participants in the session. The fork returns endpoint c0 with type
G ⇂ 0 = ![1]N.?[2]N.End, and runs functions service1 and service2 (shown below) in
background threads. The main thread uses send[1](c0, 99) to send the message “99”
to participant 1 (i.e., service1). As is common in functional session-typed languages,
the send and receive operations of MPGV return the endpoint back to us. The
returned endpoint will be at a different type, because the step has been taken in the
session type. For convenience, the above code let-binds the returned endpoint to
the same name. The main thread then uses the operation receive[2](c0) and blocks
to receive a message from endpoint 2 (i.e., service2). After the message has been
received, it closes the endpoint using close.

Similar to other multiparty session-type systems, MPGV uses natural numbers
for participant names in send and receive to indicate which other participant the
communication concerns. Note that also for receive it is necessary to indicate which
participant to receive from, because multiple participants could send a message to
the same participant simultaneously, and these messages may have different types
(for instance, if participant 1 sends an integer to participant 0, and participant 2
sends a string to participant 0; these messages may arrive in any order because of
asynchronous communication, so a receive operation on endpoint 0 has to specify
which participant it is receiving from in order to have a sound type system). The
endpoint returned from fork has participant number 0, and endpoints of the forked-

114

3.2 mpgv by example

The local type ![p]τ.L indicates that the next action should be sending a value v

of type τ to participant p, to then continue with L. Dually, ?[p]τ.L indicates that
the next action should be receiving a value v of type τ from participant p, to then
continue with L. Finally, End states that the protocol has finished and the participant’s
endpoint should be closed.

3.2.2 Combined Session and Channel Initialization

With our simple global type G at hand, we now give a program that implements this
global type:

let c0 : ![1]N.?[2]N.End = fork(service1, service2) in

let c0 : ?[2]N.End = send[1](c0, 99) in

let (c0,n) : End× N = receive[2](c0) in

close(c0)

The fork operation simultaneously forks off 2 threads and creates 3 channel
endpoints for the participants in the session. The fork returns endpoint c0 with type
G ⇂ 0 = ![1]N.?[2]N.End, and runs functions service1 and service2 (shown below) in
background threads. The main thread uses send[1](c0, 99) to send the message “99”
to participant 1 (i.e., service1). As is common in functional session-typed languages,
the send and receive operations of MPGV return the endpoint back to us. The
returned endpoint will be at a different type, because the step has been taken in the
session type. For convenience, the above code let-binds the returned endpoint to
the same name. The main thread then uses the operation receive[2](c0) and blocks
to receive a message from endpoint 2 (i.e., service2). After the message has been
received, it closes the endpoint using close.

Similar to other multiparty session-type systems, MPGV uses natural numbers
for participant names in send and receive to indicate which other participant the
communication concerns. Note that also for receive it is necessary to indicate which
participant to receive from, because multiple participants could send a message to
the same participant simultaneously, and these messages may have different types
(for instance, if participant 1 sends an integer to participant 0, and participant 2
sends a string to participant 0; these messages may arrive in any order because of
asynchronous communication, so a receive operation on endpoint 0 has to specify
which participant it is receiving from in order to have a sound type system). The
endpoint returned from fork has participant number 0, and endpoints of the forked-

114

3.2 mpgv by example

off threads have participant numbers 1, 2, etc. The forked-off threads could be
implemented as:

service1 : (?[0]N.![2]N.End) → 1

service1 c1 ≜ let (c1,n) = receive[0](c1) in

let c1 = send[2](c1,n+ 3) in

close(c1)

service2 : (?[1]N.![0]N.End) → 1

service2 c2 ≜ let (c2,n) = receive[1](c2) in

let c2 = send[0](c2,n+ 4) in

close(c2))

The arguments of fork are closures that take the endpoint (typed with local type
G ⇂ p) as argument and return the unit value when done. The first forked-off thread
service1 tries to receive a message from participant 0 (i.e., the main thread), increments
the received number, and passes it on to endpoint 2 (i.e., service2). Similarly, the
second forked-off thread service2 receives a number from participant 1 (i.e., service1),
increments it, and passes it to participant 0 (i.e., the main thread).

novel elements of mpgv The n-ary fork ensures that the communication
topology between sessions remains acyclic. This is in contrast to original multiparty
session-type systems (Honda et al., 2008), which use service names to create new
sessions between already existing, concurrently running processes, selecting the
participating processes non-deterministically in case there are several attempting to
participate (see Section 3.9 for an in-depth discussion). By separating session creation
from thread spawning in these original systems, cyclic communication topologies
can be created, and hence interleaved sessions can deadlock. Inspired by binary
session-typed lambda-calculi like GV (Wadler, 2012; Lindley and Morris, 2015) and
multi-cut with coherence proofs (Carbone et al., 2015, 2016, 2017), MPGV combines
session creation with thread spawning, to maintain acyclicity of the communication
topology and guarantee deadlock freedom.

3.2.3 Interleaving and First-Class Endpoints

We now illustrate MPGV’s support for session interleaving and delegation. Similar
to the original versions of GV by Gay and Vasconcelos (2010); Wadler (2012), MPGV
obtains delegation without the need for special language constructs since endpoints
are first class. We modify the example from Section 3.2.2, which performs its

115

3.2 mpgv by example

communication actions on c0 locally, by letting the main thread fork off yet another
thread to perform the communication:

let c0 : G ⇂ 0 = fork(service1, service2) in

let d0 : G′ ⇂ 0 = fork(λd1 : G′ ⇂ 1.

let (d1, x) : (![0]N.End) × (G ⇂ 0) = receive[0](d1) in

let x : ?[2]N.End = send[1](x, 99) in

let (x,n) : End× N = receive[2](x) in

let d1 : End = send[0](d1,n) in

close(x); close(d1)) in

let d0 : ?[1]N.End = send[1](d0, c0) in

let (d0,n) : End× N = receive[1](d0) in

close(d0)

To type the second fork, we need to come up with a second global type that governs
the communication between the third forked-off thread and the main thread:

G′ ≜ [0 → 1](G ⇂ 0).[1 → 0]N.End where G ⇂ 0 = ![1]N.?[2]N.End

The projections are G′ ⇂ 0 = ![1](G ⇂ 0).?[1]N.End and G′ ⇂ 1 = ?[0](G ⇂ 0).![0]N.End.
This global type shows that participant 0 (the main thread) of G′ first delegates an
endpoint with local type G ⇂ 0 to participant 1 of G′ (the third forked-off thread),
which then sends a natural number back. In the code, the main thread sends
endpoint c0, which the third forked-off thread receives as x. The third forked-off
thread then executes the communication according to local type G ⇂ 0, and sends
back a natural number to the main thread.

novel elements of mpgv As demonstrated by the above example, MPGV’s
session-typed endpoints are first class and can thus be sent over channels (i.e.,
delegated) like any other data. MPGV not only allows sending single endpoints over
channels, but also lists of endpoints (Section 3.2.8) or closures, which may capture
endpoints. Data types that contain endpoints are treated linearly in order to protect
type safety, whereas data types that cannot contain endpoints (e.g., lists of natural
numbers) may be freely copied and discarded. MPGV guarantees deadlock freedom
in the presence of interleaved sessions solely by linear typing and n-ary fork, and
without any extrinsic mechanisms like orders/priorities (Bettini et al., 2008; Coppo
et al., 2013, 2016).

116

3.2 mpgv by example

communication actions on c0 locally, by letting the main thread fork off yet another
thread to perform the communication:

let c0 : G ⇂ 0 = fork(service1, service2) in

let d0 : G′ ⇂ 0 = fork(λd1 : G′ ⇂ 1.

let (d1, x) : (![0]N.End) × (G ⇂ 0) = receive[0](d1) in

let x : ?[2]N.End = send[1](x, 99) in

let (x,n) : End× N = receive[2](x) in

let d1 : End = send[0](d1,n) in

close(x); close(d1)) in

let d0 : ?[1]N.End = send[1](d0, c0) in

let (d0,n) : End× N = receive[1](d0) in

close(d0)

To type the second fork, we need to come up with a second global type that governs
the communication between the third forked-off thread and the main thread:

G′ ≜ [0 → 1](G ⇂ 0).[1 → 0]N.End where G ⇂ 0 = ![1]N.?[2]N.End

The projections are G′ ⇂ 0 = ![1](G ⇂ 0).?[1]N.End and G′ ⇂ 1 = ?[0](G ⇂ 0).![0]N.End.
This global type shows that participant 0 (the main thread) of G′ first delegates an
endpoint with local type G ⇂ 0 to participant 1 of G′ (the third forked-off thread),
which then sends a natural number back. In the code, the main thread sends
endpoint c0, which the third forked-off thread receives as x. The third forked-off
thread then executes the communication according to local type G ⇂ 0, and sends
back a natural number to the main thread.

novel elements of mpgv As demonstrated by the above example, MPGV’s
session-typed endpoints are first class and can thus be sent over channels (i.e.,
delegated) like any other data. MPGV not only allows sending single endpoints over
channels, but also lists of endpoints (Section 3.2.8) or closures, which may capture
endpoints. Data types that contain endpoints are treated linearly in order to protect
type safety, whereas data types that cannot contain endpoints (e.g., lists of natural
numbers) may be freely copied and discarded. MPGV guarantees deadlock freedom
in the presence of interleaved sessions solely by linear typing and n-ary fork, and
without any extrinsic mechanisms like orders/priorities (Bettini et al., 2008; Coppo
et al., 2013, 2016).

116

3.2 mpgv by example

3.2.4 Participant Redirecting

In the example from Section 3.2.2 we have two threads service1 and service2 that
were doing more or less the same thing (adding 3 and 4, respectively). To obtain
a language that enables modular programming, we would like to write a single
function that generalizes both services that we could use for both threads in the fork
operation. Let us try to make an attempt:

service : N → (?[0]N.![1]N.End) → 1

service a c ≜ let (c,n) = receive[0](c) in

let c = send[1](c,n+ a) in

close(c)

The function service takes a natural number a for the value that should be added.
Unfortunately, service 3 and service 4 cannot readily be used because their types do
not match up with G ⇂ 1 = ?[0]N.![2]N.End and G ⇂ 2 = ?[1]N.![0]N.End since the
participant numbers are off.

MPGV provides a redirect[π](c) operation that allows us to locally redirect
participant numbers, making it possible for a programmer to pass endpoints to
destinations where different participant numbers are expected in the type signature.
The informal semantics of the redirect operation is that any send[p] and receive[p]
operations on c′ = redirect[π](c) get redirected to send[π(p)] and receive[π(p)] on c.
With MPGV’s redirect operation at hand, we can change the fork in the first line of
the example in Section 3.2.2 into:

fork(λc1. service 3 (redirect[0 ↦→ 0, 1 ↦→ 2](c1)),
λc2. service 4 (redirect[0 ↦→ 1, 1 ↦→ 0](c2)))

novel elements of mpgv Redirecting is a novel concept that has not been
explored in multiparty session types to our knowledge. Redirecting is important
for modularity because it allows composing a function f with a function g with
compatible range and domain types even when participant numbers are at odds.
Redirecting is also crucial for embedding binary sessions in MPGV; without
redirecting, that would not be possible (see Section 3.4).

3.2.5 Choice and Recursive Session Types

Similar to traditional (multiparty) session types, MPGV supports choice and recursion.
For example:

G′′ ≜ [0 → 1]{A : N.G′′,B : string.End}

117

3.2 mpgv by example

In this global type, participant 0 sends participant 1 a choice label {A,B}. If the
choice label is A, then the payload of the message is of type N, and the protocol
recursively loops back to the initial state. If the choice label is B, then the payload of
the message is of type string, and then the protocol ends. This gives the following
local projections:

G′′ ⇂ 0 ≜ ![1]{A : N.(G′′ ⇂ 0),B : string.End}
G′′ ⇂ 1 ≜ ?[0]{A : N.(G′′ ⇂ 1),B : string.End}

With choice, not all global types one can write down are valid: all the branches of a
choice must have equal projections for participants that are neither the sender nor
the receiver of the choice. This is to ensure that each participant always has enough
information to determine the type of the next message that they should send or
expect to receive (Honda et al., 2008, 2016). MPGV supports recursive functions,
which are crucial to provide implementations of recursive session types.

3.2.6 Two Buyer Protocol

The two buyer protocol is a classic example from the literature (Honda et al., 2008)
with two buyers (Alice and Bob) and a Seller. The protocol has the following global
type in MPGV (we use symbolic participant identifiers for readability; one can take
S = 0, A = 1, B = 2):

GSAB ≜ [A → S]string.[S → A]N. [S → B]N.[A → B]N.

[B → S]{Yes : [S → B]date. End, No : End}

This global protocol has the following projections for Alice, Bob, and Seller:

GSAB ⇂ A = ![S]string.?[S]N.![B]N.End

GSAB ⇂ B = ?[S]N.?[A]N.![S]{Yes : ?[S]date.End, No : End}
GSAB ⇂ S = ?[A]string.![A]N.![B]N.?[B]{Yes : ![B]date.End, No : End}

The participants perform the following interactions:

1. Alice tells the Seller which item she wants to buy ([A → S]string).

2. The Seller tells both Alice and Bob how much the item costs ([S → A]N. [S →
B]N).

3. Alice tells Bob how much money she is willing to contribute to the purchase
([A → B]N).

4. Bob decides whether they can afford the item, and informs the Seller of his
decision ([B → S]{Yes : . . . , No : . . .}).

118

3.2 mpgv by example

In this global type, participant 0 sends participant 1 a choice label {A,B}. If the
choice label is A, then the payload of the message is of type N, and the protocol
recursively loops back to the initial state. If the choice label is B, then the payload of
the message is of type string, and then the protocol ends. This gives the following
local projections:

G′′ ⇂ 0 ≜ ![1]{A : N.(G′′ ⇂ 0),B : string.End}
G′′ ⇂ 1 ≜ ?[0]{A : N.(G′′ ⇂ 1),B : string.End}

With choice, not all global types one can write down are valid: all the branches of a
choice must have equal projections for participants that are neither the sender nor
the receiver of the choice. This is to ensure that each participant always has enough
information to determine the type of the next message that they should send or
expect to receive (Honda et al., 2008, 2016). MPGV supports recursive functions,
which are crucial to provide implementations of recursive session types.

3.2.6 Two Buyer Protocol

The two buyer protocol is a classic example from the literature (Honda et al., 2008)
with two buyers (Alice and Bob) and a Seller. The protocol has the following global
type in MPGV (we use symbolic participant identifiers for readability; one can take
S = 0, A = 1, B = 2):

GSAB ≜ [A → S]string.[S → A]N. [S → B]N.[A → B]N.

[B → S]{Yes : [S → B]date. End, No : End}

This global protocol has the following projections for Alice, Bob, and Seller:

GSAB ⇂ A = ![S]string.?[S]N.![B]N.End

GSAB ⇂ B = ?[S]N.?[A]N.![S]{Yes : ?[S]date.End, No : End}
GSAB ⇂ S = ?[A]string.![A]N.![B]N.?[B]{Yes : ![B]date.End, No : End}

The participants perform the following interactions:

1. Alice tells the Seller which item she wants to buy ([A → S]string).

2. The Seller tells both Alice and Bob how much the item costs ([S → A]N. [S →
B]N).

3. Alice tells Bob how much money she is willing to contribute to the purchase
([A → B]N).

4. Bob decides whether they can afford the item, and informs the Seller of his
decision ([B → S]{Yes : . . . , No : . . .}).

118

3.2 mpgv by example

5. If Bob says Yes, the Seller sends Bob the date at which the item will be delivered
and then ends the protocol ([S → B]date.End).

6. If Bob says No, the protocol ends immediately (End).

A possible implementation of the Seller is as follows:

seller : GSAB ⇂ S → 1

seller cS ≜

let (cS, item) : (![A]N.![B]N.?[B]{Yes : ![B]date.End, No : End}) × string =

receive[A](cS) in

let cS : ![B]N.?[B]{Yes : ![B]date.End, No : End}) = send[A](cS, cost(item)) in

let cS : ?[B]{Yes : ![B]date.End, No : End}) = send[B](cS, cost(item)) in

match receive[B](cS) with {
⟨Yes :cS : ![B]date.End⟩ ↦→ let cS : End = send[B](cS, date(item)) in close(cS)
⟨No :cS : End⟩ ↦→ close(cS)

}

In the case ⟨Yes :cS⟩, we have cS : ![B]date.End, whereas in case ⟨No :cS⟩ we have
cS : End, so the type of the endpoint depends on which choice was made by
Bob. Assuming that we also have functions alice : GSAB ⇂ A → 1 and bob :
GSAB ⇂ B → 1 for Alice and Bob, we can run the two buyer protocol with program
seller (fork(alice, bob)).

3.2.7 Three Buyer Protocol and Session Delegation

The two buyer example has been extended with delegation by Bettini et al. (2008),
which means that a channel is sent as a message on another channel. To help Alice
and Bob, there is a fourth person, Carol. If Bob and Alice cannot afford the item
together, then instead of replying No to the Seller, Bob will send the remainder of
his session to Carol (i.e., delegation). Carol will then respond Yes to the Seller, if the
three of them together have enough money. This is modeled by a separate session
between Bob and Carol with global type:

GBC ≜ [B → C](N × (![S]{Yes : ?[S]date.End, No : End})).End

119

3.2 mpgv by example

A

BS

C
�

A

BS

C
�

A

S

C
�

S

C

A

S1

BS S2

C
�

A

S1

BS S2

C
�

A

S1

S

C
� S1

S

C

Figure 16: Steps in three buyer protocol. Top: physical communication paths; bottom: logical
connectivity.

Because Bob needs access to Carol, his function is parameterized by that endpoint
cC as well as his own endpoint cB in the two buyer protocol between him, Alice,
and the Seller:

bobdel : GBC ⇂ B → GSAB ⇂ B → 1

bobdel cC cB ≜

let (cB, cost) : (?[A]N.![S]{Yes : ?[S]date.End, No : End}) × N = receive[S](cB) in

let (cB, contribA) : (![S]{Yes : ?[S]date.End, No : End}) × N = receive[A](cB) in

if cost− contrib < maxB then

let cB : ?[S]date.End = send[S](cB, ⟨Yes⟩) in

let (cB,date) : End× date = receive[S](cB) in

close(cB)
else

let cC : End = send[C](cC, (cost− contribA −maxB, cB)) in

close(cC)

In the else branch, Bob sends his endpoint cB over his connection to Carol, cC. We
can run the three buyer protocol with the following program, assuming that we have
carol : GBC ⇂ C → 1:

let cC : GBC ⇂ B = fork(carol) in

seller (fork(alice, bobdel cC))

Depending on thread scheduling, operations can be executed in a different order.
One possible execution is graphically depicted in the top row of Figure 16. In the
left picture, we have the session between A, B, and S, and the session between B and
C. In our operational semantics, the participants are connected directly, and each
participant has their own set of buffers in the heap, separate from the others. At some

120

3.2 mpgv by example

A

BS

C
�

A

BS

C
�

A

S

C
�

S

C

A

S1

BS S2

C
�

A

S1

BS S2

C
�

A

S1

S

C
� S1

S

C

Figure 16: Steps in three buyer protocol. Top: physical communication paths; bottom: logical
connectivity.

Because Bob needs access to Carol, his function is parameterized by that endpoint
cC as well as his own endpoint cB in the two buyer protocol between him, Alice,
and the Seller:

bobdel : GBC ⇂ B → GSAB ⇂ B → 1

bobdel cC cB ≜

let (cB, cost) : (?[A]N.![S]{Yes : ?[S]date.End, No : End}) × N = receive[S](cB) in

let (cB, contribA) : (![S]{Yes : ?[S]date.End, No : End}) × N = receive[A](cB) in

if cost− contrib < maxB then

let cB : ?[S]date.End = send[S](cB, ⟨Yes⟩) in

let (cB,date) : End× date = receive[S](cB) in

close(cB)
else

let cC : End = send[C](cC, (cost− contribA −maxB, cB)) in

close(cC)

In the else branch, Bob sends his endpoint cB over his connection to Carol, cC. We
can run the three buyer protocol with the following program, assuming that we have
carol : GBC ⇂ C → 1:

let cC : GBC ⇂ B = fork(carol) in

seller (fork(alice, bobdel cC))

Depending on thread scheduling, operations can be executed in a different order.
One possible execution is graphically depicted in the top row of Figure 16. In the
left picture, we have the session between A, B, and S, and the session between B and
C. In our operational semantics, the participants are connected directly, and each
participant has their own set of buffers in the heap, separate from the others. At some

120

3.2 mpgv by example

point Bob decides to send his session to Carol (second picture), so the connections of
B get moved to C. Bob then ends his session with Carol (third picture). Alice ends
her participation in the session (fourth picture). This deletes her buffers from the
heap, even though the Seller and Carol may still be actively communicating. The
global type ensures that whenever Alice is allowed to close her session, the other
participants are guaranteed not to perform further communication with her.

3.2.8 Endpoints in Data Structures

Because of the functional nature of MPGV, we can freely intermix sessions and data
structures. We give an example of a department store, to which we can send several
buyers in a list. The department store will then let the buyers interact by applying
the seller function for us. To illustrate recursive protocols, the department store
loops around and accepts new buyers:

departmentstore : (µx. ?[C]List(GSAB ⇂ S).x) → 1

departmentstore cD ≜ let (cD, endpoints) = receive[C](cD) in

map seller endpoints; departmentstore cD

Given a function buyers : string → GSAB ⇂ S that starts up the two or three buyers
trying to buy an item of the given name and returns the seller’s endpoint to interact
with them, we can start a department store and send buyers to it as follows:

let store = fork(departmentstore) in

let c1 = buyers “hat” in

let c2 = buyers “cow” in

let store = send[D](store, [c1; c2]) in

let c3 = buyers “egg” in

let c3 = buyers “bow” in

let store = send[D](store, [c3; c4]) in . . .

novel elements of mpgv MPGV allows multiparty endpoints to be stored
in data structures, and captured in closures, which can then be sent as messages.
This is in contrast to earlier multiparty systems, where endpoints can either not be
manipulated at all (Castro-Perez et al., 2021), or where there is a separate syntactic
category for endpoints, which cannot be mixed with data (Honda et al., 2008; Coppo
et al., 2016; Bettini et al., 2008; Coppo et al., 2013).

121

3.3 the semantics of mpgv

3.2.9 Deadlock Freedom of MPGV

MPGV’s deadlock freedom proof is based on two key ideas: (1) local progress within
a session is guaranteed by the global type, and (2) global progress between sessions
is guaranteed by our n-ary fork and linear typing, asserting that the communication
topology between sessions remains acyclic (despite first-class endpoints). To reason
about deadlock freedom we abstract a logical connectivity topology from the physical
communication topology and prove that the logical connectivity topology remains
acyclic. The logical topology of the three buyer protocol is depicted in the bottom
row of Figure 16. It introduces a blue circle for each multiparty session, abstracting
over the cyclic topology within a session and exposing the acyclicity of the logical
topology. Figure 16 shows that the logical connectivity topology remains acyclic
throughout the execution. This holds for any well-typed MPGV program—Figure 25
in Section 3.7 shows how the logical topology is transformed and remains acyclic for
each of the session operations.

novel elements of mpgv Similar to binary variants of GV, MPGV ensures
global progress and deadlock freedom for an entire program, solely by linear typing.
In contrast, earlier multiparty systems either guarantee deadlock freedom only for a
single session (Castro-Perez et al., 2021; Honda et al., 2008), or for multiple sessions
if types are augmented with extrinsic orders/priorities (Coppo et al., 2016; Bettini
et al., 2008; Coppo et al., 2013). Moreover, our global progress and deadlock freedom
theorems are mechanized in Coq (Section 3.5).

3.3 the semantics of mpgv

3.3.1 Syntax and Operational Semantics

Each configuration in our small-step operational semantics consists of a thread pool
and heap, which stores a vector of buffers for each endpoint:

ρ ∈ Cfg ≜ List Expr ×Heap �

h ∈ Heap ≜ Endpoint fin−⇀ (Participant fin−⇀ List (Label×Val))

An endpoint c ∈ Endpoint ::= (s,p) consists of a number s ∈ Session identifying the
session, and a number p ∈ Participant identifying the participant number of the
endpoint in the session.

The operational semantics has three reduction relations. Firstly, e �pure e′ for
pure reductions of expressions. Secondly, (e,h) �head (e′,h′, e) for reductions of
channel operations involving the heap h, with the option to spawn a list of new
threads e (a non-empty list for fork, and an empty list for the other operations).
Thirdly, (e,h)�cfg (e′,h′) between configurations, which performs �head on some
thread in the thread pool, and also handles evaluation contexts. The formal syntax

122

3.3 the semantics of mpgv

3.2.9 Deadlock Freedom of MPGV

MPGV’s deadlock freedom proof is based on two key ideas: (1) local progress within
a session is guaranteed by the global type, and (2) global progress between sessions
is guaranteed by our n-ary fork and linear typing, asserting that the communication
topology between sessions remains acyclic (despite first-class endpoints). To reason
about deadlock freedom we abstract a logical connectivity topology from the physical
communication topology and prove that the logical connectivity topology remains
acyclic. The logical topology of the three buyer protocol is depicted in the bottom
row of Figure 16. It introduces a blue circle for each multiparty session, abstracting
over the cyclic topology within a session and exposing the acyclicity of the logical
topology. Figure 16 shows that the logical connectivity topology remains acyclic
throughout the execution. This holds for any well-typed MPGV program—Figure 25
in Section 3.7 shows how the logical topology is transformed and remains acyclic for
each of the session operations.

novel elements of mpgv Similar to binary variants of GV, MPGV ensures
global progress and deadlock freedom for an entire program, solely by linear typing.
In contrast, earlier multiparty systems either guarantee deadlock freedom only for a
single session (Castro-Perez et al., 2021; Honda et al., 2008), or for multiple sessions
if types are augmented with extrinsic orders/priorities (Coppo et al., 2016; Bettini
et al., 2008; Coppo et al., 2013). Moreover, our global progress and deadlock freedom
theorems are mechanized in Coq (Section 3.5).

3.3 the semantics of mpgv

3.3.1 Syntax and Operational Semantics

Each configuration in our small-step operational semantics consists of a thread pool
and heap, which stores a vector of buffers for each endpoint:

ρ ∈ Cfg ≜ List Expr ×Heap �

h ∈ Heap ≜ Endpoint fin−⇀ (Participant fin−⇀ List (Label×Val))

An endpoint c ∈ Endpoint ::= (s,p) consists of a number s ∈ Session identifying the
session, and a number p ∈ Participant identifying the participant number of the
endpoint in the session.

The operational semantics has three reduction relations. Firstly, e �pure e′ for
pure reductions of expressions. Secondly, (e,h) �head (e′,h′, e) for reductions of
channel operations involving the heap h, with the option to spawn a list of new
threads e (a non-empty list for fork, and an empty list for the other operations).
Thirdly, (e,h)�cfg (e′,h′) between configurations, which performs �head on some
thread in the thread pool, and also handles evaluation contexts. The formal syntax

122

3.3 the semantics of mpgv

Expressions, values, and evaluation contexts

e ∈ Expr ::= x | () | n | (e, e) | ⟨ℓ :e⟩ | λx. e | rec f x. e | e e | fork(e, . . . , e) | �

send[p](e, ℓ :e) | receive[p](e) | close(e) | redirect[π](e) |
let x = e in e | let (x1, x2) = e in e | match e with {⟨ℓ :x⟩ ↦→ e; . . .}ℓ∈I

v ∈Val ::= () | n | (v, v) | ⟨ℓ :v⟩ | λx. e | rec f x. e | #[c,π] �

K ∈ Ctx ::= □ | (K, e) | (v,K) | K e | v K | let x = K in e | · · · �

Data structures

s ∈ Session ≜ N (s,p) ∈ Endpoint ≜ Session× Participant �

p,q ∈ Participant ≜ N π ∈ Translation ≜ Participant fin−⇀ Participant
ℓ ∈ Label ≜ N h ∈ Heap ≜ Endpoint fin−⇀ (Participant fin−⇀ List (Label×Val))

ρ ∈ Cfg ≜ List Expr ×Heap

Small-step operational semantics

(e1,h)�head (e2,h, ϵ) (if e1 �pure e2) �

(fork(v1, . . . , vn),h)�head (#[(s, 0), id],h⊎ {(s, 0) ↦→ ϵ, . . . , (s,n) ↦→ ϵ},
[v1 #[(s, 1), id], . . . , vn #[(s,n), id]])

(send[q](#[(s,p),π], ℓ :v),h)�head (#[(s,p),π], push((s,π(q)),p, ⟨ℓ :v⟩ ,h), ϵ)
(receive[p](#[(s,q),π]),h)�head (⟨ℓ : (v, #[(s,q),π])⟩ ,h′, ϵ)

(if pop((s,q),π(p),h) = (⟨ℓ :v⟩ ,h′))
(close(#[(s,p),π]),h)�head ((),h\{(s,p)}, ϵ)

(redirect[π1](#[(s,p),π2]),h)�head (#[(s,p),π2 ◦ π1],h, ϵ)
(ea ++ [K[e]] ++ eb,h)�cfg (ea ++ [K[e′]] ++ eb ++ e,h′)

(if (e,h)�head (e′,h′, e))

Figure 17: Syntax and operational semantics of MPGV (selected rules).

123

3.3 the semantics of mpgv

and operational semantics of MPGV can be found in Figure 17. We give an informal
description of the semantics of the message-passing operations fork, send, receive,
close, and redirect next.

fork The fork operation fork(v1, . . . , , vn) spawns n threads and creates a new
session between the n + 1 endpoints. The session s has (n + 1) × (n + 1) buffers
in the heap h for the n + 1 endpoints, such that the buffer stored at h(s,q)(p)
queues messages sent from p to q. Session endpoints c are represented as triples
c = #[(s,p),π] of a session address s ∈ Session, endpoint number p ∈ Participant,
and translation vector π : Participant fin−⇀ Participant, which is used for redirecting
and initialized by fork to be the identity mapping. Each of the values vi passed
as arguments to fork must be a closure that accepts an endpoint as its argument,
so that the threads run function calls vi #[(s, i), id] for i = 1..n. The fork returns
endpoint #[(s, 0), id]. A usage pattern is:

let c0 = fork((λc1. e1), . . . , (λcn. en)) in e0

send The send operation send[q](c, ℓ : v) sends the message ⟨ℓ :v⟩ to q via the
endpoint c = #[(s,p),π] by adding the message to the end of buffer (using the
operation push((s,π(q)),p, ⟨ℓ :v⟩ ,h) in Figure 17). The message is tagged with a label
ℓ, which can influence the future actions allowed to be performed by the participant.
We revisit this in detail when we introduce the typing rules. Our send operation is
asynchronous. One can encode synchronous communication by inserting after each
message A → B a dummy message B → A with type unit to enforce synchronization.

receive The receive operation receive[p](c) receives a message from p via
endpoint c = #[(s,q),π]. The receive operation takes the first message out of
buffer (using the operation pop((s,q),π(p),h) = (⟨ℓ :v⟩ ,h′) in Figure 17). If the buffer
is empty, the operation blocks until a message becomes available.

close The close operation close(c) deletes all the buffers from which the endpoint
c = #[(s,q),π] receives messages, that is, it simply deletes entry h((s,q)) of the heap.

redirect The redirecting operation c′ = redirect[π](c) where π ∈ Participant fin−⇀
Participant redirects messages so that send and receive operations to p on c′ are
redirected to π(p) on c. Operationally, it composes the translation vector of c with π:

redirect[π1](#[(s,p),π2]) = #[(s,p),π2 ◦ π1]

For details, see Figure 17. This operation is required to make multiparty sessions
formally subsume binary sessions (Section 3.4), but is independently useful for
modular programming with first-class endpoints (Section 3.2.4), because it allows

124

3.3 the semantics of mpgv

and operational semantics of MPGV can be found in Figure 17. We give an informal
description of the semantics of the message-passing operations fork, send, receive,
close, and redirect next.

fork The fork operation fork(v1, . . . , , vn) spawns n threads and creates a new
session between the n + 1 endpoints. The session s has (n + 1) × (n + 1) buffers
in the heap h for the n + 1 endpoints, such that the buffer stored at h(s,q)(p)
queues messages sent from p to q. Session endpoints c are represented as triples
c = #[(s,p),π] of a session address s ∈ Session, endpoint number p ∈ Participant,
and translation vector π : Participant fin−⇀ Participant, which is used for redirecting
and initialized by fork to be the identity mapping. Each of the values vi passed
as arguments to fork must be a closure that accepts an endpoint as its argument,
so that the threads run function calls vi #[(s, i), id] for i = 1..n. The fork returns
endpoint #[(s, 0), id]. A usage pattern is:

let c0 = fork((λc1. e1), . . . , (λcn. en)) in e0

send The send operation send[q](c, ℓ : v) sends the message ⟨ℓ :v⟩ to q via the
endpoint c = #[(s,p),π] by adding the message to the end of buffer (using the
operation push((s,π(q)),p, ⟨ℓ :v⟩ ,h) in Figure 17). The message is tagged with a label
ℓ, which can influence the future actions allowed to be performed by the participant.
We revisit this in detail when we introduce the typing rules. Our send operation is
asynchronous. One can encode synchronous communication by inserting after each
message A → B a dummy message B → A with type unit to enforce synchronization.

receive The receive operation receive[p](c) receives a message from p via
endpoint c = #[(s,q),π]. The receive operation takes the first message out of
buffer (using the operation pop((s,q),π(p),h) = (⟨ℓ :v⟩ ,h′) in Figure 17). If the buffer
is empty, the operation blocks until a message becomes available.

close The close operation close(c) deletes all the buffers from which the endpoint
c = #[(s,q),π] receives messages, that is, it simply deletes entry h((s,q)) of the heap.

redirect The redirecting operation c′ = redirect[π](c) where π ∈ Participant fin−⇀
Participant redirects messages so that send and receive operations to p on c′ are
redirected to π(p) on c. Operationally, it composes the translation vector of c with π:

redirect[π1](#[(s,p),π2]) = #[(s,p),π2 ◦ π1]

For details, see Figure 17. This operation is required to make multiparty sessions
formally subsume binary sessions (Section 3.4), but is independently useful for
modular programming with first-class endpoints (Section 3.2.4), because it allows

124

3.3 the semantics of mpgv

�

Γ unr x ∉ Γ

{x ↦→ τ} ∪ Γ ⊢ x :τ

Γ1 ⊥ Γ2 Γ1 ⊢ e1 :τ1 =⇒ τ2 Γ2 ⊢ e2 :τ1 (=⇒)∈{→,−◦}

Γ1 ∪ Γ2 ⊢ e1 e2 :τ2

Γ ∪ {x ↦→ τ1} ⊢ e :τ2 x ∉ Γ

Γ ⊢ λx. e :τ1 −◦ τ2

Γ ∪ {x ↦→ τ1} ⊢ e :τ2 Γ unr x ∉ Γ

Γ ⊢ λx. e :τ1 → τ2

Γ ∪ {f ↦→ (τ1 → τ2), x ↦→ τ1} ⊢ e :τ2 Γ unr f, x ∉ Γ

Γ ⊢ rec f x. e :τ1 → τ2

Γ ⊢ e :τℓ
Γ ⊢ ⟨ℓ :e⟩ :Σℓ∈I. τℓ

Γ1 ⊥ Γ2 Γ1 ⊢ e :Σℓ∈I. τℓ ∀ℓ ∈ I. Γ2 ∪ {xℓ ↦→ τℓ} ⊢ eℓ :τ′ xℓ ∉ Γ2 (I=∅ → Γ2=∅)
Γ1 ∪ Γ2 ⊢ match e with {⟨ℓ :xℓ⟩ ↦→ eℓ; . . .}ℓ∈I :τ′

Γ1 ⊥ · · · ⊥ Γn consistent(L0,L1, . . . ,Ln) ∀p ∈ {1..n}. Γp ⊢ ep :Lp −◦ 1

Γ1 ∪ · · · ∪ Γn ⊢ fork(e1, . . . , en) :L0

Γ ⊢ e :End

Γ ⊢ close(e) :1

Γ1 ⊥ Γ2 Γ1 ⊢ e1 : ![p]{ℓ : τℓ. Lℓ}ℓ∈I Γ2 ⊢ e2 :τℓ
Γ1 ∪ Γ2 ⊢ send[p](e1, ℓ :e2) :Lℓ

Γ ⊢ e :?[p]{ℓ : τℓ. Lℓ}ℓ∈I
Γ ⊢ receive[p](e) :Σℓ∈I. τℓ × Lℓ

Γ ⊢ e :π(L)
Γ ⊢ redirect[π](e) :L

Figure 18: Selected MPGV typing rules.

the programmer to pass endpoints to destinations where different endpoint numbers
are expected in the type signature.

3.3.2 Static Type System

The functional layer of MPGV features base types, products, closures, sums, and
equi-recursive types (Crary et al., 1999). The message-passing layer of MPGV features
multiparty sessions with n-ary choice. Formally the types of MPGV are given by:

τ ∈ Type ::=
(coind)

1 | N | τ× τ | τ −◦ τ | τ → τ | Σℓ∈I. τℓ | L �

L ∈ LType ::=
(coind)

![p]{ℓ : τℓ. Lℓ}ℓ∈I | ?[p]{ℓ : τℓ. Lℓ}ℓ∈I | End �

The functional types τ and local session types L are mutually defined: functional
types occur as messages in local types, and local types are functional types. To
support equi-recursive types, we define Type and LType coinductively, allowing types

125

3.3 the semantics of mpgv

to refer to themselves (Crary et al., 1999; Gay et al., 2020; Jacobs et al., 2022b; Castro-
Perez et al., 2021; Keizer et al., 2021). Mutually recursive functional types and local
types can be constructed using corecursion in the meta logic (i.e., Coq), so there
is no explicit recursion operator. We use = to denote coinductive equivalence (i.e.,
bisimulation). The typing rules for MPGV’s judgment Γ ⊢ e : τ are displayed in
Figure 18.

Unrestricted Types

We have linear function types τ1 −◦ τ2, which must be used exactly once, and whose
lambda expressions can capture linear data. We also have unrestricted functions
τ1 → τ2, which can be used any number of times (incl. zero times), but whose
lambda expressions cannot capture linear data. We define the subset UType ⊆ Type
of unrestricted types as:

τ̃ ∈ UType ::=
(coind)

1 | N | τ̃× τ̃ | τ → τ | Σℓ∈I. τ̃ℓ �

Note that τ1 → τ2 is always unrestricted, even if τ1 and τ2 are restricted, because
closures of unrestricted function type cannot contain endpoints.

To support linear and unrestricted types in the typing judgment, context
disjointness Γ1 ⊥ Γ2 is defined such that if Γ1 and Γ2 both contain variable x, the two
contexts must assign equal types to x (i.e., Γ1(x) = Γ2(x)), and the type they assign
to x must be an unrestricted type. This ensures that the union operation Γ1 ∪ Γ2

on contexts is well-defined whenever it is used in the typing rules (for instance, if
Γ1 = {x : N;y : N} and Γ2 = {y : N}, then Γ1 ∪ Γ2 = {x : N;y : N}). A context is
unrestricted if all its types are unrestricted.

Local Types

Local types describe the protocol that an endpoint c must follow:

• If c : ![p]{ℓ : τℓ. Lℓ}ℓ∈I then the next action on c has to be send[p](c, ℓ : v), and
v : τℓ and the continuation type Lℓ of c is determined by the sent label ℓ ∈ I.

• If c : ?[p]{ℓ : τℓ. Lℓ}ℓ∈I then the next action on c has to be receive[p](c), and the
received label ℓ ∈ I determines the type τℓ of the value received and the next type
Lℓ of c.

• If c : End then the next action on c must be close(c).

Due to linear typing of endpoints, we must use each endpoint variable exactly once.
Like in other session typed languages, this is necessary for type safety.

126

3.3 the semantics of mpgv

to refer to themselves (Crary et al., 1999; Gay et al., 2020; Jacobs et al., 2022b; Castro-
Perez et al., 2021; Keizer et al., 2021). Mutually recursive functional types and local
types can be constructed using corecursion in the meta logic (i.e., Coq), so there
is no explicit recursion operator. We use = to denote coinductive equivalence (i.e.,
bisimulation). The typing rules for MPGV’s judgment Γ ⊢ e : τ are displayed in
Figure 18.

Unrestricted Types

We have linear function types τ1 −◦ τ2, which must be used exactly once, and whose
lambda expressions can capture linear data. We also have unrestricted functions
τ1 → τ2, which can be used any number of times (incl. zero times), but whose
lambda expressions cannot capture linear data. We define the subset UType ⊆ Type
of unrestricted types as:

τ̃ ∈ UType ::=
(coind)

1 | N | τ̃× τ̃ | τ → τ | Σℓ∈I. τ̃ℓ �

Note that τ1 → τ2 is always unrestricted, even if τ1 and τ2 are restricted, because
closures of unrestricted function type cannot contain endpoints.

To support linear and unrestricted types in the typing judgment, context
disjointness Γ1 ⊥ Γ2 is defined such that if Γ1 and Γ2 both contain variable x, the two
contexts must assign equal types to x (i.e., Γ1(x) = Γ2(x)), and the type they assign
to x must be an unrestricted type. This ensures that the union operation Γ1 ∪ Γ2

on contexts is well-defined whenever it is used in the typing rules (for instance, if
Γ1 = {x : N;y : N} and Γ2 = {y : N}, then Γ1 ∪ Γ2 = {x : N;y : N}). A context is
unrestricted if all its types are unrestricted.

Local Types

Local types describe the protocol that an endpoint c must follow:

• If c : ![p]{ℓ : τℓ. Lℓ}ℓ∈I then the next action on c has to be send[p](c, ℓ : v), and
v : τℓ and the continuation type Lℓ of c is determined by the sent label ℓ ∈ I.

• If c : ?[p]{ℓ : τℓ. Lℓ}ℓ∈I then the next action on c has to be receive[p](c), and the
received label ℓ ∈ I determines the type τℓ of the value received and the next type
Lℓ of c.

• If c : End then the next action on c must be close(c).

Due to linear typing of endpoints, we must use each endpoint variable exactly once.
Like in other session typed languages, this is necessary for type safety.

126

3.3 the semantics of mpgv

� �
r ≠ q ∀ℓ ∈ I. Gℓ ⇂ r = Lℓ

[r → q]{ℓ : τℓ. Gℓ}ℓ∈I ⇂ r = ![q]{ℓ : τℓ. Lℓ}ℓ∈I
·· · ··

r ≠ p ∀ℓ ∈ I. Gℓ ⇂ r = Lℓ

[p → r]{ℓ : τℓ. Gℓ}ℓ∈I ⇂ r = ?[p]{ℓ : τℓ. Lℓ}ℓ∈I
·· · ··

r ∉ {p,q} ∀ℓ ∈ I. Gℓ ⇂ r = L r guards Gℓ I ≠ ∅
[p → q]{ℓ : τℓ. Gℓ}ℓ∈I ⇂ r = L

·· · ··
r ∉ participants(G)

G ⇂ r = End
·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ··

r ∈ {p,q}
r guards [p → q]{ℓ : τℓ. Gℓ}ℓ∈I

∀ℓ ∈ I. r guards Gℓ

r guards [p → q]{ℓ : τℓ. Gℓ}ℓ∈I

Figure 19: Coinductive projection (dotted line) and inductive guardedness rules (solid line).

For the typing rule of redirect (if e : π(L), then redirect[π](e) : L), we define the
action of a renaming π (not necessarily injective) on local types:

π(![p]{ℓ : τℓ. Lℓ}ℓ∈I) ≜ ![π(p)]{ℓ : τℓ. π(Lℓ)}ℓ∈I
π(?[p]{ℓ : τℓ. Lℓ}ℓ∈I) ≜ ?[π(p)]{ℓ : τℓ. π(Lℓ)}ℓ∈I

π(End) ≜ End

Global Types and Projections

The typing rule for fork (Figure 18) requires a session’s local types L0, . . . ,Ln to be
consistent. Consistency means, for instance, that if participant p sends a value of
type τ to participant q, then q is expecting to receive a value of type τ from p at
that point in the protocol. Traditionally, consistency is defined by the existence of a
global type that governs the communication between all participants in a session.
Global types are of the form:

G ∈ GType ::=
(coind)

[p1 → p2]{ℓ : τℓ. Gℓ}ℓ∈I | End �

A global type [p1 → p2]{ℓ : τℓ. Gℓ}ℓ∈I expresses that the first action in the protocol
is for participant p1 to send a message to p2, such that if the label in the message
is chosen to be ℓ, then the payload of the message has to have type τℓ, and then
the global protocol continues as Gℓ. Note that “global” in our use of “global type”
means global with respect to a session, not the whole program—each different
session started by a fork can have its own global type.

Local types can be extracted from global types by a projection judgment G ⇂ p = L,
indicating that participant p’s local type is L if the global type is G. The judgment
is coinductively defined in Figure 19. The first two rules state how the sender and

127

3.4 translation from binary to multiparty

receiver of a message in the global type are projected. The third rule states how
other participants not involved in the message are projected. For participants not
involved in the message, we require that participant to guard the rest of the global
type, which means that the participant occurs in the global type at finite depth
along every branch. The fourth rule states that if a participant does not occur in the
global type, then it projects to End. Our projection rules are similar to those of Zooid
(Castro-Perez et al., 2021).

Traditionally, consistency consistent(L0, . . . ,Ln) is expressed in terms of a global
type G such that G ⇂ 0 = L0, . . . ,G ⇂ n = Ln, and G ⇂ m = End for m > n. In
Section 3.6 we develop, inspired by Scalas and Yoshida (2019), a more permissive
notion of consistency that is independent of a global type, permitting deadlock-free
scenarios for which no appropriate global type can be found. Section 3.6.2 then
shows that the traditional notion of consistency based on global types implies our
new notion.

3.4 translation from binary to multiparty

We show that a GV-style binary session-typed language falls out as a special mode of
use of our multiparty language MPGV by giving a type-preserving translation of binary
channel operations into MPGV. We consider this an important benchmark, because
traditional multiparty systems do not support such a translation in the deadlock-free
setting. There are two main obstacles in existing systems: (1) after translation,
participant numbers do not match up, and (2) in systems such as Coppo et al. (2013);
Bettini et al. (2008); Coppo et al. (2016), deadlock-freedom mechanisms such as
orders/priorities prevent programs from being translated because these orders are
absent in the source program, so after translation one must come up with an order
on sessions. The latter is not always possible if sessions are used in a different
orders in different branches of a conditional. Finally, translation of an expressive
language such as GV requires the target language to support storing endpoints in
data structures, as GV supports this. MPGV overcomes all these obstacles.

We start by giving a short introduction to binary session types, and then show
how they can be translated into our language, making use of redirect. Binary session
types are equivalent to local types without participant annotations. The annotations
are not necessary in the binary case, because there is only one other participant to
communicate with:

B ∈ BType ::=
(coind)

!{ℓ : τℓ. Bℓ}ℓ∈I | ?{ℓ : τℓ. Bℓ}ℓ∈I | End �

128

3.4 translation from binary to multiparty

receiver of a message in the global type are projected. The third rule states how
other participants not involved in the message are projected. For participants not
involved in the message, we require that participant to guard the rest of the global
type, which means that the participant occurs in the global type at finite depth
along every branch. The fourth rule states that if a participant does not occur in the
global type, then it projects to End. Our projection rules are similar to those of Zooid
(Castro-Perez et al., 2021).

Traditionally, consistency consistent(L0, . . . ,Ln) is expressed in terms of a global
type G such that G ⇂ 0 = L0, . . . ,G ⇂ n = Ln, and G ⇂ m = End for m > n. In
Section 3.6 we develop, inspired by Scalas and Yoshida (2019), a more permissive
notion of consistency that is independent of a global type, permitting deadlock-free
scenarios for which no appropriate global type can be found. Section 3.6.2 then
shows that the traditional notion of consistency based on global types implies our
new notion.

3.4 translation from binary to multiparty

We show that a GV-style binary session-typed language falls out as a special mode of
use of our multiparty language MPGV by giving a type-preserving translation of binary
channel operations into MPGV. We consider this an important benchmark, because
traditional multiparty systems do not support such a translation in the deadlock-free
setting. There are two main obstacles in existing systems: (1) after translation,
participant numbers do not match up, and (2) in systems such as Coppo et al. (2013);
Bettini et al. (2008); Coppo et al. (2016), deadlock-freedom mechanisms such as
orders/priorities prevent programs from being translated because these orders are
absent in the source program, so after translation one must come up with an order
on sessions. The latter is not always possible if sessions are used in a different
orders in different branches of a conditional. Finally, translation of an expressive
language such as GV requires the target language to support storing endpoints in
data structures, as GV supports this. MPGV overcomes all these obstacles.

We start by giving a short introduction to binary session types, and then show
how they can be translated into our language, making use of redirect. Binary session
types are equivalent to local types without participant annotations. The annotations
are not necessary in the binary case, because there is only one other participant to
communicate with:

B ∈ BType ::=
(coind)

!{ℓ : τℓ. Bℓ}ℓ∈I | ?{ℓ : τℓ. Bℓ}ℓ∈I | End �

128

3.4 translation from binary to multiparty

� � � �

Γ ⊢ e : �B�L −◦ 1

Γ ⊢ forkB(e) : �B�L
Γ ⊢ e : �End�L

Γ ⊢ closeB(e) :1

Γ1 ⊥ Γ2 Γ1 ⊢ e1 : �!{ℓ : τℓ. Bℓ}ℓ∈I�L Γ2 ⊢ e2 :τℓ
Γ1 ∪ Γ2 ⊢ sendB(e1, ℓ :e2) : �Bℓ�L

Γ ⊢ e : �?{ℓ : τℓ. Bℓ}ℓ∈I�L
Γ ⊢ receiveB(e) :Σℓ∈I. τℓ × �Bℓ�L

Figure 20: Derivable typing rules for binary session types.

The operations for binary channels are defined in terms of multiparty operations as
follows:

forkB(e) ≜ redirect[1 ↦→ 0](fork(e)) �

sendB(e1, ℓ :e2) ≜ send[0](e1, ℓ :e2) �

closeB(e) ≜ close(e) �

receiveB(e) ≜ receive[0](e) �

We do a binary spawn using the n-ary fork, then the local type of the endpoint
of the spawner gets annotated with 1’s (because it is communicating with endpoint
1) and the local type of the endpoint of the forked-off thread gets annotated with
0’s (because it is communicating with endpoint 0). In order to implement a type-
preserving translation, we redirect all annotations to 0. This enables us to canonically
translate binary session types B to multiparty local types �B�L by using p = 0 for
every participant annotation:

�!{ℓ : τℓ. Bℓ}ℓ∈I�L ≜ ![0]{ℓ : τℓ. �Lℓ�L}ℓ∈I �

�?{ℓ : τℓ. Bℓ}ℓ∈I�L ≜ ?[0]{ℓ : τℓ. �Lℓ�L}ℓ∈I
�End�L ≜ End

We then prove that the usual typing rules for binary session types are derivable in
our system. For fork, this amounts to defining a global type �B�G to govern the
binary interaction:

�!{ℓ : τℓ. Bℓ}ℓ∈I�G ≜ [0 → 1]{ℓ : τℓ. �Bℓ�G}ℓ∈I �

�?{ℓ : τℓ. Bℓ}ℓ∈I�G ≜ [1 → 0]{ℓ : τℓ. �Bℓ�G}ℓ∈I
�End�G ≜ End

After redirecting, the projections have the right local types for B and the dual B (flips
all ? with ! and vice versa):

Lemma 3.4.1. � � �B�G ⇂ 0 = π−1(�B�L) and �B�G ⇂ 1 = �B�L

129

3.5 the deadlock and leak freedom theorem

Using this lemma and translation of types, we can prove that the binary typing
rules for forkB, sendB, receiveB and closeB are derivable (Figure 20).

This section shows that MPGV supports the full power of GV-style binary session
types, including treatment of sessions as first-class data and dynamic spawning
of sessions. Note that redirecting is crucial: without it we are not able to do a
type-preserving translation, because local types ![0] and ?[0] are incompatible with
![1] and ?[1].

3.5 the deadlock and leak freedom theorem

MPGV guarantees strong properties for well-typed programs, while supporting
dynamic spawning, session interleaving, and first-class endpoints. These properties
are:

type safety : The only way for a thread to get stuck is by blocking to receive from
an empty buffer.

session fidelity : The values sent to and received from buffers match the types
in the protocol.

global progress : Configurations of a well-typed initial program are either final
or can take a step.

deadlock freedom : No subset of the threads get stuck by waiting for each other.

memory leak freedom : All data always remains reachable.

Ideally, we would like to capture these properties in a single theorem that
subsumes them all. As a first step, we formulate global progress as follows:

Theorem 3.5.1 (Global progress �). If ∅ ⊢ e :1, and ([e], ∅)�∗
cfg (e,h), then:

1. there exists (e′,h′) such that (e,h)�cfg (e′,h′), or

2. ei = () for all i ∈ dom(e) and h = ∅.

This theorem rules out whole-program deadlocks and ensures that all buffers
have been correctly deallocated when the program finishes. However, this theorem
does not guarantee anything as long as there is still a single thread that can step.
Thus it does not guarantee local deadlock freedom, nor memory leak freedom while
the program is still running. Moreover, it does not even guarantee type safety: a
situation in which a thread is stuck on a type error is not ruled out by this theorem as
long as there is another thread that can still step. We therefore state partial deadlock
freedom and memory leak freedom theorems, but we strengthen both so that they
become equivalent. We use the definitions of partial deadlock and memory leak
freedom of Jacobs et al. (2022b) and apply them to MPGV. We need the following
notions:

130

3.5 the deadlock and leak freedom theorem

Using this lemma and translation of types, we can prove that the binary typing
rules for forkB, sendB, receiveB and closeB are derivable (Figure 20).

This section shows that MPGV supports the full power of GV-style binary session
types, including treatment of sessions as first-class data and dynamic spawning
of sessions. Note that redirecting is crucial: without it we are not able to do a
type-preserving translation, because local types ![0] and ?[0] are incompatible with
![1] and ?[1].

3.5 the deadlock and leak freedom theorem

MPGV guarantees strong properties for well-typed programs, while supporting
dynamic spawning, session interleaving, and first-class endpoints. These properties
are:

type safety : The only way for a thread to get stuck is by blocking to receive from
an empty buffer.

session fidelity : The values sent to and received from buffers match the types
in the protocol.

global progress : Configurations of a well-typed initial program are either final
or can take a step.

deadlock freedom : No subset of the threads get stuck by waiting for each other.

memory leak freedom : All data always remains reachable.

Ideally, we would like to capture these properties in a single theorem that
subsumes them all. As a first step, we formulate global progress as follows:

Theorem 3.5.1 (Global progress �). If ∅ ⊢ e :1, and ([e], ∅)�∗
cfg (e,h), then:

1. there exists (e′,h′) such that (e,h)�cfg (e′,h′), or

2. ei = () for all i ∈ dom(e) and h = ∅.

This theorem rules out whole-program deadlocks and ensures that all buffers
have been correctly deallocated when the program finishes. However, this theorem
does not guarantee anything as long as there is still a single thread that can step.
Thus it does not guarantee local deadlock freedom, nor memory leak freedom while
the program is still running. Moreover, it does not even guarantee type safety: a
situation in which a thread is stuck on a type error is not ruled out by this theorem as
long as there is another thread that can still step. We therefore state partial deadlock
freedom and memory leak freedom theorems, but we strengthen both so that they
become equivalent. We use the definitions of partial deadlock and memory leak
freedom of Jacobs et al. (2022b) and apply them to MPGV. We need the following
notions:

130

3.5 the deadlock and leak freedom theorem

• The set v ∈ V ::= Thread(i) | Session(s) ranging over possible threads and sessions.

• The function refs(e,h)(v) ⊆ V giving the set of sessions that v references.

• The predicate blocked(e,h)(v1, v2) stating that thread v1 = Thread(i) is blocked on
session v2 = Session(s).

• The function active(e,h) ⊆ V giving the set of active threads and sessions in the
configuration.

Using these notions, we strengthen partial deadlock freedom to incorporate aspects
of memory leak freedom.

Definition 3.5.2 (Partial deadlock/leak �). Given a configuration (e,h), a subset
S ⊆ V of the threads and sessions is in a partial deadlock/leak if the following
conditions hold:

1. We have ∅ ⊂ S ⊆ active(e,h).

2. For all threads Thread(i) ∈ S, the expression ei cannot step in the heap h.

3. If Thread(i) ∈ S and blocked(e,h)(Thread(i), Session(s)), then Session(s) ∈ S.

4. If Session(s) ∈ S and Session(s) ∈ refs(e,h)(v), then v ∈ S.

Definition 3.5.3 (Partial deadlock/leak freedom �). A configuration (e,h) is
deadlock/leak free if no S ⊆ V is in a partial deadlock/leak in (e,h).

Conversely, we strengthen memory leak freedom (i.e., full reachability) to
incorporate aspects of deadlock freedom.

Definition 3.5.4 (Reachability �). We inductively define the threads and sessions
reachable in (e,h):

1. Thread(i) is reachable if either

• the expression ei can step in the heap h, or

• there exists an s such that Session(s) is reachable and
blocked(e,h)(Thread(i), Session(s)) holds.

2. Session(s) is reachable if there exists a reachable v such that Session(s) ∈
refs(e,h)(v).

Definition 3.5.5 (Full reachability �). A configuration (e,h) is fully reachable if all
v ∈ active(e,h) are reachable in (e,h).

As in Jacobs et al. (2022b)’s language for binary sessions, the strengthened versions
of deadlock freedom and full reachability are equivalent, and well-typed MPGV
programs satisfy both properties:

131

3.6 extension : consistency without global types

Theorem 3.5.6. �

A configuration (e,h) is deadlock/leak free if and only if it is fully reachable.

Theorem 3.5.7. �

If ∅ ⊢ e :1 and ([e], ∅)�cfg (e,h), then (e,h) is fully reachable and deadlock/leak free.

The final theorem encompasses type safety, session fidelity, deadlock freedom, and
memory leak freedom. Global progress (Theorem 3.5.1) also follows as a corollary
from the final theorem.

3.6 extension : consistency without global types

Inspired by Scalas and Yoshida (2019), we define a notion of consistency that does
not rely on global types. This notion of consistency plays an important role in our
proof of deadlock freedom (Section 3.7), but is also more flexible. It is more flexible
in the sense that consistent(L0, . . . ,Ln) (premise of fork in Figure 18) may hold even
if no global type exists whose projections are L1, . . . ,Ln. For example, there exists
no global type for the local types L0 = ![1]N.?[1]N.End and L1 = ![0]N.?[0]N.End
because they both start with a send. Nevertheless, it would be safe and deadlock free
to allow this protocol, given an asynchronous semantics.2 The more flexible notion
of consistency we define in Section 3.6.1 does allow this protocol. In Section 3.6.2 we
show that the existence of a global type for local types implies our flexible notion of
consistency.

3.6.1 Defining Consistency without Global Types

At a high level, we define consistent(L0, . . . ,Ln) as follows:

“The local types L0, . . . ,Ln of a session are consistent if no deadlock can
occur within the session when considering all possible interleavings of
participant actions, assuming that each participant p follows its respective
local type Lp.”

Our goal is to define this notion solely as a property of the local types L0, . . . ,Ln, so
that consistency of a session’s local types can be proven without considering other
sessions. To do so, we define the notion of shadow buffers:

Q̂ ∈ ShadowBuf ≜ Participant fin−⇀ (Participant fin−⇀ List(Label×Type))

Shadow buffers are similar to the physical buffers in the heap, but there are two
differences. First, whereas the physical buffers contain pairs ⟨ℓ :v⟩ of labels and
values, shadow buffers contain pairs ⟨ℓ :τ⟩ of labels and types. Second, whereas the

2 There exist other extensions of (multiparty) session types that allow for a more flexible notion of
consistency. In particular, session-type systems with asynchronous subtyping also support this example
(Ghilezan et al., 2021; Mostrous et al., 2009).

132

3.6 extension : consistency without global types

Theorem 3.5.6. �

A configuration (e,h) is deadlock/leak free if and only if it is fully reachable.

Theorem 3.5.7. �

If ∅ ⊢ e :1 and ([e], ∅)�cfg (e,h), then (e,h) is fully reachable and deadlock/leak free.

The final theorem encompasses type safety, session fidelity, deadlock freedom, and
memory leak freedom. Global progress (Theorem 3.5.1) also follows as a corollary
from the final theorem.

3.6 extension : consistency without global types

Inspired by Scalas and Yoshida (2019), we define a notion of consistency that does
not rely on global types. This notion of consistency plays an important role in our
proof of deadlock freedom (Section 3.7), but is also more flexible. It is more flexible
in the sense that consistent(L0, . . . ,Ln) (premise of fork in Figure 18) may hold even
if no global type exists whose projections are L1, . . . ,Ln. For example, there exists
no global type for the local types L0 = ![1]N.?[1]N.End and L1 = ![0]N.?[0]N.End
because they both start with a send. Nevertheless, it would be safe and deadlock free
to allow this protocol, given an asynchronous semantics.2 The more flexible notion
of consistency we define in Section 3.6.1 does allow this protocol. In Section 3.6.2 we
show that the existence of a global type for local types implies our flexible notion of
consistency.

3.6.1 Defining Consistency without Global Types

At a high level, we define consistent(L0, . . . ,Ln) as follows:

“The local types L0, . . . ,Ln of a session are consistent if no deadlock can
occur within the session when considering all possible interleavings of
participant actions, assuming that each participant p follows its respective
local type Lp.”

Our goal is to define this notion solely as a property of the local types L0, . . . ,Ln, so
that consistency of a session’s local types can be proven without considering other
sessions. To do so, we define the notion of shadow buffers:

Q̂ ∈ ShadowBuf ≜ Participant fin−⇀ (Participant fin−⇀ List(Label×Type))

Shadow buffers are similar to the physical buffers in the heap, but there are two
differences. First, whereas the physical buffers contain pairs ⟨ℓ :v⟩ of labels and
values, shadow buffers contain pairs ⟨ℓ :τ⟩ of labels and types. Second, whereas the

2 There exist other extensions of (multiparty) session types that allow for a more flexible notion of
consistency. In particular, session-type systems with asynchronous subtyping also support this example
(Ghilezan et al., 2021; Mostrous et al., 2009).

132

3.6 extension : consistency without global types

heap concerns all sessions, shadow buffers only concern a single session. Hence, the
heap ranges over endpoints (recall that Endpoint ≜ Session×Participant), but shadow
buffers range over mere participants.

Shadow buffers allow us to simulate the local execution of a session on the
abstract level. If all the possible local executions allowed by a set of local types
L : Participant fin−⇀ LType on a set of shadow buffers Q̂ are type safe and deadlock
free, we say that Q̂ is consistent with L, which we denote by consistent(Q̂, L), and
define as follows:

Definition 3.6.1. � The judgment consistent(Q̂, L) is defined as the most permissive
relation satisfying the following properties:

1. Consistency is preserved by sends, i.e., for every participant p with L(p) =
![q]{ℓ : τℓ. Lℓ}ℓ∈I, then consistent(push(q,p, ⟨ℓ :τℓ⟩ , Q̂), L[p := Lℓ]).

2. Consistency is preserved by receives, i.e., for every participant q with
L(q) = ?[p]{ℓ : τℓ. Lℓ}ℓ∈I, and pop(q,p, Q̂) = (⟨ℓ :τ⟩ , Q̂′), then ℓ ∈ I, and
consistent(Q̂′, L[q := Lℓ]), and τ = τℓ.

3. Consistency is preserved by channel closure, i.e., for every participant p with
L(p) = End, then consistent(Q̂\{p}, L\{p}).

4. Either all buffers have been deallocated (Q̂ = ∅) or there is a participant q

such that q’s local type L(q) is a send or a close, or L(q) is a receive and the
corresponding buffer contains a value, i.e., pop(q,p, Q̂) = (⟨ℓ :τ⟩ , Q̂′) for some
label ℓ, type τ, and new set of shadow buffers Q̂′.

5. For each participant there is a corresponding set of buffers and vice versa, i.e.,
dom(L) = dom(Q̂).

Note that the cases for the preservation of consistent(Q̂, L) under the sends, receives,
and channel closure refer to a recursive occurrence consistent(Q̂′, L′) for some Q̂′

and L′. Since we consider the most permissive relation, these recursive occurrences
should be interpreted coinductively—we use Coq’s CoInductive keyword in the
mechanization.

The first three properties are used to show that the channel operations are type
safe and the resulting state is again consistent. The fourth property is used to show
deadlock freedom. The fifth property is required for technical reasons because we
support the possibility of some participants deallocating their buffers while other
participants are continuing to communicate with each other. With this at hand, we
define the new consistency predicate used in the fork typing rule:

Definition 3.6.2. � We define consistent(L) as consistent(init(length(L)), L), where
init(n) creates n empty buffers, and the list L is converted into a map in the natural
way.

Note that we need to use the finite map representation because some participants
can close their channel before others (see Item 3 in Theorem 3.6.1), and then they
disappear from L (lists do not allow gaps in the middle, whereas finite maps do).

133

3.6 extension : consistency without global types

3.6.2 Global Types Imply Consistency

The goal of this section is to show that if there is a global type for a set of local types,
then the local types are consistent in the sense of the preceding section:

Theorem 3.6.3. � If there is a global type G with n+ 1 participants such that G ⇂ 0 =
L0, . . . ,G ⇂ n = Ln, then consistent(L0, . . . ,Ln).

This lemma shows that we did not lose anything by using the more flexible notion
of consistency without global types—the programs we are able to type check with
the more flexible notion of consistency are a superset of the programs we are able to
type check using global types.

We cannot prove Theorem 3.6.3 directly using coinduction, because the coinductive
conclusion is not general enough. We need a more general property that involves
the consistency judgment consistent(Q̂, L) for an arbitrary set of shadow buffers Q̂.
Our generalized property (Theorem 3.6.4) makes use of the notion runtime global
types, inspired by the work of Castro-Perez et al. (2021).

runtime global types To model the state of a global type during an interaction
in which some messages have already been sent but not yet received, we define
runtime global types as:

R ∈ RType ::=
(ind)

[p1
ℓ?→ p2]{ℓ : τℓ. Rℓ}ℓ∈I | Cont G �

Runtime global types differ from ordinary global types (Section 3.3.2) in three
aspects:

1. Operations in runtime global types have an optional label ℓ on the arrow. If no
label is present (i.e., [p1 → p2]{ℓ : τℓ. Rℓ}ℓ∈I), then both the send and receive

remain to happen. If a label ℓ is present (i.e., [p1
ℓ→ p2]{ℓ : τℓ. Rℓ}ℓ∈I), then

the send portion (with label ℓ) of the operation has already happened, but the
receive is still pending.

2. Runtime global types are defined inductively rather than coinductively, because
only finitely many messages have been sent at any given point in time.

3. Instead of having End, they have Cont G, indicating that the protocol continues
as ordinary global type G.

runtime local type projections �

The projections R ⇂ p = L of runtime global types onto local types can be found
in Figure 21. These rules are inductively defined. Intuitively, when an operation

[p ℓ→ q]{ℓ : τℓ. Rℓ}ℓ∈I ⇂ r occurs in the runtime global type, then the projection onto
p ignores the operation and continues with Rℓ because the send by p with label ℓ has

134

3.6 extension : consistency without global types

3.6.2 Global Types Imply Consistency

The goal of this section is to show that if there is a global type for a set of local types,
then the local types are consistent in the sense of the preceding section:

Theorem 3.6.3. � If there is a global type G with n+ 1 participants such that G ⇂ 0 =
L0, . . . ,G ⇂ n = Ln, then consistent(L0, . . . ,Ln).

This lemma shows that we did not lose anything by using the more flexible notion
of consistency without global types—the programs we are able to type check with
the more flexible notion of consistency are a superset of the programs we are able to
type check using global types.

We cannot prove Theorem 3.6.3 directly using coinduction, because the coinductive
conclusion is not general enough. We need a more general property that involves
the consistency judgment consistent(Q̂, L) for an arbitrary set of shadow buffers Q̂.
Our generalized property (Theorem 3.6.4) makes use of the notion runtime global
types, inspired by the work of Castro-Perez et al. (2021).

runtime global types To model the state of a global type during an interaction
in which some messages have already been sent but not yet received, we define
runtime global types as:

R ∈ RType ::=
(ind)

[p1
ℓ?→ p2]{ℓ : τℓ. Rℓ}ℓ∈I | Cont G �

Runtime global types differ from ordinary global types (Section 3.3.2) in three
aspects:

1. Operations in runtime global types have an optional label ℓ on the arrow. If no
label is present (i.e., [p1 → p2]{ℓ : τℓ. Rℓ}ℓ∈I), then both the send and receive

remain to happen. If a label ℓ is present (i.e., [p1
ℓ→ p2]{ℓ : τℓ. Rℓ}ℓ∈I), then

the send portion (with label ℓ) of the operation has already happened, but the
receive is still pending.

2. Runtime global types are defined inductively rather than coinductively, because
only finitely many messages have been sent at any given point in time.

3. Instead of having End, they have Cont G, indicating that the protocol continues
as ordinary global type G.

runtime local type projections �

The projections R ⇂ p = L of runtime global types onto local types can be found
in Figure 21. These rules are inductively defined. Intuitively, when an operation

[p ℓ→ q]{ℓ : τℓ. Rℓ}ℓ∈I ⇂ r occurs in the runtime global type, then the projection onto
p ignores the operation and continues with Rℓ because the send by p with label ℓ has

134

3.6 extension : consistency without global types

� �

q ≠ r ∀ℓ ∈ I. Rℓ ⇂ r = Lℓ

[r → q]{ℓ : τℓ. Rℓ} ⇂ r = ![q]{ℓ : τℓ. Lℓ}
p ≠ r ∀ℓ ∈ I. Rℓ ⇂ r = Lℓ

[p ℓ?→ r]{ℓ : τℓ. Rℓ} ⇂ r = ?[p]{ℓ : τℓ. Lℓ}

r ∉ {p,q} ∀ℓ ∈ I. Rℓ ⇂ r = L I ≠ ∅
[p → q]{ℓ : τℓ. Rℓ} ⇂ r = L

q ≠ r Rℓ ⇂ r = L

[p ℓ→ q]{ℓ : τℓ. Rℓ} ⇂ r = L

G ⇂ r = L

Cont G ⇂ r = L

pop(q,p, Q̂) = ⊥ ∀ℓ. Rℓ ⇂⇂ Q̂

[p → q]{ℓ : τℓ. Rℓ} ⇂⇂ Q̂

pop(q,p, Q̂) = (⟨ℓ :τℓ⟩ , Q̂′) Rℓ ⇂⇂ Q̂′

[p ℓ→ q]{ℓ : τℓ. Rℓ} ⇂⇂ Q̂

Q̂ = ∅
Cont G ⇂⇂ Q̂

Figure 21: Projections of runtime global types: (1) local type projections R ⇂ p = L, and (2)
shadow buffer projections R ⇂⇂ Q̂ (inductive).

already happened. However, the projection onto q in this case still has to take the
receive part of this operation into account, because the receive has not happened yet.
The other cases are similar to the projections for ordinary global types (Figure 18),
and ensure that the protocol remains well-formed.

runtime buffer projections �

We also define the judgment R ⇂⇂ Q̂, which says that the messages in the runtime
global type R correspond to the shadow buffers Q̂.

runtime global types imply consistency Using the notion of runtime
global type and runtime projections, we are able to show the following lemma:

Lemma 3.6.4. � The judgment consistent(Q̂, L) holds if there exists a runtime global
type R for which the following four conditions hold: (1) R ⇂⇂ Q̂ (2) ∀p. R ⇂ p = L(p)
(3) participants(R) ⊆ dom(L) (4) ∀p. if Q̂(p) = ⊥ then p ∉ dom(L) else dom(L) ⊆
dom(Q̂(p)).

The lemma is proved using coinduction, and relies on a series of auxiliary lemmas.
Once we have this lemma, Theorem 3.6.3 follows by relating projection of runtime
global types to projection of ordinary global types.

135

3.7 proof of deadlock and leak freedom

3.7 proof of deadlock and leak freedom

We give an overview of the proof of our main result, Theorem 3.5.7. The proof
is quite technical, but since all parts have been mechanized in Coq, one can trust
the theorems independent of the pen-and-paper description of the proof. We hope
to provide enough insights into the proof to make our results reproducible and
extensible.

The high level structure of the proof is as follows:

• We define an invariant on the runtime configuration, which states (1) that
everything in the configuration is well-typed and that the buffer contents are
consistent with respect to the local types of each channel endpoint, and (2) that
the topology of the configuration is acyclic.

• We prove that the invariant is preserved by steps of the operational semantics
(“preservation”).

• We prove that configurations that satisfy the invariant cannot be in a deadlock
(“progress”).

To deal with linearity and acyclicity we use the connectivity graph framework
of Jacobs et al. (2022b), which provides a couple of features to make our proof
feasible. First, it provides a generic construction to define the invariant—it allows us
to provide local invariants for threads and channels, which the framework then lifts
to an invariant for whole runtime configurations. Second, it makes use of separation
logic to hide reasoning about linearity. Third, it provides generic reasoning principles
to prove the preservation (of acyclicity and typing) and progress parts of the proof.
Fourth, it is implemented as a library in Coq, so it allows us to mechanize our proofs.

At the high-level, the structure of our proof and our use of the connectivity
framework is similar to Jacobs et al. (2022b)’s proof for binary session types. To
use the framework to obtain the invariant for configurations (Section 3.7.3), we
first define a runtime type system for expressions to express the local invariant for
threads (Section 3.7.1), and define a local invariant for the buffers that back a session
(Section 3.7.2). The new element of our proof is handling multiparty instead of
binary sessions, for which we make use of our notion of shadow buffers (Section 3.6).

With the invariant for configurations at hand, we prove that this invariant holds for
the initial configurations and is preserved by the operational semantics (Section 3.7.4).
The new element is an extension of the connectivity graph framework to handle
n-ary graph transformations to support the multiparty case. To complete the proof,
we show that the configuration invariant implies Theorem 3.5.7, our main deadlock
freedom theorem (Section 3.7.5).

136

3.7 proof of deadlock and leak freedom

3.7 proof of deadlock and leak freedom

We give an overview of the proof of our main result, Theorem 3.5.7. The proof
is quite technical, but since all parts have been mechanized in Coq, one can trust
the theorems independent of the pen-and-paper description of the proof. We hope
to provide enough insights into the proof to make our results reproducible and
extensible.

The high level structure of the proof is as follows:

• We define an invariant on the runtime configuration, which states (1) that
everything in the configuration is well-typed and that the buffer contents are
consistent with respect to the local types of each channel endpoint, and (2) that
the topology of the configuration is acyclic.

• We prove that the invariant is preserved by steps of the operational semantics
(“preservation”).

• We prove that configurations that satisfy the invariant cannot be in a deadlock
(“progress”).

To deal with linearity and acyclicity we use the connectivity graph framework
of Jacobs et al. (2022b), which provides a couple of features to make our proof
feasible. First, it provides a generic construction to define the invariant—it allows us
to provide local invariants for threads and channels, which the framework then lifts
to an invariant for whole runtime configurations. Second, it makes use of separation
logic to hide reasoning about linearity. Third, it provides generic reasoning principles
to prove the preservation (of acyclicity and typing) and progress parts of the proof.
Fourth, it is implemented as a library in Coq, so it allows us to mechanize our proofs.

At the high-level, the structure of our proof and our use of the connectivity
framework is similar to Jacobs et al. (2022b)’s proof for binary session types. To
use the framework to obtain the invariant for configurations (Section 3.7.3), we
first define a runtime type system for expressions to express the local invariant for
threads (Section 3.7.1), and define a local invariant for the buffers that back a session
(Section 3.7.2). The new element of our proof is handling multiparty instead of
binary sessions, for which we make use of our notion of shadow buffers (Section 3.6).

With the invariant for configurations at hand, we prove that this invariant holds for
the initial configurations and is preserved by the operational semantics (Section 3.7.4).
The new element is an extension of the connectivity graph framework to handle
n-ary graph transformations to support the multiparty case. To complete the proof,
we show that the configuration invariant implies Theorem 3.5.7, our main deadlock
freedom theorem (Section 3.7.5).

136

3.7 proof of deadlock and leak freedom

�

P,Q ∈ iProp ≜ (V fin−⇀ E) → Prop
(Emp)(Σ) ≜ (Σ = ∅)
(False)(Σ) ≜ False
(True)(Σ) ≜ True
(⌜ϕ⌝)(Σ) ≜ ϕ∧ (Σ = ∅)

(own(Σ′))(Σ) ≜ (Σ = Σ′)
(�P)(Σ) ≜ P(∅) ∧ Σ = ∅

V ::= Thread(i) | Session(s)
E ≜ Participant× LType
Σ ∈ V fin−⇀ E

(P ∨Q)(Σ) ≜ P(Σ) ∨Q(Σ)
(P ∧Q)(Σ) ≜ P(Σ) ∧Q(Σ)

(∃x. P(x))(Σ) ≜ ∃x. P(x)(Σ)
(∀x. P(x))(Σ) ≜ ∀x. P(x)(Σ)

(P ∗Q)(Σ) ≜ ∃Σ1Σ2. dom(Σ1) ∩ dom(Σ2) = ∅ ∧ Σ = Σ1 ⊎Σ2 ∧ P(Σ1) ∧Q(Σ2)
(P −∗ Q)(Σ) ≜ ∀Σ′.

(
dom(Σ) ∩ dom(Σ′) = ∅ ∧ P(Σ′)

)
⇒ Q(Σ⊎Σ′)

Figure 22: The definition of the separation logic connectives.

3.7.1 Runtime Type System

The first step to define the invariant for configurations is to define a runtime typing
judgment for expressions. The runtime judgment differs from the static typing
judgment (Section 3.3.2) in the sense that it should account for channel literals #[c,π]
that appear after the execution of a fork. Traditionally, this is done by extending
the typing judgment Σ; Γ ⊢ e : τ with an additional context Σ that keeps track of the
types of the channel literals (often called a heap typing).3 To avoid having to thread
through such this context everywhere, and having to deal with splitting conditions
of this context (due to linearity), we make use of separation logic (O’Hearn and Pym,
1999; O’Hearn et al., 2001). This follows the approach in the connectivity graph
framework (Jacobs et al., 2022b), which in turn is based on Rouvoet et al. (2020)’s
use of separation logic to hide heap typings in intrinsically-typed interpreters for
linear languages in Agda.

Our runtime judgment Γ ⊨ e : τ is formalized as a separation logic proposition
iProp, i.e., a predicate over heap typings Σ. The semantics of the separation logic
connectives can be found in Figure 22 and the rules of our runtime type system in
Figure 23. Crucially, the use of separating conjunction in the rules of n-ary constructs
hides the splitting of the heap typing Σ, and the use of own(s ↦→ (p,π(L))) in the rule
for endpoint literals #[(s,p),π] makes sure the type of each literal matches up with
the heap typing Σ. Note that the runtime judgment Γ ⊨ e :τ is defined recursively on
the structure of e. To assert that P ∈ iProp is true, means to assert that P(∅) holds.

To prove the initialization lemma (Theorem 3.7.4), we state in separation logic that
statically well-typed expressions are well-typed in the runtime type system:

3 The actual type of Σ in Figure 22 also accounts for threads in addition to sessions. This is due to the use
of the connectivity graph framework, which we discuss in Section 3.7.3.

137

3.7 proof of deadlock and leak freedom

�
⌜Γ unr⌝ ∗ own(s ↦→ (p,π(L)))

Γ ⊨ #[(s,p),π] :L
−−∗

�(Γ ∪ {x ↦→ τ1} ⊨ e :τ2) ∗ ⌜Γ unr⌝ ∗ ⌜x ∉ Γ⌝

Γ ⊨ λx. e :τ1 → τ2
−−−∗

⌜Γ1 ⊥ · · · ⊥ Γn⌝ ∗ ⌜consistent(L0,L1, . . . ,Ln)⌝ ∗ [∗]p ∈ {1..n}. Γp ⊨ ep :Lp −◦ 1

Γ1 ∪ · · · ∪ Γn ⊨ fork(e1, . . . , en) :L0
−−−∗

Γ ⊨ e :End

Γ ⊨ close(e) :1
−−−−−−−−−−−−−−−−∗

⌜Γ1 ⊥ Γ2⌝ ∗ Γ1 ⊨ e1 : ![p]{ℓ : τℓ. Lℓ}ℓ∈I ∗ Γ2 ⊨ e2 :τℓ

Γ1 ∪ Γ2 ⊨ send[p](e1, ℓ :e2) :Lℓ
−−−∗

Γ ⊨ e :?[p]{ℓ : τℓ. Lℓ}ℓ∈I
Γ ⊨ receive[p](e) :Σℓ∈I. τℓ × Lℓ
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Γ ⊨ e :π(L)
Γ ⊨ redirect[π](e) :L
−−−−−−−−−−−−−−−−−−−−−−−−∗

Figure 23: Selected separation logic runtime typing rules (recursive).

Lemma 3.7.1. � ⌜Γ ⊢ e :τ⌝ −∗ Γ ⊨ e :τ

3.7.2 The Buffer Invariant

We now define an invariant consistent(Q, L) to express that the buffers Q for a given
session s are consistent with respect to a set of local types L : Participant fin−⇀ LType.
The buffer invariant is similar to the consistency judgment consistent(Q̂, L) we defined
in Section 3.6.1, but it operates on physical buffers Q (i.e., buffers with values) instead
of shadow buffers Q̂ (i.e., buffers with types):

Q ∈ Buf ≜ Participant fin−⇀ (Participant fin−⇀ List(Label×Val))

(We use the notation h|s to obtain the buffers for a session s from the heap h.)
Since MPGV allows to send arbitrary data over channels, the values in buffers can

themselves contain channel literals. Hence, similar to the runtime typing judgment,
the buffer invariant needs to be indexed by a heap typing Σ, which we hide again by
considering consistent(Q, L) to be a separation logic proposition iProp. The definition
of consistent(Q, L) ∈ iProp can be found in Figure 24. This definition contains two key
ingredients. First, it makes use of consistent(Q̂, L) ∈ Prop from Section 3.6 to specify
that local types L are consistent with some (existentially quantified) shadow buffers
Q̂. Second, it makes use of the auxiliary definition Q ∝ Q̂ ∈ iProp in Figure 24 to
specify that the labels in the physical buffers Q are equal to those in the shadow
buffers Q̂, and that the values in the physical buffers Q have types determined by the
corresponding entry in the shadow buffers Q̂. (The notation [∗] x;y ∈ X; Y. P(x,y) in

138

3.7 proof of deadlock and leak freedom

�
⌜Γ unr⌝ ∗ own(s ↦→ (p,π(L)))

Γ ⊨ #[(s,p),π] :L
−−∗

�(Γ ∪ {x ↦→ τ1} ⊨ e :τ2) ∗ ⌜Γ unr⌝ ∗ ⌜x ∉ Γ⌝

Γ ⊨ λx. e :τ1 → τ2
−−−∗

⌜Γ1 ⊥ · · · ⊥ Γn⌝ ∗ ⌜consistent(L0,L1, . . . ,Ln)⌝ ∗ [∗]p ∈ {1..n}. Γp ⊨ ep :Lp −◦ 1

Γ1 ∪ · · · ∪ Γn ⊨ fork(e1, . . . , en) :L0
−−−∗

Γ ⊨ e :End

Γ ⊨ close(e) :1
−−−−−−−−−−−−−−−−∗

⌜Γ1 ⊥ Γ2⌝ ∗ Γ1 ⊨ e1 : ![p]{ℓ : τℓ. Lℓ}ℓ∈I ∗ Γ2 ⊨ e2 :τℓ

Γ1 ∪ Γ2 ⊨ send[p](e1, ℓ :e2) :Lℓ
−−−∗

Γ ⊨ e :?[p]{ℓ : τℓ. Lℓ}ℓ∈I
Γ ⊨ receive[p](e) :Σℓ∈I. τℓ × Lℓ
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Γ ⊨ e :π(L)
Γ ⊨ redirect[π](e) :L
−−−−−−−−−−−−−−−−−−−−−−−−∗

Figure 23: Selected separation logic runtime typing rules (recursive).

Lemma 3.7.1. � ⌜Γ ⊢ e :τ⌝ −∗ Γ ⊨ e :τ

3.7.2 The Buffer Invariant

We now define an invariant consistent(Q, L) to express that the buffers Q for a given
session s are consistent with respect to a set of local types L : Participant fin−⇀ LType.
The buffer invariant is similar to the consistency judgment consistent(Q̂, L) we defined
in Section 3.6.1, but it operates on physical buffers Q (i.e., buffers with values) instead
of shadow buffers Q̂ (i.e., buffers with types):

Q ∈ Buf ≜ Participant fin−⇀ (Participant fin−⇀ List(Label×Val))

(We use the notation h|s to obtain the buffers for a session s from the heap h.)
Since MPGV allows to send arbitrary data over channels, the values in buffers can

themselves contain channel literals. Hence, similar to the runtime typing judgment,
the buffer invariant needs to be indexed by a heap typing Σ, which we hide again by
considering consistent(Q, L) to be a separation logic proposition iProp. The definition
of consistent(Q, L) ∈ iProp can be found in Figure 24. This definition contains two key
ingredients. First, it makes use of consistent(Q̂, L) ∈ Prop from Section 3.6 to specify
that local types L are consistent with some (existentially quantified) shadow buffers
Q̂. Second, it makes use of the auxiliary definition Q ∝ Q̂ ∈ iProp in Figure 24 to
specify that the labels in the physical buffers Q are equal to those in the shadow
buffers Q̂, and that the values in the physical buffers Q have types determined by the
corresponding entry in the shadow buffers Q̂. (The notation [∗] x;y ∈ X; Y. P(x,y) in

138

3.7 proof of deadlock and leak freedom

wf(e,h) ≜ wf(wf local
(e,h)) �

wf(P) ≜ ∃G : Cgraph(V, E). ∀v ∈ V. P(v, in(G, v))(out(G, v))

wf local
(e,h)(v,∆) ≜




⌜∆ = ∅⌝ ∗ (∅ ⊨ ei :1) if v = Thread(i), i < | e|
⌜∆ = ∅⌝ if v = Thread(i), i ⩾ | e|
∃L ∈ Participant fin−⇀ LType.

⌜∆ = toMultiset(L)⌝ ∗ consistent(h|s, L)
if v = Session(s)

consistent(Q, L) ≜ ∃Q̂. ⌜consistent(Q̂, L)⌝ ∗Q ∝ Q̂

Q ∝ Q̂ ≜ [∗]Qp; Q̂p ∈ Q; Q̂. [∗]Qpq; Q̂pq ∈ Qp; Q̂p.
[∗] ⟨ℓ1 :v⟩ ; ⟨ℓ2 :τ⟩ ∈ Qpq; Q̂pq. ⌜ℓ1 = ℓ2⌝ ∗ (∅ ⊨ v :τ)

Figure 24: Configuration invariant.

Figure 24 is an n-ary separating conjunction: it states that the collections X, Y (lists
or finite maps) have the same domain, and gives P(X0, Y0) ∗ · · · ∗ P(Xn, Yn), where
(Xi, Yi) are corresponding elements in the collections.)

The invariant consistent(Q, L) for physical buffers has preservation and
initialization properties paralleling to the rules of the consistency relation
consistent(Q̂, L) for shadow buffers (Theorems 3.6.1 and 3.6.2). Since consistent(Q, L)
is a separation logic proposition, these properties are stated using the separation
logic connectives (and thus implicitly describe the threading and splitting of the
heap typing Σ).

Lemma 3.7.2. The buffer invariant is preserved by a sends, receives, and channel closure:

• � If L(p) = ![q]{ℓ : τℓ. Lℓ}ℓ∈I, then:
(∅ ⊨ v :τℓ) ∗ consistent(Q, L) −∗ consistent(push(q,p, ⟨ℓ :τℓ⟩ ,Q), L[p := Lℓ]).

• � If L(q) = ?[p]{ℓ : τℓ. Lℓ}ℓ∈I, and pop(q,p, Q̂) = (⟨ℓ :τ⟩ , Q̂′), then
consistent(Q, L) −∗ ⌜ℓ ∈ I⌝ ∗ consistent(Q′, L[q := Lℓ]) ∗ (∅ ⊨ v :τℓ).

• � If L(p) = End, then consistent(Q, L) −∗ consistent(Q\{p}, L\{p}).

Lemma 3.7.3. � If consistent(L), then Emp −∗ consistent(init(length(L)), L).

3.7.3 The Configuration Invariant

The invariant wf(e,h) for configurations (e,h) ensures that every thread in e is
well-typed, the contents of the buffers h|s for each session s in h are well-typed,
the types of the channel literals match up with the types of the channels, and
the communication topology is acyclic. To define this invariant, we instantiate
the connectivity graph framework of Jacobs et al. (2022b) with the runtime typing
judgment from Section 3.7.1 and the buffer invariant from Section 3.7.2.

139

3.7 proof of deadlock and leak freedom

The first ingredient of the connectivity framework is the data type Cgraph(V, E),
which represents a directed graph with vertices ranging over the set V and edge
labels ranging over the set E. This graph should be acyclic in an undirected sense
(i.e., the undirected erasure of the graph forms an undirected unrooted forest). We
instantiate V and E in Cgraph(V, E) as follows:

V ::= Thread(i) | Session(s) E ≜ Participant× LType �

The second ingredient of the connectivity graph framework is a generic invariant
wf(P), which lifts a local invariant predicate P(v,∆) ∈ iProp to whole runtime
configurations. The local predicate P links the local configuration state of each
vertex v (i.e., the expression for a thread and the buffers for a session) to the multiset
∆ of labels on the incoming edges of vertex v. Our instantiation P(v,∆) ≜ wf local

(e,h)(v,∆)
is given in Figure 24. Intuitively, the local invariant for a thread (case v = Thread(i))
says that the expression ei of that thread is well-typed in the runtime type system
with respect to the local types on the outgoing edges of the thread’s vertex in the
connectivity graph. The local invariant for a session (case v = Session(s)) says that
the buffers h|s of that session are well-typed with respect to the local types on
the incoming edges of the session’s vertex in the connectivity graph, where the
endpoints stored in the buffers get their local types from the outgoing edges. The
invariant for the whole configuration wf(e,h) says that there exists an acyclic graph
G : Cgraph(V, E) such that the local invariant predicate holds for all v ∈ V.

3.7.4 Initialization and Preservation of the Invariant

The invariant holds for initial configurations and is preserved by the operational
semantics:

Lemma 3.7.4. � If ∅ ⊢ e :1, then wf([e], ∅).

Lemma 3.7.5. � If (e,h)�cfg (e′,h′), then wf(e,h) implies wf(e′,h′).

The proof of the last lemma involves three aspects. First, because the configuration
changes, we need to produce a connectivity graph for the new configuration as the
connectivity graph is existentially quantified in the configuration invariant wf(e,h).
Second, we need to show that the new connectivity graph is acyclic in the appropriate
sense. Third, we need to show that all the local invariant predicates wf local

(e,h)(v,∆)
still hold. The interesting cases of this proof are the steps that involve the channel
operations, for which the graph transformations are depicted in Figure 25.

Proving these graph transformations by picking a new graph by hand is
cumbersome (especially in a mechanized proof). The connectivity graph framework
therefore provides abstract separation logic lemmas to prove the transformations
without having to mention the graph or having to deal with its acyclicity explicitly.
We can re-use some of these abstract transformation rules, but for the n-ary fork we

140

3.7 proof of deadlock and leak freedom

The first ingredient of the connectivity framework is the data type Cgraph(V, E),
which represents a directed graph with vertices ranging over the set V and edge
labels ranging over the set E. This graph should be acyclic in an undirected sense
(i.e., the undirected erasure of the graph forms an undirected unrooted forest). We
instantiate V and E in Cgraph(V, E) as follows:

V ::= Thread(i) | Session(s) E ≜ Participant× LType �

The second ingredient of the connectivity graph framework is a generic invariant
wf(P), which lifts a local invariant predicate P(v,∆) ∈ iProp to whole runtime
configurations. The local predicate P links the local configuration state of each
vertex v (i.e., the expression for a thread and the buffers for a session) to the multiset
∆ of labels on the incoming edges of vertex v. Our instantiation P(v,∆) ≜ wf local

(e,h)(v,∆)
is given in Figure 24. Intuitively, the local invariant for a thread (case v = Thread(i))
says that the expression ei of that thread is well-typed in the runtime type system
with respect to the local types on the outgoing edges of the thread’s vertex in the
connectivity graph. The local invariant for a session (case v = Session(s)) says that
the buffers h|s of that session are well-typed with respect to the local types on
the incoming edges of the session’s vertex in the connectivity graph, where the
endpoints stored in the buffers get their local types from the outgoing edges. The
invariant for the whole configuration wf(e,h) says that there exists an acyclic graph
G : Cgraph(V, E) such that the local invariant predicate holds for all v ∈ V.

3.7.4 Initialization and Preservation of the Invariant

The invariant holds for initial configurations and is preserved by the operational
semantics:

Lemma 3.7.4. � If ∅ ⊢ e :1, then wf([e], ∅).

Lemma 3.7.5. � If (e,h)�cfg (e′,h′), then wf(e,h) implies wf(e′,h′).

The proof of the last lemma involves three aspects. First, because the configuration
changes, we need to produce a connectivity graph for the new configuration as the
connectivity graph is existentially quantified in the configuration invariant wf(e,h).
Second, we need to show that the new connectivity graph is acyclic in the appropriate
sense. Third, we need to show that all the local invariant predicates wf local

(e,h)(v,∆)
still hold. The interesting cases of this proof are the steps that involve the channel
operations, for which the graph transformations are depicted in Figure 25.

Proving these graph transformations by picking a new graph by hand is
cumbersome (especially in a mechanized proof). The connectivity graph framework
therefore provides abstract separation logic lemmas to prove the transformations
without having to mention the graph or having to deal with its acyclicity explicitly.
We can re-use some of these abstract transformation rules, but for the n-ary fork we

140

3.7 proof of deadlock and leak freedom

T

vnviv1

T

S

TnTiT1

vnviv1

· · · · · ·

... ...

L0

L1
Li

Lnfork(v1, · · · , vn)� c

T S

v

?
?
?

![p]{ℓ : τℓ. Lℓ}ℓ∈I
T S

v

?
?
?

Lℓ

send[p](c, ℓ :v)� c

T S

v

?
?
?

?[p]{ℓ : τℓ. Lℓ}ℓ∈I
T S

v

?
?
?

Lℓ

receive[p](c)� ⟨ℓ : (v, c)⟩

T S

?
?
?

End
T S

?
?
?

close(c)� ()

Figure 25: Graphical depiction of how multiparty interactions change the logical connectivity.
Blue circles are multiparty sessions, brown squares are threads. A blue circle
abstracts over the n × n communication paths among the n session participants,
where each endpoint has buffers for incoming messages from every other endpoint.
An edge from T to S indicates that thread T has an endpoint of session S. An edge
from a session S1 to a session S2 indicates that an endpoint of S2 is stored in one of
the buffers of S1. The figure provides a local viewpoint, only depicting the notions
directly involved in an interaction and omitting other threads and sessions that are
connected to the depicted ones as well. While the communication topology is cyclic
within a multiparty session (where the global types rule out deadlock), it is acyclic
between multiparty sessions, an invariant preserved by multiparty interactions.
Acyclicity is crucial for deadlock and memory leak freedom.

141

3.7 proof of deadlock and leak freedom

need a new rule (which we state abstractly for arbitrary vertices V and edge labels
E).

Lemma 3.7.6. � Let v1, v2 ∈ V and w1, . . . ,wn ∈ V. To prove wf(P) implies wf(P′), it
suffices to prove, for all ∆ ∈ Multiset E:

1. P(v,∆) −∗ P′(v,∆) for all v ∈ V \ {v1, v2,w1, . . . ,wn}

2. P(v,∆) −∗ ⌜∆ = ∅⌝ for all v ∈ {v2,w1, . . . ,wn}

3. P(v1,∆) −∗ ∃ l0, . . . , ln. (own(v2 ↦→ l0) −∗ P′(v1,∆)) ∗
P′(v2, {l0, . . . , ln}) ∗
([∗]i ∈ {1..n}. own(v2 ↦→ li) −∗ P′(vi, ∅))

3.7.5 Proof of the Reachability Theorem

We give an intuitive description of the proof of our main reachability theorem
(Theorem 3.5.7 �).

waiting induction At the top level of the proof, we apply the waiting induction
principle of the connectivity graph library. Waiting induction relies on acyclicity of
the graph and allows one to prove a predicate P(v) for all vertices v ∈ V of a graph
G : Cgraph(V, E), while assuming the “induction hypothesis” that P(v′) already holds
for all vertices v′ such that v is waiting for v′, where “waiting for” is a binary relation
chosen by us. The predicate P(v) that we aim to prove for all vertices (i.e., threads
and sessions) is that v is reachable (see Theorem 3.5.7). The waiting relation we use
is based on the blocked(e,h)(v, v′) relation, defined in Section 3.5. Waiting induction
gives us the following induction hypotheses when proving that v is reachable:

for threads : If the thread is blocked on a session, we may assume that the session
is reachable.

for sessions : The owners of the session that are not blocked on this session are
reachable.

reachability of threads To show that a thread is reachable, we must show
that it can take a step, or that it is blocked on an endpoint of a session that is
reachable. By typing, either the thread can take a pure step, or is a session operation
where all subexpressions are values. A session operation can proceed if the structure
of the heap is valid, which we can conclude from the configuration invariant. The
only possibility for a blocked operation is if we are trying to receive and the buffer we
are trying to receive from is currently empty. Here, the waiting induction hypothesis
applies (because blocked(e,h) holds), using which we can show that the session that
we are blocked on is reachable. Then, by the definition of reachability, the thread is
also reachable.

142

3.7 proof of deadlock and leak freedom

need a new rule (which we state abstractly for arbitrary vertices V and edge labels
E).

Lemma 3.7.6. � Let v1, v2 ∈ V and w1, . . . ,wn ∈ V. To prove wf(P) implies wf(P′), it
suffices to prove, for all ∆ ∈ Multiset E:

1. P(v,∆) −∗ P′(v,∆) for all v ∈ V \ {v1, v2,w1, . . . ,wn}

2. P(v,∆) −∗ ⌜∆ = ∅⌝ for all v ∈ {v2,w1, . . . ,wn}

3. P(v1,∆) −∗ ∃ l0, . . . , ln. (own(v2 ↦→ l0) −∗ P′(v1,∆)) ∗
P′(v2, {l0, . . . , ln}) ∗
([∗]i ∈ {1..n}. own(v2 ↦→ li) −∗ P′(vi, ∅))

3.7.5 Proof of the Reachability Theorem

We give an intuitive description of the proof of our main reachability theorem
(Theorem 3.5.7 �).

waiting induction At the top level of the proof, we apply the waiting induction
principle of the connectivity graph library. Waiting induction relies on acyclicity of
the graph and allows one to prove a predicate P(v) for all vertices v ∈ V of a graph
G : Cgraph(V, E), while assuming the “induction hypothesis” that P(v′) already holds
for all vertices v′ such that v is waiting for v′, where “waiting for” is a binary relation
chosen by us. The predicate P(v) that we aim to prove for all vertices (i.e., threads
and sessions) is that v is reachable (see Theorem 3.5.7). The waiting relation we use
is based on the blocked(e,h)(v, v′) relation, defined in Section 3.5. Waiting induction
gives us the following induction hypotheses when proving that v is reachable:

for threads : If the thread is blocked on a session, we may assume that the session
is reachable.

for sessions : The owners of the session that are not blocked on this session are
reachable.

reachability of threads To show that a thread is reachable, we must show
that it can take a step, or that it is blocked on an endpoint of a session that is
reachable. By typing, either the thread can take a pure step, or is a session operation
where all subexpressions are values. A session operation can proceed if the structure
of the heap is valid, which we can conclude from the configuration invariant. The
only possibility for a blocked operation is if we are trying to receive and the buffer we
are trying to receive from is currently empty. Here, the waiting induction hypothesis
applies (because blocked(e,h) holds), using which we can show that the session that
we are blocked on is reachable. Then, by the definition of reachability, the thread is
also reachable.

142

3.8 mechanization

reachability of sessions To show that a session s is reachable we must
show that there exists a thread or session v that is (1) reachable, (2) holds an
endpoint of s, and (3) is not blocked on s. We use the consistency of the buffers
and local types of the session to show that there is an endpoint of s whose owner v
is not blocked on this session (though v may be blocked on another session). This
allows us to use the induction hypothesis to conclude that v is reachable (because
blocked(e,h)(Session(s), v) does not hold). Then, using the definition of reachability
for sessions, we conclude that s is reachable.

main results Theorem 3.5.7 is obtained by combining the reasoning above
with Theorem 3.7.4 and Theorem 3.7.5. Global progress (Theorem 3.5.1) follows as
an easy corollary. For two directions of the equivalence of partial deadlock/leak
freedom with full reachability (Theorem 3.5.6), we show that none of the objects in a
deadlock/leak are reachable, and vice versa that the set of non-reachable threads
and channels forms a deadlock/leak if this set is nonempty.

3.8 mechanization

All our results have been mechanized in Coq using Iris Proof Mode (Krebbers et al.,
2017b, 2018) for the separation-logic part. The final results of our mechanization
are Theorem 3.5.1, Theorem 3.5.6, and Theorem 3.5.7. We have also mechanized
the translation from binary to multiparty in Figure 20 and have proved that it
is type preserving. The mechanization is 10.4k lines of Coq code, consisting of
217 definitions, and 638 proved lemmas and theorems. Approximately half of the
mechanization consists of results specific to our multiparty calculus, and the other
half consists of the framework of Jacobs et al. (2022b), extended with support for
n-ary graph transformations (Section 3.7.4).

partial deadlock freedom and the empty type A surprising technical
result of the mechanization is that while global progress remains true in the presence
of n-ary sum types, we discovered that partial deadlock freedom is by default false
for languages that allow n = 0. The reason is that a thread can throw away endpoints
by pattern matching on the empty sum type. While this pattern match will never
execute because the empty type can only be produced by a looping expression
(thus guaranteeing global progress), a thread can still lose an endpoint during a
substitution step before the empty pattern match happens. This can create a partial
deadlock for the threads holding the other endpoints of the session, because they
are now permanently blocked on a counterparty thread that has thrown away the
endpoint. To fix this, we amend the typing judgment Γ ⊢ e :τ to require the variable
context Γ to be empty when pattern matching on an empty sum type. This formally
ensures that the thread’s expression keeps track of all endpoints and does not lose
any. This does not limit the expressivity of empty types because one can obtain a

143

3.9 related work

value of any type from an empty pattern match, including a function that can eat
the remaining variables in the context.

3.9 related work

To relate MPGV to the existing body of work it is helpful to consider two axes of
categorization: mechanization and session type philosophy. The use of a proof assistant
to mechanize correctness results has only been taken up recently by the session type
community. Typeset pen-and-paper proofs and appeals to results in logic (e.g., cut
elimination) still constitute the status quo. We summarize mechanizations of session
types below, but remark that only two works target mechanization of deadlock
freedom up to date: Castro-Perez et al. (2021) for a single multiparty session and
Jacobs et al. (2022b) for GV-style binary session types.

At first blush, session types can be distinguished into binary and multiparty.
Whereas binary session types restrict the concurrent interaction to two participants,
multiparty session types allow an arbitrary but statically determined number of
participants (“roles”), by complementing the local perspective of a participant with a
global type. A more foundational distinction, especially given the unifying nature
of MPGV, is the underlying philosophy. Session types (Honda, 1993; Honda et al.,
1998) have been conceived as a typing discipline for process calculi and as such
preserve the fundamental characteristics of concurrent computation. Concurrent
computation is inherently non-deterministic and may also give rise to deadlocks. For
example, the below session-typed program from (Gay and Vasconcelos, 2010) (page
38) is well-typed but deadlocks:

⟨let c1 = requesta1 in let c2 = requesta2 in let (c1, x) = receive c1 in send v c2⟩ | |
⟨letd1 = accepta1 in letd2 = accepta2 in let (d1,y) = received2 in sendwd1⟩

The program composes two threads (processes) in parallel, amounting to two
binary interleaved sessions a1 and a2. Sessions are initiated by matching a request
for a session (requesta1) with an accept for that session (accepta1) creating two new
endpoints per session (c1 and c2). The interleaving of the two sessions causes a
deadlock: the receive on c1 blocks the send on c2, which is necessary for the former.
The pairing of session requests with matching accepts is non-deterministic. For
example, if we compose the two threads with a third thread that is also accepting a
session a1, then only one of the two accepting threads will be chosen.

This initialization pattern carries over to multiparty sessions (Honda et al., 2008,
2016). In the multiparty case a request is parameterized with the number of
participants n and accepts with the role names ranging from 1 to n− 1. Like binary
session types, multiparty session types that assume this initialization pattern can
deadlock. In particular, deadlocks can arise if a participant simultaneously engages
in several sessions. A strategy adopted by some multiparty session type work (e.g.,
Castro-Perez et al. (2021)) is to restrict a program to a single global multiparty
session, precluding dynamic session spawning and first-class sessions. Alternatively,

144

3.9 related work

value of any type from an empty pattern match, including a function that can eat
the remaining variables in the context.

3.9 related work

To relate MPGV to the existing body of work it is helpful to consider two axes of
categorization: mechanization and session type philosophy. The use of a proof assistant
to mechanize correctness results has only been taken up recently by the session type
community. Typeset pen-and-paper proofs and appeals to results in logic (e.g., cut
elimination) still constitute the status quo. We summarize mechanizations of session
types below, but remark that only two works target mechanization of deadlock
freedom up to date: Castro-Perez et al. (2021) for a single multiparty session and
Jacobs et al. (2022b) for GV-style binary session types.

At first blush, session types can be distinguished into binary and multiparty.
Whereas binary session types restrict the concurrent interaction to two participants,
multiparty session types allow an arbitrary but statically determined number of
participants (“roles”), by complementing the local perspective of a participant with a
global type. A more foundational distinction, especially given the unifying nature
of MPGV, is the underlying philosophy. Session types (Honda, 1993; Honda et al.,
1998) have been conceived as a typing discipline for process calculi and as such
preserve the fundamental characteristics of concurrent computation. Concurrent
computation is inherently non-deterministic and may also give rise to deadlocks. For
example, the below session-typed program from (Gay and Vasconcelos, 2010) (page
38) is well-typed but deadlocks:

⟨let c1 = requesta1 in let c2 = requesta2 in let (c1, x) = receive c1 in send v c2⟩ | |
⟨letd1 = accepta1 in letd2 = accepta2 in let (d1,y) = received2 in sendwd1⟩

The program composes two threads (processes) in parallel, amounting to two
binary interleaved sessions a1 and a2. Sessions are initiated by matching a request
for a session (requesta1) with an accept for that session (accepta1) creating two new
endpoints per session (c1 and c2). The interleaving of the two sessions causes a
deadlock: the receive on c1 blocks the send on c2, which is necessary for the former.
The pairing of session requests with matching accepts is non-deterministic. For
example, if we compose the two threads with a third thread that is also accepting a
session a1, then only one of the two accepting threads will be chosen.

This initialization pattern carries over to multiparty sessions (Honda et al., 2008,
2016). In the multiparty case a request is parameterized with the number of
participants n and accepts with the role names ranging from 1 to n− 1. Like binary
session types, multiparty session types that assume this initialization pattern can
deadlock. In particular, deadlocks can arise if a participant simultaneously engages
in several sessions. A strategy adopted by some multiparty session type work (e.g.,
Castro-Perez et al. (2021)) is to restrict a program to a single global multiparty
session, precluding dynamic session spawning and first-class sessions. Alternatively,

144

3.9 related work

advanced multiparty session-type systems (Coppo et al., 2013; Bettini et al., 2008;
Coppo et al., 2016) employ extrinsic orders/priorities to rule out deadlocks among
interleaved multiparty sessions, requiring order annotations in addition to global
type declarations.

We refer to the line of session type work that adopts the initialization pattern
shown above, which separates session creation from thread spawning, as traditional
session types. We like to contrast this line of work with the one that adopts an
initialization pattern based on cut, inspired by the Curry-Howard correspondence
between linear logic and the session-typed π-calculus (Caires and Pfenning, 2010;
Wadler, 2012; Lindley and Morris, 2015; Kokke et al., 2019), which we refer to as
logic-based session types. Logic-based session types come with strong guarantees out
of the box. These include, besides session fidelity, deadlock freedom. Given our focus
on deadlock freedom, MPGV adopts the initialization pattern of logic-based session
types and generalizes GV’s fork construct (Wadler, 2012; Lindley and Morris, 2015,
2016c, 2017; Fowler et al., 2019, 2021) for binary session types to the n-ary setting.
The above program would thus not type check in MPGV.

A recent extension of GV by Fowler et al. (2021), Hypersequent GV (HGV), adopts
hypersequents (Montesi and Peressotti, 2018; Kokke et al., 2019), inspired by Avron
(1991), to facilitate a tighter correspondence to the session-typed π-calculus and
simplify GV’s meta theory by accounting for the forest topology of runtime structures.
While this account is reminiscent of our notion of logical topology, HGV and our
MPGV system are quite different. Firstly, HGV has binary session types, whereas
our MPGV system supports multiparty session types. Secondly, HGV employs
structural congruences for runtime typing, whereas our dynamics operates on a flat
thread pool and heap (allowing an arbitrary thread to step without prior application
of structural congruences) and our runtime typing relies on separation logic and
connectivity graphs.

We next review the individual related work in more detail, referring to our
categorization of traditional and logic-based session types as convenient. Given our
focus on mechanization, we start with mechanized related work and then conclude
with non-mechanized related work.

mechanized The only existing work on mechanizing deadlock freedom for
multiparty session types is Zooid, a DSL by Castro-Perez et al. (2021) embedded
in Coq. Although a traditional session type language in spirit, Zooid does neither
support session spawning nor delegation, but restricts a program to a single global
multiparty session. Zooid programs thus rule out deadlocks caused by multiparty
session interleavings by construction. Thanks to a shallow embedding in Coq, Zooid
programs can be extracted from Coq to OCaml via Coq’s extraction mechanism. Send
and receive operations are handled as monadic operations in which the endpoint is
implicit (because there is a unique global session). A shallow embedding of binders
works in this context because Zooid variables can only contain purely functional

145

3.9 related work

data, which can be represented as Coq data. Our definition of (runtime) global types
and projections is inspired by Zooid.

MPGV not only differs from Zooid in its support for multiple interacting sessions,
first-class endpoints, dynamic spawning, and delegation, but also in statement and
precision of the deadlock freedom property. Our mechanization guarantees global
progress—including the stronger notions of partial deadlock/leak freedom. Zooid’s
main result, on the other hand, is phrased in terms of traces, asserting that for all
traces produced by a well-typed process there exists a matching trace in the larger
system. This result relies on properties of global types from the literature and also
assumes the ability to choose a favorable schedule. Our mechanization in contrast
states deadlock freedom for all executions/schedules and gives a closed end-to-end
proof in Coq.

Jacobs et al. (2022b) contribute a mechanization of deadlock freedom for a
variant of GV, and thus target binary session types. Like our mechanization, theirs
accommodates dynamic session spawning and delegation, but restricted to the
binary setting. Jacobs et al. (2022b) moreover contribute the notion of a connectivity
graph, a parametric proof method for deadlock freedom, relying on acyclicity of
the communication topology. We extend this proof method with n-ary operations
and support of cyclic connectivity within a session governed by consistency. Our
generalization to n-ary operations also enables our encoding of binary session types
in MPGV (Section 3.4). Unlike Jacobs et al.’s variant of GV, our MPGV system
moreover supports choice, and thus provides the first mechanization of deadlock
and leak freedom for binary session types with choice.

Moreover, there exists work on mechanizing the metatheory of binary session
types. Thiemann (2019) proves type safety of a linear λ-calculus with session types
inspired by GV. The result does not include deadlock nor memory leak freedom.
Hinrichsen et al. (2021) prove type safety for a comprehensive session-typed language
with locks, subtyping and polymorphism using Iris in Coq. Their type system is
affine, which means that deadlocks are considered safe. Tassarotti et al. (2017) prove
termination preservation of a compiler for an affine session-typed language using
Iris in Coq.

More distantly, there exist various mechanized results involving the π-calculus.
Goto et al. (2016) prove type safety for a π-calculus with a polymorphic session type
system in Coq. Their type system allows dropping channels, and hence does not
enjoy deadlock nor memory leak freedom. Ciccone and Padovani (2020) mechanize
dependent binary session types by embedding them into a π-calculus in Agda. They
prove subject reduction (i.e., preservation) and that typing is preserved by structural
congruence, but not deadlock or memory leak freedom. Similarly, Zalakain and
Dardha (2021) mechanize subject reduction of a resource-aware π-calculus, focusing
on the handling of linear resources through leftover typing. Gay et al. (2020) study
various notions of duality in Agda, and show that distribution laws for duality over
the recursion operator are unsound. We adopted their approach of using coinductive
types for mechanizing general recursive session types. Lastly, mechanizations

146

3.9 related work

data, which can be represented as Coq data. Our definition of (runtime) global types
and projections is inspired by Zooid.

MPGV not only differs from Zooid in its support for multiple interacting sessions,
first-class endpoints, dynamic spawning, and delegation, but also in statement and
precision of the deadlock freedom property. Our mechanization guarantees global
progress—including the stronger notions of partial deadlock/leak freedom. Zooid’s
main result, on the other hand, is phrased in terms of traces, asserting that for all
traces produced by a well-typed process there exists a matching trace in the larger
system. This result relies on properties of global types from the literature and also
assumes the ability to choose a favorable schedule. Our mechanization in contrast
states deadlock freedom for all executions/schedules and gives a closed end-to-end
proof in Coq.

Jacobs et al. (2022b) contribute a mechanization of deadlock freedom for a
variant of GV, and thus target binary session types. Like our mechanization, theirs
accommodates dynamic session spawning and delegation, but restricted to the
binary setting. Jacobs et al. (2022b) moreover contribute the notion of a connectivity
graph, a parametric proof method for deadlock freedom, relying on acyclicity of
the communication topology. We extend this proof method with n-ary operations
and support of cyclic connectivity within a session governed by consistency. Our
generalization to n-ary operations also enables our encoding of binary session types
in MPGV (Section 3.4). Unlike Jacobs et al.’s variant of GV, our MPGV system
moreover supports choice, and thus provides the first mechanization of deadlock
and leak freedom for binary session types with choice.

Moreover, there exists work on mechanizing the metatheory of binary session
types. Thiemann (2019) proves type safety of a linear λ-calculus with session types
inspired by GV. The result does not include deadlock nor memory leak freedom.
Hinrichsen et al. (2021) prove type safety for a comprehensive session-typed language
with locks, subtyping and polymorphism using Iris in Coq. Their type system is
affine, which means that deadlocks are considered safe. Tassarotti et al. (2017) prove
termination preservation of a compiler for an affine session-typed language using
Iris in Coq.

More distantly, there exist various mechanized results involving the π-calculus.
Goto et al. (2016) prove type safety for a π-calculus with a polymorphic session type
system in Coq. Their type system allows dropping channels, and hence does not
enjoy deadlock nor memory leak freedom. Ciccone and Padovani (2020) mechanize
dependent binary session types by embedding them into a π-calculus in Agda. They
prove subject reduction (i.e., preservation) and that typing is preserved by structural
congruence, but not deadlock or memory leak freedom. Similarly, Zalakain and
Dardha (2021) mechanize subject reduction of a resource-aware π-calculus, focusing
on the handling of linear resources through leftover typing. Gay et al. (2020) study
various notions of duality in Agda, and show that distribution laws for duality over
the recursion operator are unsound. We adopted their approach of using coinductive
types for mechanizing general recursive session types. Lastly, mechanizations

146

3.9 related work

of choreographic languages (Montesi, 2021; Cruz-Filipe et al., 2021a,b) focus on
determinism, confluence, and Turing completeness, with deadlock freedom holding
by design.

non-mechanized The work that is most closely related to ours in terms of
underlying philosophy but non-mechanized is the work by Carbone et al. (2015,
2016, 2017) on coherence proofs. The authors introduce a proof theory grounded
in classical linear logic via a Curry-Howard correspondence, illuminating the
connection between binary and multiparty session types, in a π-calculus setting.
The correspondence is due the novel notion of coherence, which generalizes duality
known from binary session types to compatibility of local types with a global type of
a multiparty session. Given a coherence derivation, an n-ary cut permits composing
n participants concurrently, similar to our n-ary fork. Coherence also enables a
semantic-preserving translation from multiparty sessions to corresponding binary
sessions via an arbiter process (Carbone et al., 2016). Deadlock freedom follows from
cut admissibility and cut elimination, giving a normalization argument. Such an
argument is made possible by using cut reductions for the semantics and restricting
to a non-Turing complete calculus without loops or recursion. In contrast, we provide
a complete mechanization of deadlock freedom of an n-ary session-typed functional
language, with recursive types, first-class endpoints, and a realistic asynchronous
operational semantics based on an unstructured thread pool. Our encoding of binary
sessions in MPGV moreover does not require an arbiter process.

Similarly, Caires and Pérez (2016) embed multiparty session types in a binary
calculus by a translation from a global type to a medium process. Instead
of communicating with each other, the participants communicate with the
central medium process. This approach inherits deadlock freedom from the
surrounding binary calculus, but requires central coordination and sequentializes the
communication. Toninho and Yoshida (2019) show that the interconnection networks
of classical linear logic (CLL) are strictly less expressive than those of a multiparty
session calculus. Partial multiparty compatibility is used to define a new binary cut
rule that can form circular interconnections but preserves the deadlock-freedom of
CLL, albeit for a single multiparty session.

More distantly related are works that use Kobayashi-style type systems (Kobayashi,
1997, 2002a, 2006; Giachino et al., 2014; Kobayashi and Laneve, 2017) that enrich
channel typing with usage information and partial orders to rule out cyclic
dependencies among channel actions. In the traditional multiparty setting this
is most notably the work by Coppo et al. (2013); Bettini et al. (2008); Coppo et al.
(2016), which contributes an interaction type system that ensures deadlock freedom
not only within but also between several multiparty sessions. This work not only
differs from MPGV in that it requires ordering annotations in addition to global type
declarations, but also in the statement of the global progress property. To account for
processes that lack a communication partner, a possibility in the traditional setting,
progress is stated relative to a catalyzing process that, if present, would allow the

147

3.9 related work

closed program to step. MPGV sets itself additionally apart in its tight integration
with a functional language.

Kobayashi-style systems have also been adopted for logic-based binary session
types (Dardha and Gay, 2018; Kokke and Dardha, 2021c,a). The authors introduce
a multicut, which allows for circular topologies within a session. To rule out
deadlocks by type checking, session types must be annotated with priorities. Priority
polymorphism has been used by Padovani (2014) to support cyclic interleavings of
recursive processes. Partial order annotations, called worlds, are also used by Balzer
et al. (2019), in a logic-based binary session type calculus that combines linear and
shared (Balzer and Pfenning, 2017; Balzer et al., 2018) sessions. Shared session types
introduce a controlled form of aliasing, an extension we would like to consider in
future work.

A somewhat orthogonal approach to ensuring progress in the presence of dynamic
thread allocation is to make global types more powerful. While traditional multiparty
session types involve a fixed number of participants per session, Deniélou and
Yoshida (2011); Demangeon and Honda (2012); Hu and Yoshida (2017) proposed
extensions of single-session systems to make that number dynamic. This line of
work does not support sessions as first-class data, and the expressivity is orthogonal
to GV and MPGV. Hence, extending MPGV with a dynamic number of participants
is an interesting extension for future work.

148

3.9 related work

closed program to step. MPGV sets itself additionally apart in its tight integration
with a functional language.

Kobayashi-style systems have also been adopted for logic-based binary session
types (Dardha and Gay, 2018; Kokke and Dardha, 2021c,a). The authors introduce
a multicut, which allows for circular topologies within a session. To rule out
deadlocks by type checking, session types must be annotated with priorities. Priority
polymorphism has been used by Padovani (2014) to support cyclic interleavings of
recursive processes. Partial order annotations, called worlds, are also used by Balzer
et al. (2019), in a logic-based binary session type calculus that combines linear and
shared (Balzer and Pfenning, 2017; Balzer et al., 2018) sessions. Shared session types
introduce a controlled form of aliasing, an extension we would like to consider in
future work.

A somewhat orthogonal approach to ensuring progress in the presence of dynamic
thread allocation is to make global types more powerful. While traditional multiparty
session types involve a fixed number of participants per session, Deniélou and
Yoshida (2011); Demangeon and Honda (2012); Hu and Yoshida (2017) proposed
extensions of single-session systems to make that number dynamic. This line of
work does not support sessions as first-class data, and the expressivity is orthogonal
to GV and MPGV. Hence, extending MPGV with a dynamic number of participants
is an interesting extension for future work.

148

Chapter 4

A Self-Dual Distillation of Session Types

abstract We introduce λ̄ (“lambda-barrier”), a minimal extension of linear
λ-calculus with concurrent communication, which adds only a single new fork
construct for spawning threads. It is inspired by GV, a session-typed functional
language also based on linear λ-calculus. Unlike GV, λ̄ strives to be as simple as
possible, and adds no new operations other than fork, no new type formers, and no
explicit definition of session type duality. Instead, we use linear function function
type τ1 −◦ τ2 for communication between threads, which is dual to τ2 −◦ τ1, i.e., the
function type constructor is dual to itself. Nevertheless, we can encode session types
as λ̄ types, GV’s channel operations as λ̄ terms, and show that this encoding is type-
preserving. The linear type system of λ̄ ensures that all programs are deadlock-free
and satisfy global progress, which we prove in Coq. Because of λ̄’s minimality, these
proofs are simpler than mechanized proofs of deadlock freedom for GV.

4.1 introduction

Session types (Honda et al., 1998; Honda, 1993) are types for communication
channels, that can be used to verify that programs follow the communication protocol
specified by a channel’s session type. Gay and Vasconcelos (Gay and Vasconcelos,
2010) embed session types in a linear λ-calculus. Whereas Gay and Vasconcelos’
calculus (Gay and Vasconcelos, 2010) did not yet ensure deadlock freedom, Wadler’s
subsequent GV (Wadler, 2012) and its derivatives (Lindley and Morris, 2015, 2016c,
2017; Fowler et al., 2019, 2021) guarantee that all well-typed programs are deadlock
free.

In order to add session types to linear λ-calculus, one adds (linear) session type
formers for typing channel protocols and their corresponding operations: !τ.s (send
a message of type τ, continue with protocol s), ?τ.s (receive a message of type τ,
continue with protocol s), s1 ⊕ s2 (send choice between protocols s1 and s2), s1 & s2

(receive choice between protocols s1 and s2), and End (close channel). One also adds
a fork operation for creating a thread and a pair of dual channels. For this, we need
a definition of duality, with ! dual to ?, ⊕ dual to &, and End dual to itself.

There have been efforts for simpler systems, such as an encoding of session types
into ordinary π-calculus types (Kobayashi, 2002b; Dardha et al., 2012, 2017), and
minimal session types (Arslanagic et al., 2019), which decompose multi-step session
types into single-step session types in a π-calculus. Single-shot synchronization

149

4.2 the λ̄ language by example

primitives have also been used in the implementation of a session-typed channel
libraries (Scalas and Yoshida, 2016a; Padovani, 2017; Kokke and Dardha, 2021a).

We show that linear λ-calculus is also an excellent substrate on which to
build a minimal concurrent calculus with communication, and introduce λ̄

(“lambda-barrier”), which adds only a single new fork construct for spawning
threads. It is inspired by GV, a session-typed functional language that is also based
on linear λ-calculus. Unlike GV, λ̄ strives to be as simple as possible, and adds no
new operations other than fork, no new type formers, and no explicit definition of
duality. Instead, we use the linear function type τ1 −◦ τ2 for communication between
threads, which is dual to τ2 −◦ τ1, i.e., the function type constructor is dual to itself.
Nevertheless, we can encode session types as λ̄ types, GV’s channel operations as λ̄

terms, and show that this encoding is type-preserving. A key difference with CPS
encodings of GV (Lindley and Morris, 2016b,c), which are whole-program, is that
our encoding is local, and uses λ̄’s built-in concurrency.

Like GV, all well-typed λ̄ programs are automatically deadlock free, and therefore
satisfy global progress. We prove this property in Coq. Because of λ̄’s minimality,
these proofs are simpler and shorter than mechanized proofs of deadlock freedom
for GV.

The rest of this chapter is structured as follows:

• An introduction to λ̄ by example (Section 4.2).

• The λ̄ type system and operational semantics (Section 4.3).

• Encoding session types in λ̄ (Section 4.4).

• How to prove global progress and deadlock freedom for λ̄ (Section 4.5).

• Extending λ̄ with unrestricted and recursive types (Section 4.6).

• Mechanizing the meta-theory of λ̄ in Coq (Section 4.7).

• Related work (Section 4.8).

• Concluding remarks (Section 4.9).

4.2 the λ̄ language by example

The λ̄ language consists of linear λ-calculus with a single extension: fork.1 Let us
look at an example:

let x = fork(λx′. print(x′ 1)) in print(1 + x 0)

This program forks off a new thread, which also creates communication barriers x
and x′ to communicate between the threads. The barrier x gets returned to the main

1 For the examples we also use print, to be able to talk about the operational behavior of programs.

150

4.2 the λ̄ language by example

primitives have also been used in the implementation of a session-typed channel
libraries (Scalas and Yoshida, 2016a; Padovani, 2017; Kokke and Dardha, 2021a).

We show that linear λ-calculus is also an excellent substrate on which to
build a minimal concurrent calculus with communication, and introduce λ̄

(“lambda-barrier”), which adds only a single new fork construct for spawning
threads. It is inspired by GV, a session-typed functional language that is also based
on linear λ-calculus. Unlike GV, λ̄ strives to be as simple as possible, and adds no
new operations other than fork, no new type formers, and no explicit definition of
duality. Instead, we use the linear function type τ1 −◦ τ2 for communication between
threads, which is dual to τ2 −◦ τ1, i.e., the function type constructor is dual to itself.
Nevertheless, we can encode session types as λ̄ types, GV’s channel operations as λ̄

terms, and show that this encoding is type-preserving. A key difference with CPS
encodings of GV (Lindley and Morris, 2016b,c), which are whole-program, is that
our encoding is local, and uses λ̄’s built-in concurrency.

Like GV, all well-typed λ̄ programs are automatically deadlock free, and therefore
satisfy global progress. We prove this property in Coq. Because of λ̄’s minimality,
these proofs are simpler and shorter than mechanized proofs of deadlock freedom
for GV.

The rest of this chapter is structured as follows:

• An introduction to λ̄ by example (Section 4.2).

• The λ̄ type system and operational semantics (Section 4.3).

• Encoding session types in λ̄ (Section 4.4).

• How to prove global progress and deadlock freedom for λ̄ (Section 4.5).

• Extending λ̄ with unrestricted and recursive types (Section 4.6).

• Mechanizing the meta-theory of λ̄ in Coq (Section 4.7).

• Related work (Section 4.8).

• Concluding remarks (Section 4.9).

4.2 the λ̄ language by example

The λ̄ language consists of linear λ-calculus with a single extension: fork.1 Let us
look at an example:

let x = fork(λx′. print(x′ 1)) in print(1 + x 0)

This program forks off a new thread, which also creates communication barriers x
and x′ to communicate between the threads. The barrier x gets returned to the main

1 For the examples we also use print, to be able to talk about the operational behavior of programs.

150

4.2 the λ̄ language by example

thread, and x′ gets passed to the child thread. These barriers are functions, and a
call to a barrier will block until the other side is also trying to synchronize, and will
then atomically exchange the values passed as an argument. The example runs as
follows:

• When x′ 1 is called, it will block until x 0 is also called, and vice versa.

• The call x′ 1 will then return 0, and the call x 0 will return 1.

Thus, the program will print 0 2 or 2 0, depending on which thread prints first. In λ̄,
these barriers are linear, so they must be used exactly once:

fork(λx. print(1)) Error! Must use x.

fork(λx. print(x 0 + x 1)) Error! Can’t use x twice.

The type of fork is:

fork : ((τ1 −◦ τ2) −◦ 1) → (τ2 −◦ τ1)

where −◦ is the type of linear functions. Linearity allows us to encode session
types in λ̄ (Section 4.4), and ensures that all well-typed λ̄ programs are deadlock-free
(Section 4.5), which would not be the case without linearity. Nevertheless, linearity
may seem like a critical limitation: can a child thread communicate with its parent
thread only once?! Luckily, two features of λ-calculus, namely the ability for closures
to capture values from their lexical environment, and the ability to pass functions as
arguments to other functions, means that the restriction is not as severe as it may
seem. Let’s look at an example that uses those two features:2

let x = fork(λx′. print(x′ 1))
let y = fork(λy′. y′ x)
print(1 + y () 0)

We fork off a new thread (line 1) and store its barrier in x. We then fork off another
thread (line 2), and pass the barrier x into the λ-expression of the new thread. We
call y (), which returns x, because the thread of y calls y′ x. Finally, we pass 0 into
the returned x, so this example behaves the same as the first example: it prints 0 2 or
2 0.

2 We omit the in keyword if a newline follows let, like some functional languages (e.g., F#).

151

4.2 the λ̄ language by example

We can use the ability to capture barriers in the λ-expression of a fork, and the
ability to send barriers over barriers, to set up long-running communication between
two threads:

let x1 = fork(λx′1. let (x′2,n1) = x′1 ()
let (x′3,n2) = x′2 () in x′3 (n1 +n2))

let x2 = fork(λx′2. x1 (x′2, 1))
let x3 = fork(λx′3. x2 (x′3, 2))
print(x3 ())

Let us focus on the body of the first fork. The forked thread firstly synchronizes
with its barrier, via x′1 (). This call will return a pair (x′2,n1) of a new barrier x′2, and
a number n1. It then synchronizes with the new barrier, via x′2 (), which returns
another pair (x′3,n2), giving yet another barrier x′3 and another number n2. In the last
step, it sends the number n1 +n2 back to the main thread, via x′3 (n1 +n2).

Let us now focus on how the main thread arranges this sequence of
communications. The main thread first forks off a messenger thread fork(λx′2. x1 (x′2, 1)).
The purpose of this thread is to send the message (x′2, 1) over x1, where x′2 is the
barrier associated with the messenger thread. The other side of that barrier, x2, is
given to the main thread. The main thread now forks off another messenger thread,
this time using that new barrier, x2. This gives the main thread yet another barrier,
x3, from which it receives the final answer, 1 + 2, via x3 ().

Note that, like in the asynchronous π-calculus, sending a message involves forking
off a tiny thread. Thus, like the asynchronous π-calculus, λ̄ should be viewed as a
theoretical core calculus, and not as a practical way to implement message passing.3

We can encapsulate this messenger thread pattern in a small library of channel
operations:

send(c, x) ≜ fork(λc′. c (c′, x))
receive(c) ≜ c ()

close(c) ≜ c ()

3 Because the messenger threads are always of a specific form, it might be possible to implement a compiler
that recognizes such patterns and implements them more efficiently. After all, the messenger threads do
nothing but immediately synchronize with another barrier.

152

4.2 the λ̄ language by example

We can use the ability to capture barriers in the λ-expression of a fork, and the
ability to send barriers over barriers, to set up long-running communication between
two threads:

let x1 = fork(λx′1. let (x′2,n1) = x′1 ()
let (x′3,n2) = x′2 () in x′3 (n1 +n2))

let x2 = fork(λx′2. x1 (x′2, 1))
let x3 = fork(λx′3. x2 (x′3, 2))
print(x3 ())

Let us focus on the body of the first fork. The forked thread firstly synchronizes
with its barrier, via x′1 (). This call will return a pair (x′2,n1) of a new barrier x′2, and
a number n1. It then synchronizes with the new barrier, via x′2 (), which returns
another pair (x′3,n2), giving yet another barrier x′3 and another number n2. In the last
step, it sends the number n1 +n2 back to the main thread, via x′3 (n1 +n2).

Let us now focus on how the main thread arranges this sequence of
communications. The main thread first forks off a messenger thread fork(λx′2. x1 (x′2, 1)).
The purpose of this thread is to send the message (x′2, 1) over x1, where x′2 is the
barrier associated with the messenger thread. The other side of that barrier, x2, is
given to the main thread. The main thread now forks off another messenger thread,
this time using that new barrier, x2. This gives the main thread yet another barrier,
x3, from which it receives the final answer, 1 + 2, via x3 ().

Note that, like in the asynchronous π-calculus, sending a message involves forking
off a tiny thread. Thus, like the asynchronous π-calculus, λ̄ should be viewed as a
theoretical core calculus, and not as a practical way to implement message passing.3

We can encapsulate this messenger thread pattern in a small library of channel
operations:

send(c, x) ≜ fork(λc′. c (c′, x))
receive(c) ≜ c ()

close(c) ≜ c ()

3 Because the messenger threads are always of a specific form, it might be possible to implement a compiler
that recognizes such patterns and implements them more efficiently. After all, the messenger threads do
nothing but immediately synchronize with another barrier.

152

4.2 the λ̄ language by example

Using this channel library, we can implement the preceding example in the following
way:

let x1 = fork(λx′1. let (x′2,n1) = receive(x′1)
let (x′3,n2) = receive(x′2)
let x′4 = send(x′3, n1 +n2)
close(x′4))

let x2 = send(x1, 1)
let x3 = send(x2, 2)
let (x4,n) = receive(x3)
print(n)
close(x4)

Session-typed channels usually also have choice, which allows choosing between two
continuation protocols. This can be encoded in λ̄ using sums inL(x) and inR(x):

tellL(c) ≜ fork(λc′. c inL(c′))
tellR(c) ≜ fork(λc′. c inR(c′))

ask(c) ≜ c ()

With these operations, we can implement the calculator example of Lindley and
Morris (Lindley and Morris, 2017). This example allows the client to choose whether
they want to add two numbers or negate a number. If the client chooses to add two
numbers, they then send two numbers as separate messages, and retrieve the answer
using receive. If the client chooses to negate a number, they then send only a single
number, and retrieve the answer using receive. This example illustrates the choice
between two different protocols for the remaining interaction:

let calc c =

match ask(c) with

| inL(c) ⇒ let (c,n) = receive(c)
let (c,m) = receive(c)
close(send(c, n+m))

| inR(c) ⇒ let (c,n) = receive(c)
close(send(c, −n))

end

153

4.2 the λ̄ language by example

Extending λ̄ with recursion (Section 4.6) allows us to implement unbounded
protocols, as illustrated by the following example:

let rec countdown c =

match ask(c) with

| inL(c) ⇒ close(c)
| inR(c) ⇒ let (c,n) = receive(c)

print(n)
if n = 0

then close(tellL(c))
else countdown (send(tellR(c), n− 1))

end

Given a channel c, the countdown c program first uses ask(c) to ask c if it wants
to terminate, and closes the channel if so. Otherwise it receives a number n from
c and prints it. Then it checks if the number n = 0, and if so tells the other side to
close (using tellL), and then closes our side. Otherwise it tells the other side that it
wants to continue (using tellR) and sends n− 1 to the other side. We can therefore
let countdown interact with a copy of itself, provided we start off one of the copies
with an initial message:

countdown send(tellR(fork(countdown)), 10)

This program will print the numbers 10 9 8 · · · 1 0, in that order. The odd numbers
are printed by the main thread, and the even numbers are printed by the child
thread.

As we shall see later, this is all type-safe. If we had not started off one
of the countdowns with an initial message, and had instead simply done
countdown fork(countdown), then we would have had a static type error. The reason
is that the first action of countdown c is to perform ask(c), which requires c to be of
type () −◦ τ, where τ is the type of the message sent by the child thread.The type
of fork allows τ1 −◦ τ2 to interact with τ2 −◦ τ1. Therefore, τ would have to be () in
order to make () −◦ τ interact with itself, but the message type τ is a sum type in
this case, and thus not ().

This way, the λ̄ type system ensures that channel protocols are correctly followed,
even though the λ̄ type system has no session types and no notion of duality and
instead simply uses function types τ1 −◦ τ2 for barriers. We do not need an explicit
notion of duality because the function type constructor is self-dual, in the sense that
if x : τ1 −◦ τ2 is a barrier, then the dual barrier with which x will synchronize has
type x′ : τ2 −◦ τ1. We will see more about encoding session types in λ̄ in Section 4.4.

154

4.2 the λ̄ language by example

Extending λ̄ with recursion (Section 4.6) allows us to implement unbounded
protocols, as illustrated by the following example:

let rec countdown c =

match ask(c) with

| inL(c) ⇒ close(c)
| inR(c) ⇒ let (c,n) = receive(c)

print(n)
if n = 0

then close(tellL(c))
else countdown (send(tellR(c), n− 1))

end

Given a channel c, the countdown c program first uses ask(c) to ask c if it wants
to terminate, and closes the channel if so. Otherwise it receives a number n from
c and prints it. Then it checks if the number n = 0, and if so tells the other side to
close (using tellL), and then closes our side. Otherwise it tells the other side that it
wants to continue (using tellR) and sends n− 1 to the other side. We can therefore
let countdown interact with a copy of itself, provided we start off one of the copies
with an initial message:

countdown send(tellR(fork(countdown)), 10)

This program will print the numbers 10 9 8 · · · 1 0, in that order. The odd numbers
are printed by the main thread, and the even numbers are printed by the child
thread.

As we shall see later, this is all type-safe. If we had not started off one
of the countdowns with an initial message, and had instead simply done
countdown fork(countdown), then we would have had a static type error. The reason
is that the first action of countdown c is to perform ask(c), which requires c to be of
type () −◦ τ, where τ is the type of the message sent by the child thread.The type
of fork allows τ1 −◦ τ2 to interact with τ2 −◦ τ1. Therefore, τ would have to be () in
order to make () −◦ τ interact with itself, but the message type τ is a sum type in
this case, and thus not ().

This way, the λ̄ type system ensures that channel protocols are correctly followed,
even though the λ̄ type system has no session types and no notion of duality and
instead simply uses function types τ1 −◦ τ2 for barriers. We do not need an explicit
notion of duality because the function type constructor is self-dual, in the sense that
if x : τ1 −◦ τ2 is a barrier, then the dual barrier with which x will synchronize has
type x′ : τ2 −◦ τ1. We will see more about encoding session types in λ̄ in Section 4.4.

154

4.3 the λ̄ type system and operational semantics

.

x :τ ⊢ x : τ

Γ , x :τ1 ⊢ e : τ2

Γ ⊢ λx. e : τ1 −◦ τ2

Γ1 ⊢ e1 : τ1 −◦ τ2 Γ2 ⊢ e2 : τ1

Γ1, Γ2 ⊢ e1 e2 : τ2

Γ1 ⊢ e1 : τ1 Γ2 ⊢ e2 : τ2

Γ1, Γ2 ⊢ (e1, e2) : τ1 × τ2

Γ1 ⊢ e1 : τ1 × τ2 Γ2, x1 :τ1, x2 :τ2 ⊢ e2 : τ3

Γ1, Γ2 ⊢ let (x1, x2) = e1 in e2 : τ3

Γ ⊢ e : τ1

Γ ⊢ inL(e) : τ1 + τ2

Γ ⊢ e : τ2

Γ ⊢ inR(e) : τ1 + τ2

Γ1 ⊢ e : τ1 + τ2 Γ2, x1 :τ1 ⊢ e1 : τ′ Γ2, x2 :τ2 ⊢ e2 : τ′

Γ1, Γ2 ⊢ match e with inL(x1) ⇒ e1; inR(x2) ⇒ e2 end : τ′

Figure 26: Linear λ-calculus with sums and products (rules for 0 and 1 omitted).

4.3 the λ̄ type system and operational semantics

Like GV (Wadler, 2012) and its derivatives (Lindley and Morris, 2015, 2016c, 2017;
Fowler et al., 2019, 2021), the basis of λ̄ is a linear simply typed λ-calculus. We
have sums, products, and the linear function type τ1 −◦ τ2. Variables of linear type
must be used exactly once: they cannot be duplicated (contracted) or discarded
(weakened), so that one must use one of the elimination rules of the type.

τ ∈ Type ::= 0 | 1 | τ× τ | τ+ τ | τ −◦ τ | τ → τ

Our basis linear λ-calculus has the following grammar of expressions, which
consists of introduction and elimination forms for each type:

e ∈ Expr ::= x | () | (e, e) | inL(e) | inR(e) | λx. e | e e | let (x1, x2) = e in e |
match e with end | match e with inL(x1) ⇒ e1; inR(x2) ⇒ e2 end

The typing rules are standard and can be found in Figure 26.
We now have a substrate to which we will add concurrency constructs. GV (Wadler,

2012; Lindley and Morris, 2015, 2016c, 2017; Fowler et al., 2019, 2021) introduces
concurrency by means of a construct to spawn a new thread, with which we can
communicate using a channel. Communication is governed by session types, such
that the two endpoints of a channel are typed with dual session types. Instead, λ̄
extends the substrate with concurrency in a minimal way, adding one new construct
to create new threads:

e ∈ Expr ::= · · · | fork(e)

155

4.3 the λ̄ type system and operational semantics

This is the typing rule for fork:

Γ ⊢ e : (τ2 −◦ τ1) −◦ 1

Γ ⊢ fork(e) : τ1 −◦ τ2

Or, as a type signature:

fork : ((τ1 −◦ τ2) −◦ 1) → (τ2 −◦ τ1)

The type of fork uses the linear function type. We do not need an explicit notion
of duality, like session types do, because the function type constructor is self-dual, in
the sense that if x : τ1 −◦ τ2 is a barrier, then the dual barrier x′ with which x will
synchronize has type x′ : τ2 −◦ τ1.

4.3.1 Operational semantics

We use a small-step operational semantics with evaluation contexts. In order to
represent barriers, we add barrier literals ⟨k⟩ ,k ∈ N to the expressions. A barrier
literal cannot appear in the source program, as the static type system has no typing
rule for it. Barrier literals only appear in expressions at runtime when the operational
semantics executes a fork-step. This gives us the following set of values for the
language:

v ∈Val ::= () | (v, v) | inL(v) | inR(v) | λx. e | ⟨k⟩

We have four pure head-reduction rules e�pure e′, one for λ, one for pairs, and
two for sums, as stated in Figure 27. We use evaluation contexts to avoid introducing
many congruence rules:4

K ::= □ | (K, e) | (v,K) | inL(K) | inR(K) | K e | v K | fork(K) | let (x1, x2) = K in e

| match K with end | match K with inL(x1) ⇒ e1; inR(x2) ⇒ e2 end

We represent a configuration with multiple threads and barriers as a finite map:

ρ ∈ Cfg ≜ N
fin−⇀ Thread(Expr) +Barrier

We define a configuration step relation ρ
i
� ρ′. The label i ∈ N is used to keep

track of which thread or barrier in the configuration takes the step. This has no
effect on the operational semantics, but we will later use it to formulate deadlock
freedom. The rules for the configuration step relation are given in Figure 27. We
have the following five rules, in the order of the figure:

4 This set of evaluation contexts results in left-to-right evaluation order, but the mechanization has been set
up so that the proof scripts work for right-to-left and nondeterministic order as well.

156

4.3 the λ̄ type system and operational semantics

This is the typing rule for fork:

Γ ⊢ e : (τ2 −◦ τ1) −◦ 1

Γ ⊢ fork(e) : τ1 −◦ τ2

Or, as a type signature:

fork : ((τ1 −◦ τ2) −◦ 1) → (τ2 −◦ τ1)

The type of fork uses the linear function type. We do not need an explicit notion
of duality, like session types do, because the function type constructor is self-dual, in
the sense that if x : τ1 −◦ τ2 is a barrier, then the dual barrier x′ with which x will
synchronize has type x′ : τ2 −◦ τ1.

4.3.1 Operational semantics

We use a small-step operational semantics with evaluation contexts. In order to
represent barriers, we add barrier literals ⟨k⟩ ,k ∈ N to the expressions. A barrier
literal cannot appear in the source program, as the static type system has no typing
rule for it. Barrier literals only appear in expressions at runtime when the operational
semantics executes a fork-step. This gives us the following set of values for the
language:

v ∈Val ::= () | (v, v) | inL(v) | inR(v) | λx. e | ⟨k⟩

We have four pure head-reduction rules e�pure e′, one for λ, one for pairs, and
two for sums, as stated in Figure 27. We use evaluation contexts to avoid introducing
many congruence rules:4

K ::= □ | (K, e) | (v,K) | inL(K) | inR(K) | K e | v K | fork(K) | let (x1, x2) = K in e

| match K with end | match K with inL(x1) ⇒ e1; inR(x2) ⇒ e2 end

We represent a configuration with multiple threads and barriers as a finite map:

ρ ∈ Cfg ≜ N
fin−⇀ Thread(Expr) +Barrier

We define a configuration step relation ρ
i
� ρ′. The label i ∈ N is used to keep

track of which thread or barrier in the configuration takes the step. This has no
effect on the operational semantics, but we will later use it to formulate deadlock
freedom. The rules for the configuration step relation are given in Figure 27. We
have the following five rules, in the order of the figure:

4 This set of evaluation contexts results in left-to-right evaluation order, but the mechanization has been set
up so that the proof scripts work for right-to-left and nondeterministic order as well.

156

4.3 the λ̄ type system and operational semantics

(λx. e) v�pure e[v/x]
let (x1, x2) = (v1, v2) in e�pure e[v1/x1][v2/x2]

match inL(v) with inL(x1) ⇒ e1 | inR(x2) ⇒ e2 end�pure e1[v/x1]
match inR(v) with inL(x1) ⇒ e1 | inR(x2) ⇒ e2 end�pure e2[v/x2]


n ↦→ Thread(K[e1])


n
�


n ↦→ Thread(K[e2])


if e1 �pure e2 (pure)


n ↦→ Thread(K[fork(v)])


n
�




n ↦→ Thread(K[⟨k⟩])
k ↦→ Barrier
m ↦→ Thread(v ⟨k⟩)




(fork)




n ↦→ Thread(K1[⟨k⟩ v1])
k ↦→ Barrier
m ↦→ Thread(K2[⟨k⟩ v2])




k
�


n ↦→ Thread(K1[v2])
m ↦→ Thread(K2[v1])


(sync)


n ↦→ Thread(())


n
�


(exit)

ρ1 ⊎ ρ′
i
� ρ2 ⊎ ρ′ if ρ1

i
� ρ2 (⊎ is disjoint union) (frame)

Figure 27: The operational semantics of λ̄.

(pure) A rule for pure reductions for a single thread.

(fork) A rule for forking a new thread, which adds the new thread and a barrier k
to the configuration. The two threads get access to the barrier via the barrier
literal ⟨k⟩.

(sync) A rule to synchronize on a barrier. The two threads that are synchronizing
exchange the values v1 and v2. This step removes the barrier.

(exit) A rule for removing finished threads from the configuration.

(frame) A rule for extending the preceding rules to larger configurations, by
allowing the rest of the configuration to pass through unchanged.

This is a possible execution of the second example from Section 4.2:

157

4.4 encoding session types in λ̄




0 ↦→ Thread



let x = fork(λx′. print(x′ 1))
let y = fork(λy′. y′ x)
print(1 + y () 0)







0
�




0 ↦→ Thread


let y = fork(λy′. y′ ⟨1⟩)
print(1 + y () 0)



1 ↦→ Barrier

2 ↦→ Thread (print(⟨1⟩ 1))




0
�




0 ↦→ Thread

print(1 + ⟨3⟩ () 0)



1 ↦→ Barrier

2 ↦→ Thread (print(⟨1⟩ 1))
3 ↦→ Barrier

4 ↦→ Thread (⟨3⟩ ⟨1⟩)




3
�




0 ↦→ Thread

print(1 + ⟨1⟩ 0)



1 ↦→ Barrier

2 ↦→ Thread (print(⟨1⟩ 1))
4 ↦→ Thread (())




4
�




0 ↦→ Thread

print(1 + ⟨1⟩ 0)



1 ↦→ Barrier

2 ↦→ Thread (print(⟨1⟩ 1))




1
�


0 ↦→ Thread


print(1 + 1)



2 ↦→ Thread (print(0))


2∗
�


0 ↦→ Thread


print(1 + 1)


1∗
�



For simplicity, we treat print on natural numbers as a no-op that returns (), instead
of adding an output log to the semantics, because whether or not print logs its output
somewhere does not affect the further execution of the program.

While untyped λ̄ programs can easily get stuck, for instance if one side throws
away its barrier, or sets up cyclic waiting dependencies, well-typed λ̄ programs never
get stuck. More formally, we prove global progress (in Section 4.5), which means that
if we start with an initial program e : 1, then any non-empty configuration we can
reach from e can step further. But first, we will encode session types in λ̄.

4.4 encoding session types in λ̄

Despite being very simple, λ̄’s type system can encode session types. There are five
basic session type constructors:

s ∈ Session ≜ End | !τ.s | ?τ.s | s⊕ s | s& s

The type !τ.s means to send a value of type τ and then continue with s. Dually,
?τ.s means to receive a value of type τ and then continue with s. The type s1 ⊕ s2

indicates that we have a choice of continuing either with protocol s1 or with s2.
Dually, the type s1 & s2 means that we receive a choice from the other side: either
we have to continue with protocol s1 or with protocol s2, depending on what the
other side chose. Lastly, the protocol End means that we are done with the channel

158

4.4 encoding session types in λ̄




0 ↦→ Thread



let x = fork(λx′. print(x′ 1))
let y = fork(λy′. y′ x)
print(1 + y () 0)







0
�




0 ↦→ Thread


let y = fork(λy′. y′ ⟨1⟩)
print(1 + y () 0)



1 ↦→ Barrier

2 ↦→ Thread (print(⟨1⟩ 1))




0
�




0 ↦→ Thread

print(1 + ⟨3⟩ () 0)



1 ↦→ Barrier

2 ↦→ Thread (print(⟨1⟩ 1))
3 ↦→ Barrier

4 ↦→ Thread (⟨3⟩ ⟨1⟩)




3
�




0 ↦→ Thread

print(1 + ⟨1⟩ 0)



1 ↦→ Barrier

2 ↦→ Thread (print(⟨1⟩ 1))
4 ↦→ Thread (())




4
�




0 ↦→ Thread

print(1 + ⟨1⟩ 0)



1 ↦→ Barrier

2 ↦→ Thread (print(⟨1⟩ 1))




1
�


0 ↦→ Thread


print(1 + 1)



2 ↦→ Thread (print(0))


2∗
�


0 ↦→ Thread


print(1 + 1)


1∗
�



For simplicity, we treat print on natural numbers as a no-op that returns (), instead
of adding an output log to the semantics, because whether or not print logs its output
somewhere does not affect the further execution of the program.

While untyped λ̄ programs can easily get stuck, for instance if one side throws
away its barrier, or sets up cyclic waiting dependencies, well-typed λ̄ programs never
get stuck. More formally, we prove global progress (in Section 4.5), which means that
if we start with an initial program e : 1, then any non-empty configuration we can
reach from e can step further. But first, we will encode session types in λ̄.

4.4 encoding session types in λ̄

Despite being very simple, λ̄’s type system can encode session types. There are five
basic session type constructors:

s ∈ Session ≜ End | !τ.s | ?τ.s | s⊕ s | s& s

The type !τ.s means to send a value of type τ and then continue with s. Dually,
?τ.s means to receive a value of type τ and then continue with s. The type s1 ⊕ s2

indicates that we have a choice of continuing either with protocol s1 or with s2.
Dually, the type s1 & s2 means that we receive a choice from the other side: either
we have to continue with protocol s1 or with protocol s2, depending on what the
other side chose. Lastly, the protocol End means that we are done with the channel

158

4.4 encoding session types in λ̄

and we must deallocate it. Session types make the notion of duality explicit using
the function dual : Session → Session:

dual(End) ≜ End

dual(!τ.s) ≜ ?τ.dual(s)
dual(?τ.s) ≜ !τ.dual(s)

dual(s1 ⊕ s2) ≜ dual(s1)& dual(s2)
dual(s1 & s2) ≜ dual(s1) ⊕ dual(s2)

The idea is that if our channel has type s, then the channel of the party we are
communicating with has type dual(s). This is the list of channel operations and their
types:

forkGV : (s −◦ 1) → dual(s)
Fork off a new thread running the closure. Passes a channel of type s to the
child thread, and returns a channel of type dual(s) to the main thread.

close : End → 1
Close and deallocate the channel. Returns unit ().

send : !τ .s × τ → s

Send a message of type τ to the channel. Returns a new channel of type s for
performing the rest of the protocol.

receive : ?τ .s → s × τ

Receive a message from the channel. Returns a pair s × τ of the channel for
performing the rest of the protocol (type s) and the message received (type τ).

tellL : s1 ⊕ s2 → s1

In a branching protocol, choose the left branch. Returns a channel of the chosen
type.

tellR : s1 ⊕ s2 → s2

In a branching protocol, choose the right branch. Returns a channel of the
chosen type.

ask : s1 & s2 → s1 + s2

Receives the choice made by the other side. Returns a sum type, which is
inL(c) with c : s1 if the left branch was chosen by the other side, and inR(c)
with c : s2 if the right branch was chosen.5

We will encode channels as λ̄’s barriers, and we therefore encode a session type
s as a linear function type τ1 −◦ τ2 where τ1, τ2 are determined from s. Intuitively,
the sending side not only transfers the values specified by the protocol, but also a

5 In the original GV, branching was combined with receiving a choice. We decouple them, and let receiving
a choice return a sum type, which can subsequently be pattern matched on using match.

159

4.4 encoding session types in λ̄

continuation channel for the remainder of the protocol. The continuation channel
is connected to a tiny messenger thread, which is responsible for synchronizing
with the old barrier, as we did in Section 4.2. We define an encoding function
[[·]] : Session →Type that converts a session type to a λ̄ type. The encoding of session
types into λ̄ types is as follows:

[[End]] ≜ 1 −◦ 1

[[!τ.s]] ≜ [[dual(s)]] × τ −◦ 1

[[?τ.s]] ≜ 1 −◦ [[s]] × τ

[[s1 ⊕ s2]] ≜ [[dual(s1)]] + [[dual(s2)]] −◦ 1

[[s1 & s2]] ≜ 1 −◦ [[s1]] + [[s2]]

Using this encoding, we can implement channel operations with type signatures
matching their native session-typed version, provided we use the encoding:

forkGV : ([[s]] −◦ 1) → [[dual(s)]] forkGV (x) ≜ fork(x)
close : [[End]] → 1 close(c) ≜ c ()
send : [[!τ.s]] × τ → [[s]] send(c, x) ≜ fork(λc′. c (c′, x))

receive : [[?τ.s]] → [[s]] × τ receive(c) ≜ c ()
tellL : [[s1 ⊕ s2]] → [[s1]] tellL(c) ≜ fork(λc′. c inL(c′))
tellR : [[s1 ⊕ s2]] → [[s2]] tellR(c) ≜ fork(λc′. c inR(c′))

ask : [[s1 & s2]] → [[s1]] + [[s2]] ask(c) ≜ c ()

The fork operation for channels simply delegates to the fork operation of λ̄, because
a channel is represented as a barrier.

formal statement of well-typedness of the encodings You may note
that while there is an encoding function [[·]] of session types into λ̄ types, there is no
explicit encoding function of GV terms to λ̄ terms. This is intentional: because the
translation is local, the definitions above can be viewed as syntactic abbreviations or
macros. For instance, we can define the abbreviation

tellL ≜ λc. fork(λc′. c inL(c′))

of the tellL channel operation as a closed syntactic λ̄ term. We can then prove that
for all session types s1 and s2, the typing judgement

∅ ⊢ tellL : [[s1 ⊕ s2]] → [[s1]]

160

4.4 encoding session types in λ̄

continuation channel for the remainder of the protocol. The continuation channel
is connected to a tiny messenger thread, which is responsible for synchronizing
with the old barrier, as we did in Section 4.2. We define an encoding function
[[·]] : Session →Type that converts a session type to a λ̄ type. The encoding of session
types into λ̄ types is as follows:

[[End]] ≜ 1 −◦ 1

[[!τ.s]] ≜ [[dual(s)]] × τ −◦ 1

[[?τ.s]] ≜ 1 −◦ [[s]] × τ

[[s1 ⊕ s2]] ≜ [[dual(s1)]] + [[dual(s2)]] −◦ 1

[[s1 & s2]] ≜ 1 −◦ [[s1]] + [[s2]]

Using this encoding, we can implement channel operations with type signatures
matching their native session-typed version, provided we use the encoding:

forkGV : ([[s]] −◦ 1) → [[dual(s)]] forkGV (x) ≜ fork(x)
close : [[End]] → 1 close(c) ≜ c ()
send : [[!τ.s]] × τ → [[s]] send(c, x) ≜ fork(λc′. c (c′, x))

receive : [[?τ.s]] → [[s]] × τ receive(c) ≜ c ()
tellL : [[s1 ⊕ s2]] → [[s1]] tellL(c) ≜ fork(λc′. c inL(c′))
tellR : [[s1 ⊕ s2]] → [[s2]] tellR(c) ≜ fork(λc′. c inR(c′))

ask : [[s1 & s2]] → [[s1]] + [[s2]] ask(c) ≜ c ()

The fork operation for channels simply delegates to the fork operation of λ̄, because
a channel is represented as a barrier.

formal statement of well-typedness of the encodings You may note
that while there is an encoding function [[·]] of session types into λ̄ types, there is no
explicit encoding function of GV terms to λ̄ terms. This is intentional: because the
translation is local, the definitions above can be viewed as syntactic abbreviations or
macros. For instance, we can define the abbreviation

tellL ≜ λc. fork(λc′. c inL(c′))

of the tellL channel operation as a closed syntactic λ̄ term. We can then prove that
for all session types s1 and s2, the typing judgement

∅ ⊢ tellL : [[s1 ⊕ s2]] → [[s1]]

160

4.4 encoding session types in λ̄

for the tellL term given above is derivable from λ̄’s typing rules. The most interesting
case is fork; in order to prove

∅ ⊢ fork : ([[s]] −◦ 1) → [[dual(s)]]

for all session types s, we rely on the following lemma about dual and the encoding
[[·]]:

([[s]] = τ1 −◦ τ2) ⇐⇒ ([[dual(s)]] = τ2 −◦ τ1)

That is, if the session types are dual in the session types sense, then their encodings
are dual in the λ̄ sense.

The advantage of this approach is its simplicity and that we can freely intermix
channels with direct usage of barriers in the same program. However, for our
simulation result (Section 4.4.1), we do need an explicit definition of GV syntax and
a translation of GV terms to λ̄ terms.

a note on the mechanization and n-ary choice We can combine n-ary
choice with sending/receiving a message in a single communication step using
n-ary sum types:

sendchoicei : !{i : τi.si}i∈I × τi → si

receivechoice : ?{i : τi.si}i∈I → Σi∈I si × τi

This can also be encoded in λ̄, and is what is provided by the mechanization (4.7):

sendchoicei(c, x) ≜ fork(λc′. c ini(c′, x))
receivechoice(c) ≜ c ()

encoding λ̄ in gv We can also do the encoding the other way around, and
implement λ̄’s fork in terms of GV’s channel constructs:

forkλ̄(f) ≜

let c1 = forkGV (λc′1. f (λv′. let c′2 = send(c′1, v′)
let (c′3, v) = receive(c′2)
close(c′3); v))

λv. let (c2, v′) = receive(c1)
let c3 = send(c2, v)
close(c3); v′

Given how short the encodings of GV’s channel operations in λ̄ are, it is perhaps
surprising that the other way around requires comparatively more code.

161

4.4 encoding session types in λ̄

4.4.1 Simulation of GV’s semantics with λ̄’s semantics

To show that the encoding makes sense, we prove that we can simulate an
asynchronous version of GV using λ̄’s semantics. We use an asynchronous semantics
(�GV) for GV, so the GV configuration contains buffers. For details about the GV
semantics used in the proof, we refer the reader to the mechanization (Section 4.7).
The key idea behind the simulation is that each message in a buffer on the GV
side corresponds to a messenger thread on the λ̄ side. Whenever a message is put
in a buffer on the GV side, a messenger thread is created on the λ̄ side, and the
messenger thread will be waiting to synchronize with a barrier. Whenever a message
is received from a channel’s buffer on the GV side, the receiver and the messenger
thread execute their sync operation on the λ̄ side, which sends the message to the
receiver and allows the messenger thread to terminate.

Formally, we start with an encoding [[e]] that translates GV terms to the
corresponding λ̄ terms by replacing all occurrences of GV channel operations with
their λ̄ definitions given above. We then extend this translation to configurations
[[ρ]], The translation on configurations replaces each buffer in the GV heap with a
sequence of λ̄ messenger threads, with one messenger thread per message in the
buffer. With these notions at hand, we can show that the λ̄ encodings simulate the
GV semantics.

Lemma 4.4.1 (Simulation). If ρ�GV ρ′ then [[ρ]]�∗ [[ρ′]]

This lemma has been mechanized in Coq (Section 4.7). We need the transitive
closure (�∗) on the λ̄ side, because a single step in the GV semantics can correspond
to multiple steps in the λ̄ semantics, since the λ̄ semantics does extra administrative
β-reductions. For instance, when the GV program does a send(c, v) operation, it
places the message v in the buffer in one step. The translated λ̄ program on the
other hand spawns a messenger thread with [[send(c, v)]] = fork(λc′. c (c′, v)), which
initializes the new thread with the term (λc′. c (c′, v)) ⟨k⟩ where ⟨k⟩ is the newly
created barrier. The messenger thread then performs the β-reduction, resulting in
an extra step on the λ̄ side.

To get a full operational correspondence (Gorla, 2010), we need a second “reflection”
lemma stating that if the image of the translation [[ρ]] takes a step, then this step
can be matched with a corresponding step in the GV semantics. Note that this only
holds for well-typed terms: if we have the ill-typed term receive(λx. x) in the GV
source, this is translated to well-typed (λx. x)() in λ̄. Thus, whereas receive(λx. x)
gets stuck in the GV semantics, its translation does not get stuck in the λ̄ semantics.
We do expect a full operational correspondence to hold for well-typed terms, but
while we have mechanized the proof of the simulation direction (Theorem 4.4.1),
we have not mechanized a full operational correspondence. With a full operational
correspondence it would be possible to lift λ̄’s deadlock freedom result to GV, and
it would be interesting to see whether using λ̄ as a “proof IR” in this manner is a
viable strategy for proving deadlock freedom of GV.

162

4.4 encoding session types in λ̄

4.4.1 Simulation of GV’s semantics with λ̄’s semantics

To show that the encoding makes sense, we prove that we can simulate an
asynchronous version of GV using λ̄’s semantics. We use an asynchronous semantics
(�GV) for GV, so the GV configuration contains buffers. For details about the GV
semantics used in the proof, we refer the reader to the mechanization (Section 4.7).
The key idea behind the simulation is that each message in a buffer on the GV
side corresponds to a messenger thread on the λ̄ side. Whenever a message is put
in a buffer on the GV side, a messenger thread is created on the λ̄ side, and the
messenger thread will be waiting to synchronize with a barrier. Whenever a message
is received from a channel’s buffer on the GV side, the receiver and the messenger
thread execute their sync operation on the λ̄ side, which sends the message to the
receiver and allows the messenger thread to terminate.

Formally, we start with an encoding [[e]] that translates GV terms to the
corresponding λ̄ terms by replacing all occurrences of GV channel operations with
their λ̄ definitions given above. We then extend this translation to configurations
[[ρ]], The translation on configurations replaces each buffer in the GV heap with a
sequence of λ̄ messenger threads, with one messenger thread per message in the
buffer. With these notions at hand, we can show that the λ̄ encodings simulate the
GV semantics.

Lemma 4.4.1 (Simulation). If ρ�GV ρ′ then [[ρ]]�∗ [[ρ′]]

This lemma has been mechanized in Coq (Section 4.7). We need the transitive
closure (�∗) on the λ̄ side, because a single step in the GV semantics can correspond
to multiple steps in the λ̄ semantics, since the λ̄ semantics does extra administrative
β-reductions. For instance, when the GV program does a send(c, v) operation, it
places the message v in the buffer in one step. The translated λ̄ program on the
other hand spawns a messenger thread with [[send(c, v)]] = fork(λc′. c (c′, v)), which
initializes the new thread with the term (λc′. c (c′, v)) ⟨k⟩ where ⟨k⟩ is the newly
created barrier. The messenger thread then performs the β-reduction, resulting in
an extra step on the λ̄ side.

To get a full operational correspondence (Gorla, 2010), we need a second “reflection”
lemma stating that if the image of the translation [[ρ]] takes a step, then this step
can be matched with a corresponding step in the GV semantics. Note that this only
holds for well-typed terms: if we have the ill-typed term receive(λx. x) in the GV
source, this is translated to well-typed (λx. x)() in λ̄. Thus, whereas receive(λx. x)
gets stuck in the GV semantics, its translation does not get stuck in the λ̄ semantics.
We do expect a full operational correspondence to hold for well-typed terms, but
while we have mechanized the proof of the simulation direction (Theorem 4.4.1),
we have not mechanized a full operational correspondence. With a full operational
correspondence it would be possible to lift λ̄’s deadlock freedom result to GV, and
it would be interesting to see whether using λ̄ as a “proof IR” in this manner is a
viable strategy for proving deadlock freedom of GV.

162

4.5 deadlock freedom , leak freedom , and global progress

4.4.2 Summary

To add GV’s session types to linear λ-calculus, we need to add the 5 new session
type formers, the notion of duality, and the 7 session type operations. In contrast,
λ̄ only adds one new operation, fork, and no new type formers and no notion of
duality. Nevertheless, we have seen that we can encode session types in λ̄.

The encoding creates a new thread to store each message. Thus, λ̄ should not be
viewed as a practical way to implement session types, but as a theoretical calculus,
like other calculi that create one thread per message, such as the asynchronous
π-calculus.

4.5 deadlock freedom , leak freedom , and global progress

Linear typing in λ̄ guarantees strong properties for well-typed programs:

type safety : threads never get stuck, except by synchronizing with a barrier.

global progress : a non-empty configuration can always take a step.

strong deadlock freedom : no subset of the threads gets stuck by waiting for
each other.

memory leak freedom : all barriers in the configuration remain referenced by a
thread.

These properties are all inequivalent in strength: none of the 4 properties is strictly
stronger than another. In Section 4.5.3 we consider a property that is strictly stronger
than these 4, but we will first focus on global progress (Section 4.5.1), as ideas behind
the proof of global progress (Section 4.5.2), are also sufficient to prove the stronger
property (Section 4.5.3).

4.5.1 Global progress

Let us consider the formal statement of global progress:

Theorem 4.5.1 (Global progress).

If ∅ ⊢ e : 1, and
{
0 ↦→ Thread(e)

}
�

∗
ρ, then either ρ =

{}
or ∃ρ′. ρ� ρ′.

Intuitively, global progress states that if we start with a well-typed program, then
any configuration we reach is either empty (i.e., all threads have terminated and
all barriers have been deallocated), or the configuration can perform a step. This
property relies on linear typing, as λ̄ programs that violate linearity can deadlock
and create a non-empty configuration that cannot step. A simple example is if one
side does not use its barrier:

let x = fork(λx′. ()) in x 0 Deadlock!

163

4.5 deadlock freedom , leak freedom , and global progress

This deadlock is prevented by the linear type system, which ensures that each
barrier is used exactly once. More complicated deadlocks are also possible in untyped
programs, in which there is a circle of threads T1 T2 T3 T4 connected by barriers

that are trying to synchronize () in a cycle:

T1 T2

T3T4

No thread can make progress because the threads are all synchronizing on different
barriers. This shows that a simplistic scheme to prove deadlock freedom cannot
work: we must somehow rule out such cycles. Fortunately, the linear type system
ensures that the graph of connections between threads has the shape of a forest (i.e.,
collection of trees, i.e., an acyclic graph), and thus such circular deadlocks cannot
happen. To see why the graph remains acyclic, consider what happens when we
fork:

let x1 = fork(...)
let x2 = fork(...)
let x3 = fork(...)
let y = fork(λy′. · · · x2 · · · x3 · · ·)
· · · x1 · · ·

At the fourth fork, the barriers x2 and x3 are transferred to the new thread via lexical
scoping, while the main thread keeps x1 for itself. This is what happens to the graph:

T1

�

T1 T2

On the left hand side, we have the thread T1 that is about to perform the fourth
fork. It currently owns 3 barriers x1, x2, x3, which are connected to the rest of the
graph. After the fork, we have the new thread T2, which is connected to T1 by means
of a new barrier. Crucially, the barriers x2 and x3 of the barriers that T1 used to
own were transferred to T2 by means of lexical scoping. Nevertheless, as one can
see in the figure above, if the graph of the configuration before the fork was acyclic,
then the graph of the configuration after the fork is also acyclic. The same applies

164

4.5 deadlock freedom , leak freedom , and global progress

This deadlock is prevented by the linear type system, which ensures that each
barrier is used exactly once. More complicated deadlocks are also possible in untyped
programs, in which there is a circle of threads T1 T2 T3 T4 connected by barriers

that are trying to synchronize () in a cycle:

T1 T2

T3T4

No thread can make progress because the threads are all synchronizing on different
barriers. This shows that a simplistic scheme to prove deadlock freedom cannot
work: we must somehow rule out such cycles. Fortunately, the linear type system
ensures that the graph of connections between threads has the shape of a forest (i.e.,
collection of trees, i.e., an acyclic graph), and thus such circular deadlocks cannot
happen. To see why the graph remains acyclic, consider what happens when we
fork:

let x1 = fork(...)
let x2 = fork(...)
let x3 = fork(...)
let y = fork(λy′. · · · x2 · · · x3 · · ·)
· · · x1 · · ·

At the fourth fork, the barriers x2 and x3 are transferred to the new thread via lexical
scoping, while the main thread keeps x1 for itself. This is what happens to the graph:

T1

�

T1 T2

On the left hand side, we have the thread T1 that is about to perform the fourth
fork. It currently owns 3 barriers x1, x2, x3, which are connected to the rest of the
graph. After the fork, we have the new thread T2, which is connected to T1 by means
of a new barrier. Crucially, the barriers x2 and x3 of the barriers that T1 used to
own were transferred to T2 by means of lexical scoping. Nevertheless, as one can
see in the figure above, if the graph of the configuration before the fork was acyclic,
then the graph of the configuration after the fork is also acyclic. The same applies

164

4.5 deadlock freedom , leak freedom , and global progress

to a synchronization step, when values containing potentially multiple barriers are
exchanged:

T1 T2 � T1 T2

On the left, T1 and T2 each own 3 barriers, and they are also connected by a barrier.
On the right, after the synchronization has taken place, the barrier between them has
disappeared. Two of the barriers of T1 were transferred to T2, and one of the barriers
of T2 was transferred to T1. Once again, if the graph on the left was acyclic, then the
graph on the right will still be acyclic.6

The other operations of λ̄ do not change the connections in the graph. Therefore, a
program starts with a single thread, and then grows and alters its graph in a dance
of fork and sync steps, but the graph remains acyclic at all times.

In the next section we will see in a bit more detail how the acyclicity of the graph
is used in the proof of global progress.

related work Graph theoretic deadlock-freedom arguments are common in the
session types literature and have previously been made by Carbone (Carbone and
Debois, 2010), Lindley and Morris (Lindley and Morris, 2015), and Fowler, Kokke,
Dardha, Lindley, and Morris (Fowler et al., 2021).

4.5.2 Structure of the global progress proof

This section gives more detail about how the acyclicity of the connection graph is
used to prove global progress. For the full details, the interested reader is referred to
the mechanization (Section 4.7).

Global progress states that if the configuration is non-empty, then it can take a
step. Formally, there are several types of stuck configurations to rule out. Perhaps
the configuration has a single thread and no barriers, but the thread is stuck on a
type error (violating type safety). Or perhaps the configuration consists of just one
barrier and no threads (violating memory leak freedom). Or perhaps there is a single

6 When one looks at the picture of the synchronizing threads, it seems that T1 becomes totally disconnected
from T2 after the synchronization. This means that the threads can only communicate once. Yet the
session-typed channel encoding seems to make it possible to communicate several times. Exercise for the
reader: what is the solution to this paradox?

165

4.5 deadlock freedom , leak freedom , and global progress

.

k :τ; ∅ ⊢ ⟨k⟩ : τ

.

∅; x :τ ⊢ x : τ

Σ; Γ , x :τ1 ⊢ e : τ2

Σ; Γ ⊢ λx. e : τ1 −◦ τ2

Σ1; Γ1 ⊢ e1 : τ1 −◦ τ2 Σ2; Γ2 ⊢ e2 : τ1

Σ1,Σ2; Γ1, Γ2 ⊢ e1 e2 : τ2

Figure 28: Run-time type system (selected rules).

thread and a single barrier, and the thread is trying to synchronize but is stuck due
to the absence of a partner to synchronize with (violating deadlock freedom).

The aforementioned stuck configurations and more complicated variations are
ruled out by keeping track of sufficient type information and local invariants for
each object in the configuration (e.g., that a barrier is always connected to exactly
two threads, and that the types of the references to the barrier are dual τ1 −◦ τ2

and τ2 −◦ τ1). The interesting case is when the types are all locally correct, but the
configuration is still deadlocked due to cyclic waiting. This case is ruled out by
proving that well-typed programs maintain the invariant that the connection graph
is acyclic, which implies that cyclic waiting cannot happen.

Formally, we define a well-formedness invariant of configurations, that maintains
well-typedness of the threads as well as the acyclicity of the connection graph. For
the well-typedness, we use the run-time type system in Figure 28.7 The rules of
the run-time type system correspond to the rules of the static type system, plus
one additional rule for typing barrier literals ⟨k⟩. The typing judgment uses an
additional Σ-context for typing those barrier literals.

We say that a configuration ρ is well-formed if we have an acyclic graph G (i.e., an
undirected forest) where the vertices correspond to the entries of the configuration,
and the edges (between threads and barriers) are labeled with types, such that for
each vertex i in G:

• If ρ(i) = Thread(e) then Σ; ∅ ⊢ e : 1, where Σ is given by the types on the edges of
the barriers connected to vertex i.

• If ρ(i) = Barrier then vertex i has edges to two different threads, labeled with dual
types τ1 −◦ τ2 and τ2 −◦ τ1.

These conditions ensure that the graph structure matches the structure of the
configuration: if we have a barrier literal ⟨k⟩ somewhere in the expression e of thread
n, then the first condition ensures that we have an edge between n and k, labeled
with a type τ1 −◦ τ2 to make expression e well-typed. The second condition then
ensures that there is a second thread with barrier literal ⟨k⟩ in its expression, with

7 Our run-time type system in Coq makes use of separation logic, following (Jacobs et al., 2022b). This is
equivalent to the type system in the figure, but easier to work with in a proof assistant.

166

4.5 deadlock freedom , leak freedom , and global progress

.

k :τ; ∅ ⊢ ⟨k⟩ : τ

.

∅; x :τ ⊢ x : τ

Σ; Γ , x :τ1 ⊢ e : τ2

Σ; Γ ⊢ λx. e : τ1 −◦ τ2

Σ1; Γ1 ⊢ e1 : τ1 −◦ τ2 Σ2; Γ2 ⊢ e2 : τ1

Σ1,Σ2; Γ1, Γ2 ⊢ e1 e2 : τ2

Figure 28: Run-time type system (selected rules).

thread and a single barrier, and the thread is trying to synchronize but is stuck due
to the absence of a partner to synchronize with (violating deadlock freedom).

The aforementioned stuck configurations and more complicated variations are
ruled out by keeping track of sufficient type information and local invariants for
each object in the configuration (e.g., that a barrier is always connected to exactly
two threads, and that the types of the references to the barrier are dual τ1 −◦ τ2

and τ2 −◦ τ1). The interesting case is when the types are all locally correct, but the
configuration is still deadlocked due to cyclic waiting. This case is ruled out by
proving that well-typed programs maintain the invariant that the connection graph
is acyclic, which implies that cyclic waiting cannot happen.

Formally, we define a well-formedness invariant of configurations, that maintains
well-typedness of the threads as well as the acyclicity of the connection graph. For
the well-typedness, we use the run-time type system in Figure 28.7 The rules of
the run-time type system correspond to the rules of the static type system, plus
one additional rule for typing barrier literals ⟨k⟩. The typing judgment uses an
additional Σ-context for typing those barrier literals.

We say that a configuration ρ is well-formed if we have an acyclic graph G (i.e., an
undirected forest) where the vertices correspond to the entries of the configuration,
and the edges (between threads and barriers) are labeled with types, such that for
each vertex i in G:

• If ρ(i) = Thread(e) then Σ; ∅ ⊢ e : 1, where Σ is given by the types on the edges of
the barriers connected to vertex i.

• If ρ(i) = Barrier then vertex i has edges to two different threads, labeled with dual
types τ1 −◦ τ2 and τ2 −◦ τ1.

These conditions ensure that the graph structure matches the structure of the
configuration: if we have a barrier literal ⟨k⟩ somewhere in the expression e of thread
n, then the first condition ensures that we have an edge between n and k, labeled
with a type τ1 −◦ τ2 to make expression e well-typed. The second condition then
ensures that there is a second thread with barrier literal ⟨k⟩ in its expression, with

7 Our run-time type system in Coq makes use of separation logic, following (Jacobs et al., 2022b). This is
equivalent to the type system in the figure, but easier to work with in a proof assistant.

166

4.5 deadlock freedom , leak freedom , and global progress

type τ2 −◦ τ1. Note that the two occurrences of the very same barrier literal ⟨k⟩ have
two different types in the two different threads.

Now that the configuration invariant has been defined, proof of global progress
(Theorem 4.5.1) can be structured as follows. Using well-typedness, we are able
to show that the only way a configuration can get stuck is if all threads are trying
to synchronize with a barrier. The invariant maintains that the graph structure
is always acyclic. By a mathematical argument about graphs and the pigeonhole
principle, we are then able to show that two of the threads must be synchronizing
on the same barrier. Hence, at least one synchronization step can proceed, and we
have global progress.

4.5.3 Strengthened deadlock and memory leak freedom

Global progress (Theorem 4.5.1) rules out whole-program deadlocks. It also ensures
that all barriers have been used when the program finishes. However, this theorem
does not guarantee anything as long as there is still a single thread that can step.
Thus it does not guarantee local deadlock freedom, nor memory leak freedom while
the program is still running, and it does not even guarantee type safety: a situation
in which a thread is stuck on a type error is formally not ruled out by this theorem
as long as there is another thread that can still step.

Our goal is to find a formulation that is strictly stronger than these 4 properties,
and from which they can be easily proved as corollaries. We take inspiration from
(Jacobs et al., 2022b), and find a strengthened formulation of deadlock freedom on
the one hand, and strengthened memory leak freedom on the other hand. These
strengthened formulations of deadlock freedom and memory leak freedom are
equivalent to each other, and they imply type safety and global progress. In order to
state these, we need the relation i waitingρ j, which says that i ∈ dom(ρ) is waiting
for j ∈ dom(ρ).

Intuitively, the meaning of waitingρ is as follows. When a barrier k gets allocated,
the literal ⟨k⟩ appears in two threads n1,n2. In this case we say that k waitingρ n1 and
k waitingρ n2, because the barrier is waiting until the threads want to synchronize
with it. Note that this relationship is dynamic: if the barrier literal ⟨k⟩ is transferred
to another thread, then the barrier is waiting for that new thread to synchronize with
it. Whenever a thread n starts trying to synchronize with k by calling ⟨k⟩ v for some
value v, then the waiting relationship flips: we now say that the thread is waiting for
the barrier, i.e., that n waitingρ k. Formally:

Definition 4.5.2. � We have i waitingρ j if either:

1. ρ(i) = Barrier and ρ(j) = Thread(e) and ⟨i⟩ ∈ e, but e ≠ K[⟨i⟩ v], or

2. ρ(i) = Thread(e) and ρ(j) = Barrier, and e = K[⟨j⟩ v]

Using this notion, we can define what a partial deadlock/leak is. Intuitively, a
partial deadlock is a situation in which there is some subset of the threads that are

167

4.5 deadlock freedom , leak freedom , and global progress

all waiting for each other. Because our notion of waiting also incorporates barriers,
we generalize this to say that a partial deadlock/leak is a situation in which there is
some subset of the threads and barriers that are all waiting for each other. Formally:

Definition 4.5.3 (Partial deadlock/leak �). Given a configuration ρ, a non-empty
subset S ⊆ dom(ρ) is in a partial deadlock/leak if these two conditions hold:

1. No i ∈ S can step, i.e., for all i ∈ S, ¬∃ρ′. ρ i
� ρ′

2. If i ∈ S and i waitingρ j then j ∈ S

This notion also incorporates memory leaks: if there is some barrier that is not
referenced by a thread, then the singleton set of that barrier is a partial deadlock/leak.
Similarly, a single thread that is not synchronizing on a barrier, is considered to be
in a singleton deadlock if it cannot step. This way, the notion of partial deadlock
incorporates type safety.

Definition 4.5.4 (Partial deadlock/leak freedom �). A configuration ρ is
deadlock/leak free if no S ⊆ dom(ρ) is in a partial deadlock/leak.

We also strengthen the standard notion of memory leak freedom, namely
reachability, to incorporate aspects of deadlock freedom.

Definition 4.5.5 (Reachability �). We inductively define the threads and barriers
that are reachable in ρ: j0 ∈ N is reachable in ρ if there is some sequence j1, j2, ..., jk
(with k ⩾ 0) such that j0 waitingρ j1, and j1 waitingρ j2, ..., and jk−1 waitingρ jk, and

finally jk can step in ρ, i.e., ∃ρ′. ρ jk
� ρ′.

Intuitively, an element j0 ∈ N is reachable if j0 can itself step or has a transitive
waiting dependency on some jk that can step. This notion is stronger than the usual
notion of reachability, which considers objects to be reachable even if they are only
reachable from threads that are blocked.

Definition 4.5.6. � A configuration ρ is fully reachable if all i ∈ dom(ρ) are reachable
in ρ.

As in (Jacobs et al., 2022b), our strengthened formulations of deadlock freedom
and full reachability are equivalent for λ̄:

Theorem 4.5.7. � A configuration ρ is deadlock/leak free if and only if it is fully reachable.

Furthermore, these notions imply global progress and type safety:

Definition 4.5.8. � A configuration ρ has progress if ρ = ∅ or ∃ρ′, i. ρ i
� ρ′.

Definition 4.5.9. � A configuration ρ is safe if for all i ∈ dom(ρ), either ∃ρ′, i. ρ i
� ρ′,

or ∃j. i waitingρ j.

168

4.5 deadlock freedom , leak freedom , and global progress

all waiting for each other. Because our notion of waiting also incorporates barriers,
we generalize this to say that a partial deadlock/leak is a situation in which there is
some subset of the threads and barriers that are all waiting for each other. Formally:

Definition 4.5.3 (Partial deadlock/leak �). Given a configuration ρ, a non-empty
subset S ⊆ dom(ρ) is in a partial deadlock/leak if these two conditions hold:

1. No i ∈ S can step, i.e., for all i ∈ S, ¬∃ρ′. ρ i
� ρ′

2. If i ∈ S and i waitingρ j then j ∈ S

This notion also incorporates memory leaks: if there is some barrier that is not
referenced by a thread, then the singleton set of that barrier is a partial deadlock/leak.
Similarly, a single thread that is not synchronizing on a barrier, is considered to be
in a singleton deadlock if it cannot step. This way, the notion of partial deadlock
incorporates type safety.

Definition 4.5.4 (Partial deadlock/leak freedom �). A configuration ρ is
deadlock/leak free if no S ⊆ dom(ρ) is in a partial deadlock/leak.

We also strengthen the standard notion of memory leak freedom, namely
reachability, to incorporate aspects of deadlock freedom.

Definition 4.5.5 (Reachability �). We inductively define the threads and barriers
that are reachable in ρ: j0 ∈ N is reachable in ρ if there is some sequence j1, j2, ..., jk
(with k ⩾ 0) such that j0 waitingρ j1, and j1 waitingρ j2, ..., and jk−1 waitingρ jk, and

finally jk can step in ρ, i.e., ∃ρ′. ρ jk
� ρ′.

Intuitively, an element j0 ∈ N is reachable if j0 can itself step or has a transitive
waiting dependency on some jk that can step. This notion is stronger than the usual
notion of reachability, which considers objects to be reachable even if they are only
reachable from threads that are blocked.

Definition 4.5.6. � A configuration ρ is fully reachable if all i ∈ dom(ρ) are reachable
in ρ.

As in (Jacobs et al., 2022b), our strengthened formulations of deadlock freedom
and full reachability are equivalent for λ̄:

Theorem 4.5.7. � A configuration ρ is deadlock/leak free if and only if it is fully reachable.

Furthermore, these notions imply global progress and type safety:

Definition 4.5.8. � A configuration ρ has progress if ρ = ∅ or ∃ρ′, i. ρ i
� ρ′.

Definition 4.5.9. � A configuration ρ is safe if for all i ∈ dom(ρ), either ∃ρ′, i. ρ i
� ρ′,

or ∃j. i waitingρ j.

168

4.6 extending λ̄ with unrestricted and recursive types

Theorem 4.5.10. � �

If a configuration ρ is deadlock/leak free (or equivalently, fully reachable), then ρ has the
progress and safety properties.

Our main theorem is thus that configurations that arise from well-typed programs
are fully reachable and deadlock free:

Theorem 4.5.11. � If ∅ ⊢ e : 1 and
{
0 ↦→ Thread(e)

}
�

∗
ρ′, then ρ′ is fully reachable

and deadlock/leak free.

The proof of the reachability half of Theorem 4.5.11 proceeds similarly to the proof
of global progress (Theorem 4.5.1). The difference between the proofs is that the
proof of reachability needs to explicitly keep track of the reason why each object in
the configuration is reachable, whereas global progress only needs to find one of the
“roots” of the reachability relation (i.e., threads that can step).

Theorem 4.5.7 can then be used to obtain the deadlock freedom side of
Theorem 4.5.11. The idea of the proof of Theorem 4.5.7 is that the set of all
unreachable objects forms a deadlock, if the set is non-empty.

4.6 extending λ̄ with unrestricted and recursive types

We add unrestricted types and recursive types as extensions. These can be omitted for
a minimalistic language, but they enable us to do ordinary functional programming
and recursive sessions in λ̄, bringing it closer to a realistic language in terms of
features and expressiveness. The extended set of types is:

τ ∈ Type ::= 0 | 1 | τ× τ | τ+ τ | τ −◦ τ | τ → τ | µa.τ | a

An equi-recursive interpretation of µx.τ avoids explicit (un)fold constructs (Crary
et al., 1999). Recursive types make the language Turing complete, because they allow
us to define recursive functions with the Y-combinator8, and together with sums
and products can be used to encode algebraic data types. Because session types
are encoded as ordinary types in λ̄, recursive sessions are automatically supported.
This includes recursion through the message, as in µs. ?s.End, which is encoded as
µa. 1 −◦ (1 −◦ 1) × a.

Formally and in the mechanization (Section 4.7), we use the coinductive method
of Gay, Thiemann, and Vasconcelos (Gay et al., 2020) to handle equi-recursive types.
This means that we formally do not have a syntactic µa.τ type constructor; instead
we let the language of types be coinductively generated. Intuitively, this means that
infinite types are allowed, and a recursive type µa.F(a) is represented as its infinite
unfolding F(F(F(· · ·))). We use a meta-level fixpoint (CoFixpoint in Coq) to construct
infinite/circular types. By using this method we do not need an additional typing
rule for unfolding recursive types, since types are already identified up to unfolding.

8 One could also add an explicit letrec.

169

4.6 extending λ̄ with unrestricted and recursive types

In order to make interesting use of recursive types, it is necessary to add unrestricted
types, which are types for which the linearity restriction is lifted, so that they can
be duplicated and discarded freely. A linear function can only be called once and
hence cannot call itself, so recursive functions must have unrestricted type. Using
unrestricted and recursive types, we do not need built-in recursion as we can encode
recursive functions using the Y-combinator:

Y : ((τ1 → τ2) → (τ1 → τ2)) → (τ1 → τ2)
Y ≜ λf. (λx. f (x x)) (λx. f (x x))

Here too it is apparent that since x is used twice, unrestricted as well as recursive
types are required to type check the Y-combinator (Jacobs et al., 2022b).

In particular, we add the unrestricted function type τ1 → τ2 as a new type former.
We can then define rules that determine which of the existing types are unrestricted,
as follows:

• 0, 1 are unrestricted types

• τ1 × τ2 and τ1 + τ2 are unrestricted if τ1 and τ2 are unrestricted

• τ1 → τ2 is always unrestricted, even for linear τ1 and τ2

• τ1 −◦ τ2 is always linear, even for unrestricted τ1 and τ2

Using unrestricted function types, we can encode the !A connective from linear logic
as 1 → A, and ?A as A → 1.

Formally and in the mechanization, unrestricted types are handled by splitting
the typing context using a 3-part relation split Γ Γ1 Γ2, which intuitively says that
Γ ≡ Γ1, Γ2, where variables of unrestricted type in Γ may occur in both Γ1 and Γ2 (see
(Jacobs et al., 2022b) for details). We also make use of the predicate Γ unr to indicate
that all variables in Γ must have unrestricted type. To extend the typing rules in
Figure 26, we use split to split the context, and we use Γ unr wherever an empty
context is required in Figure 26. For example, here are the typing rules for variables
and for pairs:

Γ unr

Γ , x :τ ⊢ x : τ

Γ1 ⊢ e1 : τ1 Γ2 ⊢ e2 : τ2 split Γ Γ1 Γ2

Γ ⊢ (e1, e2) : τ1 × τ2

The other rules and the rules of the run-time type system are amended analogously.
Unrestricted and recursive types are purely type-level features and require no

extensions to the expression language or to the operational semantics. Nevertheless,
they upgrade λ̄ to a Turing complete functional and concurrent language. For more
details, we refer the interested reader to the mechanization (Section 4.7).

170

4.6 extending λ̄ with unrestricted and recursive types

In order to make interesting use of recursive types, it is necessary to add unrestricted
types, which are types for which the linearity restriction is lifted, so that they can
be duplicated and discarded freely. A linear function can only be called once and
hence cannot call itself, so recursive functions must have unrestricted type. Using
unrestricted and recursive types, we do not need built-in recursion as we can encode
recursive functions using the Y-combinator:

Y : ((τ1 → τ2) → (τ1 → τ2)) → (τ1 → τ2)
Y ≜ λf. (λx. f (x x)) (λx. f (x x))

Here too it is apparent that since x is used twice, unrestricted as well as recursive
types are required to type check the Y-combinator (Jacobs et al., 2022b).

In particular, we add the unrestricted function type τ1 → τ2 as a new type former.
We can then define rules that determine which of the existing types are unrestricted,
as follows:

• 0, 1 are unrestricted types

• τ1 × τ2 and τ1 + τ2 are unrestricted if τ1 and τ2 are unrestricted

• τ1 → τ2 is always unrestricted, even for linear τ1 and τ2

• τ1 −◦ τ2 is always linear, even for unrestricted τ1 and τ2

Using unrestricted function types, we can encode the !A connective from linear logic
as 1 → A, and ?A as A → 1.

Formally and in the mechanization, unrestricted types are handled by splitting
the typing context using a 3-part relation split Γ Γ1 Γ2, which intuitively says that
Γ ≡ Γ1, Γ2, where variables of unrestricted type in Γ may occur in both Γ1 and Γ2 (see
(Jacobs et al., 2022b) for details). We also make use of the predicate Γ unr to indicate
that all variables in Γ must have unrestricted type. To extend the typing rules in
Figure 26, we use split to split the context, and we use Γ unr wherever an empty
context is required in Figure 26. For example, here are the typing rules for variables
and for pairs:

Γ unr

Γ , x :τ ⊢ x : τ

Γ1 ⊢ e1 : τ1 Γ2 ⊢ e2 : τ2 split Γ Γ1 Γ2

Γ ⊢ (e1, e2) : τ1 × τ2

The other rules and the rules of the run-time type system are amended analogously.
Unrestricted and recursive types are purely type-level features and require no

extensions to the expression language or to the operational semantics. Nevertheless,
they upgrade λ̄ to a Turing complete functional and concurrent language. For more
details, we refer the interested reader to the mechanization (Section 4.7).

170

4.7 mechanization

4.7 mechanization

All our theorems have been mechanized in Coq. We use the connectivity graph
library of (Jacobs et al., 2022b) in our mechanization. The mechanization is built-up
as follows:

• Language definition: expressions, static type system, and operational semantics.
Our mechanization includes the extensions with unrestricted and recursive types.

• A run-time type system that extends the static type system to barrier literals ⟨k⟩.
The run-time type system is expressed in separation logic.

• A configuration well-formedness invariant, stating that the configuration remains
well-typed, and the connectivity between threads and barriers remains acyclic.

• Proof that well-formedness is maintained by the operational semantics.

• Proof that well-formed configurations have the full-reachability property.

• Proofs that full-reachability is equivalent to deadlock/leak freedom, and that
they imply type safety and global progress.

• The definition of the encoding of session types in λ̄, and proofs that the usual
session typing rules are admissible.

• A definition of GV and its operational semantics, and the translation into λ̄, with
a proof that the GV semantics can be simulated with the λ̄ semantics. A lock-
step simulation is obtained by inserting extra no-op steps in the GV semantics
wherever λ̄ does an administrative β-reduction.

Whereas the mechanized deadlock freedom proof for GV’s session types by (Jacobs
et al., 2022b) consists of 2139 lines of Coq definitions and proofs (excluding (Jacobs
et al., 2022b)’s graph library), our mechanization of λ̄ and its deadlock freedom is
only 1229 lines. The encoding of GV’s session types into λ̄ together with the proofs
of admissibility of the typing rules is 249 lines, and the operational simulation result
is 309 lines.

Although the λ̄ mechanization relies on connectivity graphs (Jacobs et al., 2022b),
the techniques presented there were not immediately sufficient for proving deadlock
freedom of λ̄. The difficulty lies in λ̄’s sync step in the operational semantics,
which exchanges resources between two vertices that are not directly adjacent in the
graph. This is not supported as an operation by (Jacobs et al., 2022b), so we instead
want to separate it into multiple smaller graph transformations. Unfortunately, the
intermediate states do not satisfy the configuration invariant. The solution to this
was to add extra “ghost state” to the labels on the edges of the graph, which keeps
track of which sub-step of the decomposed graph transformation the connected
vertices are in. As part of future work, it would be interesting to investigate whether
this technique can be used more generally for composing graph transformations on
the separation logic level, when the intermediate states do not satisfy the invariant.

171

4.8 related work

4.8 related work

Session types were originally described by Honda (Honda, 1993), and later by
Honda, Vasconcelos, and Kubo (Honda et al., 1998). Gay and Vasconcelos (Gay and
Vasconcelos, 2010) embedded session types in a linear λ-calculus. Whereas Gay
and Vasconcelos’ calculus (Gay and Vasconcelos, 2010) was not yet deadlock free,
Wadler’s subsequent GV (Wadler, 2012) and its derivatives (Lindley and Morris,
2015, 2016c, 2017; Fowler et al., 2019, 2021) were.

Wadler also described the relation of GV to classical processes (CP) (Wadler, 2012),
giving a kind of Curry-Howard correspondence between session types and classical
linear logic. For intuitionistic linear logic, such a correspondence had earlier been
described by Caires and Pfenning (Caires and Pfenning, 2010).

Lindley and Morris (Lindley and Morris, 2016b,c) give a CPS encoding of GV. The
target of the CPS encoding is linear λ-calculus without fork, which is even more
minimal than λ̄. The key difference between the CPS encoding and our encoding
into λ̄ is that the CPS encoding is global (i.e., a whole-program transformation),
whereas the encoding of sessions into λ̄ is local, which is made possible by the
built-in concurrency of λ̄. In other words, in contrast to the CPS encoding, the
encoding of channel operations in λ̄ can be viewed as syntactic abbreviations or
macros, satisfying Felleisen’s expressiveness criterion (Felleisen, 1991).

When session types are added to the syntax of standard π-calculus they give rise
to additional separate syntactic categories, which leads to a duplication of effort
in the theory. Kobayashi showed that session types are encodable into standard
π-types (Kobayashi, 2002b). Dardha, Giachino, and Sangiorgi formalize and extend
Kobayashi’s approach (Dardha et al., 2012, 2017). The encoding makes use of the
fact that the π-calculus semantics has communication in the form of π-channels, and
can thus encode session communication into π-communication. The encoding of
multi-step sessions into single-shot π-channels sends a continuation along, so that
the communication can continue. λ̄’s encoding of session types takes inspiration
from this work, and also sends along continuations on which the communication
can continue. On the other hand, λ̄ starts with λ-calculus, which does not have any
concurrency or communication. We therefore add concurrency and communication to
linear λ-calculus in the form of fork. Unlike the π-calculus’ channel communication,
which is one-way (like an individual step of a session), λ̄’s barrier communication
atomically exchanges two values, so that barriers may be given linear function type
A −◦ B. This lets λ̄ get away with not adding any new type formers to linear
λ-calculus, by reusing the quintessential λ-calculus type (the function type) for its
communication primitive.

Single-shot synchronization primitives have also been used in the implementation
of a session-typed channel libraries, for instance by Scalas and Yoshida (Scalas and
Yoshida, 2016a), Padovani (Padovani, 2017), and Kokke and Dardha (Kokke and
Dardha, 2021a).

172

4.8 related work

4.8 related work

Session types were originally described by Honda (Honda, 1993), and later by
Honda, Vasconcelos, and Kubo (Honda et al., 1998). Gay and Vasconcelos (Gay and
Vasconcelos, 2010) embedded session types in a linear λ-calculus. Whereas Gay
and Vasconcelos’ calculus (Gay and Vasconcelos, 2010) was not yet deadlock free,
Wadler’s subsequent GV (Wadler, 2012) and its derivatives (Lindley and Morris,
2015, 2016c, 2017; Fowler et al., 2019, 2021) were.

Wadler also described the relation of GV to classical processes (CP) (Wadler, 2012),
giving a kind of Curry-Howard correspondence between session types and classical
linear logic. For intuitionistic linear logic, such a correspondence had earlier been
described by Caires and Pfenning (Caires and Pfenning, 2010).

Lindley and Morris (Lindley and Morris, 2016b,c) give a CPS encoding of GV. The
target of the CPS encoding is linear λ-calculus without fork, which is even more
minimal than λ̄. The key difference between the CPS encoding and our encoding
into λ̄ is that the CPS encoding is global (i.e., a whole-program transformation),
whereas the encoding of sessions into λ̄ is local, which is made possible by the
built-in concurrency of λ̄. In other words, in contrast to the CPS encoding, the
encoding of channel operations in λ̄ can be viewed as syntactic abbreviations or
macros, satisfying Felleisen’s expressiveness criterion (Felleisen, 1991).

When session types are added to the syntax of standard π-calculus they give rise
to additional separate syntactic categories, which leads to a duplication of effort
in the theory. Kobayashi showed that session types are encodable into standard
π-types (Kobayashi, 2002b). Dardha, Giachino, and Sangiorgi formalize and extend
Kobayashi’s approach (Dardha et al., 2012, 2017). The encoding makes use of the
fact that the π-calculus semantics has communication in the form of π-channels, and
can thus encode session communication into π-communication. The encoding of
multi-step sessions into single-shot π-channels sends a continuation along, so that
the communication can continue. λ̄’s encoding of session types takes inspiration
from this work, and also sends along continuations on which the communication
can continue. On the other hand, λ̄ starts with λ-calculus, which does not have any
concurrency or communication. We therefore add concurrency and communication to
linear λ-calculus in the form of fork. Unlike the π-calculus’ channel communication,
which is one-way (like an individual step of a session), λ̄’s barrier communication
atomically exchanges two values, so that barriers may be given linear function type
A −◦ B. This lets λ̄ get away with not adding any new type formers to linear
λ-calculus, by reusing the quintessential λ-calculus type (the function type) for its
communication primitive.

Single-shot synchronization primitives have also been used in the implementation
of a session-typed channel libraries, for instance by Scalas and Yoshida (Scalas and
Yoshida, 2016a), Padovani (Padovani, 2017), and Kokke and Dardha (Kokke and
Dardha, 2021a).

172

4.8 related work

More distantly, Arslanagic, Pérez, and Voogd developed minimal session types
(Arslanagic et al., 2019), which decompose multi-step session types into single-step
“minimal” session types of the form !τ.End and ?τ.End in a π-calculus. Whereas λ̄

and the preceding approaches (Kobayashi, 2002b; Dardha et al., 2012, 2017) encode
sequencing by nesting payload types, minimal session types “slice” the n actions of a
session s into indexed names s1, . . . , sn, each having a minimal session type. Correct
sequencing is arranged on the process level with additional synchronizations, using
Parrow’s decomposition of processes into trios (Parrow, 1998).

Niehren, Schwinghammer and Smolka developed a concurrent λ-calculus with
futures (Niehren et al., 2005). Futures are akin to mutable variables that can only
be assigned once. If a future has not been assigned a value yet, then attempting to
read its value will block until a value becomes available. In addition to a non-linear
type system which allows run-time errors due to multiple assignments to the same
future, the authors also present a linear type system that ensures that futures are
not assigned twice. The authors are able to build channels on top of futures by
starting with the ordinary linked list data type, and making the tail of the list a
future, thus making the list open-ended. Unlike session-typed channels, which
follow a protocol and can send values of different types at different points in the
protocol, their channels always communicate values of the same type. Besides the
difference between futures (which are unidirectional) and λ̄’s barriers (which are
bidirectional), another difference is that deadlock freedom is not guaranteed for all
well-typed programs.

Aschieri, Ciabattoni and Genco give a Curry-Howard correspondence for Gödel
Logic (Aschieri et al., 2017), which is intuitionistic logic extended with the axiom
(A → B) ∨ (B → A)9. This is a classical axiom that is implied by, but strictly
weaker than the law of the excluded middle, and Gödel Logic thus provides an
intermediate between intuitionistic and classical logic. The idea for the Curry-
Howard interpretation of the axiom is that two copies of the continuation can be run
in parallel, and exchange their evidence for A and B if both sides try to apply the
implication obtained from the axiom. An important difference with λ̄ is that Gödel
Logic is based on intuitionistic logic (corresponding to the ordinary simply typed
lambda calculus), whereas λ̄ is based on the linear simply typed lambda calculus,
and strongly relies on linearity for type safety and deadlock freedom. It would be
interesting to investigate whether a connection between λ̄ and Gödel Logic can be
established, but a naive attempt at interpreting the axiom as (A → B) + (B → A) in
λ̄ appears bound to fail, because in a linear setting the continuation/context cannot
be duplicated without breaking the meta-theoretical properties.

We base our mechanization on the connectivity graph approach of Jacobs, Balzer,
and Krebbers (Jacobs et al., 2022b), and we use their library to reason about graphs
in Coq. This is related to the graphical approach of Carbone (Carbone and Debois,
2010), the proof method of Lindley and Morris (Lindley and Morris, 2015), and to the

9 Thanks to Dan Frumin for pointing out this connection.

173

4.9 concluding remarks

abstract process structures of Fowler, Kokke, Dardha, Lindley, and Morris (Fowler
et al., 2021).

More distantly, λ̄ is inspired by minimal languages such as MiniJava (Roberts,
2001), MiniML (Myreen and Owens, 2012), the DOT calculus (Amin et al., 2016), and
others.

4.9 concluding remarks

We have investigated λ̄, a minimal linear lambda calculus extended with fork to
make it concurrent. We have seen that channel operations and linear session types
can be encoded in λ̄, and we have shown that the resulting semantics for the channel
operations simulates the GV semantics.

The metatheory of λ̄, including strong deadlock freedom, has been mechanized
in Coq. Because of λ̄’s minimality, the proofs are simpler and shorter than earlier
mechanized proofs for session types. I hope you enjoyed this approach to distilling
session types into a simple core, and hope that λ̄ may serve as a minimal basis upon
which future work may build.

174

4.9 concluding remarks

abstract process structures of Fowler, Kokke, Dardha, Lindley, and Morris (Fowler
et al., 2021).

More distantly, λ̄ is inspired by minimal languages such as MiniJava (Roberts,
2001), MiniML (Myreen and Owens, 2012), the DOT calculus (Amin et al., 2016), and
others.

4.9 concluding remarks

We have investigated λ̄, a minimal linear lambda calculus extended with fork to
make it concurrent. We have seen that channel operations and linear session types
can be encoded in λ̄, and we have shown that the resulting semantics for the channel
operations simulates the GV semantics.

The metatheory of λ̄, including strong deadlock freedom, has been mechanized
in Coq. Because of λ̄’s minimality, the proofs are simpler and shorter than earlier
mechanized proofs for session types. I hope you enjoyed this approach to distilling
session types into a simple core, and hope that λ̄ may serve as a minimal basis upon
which future work may build.

174

Part II

S E PA R AT I O N L O G I C S F O R M E S S A G E PA S S I N G

Chapter 5

Dependent Session Protocols in Separation Logic from First
Principles

abstract We develop an account of dependent session protocols in concurrent
separation logic for a functional language with message-passing. Inspired by
minimalistic session calculi, we present a layered design: starting from mutable
references, we build one-shot channels, session channels, and imperative channels.
Whereas previous work on dependent session protocols in concurrent separation
logic required advanced mechanisms such as recursive domain equations and higher-
order ghost state, we only require the most basic mechanisms to verify that our one-
shot channels satisfy one-shot protocols, and subsequently treat their specification
as a black box on top of which we define dependent session protocols. This has
a number of advantages in terms of simplicity, elegance, and flexibility: support
for subprotocols and guarded recursion automatically transfers from the one-shot
protocols to the dependent session protocols, and we easily obtain various forms of
channel closing. Because the meta theory of our results is so simple, we are able to
give all definitions as part of this chapter, and mechanize all our results using the
Iris framework in less than 1000 lines of Coq.

5.1 introduction

Message passing is a commonly used abstraction for concurrent programming, with
languages such as Erlang and Go having native support for it, and languages such
as Java, Scala, Rust, and C# having library support. Session types offer powerful
type systems for message passing concurrency (Honda, 1993; Honda et al., 1998),
and have been extended with a number of exciting features:

1. Dependent protocols: The key ingredient of a session type system is the
notion of a session protocol, which describes what data should be exchanged.
For example, the session protocol !Z.!Z.?B.end expresses that two integers are
sent, after which a Boolean is received, and the channel is closed. In vanilla
session types, protocols were meant to specify the types of the exchanged
data. They cannot be used to express that the right values are exchanged (i.e.,
functional correctness), nor to express data-dependent protocols where the
remaining protocol can depend on prior messages.

There have been two lines of work to extend session protocols with logical
conditions to remedy this shortcoming. Bocchi et al. (2010); Toninho et al.

176

Chapter 5

Dependent Session Protocols in Separation Logic from First
Principles

abstract We develop an account of dependent session protocols in concurrent
separation logic for a functional language with message-passing. Inspired by
minimalistic session calculi, we present a layered design: starting from mutable
references, we build one-shot channels, session channels, and imperative channels.
Whereas previous work on dependent session protocols in concurrent separation
logic required advanced mechanisms such as recursive domain equations and higher-
order ghost state, we only require the most basic mechanisms to verify that our one-
shot channels satisfy one-shot protocols, and subsequently treat their specification
as a black box on top of which we define dependent session protocols. This has
a number of advantages in terms of simplicity, elegance, and flexibility: support
for subprotocols and guarded recursion automatically transfers from the one-shot
protocols to the dependent session protocols, and we easily obtain various forms of
channel closing. Because the meta theory of our results is so simple, we are able to
give all definitions as part of this chapter, and mechanize all our results using the
Iris framework in less than 1000 lines of Coq.

5.1 introduction

Message passing is a commonly used abstraction for concurrent programming, with
languages such as Erlang and Go having native support for it, and languages such
as Java, Scala, Rust, and C# having library support. Session types offer powerful
type systems for message passing concurrency (Honda, 1993; Honda et al., 1998),
and have been extended with a number of exciting features:

1. Dependent protocols: The key ingredient of a session type system is the
notion of a session protocol, which describes what data should be exchanged.
For example, the session protocol !Z.!Z.?B.end expresses that two integers are
sent, after which a Boolean is received, and the channel is closed. In vanilla
session types, protocols were meant to specify the types of the exchanged
data. They cannot be used to express that the right values are exchanged (i.e.,
functional correctness), nor to express data-dependent protocols where the
remaining protocol can depend on prior messages.

There have been two lines of work to extend session protocols with logical
conditions to remedy this shortcoming. Bocchi et al. (2010); Toninho et al.

176

5.1 introduction

(2011); Zhou et al. (2020); Thiemann and Vasconcelos (2020) develop type
systems that combine concepts from the theory of dependent and refinement
types with session types. Lozes and Villard (2012); Craciun et al. (2015);
Hinrichsen et al. (2020) develop program logics that combine concurrent
separation logic (O’Hearn, 2004; Brookes, 2004) with concepts from session
types. Separation logic (instead of a type system) is used to enforce affine use
of a channel library, and Hoare triple specifications (instead of typing rules)
are provided for channel operations.

2. Integration in functional languages: While session types were originally
developed in the context of π-calculus, a tempting direction is to combine
session types with functional programming. In such languages, session-typed
channels are considered first-class data, and can be stored in data types and
sent over channels (similar to first-class mutable references in ML). The GV
family by Gay and Vasconcelos (2010); Wadler (2012) extends linear lambda-
calculus with channels. The SILL family by Toninho et al. (2013); Pfenning and
Griffith (2015); Toninho (2015) uses a monadic embedding of session types into
an unrestricted language.

3. Session channels as a library: Session types are typically a language feature,
but a recent trend is to embed channels with session types as a library in an
existing language (Hu et al., 2008; Scalas and Yoshida, 2016a; Pucella and Tov,
2008). Often, either the host language or the encoding supports substructural
types, to enforce the affine use of session channels (Kokke and Dardha, 2021b;
Lindley and Morris, 2016a; Jespersen et al., 2015b; Chen et al., 2022).

4. Minimalistic calculi: Session-typed languages add a large number of
additional constructs to the types and expressions of their base languages.
Already in the early days of session types, Kobayashi (2002b) showed that
session types can be encoded into π-types; an approach formalized by Dardha
et al. (2012, 2017), and applied to GV-style languages by Jacobs et al. (2022a).

5. Mechanization: The meta theory of session types is notorious for its complexity.
There exist various published broken proofs—including the failure of subject
reduction for several multiparty systems (Scalas and Yoshida, 2019). As a
result, over the last 5 years there has been an extensive amount of work on the
mechanization of session types by among others Thiemann (2019); Rouvoet
et al. (2020); Hinrichsen et al. (2020, 2021); Tassarotti et al. (2017); Goto et al.
(2016); Ciccone and Padovani (2020); Castro-Perez et al. (2020); Gay et al. (2020);
Jacobs et al. (2022b); Castro-Perez et al. (2021).

To our knowledge, there is no prior work that combines all five features under a single
roof. The goal of this functional pearl is thus to do exactly that. We will develop
an account of dependent session protocols for a GV-style language in a concurrent
separation logic. We start from first principles, enabling us to take a minimalistic

177

5.1 introduction

approach. Our results have been mechanized in the Coq proof assistant using the
Iris framework for concurrent separation logic (Jung et al., 2015, 2016; Krebbers
et al., 2017a; Jung et al., 2018b; Krebbers et al., 2018, 2017b). In the remainder of the
introduction, we give a teaser of our approach and list some of our key insights.

key idea #1 : implicit buffers through one-shot channels The first
step to formalizing a language with message-passing concurrency is to decide on
the semantics of channels. A common approach is to use an asynchronous semantics
where the sender enqueues the messages in a buffer, from which the receiver
dequeues them. In such a semantics, the receive operation can block if no message
is present, but the send operation will always succeed immediately. To model the
notion of a buffer, one typically incorporates a linked list in the formal definition
of the language, and extends the language with operations to send (enqueue) and
receive (dequeue) messages.

To be minimalistic, we want to avoid having to explicitly model the notion of a
linked list in our semantics. Inspired by Kobayashi (2002b); Dardha et al. (2017);
Jacobs et al. (2022a) we build on top of one-shot channels. These come with functions
new1 (), which creates a new channel; send1 c v, which send a message v on channel
c (without blocking); and recv1 c, which receives a message v from c (blocks until
a message has been sent). On top of the one-shot channels, we define regular
multi-shot session channels. For example, the send operation of session channels is
defined as:

send c v ≜ let c′ = new1 () in send1 c (v, c′); c′

This operation not only sends the message v, but also creates a new channel c′ for
the remainder of the communication, and sends the new channel paired with the
message. While there is no explicit notion of a buffer or linked-list in the semantics
of one-shot channels, nor in the definition of session channels, we will show that the
buffer arises implicitly from the preceding definition.

key idea #2 : dependent session protocols via one-shot protocols
Program logics for message-passing concurrency typically come with a channel
points-to connective c p, which provides unique ownership of a channel endpoint
c that has to obey to a protocol p. These protocols typically have a sequenced
structure, describing a dependent session of multiple exchanges. An example of a
dependent separation protocol in the Actris logic by Hinrichsen et al. (2020, 2022) is
! (n : N) ⟨n⟩. ! (m : N) ⟨m⟩{n ⩽ m}. ?⟨m−n⟩. end. This protocol expresses that two
natural numbers n ⩽ m are sent, and the difference m−n is returned.

Similar to our desire for avoiding the need to explicitly model the buffers that
underpin channels as linked lists, we would like to avoid having to inductively define
such dependent session protocols. In our system, the channel points-to connective
for the one-shot channels is simply c (tag,𝛷𝛷), where tag ∈ {Send, Recv} and
𝛷𝛷 is a predicate over the exchanged value. While our protocols only describe a

178

5.1 introduction

approach. Our results have been mechanized in the Coq proof assistant using the
Iris framework for concurrent separation logic (Jung et al., 2015, 2016; Krebbers
et al., 2017a; Jung et al., 2018b; Krebbers et al., 2018, 2017b). In the remainder of the
introduction, we give a teaser of our approach and list some of our key insights.

key idea #1 : implicit buffers through one-shot channels The first
step to formalizing a language with message-passing concurrency is to decide on
the semantics of channels. A common approach is to use an asynchronous semantics
where the sender enqueues the messages in a buffer, from which the receiver
dequeues them. In such a semantics, the receive operation can block if no message
is present, but the send operation will always succeed immediately. To model the
notion of a buffer, one typically incorporates a linked list in the formal definition
of the language, and extends the language with operations to send (enqueue) and
receive (dequeue) messages.

To be minimalistic, we want to avoid having to explicitly model the notion of a
linked list in our semantics. Inspired by Kobayashi (2002b); Dardha et al. (2017);
Jacobs et al. (2022a) we build on top of one-shot channels. These come with functions
new1 (), which creates a new channel; send1 c v, which send a message v on channel
c (without blocking); and recv1 c, which receives a message v from c (blocks until
a message has been sent). On top of the one-shot channels, we define regular
multi-shot session channels. For example, the send operation of session channels is
defined as:

send c v ≜ let c′ = new1 () in send1 c (v, c′); c′

This operation not only sends the message v, but also creates a new channel c′ for
the remainder of the communication, and sends the new channel paired with the
message. While there is no explicit notion of a buffer or linked-list in the semantics
of one-shot channels, nor in the definition of session channels, we will show that the
buffer arises implicitly from the preceding definition.

key idea #2 : dependent session protocols via one-shot protocols
Program logics for message-passing concurrency typically come with a channel
points-to connective c p, which provides unique ownership of a channel endpoint
c that has to obey to a protocol p. These protocols typically have a sequenced
structure, describing a dependent session of multiple exchanges. An example of a
dependent separation protocol in the Actris logic by Hinrichsen et al. (2020, 2022) is
! (n : N) ⟨n⟩. ! (m : N) ⟨m⟩{n ⩽ m}. ?⟨m−n⟩. end. This protocol expresses that two
natural numbers n ⩽ m are sent, and the difference m−n is returned.

Similar to our desire for avoiding the need to explicitly model the buffers that
underpin channels as linked lists, we would like to avoid having to inductively define
such dependent session protocols. In our system, the channel points-to connective
for the one-shot channels is simply c (tag,𝛷𝛷), where tag ∈ {Send, Recv} and
𝛷𝛷 is a predicate over the exchanged value. While our protocols only describe a

178

5.1 introduction

Base lang (Section 5.2.1)

ref v
! ℓ

ℓ ← v

Specification (Section 5.3.1)
ℓ ↦→ v tokγ

P ⊲P

One-shot (Section 5.2.2)

new1 ()
send1 c v
recv1 c

Specification (Section 5.3.2)
(Send,𝛷𝛷)
(Recv,𝛷𝛷)
c base p

Subprotocols (Section 5.3.3)
p ⊑ q
c p

Sessions (Section 5.2.3)

new ()
send c v
recv c
close c
wait c

Specification (Section 5.3.4)
! x ⟨v⟩{P}.p
?x ⟨v⟩{P}.p
!end/?end

Imperative (Section 5.2.4)

new_imp ()
c.send(v)
c.recv()
c.close()
c.wait()

Specification (Section 5.3.5)

c imp p

Guarded recursion (Section 5.4)

µx.p

Self-dual end (Section 5.5)

sym_close c c sym p
send_close c c scl p

Figure 29: Layered design of our development.

single message, dependent session protocols that can describe session channels are
simply defined as combinators. This is achieved by recursively using the channel
points-to connective for describing the channel continuation inside the base protocol
𝛷𝛷. Due to Iris’s support for impredicativity (Svendsen and Birkedal, 2014), we can
use its fixpoint combinator to define recursive (and dependent) protocols by guarded
recursion.

key idea #3 : layered session channel library design and
verification We implement session channels in terms of one-shot channels,
and our dependent session protocols as combinators of one-shot protocols, but we
wish to go further by layering our design—from below and above. The layered
design is shown in Figure 29.

From below, we do not start with a language that has channels as primitive. We
build on top of a functional language with mutable references as found in languages
of the ML family (with allocation, deallocation, store and load). One-shot channels
are implemented on top of primitive mutable references, and verified using (Iris’s)
separation logic rules for the verification of concurrent programs with mutable
shared-memory references. Building on top of a language with mutable references
has other tangible benefits. First, we can write and verify programs that transfer data
by reference. Second, we can define both functional versions of session channels
(that return a new endpoint) and imperative versions of channel endpoints (that
mutate the channel).

From above, we demonstrate the flexibility of our solution by implementing
multiple methods for closing a session. Session types and protocols are often
terminated with an explicit end-tag, and it is non-trivial to extend the range of
termination tags in settings where the protocols are defined inductively. Since our
session channels are defined as combinators on top of the one-shot channels—that
do not inherently include a method for closing—we can freely choose how to close
our channels, after the fact. Initially, we implement asymmetric closing, where one

179

5.1 introduction

endpoint initiates the closing of a channel (protocol !end), while the other waits
and actually deallocates the memory backing the channel (protocol ?end). We later
provide two alternatives with a self-dual end protocol: symmetrically closing the
channel with a the same closing operation on both endpoints, where the last call
deallocated the channel, and a combined send-close operation, which sends a last
message but does not create a continuation channel.

key idea #4 : mechanization using a subset of iris Our layered design
proved beneficial for the meta theory and mechanization of our results. We only
need the usual points-to connective ℓ ↦→ v for ownership of locations ℓ with value v in
separation logic, a simple form of ghost state (unique tokens), and Iris’s impredicative
invariants. By comparison, the Actris logic by Hinrichsen et al. (2020, 2022) relies
on Iris invariants, as well as a non-trivial model of recursive protocols using the
technique from America and Rutten (1989) for solving recursive domain equations,
and uses Iris’s mechanism for higher-order ghost state (Jung et al., 2016) to define
its channel points-to connective c p. Our approach still critically relies on Iris’
invariants, but we do not need to solve a custom recursive domain equation, nor do
we need to define custom higher-order ghost state. Iris’ invariants are constructed
via a recursive domain equation and higher-order ghost state under the hood, and
our approach re-uses this standard machinery as a black box, and we thereby avoid
the need to interact with recursive domain equations and higher-order ghost state
directly. Since the meta theory of our results is so simple, we are able to give all
definitions as part of this chapter (there is no appendix) and mechanize all our
results in less than 1000 lines of Coq.

contributions This chapter makes the following contributions:

• A layered implementation of higher-order shared-memory session channels,
starting from mutable references, on which we build one-shot channels, session
channels, and imperative channels (Section 5.2)

• A layered development of separation logic specifications for our channels. We
start from a small subset of Iris, developing specifications for one-shot channels,
which are then treated as a black box upon which we build high-level dependent
separation protocols (Section 5.3)

• Support for subprotocols (Section 5.3.3) and guarded recursion (Section 5.4),
which transfers automatically from one-shot protocols to dependent session
protocols.

• A demonstration of the extensibility obtained by building on first principles,
through various methods for closing session channels (Section 5.5)

• A small and intuitive mechanization in the Coq proof assistant, comprised of
less than 1000 lines of Coq code (Section 5.7). The paper is annotated with

180

5.1 introduction

endpoint initiates the closing of a channel (protocol !end), while the other waits
and actually deallocates the memory backing the channel (protocol ?end). We later
provide two alternatives with a self-dual end protocol: symmetrically closing the
channel with a the same closing operation on both endpoints, where the last call
deallocated the channel, and a combined send-close operation, which sends a last
message but does not create a continuation channel.

key idea #4 : mechanization using a subset of iris Our layered design
proved beneficial for the meta theory and mechanization of our results. We only
need the usual points-to connective ℓ ↦→ v for ownership of locations ℓ with value v in
separation logic, a simple form of ghost state (unique tokens), and Iris’s impredicative
invariants. By comparison, the Actris logic by Hinrichsen et al. (2020, 2022) relies
on Iris invariants, as well as a non-trivial model of recursive protocols using the
technique from America and Rutten (1989) for solving recursive domain equations,
and uses Iris’s mechanism for higher-order ghost state (Jung et al., 2016) to define
its channel points-to connective c p. Our approach still critically relies on Iris’
invariants, but we do not need to solve a custom recursive domain equation, nor do
we need to define custom higher-order ghost state. Iris’ invariants are constructed
via a recursive domain equation and higher-order ghost state under the hood, and
our approach re-uses this standard machinery as a black box, and we thereby avoid
the need to interact with recursive domain equations and higher-order ghost state
directly. Since the meta theory of our results is so simple, we are able to give all
definitions as part of this chapter (there is no appendix) and mechanize all our
results in less than 1000 lines of Coq.

contributions This chapter makes the following contributions:

• A layered implementation of higher-order shared-memory session channels,
starting from mutable references, on which we build one-shot channels, session
channels, and imperative channels (Section 5.2)

• A layered development of separation logic specifications for our channels. We
start from a small subset of Iris, developing specifications for one-shot channels,
which are then treated as a black box upon which we build high-level dependent
separation protocols (Section 5.3)

• Support for subprotocols (Section 5.3.3) and guarded recursion (Section 5.4),
which transfers automatically from one-shot protocols to dependent session
protocols.

• A demonstration of the extensibility obtained by building on first principles,
through various methods for closing session channels (Section 5.5)

• A small and intuitive mechanization in the Coq proof assistant, comprised of
less than 1000 lines of Coq code (Section 5.7). The paper is annotated with

180

5.2 layered implementation of channels

mechanization icons (�) that link to the relevant Coq code, and a cross-reference
sheet is provided (§ A).

5.2 layered implementation of channels

In this section we will implement message passing channels in terms of low-level
operations. We build these channels in several layers:

• We start by describing the base language and its low-level operations
(Section 5.2.1).

• We then build a library of one-shot channels (Section 5.2.2).

• On top of this we build functional multi-shot session channels (Section 5.2.3).

• As a final layer, we have imperative session channels (Section 5.2.4).

• We show that linked lists (buffers) implicitly emerge (Section 5.2.5).

In the subsequent Section 5.3, we develop specifications and proof for each of the
layers, and demonstrate how to verify the correctness of the example.

5.2.1 Base Language

We use HeapLang, a low-level concurrent language that comes with the Iris
separation logic framework, as our base language. HeapLang has the purely
functional operations that one would expect, such as arithmetic and conditionals,
and also includes products and sums. For the purpose of this chapter, the following
operations on mutable memory locations are the most relevant:

ref v Allocate a new memory location that initially stores value v.

! ℓ Read the value from memory location ℓ.

ℓ ← v Write value v to location ℓ.

free ℓ Free the memory location ℓ.

HeapLang additionally includes a primitive for spawning a new thread:

fork {e} Run program e in a new thread.

The program e is allowed to refer to variables in the surrounding lexical context.
The following is a grammar of the most notable constructs that we will use:

e ∈ Expr ::= ref e | ! e | e ← e | fork {e} | free e |
Some e | None | match e with Some x ⇒ e; None ⇒ e end |
x | e e | λx.e | assert(e) | for(x = e..e) e | . . .

181

5.2 layered implementation of channels

5.2.2 One-Shot Channels

At the base of our development lie one-shot channels, which communicate a single
message from a sender to a receiver. The API consists of the following operations:

new1 () Create and return a new one-shot channel c.

send1 c v Send message v on channel c (non-blocking).

recv1 c Receive message v from channel c (blocks until a message is sent).

The channels are one-shot; only one value is sent over the channel, after which
point the channel is deallocated as a part of recv1 c.

example of using one-shot channels These channels enable us to set up a
communication between child and parent threads as in the following example:

prog_single ≜

let c = new1 () in
fork {let l = ref 42 in send1 c l} ;

assert(!(recv1 c) = 42)

�

The main thread creates a one-shot channel c, which is shared between the main
thread and a forked-off thread. The forked-off thread then dynamically allocates
a reference to 42, and sends the location over the channel. Finally, the main
thread receives the reference, reads it, and asserts that the stored value is 42. To
communicate several times, we could share several channels, but an interesting
alternative style that allows unbounded communication is to send a new channel
along with the message, as we shall see in Section 5.2.3.

In the HeapLang semantics, assert gets stuck if the condition is false. Safety (the
fact that the assert does not fail) crucially depends on the forked-off thread not
modifying the reference after it has sent it. This example is safe as the exclusive
permission to write and read the reference first belongs to the forked-off thread, after
which it is transferred to the main thread. We verify this safe transfer of ownership
in Section 5.3.2. This goes beyond standard session types due to reference ownership
and the verification of the assert.

implementation of one-shot channels In our development, channels are
not primitive but implemented in terms of low-level mutable references. A channel
is represented as a mutable reference that initially contains the value None. To send
a value v to the channel, we set the mutable reference to Some v. To receive from the
channel, we read the value of the mutable reference in a loop, until we see the None

182

5.2 layered implementation of channels

5.2.2 One-Shot Channels

At the base of our development lie one-shot channels, which communicate a single
message from a sender to a receiver. The API consists of the following operations:

new1 () Create and return a new one-shot channel c.

send1 c v Send message v on channel c (non-blocking).

recv1 c Receive message v from channel c (blocks until a message is sent).

The channels are one-shot; only one value is sent over the channel, after which
point the channel is deallocated as a part of recv1 c.

example of using one-shot channels These channels enable us to set up a
communication between child and parent threads as in the following example:

prog_single ≜

let c = new1 () in
fork {let l = ref 42 in send1 c l} ;

assert(!(recv1 c) = 42)

�

The main thread creates a one-shot channel c, which is shared between the main
thread and a forked-off thread. The forked-off thread then dynamically allocates
a reference to 42, and sends the location over the channel. Finally, the main
thread receives the reference, reads it, and asserts that the stored value is 42. To
communicate several times, we could share several channels, but an interesting
alternative style that allows unbounded communication is to send a new channel
along with the message, as we shall see in Section 5.2.3.

In the HeapLang semantics, assert gets stuck if the condition is false. Safety (the
fact that the assert does not fail) crucially depends on the forked-off thread not
modifying the reference after it has sent it. This example is safe as the exclusive
permission to write and read the reference first belongs to the forked-off thread, after
which it is transferred to the main thread. We verify this safe transfer of ownership
in Section 5.3.2. This goes beyond standard session types due to reference ownership
and the verification of the assert.

implementation of one-shot channels In our development, channels are
not primitive but implemented in terms of low-level mutable references. A channel
is represented as a mutable reference that initially contains the value None. To send
a value v to the channel, we set the mutable reference to Some v. To receive from the
channel, we read the value of the mutable reference in a loop, until we see the None

182

5.2 layered implementation of channels

change to Some v. We then deallocate the mutable reference, and return v. This gives
us the following implementation:

new1 () ≜ ref None �

send1 c v ≜ c ← Some v �

recv1 c ≜ match ! c with

| Some v ⇒ free c; v

| None ⇒ recv1 c

end

�

This implementation shows that safety also depends on the fact that clients only
call recv1 once, and does not call send1 after a completed recv1. These would
otherwise result in a double-free and use-after-free, which get stuck in the HeapLang
semantics.

HeapLang has a sequentially consistent memory model. In a weaker memory
model, the store/load instructions should use release/acquire memory order options
(or stronger). Similar to most literature on Iris—with the exception of papers
specifically focused on weak memory (Mével and Jourdan, 2021; Kaiser et al., 2017;
Dang et al., 2020)—we ignore these concerns.

5.2.3 Session Channels

A session channel facilitates sequences of messages between two channel endpoints,
which is useful for implementing client-server style concurrency. Session channels
have the following API:

new () Create a new session channel.

send c e Send message e on channel c, and return a continuation channel.

recv c Receive a pair (v, c′) of the message v and continuation channel c′.

close c Send termination message.

wait c Wait for the termination message and deallocate the channel.

In this section we demonstrate how one-shot channels can be used to implement
session channels. The session channels are obtained by allocating and exchanging a
new one-shot channel whenever a value is sent. The new one-shot channel is then

183

5.2 layered implementation of channels

used as a continuation of the session. The session channels are implemented as
follows:

new () ≜ new1 () �

send c v ≜ let c′ = new1 () in send1 c (v, c′); c′ �

recv c ≜ recv1 c �

close c ≜ send1 c () �

wait c ≜ recv1 c �

The new function allocates an initial one-shot channel and returns it as the session
channel. The send function allocates a new one-shot channel, and sends it along the
original channel with the given message v, after which the new channel is returned.
The recv function receives the value and continuation channel pair using the original
one-shot channel receive function. The close function sends a final termination
flag, without allocating a new one-shot channel, to terminate the session. The wait

function receives the final termination flag, which deallocates the channel.
For session channels to be used safely—i.e., to not cause memory errors such as

use-after-free or double-free—it is crucial that channel endpoints are used in a dual
way. That is, if there is a send on one endpoint, there should be a matching receive
on the other endpoint, and vice versa. Similarly, a close should match up with a
wait. We discuss other options for closing channels in Section 5.5.

example of using session channels An example of using the session
channels is as follows:

prog_add ≜

let c = new () in
fork {let (l, c) = recv c in l ← (! l+ 2); let c = send c () in wait c} ;

let l = ref 40 in

let c = send c l in let (_, c) = recv c in close c;

assert(! l = 42)

�

Here, the main thread initially creates a session channel c, which is shared between
the main thread and forked-off ‘worker’ thread. The main thread dynamically
allocates a reference to 40, after which it sends the reference over the channel. The
worker thread receives the reference, adds 2 to it, and sends a flag back, to signal
that the reference has been updated. The main thread receives the flag and then
reads the updated value stored in the reference, and asserts that it is 42. Finally, the
main thread sends the closing signal, which is received by the worker thread. Each
operation on the channel binds the channel continuation to an overshadowing name
c, to intuitively capture that they keep working on the same session.

184

5.2 layered implementation of channels

used as a continuation of the session. The session channels are implemented as
follows:

new () ≜ new1 () �

send c v ≜ let c′ = new1 () in send1 c (v, c′); c′ �

recv c ≜ recv1 c �

close c ≜ send1 c () �

wait c ≜ recv1 c �

The new function allocates an initial one-shot channel and returns it as the session
channel. The send function allocates a new one-shot channel, and sends it along the
original channel with the given message v, after which the new channel is returned.
The recv function receives the value and continuation channel pair using the original
one-shot channel receive function. The close function sends a final termination
flag, without allocating a new one-shot channel, to terminate the session. The wait

function receives the final termination flag, which deallocates the channel.
For session channels to be used safely—i.e., to not cause memory errors such as

use-after-free or double-free—it is crucial that channel endpoints are used in a dual
way. That is, if there is a send on one endpoint, there should be a matching receive
on the other endpoint, and vice versa. Similarly, a close should match up with a
wait. We discuss other options for closing channels in Section 5.5.

example of using session channels An example of using the session
channels is as follows:

prog_add ≜

let c = new () in
fork {let (l, c) = recv c in l ← (! l+ 2); let c = send c () in wait c} ;

let l = ref 40 in

let c = send c l in let (_, c) = recv c in close c;

assert(! l = 42)

�

Here, the main thread initially creates a session channel c, which is shared between
the main thread and forked-off ‘worker’ thread. The main thread dynamically
allocates a reference to 40, after which it sends the reference over the channel. The
worker thread receives the reference, adds 2 to it, and sends a flag back, to signal
that the reference has been updated. The main thread receives the flag and then
reads the updated value stored in the reference, and asserts that it is 42. Finally, the
main thread sends the closing signal, which is received by the worker thread. Each
operation on the channel binds the channel continuation to an overshadowing name
c, to intuitively capture that they keep working on the same session.

184

5.2 layered implementation of channels

Similar to the example presented in Section 5.2.1, this program is safe if the
assert succeeds and there are no memory errors due to improper use of the channel
API. Intuitively, this example achieves safe access to the reference l via ownership
delegation over the channel. We verify this in Section 5.3.4.

5.2.4 Imperative Channels

Although session channels are more convenient to use than one-shot channels, they
still require us to continuously pass around new channel references. On top of
session channels we therefore define imperative channels, which have a traditional
imperative channel API:

new_imp () Create a new imperative channel, and return a pair of endpoints.

c.send(v) Send message v on channel c. Return nothing.

c.recv() Receive a message from channel c. Return only the message.

c.close() Send termination message and close the channel.

c.wait() Wait for termination message and close the channel.

We implement imperative channels in terms of session channels by storing a
session channel in a mutable reference:

new_imp () ≜ let c = new () in (ref c, ref c) �

c.send(v) ≜ c ← send (! c) v �

c.recv() ≜ let (v, c′) = recv ! c in c ← c′; v �

c.close() ≜ close (! c); free c �

c.wait() ≜ wait (! c); free c �

5.2.5 Emerging Linked List Buffers

We demonstrate the imperative API with the example from Figure 30. The example
creates a channel to communicate between the main thread and the forked-off
‘worker’ thread. The main thread allocates a reference s and sends the message
(100, s) to the worker thread, which indicates that the main thread is going to send
100 further number messages to the worker thread. The worker thread receives each
of these numbers, and mutates s to keep track of their sum. Finally, the worker
thread sends an empty acknowledgment message () to the main thread, indicating
that it is done with s and will not mutate s further. The main thread closes the session
by sending the closing signal, which the worker thread waits for. The main thread
then reads the value of the sum from s, and asserts that it is correctly computed.

The linked structures that emerge during execution are displayed in Figure 31. In
the picture, the main thread has sent the numbers [1, . . . , 9], while the worker thread

185

5.2 layered implementation of channels

let (c1, c2) = new_imp () in
fork {
let (n, s) = c2.recv() in
for(i = 1..n) s ← c2.recv() + ! s
c2.send(())
c2.wait()

}
let s = ref(0) in
c1.send((100, s))
for(i = 1..100) c1.send(i)
c1.recv()
c1.close()
assert(! s == 5050)

— create channel between the threads �

— start the worker thread
— receive count n and answer reference s

— sum n received numbers
— signal that we are done
— wait for closing signal

— mutable reference to store the sum
— we send 100 numbers to be summed into s

— send the numbers 1..100
— wait until the worker is done
— send closing signal
— assert that the received answer is correct

Figure 30: An example program using the imperative channels.

4 5 6 7 8 9

c2

worker thread

c1

main thread

6
s

Figure 31: The heap structure emerging from the example in Figure 30, after the first 9 values
[1, . . . , 9] have been sent, and the first 3 [1, 2, 3] have been received and summed in
the shared location s. The boxes with a number n and next pointer ℓ indicate that
the memory location contains Some(n, ℓ), and the empty box on the right indicates
that the memory location contains None.

186

5.2 layered implementation of channels

let (c1, c2) = new_imp () in
fork {
let (n, s) = c2.recv() in
for(i = 1..n) s ← c2.recv() + ! s
c2.send(())
c2.wait()

}
let s = ref(0) in
c1.send((100, s))
for(i = 1..100) c1.send(i)
c1.recv()
c1.close()
assert(! s == 5050)

— create channel between the threads �

— start the worker thread
— receive count n and answer reference s

— sum n received numbers
— signal that we are done
— wait for closing signal

— mutable reference to store the sum
— we send 100 numbers to be summed into s

— send the numbers 1..100
— wait until the worker is done
— send closing signal
— assert that the received answer is correct

Figure 30: An example program using the imperative channels.

4 5 6 7 8 9

c2

worker thread

c1

main thread

6
s

Figure 31: The heap structure emerging from the example in Figure 30, after the first 9 values
[1, . . . , 9] have been sent, and the first 3 [1, 2, 3] have been received and summed in
the shared location s. The boxes with a number n and next pointer ℓ indicate that
the memory location contains Some(n, ℓ), and the empty box on the right indicates
that the memory location contains None.

186

5.3 layered specifications and verification

has so far only received [1, 2, 3]. At run time, the worker thread will have a reference
to c2, which points to the head of a linked list structure. When the worker thread
receives the next message (4), it updates c2 to point to the next linked list element,
and adds the value of the message to s. The main thread also has a reference to s,
but it will not use it until the worker thread has sent the completion signal back, to
avoid race conditions. Instead, the main thread is still busy working on the other
end of the linked list. Each time the main thread sends a message, it allocates a
new memory location, puts its message into the tail, and updates the tail of the
existing linked list to point to the new location. This emergence of the linked list
occurs because the send operation allocates a new one-shot channel, represented
as a memory location, and sends it along with the message. At a lower level of
abstraction, this results in a linked list buffer of messages, where each message is a
pair of a value and a continuation channel.

If the worker thread were to catch up with the main thread, it would wait until it
sees a message. When the main thread is done, it tries to receive a message using
the last linked list node it has created, which is initially still empty. When the client
reaches that node, it puts the acknowledgment () into it, signaling that the main
thread may now read from s.1 More generally, the threads switch roles when the
polarity of the protocol changes: the thread that used to consume list cells now
creates new list cells, and vice versa.

Note that the emergence of the buffer as a bi-directional linked list is somewhat
implicit. We have built several layers of channels, but at no point did we have to
think about the linked-list run-time structure as a whole. We will see a similar
phenomenon when doing the proofs: we never need to think about the run-time
structure as a whole. Instead, we will develop specifications in a layered way,
following the layers of the implementation.

In the remainder of this chapter, we will develop specifications for these different
layers (corresponding to Sections 5.2.1 to 5.2.4), and prove the correctness of the
channel implementations with respect to these specifications. We can then use the
specifications to verify this example in Section 5.3.5.

5.3 layered specifications and verification

As the reader may have noticed, the implementations in the preceding section are
untyped. Rather than assigning types to the channel APIs, we will provide separation
logic specifications. These allow us to prove functional correctness of programs that
make use of the channel API. We prove partial correctness, which guarantees that if
a program satisfies a separation logic specification with trivial precondition, then
the program is safe, i.e., does not get stuck in the semantics due to run-time type
errors, use-after-free or double-free bugs, or failing assert expressions. In terms of
session types, our result should be compared with type safety and session fidelity. As

1 In Section 5.5.2 we will see a different way of closing the channel, which does not require this
acknowledgment.

187

5.3 layered specifications and verification

is standard in papers that use Iris, we do not prove deadlock freedom or termination
(which would only be true when assuming a fair scheduler as the spin-loop in recv1

could otherwise trivially loop).
In this section we first present the Iris separation logic that we use to verify our

implementation (Section 5.3.1). We then show how we verified the one-shot channel
implementation using Iris primitives (Section 5.3.2), and layer subprotocols on top
of it (Section 5.3.3). We verify dependent separation protocol (Hinrichsen et al., 2020,
2022) specifications of our session channel implementation directly on top of our
one-shot specifications (Section 5.3.4). Finally, we verify our imperative channel
implementation in terms of the session channel specifications (Section 5.3.5).

5.3.1 The Iris Separation Logic

To specify and verify the channel implementations and example clients, we use the
Iris separation logic. Figure 32 shows the grammar and a selection of rules of the
subset of Iris that we use. Iris provides a program logic for HeapLang with Hoare-
triples {P} e {𝛷𝛷} , which express that given the precondition (P : iProp), the program
(e : Expr) is safe to execute, and yields the postcondition (𝛷𝛷 :Val → iProp). We often
write {P} e {w. Q} ≜ {P} e {λw. Q} and {P} e {Q} ≜ {P} e {λw. w = () ∗ Q} .

Iris is a separation logic (O’Hearn et al., 2001), meaning that propositions assert
ownership over resources, such as references. This is made precise by the separation
logic connectives, such as the separating conjunction P ∗ Q, which describes that the
propositions P and Q holds for separate parts of the heap. In particular, this lets us
derive exclusivity of references; it is impossible to separately own the same reference:
ℓ ↦→ v ∗ ℓ ↦→ w −∗ False. Here −∗ is the “separating implication” connective. It acts
similarly to the regular implication, but for separation logic.

Separation logic facilitates modular verification, by virtue of the framing rule Ht-
frame, which states that we can verify programs e in the presence of separate
resources R. Non-structured concurrency is supported by the Ht-fork rule. Finally,
Iris enjoys the conventional rules for mutable references Ht-alloc, Ht-load, Ht-store,
and Ht-free, which respectively allow allocating, reading, updating, and freeing
mutable references.

We use Iris’s impredicative invariants P , ghost state tokens tokγ, and later
modality ⊲P. We further discuss the meaning and importance of these connectives
throughout the section.

5.3.2 One-Shot Channels

In Figure 33 we show separation logic specifications for the one-shot channel
implementation from Section 5.2.2. These specifications make use of one-shot
protocols that describe the protocol for a one-shot channel. As a one-shot channel
communicates a value, the protocol will carry a predicate describing which values

188

5.3 layered specifications and verification

is standard in papers that use Iris, we do not prove deadlock freedom or termination
(which would only be true when assuming a fair scheduler as the spin-loop in recv1

could otherwise trivially loop).
In this section we first present the Iris separation logic that we use to verify our

implementation (Section 5.3.1). We then show how we verified the one-shot channel
implementation using Iris primitives (Section 5.3.2), and layer subprotocols on top
of it (Section 5.3.3). We verify dependent separation protocol (Hinrichsen et al., 2020,
2022) specifications of our session channel implementation directly on top of our
one-shot specifications (Section 5.3.4). Finally, we verify our imperative channel
implementation in terms of the session channel specifications (Section 5.3.5).

5.3.1 The Iris Separation Logic

To specify and verify the channel implementations and example clients, we use the
Iris separation logic. Figure 32 shows the grammar and a selection of rules of the
subset of Iris that we use. Iris provides a program logic for HeapLang with Hoare-
triples {P} e {𝛷𝛷} , which express that given the precondition (P : iProp), the program
(e : Expr) is safe to execute, and yields the postcondition (𝛷𝛷 :Val → iProp). We often
write {P} e {w. Q} ≜ {P} e {λw. Q} and {P} e {Q} ≜ {P} e {λw. w = () ∗ Q} .

Iris is a separation logic (O’Hearn et al., 2001), meaning that propositions assert
ownership over resources, such as references. This is made precise by the separation
logic connectives, such as the separating conjunction P ∗ Q, which describes that the
propositions P and Q holds for separate parts of the heap. In particular, this lets us
derive exclusivity of references; it is impossible to separately own the same reference:
ℓ ↦→ v ∗ ℓ ↦→ w −∗ False. Here −∗ is the “separating implication” connective. It acts
similarly to the regular implication, but for separation logic.

Separation logic facilitates modular verification, by virtue of the framing rule Ht-
frame, which states that we can verify programs e in the presence of separate
resources R. Non-structured concurrency is supported by the Ht-fork rule. Finally,
Iris enjoys the conventional rules for mutable references Ht-alloc, Ht-load, Ht-store,
and Ht-free, which respectively allow allocating, reading, updating, and freeing
mutable references.

We use Iris’s impredicative invariants P , ghost state tokens tokγ, and later
modality ⊲P. We further discuss the meaning and importance of these connectives
throughout the section.

5.3.2 One-Shot Channels

In Figure 33 we show separation logic specifications for the one-shot channel
implementation from Section 5.2.2. These specifications make use of one-shot
protocols that describe the protocol for a one-shot channel. As a one-shot channel
communicates a value, the protocol will carry a predicate describing which values

188

5.3 layered specifications and verification

Iris propositions:

P,Q ∈ iProp ::= True | False | P ∧Q | P ∨Q | (Propositional logic)
∀x. P | ∃x. P | x = y | (Higher-order logic with equality)
P ∗Q | P −∗ Q | ℓ ↦→ v | {P} e {𝛷𝛷} | (Separation logic)

P | tokγ | ⊲P | . . . (Invariants, ghost state, and step indexing)

Separation logic:

Ht-frame
{P} e {w. Q}

{P ∗ R} e {w. Q ∗ R}
Ht-val
{True} v {w. w = v}

Ht-fork
{P} e {True}

{P} fork {e} {True}

Heap manipulation:

Ht-alloc
{True} ref v {ℓ. ℓ ↦→ v}

Ht-load
{ℓ ↦→ v} ! ℓ {w. (w = v) ∗ ℓ ↦→ v}

Ht-store
{ℓ ↦→ v} ℓ ← w {ℓ ↦→ w}

Ht-free
{ℓ ↦→ v} free ℓ {True}

Invariants*, ghost state, and step indexing:

Ht-inv-alloc
{ P ∗Q} e {𝛷𝛷}
{⊲P ∗Q} e {𝛷𝛷}

Ht-inv-open-close
e is atomic {⊲P ∗Q} e {w. ⊲P ∗ R}

{ P ∗Q} e {w. R}

Ht-later-frame
e is not a value {P} e {w. Q}

{P ∗ ⊲R} e {w. Q ∗ R}

Ht-later-timeless
R is timeless {P ∗ R} e {w. Q}

{P ∗ ⊲R} e {w. Q}

Ht-ghost-alloc
{P ∗ ∃γ. tokγ} e {𝛷𝛷}

{P} e {𝛷𝛷}

Tok-excl
tokγ ∗ tokγ

False
−−−−−−−−−−−−−−∗

Löb
⊲P −∗ P

P
−−−−−−□

Figure 32: The grammar and a selection of rules of Iris.
*Iris uses masks to prevent opening the same invariant twice during a single step, as
that is unsound (Jung et al., 2018b). We omit details about this mechanism because
we only open at most one invariant at every step.

189

5.3 layered specifications and verification

Protocols: p ∈ Prot ≜ {Send, Recv} × (Val → iProp) �

Dual: (Send,𝛷𝛷) ≜ (Recv,𝛷𝛷) (Recv,𝛷𝛷) ≜ (Send,𝛷𝛷) �

Points-to: c base p ∈ iProp where p ∈ Prot and c ∈Val �

New: {True} new1 () {c. c base p ∗ c base p} �

Send: {c base (Send,𝛷𝛷) ∗ 𝛷𝛷 v} send1 c v {True} �

Receive: {c base (Recv,𝛷𝛷)} recv1 c {𝛷𝛷} �

Figure 33: Separation logic specifications for one-shot channels.

are allowed to be communicated with that channel. Additionally, the protocol
says whether we are allowed to send or receive. Therefore, we represent one-shot
protocols as a pair (tag,𝛷𝛷) where tag ∈ {Send, Recv} and 𝛷𝛷 ∈ Val → iProp. The
predicate 𝛷𝛷 is a separation logic predicate, so that protocols can express transfer of
ownership.

To link protocols to actual channels, we shall define a channel points-to predicate
c base (tag,𝛷𝛷). The channel points-to provides unique ownership of one end of the
channel and says that channel c satisfies protocol (tag,𝛷𝛷). The channel points-to
is analogous to the normal points-to ℓ ↦→ v of separation logic, in the sense that a
points-to assertion is required to verify an invocation of a channel operation. The
definition can be found in Figure 34, but we will first discuss how it is used in the
Hoare rules for the channel operations.

When we create a new channel using new1 (), we may choose the protocol predicate
𝛷𝛷, and we get two channel points-tos: c base (Send,𝛷𝛷) and c base (Recv,𝛷𝛷). Note
that we get both channel points-tos for the same channel c, because the same
memory location is used for both ends of the channel, and the two channel points-tos
represent ownership of the two ends of the channel, which give two different views
of the same memory location. As we shall see in Section 5.3.2, this is achieved by
moving the ownership of the primitive heap points-to of the memory location into
an invariant, which allows us to share it. In accordance with session types, and to
state the specification of new1 () in a symmetric manner (Figure 33), we introduce the
dual function on protocols, given by (Send,𝛷𝛷) ≜ (Recv,𝛷𝛷) and (Recv,𝛷𝛷) ≜ (Send,𝛷𝛷).

Once we have the two channel-point-to predicates we may give one of them to
another thread, and keep one of them in the current thread. This way we ensure that
two threads use the protocol to agree on how the channel will be used.

We may then use the send1 and recv1 operations to perform the communication.
The send1 c v operation requires ownership of c base (Send,𝛷𝛷) as well as 𝛷𝛷 v in its
precondition. Dually, the recv1 c operation requires ownership of c base (Recv,𝛷𝛷)
in its precondition. Its postcondition guarantees that recv1 c returns a value v that

190

5.3 layered specifications and verification

Protocols: p ∈ Prot ≜ {Send, Recv} × (Val → iProp) �

Dual: (Send,𝛷𝛷) ≜ (Recv,𝛷𝛷) (Recv,𝛷𝛷) ≜ (Send,𝛷𝛷) �

Points-to: c base p ∈ iProp where p ∈ Prot and c ∈Val �

New: {True} new1 () {c. c base p ∗ c base p} �

Send: {c base (Send,𝛷𝛷) ∗ 𝛷𝛷 v} send1 c v {True} �

Receive: {c base (Recv,𝛷𝛷)} recv1 c {𝛷𝛷} �

Figure 33: Separation logic specifications for one-shot channels.

are allowed to be communicated with that channel. Additionally, the protocol
says whether we are allowed to send or receive. Therefore, we represent one-shot
protocols as a pair (tag,𝛷𝛷) where tag ∈ {Send, Recv} and 𝛷𝛷 ∈ Val → iProp. The
predicate 𝛷𝛷 is a separation logic predicate, so that protocols can express transfer of
ownership.

To link protocols to actual channels, we shall define a channel points-to predicate
c base (tag,𝛷𝛷). The channel points-to provides unique ownership of one end of the
channel and says that channel c satisfies protocol (tag,𝛷𝛷). The channel points-to
is analogous to the normal points-to ℓ ↦→ v of separation logic, in the sense that a
points-to assertion is required to verify an invocation of a channel operation. The
definition can be found in Figure 34, but we will first discuss how it is used in the
Hoare rules for the channel operations.

When we create a new channel using new1 (), we may choose the protocol predicate
𝛷𝛷, and we get two channel points-tos: c base (Send,𝛷𝛷) and c base (Recv,𝛷𝛷). Note
that we get both channel points-tos for the same channel c, because the same
memory location is used for both ends of the channel, and the two channel points-tos
represent ownership of the two ends of the channel, which give two different views
of the same memory location. As we shall see in Section 5.3.2, this is achieved by
moving the ownership of the primitive heap points-to of the memory location into
an invariant, which allows us to share it. In accordance with session types, and to
state the specification of new1 () in a symmetric manner (Figure 33), we introduce the
dual function on protocols, given by (Send,𝛷𝛷) ≜ (Recv,𝛷𝛷) and (Recv,𝛷𝛷) ≜ (Send,𝛷𝛷).

Once we have the two channel-point-to predicates we may give one of them to
another thread, and keep one of them in the current thread. This way we ensure that
two threads use the protocol to agree on how the channel will be used.

We may then use the send1 and recv1 operations to perform the communication.
The send1 c v operation requires ownership of c base (Send,𝛷𝛷) as well as 𝛷𝛷 v in its
precondition. Dually, the recv1 c operation requires ownership of c base (Recv,𝛷𝛷)
in its precondition. Its postcondition guarantees that recv1 c returns a value v that

190

5.3 layered specifications and verification

satisfies 𝛷𝛷 v. With these specifications we can verify the example presented in
Section 5.2.2 with the following protocol:

psingle ≜ (Send, λ(v :Val). ∃(ℓ : Addr). v = ℓ ∗ ℓ ↦→ 42) �

This protocol expresses that the exchanged value v is a location ℓ. We transfer the
ownership of the exchanged reference ℓ along with the message. With this, we can
symbolically apply the one-shot channel specifications, and finally assert that the
value read from the received reference is 42.

verifying the implementation with respect to the specification
We now prove that the one-shot channel implementation satisfies its specification.
To do this, we define the channel points-to c base p in terms of Iris logic primitives
(namely, ordinary points-to, ghost state and invariants). We then prove that the
specifications for new1,send1 and recv1 follow from the rules of Iris. We first present
the two key concepts from Iris needed for our proof: ghost state and invariants.

ghost state Ghost state is logical state that we can use to logically coordinate
between parallel threads. Compared to the standard approach to ghost state in
concurrency verification (Owicki and Gries, 1976), ghost state in Iris is not part of
the program text. It is introduced and manipulated solely in proofs. Just as the
physical heap keeps track of the values of memory locations, Iris has a ghost heap
that keeps track of the values of ghost locations. In our case we only need the very
simplest form of ghost state: we need pure ownership over ghost heap locations;
we do not need to store further information in the ghost locations. Given the ghost
location γ, we have the ghost resource tokγ, which is analogous to ℓ ↦→ (), i.e., a
location that points to a unit value. It may seem a bit puzzling that ghost locations
that do not store any interesting contents can be helpful in a proof. The key is that
ghost locations have the same exclusivity as memory locations. That is, we have the
Tok-excl rule that says it is impossible to have ownership of two ghost locations with
the same name: tokγ ∗ tokγ −∗ False. We shall see why this is useful in a moment.
Finally, we can always allocate new pieces of ghost state, using the Ht-ghost-alloc
rule.

invariants The points-to resource ℓ ↦→ v is an affine resource, and cannot be
duplicated. This is a problem for verifying concurrent programs, where we would
like to use the same memory location from multiple threads: when we fork off a
child thread, we would like to keep ownership over the memory location in both the
main thread and the child thread.

To solve this issue, concurrent separation logic has the notion of invariants. At any
moment in the proof where we have ownership over P ∈ iProp, we can choose to
establish P as an invariant, denoted P ∈ iProp. This is formally described by the
Ht-inv-alloc rule. The advantage of an invariant is that it can be freely duplicated,

191

5.3 layered specifications and verification

i.e., P −∗ P ∗ P . In turn, we cannot directly access the P inside the invariant.
Instead, we can only temporarily access it when the program takes an atomic step,
such as a memory load ! ℓ or store ℓ ← v. After the atomic step has happened, we
must immediately put P back into the invariant. This is formally described by the
Ht-inv-open-close rule, where the resources ⊲P are the resources that are temporarily
removed from the invariant. In the precondition of the rule, we obtain access to the
resources ⊲P taken out of the invariant, and in the postcondition we have to give
back the resources ⊲P, which represents putting them back into the invariant. The
proposition P inside an invariant is typically a disjunction of several states, where
the states may assert ownership over memory locations using ℓ ↦→ v, and may assert
that v has certain properties in that state. A state may also assert ownership over
ghost resources.

Iris’s invariants are impredicative (Svendsen and Birkedal, 2014), which effectively
lets us nest invariants inside of invariants, because P ∈ iProp for every P ∈ iProp,
including P = Q . Nesting of invariants is critical for the verification of our session
channels, as will be covered in Section 5.3.4. To maintain soundness of the Iris
logic, resources P extracted from an invariant P are guarded by a later modality ⊲P
(Nakano, 2000; Appel et al., 2007). This later can be seen in the Ht-inv-open-close
rule. Resources ⊲P behind a later modality can only be used after the program
does the next step of execution. This is formally expressed by the Ht-later-frame
rule, which states that one can frame resources under a later, if the program has
not terminated. Another means of stripping laters is if the guarded resources are
timeless (Ht-later-timeless). Pure propositions, reference ownership (ℓ ↦→ v) and
ghost ownership (tokγ) are timeless, which means when we open an invariant, we
can immediately remove the later from these connectives.

the one-shot channel invariant To verify the one-shot channels, we need
to define the connective c base p, whose key ingredient is an invariant. To explain
the invariant, we start with a key observation. The one-shot channel can be in three
different states: (1) no message has been sent (ℓ ↦→ None), (2) a message has been sent
but not received (ℓ ↦→ Some v), and (3) the message has been both sent and received (ℓ
has been deallocated). These states are reflected in the invariant chan_inv γ1 γ2 ℓ 𝛷𝛷
defined in Figure 34. The arguments γ1 and γ2 are two ghost locations, whereas ℓ is
the physical memory location where the channel is located, and 𝛷𝛷 is the predicate
associated with the protocol. The invariant captures each state with a separate
disjunct. By virtue of the exclusion of the ghost resources, it is then possible to
exclude possible states, based on local ghost ownership. In particular, if one owns
tokγ1, the invariant must be in the first state (as the other states assert ownership of
the token). Similarly, if one owns tokγ2, the invariant cannot be in the final state.
The proof then follows by letting the sender own tokγ1 and the receiver own tokγ2,
to let them locally determine which state the invariant is in, by the exclusivity rule
of the ghost resources.

192

5.3 layered specifications and verification

i.e., P −∗ P ∗ P . In turn, we cannot directly access the P inside the invariant.
Instead, we can only temporarily access it when the program takes an atomic step,
such as a memory load ! ℓ or store ℓ ← v. After the atomic step has happened, we
must immediately put P back into the invariant. This is formally described by the
Ht-inv-open-close rule, where the resources ⊲P are the resources that are temporarily
removed from the invariant. In the precondition of the rule, we obtain access to the
resources ⊲P taken out of the invariant, and in the postcondition we have to give
back the resources ⊲P, which represents putting them back into the invariant. The
proposition P inside an invariant is typically a disjunction of several states, where
the states may assert ownership over memory locations using ℓ ↦→ v, and may assert
that v has certain properties in that state. A state may also assert ownership over
ghost resources.

Iris’s invariants are impredicative (Svendsen and Birkedal, 2014), which effectively
lets us nest invariants inside of invariants, because P ∈ iProp for every P ∈ iProp,
including P = Q . Nesting of invariants is critical for the verification of our session
channels, as will be covered in Section 5.3.4. To maintain soundness of the Iris
logic, resources P extracted from an invariant P are guarded by a later modality ⊲P
(Nakano, 2000; Appel et al., 2007). This later can be seen in the Ht-inv-open-close
rule. Resources ⊲P behind a later modality can only be used after the program
does the next step of execution. This is formally expressed by the Ht-later-frame
rule, which states that one can frame resources under a later, if the program has
not terminated. Another means of stripping laters is if the guarded resources are
timeless (Ht-later-timeless). Pure propositions, reference ownership (ℓ ↦→ v) and
ghost ownership (tokγ) are timeless, which means when we open an invariant, we
can immediately remove the later from these connectives.

the one-shot channel invariant To verify the one-shot channels, we need
to define the connective c base p, whose key ingredient is an invariant. To explain
the invariant, we start with a key observation. The one-shot channel can be in three
different states: (1) no message has been sent (ℓ ↦→ None), (2) a message has been sent
but not received (ℓ ↦→ Some v), and (3) the message has been both sent and received (ℓ
has been deallocated). These states are reflected in the invariant chan_inv γ1 γ2 ℓ 𝛷𝛷
defined in Figure 34. The arguments γ1 and γ2 are two ghost locations, whereas ℓ is
the physical memory location where the channel is located, and 𝛷𝛷 is the predicate
associated with the protocol. The invariant captures each state with a separate
disjunct. By virtue of the exclusion of the ghost resources, it is then possible to
exclude possible states, based on local ghost ownership. In particular, if one owns
tokγ1, the invariant must be in the first state (as the other states assert ownership of
the token). Similarly, if one owns tokγ2, the invariant cannot be in the final state.
The proof then follows by letting the sender own tokγ1 and the receiver own tokγ2,
to let them locally determine which state the invariant is in, by the exclusivity rule
of the ghost resources.

192

5.3 layered specifications and verification

More formally, with the invariant in place, we can define the channel points-to
c base (tag,𝛷𝛷), as presented in Figure 34. The definition captures (1) that c is a
reference (c = ℓ), (2) that the invariant is established (chan_inv γ1 γ2 ℓ 𝛷𝛷), (3) that
the endpoint has ownership of either tokγ1 or tokγ2, if they are the sender or
receiver, respectively. The later modalities (⊲) in the definition of c base p are needed
to support infinite protocols via guarded recursion (Section 5.4).

Initially, when creating a channel, we establish the invariant in the first state, using
the Ht-inv-alloc rule. We then duplicate the invariant, and create c base (Send,𝛷𝛷)
and c base (Recv,𝛷𝛷) using the two copies of the invariant, as well as tokγ1 and
tokγ2, respectively, which are created by two applications of the Ht-ghost-alloc
rule.

When the sender wants to send their message v, they temporarily open the
invariant using the Ht-inv-open-close rule, and determine that they are in the first
state, based on their tokγ1 token. They then get ownership over the reference
ℓ ↦→ None. The sender then modifies the location to contain the sent value Some v,
and transfers the ownership back into the invariant. The sender also puts the token
tokγ1 into the invariant, as well as the resources 𝛷𝛷 v captured by the protocol. The
invariant is restored in the second state.

When the receiver wants to receive, it temporarily opens up the invariant, using
the Ht-inv-open-close rule, to get ownership over the reference. It reads the location,
and if the value is None, it determines that it is in the first state, and so it loops. Once
a value Some v is read, it is determined that we are in the second state, and so the
receiver deallocates the reference. The receiver additionally takes the 𝛷𝛷 v resource
out of the invariant, and re-establishes the invariant by putting its token tokγ2 into
the invariant, which restores it in the third state.

The rule for new1 is then proven as follows. We obtain ownership over the
location ℓ ↦→ None because new1 allocates the reference. We also allocate two new
ghost locations tokγ1 and tokγ2 obtaining the identifiers γ1 and γ2. We establish
the invariant using the first disjunct, by putting ℓ ↦→ None into the invariant, and
allocate it with the Ht-inv-alloc rule. We then duplicate the invariant, and create
c base (Send,𝛷𝛷) and c base (Recv,𝛷𝛷) using the two copies of the invariant, as well as
tokγ1 and tokγ2, respectively.

5.3.3 Subprotocols

We define a subprotocol relation on dependent separation protocols as introduced
by Actris (Hinrichsen et al., 2022), analogous to subtyping on session types (Gay and
Hole, 2005). Whereas subtyping between session types is established by subtyping
between the messages, the subprotocol relation between protocols is established by
implications between the separation logic predicates.2

2 Similarly to asynchronous subtyping (Mostrous et al., 2009; Mostrous and Yoshida, 2015), the Actris
subprotocols also enjoy asynchronous subprotocolling, which allow swapping sends in front of receives.
Actris supports this due to its two-buffer semantics. As the semantics of our session channels, as built

193

5.3 layered specifications and verification

chan_inv γ1 γ2 ℓ 𝛷𝛷 ≜ (ℓ ↦→ None����������
(1) initial state

) ∨ (∃v. ℓ ↦→ Some v ∗ tokγ1 ∗ 𝛷𝛷 v����������������������������������������������������������������
(2) message sent, but not yet received

) ∨ (tokγ1 ∗ tokγ2����������������������
(3) final state

)

�

c base (tag,𝛷𝛷) ≜ ∃γ1,γ2, ℓ. ⊲(c = ℓ) ∗ chan_inv γ1 γ2 ℓ 𝛷𝛷 ∗ ⊲

tokγ1 if tag = Send
tokγ2 if tag = Recv

�

Figure 34: The channel invariant and channel points-to definition.

The subprotocol relation is denoted p ⊑ q where p,q are protocols, and is defined
as follows:

(tag1,𝛷𝛷1) ⊑ (tag2,𝛷𝛷2) ≜



∀v. 𝛷𝛷2 v −∗ 𝛷𝛷1 v if tag1 = tag2 = Send

∀v. 𝛷𝛷1 v −∗ 𝛷𝛷2 v if tag1 = tag2 = Recv

False if tag1 ≠ tag2

�

This relation is reflexive and transitive, and p ⊑ q iff q ⊑ p. We layer subprotocols
on top of our specification for one-shot channels by defining a new channel points-to
c p that is explicitly closed under subprotocols:

c p ≜ ∃q. ⊲(q ⊑ p) ∗ c base q �

We do not use a superscript on c p because we consider it to be the main channel
points-to, whereas we view c base q as an internal notion. This channel points-to
satisfies a subsumption like rule: (c p) ∗ ⊲(p ⊑ q) −∗ (c q), which is proved by
transitivity of ⊑. The use of the later modality (⊲) is discussed in Section 5.4. �

We can prove versions of the specifications for new1, send1, and recv1 for .
These proofs are straightforward, because we can prove these specifications using the
existing specifications for base from Figure 33, by using p ⊑ q at appropriate points
to convert a 𝛷𝛷1 v into 𝛷𝛷2 v or vice versa. In particular, we apply this conversion in the
send rule just before sending the message, and in the receive rule just after receiving
the message. We also trivially have (c base p) −∗ (c p), which is used to prove the
new1 rule for . � � � �

on single shot channels, corresponds to a single-buffer semantics, asynchronous subtyping is unsound in
our setting. Our notion of subprotocols therefore focuses on the implication between separation logic
predicates, and does not allow swapping sends in front of receives.

194

5.3 layered specifications and verification

chan_inv γ1 γ2 ℓ 𝛷𝛷 ≜ (ℓ ↦→ None����������
(1) initial state

) ∨ (∃v. ℓ ↦→ Some v ∗ tokγ1 ∗ 𝛷𝛷 v����������������������������������������������������������������
(2) message sent, but not yet received

) ∨ (tokγ1 ∗ tokγ2����������������������
(3) final state

)

�

c base (tag,𝛷𝛷) ≜ ∃γ1,γ2, ℓ. ⊲(c = ℓ) ∗ chan_inv γ1 γ2 ℓ 𝛷𝛷 ∗ ⊲

tokγ1 if tag = Send
tokγ2 if tag = Recv

�

Figure 34: The channel invariant and channel points-to definition.

The subprotocol relation is denoted p ⊑ q where p,q are protocols, and is defined
as follows:

(tag1,𝛷𝛷1) ⊑ (tag2,𝛷𝛷2) ≜



∀v. 𝛷𝛷2 v −∗ 𝛷𝛷1 v if tag1 = tag2 = Send

∀v. 𝛷𝛷1 v −∗ 𝛷𝛷2 v if tag1 = tag2 = Recv

False if tag1 ≠ tag2

�

This relation is reflexive and transitive, and p ⊑ q iff q ⊑ p. We layer subprotocols
on top of our specification for one-shot channels by defining a new channel points-to
c p that is explicitly closed under subprotocols:

c p ≜ ∃q. ⊲(q ⊑ p) ∗ c base q �

We do not use a superscript on c p because we consider it to be the main channel
points-to, whereas we view c base q as an internal notion. This channel points-to
satisfies a subsumption like rule: (c p) ∗ ⊲(p ⊑ q) −∗ (c q), which is proved by
transitivity of ⊑. The use of the later modality (⊲) is discussed in Section 5.4. �

We can prove versions of the specifications for new1, send1, and recv1 for .
These proofs are straightforward, because we can prove these specifications using the
existing specifications for base from Figure 33, by using p ⊑ q at appropriate points
to convert a 𝛷𝛷1 v into 𝛷𝛷2 v or vice versa. In particular, we apply this conversion in the
send rule just before sending the message, and in the receive rule just after receiving
the message. We also trivially have (c base p) −∗ (c p), which is used to prove the
new1 rule for . � � � �

on single shot channels, corresponds to a single-buffer semantics, asynchronous subtyping is unsound in
our setting. Our notion of subprotocols therefore focuses on the implication between separation logic
predicates, and does not allow swapping sends in front of receives.

194

5.3 layered specifications and verification

Protocols: (! x ⟨v⟩{P}. p | ?x ⟨v⟩{P}. p | !end | ?end) ∈ Prot �

Dual: ! x ⟨v⟩{P}. p = ?x ⟨v⟩{P}. p ?x ⟨v⟩{P}. p = ! x ⟨v⟩{P}. p � �

!end = ?end ?end = !end p = p � � �

New: {True} new () {c. c p ∗ c p} �

Send: {c (! x ⟨v⟩{P}. p) ∗ P t} send c (v t) {c′. c′ (p t)} �

Receive: {c (?x ⟨v⟩{P}. p)} recv c {w. ∃y, c′. w = (v y, c′) ∗ c′ (p y) ∗ P y}
�

Close: {c !end} close c {True} �

Wait: {c ?end} wait c {True} �

Figure 35: Dependent Separation Protocols and session channel specifications

5.3.4 Session Channels

Now that we have established the specifications for the one-shot channels, we move
on to the next layer: multi-shot session channels. A prominent approach to specifying
and verifying multi-shot channels is the concept of session types (Honda, 1993), which
lets a user ascribe session channel endpoints with a sequence of obligations to send or
receive messages of certain types. More recently, the session type approach has been
adopted in the separation logic setting (Craciun et al., 2015; Hinrichsen et al., 2022).
One such adaptation is Dependent Separation Protocols (Hinrichsen et al., 2022). Rather
than ascribing types to each exchange, dependent separation protocols ascribe logical
variables, physical values, and propositions. The dependent separation protocols
and the specifications for the session channels can be seen in Figure 35.

The dependent separation protocols consists of four constructors: ! x ⟨v⟩{P}. p,
?x ⟨v⟩{P}. p, !end, and ?end. The first two constructors describe the permission to
send or receive the logical variable x, the value v, and the resources P, respectively,
after which they follow the protocol tail p. Here, x binds into all of the remaining
constituents. We often omit the binder when it is of the unit type: e.g., ! ⟨v⟩{P}. p.
We similarly often omit the proposition if it is True: e.g., ! x ⟨v⟩. p. The last two
constructors specify that the protocol has ended, meaning that no further operations
can be made on the channel, and the channel can be closed. We further detail
alternative specifications for closing and deallocation in Section 5.5.

The protocols are subject to the same notion of duality, as presented in Section 5.3.2.
The dual of a protocol is the same sequence of obligations, where the polarity has
been flipped, i.e., all sends (!) become receives (?), and vice versa, as made precise by
the rules of the figure. Finally, we use the same channel endpoint ownership c p

195

5.3 layered specifications and verification

as for the one-shot channels, as the dependent separation protocols share the same
type as the one-shot protocols, as will be seen momentarily.

The dependent separation protocols can be used to specify and verify session
channels. As an example, the following dependent separation protocol specifies the
interactions of the prog_add example from Section 5.2.3:

prot_add ≜ ! ((ℓ, x) : Addr × Z) ⟨ℓ⟩{ℓ ↦→ x}. ?⟨()⟩{ℓ ↦→ x+ 2}. !end �

The protocol says that one must first send a reference to a number (captured
by the logical variable (ℓ, x) : Addr × Z)), along with the ownership of the
reference ℓ ↦→ x. Afterwards, the updated reference can be reacquired, followed
by the protocol termination. The dual of the protocol is ?((ℓ, x) : Addr ×
Z) ⟨ℓ⟩{ℓ ↦→ x}. ! ⟨()⟩{ℓ ↦→ x+ 2}. ?end.

The notion of duality is used in the specification for new. The specification states
that we obtain separate exclusive ownership of the returned endpoint c, one with a
freely picked protocol p and the other with its dual p. This mimics the intuition from
the one-shot channel, in which one endpoint had to release the specified resources,
while the other could acquire them. The specification for send states that in order to
send, the channel endpoint must have a sending protocol, and we must give up the
specified resources P t, for a specific instantiation t of the variable x. Additionally,
the sent value must correspond to the protocol, for the variable instantiation v t. As
a result, the returned channel endpoint follows the protocol tail c′ p t, for the
same variable instantiation. Conversely, the specification for recv states that we can
receive if the channel endpoint has a receiving protocol. As a result we obtain an
instance of the logical variable y, and the resources specified by the protocol Q y.
Additionally, the returned value is exactly the one specified by the protocol v y, and
the new endpoint follows the protocol tail c′ p y. The prog_add example can now
be verified using the prot_add protocol. �

verification of the session channel specifications The definitions of
the dependent separation protocols and the specification rules presented in Figure 35
are derived directly on top of the one-shot channel definitions and specifications. In
particular, the type of dependent separation protocols is the same as the one for the
one-shot channel protocols, namely Prot. The definition of the receiving protocol is
as follows:

recv_prot (τ : Type) (v : τ →Val) (P : τ → iProp) (p : τ → Prot) : Prot ≜

(Recv, λ(r :Val). ∃(x : τ), (c :Val). r = (v x, c) ∗ P x ∗ c p x)

?(x : τ) ⟨v⟩{P}. p ≜ recv_prot τ (λx. v) (λx. P) (λx. p)

�

The recv_prot constructor takes four arguments, and constructs a receiving one-shot
channel protocol. In particular the constructor takes the type of its logical variable
τ, the exchanged value v, the exchanged proposition P, and the protocol tail p. The

196

5.3 layered specifications and verification

as for the one-shot channels, as the dependent separation protocols share the same
type as the one-shot protocols, as will be seen momentarily.

The dependent separation protocols can be used to specify and verify session
channels. As an example, the following dependent separation protocol specifies the
interactions of the prog_add example from Section 5.2.3:

prot_add ≜ ! ((ℓ, x) : Addr × Z) ⟨ℓ⟩{ℓ ↦→ x}. ?⟨()⟩{ℓ ↦→ x+ 2}. !end �

The protocol says that one must first send a reference to a number (captured
by the logical variable (ℓ, x) : Addr × Z)), along with the ownership of the
reference ℓ ↦→ x. Afterwards, the updated reference can be reacquired, followed
by the protocol termination. The dual of the protocol is ?((ℓ, x) : Addr ×
Z) ⟨ℓ⟩{ℓ ↦→ x}. ! ⟨()⟩{ℓ ↦→ x+ 2}. ?end.

The notion of duality is used in the specification for new. The specification states
that we obtain separate exclusive ownership of the returned endpoint c, one with a
freely picked protocol p and the other with its dual p. This mimics the intuition from
the one-shot channel, in which one endpoint had to release the specified resources,
while the other could acquire them. The specification for send states that in order to
send, the channel endpoint must have a sending protocol, and we must give up the
specified resources P t, for a specific instantiation t of the variable x. Additionally,
the sent value must correspond to the protocol, for the variable instantiation v t. As
a result, the returned channel endpoint follows the protocol tail c′ p t, for the
same variable instantiation. Conversely, the specification for recv states that we can
receive if the channel endpoint has a receiving protocol. As a result we obtain an
instance of the logical variable y, and the resources specified by the protocol Q y.
Additionally, the returned value is exactly the one specified by the protocol v y, and
the new endpoint follows the protocol tail c′ p y. The prog_add example can now
be verified using the prot_add protocol. �

verification of the session channel specifications The definitions of
the dependent separation protocols and the specification rules presented in Figure 35
are derived directly on top of the one-shot channel definitions and specifications. In
particular, the type of dependent separation protocols is the same as the one for the
one-shot channel protocols, namely Prot. The definition of the receiving protocol is
as follows:

recv_prot (τ : Type) (v : τ →Val) (P : τ → iProp) (p : τ → Prot) : Prot ≜

(Recv, λ(r :Val). ∃(x : τ), (c :Val). r = (v x, c) ∗ P x ∗ c p x)

?(x : τ) ⟨v⟩{P}. p ≜ recv_prot τ (λx. v) (λx. P) (λx. p)

�

The recv_prot constructor takes four arguments, and constructs a receiving one-shot
channel protocol. In particular the constructor takes the type of its logical variable
τ, the exchanged value v, the exchanged proposition P, and the protocol tail p. The

196

5.3 layered specifications and verification

latter three arguments all abstract over the protocol variable, which is existentially
quantified in the protocol body. The second projection captures that the actual
exchanged value is a tuple of the value specified by the protocol (v x), and the
continuation (c). It additionally includes ownership of the resources specified by
the protocol (P x), and finally a one-shot channel ownership, of the continuation
with the protocol tail (c (p x)). The notation ?(x : τ) ⟨v⟩{P}. p then simply lets
us instantiate the receiving constructor, without explicitly repeating the variable
abstraction for the three constituents.

The duality function of the session channels is the same as the one for the one-shot
channel. We define the sending constructor in terms of the receiving one, using the
duality function as follows:

! x ⟨v⟩{P}. p ≜ ?x ⟨v⟩{P}. p �

To specify the close and wait operations we define two session protocols:

?end ≜ (Recv, λr. r = ()) �

!end ≜ ?end �

Finally, the channel endpoint ownership c p is identical to the one for the
one-shot channels, as the type of the protocols are the same, they simply carry
channel continuations now. This immediate reuse of the one-shot ownership is made
possible by the higher-order nature of Iris. In particular, the internal invariant of
the endpoint ownership refers to the session protocols, which internally includes a
nested endpoint ownership, and so on. By virtue of the step-indexing of Iris, this is
sound as we always take a step for each unfolding of the nested invariants.

With these definitions the soundness of the session channel specifications
(Figure 35) follow almost immediately from the sound specifications of the one-shot
channel operations send1 and recv1.

subprotocols for session protocols We have a notion of subprotocols
for one-shot protocols (Section 5.3.3), but what about dependent session protocols?
Because we have defined session protocols as particular forms of one-shot protocols,
we get the appropriate notion of subprotocols for session protocols for free. The
following lemmas for session subprotocols (and the imperative derivation on top of
them) are already true and easily derived from the subprotocol rules in Section 5.3.3:

∀x1. 𝛷𝛷1 x1 −∗ ∃x2. (v1 x1 = v2 x2) ∗ 𝛷𝛷2 x2 ∗ ⊲(p1 x1 ⊑ p2 x2)
?x1 ⟨v1⟩{𝛷𝛷1}. p1 ⊑ ?x2 ⟨v2⟩{𝛷𝛷2}. p2

�

∀x2. 𝛷𝛷2 x2 −∗ ∃x1. (v2 x2 = v1 x1) ∗ 𝛷𝛷1 x1 ∗ ⊲(p1 x1 ⊑ p2 x2)
! x1 ⟨v1⟩{𝛷𝛷1}. p1 ⊑ ! x2 ⟨v2⟩{𝛷𝛷2}. p2

�

197

5.3 layered specifications and verification

At a high level, these lemmas state that a session protocol is a subprotocol of
another, if for each logical message in the first protocol, there exists an appropriate
logical message in the second protocol, such that we have a separating implication
between separation logic assertions, and the tails of the protocols are in a subprotocol
relationship. The stated lemmas are somewhat stronger than this high-level
description; for instance, the user of the lemmas gets access to the assertion 𝛷𝛷1 x1

before having to provide the corresponding logical message x2 for the other protocol.
As an example, this strengthening allows one to perform a form of framing of
resources within a protocol: if a resource is provided by an earlier send and needed
by a later receive, we can frame these two resources (i.e., remove both from the
protocol by canceling them out). This property can be illustrated by the following
rules:

! x ⟨v⟩{P}. ?x ⟨w⟩{Q}. p ⊑ ! x ⟨v⟩{P ∗ R}. ?x ⟨w⟩{Q ∗ R}. p �

?x ⟨v⟩{P ∗ R}. ! x ⟨w⟩{Q ∗ R}. p ⊑ ?x ⟨v⟩{P}. ! x ⟨w⟩{Q}. p �

5.3.5 Imperative Channels

Because our session channels create new pointers at each step, they return new
channels, and are thus inconvenient to work with. For that reason, we have our
final layer: the imperative channels from Section 5.2.4. These channels put a session
channel in a mutable reference, so that we can use the same mutable reference
throughout and use mutating operations to change the reference to a new session
channel upon send and receive operations. To handle these channels, we introduce a
new channel points-to c

imp p. The specifications for the imperative channels can
be found in Figure 36. We note a couple of differences with respect to the session
channels:

• The new_imp operation returns a pair of channels now, so the points-to connectives
in the postcondition are for the two components of the pair.

• The send operation does not return a value. The new channel points-to in the
postcondition refers to the original channel instead.

• The recv operation only returns one value—the message. The channel points-to
in the postcondition once again refers to the original channel.

verifying the imperative channel specifications To verify the session
channels we first define a new connective for channel endpoint ownership:

c
imp p ≜ ∃(ℓ : Addr), (c′ :Val). c = ℓ ∗ ℓ ↦→ c′ ∗ c′ p �

The new imperative channel ownership connective c
imp p simply lifts the original

connective c′ p to assert ownership of a mutable reference.

198

5.3 layered specifications and verification

At a high level, these lemmas state that a session protocol is a subprotocol of
another, if for each logical message in the first protocol, there exists an appropriate
logical message in the second protocol, such that we have a separating implication
between separation logic assertions, and the tails of the protocols are in a subprotocol
relationship. The stated lemmas are somewhat stronger than this high-level
description; for instance, the user of the lemmas gets access to the assertion 𝛷𝛷1 x1

before having to provide the corresponding logical message x2 for the other protocol.
As an example, this strengthening allows one to perform a form of framing of
resources within a protocol: if a resource is provided by an earlier send and needed
by a later receive, we can frame these two resources (i.e., remove both from the
protocol by canceling them out). This property can be illustrated by the following
rules:

! x ⟨v⟩{P}. ?x ⟨w⟩{Q}. p ⊑ ! x ⟨v⟩{P ∗ R}. ?x ⟨w⟩{Q ∗ R}. p �

?x ⟨v⟩{P ∗ R}. ! x ⟨w⟩{Q ∗ R}. p ⊑ ?x ⟨v⟩{P}. ! x ⟨w⟩{Q}. p �

5.3.5 Imperative Channels

Because our session channels create new pointers at each step, they return new
channels, and are thus inconvenient to work with. For that reason, we have our
final layer: the imperative channels from Section 5.2.4. These channels put a session
channel in a mutable reference, so that we can use the same mutable reference
throughout and use mutating operations to change the reference to a new session
channel upon send and receive operations. To handle these channels, we introduce a
new channel points-to c

imp p. The specifications for the imperative channels can
be found in Figure 36. We note a couple of differences with respect to the session
channels:

• The new_imp operation returns a pair of channels now, so the points-to connectives
in the postcondition are for the two components of the pair.

• The send operation does not return a value. The new channel points-to in the
postcondition refers to the original channel instead.

• The recv operation only returns one value—the message. The channel points-to
in the postcondition once again refers to the original channel.

verifying the imperative channel specifications To verify the session
channels we first define a new connective for channel endpoint ownership:

c
imp p ≜ ∃(ℓ : Addr), (c′ :Val). c = ℓ ∗ ℓ ↦→ c′ ∗ c′ p �

The new imperative channel ownership connective c
imp p simply lifts the original

connective c′ p to assert ownership of a mutable reference.

198

5.3 layered specifications and verification

Points-to: c
imp

p ∈ iProp where p ∈ Prot and c ∈Val �

New: {True} new_imp () {w. ∃c1, c2. w = (c1, c2) ∗ c1
imp

p ∗ c2
imp

p} �

Send: {c imp (! x ⟨v⟩{P}. p) ∗ P t} c.send(v t) {c imp (p t)} �

Receive: {c imp (?x ⟨v⟩{P}. p)} c.recv() {w. ∃y. w = v y ∗ c imp (p y) ∗ P y}
�

Close: {c imp !end} c.close() {True} �

Wait: {c imp ?end} c.wait() {True} �

Figure 36: Separation logic specifications for imperative channels.

With this definition in hand, verifying the specification is trivial. We simply use
the Iris rule for allocating, reading, and updating the reference, along with the
specifications for the original channel endpoint ownership, to resolve the operations
on the channel.

Because the new channel-points-to is defined in terms of the old one, the results
of subprotocols easily lift to the imperative channels. �

verifying the example We now explain how these specifications can be used
to verify the example from Figure 30. The example starts by allocating a new channel,
so we use the specification for new_imp. In order to use this specification, we have to
choose the session protocol p. We use the following protocol:

prot_sum′ x n ≜ if n = 0 then (?⟨()⟩{s ↦→ x}. !end) �

else (! (y : N) ⟨y⟩. prot_sum′ (x+ y) n)
prot_sum ≜ ! ((n, s) : N×Addr) ⟨(n, s)⟩{s ↦→ 0}. prot_sum′ 0 n �

The protocol prot_sum says that we will first send the pair (n, s) of a number and
a location, and the assertion that s ↦→ 0. We then continue with the protocol
prot_sum′ 0 n, which is recursively defined. Its first argument keeps track of the
sum of the messages sent so far, and the second argument keeps track of how many
messages we still have to send. When the counter n = 0, we stop sending and instead
receive a unit value, as well as the assertion that s ↦→ x, i.e., the sum of the messages
sent.

After the channel allocation, we have c1
imp

prot_sum and c2
imp

prot_sum. We
verify the first interaction using the first step of prot_sum. We prove the loops
correct using induction: the main thread does induction on 100, and the child thread
induction on the received message n (which will be 100, but the child thread does
not know this). After the final synchronization, the ownership over s has been

199

5.4 guarded recursion

transferred back to the main thread. According to the protocol, the location s points
to the value 1 + 2 + · · · + 100, which is equal to 5050 by mathematical reasoning. �

As the reader can see, the reasoning about the pointer structure of the
buffers is completely encapsulated in the higher-level session specifications. The
nondeterminism present due to the asynchronous semantics of the send operation
does not need to be reasoned about explicitly: although the depth of the linked list
buffer changes non-deterministically according to the thread scheduling of the sends
and receives, the proof does not explicitly reason about this at all.

5.4 guarded recursion

As we have seen in the example in Section 5.3.4, we can already create some recursive
protocols by employing recursion over natural numbers (or other inductively-defined
data types in Coq). Recursion over natural numbers lets us verify the example from
Figure 30 where one side sends a number n, and then sends n further messages.
Although recursion on inductive types is powerful, it does not allow us to create
protocols for truly infinite interactions with services that run forever. We can create
protocols that support truly infinite interactions with Iris’s operator for guarded
recursion.

Iris models guarded recursion via step-indexing (Appel and McAllester, 2001;
Ahmed, 2004), meaning that separation logic propositions iProp are internally
monotone predicates of a natural number i, the step index. Intuitively, the meaning
of such a proposition is given by taking the limit to ever higher step indices. This
allows us to model infinite protocols as a step-indexed protocol of unboundedly
increasing depth. Iris does not expose the step index to the user of the logic, so
we cannot define protocols by direct recursion over i. Instead, Iris provides a
logical account of step-indexing (Appel et al., 2007; Dreyer et al., 2011) through
the later modality ⊲P (Nakano, 2000), and a guarded recursion operator µx.F x

for constructing recursive predicates. The F x must be contractive in the sense that
recursive occurrences of x in F must only occur under a later ⊲. This ensures that
creating such a recursive predicate does not result in any logical paradoxes. Our
protocols Prot ≜ (Send | Recv) × (Val → iProp) contain separation logic predicates
over values, so we can make direct use of Iris’s guarded recursion mechanism to
define recursive protocols.

The reader may have noticed that we have already inserted the later modality ⊲ in
certain places in our definitions, such as in the definition of c base p (Section 5.3.2).
This is to make sure that c base p is contractive in p, which in turn means that
! x ⟨v⟩{P}. p and ?x ⟨v⟩{P}. p are contractive in p. � We are therefore able to take
guarded fixpoints of protocols, to create unbounded or infinite protocols, such as
the following recursive variant of prot_add:

prot_add_rec ≜ µp. ! ((ℓ, x) : Addr × Z) ⟨ℓ⟩{ℓ ↦→ x}. ?⟨()⟩{ℓ ↦→ x+ 2}. p �

200

5.4 guarded recursion

transferred back to the main thread. According to the protocol, the location s points
to the value 1 + 2 + · · · + 100, which is equal to 5050 by mathematical reasoning. �

As the reader can see, the reasoning about the pointer structure of the
buffers is completely encapsulated in the higher-level session specifications. The
nondeterminism present due to the asynchronous semantics of the send operation
does not need to be reasoned about explicitly: although the depth of the linked list
buffer changes non-deterministically according to the thread scheduling of the sends
and receives, the proof does not explicitly reason about this at all.

5.4 guarded recursion

As we have seen in the example in Section 5.3.4, we can already create some recursive
protocols by employing recursion over natural numbers (or other inductively-defined
data types in Coq). Recursion over natural numbers lets us verify the example from
Figure 30 where one side sends a number n, and then sends n further messages.
Although recursion on inductive types is powerful, it does not allow us to create
protocols for truly infinite interactions with services that run forever. We can create
protocols that support truly infinite interactions with Iris’s operator for guarded
recursion.

Iris models guarded recursion via step-indexing (Appel and McAllester, 2001;
Ahmed, 2004), meaning that separation logic propositions iProp are internally
monotone predicates of a natural number i, the step index. Intuitively, the meaning
of such a proposition is given by taking the limit to ever higher step indices. This
allows us to model infinite protocols as a step-indexed protocol of unboundedly
increasing depth. Iris does not expose the step index to the user of the logic, so
we cannot define protocols by direct recursion over i. Instead, Iris provides a
logical account of step-indexing (Appel et al., 2007; Dreyer et al., 2011) through
the later modality ⊲P (Nakano, 2000), and a guarded recursion operator µx.F x

for constructing recursive predicates. The F x must be contractive in the sense that
recursive occurrences of x in F must only occur under a later ⊲. This ensures that
creating such a recursive predicate does not result in any logical paradoxes. Our
protocols Prot ≜ (Send | Recv) × (Val → iProp) contain separation logic predicates
over values, so we can make direct use of Iris’s guarded recursion mechanism to
define recursive protocols.

The reader may have noticed that we have already inserted the later modality ⊲ in
certain places in our definitions, such as in the definition of c base p (Section 5.3.2).
This is to make sure that c base p is contractive in p, which in turn means that
! x ⟨v⟩{P}. p and ?x ⟨v⟩{P}. p are contractive in p. � We are therefore able to take
guarded fixpoints of protocols, to create unbounded or infinite protocols, such as
the following recursive variant of prot_add:

prot_add_rec ≜ µp. ! ((ℓ, x) : Addr × Z) ⟨ℓ⟩{ℓ ↦→ x}. ?⟨()⟩{ℓ ↦→ x+ 2}. p �

200

5.4 guarded recursion

A second component of guarded recursion is Iris’s support for Löb induction. Löb
induction allows us to verify unbounded or infinitely recursive programs that use
recursive protocols. Ordinary induction only gives us an induction hypothesis
for recursive calls where some measure is decreasing, and hence only works for
terminating loops. Löb induction, on the other hand, gives us an induction hypothesis
for any recursive call (not necessarily decreasing), but this induction hypothesis will
be guarded under a later (⊲). These laters maintain logical consistency, but the
resources guarded by them may only be accessed after the next primitive program
step. In this manner, Löb induction allows us to verify partial correctness of a
program that sends a stream of messages in an infinite tail-recursive loop, by
instantiating the channel with the preceding recursive protocol.

The recursive protocols combined with Löb induction allow us to verify recursive
programs such as the following recursive variant of the prog_add program from
Section 5.2.3:

prog_add_rec ≜

let (c1, c2) = new_imp () in
fork {(rec f c1 = let l = c1.recv() in l ← (! l+ 2); c1.send(()); f c1) c1} ;

let l = ref 38 in

c2.send(l); c2.recv(); c2.send(l); c2.recv();
assert(! l = 42); c2

�

Here, rec f x = e is a recursive function, where the recursive occurrence is bound
to f. Verifying the program is straightforward. Notably, the main thread unfolds
the recursive protocol prot_add_rec twice, to verify its code. The forked-off thread
is resolved using Löb induction. It unfolds the recursive protocol once, verifies one
iteration, after which it uses the Löb induction hypothesis to verify the recursive call.
�

Similar to Actris (Hinrichsen et al., 2022, §9.1), recursion is not only permitted via
the tail p, but also via the proposition P in the protocols ?x ⟨v⟩{P}. p and ! x ⟨v⟩{P}. p,
making it possible to construct recursive protocols such as µp. ! c ⟨c⟩{c p}. !end.
We are allowed to construct such protocols because c p is contractive in p. Also
similar to Actris (Hinrichsen et al., 2022, §6.4), we can use Löb induction to prove
that an infinitely recursive protocol is a subprotocol of another. The later modalities
(⊲) in the rules for subprotocols (page 198) make it possible to remove a later from
the Löb induction hypothesis. The same approach applies to protocols such as
µp. ! c ⟨c⟩{c p}. !end because the subsumption rule (c p) ∗ ⊲(p ⊑ q) −∗ (c q)
contains a later modality.

Making recursion and Löb induction interact properly requires careful placement
of later modalities in the definitions of the channel points-to connectives. For
example, to prove the subsumption rule (c p) ∗ ⊲(p ⊑ q) −∗ (c q) for other forms
of channel closure in Section 5.5, we need to consider the case that p = end and

201

5.5 self-dual end

q ≠ end. We only obtain ⊲False from ⊲(p ⊑ q), instead of an immediate contradiction
(⊲False is not equivalent to False). Due to the later modalities in c p, however,
⊲False is sufficient to complete the proof.3

5.5 self-dual end

In the preceding sections, we had separate close and wait operations, with dual
!end and ?end protocols. In this section we investigate alternative operations to
deallocate or close a channel, which result in a self-dual end protocol. We have two
different options for achieving this:

• Symmetric close. Define one close operation, with protocol end, that both sides
call, which dynamically determines who deallocates the channel (Section 5.5.1)

• Send-close. Define a combined send-close operation that sends the last message
and closes the channel. The other side performs a recv that obtains no
continuation channel (Section 5.5.2).

5.5.1 Symmetric Close

Suppose that we want only one sym_close operation, that both sides of the channel
call. Because the channel consists of one memory location, we need to dynamically
decide which caller gets to free the memory. We use compare-and-swap to achieve
this effect:

sym_close c ≜ if CAS(c, None, Some()) then () else free c �

To see how this works, consider two parallel close operations on the same channel:
sym_close c ∥ sym_close c. The thread that does its CAS first will successfully set c
from None to Some(), and return () from its sym_close. The second thread will then
fail its CAS, since the value stored in c is no longer None. It will then go to the else
branch and free c.

To verify this version of close, we need to make a change to our notion of
protocols. So far, our protocols have all been one-shot protocols p ∈ Prot ≜ (Send |
Recv) × (Val → iProp) under the hood; even the protocols !end, ?end ∈ Prot. For the
symmetric sym_close, this does not work. We now have to explicitly distinguish
end in the protocols:

q ∈ Protend ::= end | p where p ∈ Prot �

3 It also relies on ⊲False ⊢ R
𝒩𝒩

for any R and 𝒩𝒩 , see https://gitlab.mpi-sws.org/iris/iris/-/merge_

requests/897.

202

5.5 self-dual end

q ≠ end. We only obtain ⊲False from ⊲(p ⊑ q), instead of an immediate contradiction
(⊲False is not equivalent to False). Due to the later modalities in c p, however,
⊲False is sufficient to complete the proof.3

5.5 self-dual end

In the preceding sections, we had separate close and wait operations, with dual
!end and ?end protocols. In this section we investigate alternative operations to
deallocate or close a channel, which result in a self-dual end protocol. We have two
different options for achieving this:

• Symmetric close. Define one close operation, with protocol end, that both sides
call, which dynamically determines who deallocates the channel (Section 5.5.1)

• Send-close. Define a combined send-close operation that sends the last message
and closes the channel. The other side performs a recv that obtains no
continuation channel (Section 5.5.2).

5.5.1 Symmetric Close

Suppose that we want only one sym_close operation, that both sides of the channel
call. Because the channel consists of one memory location, we need to dynamically
decide which caller gets to free the memory. We use compare-and-swap to achieve
this effect:

sym_close c ≜ if CAS(c, None, Some()) then () else free c �

To see how this works, consider two parallel close operations on the same channel:
sym_close c ∥ sym_close c. The thread that does its CAS first will successfully set c
from None to Some(), and return () from its sym_close. The second thread will then
fail its CAS, since the value stored in c is no longer None. It will then go to the else
branch and free c.

To verify this version of close, we need to make a change to our notion of
protocols. So far, our protocols have all been one-shot protocols p ∈ Prot ≜ (Send |
Recv) × (Val → iProp) under the hood; even the protocols !end, ?end ∈ Prot. For the
symmetric sym_close, this does not work. We now have to explicitly distinguish
end in the protocols:

q ∈ Protend ::= end | p where p ∈ Prot �

3 It also relies on ⊲False ⊢ R
𝒩𝒩

for any R and 𝒩𝒩 , see https://gitlab.mpi-sws.org/iris/iris/-/merge_

requests/897.

202

5.5 self-dual end

We also need to extend duality with end ≜ end and subprotocols with end ⊑ end.
� � With this additional protocol, we have the following specification for sym_close:

Close operation: {c sym end} sym_close c {True} �

Because our set of protocols has been extended, we need an extended channel
points-to sym , which we define as follows:

c
sym

q ≜

{
∃γ1,γ2, ℓ. ⊲(c = ℓ) ∗ end_inv γ1 γ2 ℓ ∗ ⊲(tokγ1) if q = end

c q if q ∈ Prot

�

Here, the following protocol is stored inside our invariant:

end_inv γ1 γ2 ℓ ≜ (ℓ ↦→ None︸�����︷︷�����︸
before close

) ∨ (ℓ ↦→ Some() ∗ (tokγ1 ∨ tokγ2)︸��������������������������������︷︷��������������������������������︸
one side has closed

) ∨ (tokγ1 ∗ tokγ2︸�����������︷︷�����������︸
fully closed

)

�

Like the one-shot send-receive protocol, this protocol uses two tokens tokγ1 and
tokγ2, which belong to the two c

sym end assertions. Initially, the invariant states
that the location ℓ points to None. When one side has successfully closed, the
invariant states that ℓ points to Some(), and the invariant has collected the token of
the side that has called close first (because this is nondeterministic, the invariant
uses a disjunction tokγ1 ∨ tokγ2). When both sides have closed, the invariant has
both tokens, and no memory points-to (because the memory location has been
deallocated). As before, we add later modalities (⊲) in front of c = ℓ and tokγ1 to
support infinite protocols via guarded recursion (Section 5.4). With these definitions,
we can prove the Hoare specification for the symmetric sym_close in a similar way
we verified send1 and recv1. �

5.5.2 Send-Close

From an operational point of view, the previous two methods for channel closing are
a tiny bit disappointing, because for the last step, a memory location is allocated but
not used to communicate any useful message. In this section we develop a channel
closing mechanism where the close operation is integrated with the last message
send.

This may sound strange at first sight, but upon investigating how channel closing
typically works in examples, it hopefully starts to make more sense. Consider an
example where party A is communicating a stream of messages to another party B,
and A may at every point decide to end the stream. This can be accomplished by
sending an additional Boolean along with each message, which determines whether

203

5.5 self-dual end

this is the last message or not. When it is the last message, the sender does not
allocate a continuation channel, and sends () in place of the continuation channel.
When the receiver receives a message, they have to inspect the Boolean to determine
whether they got a continuation channel or not. This saves one memory allocation
and synchronization compared to the previous methods. Similarly, in the example of
Figure 30, we can eliminate the last interaction and synchronization by integrating
the final acknowledgment with the closing of the channel.

While this saving is minor, we argue in favor of it for aesthetic reasons. If one
wants to implement the one-shot API on top of the previous session channel API
(i.e., the other way around compared to what we have done so far), then a single
shot communication would involve one real communication and then one extra
allocation and communication to close the channel. We now present a channel
closing mechanism with which one can implement one-shot channels on top of
session channels with no additional synchronizations or allocations. Therefore, with
this channel closing mechanism, session channels become a purely logical layer over
one-shot channels. The implementation of this closing mechanism is very simple,
namely the following send_close operation:

send_close c v ≜ send1 c (v, ()) �

There is no corresponding wait operation for the other side: as send_close simply
does not allocate a continuation channel, the other side can use recv, which already
deallocates the memory location. For the specification and verification of send_close,
we use the same Protend protocols:

q ∈ Protend ::= end | p where p ∈ Prot �

We extend duality with end ≜ end and subprotocols with end ⊑ end. As before, we
define a new channel points-to, this time for the send-close version:

c scl q ≜

{
⊲(c = ()) if q = end

c q if q ∈ Prot
�

For the end protocol, the channel points-to asserts that there is no channel, i.e., the
channel is a unit value instead of a pointer to a memory location (this could also be
implemented as a null pointer).

204

5.5 self-dual end

this is the last message or not. When it is the last message, the sender does not
allocate a continuation channel, and sends () in place of the continuation channel.
When the receiver receives a message, they have to inspect the Boolean to determine
whether they got a continuation channel or not. This saves one memory allocation
and synchronization compared to the previous methods. Similarly, in the example of
Figure 30, we can eliminate the last interaction and synchronization by integrating
the final acknowledgment with the closing of the channel.

While this saving is minor, we argue in favor of it for aesthetic reasons. If one
wants to implement the one-shot API on top of the previous session channel API
(i.e., the other way around compared to what we have done so far), then a single
shot communication would involve one real communication and then one extra
allocation and communication to close the channel. We now present a channel
closing mechanism with which one can implement one-shot channels on top of
session channels with no additional synchronizations or allocations. Therefore, with
this channel closing mechanism, session channels become a purely logical layer over
one-shot channels. The implementation of this closing mechanism is very simple,
namely the following send_close operation:

send_close c v ≜ send1 c (v, ()) �

There is no corresponding wait operation for the other side: as send_close simply
does not allocate a continuation channel, the other side can use recv, which already
deallocates the memory location. For the specification and verification of send_close,
we use the same Protend protocols:

q ∈ Protend ::= end | p where p ∈ Prot �

We extend duality with end ≜ end and subprotocols with end ⊑ end. As before, we
define a new channel points-to, this time for the send-close version:

c scl q ≜

{
⊲(c = ()) if q = end

c q if q ∈ Prot
�

For the end protocol, the channel points-to asserts that there is no channel, i.e., the
channel is a unit value instead of a pointer to a memory location (this could also be
implemented as a null pointer).

204

5.6 other supported features

These are the specifications for the channel operations with send_close:

New: {True} new () {c. c scl p ∗ c scl p} �

Send: {c scl (! x ⟨v⟩{P}. p) ∗ P t} send c (v t) {c′. c′ scl p t} where p t ≠ end
�

Send-close: {c scl (! x ⟨v⟩{P}. p) ∗ P t} send_close c (v t) {True} where p t = end
�

Receive: {c scl (?x ⟨v⟩{P}. p)} recv c {w. ∃y, c′. w = (v y, c′) ∗ c′ scl p y ∗ P y}
�

The send operation now requires that the tail p t is not end, whereas the send_close

operation requires that p t is end. The specification of recv does not concern itself
with end. Instead, the received message v y will contain information about whether
the protocol ended or not (such as a Boolean, as described previously). Using logical
reasoning about the message, we can then conclude whether the tail protocol p t is
end or not. If it is, then we obtain c′ = (), and we do not need to do anything. If it is
not end, we obtain c′ scl p y and can continue the protocol.

Unlike close with symmetric channel closing from Section 5.5.1, the send_close

operation has been defined in terms of send1. The proofs of the specifications
therefore also follow straightforwardly from the specifications of send1 and recv1,
unlike the proofs for symmetric channel closing.

5.6 other supported features

In this section, we briefly discuss some other features of our framework. Similar to
Actris, we get these features for free by building on top of Iris:

delegation and channel passing We support delegation, i.e., sending
channels over channels as messages, due to Iris’s support for impredicative (i.e.,
nested) invariants. This allows the channel points-to resource to be used in a protocol
such as ! c ⟨c⟩{c q}.p This protocol enables us to send a channel c as well as its
associated channel points-to c q over another channel, which then allows the
receiver to use the received channel c at protocol q.

choice protocols We support choice protocols, where a thread can choose
between multiple different continuation protocols. This can be encoded as a special
case of dependent session protocols, where the sender makes the choice by sending
a Boolean value, and the continuation protocol is chosen based on the value of the
Boolean: p1 ⊕ p2 ≜ !b ⟨b⟩{True}. if b then p1 else p2.

shared memory Channels are not the only way to communicate information
between threads: we can also use shared memory directly. We can use all of the

205

5.7 mechanization

features of Iris to reason about shared memory, we can send mutable references
as messages over channels (as in Figure 30), and we can store channels in mutable
references.

locks and shared sessions We support the combination of locks with channel
communication. For instance, we can use a lock to protect a channel endpoint, which
can then be used by multiple threads. This is useful for implementing shared
sessions, where multiple threads can send and receive messages on the same channel
endpoint, which is common in client-server protocols.

5.7 mechanization

The implementations of channels (Section 5.2), the proof that they satisfy their
separation logic specifications (Section 5.3), the different methods for closing channels
(Section 5.5), and the verification of all the examples have been fully mechanized
using the Coq proof assistant (Coq Team, 2021), making use of the Iris separation
logic framework.

The mechanization follows the layered design as presented in Figure 29. The
layered design allows our proofs to be simpler compared to previous work on Actris
(Hinrichsen et al., 2020). Only the proofs for one-shot operations new1, send1, recv1
(and the symmetric sym_close) involve concurrent separation logic concepts such as
ghost state and invariants. All the other proofs are done on top of these specifications,
treating the one-shot operations as a black box.

Our protocol definitions are simple compared to Actris. We do not need to solve an
intricate recursive domain equation (Hinrichsen et al., 2022, §9.7). At no point do we
have to reason about more than one cell in the buffer structure; the multi-shot session
protocols simply emerge automatically using composition. Despite this simplification
to the Actris model, the different extensions such as subprotocols, guarded recursion,
and the different forms of channel closing work seamlessly together. For instance, we
can show that an infinitely recursive protocol is a subprotocol of another infinitely
recursive protocol, by using guarded recursion and Löb induction.

In total, our Coq mechanization consists of less than 1000 lines of Coq code
(including the verification of all examples). The mechanization is referenced
throughout the paper by �-symbols. The mechanization has also been archived on
Zenodo (Jacobs et al., 2023).

5.8 related work

The origins of our line of work trace back to session types. More directly, our work
is inspired by encodings of session types in terms of one-shot synchronization in
particular (Kobayashi, 2002b; Dardha et al., 2017; Jacobs et al., 2022a). Our work is
also directly related to dependent protocols and program logics for session protocols.

206

5.7 mechanization

features of Iris to reason about shared memory, we can send mutable references
as messages over channels (as in Figure 30), and we can store channels in mutable
references.

locks and shared sessions We support the combination of locks with channel
communication. For instance, we can use a lock to protect a channel endpoint, which
can then be used by multiple threads. This is useful for implementing shared
sessions, where multiple threads can send and receive messages on the same channel
endpoint, which is common in client-server protocols.

5.7 mechanization

The implementations of channels (Section 5.2), the proof that they satisfy their
separation logic specifications (Section 5.3), the different methods for closing channels
(Section 5.5), and the verification of all the examples have been fully mechanized
using the Coq proof assistant (Coq Team, 2021), making use of the Iris separation
logic framework.

The mechanization follows the layered design as presented in Figure 29. The
layered design allows our proofs to be simpler compared to previous work on Actris
(Hinrichsen et al., 2020). Only the proofs for one-shot operations new1, send1, recv1
(and the symmetric sym_close) involve concurrent separation logic concepts such as
ghost state and invariants. All the other proofs are done on top of these specifications,
treating the one-shot operations as a black box.

Our protocol definitions are simple compared to Actris. We do not need to solve an
intricate recursive domain equation (Hinrichsen et al., 2022, §9.7). At no point do we
have to reason about more than one cell in the buffer structure; the multi-shot session
protocols simply emerge automatically using composition. Despite this simplification
to the Actris model, the different extensions such as subprotocols, guarded recursion,
and the different forms of channel closing work seamlessly together. For instance, we
can show that an infinitely recursive protocol is a subprotocol of another infinitely
recursive protocol, by using guarded recursion and Löb induction.

In total, our Coq mechanization consists of less than 1000 lines of Coq code
(including the verification of all examples). The mechanization is referenced
throughout the paper by �-symbols. The mechanization has also been archived on
Zenodo (Jacobs et al., 2023).

5.8 related work

The origins of our line of work trace back to session types. More directly, our work
is inspired by encodings of session types in terms of one-shot synchronization in
particular (Kobayashi, 2002b; Dardha et al., 2017; Jacobs et al., 2022a). Our work is
also directly related to dependent protocols and program logics for session protocols.

206

5.8 related work

Most notable is the work on Actris (Hinrichsen et al., 2020, 2022), which introduced
the notion of dependent separation protocols, which we use to specify our session
channels. We go over each of these points in more detail below.

one-shot channels The encoding of session channels in terms of sequenced
one-shot channels originated in the π-calculus. This encoding sends a continuation
channel in each message, so that the communication can continue. Kobayashi (2002b)
showed that session types can be encoded into π-types, and Dardha et al. (2012,
2017) later extended Kobayashi (2002b)’s approach. Jacobs et al. (2022a) presented a
bidirectional version in a λ-calculus.

Similar one-shot primitives have also been used in the implementation of message
passing libraries, such as in the work of Scalas and Yoshida (2016a); Padovani (2017);
Kokke and Dardha (2021b); Niehren et al. (2006). Our implementation of session
channels in terms of one-shot channels uses a similar strategy.

Unlike this earlier work, which is either untyped or type-based, we use session
protocols in separation logic to verify (partial) functional correctness. Our one-shot
channels are not primitive and not built-in to the language, but implemented in
terms of low-level memory operations. We take inspiration from the preceding work
and subsequently build session channels on top of one-shot channels, and we build
session protocols on top of one-shot protocols.

dependent protocols and session logics Bocchi et al. (2010) and Toninho
et al. (2011) both developed version of (multi-party) session types which incorporate
logical binders into the protocols, alongside a first-order decidable assertion language
for specifying properties about them. Later, Toninho and Yoshida (2018) and
Thiemann and Vasconcelos (2020) expanded on this work by allowing similar
binders determine the structure of the remaining protocol, similar to what we
do in Section 5.2.4. Compared to our work, their assertion languages are limited
in the sense that they cannot describe the delegation of resources (e.g., sending a
reference to another thread). Later work (Craciun et al., 2015; Costea et al., 2018)
addressed the issue of specifying resource delegation, through the development
of a session logic, based in separation logic. Their logic allows ascribing channel
endpoints with protocols, which in turn can specify resources to be shared, such
as other channel endpoints. Compared to our work, they do not support binders,
which for one means that they cannot specify protocols referring the dynamically
allocated references, like we do in Section 5.2.2. Actris protocols support both
binders, delegation, and protocols referring to dynamically allocated references and
ghost resources (Hinrichsen et al., 2020), as our protocols do.

actris Actris introduced a shared-memory implementation of higher-order
session channels, and the notion of dependent separation protocols for the
verification of message passing concurrency using program logics, mechanized
on top of Iris. Our work focuses primarily on developing a framework in the style of

207

5.8 related work

Actris, but with a focus on layered design, elegance, and simplicity. This results in the
following key differences between Actris and our work:

• Actris channels implement bi-directional communication using a pair of buffers
that are protected by a lock. Our one-shot channels are implemented directly
using load and store memory operations, and our session channels and imperative
channels are implemented in terms of one-shot channels.

• As a result of this, Actris’s dependent separation protocols are defined by solving
an intricate recursive domain equation. By contrast, our definition of Prot ≜
(Send | Recv) × (Val → iProp) is itself non-recursive, yet Actris-style dependent
separation protocols can be defined as inhabitants of Prot, and automatically
support recursive protocols.

• Our notion of subprotocols for one-shot channels is very simple and non-recursive,
but automatically lifts to (recursive) session protocols, because session protocols
are defined as one-shot protocols. Actris’s notion of subprotocols is recursive
and more complicated than ours, but also stronger: Actris’s implementation of
channels with a pair of buffers admits swapping sends over receives (akin to
asynchronous subtyping (Mostrous et al., 2009; Mostrous and Yoshida, 2015)).
Such a transformation is not sound for our single-buffer implementation of
channels.

• We achieve a simpler approach by making use of nested invariants, but Actris’s
solution gave rise to the “Actris ghost theory” (Hinrichsen et al., 2022, §9.4) for
reasoning about session protocols in a way that is disconnected from specific
implementations. The Actris ghost theory has been used to develop specifications
based on dependent session protocols for distributed systems (Gondelman et al.,
2023).

• Actris contains a number of convenience features, such as multi-binders and
associated tactics, to ease verification of message passing programs in Coq. While
such features can be integrated in our Coq development, we preferred to keep the
protocols (and verification thereof) simpler, to focus on the layering of channel
variants. Even so, our single-binders can simulate multi-binders using tuples, as
has been demonstrated throughout the paper.

• While Actris relies on a garbage collector for channel deallocation, we present
several manually memory managed solutions for channel closing.

In short, Actris has more features (asynchronous subtyping, ghost theory) and a
more convenient implementation in Coq (multi-binders, tactics), but our design
achieves the key feature of Actris (dependent separation protocols) in a conceptually
simpler and layered manner: once we have defined and verified one-shot channels
(which are quite simple and require only the simplest form of ghost resources to

208

5.8 related work

Actris, but with a focus on layered design, elegance, and simplicity. This results in the
following key differences between Actris and our work:

• Actris channels implement bi-directional communication using a pair of buffers
that are protected by a lock. Our one-shot channels are implemented directly
using load and store memory operations, and our session channels and imperative
channels are implemented in terms of one-shot channels.

• As a result of this, Actris’s dependent separation protocols are defined by solving
an intricate recursive domain equation. By contrast, our definition of Prot ≜
(Send | Recv) × (Val → iProp) is itself non-recursive, yet Actris-style dependent
separation protocols can be defined as inhabitants of Prot, and automatically
support recursive protocols.

• Our notion of subprotocols for one-shot channels is very simple and non-recursive,
but automatically lifts to (recursive) session protocols, because session protocols
are defined as one-shot protocols. Actris’s notion of subprotocols is recursive
and more complicated than ours, but also stronger: Actris’s implementation of
channels with a pair of buffers admits swapping sends over receives (akin to
asynchronous subtyping (Mostrous et al., 2009; Mostrous and Yoshida, 2015)).
Such a transformation is not sound for our single-buffer implementation of
channels.

• We achieve a simpler approach by making use of nested invariants, but Actris’s
solution gave rise to the “Actris ghost theory” (Hinrichsen et al., 2022, §9.4) for
reasoning about session protocols in a way that is disconnected from specific
implementations. The Actris ghost theory has been used to develop specifications
based on dependent session protocols for distributed systems (Gondelman et al.,
2023).

• Actris contains a number of convenience features, such as multi-binders and
associated tactics, to ease verification of message passing programs in Coq. While
such features can be integrated in our Coq development, we preferred to keep the
protocols (and verification thereof) simpler, to focus on the layering of channel
variants. Even so, our single-binders can simulate multi-binders using tuples, as
has been demonstrated throughout the paper.

• While Actris relies on a garbage collector for channel deallocation, we present
several manually memory managed solutions for channel closing.

In short, Actris has more features (asynchronous subtyping, ghost theory) and a
more convenient implementation in Coq (multi-binders, tactics), but our design
achieves the key feature of Actris (dependent separation protocols) in a conceptually
simpler and layered manner: once we have defined and verified one-shot channels
(which are quite simple and require only the simplest form of ghost resources to

208

5.8 related work

verify), we treat them as a black box and develop Actris-style protocols with relative
ease and without any further use of ghost state or invariants.

An application of Actris is the verification of the soundness of a session type
system via the method of semantic typing (Hinrichsen et al., 2021). Since our
separation logic specifications for session channels are the same as Actris’s, a similar
result could be achieved with our development.

imperative session channels Related to Section 5.2.4, there has also been
work on type systems for imperative channels, which free the user from having to
thread channel variables through their program Saffrich and Thiemann (2023). The
advantage of a type system compared to a program logic is that type checking is
automatic, but an advantage of a program logic is its ability to verify functional
correctness. Hinrichsen et al. (2021) combines advantages of both approaches via
the method of semantic typing in Iris, which allows one to combine separation logic
verification for intricate parts of the program, and type checking for the rest.

209

Chapter 6

Deadlock-Free Separation Logic: Linearity Yields Progress
for Dependent Higher-Order Message Passing

abstract We introduce a linear concurrent separation logic, called LinearActris,
designed to guarantee deadlock and leak freedom for message-passing concurrency.
LinearActris combines the strengths of session types and concurrent separation logic,
allowing for the verification of challenging higher-order program with mutable state
through dependent protocols. The key challenge is to prove the adequacy theorem
of LinearActris, which says that the logic indeed gives deadlock and leak freedom
“for free” from linearity. We prove this theorem by defining a step-indexed model of
separation logic, based on connectivity graphs. To demonstrate the expressive power
of LinearActris, we prove soundness of a higher-order (GV-style) session type system
using the technique of logical relations. All our results and examples have been
mechanized in Coq.

6.1 introduction

Session type systems (Honda, 1993; Honda et al., 1998) allow type checking programs
that involve message-passing concurrency. Session types are protocols, which can
be seen as sequences of send (!) and receive (?) actions. They are associated with
channels, and express in what order messages of what type should be transferred.
For example, the session type !Z.?B.end is given to a channel over which an integer
should be sent, after which a boolean is received. More complex session types can
be formed with operators for choice (⊕,&), recursion (µ), etc.

Aside from ensuring type safety, linear session type systems (Caires and Pfenning,
2010; Wadler, 2012) can ensure deadlock freedom. That means that well-typed
programs cannot end up in a state where all threads are waiting to receive a message
from another. Deadlock freedom has been extended to large variety of session type
systems (Carbone and Debois, 2010; Fowler et al., 2021; Toninho et al., 2013; Toninho,
2015; Caires et al., 2013; Pérez et al., 2014; Lindley and Morris, 2015, 2016a, 2017;
Fowler et al., 2019; Das et al., 2018). The elegance of session type systems is that they
give deadlock freedom essentially “for free”—it is obtained from “just” linear type
checking. Moreover, session types are compositional—once functions have been type
checked, they can be composed by merely establishing that the types agree. A final
strength of session types is that deadlock freedom is maintained in a higher-order
setting where closures and channels are transferred as first-class data over channels.
The goal of this chapter is to extend these advantages to separation logic.

210

Chapter 6

Deadlock-Free Separation Logic: Linearity Yields Progress
for Dependent Higher-Order Message Passing

abstract We introduce a linear concurrent separation logic, called LinearActris,
designed to guarantee deadlock and leak freedom for message-passing concurrency.
LinearActris combines the strengths of session types and concurrent separation logic,
allowing for the verification of challenging higher-order program with mutable state
through dependent protocols. The key challenge is to prove the adequacy theorem
of LinearActris, which says that the logic indeed gives deadlock and leak freedom
“for free” from linearity. We prove this theorem by defining a step-indexed model of
separation logic, based on connectivity graphs. To demonstrate the expressive power
of LinearActris, we prove soundness of a higher-order (GV-style) session type system
using the technique of logical relations. All our results and examples have been
mechanized in Coq.

6.1 introduction

Session type systems (Honda, 1993; Honda et al., 1998) allow type checking programs
that involve message-passing concurrency. Session types are protocols, which can
be seen as sequences of send (!) and receive (?) actions. They are associated with
channels, and express in what order messages of what type should be transferred.
For example, the session type !Z.?B.end is given to a channel over which an integer
should be sent, after which a boolean is received. More complex session types can
be formed with operators for choice (⊕,&), recursion (µ), etc.

Aside from ensuring type safety, linear session type systems (Caires and Pfenning,
2010; Wadler, 2012) can ensure deadlock freedom. That means that well-typed
programs cannot end up in a state where all threads are waiting to receive a message
from another. Deadlock freedom has been extended to large variety of session type
systems (Carbone and Debois, 2010; Fowler et al., 2021; Toninho et al., 2013; Toninho,
2015; Caires et al., 2013; Pérez et al., 2014; Lindley and Morris, 2015, 2016a, 2017;
Fowler et al., 2019; Das et al., 2018). The elegance of session type systems is that they
give deadlock freedom essentially “for free”—it is obtained from “just” linear type
checking. Moreover, session types are compositional—once functions have been type
checked, they can be composed by merely establishing that the types agree. A final
strength of session types is that deadlock freedom is maintained in a higher-order
setting where closures and channels are transferred as first-class data over channels.
The goal of this chapter is to extend these advantages to separation logic.

210

6.1 introduction

The key aspect that makes session types unique and different from other methods
for deadlock freedom—such as lock orders (Dijkstra, 1971; Leino et al., 2010; Hamin
and Jacobs, 2018; Balzer et al., 2019; D’Osualdo et al., 2021b), priorities (Kobayashi,
1997; Padovani, 2014; Dardha and Gay, 2018), and global multiparty session types
(Honda et al., 2008, 2016)—is that linear session types do not require any additional
proof obligations involving orders, priority annotations, or global types. Still, other
methods neither supersede nor subsume session types in the range of programs they
can prove to be deadlock free. This will be further discussed in Section 6.8.1.

The ideas of session types are not limited to type checking, but have previously
also been applied to functional verification. Bocchi et al. (2010); Craciun et al.
(2015); Hinrichsen et al. (2020, 2022) have developed program logics that incorporate
concepts from session types to verify increasingly sophisticated programs with
message-passing concurrency. The protocols of these program logics make it possible
to put logical conditions on the messages, allowing one to specify the contents (e.g.,
the message is an even number) instead of just the shape (e.g., it is an integer).
The state of the art is the Actris logic and its descendants (Hinrichsen et al., 2020,
2022; Jacobs et al., 2023), which are embedded in the Iris framework for concurrent
separation logic in Coq (Jung et al., 2015, 2016; Krebbers et al., 2017a; Jung et al.,
2018b). Actris’ dependent separation protocols can express dependencies between
the data of messages and specify the transfer of resources. For example, the protocol
!(ℓ : Addr,n : N)⟨ℓ⟩{ℓ ↦→ n}; ?⟨n⟩{ℓ ↦→ (n+ 1)}; end says that a location ℓ with value
n should be sent, after which the value n should be received, and the value of ℓ has
been incremented.

Since Actris is a full-blown program logic, instead of a type system that aims to
have decidable type checking, it can express more protocols and therefore verify
safety of more programs than session types. In particular, it can express protocols
where the shape (e.g., number of messages) of the protocol depends on the contents
of earlier messages. Moreover, Hinrichsen et al. (2021) show that Actris can be used
to give a semantic model to prove soundness of (affine) session types using the
technique of logical relations in Iris (Timany et al., 2022).

A key ingredient of concurrent separation logics such as Iris (on top of which Actris
is built)—and also other separation logic frameworks such as VST (Appel, 2014),
CFML (Charguéraud, 2020), and BedRock (Chlipala, 2013)—is their adequacy (a.k.a.
soundness) theorem that connects the program logic to the operational semantics.
For Iris, the adequacy theorem is (Jung et al., 2018b, §6.4):

A closed proof of {True} e {True} implies that e is safe, i.e., if ([e], ∅)�∗

([e1 . . . en],h), then for each i either ei is a value or (ei,h) can step.

Intuitively this theorem says that the logic is doing its job: a verified program e

“cannot go wrong”, i.e., it cannot perform illegal operations such as loading from
a dangling location (use after free) or use an operator with wrong arguments (e.g.,
3 + λx.x). Formally it says that if e can be verified (i.e., a Hoare triple with trivial
precondition can be proved), and the initial configuration ([e], ∅) (consisting of a

211

6.1 introduction

single thread e and the empty heap) steps to ([e1 . . . en],h) (consisting of threads
e1 . . . en and heap h), then each thread ei has either finished (is a value) or can make
further progress (can perform a step). Illegal operations cannot step, so adequacy
guarantees they do not occur.

Despite the strong trust that the adequacy theorem gives in the correctness of
a program logic—especially when mechanized in a proof assistant such as Coq—
the adequacy theorem of most state-of-the-art program logics says nothing about
deadlocks. In Iris, blocking operations (e.g., receiving from a channel whose buffer
is empty, or acquiring a lock that has already been acquired) are modeled as busy
loops, and thus can always step, and are trivially safe.

goal of the paper . The goal of this chapter is to build a program logic that
(1) enjoys an adequacy theorem that guarantees deadlock freedom for message
passing concurrency, (2) combines the strengths of session types and concurrent
separation logic to obtain deadlock freedom “for free” from linearity, without
any additional proof obligations, and (3) is strong enough to verify challenging
programs. Before discussing the desiderata of the program logic, let us investigate
the operational semantics and adequacy theorem. To distinguish between deadlock
and non-termination, receiving from a channel blocks the thread until a message is
sent, instead of performing a busy loop. With that change at hand, the adequacy
theorem becomes similar to the global progress theorem of session type systems
(Caires and Pfenning, 2010):

A closed proof of {Emp} e {Emp} implies that e enjoys global progress,
i.e., if ([e], ∅) �∗ ([e1 . . . en],h), then either ei is a value for each i and
h = ∅, or ([e1 . . . en],h) can step.

Instead of requiring each thread to step, which would be false if a thread is genuinely
waiting for another thread, we require the configuration as a whole to step. This
means that there is always at least one thread that can step, i.e., there is no global
deadlock. Additionally, compared to the adequacy theorem for safety, we require the
final heap to be empty, which means all channels have been deallocated, i.e., there
are no memory leaks. (Note that global progress does not subsume safety, we still
need a theorem that ensures the absence of illegal non-blocking operations.)

Our desired adequacy theorem does not hold for Iris-based logics such as Actris:

• The need for linearity. Iris and Actris are affine, which means that resources
must be used at most once, but can also be dropped (Iris satisfies the proof rule
P ∗Q ⊢ P, or equivalently Emp ⊣⊢ True). Hence one can verify a program that
creates a channel with endpoints c1 and c2, have one thread perform a receive,
and let the other thread perform a no-op:

Thread 1: c1.recv()
Thread 2: do nothing

212

6.1 introduction

single thread e and the empty heap) steps to ([e1 . . . en],h) (consisting of threads
e1 . . . en and heap h), then each thread ei has either finished (is a value) or can make
further progress (can perform a step). Illegal operations cannot step, so adequacy
guarantees they do not occur.

Despite the strong trust that the adequacy theorem gives in the correctness of
a program logic—especially when mechanized in a proof assistant such as Coq—
the adequacy theorem of most state-of-the-art program logics says nothing about
deadlocks. In Iris, blocking operations (e.g., receiving from a channel whose buffer
is empty, or acquiring a lock that has already been acquired) are modeled as busy
loops, and thus can always step, and are trivially safe.

goal of the paper . The goal of this chapter is to build a program logic that
(1) enjoys an adequacy theorem that guarantees deadlock freedom for message
passing concurrency, (2) combines the strengths of session types and concurrent
separation logic to obtain deadlock freedom “for free” from linearity, without
any additional proof obligations, and (3) is strong enough to verify challenging
programs. Before discussing the desiderata of the program logic, let us investigate
the operational semantics and adequacy theorem. To distinguish between deadlock
and non-termination, receiving from a channel blocks the thread until a message is
sent, instead of performing a busy loop. With that change at hand, the adequacy
theorem becomes similar to the global progress theorem of session type systems
(Caires and Pfenning, 2010):

A closed proof of {Emp} e {Emp} implies that e enjoys global progress,
i.e., if ([e], ∅) �∗ ([e1 . . . en],h), then either ei is a value for each i and
h = ∅, or ([e1 . . . en],h) can step.

Instead of requiring each thread to step, which would be false if a thread is genuinely
waiting for another thread, we require the configuration as a whole to step. This
means that there is always at least one thread that can step, i.e., there is no global
deadlock. Additionally, compared to the adequacy theorem for safety, we require the
final heap to be empty, which means all channels have been deallocated, i.e., there
are no memory leaks. (Note that global progress does not subsume safety, we still
need a theorem that ensures the absence of illegal non-blocking operations.)

Our desired adequacy theorem does not hold for Iris-based logics such as Actris:

• The need for linearity. Iris and Actris are affine, which means that resources
must be used at most once, but can also be dropped (Iris satisfies the proof rule
P ∗Q ⊢ P, or equivalently Emp ⊣⊢ True). Hence one can verify a program that
creates a channel with endpoints c1 and c2, have one thread perform a receive,
and let the other thread perform a no-op:

Thread 1: c1.recv()
Thread 2: do nothing

212

6.1 introduction

This program can be verified in Iris/Actris because using affinity, the ownership
of c2 can be dropped in the second thread. However, this program causes a
deadlock: due to the absence of a send, the receive will block indefinitely. In
session types this form of deadlock is ruled out by making the system linear,
which means that resources must be used exactly once, and cannot be dropped
until the protocol has been completed.

• The need for acyclicity Linearity alone is not enough. If a thread could obtain
ownership of both endpoints of a single channel, then it would be able to trivially
deadlock itself, by performing the receive before the send. Linearity would not
be violated, as the thread would still consume both channel ownership assertions
according to the rules of the logic, but the thread would be blocked forever. More
generally, if two threads own the endpoints of two channels, and perform a
receive followed by send, there would be a deadlock:

Thread 1: c1.recv(); d1.send(2)
Thread 2: d2.recv(); c2.send(1)

In session types, Wadler (2012) addresses this problem by combining thread and
channel creation into a single construct. Together with linearity, this ensures
that channel ownership is acyclic in a certain sense, and rules out all deadlocks
without need for annotations.

In this chapter we introduce LinearActris—which amends Actris with the
aforementioned restrictions from linear session types outlined to satisfy the goals we
stated above. The key challenge that we address in the remainder of the introduction
is proving the adequacy theorem of LinearActris.

key challenge : proving adequacy Adequacy is commonly proved by giving
a semantic interpretation of propositions and Hoare triples. For sequential separation
logic (O’Hearn et al., 2001), propositions are modeled as heap predicates, and the
semantics of Hoare triples is defined so that safety and leak freedom follow almost
by definition. Since we consider a higher-order program logic, for a concurrent
language with dynamic thread and channel spawning, and wish to prove global
progress, this simple setup no longer suffices. We list the challenges below:

• Circular semantics. Session types and dependent separation protocols of
Actris are higher-order, which means they can specify programs that transfer
channels and closures over channels. In Actris one can write d ↣ !(c :
Addr)⟨c⟩{c ↣ p}; end to say that d is a channel, over which a channel c with
protocol p is sent. Here, the protocol p can contain protocol ownership assertions
c ↣ p′, where p′ can in turn contain protocol ownership assertions. This
circularity involves a negative recursive occurrence and cannot be solved in
set theory. It is similar to the type-world circularity in models of type systems
with higher-order references (Ahmed, 2004; Birkedal et al., 2011), and that of

213

6.1 introduction

storable locks (Hobor et al., 2008) and impredicative invariants (Svendsen and
Birkedal, 2014), where step-indexing (Appel and McAllester, 2001) is used to
solve the circularity. The original Actris makes (in part) use of Iris’s impredicative
invariant mechanism to avoid solving this circularity explicitly.

• Invariants and linearity. Unfortunately, Iris’s invariants are strongly tied to
the logic being affine. Jung (2020, Thm 2) presents a paradox showing that
a naïve linear version of Iris’s invariants cannot be used to obtain even leak-
freedom. Bizjak et al. (2019) present Iron, a linear version of Iris with an invariant
mechanism that can be used in to prove leak-freedom. Aside from not considering
deadlock freedom, Iron avoids Jung’s paradox by restricting the contents of
invariants—namely, invariants cannot contain permissions to deallocate resources.
Ownership of the end protocol needs to provide permission to deallocate the
channel, making Iron’s invariants insufficient for our purpose.

• Invariants and acyclicity. Linearity alone is not enough to avoid deadlocks—
one needs to maintain an invariant that the channel ownership topology is
acyclic. Formalizing this acyclicity invariant is a key challenge of the syntactic
meta theory of session types (Lindley and Morris, 2015, 2016a; Fowler et al.,
2021; Jacobs et al., 2022a,b). Since this prior work is aimed at syntactic
theory of type systems, we need to investigate how to incorporate acyclicity
of the topology into a semantic model of a program logic. Additionally, in
type systems there is a 1-to-1 correspondence between physical references
and ownership, but not in program logics. One can create protocols such
as !(c : Addr)⟨c⟩{c ↣ p}; ?⟨()⟩{c ↣ p′}; end where a channel reference and
ownership is sent, and only an acknowledgment () is returned. This means that
the sending thread has to keep a reference to the channel, although it cannot use
it before it has received the acknowledgment.

We define a step-indexed linear model of separation logic as the solution of a
recursive domain equation (America and Rutten, 1989; Birkedal et al., 2010). To
avoid reasoning about step-indices, we work in the pure step-indexed logic with a
later modality (⊲) (Appel et al., 2007; Nakano, 2000).

Similar to Iris we define Hoare triples in terms of weakest preconditions (Krebbers
et al., 2017a). A major difference in the definition of the weakest precondition
compared to Iris is that we thread through the weakest preconditions of all threads,
as well as the ownership and duality invariants of all channels. This way we
can ensure that at all times the threads and channels form an acyclic topology
with respect to channel ownership. To formalize acyclicity we use the notion of a
connectivity graph by Jacobs et al. (2022a). To simplify the construction of the model
and the operational semantics of the language, we base ourselves on the work of
Dardha et al. (2012); Jacobs et al. (2023): we use one-shot channels as primitive, and
build multi-shot channels on top of those.

214

6.1 introduction

storable locks (Hobor et al., 2008) and impredicative invariants (Svendsen and
Birkedal, 2014), where step-indexing (Appel and McAllester, 2001) is used to
solve the circularity. The original Actris makes (in part) use of Iris’s impredicative
invariant mechanism to avoid solving this circularity explicitly.

• Invariants and linearity. Unfortunately, Iris’s invariants are strongly tied to
the logic being affine. Jung (2020, Thm 2) presents a paradox showing that
a naïve linear version of Iris’s invariants cannot be used to obtain even leak-
freedom. Bizjak et al. (2019) present Iron, a linear version of Iris with an invariant
mechanism that can be used in to prove leak-freedom. Aside from not considering
deadlock freedom, Iron avoids Jung’s paradox by restricting the contents of
invariants—namely, invariants cannot contain permissions to deallocate resources.
Ownership of the end protocol needs to provide permission to deallocate the
channel, making Iron’s invariants insufficient for our purpose.

• Invariants and acyclicity. Linearity alone is not enough to avoid deadlocks—
one needs to maintain an invariant that the channel ownership topology is
acyclic. Formalizing this acyclicity invariant is a key challenge of the syntactic
meta theory of session types (Lindley and Morris, 2015, 2016a; Fowler et al.,
2021; Jacobs et al., 2022a,b). Since this prior work is aimed at syntactic
theory of type systems, we need to investigate how to incorporate acyclicity
of the topology into a semantic model of a program logic. Additionally, in
type systems there is a 1-to-1 correspondence between physical references
and ownership, but not in program logics. One can create protocols such
as !(c : Addr)⟨c⟩{c ↣ p}; ?⟨()⟩{c ↣ p′}; end where a channel reference and
ownership is sent, and only an acknowledgment () is returned. This means that
the sending thread has to keep a reference to the channel, although it cannot use
it before it has received the acknowledgment.

We define a step-indexed linear model of separation logic as the solution of a
recursive domain equation (America and Rutten, 1989; Birkedal et al., 2010). To
avoid reasoning about step-indices, we work in the pure step-indexed logic with a
later modality (⊲) (Appel et al., 2007; Nakano, 2000).

Similar to Iris we define Hoare triples in terms of weakest preconditions (Krebbers
et al., 2017a). A major difference in the definition of the weakest precondition
compared to Iris is that we thread through the weakest preconditions of all threads,
as well as the ownership and duality invariants of all channels. This way we
can ensure that at all times the threads and channels form an acyclic topology
with respect to channel ownership. To formalize acyclicity we use the notion of a
connectivity graph by Jacobs et al. (2022a). To simplify the construction of the model
and the operational semantics of the language, we base ourselves on the work of
Dardha et al. (2012); Jacobs et al. (2023): we use one-shot channels as primitive, and
build multi-shot channels on top of those.

214

6.2 linear actris by example

contributions We introduce LinearActris—a concurrent separation logic for
proving deadlock- and leak freedom of message-passing programs, essentially
offering these guarantees “for free” from linearity, without any additional proof
obligations. This involves the following contributions:

• We verify a range of examples of that use channels, closures, and mutable
references as first-class data, demonstrating the expressive power of LinearActris
(Section 6.2).

• We provide a formal description of the proof rules of LinearActris. First for
multi-shot channels, and then for one-shot channels. Based on Jacobs et al. (2023),
we derive the logic for multi-shot channels from the one for one-shot channels
(Sections 6.3 and 6.4).

• We provide a formal adequacy proof of LinearActris based on a step-indexed
model of separation logic rooted in connectivity graphs (Jacobs et al., 2022a),
showing that a derivation in LinearActris ensures deadlock and leak freedom of
the program in question (Sections 6.5 and 6.6).

• To demonstrate an application that truly relies on our connectivity based approach
to deadlock freedom (and is out of scope for logics based on e.g., lock orders),
we construct a logical relations models in LinearActris that establishes deadlock
freedom for a session-typed language that goes beyond GV-like systems, and
supports recursive types, subtyping, term- and session type polymorphism, and
unique mutable references (Section 6.7).

• We have mechanized all our results in Coq. We provide custom tactics for
reasoning in LinearActris, built on top of the Iris Proof Mode (Krebbers et al.,
2017b, 2018). We have used these tactics to prove deadlock and leak freedom of
all of our examples (Section 6.2) and those of §1,5,6.3,10 of Actris 2.0 (Hinrichsen
et al., 2022), as well as in the proofs of the logical relation (Section 6.7). See the
Coq mechanization for the sources, comprising 13.341 lines of Coq code.

6.2 linear actris by example

In this section we present LinearActris with example programs that we want to
verify. We deliberately use very small examples. In our Coq mechanization we show
that LinearActris can also be used to prove deadlock freedom of more challenging
examples from the Actris papers, in particular, a number of increasingly complicated
versions of parallel merge sort. �

The programming language that we use in LinearActris is called ChanLang.
It has concurrency, bidirectional message passing channels, mutable references,
and functional programming constructs (such as lambdas, products, sums, and
recursion). The syntax is shown in Figure 37. ChanLang has the following constructs

215

6.2 linear actris by example

e ∈ Expr ::= x | e e | λx.e | (e, e) | inl e | inr e | rec f x = e | n | e+ e | · · · �

| match e with inl x ⇒ e; inr x ⇒ e end | let (x1, x2) = e in e

| fork1 e | e.send(e) | e.recv() | e.close() | e.wait()
(Channel operations)

| ref e | ! e | e ← e | free e | assert(e) (Heap operations & assert)

Figure 37: The syntax of ChanLang.

for message-passing concurrency:
fork (λc. e) Fork a new thread for e with channel c, return the channel.

c.send(v) Send message v over the channel c.

c.recv() Receive a message over the channel c.

c.close() Close the channel c.

c.wait() Wait for the channel c to be closed.

The c.recv() and c.wait() operations are blocking, and could thus potentially lead
to deadlocks. As is common in session-typed languages like GV (Wadler, 2012; Gay
and Vasconcelos, 2010), our fork operation both spawns the child thread, and sets
up a channel for communication between the parent thread and child thread. This
will turn out to be important for deadlock freedom (Sections 6.5 and 6.6).

The following example illustrates how we can use these constructs to fork off a
thread that receives a message from the main thread, adds one to it, and sends it
back:

let c1 = fork (λc2. c2.send(c2.recv() + 1); c2.close()) in
c1.send(1); assert(c1.recv() == 2); c1.wait()

�

The assert(e) operation asserts that e evaluates to true, and otherwise it gets stuck.
Illegal operations more generally, such as sending over a closed channel, also get
stuck forever. To verify the program, we need to reason about the channels c1 and c2.
We do so by means of channel ownership assertions c ↣ p, which state that we own
a reference to the channel c, and we must interact with it according to the protocol p.
Our protocols are dependent separation protocols in the style of Actris (Hinrichsen et al.,
2020). We can use the following dual pair of protocols for c1 and c2 at the fork:

c1 ↣ !⟨1⟩; ?⟨2⟩; ?end c2 ↣ ?⟨1⟩; !⟨2⟩; !end �

In these protocols, each step is either !⟨v⟩ or ?⟨v⟩, indicating that the owner of the
reference must send or recv a value v, respectively. The final !end / ?end indicates
that the protocol is finished, and that the close / wait operation must be performed.

216

6.2 linear actris by example

e ∈ Expr ::= x | e e | λx.e | (e, e) | inl e | inr e | rec f x = e | n | e+ e | · · · �

| match e with inl x ⇒ e; inr x ⇒ e end | let (x1, x2) = e in e

| fork1 e | e.send(e) | e.recv() | e.close() | e.wait()
(Channel operations)

| ref e | ! e | e ← e | free e | assert(e) (Heap operations & assert)

Figure 37: The syntax of ChanLang.

for message-passing concurrency:
fork (λc. e) Fork a new thread for e with channel c, return the channel.

c.send(v) Send message v over the channel c.

c.recv() Receive a message over the channel c.

c.close() Close the channel c.

c.wait() Wait for the channel c to be closed.

The c.recv() and c.wait() operations are blocking, and could thus potentially lead
to deadlocks. As is common in session-typed languages like GV (Wadler, 2012; Gay
and Vasconcelos, 2010), our fork operation both spawns the child thread, and sets
up a channel for communication between the parent thread and child thread. This
will turn out to be important for deadlock freedom (Sections 6.5 and 6.6).

The following example illustrates how we can use these constructs to fork off a
thread that receives a message from the main thread, adds one to it, and sends it
back:

let c1 = fork (λc2. c2.send(c2.recv() + 1); c2.close()) in
c1.send(1); assert(c1.recv() == 2); c1.wait()

�

The assert(e) operation asserts that e evaluates to true, and otherwise it gets stuck.
Illegal operations more generally, such as sending over a closed channel, also get
stuck forever. To verify the program, we need to reason about the channels c1 and c2.
We do so by means of channel ownership assertions c ↣ p, which state that we own
a reference to the channel c, and we must interact with it according to the protocol p.
Our protocols are dependent separation protocols in the style of Actris (Hinrichsen et al.,
2020). We can use the following dual pair of protocols for c1 and c2 at the fork:

c1 ↣ !⟨1⟩; ?⟨2⟩; ?end c2 ↣ ?⟨1⟩; !⟨2⟩; !end �

In these protocols, each step is either !⟨v⟩ or ?⟨v⟩, indicating that the owner of the
reference must send or recv a value v, respectively. The final !end / ?end indicates
that the protocol is finished, and that the close / wait operation must be performed.

216

6.2 linear actris by example

quantified protocols The preceding protocol is inflexible, because it specifies
the exact values that must be sent and received. To alleviate this inflexibility, we can
use a quantified protocol instead:

c1 ↣ !(n : N)⟨n⟩; ?⟨n+ 1⟩; ?end c2 ↣ ?(n : N)⟨n⟩; !⟨n+ 1⟩; !end �

This protocol states that if we send n, then we will receive n+ 1. When verifying a
quantified protocol step, the sender can instantiate the quantified variable with any
logical value. For example, the sender can instantiate n with 1, and send 1 over the
channel. The receiver must be verified to work for any n chosen by the sender. The
continuation of the protocol is allowed to be an arbitrary function of the quantified
variables. This can be used to verify examples such as the following:

let n = c.recv() in if n < 5 then c.close() else c.send(n− 5); . . . �

The protocol for c will have to have a different length, depending on which branch
of the if is taken. We can verify this program using the following protocol for c:

c ↣ ?(n : N)⟨n⟩; if n < 5 then (!end) else (!⟨n− 5⟩; . . .) �

mutable references In addition to channels, our language has mutable
references:

ref v Allocate a new location in the heap and store the value v in it.

! ℓ Read the value from the location ℓ.

ℓ ← v Write the value v to the location ℓ.

free ℓ Free the location ℓ.

Illegal operations, such as using a location that has been freed, are modeled as
getting stuck forever. Consider the following variant of the preceding example:

let c1 = fork (λc2. let l = c2.recv() in l ← ! l+ 1; c2.close()) in
let l = ref 1 in c1.send(l); c1.wait(); assert(! l == 2); free l

�

We send a mutable reference from the main thread to the forked thread, which
increments it. The main thread waits for the forked thread to close its channel, and
then asserts that the value of the reference is 2. The reference is then freed by the
main thread. LinearActris can prove that this program is safe and does not deadlock.
Note that the safety relies on the blocking behavior of c1.wait(), which ensures that

217

6.2 linear actris by example

the forked thread has finished before the main thread asserts that the value is 2 and
frees the reference. The protocols to verify this program are as follows:

c1 ↣ !(l : Addr,n : N)⟨l⟩{l ↦→ n}; ?end{l ↦→ n+ 1} �

c2 ↣ ?(l : Addr,n : N)⟨l⟩{l ↦→ n}; !end{l ↦→ n+ 1}

This time, the protocol is parameterized by both the location l and the value n that
is initially stored in the location. The protocol states that if we send a location l, then
this location will be incremented by 1. The curly brackets {_} indicate the separation
logic resources that are sent along with the message. In the protocol for c1 above,
the heap ownership assertion l ↦→ n is transmitted with the initial send step, and
l ↦→ n+ 1 is received in the wait step. As the following example shows, a reference
need not be send over the channel, but can also be captured by the closure:

let l = ref 1 in let c1 = fork (λc2. l ← ! l+ 1; c2.close()) in
c1.wait(); assert(! l == 2); free l

�

We transfer l ↦→ 1 to the child thread immediately upon the fork, and the protocols
simplify to:

c1 ↣ ?end{l ↦→ 2} c2 ↣ !end{l ↦→ 2} �

sending channels over channels In addition to exchanging references,
LinearActris can also reason about programs that send channels over channels.
Consider the following example:

let d1 = fork (λd2. assert(d2.recv().recv() == 2); d2.close()) in
let c1 = fork (λc2. c2.send(2); c2.wait()) in
d1.send(c1); d1.wait(); c1.close()

�

The program forks off two threads, which gives the main thread two channels c1 and
d1. The main thread then sends c1 over d1, and waits for d1 to be closed, and then
closes c1. The first thread receives c1 from d2, and then receives on c1 and asserts
that the value is 2, and then closes d2. The second thread sends 2 over c2, and then
waits for c2 to be closed.

That this program is safe and does not deadlock can be proven by LinearActris,
but this is more subtle than one might think: if we were to swap the two
d1.wait(); c1.close() operations, then the program would not be safe, as c1 might be

218

6.2 linear actris by example

the forked thread has finished before the main thread asserts that the value is 2 and
frees the reference. The protocols to verify this program are as follows:

c1 ↣ !(l : Addr,n : N)⟨l⟩{l ↦→ n}; ?end{l ↦→ n+ 1} �

c2 ↣ ?(l : Addr,n : N)⟨l⟩{l ↦→ n}; !end{l ↦→ n+ 1}

This time, the protocol is parameterized by both the location l and the value n that
is initially stored in the location. The protocol states that if we send a location l, then
this location will be incremented by 1. The curly brackets {_} indicate the separation
logic resources that are sent along with the message. In the protocol for c1 above,
the heap ownership assertion l ↦→ n is transmitted with the initial send step, and
l ↦→ n+ 1 is received in the wait step. As the following example shows, a reference
need not be send over the channel, but can also be captured by the closure:

let l = ref 1 in let c1 = fork (λc2. l ← ! l+ 1; c2.close()) in
c1.wait(); assert(! l == 2); free l

�

We transfer l ↦→ 1 to the child thread immediately upon the fork, and the protocols
simplify to:

c1 ↣ ?end{l ↦→ 2} c2 ↣ !end{l ↦→ 2} �

sending channels over channels In addition to exchanging references,
LinearActris can also reason about programs that send channels over channels.
Consider the following example:

let d1 = fork (λd2. assert(d2.recv().recv() == 2); d2.close()) in
let c1 = fork (λc2. c2.send(2); c2.wait()) in
d1.send(c1); d1.wait(); c1.close()

�

The program forks off two threads, which gives the main thread two channels c1 and
d1. The main thread then sends c1 over d1, and waits for d1 to be closed, and then
closes c1. The first thread receives c1 from d2, and then receives on c1 and asserts
that the value is 2, and then closes d2. The second thread sends 2 over c2, and then
waits for c2 to be closed.

That this program is safe and does not deadlock can be proven by LinearActris,
but this is more subtle than one might think: if we were to swap the two
d1.wait(); c1.close() operations, then the program would not be safe, as c1 might be

218

6.2 linear actris by example

closed before the other threads are done with it. We can verify the example using
the following protocols:

c1 ↣ ?⟨2⟩; !end c2 ↣ !⟨2⟩; ?end �

d1 ↣ !(c : Addr)⟨c⟩{c ↣ ?⟨2⟩; ?end}; ?end{c ↣ !end} �

d2 ↣ ?(c : Addr)⟨c⟩{c ↣ ?⟨2⟩; ?end}; !end{c ↣ !end}

The protocol for c1 and c2 is simple: we send 2 and then end. The protocol for d1 is
more interesting: we send a (quantified) location c, and also send channel ownership
for c, with the same protocol as we chose for c1. The continuation of the protocol is
?end{c ↣ !end}, which transfers ownership of c back to the main thread, but now
at a new protocol.

storing channels in references Consider the following variation of the
previous example, in which we wrap channel c1 in a reference:

let d1 = fork (λd2. assert((!d2.recv()).recv() == 2); d2.close()) in
let l = ref fork (λc2. c2.send(2); c2.wait()) in
d1.send(l); d1.wait(); (! l).close(); free l

�

We can verify this example using the following protocol:

d1 ↣ !(l : Addr, c : Addr)⟨l⟩{l ↦→ c ∗ c ↣ ?⟨2⟩; !end}; ?end{l ↦→ c ∗ c ↣ !end}
�

Wrapping the channel in a reference would allow the child thread to replace the
contents of the reference with another channel entirely, as long as it satisfies the right
protocol. For instance, the child thread could replace the channel in l with a new
channel that it just created:

(! l).close(); l ← fork (λc. c.wait())

The c.wait() of the newly created channel can then match up with the (! l).close()
of the main thread. To prevent leaks, the child thread must also close the channel
originally in l. This variation can be verified with the same protocols as before.

sending closures LinearActris can reason about higher-order programs that
send closures that capture references and channels. Consider the following program,
which spawns a thread that receives and runs a closure from the main thread, and
then sends the result back:

let c1 = fork (λc2.let f = c2.recv() in c2.send(f ()); c2.close()) in · · · �

219

6.3 the proof rules of linear actris

The protocol for c1 is as follows:

c1 ↣ !(f : Val,Φ :Val → aProp)⟨f⟩{WP f () {Φ}}; ?(v : Val)⟨v⟩{Φ v}; ?end �

The protocol allows us to send a closure f, provided we also send a weakest
precondition assertion WP f () {Φ}, which ensures that the return value v of f

satisfies Φ v. We can then receive v, and obtain the resources Φ v. This protocol
allows the closure f to capture linear resources in its environment, such as channels
and references.

6.3 the proof rules of linear actris

In this section we present the rules of LinearActris. Similar to Iris, LinearActris is
based on the weakest precondition WP e {𝛷𝛷} connective, which is a separation logic
assertion that intuitively states that if the program e is executed in the current heap,
then its return value will satisfy predicate 𝛷𝛷. The Hoare triple {P} e {𝛷𝛷} is syntactic
sugar for P ⊢ WP e {𝛷𝛷}. The adequacy theorem of LinearActris (Theorem 6.5.4)
guarantees safety, deadlock freedom, and leak freedom for e provided we have a
closed proof of Emp ⊢ WP e {Emp}.

6.3.1 Basic Separation Logic

Figure 38 displays the grammar of LinearActris propositions, as well as the basic
rules for reasoning about weakest preconditions that involve pure expressions and
mutable references. The WP rules in this figure are fairly standard, so we will only
give a brief overview of them here. The rules WP-pure-step and WP-val are the basic
rules for reasoning about pure expressions. The rules WP-Löb and WP-rec are used
to reason about recursive functions. The WP-bind rule is used to reason about an
expression nested inside a (call-by-value) evaluation context. The WP-wand rule
can be used to weaken the postcondition, as well as to frame away parts of the
precondition. The rules WP-alloc, WP-load, WP-store, and WP-free reason about
mutable references. In combination with inference rules for the logical connectives
(which are not shown in the figure), these rules handle single-threaded programs,
such as programs that manipulate mutable linked lists.

linearity An important distinction between LinearActris and logics like Iris,
is that LinearActris is linear whereas Iris is affine. This means that in LinearActris,
the rule P ⊢ Emp does not hold for all P, whereas in Iris it does.1 This distinction is
important, because this rule can be used to leak resources, for instance if P = ℓ ↦→ v

then ℓ ↦→ v ⊢ Emp can be used to leak the location ℓ. LinearActris, unlike Iris,
guarantees leak freedom, and thus forces us to free locations. Furthermore, as we

1 Logically equivalent formulations of the affine rule are P ∗Q ⊢ P or Emp ⊣⊢ True.

220

6.3 the proof rules of linear actris

The protocol for c1 is as follows:

c1 ↣ !(f : Val,Φ :Val → aProp)⟨f⟩{WP f () {Φ}}; ?(v : Val)⟨v⟩{Φ v}; ?end �

The protocol allows us to send a closure f, provided we also send a weakest
precondition assertion WP f () {Φ}, which ensures that the return value v of f

satisfies Φ v. We can then receive v, and obtain the resources Φ v. This protocol
allows the closure f to capture linear resources in its environment, such as channels
and references.

6.3 the proof rules of linear actris

In this section we present the rules of LinearActris. Similar to Iris, LinearActris is
based on the weakest precondition WP e {𝛷𝛷} connective, which is a separation logic
assertion that intuitively states that if the program e is executed in the current heap,
then its return value will satisfy predicate 𝛷𝛷. The Hoare triple {P} e {𝛷𝛷} is syntactic
sugar for P ⊢ WP e {𝛷𝛷}. The adequacy theorem of LinearActris (Theorem 6.5.4)
guarantees safety, deadlock freedom, and leak freedom for e provided we have a
closed proof of Emp ⊢ WP e {Emp}.

6.3.1 Basic Separation Logic

Figure 38 displays the grammar of LinearActris propositions, as well as the basic
rules for reasoning about weakest preconditions that involve pure expressions and
mutable references. The WP rules in this figure are fairly standard, so we will only
give a brief overview of them here. The rules WP-pure-step and WP-val are the basic
rules for reasoning about pure expressions. The rules WP-Löb and WP-rec are used
to reason about recursive functions. The WP-bind rule is used to reason about an
expression nested inside a (call-by-value) evaluation context. The WP-wand rule
can be used to weaken the postcondition, as well as to frame away parts of the
precondition. The rules WP-alloc, WP-load, WP-store, and WP-free reason about
mutable references. In combination with inference rules for the logical connectives
(which are not shown in the figure), these rules handle single-threaded programs,
such as programs that manipulate mutable linked lists.

linearity An important distinction between LinearActris and logics like Iris,
is that LinearActris is linear whereas Iris is affine. This means that in LinearActris,
the rule P ⊢ Emp does not hold for all P, whereas in Iris it does.1 This distinction is
important, because this rule can be used to leak resources, for instance if P = ℓ ↦→ v

then ℓ ↦→ v ⊢ Emp can be used to leak the location ℓ. LinearActris, unlike Iris,
guarantees leak freedom, and thus forces us to free locations. Furthermore, as we

1 Logically equivalent formulations of the affine rule are P ∗Q ⊢ P or Emp ⊣⊢ True.

220

6.3 the proof rules of linear actris

Separation logic propositions: �

P,Q ∈ aProp ::= True | False | P ∧Q | P ∨Q (Propositional logic)
| ∀x. P | ∃x. P | x = y (Higher-order logic with equality)
| P ∗Q | P −∗ Q | Emp (Separation logic)
| ⊲P | WP e {𝛷𝛷} (Step indexing and weakest preconditions)
| ℓ ↦→ v | ℓ ↣ p (Heap cell and channel ownership)

Basic WP rules: �

WP-pure-step
e1 �pure e2 WP e2 {𝛷𝛷}

WP e1 {𝛷𝛷}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

WP-val
𝛷𝛷 v

WP v {𝛷𝛷}
−−−−−−−−−−−∗

WP-wand
WP e {𝛷𝛷} ∗ ∀v. 𝛷𝛷 v −∗ Ψ v

WP e {Ψ}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

WP-rec
WP e[v/x][rec f x = e/f] {𝛷𝛷}

⊲WP (rec f x = e) v {𝛷𝛷}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

WP-Löb
⊲P −∗ P

P
−−−−−−□

WP-bind
WP e {v. WP K[v] {𝛷𝛷}}

WP K[e] {𝛷𝛷}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Heap manipulation rules: �

WP-alloc

WP ref v {ℓ. ℓ ↦→ v}
−−−−−−−−−−−−−−−−−−−−−−−−∗

WP-load
ℓ ↦→ v

WP ! ℓ {v. ℓ ↦→ v}
−−−−−−−−−−−−−−−−−−−−−∗

WP-store
ℓ ↦→ v

WP ℓ ← w {ℓ ↦→ w}
−−−−−−−−−−−−−−−−−−−−−−−−∗

WP-free
ℓ ↦→ v

WP free ℓ {Emp}
−−−−−−−−−−−−−−−−−−−−−∗

Figure 38: The basic rules of our separation logic.

221

6.3 the proof rules of linear actris

Dependent separation protocols: �

p ∈ Prot ::= !(x)⟨v⟩{P}; p (Send protocol)
| ?(x)⟨v⟩{P}; p (Receive protocol)
| !end{P} | ?end{P} (Close and wait protocol)
| µα. p | α (Recursive protocol)

Duality and subprotocols: �

!(x)⟨v⟩{P}; p = ?(x)⟨v⟩{P}; p !end{P} = ?end{P}
(Dual on dependent protocols)

?(x)⟨v⟩{P}; p = !(x)⟨v⟩{P}; p ?end{P} = !end{P}

Sub-recv
∀x1. P1 x1 −∗ ∃x2. (v1 x1 = v2 x2) ∗ P2 x2 ∗ ⊲(p1 x1 ⊑ p2 x2)

?(x1)⟨v1⟩{P1}; p1 ⊑ ?(x2)⟨v2⟩{P2}; p2
−−−∗

Sub-wait
P1 −∗ P2

?end{P1} ⊑ ?end{P2}
−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Sub-send
∀x2. P2 x2 −∗ ∃x1. (v2 x2 = v1 x1) ∗ P1 x1 ∗ ⊲(p1 x1 ⊑ p2 x2)

!(x1)⟨v1⟩{P1}; p1 ⊑ !(x2)⟨v2⟩{P2}; p2
−−−∗

Sub-close
P2 −∗ P1

!end{P1} ⊑ !end{P2}
−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Sub-chan
⊲ p1 ⊑ p2 ∗ c ↣ p1

c ↣ p2
−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Channel weakest precondition rules: �

WP-fork
∀c. (c ↣ p) −∗ WP e c {Emp}

WP fork e {c. c ↣ p}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

WP-send
P[t/x] ∗ c ↣ !(x)⟨v⟩{P}; p

WP c.send(v[t/x]) {c ↣ p[t/x]}
−−∗

WP-recv
c ↣ ?(x)⟨v⟩{P}; p

WP c.recv() {w. ∃t. w = v[t/x] ∗ P[t/x] ∗ c ↣ p[t/x]}
−−∗

WP-close
P ∗ c ↣ !end{P}

WP c.close() {Emp}
−−−−−−−−−−−−−−−−−−−−−−−−−∗

WP-wait
c ↣ ?end{P}

WP c.wait() {P}
−−−−−−−−−−−−−−−−−−−−∗

Figure 39: The LinearActris dependent separation protocols and channel rules.
222

6.3 the proof rules of linear actris

Dependent separation protocols: �

p ∈ Prot ::= !(x)⟨v⟩{P}; p (Send protocol)
| ?(x)⟨v⟩{P}; p (Receive protocol)
| !end{P} | ?end{P} (Close and wait protocol)
| µα. p | α (Recursive protocol)

Duality and subprotocols: �

!(x)⟨v⟩{P}; p = ?(x)⟨v⟩{P}; p !end{P} = ?end{P}
(Dual on dependent protocols)

?(x)⟨v⟩{P}; p = !(x)⟨v⟩{P}; p ?end{P} = !end{P}

Sub-recv
∀x1. P1 x1 −∗ ∃x2. (v1 x1 = v2 x2) ∗ P2 x2 ∗ ⊲(p1 x1 ⊑ p2 x2)

?(x1)⟨v1⟩{P1}; p1 ⊑ ?(x2)⟨v2⟩{P2}; p2
−−−∗

Sub-wait
P1 −∗ P2

?end{P1} ⊑ ?end{P2}
−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Sub-send
∀x2. P2 x2 −∗ ∃x1. (v2 x2 = v1 x1) ∗ P1 x1 ∗ ⊲(p1 x1 ⊑ p2 x2)

!(x1)⟨v1⟩{P1}; p1 ⊑ !(x2)⟨v2⟩{P2}; p2
−−−∗

Sub-close
P2 −∗ P1

!end{P1} ⊑ !end{P2}
−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Sub-chan
⊲ p1 ⊑ p2 ∗ c ↣ p1

c ↣ p2
−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

Channel weakest precondition rules: �

WP-fork
∀c. (c ↣ p) −∗ WP e c {Emp}

WP fork e {c. c ↣ p}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

WP-send
P[t/x] ∗ c ↣ !(x)⟨v⟩{P}; p

WP c.send(v[t/x]) {c ↣ p[t/x]}
−−∗

WP-recv
c ↣ ?(x)⟨v⟩{P}; p

WP c.recv() {w. ∃t. w = v[t/x] ∗ P[t/x] ∗ c ↣ p[t/x]}
−−∗

WP-close
P ∗ c ↣ !end{P}

WP c.close() {Emp}
−−−−−−−−−−−−−−−−−−−−−−−−−∗

WP-wait
c ↣ ?end{P}

WP c.wait() {P}
−−−−−−−−−−−−−−−−−−−−∗

Figure 39: The LinearActris dependent separation protocols and channel rules.
222

6.3 the proof rules of linear actris

shall see shortly, the linearity of LinearActris is also crucial for deadlock freedom,
as this prevents us from dropping the obligation to send a message over a channel
(recall, not sending a message means that the receiving end of the channel would
block forever).

6.3.2 Channels and Protocols

Like Actris, LinearActris uses dependent separation protocols for reasoning about
channels. The grammar of protocols is displayed in Figure 39, and their meaning is
as follows:

• Send protocol !(x)⟨v⟩{P}; p. The variables x are binders that scope over v, P, and
p, that is, these are functions of x. During the verification of a send operation, we
can instantiate x with mathematical values of our choosing, and then v must be
equal to the physical value that is sent, P is a separation logic proposition that
we transfer to the receiver, and p is the new protocol for the channel.

• Receive protocol ?(x)⟨v⟩{P}; p. During the verification of a receive operation, we
learn that there exists a choice of mathematical values x such that the physical
value received equals v, P is a separation logic proposition we receive, and p is
the new protocol for the channel.

• Close protocol !end{P}. During the verification of a close operation, P is a
separation logic proposition that we transfer to the other side.

• Wait protocol ?end{P}. During the verification of a wait operation, P is a separation
logic proposition that we receive.

• Recursive protocol µα. p. This is a recursive protocol, where α is a binder that
scopes over p. The recursive protocol can be unfolded by replacing α with p.
Recursive protocols with parameters are also supported, we give an example of
such a protocol in Section 6.3.4.

The weakest precondition rules for channels in Figure 39 work as follows:

• WP-fork: This rule is used verify a fork operation. The rule states that fork
returns a channel c, and that we can choose a protocol p for this channel. We
must then verify that the thread that is spawned on the other side, operates with
its side of the channel according to the dual protocol p, which is the same as p
except that all send and receive operations are swapped.

• WP-send: This rule is used verify a send operation. The rule states that if we have
channel ownership c ↣ !(x)⟨v⟩{P}; p, then we can choose an instantiation x := t.
The value that we send must equal v[t/x], and we must give up ownership of the
resources described by the proposition P[t/x]. In the postcondition, the channel
gets the new protocol p[t/x].

223

6.3 the proof rules of linear actris

• WP-recv: This rule is used verify a receive operation. The rule states that if we
have channel ownership c ↣ ?(x)⟨v⟩{P}; p, then we can receive a message. In
the postcondition, we learn that there exists an instantiation x := t such that the
value that we receive equals v[t/x], and we obtain the ownership of the resources
described by the proposition P[t/x]. The channel gets the new protocol p[t/x].

• WP-close: This rule is used verify a close operation. The rule states that if we
have channel ownership c ↣ !end{P}, then we can close the channel. We must
also provide the proposition P, which is transmitted to the other side.

• WP-wait: This rule is used verify a wait operation. The rule states that if we
have channel ownership c ↣ ?end{P}, then we can wait on the channel, and
afterwards we obtain P.

deadlock and leak freedom The rules in Figure 39 are designed to ensure
deadlock- and leak freedom. The reader may note that there are no apparent proof
obligations for these properties, other than linearity: there are no preconditions that
require us to follow a certain lock- or priority order. In Sections 6.4 to 6.6 we will see
how the rules in Figure 39 ensure deadlock freedom and leak freedom.

6.3.3 Subprotocols

An important feature of Actris are subprotocols, analogous to subtyping in type
systems. LinearActris also supports subprotocols. The subprotocol relation is written
p1 ⊑ p2, and satisfies the rules in Figure 39. The subprotocol relation lets us make
the protocol of a channel more specific: we can turn channel ownership c ↣ p1 into
c ↣ p2, provided that p1 ⊑ p2. The rules of Figure 39 are general, and imply various
special cases, e.g., the rules allow us to instantiate a quantifier in a send protocol:

!(n : N)⟨n⟩; ?⟨n+ 1⟩; ?end ⊑ !⟨1⟩; ?⟨2⟩; ?end

Dually, we can abstract a quantifier in a receive protocol:

?⟨1⟩; !⟨2⟩; !end ⊑ ?(n : N)⟨n⟩; !⟨n+ 1⟩; !end

We can apply subprotocols deeper inside the protocol using the special case that if
p1 ⊑ p2, then

!⟨v⟩{P}; p1 ⊑ !⟨v⟩{P}; p2 and ?⟨v⟩{P}; p1 ⊑ ?⟨v⟩{P}; p2

We can also use the subprotocol relation to make the propositions that are transferred
more specific: if we have a separating implication P1 −∗ P2, then we can replace the
proposition that is transferred:

!⟨v⟩{P2}; p ⊑ !⟨v⟩{P1}; p and ?⟨v⟩{P1}; p ⊑ ?⟨v⟩{P2}; p

224

6.3 the proof rules of linear actris

• WP-recv: This rule is used verify a receive operation. The rule states that if we
have channel ownership c ↣ ?(x)⟨v⟩{P}; p, then we can receive a message. In
the postcondition, we learn that there exists an instantiation x := t such that the
value that we receive equals v[t/x], and we obtain the ownership of the resources
described by the proposition P[t/x]. The channel gets the new protocol p[t/x].

• WP-close: This rule is used verify a close operation. The rule states that if we
have channel ownership c ↣ !end{P}, then we can close the channel. We must
also provide the proposition P, which is transmitted to the other side.

• WP-wait: This rule is used verify a wait operation. The rule states that if we
have channel ownership c ↣ ?end{P}, then we can wait on the channel, and
afterwards we obtain P.

deadlock and leak freedom The rules in Figure 39 are designed to ensure
deadlock- and leak freedom. The reader may note that there are no apparent proof
obligations for these properties, other than linearity: there are no preconditions that
require us to follow a certain lock- or priority order. In Sections 6.4 to 6.6 we will see
how the rules in Figure 39 ensure deadlock freedom and leak freedom.

6.3.3 Subprotocols

An important feature of Actris are subprotocols, analogous to subtyping in type
systems. LinearActris also supports subprotocols. The subprotocol relation is written
p1 ⊑ p2, and satisfies the rules in Figure 39. The subprotocol relation lets us make
the protocol of a channel more specific: we can turn channel ownership c ↣ p1 into
c ↣ p2, provided that p1 ⊑ p2. The rules of Figure 39 are general, and imply various
special cases, e.g., the rules allow us to instantiate a quantifier in a send protocol:

!(n : N)⟨n⟩; ?⟨n+ 1⟩; ?end ⊑ !⟨1⟩; ?⟨2⟩; ?end

Dually, we can abstract a quantifier in a receive protocol:

?⟨1⟩; !⟨2⟩; !end ⊑ ?(n : N)⟨n⟩; !⟨n+ 1⟩; !end

We can apply subprotocols deeper inside the protocol using the special case that if
p1 ⊑ p2, then

!⟨v⟩{P}; p1 ⊑ !⟨v⟩{P}; p2 and ?⟨v⟩{P}; p1 ⊑ ?⟨v⟩{P}; p2

We can also use the subprotocol relation to make the propositions that are transferred
more specific: if we have a separating implication P1 −∗ P2, then we can replace the
proposition that is transferred:

!⟨v⟩{P2}; p ⊑ !⟨v⟩{P1}; p and ?⟨v⟩{P1}; p ⊑ ?⟨v⟩{P2}; p

224

6.3 the proof rules of linear actris

Since p1 ⊑ p2 gives us (c ↣ p1) −∗ (c ↣ p2), we can use this to subprotocol the
channels that are transferred in a higher-order fashion by taking P1 := c ↣ p1 and
P2 := c ↣ p2.

The subprotocol rules provided in Figure 39 are more powerful than these special
cases combined. For instance, the rules also allow us to frame away resources from
one step to another:

!⟨v⟩{P}; ?⟨w⟩{Q}; p ⊑ !⟨v⟩{P ∗ R}; ?⟨w⟩{Q ∗ R}; p

?⟨v⟩{P ∗ R}; !⟨w⟩{Q ∗ R}; p ⊑ ?⟨v⟩{P}; !⟨w⟩{Q}; p

6.3.4 Guarded Recursive Protocols and Choice

Another important feature of Actris is the ability to construct infinite protocols. With
the constructs we have see so far, we can already construct unbounded protocols
and verify programs with them, because one can do well-founded recursion in the
meta-logic (i.e., a Fixpoint definition in Coq): we can define a recursive function
that constructs a protocol, and then use that protocol in a program. This way, we
can construct a protocol that sends n messages, and then closes the channel, for any
n determined by the first message:

!(n : N)⟨n⟩; !⟨n− 1⟩; · · · !⟨0⟩; !end

However, this does not allow us to construct truly infinite protocols, such as the
protocol that sends increasing natural numbers forever:

!(n : N)⟨n⟩; !⟨n+ 1⟩; !⟨n+ 2⟩; · · ·

LinearActris allows us to construct such infinite protocols, using guarded recursion:

p n ≜ !⟨n⟩; p (n+ 1) or formally: p ≜ µα. λn. !⟨n⟩; α (n+ 1)

This definition is guarded, because the recursive call is guarded by a message send.
Note that our notion of guardedness is a bit more flexible than one might expect;
the following definition, in which the recursive call occurs inside the resources, is
also guarded:

p n ≜ !(c : Addr)⟨c⟩{c ↣ p (n+ 1)}; !end

Guarded recursion is most useful in combination with choice, which we can encode
using a quantified protocol. This lets us express “services” that can perform a certain
action (such as sending a natural number) forever, but allow the receiver to close the
channel:

p ≜ !(n : N)⟨n⟩; ?(b : Bool)⟨b⟩; if b then (!end) else p

225

6.4 from multi-shot to one-shot channels

6.4 from multi-shot to one-shot channels

Before discussing the adequacy proof of LinearActris (Sections 6.5 and 6.6), we first
reduce multi-shot channels and protocols to single-shot channels and protocols,
inspired by the approach of Dardha et al. (2012) for session types and Jacobs et al.
(2023) for separation logic.

The reason we encode multi-shot channels in terms of one-shot channels is twofold.
First, it is easier to prove adequacy of the one-shot logic, because it is simpler. The
ideas required are not fundamentally different, but there are fewer cases to handle.
Second, we believe that the encoding of multi-shot channels in terms of one-shot
channels showcases the flexibility of LinearActris: the encoding involves mutable
references and transmitting channels over channels and creating new threads in a
non-trivial way. If one considers the examples of Section 6.2 in light of the encoding,
one realizes that a lot is going on at run-time, and one might therefore expect it to be
difficult to verify deadlock and leak freedom. The encoding shows that LinearActris
is flexible enough to modularly build the multi-shot abstraction in terms of one-shot
channels.

6.4.1 Primitive One-Shot Channels

The primitive one-shot channels have the following operations:

fork1 (λc. e) Fork a new thread for e with one-shot channel c, and return c.

send1 c v Send message v over the channel c.

recv1 c Receive a message over the channel c, and free c.

The send1 c v and recv1 c operations may only be used once per one-shot channel.

6.4.2 Primitive One-Shot Logic

The primitive one-shot channels are governed by simple one-shot protocols, which
are defined in Figure 40. A one-shot protocol is either !𝛷𝛷 or ?𝛷𝛷, where 𝛷𝛷 ∈Val →
aProp is a separation logic predicate that specifies which values are allowed to be
transmitted. The dual of !𝛷𝛷 is ?𝛷𝛷 and vice versa. The primitive one-shot channel
weakest precondition rules are given in Figure 40. The rules are similar to the rules
of LinearActris, except that they are simpler because they do not have to deal with
the complexity of multi-shot channels and protocols:

• WP-prim-send: When we send1 c v, we must have channel ownership c ↣1 !𝛷𝛷,
and we must provide resources 𝛷𝛷 v to be transmitted. The postcondition is Emp,
because the channel ownership is consumed.

226

6.4 from multi-shot to one-shot channels

6.4 from multi-shot to one-shot channels

Before discussing the adequacy proof of LinearActris (Sections 6.5 and 6.6), we first
reduce multi-shot channels and protocols to single-shot channels and protocols,
inspired by the approach of Dardha et al. (2012) for session types and Jacobs et al.
(2023) for separation logic.

The reason we encode multi-shot channels in terms of one-shot channels is twofold.
First, it is easier to prove adequacy of the one-shot logic, because it is simpler. The
ideas required are not fundamentally different, but there are fewer cases to handle.
Second, we believe that the encoding of multi-shot channels in terms of one-shot
channels showcases the flexibility of LinearActris: the encoding involves mutable
references and transmitting channels over channels and creating new threads in a
non-trivial way. If one considers the examples of Section 6.2 in light of the encoding,
one realizes that a lot is going on at run-time, and one might therefore expect it to be
difficult to verify deadlock and leak freedom. The encoding shows that LinearActris
is flexible enough to modularly build the multi-shot abstraction in terms of one-shot
channels.

6.4.1 Primitive One-Shot Channels

The primitive one-shot channels have the following operations:

fork1 (λc. e) Fork a new thread for e with one-shot channel c, and return c.

send1 c v Send message v over the channel c.

recv1 c Receive a message over the channel c, and free c.

The send1 c v and recv1 c operations may only be used once per one-shot channel.

6.4.2 Primitive One-Shot Logic

The primitive one-shot channels are governed by simple one-shot protocols, which
are defined in Figure 40. A one-shot protocol is either !𝛷𝛷 or ?𝛷𝛷, where 𝛷𝛷 ∈Val →
aProp is a separation logic predicate that specifies which values are allowed to be
transmitted. The dual of !𝛷𝛷 is ?𝛷𝛷 and vice versa. The primitive one-shot channel
weakest precondition rules are given in Figure 40. The rules are similar to the rules
of LinearActris, except that they are simpler because they do not have to deal with
the complexity of multi-shot channels and protocols:

• WP-prim-send: When we send1 c v, we must have channel ownership c ↣1 !𝛷𝛷,
and we must provide resources 𝛷𝛷 v to be transmitted. The postcondition is Emp,
because the channel ownership is consumed.

226

6.4 from multi-shot to one-shot channels

One-shot protocols: �

p ∈ Prot ::= !𝛷𝛷 | ?𝛷𝛷 where 𝛷𝛷 ∈Val → aProp (Protocols)

c ↣1 p (Channel points-to)

!𝛷𝛷 ≜ ?𝛷𝛷 ?𝛷𝛷 ≜ !𝛷𝛷 (Dual)

One-shot channel weakest precondition rules: �

WP-prim-fork
∀c. (c ↣1 p) −∗ WP e c {Emp}

WP fork1 e {c. c ↣1 p}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗

WP-prim-send
𝛷𝛷 v ∗ c ↣1 !𝛷𝛷

WP send1 c v {Emp}
−−−−−−−−−−−−−−−−−−−−−−−−−∗

WP-prim-recv
c ↣1 ?𝛷𝛷

WP recv1 c {v. 𝛷𝛷 v}
−−−−−−−−−−−−−−−−−−−−−−−−−∗

Figure 40: The primitive one-shot channel rules.

• WP-prim-recv: When we recv1 c, we must have channel ownership c ↣1 ?𝛷𝛷, and
we obtain resources 𝛷𝛷 v where v is the value that was received. The channel
ownership is consumed.

6.4.3 Encoding of Multi-Shot Channels

The multi-shot channels from Section 6.3 are implemented in terms of one-shot
channels. The implementation is given in Figure 41. A multi-shot channel endpoint
is represented as a mutable reference that stores a one-shot channel. When we send
a message v on a multi-shot channel, we create a continuation one-shot channel c′,
and we send the message (c′, v) on the one-shot channel that is stored in the mutable
reference. The channel c′ is then stored in the mutable reference of the sender, to be
used for communicating the next message. On the other side, we receive a message
(c′, v), and we store c′ in the receiver’s mutable reference, and then return v. The
multi-shot channel is closed by doing a final synchronisation on the one-shot channel
without creating a continuation channel, and freeing the mutable reference.

We define multi-shot protocols in terms of one-shot protocols, as shown in Figure 39.
The definition for ?(x)⟨v⟩{P}; p specifies that there exists an instantiation of the
binders x, such that the message (c, v) is sent over the one-shot channel, which
means that the value is specified by v in the protocol. We additionally transmit
the resources P, as well as new channel ownership c ↣1 P for the continuation
channel at the right protocol. The definition of the send protocol is simply dual. The

227

6.5 why linear actris is deadlock free : connectivity graphs

Multi-shot imperative channel implementation: �

fork e ≜ ref (fork1 (λc. e (ref c)))
ℓ.send(v) ≜ let c = ! ℓ in ℓ ← fork1 (λc′.send1 c (c′, v))
ℓ.recv() ≜ let (c′, v) = recv1 (! ℓ) in ℓ ← c′; v

ℓ.close() ≜ send1 (! ℓ) (); free ℓ

ℓ.wait() ≜ recv1 (! ℓ); free ℓ

Dependent multi-shot protocol definitions: �

?(x)⟨v⟩{P}; p ≜ ?(λw. ∃x, c. w = (c, v) ∗ P ∗ c ↣1 p) (Receive protocol)
!(x)⟨v⟩{P}; p ≜ !(λw. ∃x, c. w = (c, v) ∗ P ∗ c ↣1 p) (Send protocol)

?end{P} ≜ ?(λw.w = () ∗ P) (Wait protocol)
!end{P} ≜ !(λw.w = () ∗ P) (Close protocol)

ℓ ↣ p ≜ ∃c,q. ℓ ↦→ c ∗ c ↣1 q ∗ ⊲(q ⊑ p) (Channel points-to)

Subprotocols: �

!Φ ⊑ !Ψ ≜ ∀v.Ψ v −∗ Φ v !Φ ⊑ ?Ψ ≜ False
?Φ ⊑ ?Ψ ≜ ∀v.Φ v −∗ Ψ v ?Φ ⊑ !Ψ ≜ False

Figure 41: Multi-shot channels and protocols in terms of one-shot channels and protocols.

definitions of the close and wait protocols are special cases of the send and receive
protocols, as no continuation channel is created.

Finally, multi-shot channel ownership ℓ ↣ p is defined in terms of heap ownership
and one-shot channel ownership, as shown in Figure 39. The definition states that
the mutable reference ℓ stores a one-shot channel c, and that the one-shot channel
has protocol q ⊑ p. This means that the multi-shot channels support subprotocols,
even though the one-shot channels do not.

6.5 why linear actris is deadlock free : connectivity graphs

Now that we have given the rules of the one-shot logic, we cover how it guarantees
deadlock- and leak freedom by linearity. We first give the general structure of
the adequacy proof, and explain how it uses an invariant that is preserved as the

228

6.5 why linear actris is deadlock free : connectivity graphs

Multi-shot imperative channel implementation: �

fork e ≜ ref (fork1 (λc. e (ref c)))
ℓ.send(v) ≜ let c = ! ℓ in ℓ ← fork1 (λc′.send1 c (c′, v))
ℓ.recv() ≜ let (c′, v) = recv1 (! ℓ) in ℓ ← c′; v

ℓ.close() ≜ send1 (! ℓ) (); free ℓ

ℓ.wait() ≜ recv1 (! ℓ); free ℓ

Dependent multi-shot protocol definitions: �

?(x)⟨v⟩{P}; p ≜ ?(λw. ∃x, c. w = (c, v) ∗ P ∗ c ↣1 p) (Receive protocol)
!(x)⟨v⟩{P}; p ≜ !(λw. ∃x, c. w = (c, v) ∗ P ∗ c ↣1 p) (Send protocol)

?end{P} ≜ ?(λw.w = () ∗ P) (Wait protocol)
!end{P} ≜ !(λw.w = () ∗ P) (Close protocol)

ℓ ↣ p ≜ ∃c,q. ℓ ↦→ c ∗ c ↣1 q ∗ ⊲(q ⊑ p) (Channel points-to)

Subprotocols: �

!Φ ⊑ !Ψ ≜ ∀v.Ψ v −∗ Φ v !Φ ⊑ ?Ψ ≜ False
?Φ ⊑ ?Ψ ≜ ∀v.Φ v −∗ Ψ v ?Φ ⊑ !Ψ ≜ False

Figure 41: Multi-shot channels and protocols in terms of one-shot channels and protocols.

definitions of the close and wait protocols are special cases of the send and receive
protocols, as no continuation channel is created.

Finally, multi-shot channel ownership ℓ ↣ p is defined in terms of heap ownership
and one-shot channel ownership, as shown in Figure 39. The definition states that
the mutable reference ℓ stores a one-shot channel c, and that the one-shot channel
has protocol q ⊑ p. This means that the multi-shot channels support subprotocols,
even though the one-shot channels do not.

6.5 why linear actris is deadlock free : connectivity graphs

Now that we have given the rules of the one-shot logic, we cover how it guarantees
deadlock- and leak freedom by linearity. We first give the general structure of
the adequacy proof, and explain how it uses an invariant that is preserved as the

228

6.5 why linear actris is deadlock free : connectivity graphs

program executes (Section 6.5.1). We then give an intuition for the principles that
the invariant needs to enforce, by going through some faulty examples, and discuss
what it is that makes them deadlock/leak, and how the notion of connectivity graphs
(Jacobs et al., 2022a) is used (Section 6.5.2). We finally present how we reason about
the preservation of the invariant in terms of connectivity graphs (Section 6.5.3). In
the next section we will give a more formal presentation of the adequacy proof,
including the use of step-indexing to stratify circular definitions (Section 6.6).

6.5.1 General Approach

The general approach we take is to define an invariant I(e,h), which describes the
state of the configuration of threads and heap. The invariant satisfies three properties
that together imply adequacy. This approach is similar to the technique of progress
and preservation for proving type safety (Wright and Felleisen, 1994; Pierce, 2002;
Harper, 2016), but our invariant is defined semantically (in terms of the operational
semantics of the language) instead of syntactically (in terms of inductively defined
judgments). The first property is that the invariant can be established by the weakest
precondition of the program:

Lemma 6.5.1 (Initialization �). If Emp ⊢ WP e {Emp} holds, then I([e], ∅) holds.

That is, the invariant holds for the initial configuration with one thread e and empty
heap. The second property is that the invariant is preserved by the steps of our
operational semantics:

Lemma 6.5.2 (Preservation �). If I(e,h) holds, and (e,h)� (e′,h′), then I(e′,h′) holds.

The third property is that the invariant implies the conclusion of the adequacy
theorem:

Lemma 6.5.3 (Progress �). If I(e,h) holds, then either (e,h) can step, or e are all values
and h = ∅.

Together, these three properties imply adequacy, because if we start with the initial
configuration, then we can repeatedly apply the preservation theorem to get to a
configuration where the invariant holds, after which we can apply the progress
theorem to establish adequacy:

Theorem 6.5.4 (Adequacy �). If Emp ⊢ WP e {Emp} is holds, and ([e], ∅) �∗ (e,h),
then either:

• (e,h)� (e′,h′) for some (e′,h′), or,

• e are all values and h = ∅.

In addition to this adequacy theorem, our logic also guarantees safety:

229

6.5 why linear actris is deadlock free : connectivity graphs

Theorem 6.5.5 (Safety �). If Emp ⊢ WP e {Emp} is holds, and ([e], ∅) �∗ (e,h), then
every thread in e can either reduce, or is a value, or is blocked on a receive or wait operation.

The safety theorem is a straightforward consequence of our invariant, so we will
not discuss it further. The reader can find the proof in the Coq mechanization. In
the next subsection we aim to give an intuition of what the invariant I(e,h) looks
like, and why it is preserved by the operational semantics of our language.

6.5.2 The Invariant Properties

In this section we investigate the properties that we need the invariant to enforce.
We do this by considering program examples that do deadlock or leak to identify
patterns we need to exclude.

Consider the following example:

let c1 = fork (λc2. ()) in c1.recv()

The forked-off thread does nothing, and the main thread waits for the forked-off
thread by attempting to receive a message. The problem is that the forked-off thread
does not fulfill its obligation to send a message. To exclude this pattern the invariant
must uphold the following property:

Channel fulfillment: Terminated threads must not hold ownership assertions of
channels.

Now consider the following type of deadlock, where both sides try to receive:

let c1 = fork1 (λc2. recv1 c2) in recv1 c1

To rule out this example, we require that there cannot be two receive assertions ?𝛷𝛷.
The invariant enforces this with the following property:

Channel duality: Each channel in the configuration is in one of two states:

1. There exist two channel ownership assertions c ↣ !𝛷𝛷 and c ↣ ?𝛷𝛷 for that
channel and the channel buffer is empty.

2. There exist only the receiver assertion c ↣ ?𝛷𝛷 and the channel contains a
value v that satisfies 𝛷𝛷 v.

230

6.5 why linear actris is deadlock free : connectivity graphs

Theorem 6.5.5 (Safety �). If Emp ⊢ WP e {Emp} is holds, and ([e], ∅) �∗ (e,h), then
every thread in e can either reduce, or is a value, or is blocked on a receive or wait operation.

The safety theorem is a straightforward consequence of our invariant, so we will
not discuss it further. The reader can find the proof in the Coq mechanization. In
the next subsection we aim to give an intuition of what the invariant I(e,h) looks
like, and why it is preserved by the operational semantics of our language.

6.5.2 The Invariant Properties

In this section we investigate the properties that we need the invariant to enforce.
We do this by considering program examples that do deadlock or leak to identify
patterns we need to exclude.

Consider the following example:

let c1 = fork (λc2. ()) in c1.recv()

The forked-off thread does nothing, and the main thread waits for the forked-off
thread by attempting to receive a message. The problem is that the forked-off thread
does not fulfill its obligation to send a message. To exclude this pattern the invariant
must uphold the following property:

Channel fulfillment: Terminated threads must not hold ownership assertions of
channels.

Now consider the following type of deadlock, where both sides try to receive:

let c1 = fork1 (λc2. recv1 c2) in recv1 c1

To rule out this example, we require that there cannot be two receive assertions ?𝛷𝛷.
The invariant enforces this with the following property:

Channel duality: Each channel in the configuration is in one of two states:

1. There exist two channel ownership assertions c ↣ !𝛷𝛷 and c ↣ ?𝛷𝛷 for that
channel and the channel buffer is empty.

2. There exist only the receiver assertion c ↣ ?𝛷𝛷 and the channel contains a
value v that satisfies 𝛷𝛷 v.

230

6.5 why linear actris is deadlock free : connectivity graphs

Next, consider the type of deadlock illustrated by the following example:

let l = ref 1 in

let c1 = fork1 (λc2. l ← c2) in
recv1 c1; send1 (! l) 2; free l

In this example, the forked-off thread smuggles its own channel back to the main
thread by putting it in the reference l. The main thread then attempts to receive,
but this will block forever, as the matching send (on ! l) is performed after the
receive. This example is not ruled out by the invariant property above, as the main
thread might be holding both channel ownership assertions for c1 as well as c2. The
invariant prevents this from happening with the following property:

Weak channel acyclicity: No thread can hold ownership over both endpoints of
a channel.

This property is yet again not enough to guarantee deadlock freedom. In general,
it can be the case that there are several threads that are waiting for each other, and
that none of them will ever perform the send that the others are waiting for. Consider
the following situation:

Thread 1: recv1 c1; send1d1 2 Ownership: c1 ↣1 ?Φ ∗ d1 ↣1 !Ψ

Thread 2: recv1d2; send1 c2 1 Ownership: d2 ↣1 ?Ψ ∗ c2 ↣1 !Φ

Here, both threads are waiting for each other, but neither of them will ever perform
the send that the other is waiting for. This does not violate the preceding principle,
as it could be the case that channel ownership is held as indicated above. In this
case, neither thread holds both channel ownership assertions for the same channel,
but there is still a deadlock. We therefore generalize the preceding principle by
considering the graph of channel ownership assertions held by the threads:

Channel acyclicity: There exists a connectivity graph of channel ownership
assertions, where there is an edge from a thread T to a channel c if T holds a
channel ownership assertion c ↣1 p. This graph must be strongly acyclic.

By the term strongly acyclic, we mean that there is at most one path from any node
to another, even if one is allowed to follow edges backwards.

leaks The aforementioned properties are enough to rule out the preceding
examples, but there are subtle types of deadlocks that can still occur. The last
remaining issue is that we have not yet taken into account the fact that we can
store ownership assertions in channels, by transferring them via the send operation.

231

6.5 why linear actris is deadlock free : connectivity graphs

There is thus a danger that we can leak channel ownership assertions circularly
into each other, and thus create a cycle of channel ownership assertions. This could
cause deadlocks in the same way as the first example in this section: by leaking
a send ownership assertion, a send will never happen, and the receiver will block
indefinitely.

For this reason, deadlocks are intimately related to leaks. It might be tempting to
think that linearity alone is enough to rule out leaks, but as we alluded to, this is not
the case. Consider what would happen if we had two channel endpoints c1 and c2,
and do the following:

c1.send(c2); c1.close();

This program would not deadlock, but it would put the channel c2 in the buffer of
c1. If c1 and c2 turned out to be two endpoints of the same channel, then this would
be a leak, as the channel would never be freed. We can choose these protocols for c1

and c2:

c1 ↣ !(P : aProp)⟨v⟩{P}; !end c2 ↣ ?(P : aProp)⟨v⟩{P}; ?end

This protocol allows us to transfer any resource P, including the ownership assertion
for c2. Thus, channel ownership for the channel would be stored inside itself, and
we would have a leak. We strengthen our invariant to ensure that there cannot be
any cyclic ownership between channels:

Strong channel acyclicity: Consider the logical connectivity graph of channel
ownership assertions, where we have the following edges:

• An edge from a thread T to a channel c if T holds a channel ownership
assertion c ↣1 p.

• An edge from a channel c to a channel c′ if c contains a message with
associated channel ownership assertion c′ ↣1 p.

We have the invariant that this graph is strongly acyclic.

Note that channel ownership should not be confused with having a reference
to a channel. A thread can have a reference to a channel without having channel
ownership for that channel, and a thread can have channel ownership for a channel
without having a reference to that channel.

We can now understand deadlocks and leaks in terms of the connectivity graph:

• Deadlock. In order for a thread to be able to perform a receive or wait operation,
it must have channel ownership for the channel that it is receiving from. Therefore,
if we have a deadlock in which threads are blocked on each other in a circular

232

6.5 why linear actris is deadlock free : connectivity graphs

There is thus a danger that we can leak channel ownership assertions circularly
into each other, and thus create a cycle of channel ownership assertions. This could
cause deadlocks in the same way as the first example in this section: by leaking
a send ownership assertion, a send will never happen, and the receiver will block
indefinitely.

For this reason, deadlocks are intimately related to leaks. It might be tempting to
think that linearity alone is enough to rule out leaks, but as we alluded to, this is not
the case. Consider what would happen if we had two channel endpoints c1 and c2,
and do the following:

c1.send(c2); c1.close();

This program would not deadlock, but it would put the channel c2 in the buffer of
c1. If c1 and c2 turned out to be two endpoints of the same channel, then this would
be a leak, as the channel would never be freed. We can choose these protocols for c1

and c2:

c1 ↣ !(P : aProp)⟨v⟩{P}; !end c2 ↣ ?(P : aProp)⟨v⟩{P}; ?end

This protocol allows us to transfer any resource P, including the ownership assertion
for c2. Thus, channel ownership for the channel would be stored inside itself, and
we would have a leak. We strengthen our invariant to ensure that there cannot be
any cyclic ownership between channels:

Strong channel acyclicity: Consider the logical connectivity graph of channel
ownership assertions, where we have the following edges:

• An edge from a thread T to a channel c if T holds a channel ownership
assertion c ↣1 p.

• An edge from a channel c to a channel c′ if c contains a message with
associated channel ownership assertion c′ ↣1 p.

We have the invariant that this graph is strongly acyclic.

Note that channel ownership should not be confused with having a reference
to a channel. A thread can have a reference to a channel without having channel
ownership for that channel, and a thread can have channel ownership for a channel
without having a reference to that channel.

We can now understand deadlocks and leaks in terms of the connectivity graph:

• Deadlock. In order for a thread to be able to perform a receive or wait operation,
it must have channel ownership for the channel that it is receiving from. Therefore,
if we have a deadlock in which threads are blocked on each other in a circular

232

6.5 why linear actris is deadlock free : connectivity graphs

T1

R ∗ P

T1

R

C T2

P

p p

fork1 v

T1 C ?

R ∗ 𝛷𝛷 v

!𝛷𝛷 ?𝛷𝛷
T1 C ?

R 𝛷𝛷 v

?𝛷𝛷

send1 c v

C T2

R𝛷𝛷 v

?𝛷𝛷
T2

𝛷𝛷 v ∗ R

recv1 c

Figure 42: The one-shot channel operations and the corresponding connectivity graph
transformations.

manner, then there must be a cycle of threads and channels in the connectivity
graph.

• Leak. If, after the program has terminated, there are still channels in the heap,
then the channel ownership for them must be stored inside each other in a circular
manner, and then there must be a cycle of channels in the connectivity graph.

6.5.3 Preserving the Invariant

We now discuss how we preserve the invariant by virtue of our program logic rules.
The property of channel fulfillment is preserved by the fact that we work in a linear
logic. The property of channel duality is preserved by the fact that we force channels
to be dual when allocated.

The property of strong channel acyclicity is more intricate, as the connectivity
graph must be updated as the program executes. In Figure 42, we show how the
connectivity graph transforms due to each of the one-shot channel operations:

• Fork. When thread T1 does a fork operation, it adds a new thread T2 to the
connectivity graph, and connects it to the original thread via a channel C. The
two edges to the channel are labeled with dual protocols p and p. The original

233

6.6 formal adequacy proof

thread T1 originally owned separation logic resources R ∗ P, which may contain
ownership of other channels (and mutable references, which we ignore here).
This is represented as edges from T1 to the owned channels. We let P be the
ownership of the channel ownership that is transferred to the new thread T2,
while R is the part that thread T1 keeps for itself. Due to this split of ownership,
the fork operation corresponds to a modification of the graph, as shown in the
figure. Crucially, if the original graph is strongly acyclic, the resulting graph is
still strongly acyclic. Note that this relies on the separation between R ∗ P. If we
had a channel ownership assertion that occurred both in R and in P, then the
resulting graph would not be strongly acyclic.

• Send. When thread T1 performs a send operation on a channel C with protocol
!𝛷𝛷, it must provide resources 𝛷𝛷 v, where v is the value it wants to send. The
resources 𝛷𝛷 v get transferred to the channel, and the thread loses its connection
to the channel, because it is one-shot. Therefore, the send operation corresponds
to a modification of the graph, as shown in the figure. The reader can see strong
acyclicity is preserved.

• Receive. When thread T2 performs a receive operation on a channel C with
protocol ?𝛷𝛷, it receives a value v and resources 𝛷𝛷 v from the channel. The
channel gets deallocated and removed from the graph, because the channel is
one-shot. If the thread initially owned resources R, then afterwards it owns
resources 𝛷𝛷 v ∗ R. Note that these resources are separated—this relies crucially
on the acyclicity of the graph before the receive operation: if thread T2 already had
channel ownership for some channel C′, and additionally got a second channel
ownership assertion for C′ via 𝛷𝛷 v, then the original graph would not have been
strongly acyclic.

In short, the proof rules of LinearActris ensure that strongly acyclic of the
connectivity graph is preserved, and thus its adequacy theorem can ensure that the
program is deadlock and leak free. In the next section, we will give an overview of
how this is proved formally.

6.6 formal adequacy proof

In this section we give a formal overview of our adequacy proof. We first give
a model of the propositions aProp of LinearActris by solving a recursive domain
equation in a step-indexed universe of sets (America and Rutten, 1989; Birkedal
et al., 2010) (Section 6.6.1). We then define the invariant that we use in the adequacy
proof (Section 6.6.2), and give the semantics of weakest preconditions (Section 6.6.3).
Finally, we sketch how the weakest precondition rules and the adequacy theorem
are proved (Section 6.6.4).

234

6.6 formal adequacy proof

thread T1 originally owned separation logic resources R ∗ P, which may contain
ownership of other channels (and mutable references, which we ignore here).
This is represented as edges from T1 to the owned channels. We let P be the
ownership of the channel ownership that is transferred to the new thread T2,
while R is the part that thread T1 keeps for itself. Due to this split of ownership,
the fork operation corresponds to a modification of the graph, as shown in the
figure. Crucially, if the original graph is strongly acyclic, the resulting graph is
still strongly acyclic. Note that this relies on the separation between R ∗ P. If we
had a channel ownership assertion that occurred both in R and in P, then the
resulting graph would not be strongly acyclic.

• Send. When thread T1 performs a send operation on a channel C with protocol
!𝛷𝛷, it must provide resources 𝛷𝛷 v, where v is the value it wants to send. The
resources 𝛷𝛷 v get transferred to the channel, and the thread loses its connection
to the channel, because it is one-shot. Therefore, the send operation corresponds
to a modification of the graph, as shown in the figure. The reader can see strong
acyclicity is preserved.

• Receive. When thread T2 performs a receive operation on a channel C with
protocol ?𝛷𝛷, it receives a value v and resources 𝛷𝛷 v from the channel. The
channel gets deallocated and removed from the graph, because the channel is
one-shot. If the thread initially owned resources R, then afterwards it owns
resources 𝛷𝛷 v ∗ R. Note that these resources are separated—this relies crucially
on the acyclicity of the graph before the receive operation: if thread T2 already had
channel ownership for some channel C′, and additionally got a second channel
ownership assertion for C′ via 𝛷𝛷 v, then the original graph would not have been
strongly acyclic.

In short, the proof rules of LinearActris ensure that strongly acyclic of the
connectivity graph is preserved, and thus its adequacy theorem can ensure that the
program is deadlock and leak free. In the next section, we will give an overview of
how this is proved formally.

6.6 formal adequacy proof

In this section we give a formal overview of our adequacy proof. We first give
a model of the propositions aProp of LinearActris by solving a recursive domain
equation in a step-indexed universe of sets (America and Rutten, 1989; Birkedal
et al., 2010) (Section 6.6.1). We then define the invariant that we use in the adequacy
proof (Section 6.6.2), and give the semantics of weakest preconditions (Section 6.6.3).
Finally, we sketch how the weakest precondition rules and the adequacy theorem
are proved (Section 6.6.4).

234

6.6 formal adequacy proof

6.6.1 The Step-Indexed Model of Propositions

To map the intuition of the previous section to a formal model of separation logic,
we will first give the semantics of the type of propositions. This means we need to
define a type aProp with the usual separation logic operators and the connectives
c ↣1 p ∈ Prot and ℓ ↦→ v ∈ Prot. These connectives assert ownership of outgoing
edges to a channel or a heap location in the connectivity graph. To define aProp, we
solve the following recursive domain equation:

aProp ≃ (

outgoing edges︷���︸︸���︷
Node fin−⇀ ▶ ({! , ?} × (Val → aProp)︸����������������������︷︷����������������������︸

protocols !𝛷𝛷 and ?𝛷𝛷

+ Val︸︷︷︸
references

)) → siProp �

Here, we let Node ::= Thread(n) | Cell(n) be the set of nodes of the connectivity
graph, i.e., cells in the heap, which store either a channel or a mutable value, and
threads, which are never owned but included for uniformity.

Note that aProp is not well-defined as an inductive or coinductive definition in the
category of sets, because the recursive occurrence of aProp is in negative position.
That is why we use the results by America and Rutten (1989); Birkedal et al. (2010) to
solve the recursive domain equation using step-indexing. The use of step-indexing
is evident by the use of (pure) step-indexed propositions siProp as our meta logic,
and the use of the ▶ modality to guard the recursion. This construction is similar to
how the model of Iris is constructed, with the crucial difference that Iris considers
monotone predicates to obtain an affine logic.

With this definition at hand, we can define the connectives of our separation logic:

c ↣1 p ≜ λΣ. Σ =
{
Cell(c) ↦→ p

}
�

ℓ ↦→ v ≜ λΣ. Σ = {Cell(ℓ) ↦→ v}
P ∗ Q ≜ λΣ. ∃Σ1,Σ2. Σ = Σ1 ∪Σ2 ∧ dom(Σ1) ∩ dom(Σ2) = ∅ ∧ P Σ1 ∧Q Σ2

P −∗ Q ≜ λΣ. ∀Σ′. dom(Σ) ∩ dom(Σ′) = ∅ ⇒ P Σ′ ⇒ Q(Σ∪Σ′)
P ∧Q ≜ λΣ. P Σ∧Q Σ

We have glossed over several technical details here, such injections from A into ▶A,
and that the right hand sides of these definitions live in the step-indexed logic siProp.
We refer the interested reader to our Coq mechanization for the full details.

6.6.2 The Invariant

The invariant is defined in terms of a connectivity graph (Jacobs et al., 2022a), which
is a labeled directed graph that is strongly acyclic. The nodes of the graph are the
logical objects in the configuration, i.e., threads, channels, and mutable references.
The incoming edges of channels are labeled by the protocols !𝛷𝛷 and ?𝛷𝛷 appearing in

235

6.6 formal adequacy proof

the channel ownership assertions c ↣1 p. The incoming edge of a mutable reference
is labeled by the value of the reference appearing in the reference ownership assertion
ℓ ↦→ v.

The invariant I(σ) on a configuration σ is therefore defined as follows:

I(σ) ≜ ∃G : CGraph. ∀ν. local_inv(σ[ν], in_labelsG(ν), out_edgesG(ν)) �

where in_labelsG(ν) is the multiset of labels on incoming edges of ν, and
out_edgesG(ν) is a finite map of outgoing edges of ν (as in Jacobs et al. (2022a)). Here,
σ[ν] looks up the physical state associated to the logical object ν in configuration σ.
The value of σ[ν] is Expr(e) for a thread, Ref(v) for a mutable reference containing v,
Chan(v) for a channel containing v, Chan(⊥) for an empty channel, and ⊥ if ν is not
in the configuration at all. The definition of I states that there is a connectivity graph
G that is strongly acyclic, and that for every value of ν, the local invariant local_inv
holds. This constrains the relation between the physical state of the object, and the
incoming and outgoing edges of the ν in the graph, and thus relates the graph to
the configuration. The local invariant local_inv is defined as follows:

local_inv(Expr(e),α,Σ) ≜ α = ∅ ∧ Emp ⊢ WP0 e {Emp} Σ �

local_inv(Ref(v),α,Σ) ≜ α = {v} ∧Σ = ∅
local_inv(Chan(v),α,Σ) ≜ ∃𝛷𝛷. α = {!𝛷𝛷} ∧𝛷𝛷 v Σ

local_inv(Chan(⊥),α,Σ) ≜ ∃𝛷𝛷. α = {!𝛷𝛷, ?𝛷𝛷} ∧Σ = ∅
local_inv(⊥,α,Σ) ≜ α = ∅ ∧ Σ = ∅

The local invariant for threads states that the incoming edges are empty, and that
we have a WP for the thread expression e, which owns the outgoing edges. The
local invariant for references states that the incoming edges are the singleton set
containing the value, and that the outgoing edges are empty. The local invariant for
a channel that contains a value v states that the incoming edges are the singleton
set containing !𝛷𝛷, and that the outgoing edges are owned by the predicate 𝛷𝛷 v.
The local invariant for an empty channel states that the incoming edges are the set
containing !𝛷𝛷 and ?𝛷𝛷, and that the outgoing edges are empty. The local invariant
for a logical object that does not exist in the physical configuration, states that the
incoming and outgoing edges are empty.

6.6.3 Weakest Preconditions

We have now defined the invariant, but we still need to define the weakest
preconditions, which is the main difficulty. In order to do so, we first define a
partial invariant, which states that the invariant holds for all threads and channels in
the configuration, except for the thread that our WP is currently considering: �

236

6.6 formal adequacy proof

the channel ownership assertions c ↣1 p. The incoming edge of a mutable reference
is labeled by the value of the reference appearing in the reference ownership assertion
ℓ ↦→ v.

The invariant I(σ) on a configuration σ is therefore defined as follows:

I(σ) ≜ ∃G : CGraph. ∀ν. local_inv(σ[ν], in_labelsG(ν), out_edgesG(ν)) �

where in_labelsG(ν) is the multiset of labels on incoming edges of ν, and
out_edgesG(ν) is a finite map of outgoing edges of ν (as in Jacobs et al. (2022a)). Here,
σ[ν] looks up the physical state associated to the logical object ν in configuration σ.
The value of σ[ν] is Expr(e) for a thread, Ref(v) for a mutable reference containing v,
Chan(v) for a channel containing v, Chan(⊥) for an empty channel, and ⊥ if ν is not
in the configuration at all. The definition of I states that there is a connectivity graph
G that is strongly acyclic, and that for every value of ν, the local invariant local_inv
holds. This constrains the relation between the physical state of the object, and the
incoming and outgoing edges of the ν in the graph, and thus relates the graph to
the configuration. The local invariant local_inv is defined as follows:

local_inv(Expr(e),α,Σ) ≜ α = ∅ ∧ Emp ⊢ WP0 e {Emp} Σ �

local_inv(Ref(v),α,Σ) ≜ α = {v} ∧Σ = ∅
local_inv(Chan(v),α,Σ) ≜ ∃𝛷𝛷. α = {!𝛷𝛷} ∧𝛷𝛷 v Σ

local_inv(Chan(⊥),α,Σ) ≜ ∃𝛷𝛷. α = {!𝛷𝛷, ?𝛷𝛷} ∧Σ = ∅
local_inv(⊥,α,Σ) ≜ α = ∅ ∧ Σ = ∅

The local invariant for threads states that the incoming edges are empty, and that
we have a WP for the thread expression e, which owns the outgoing edges. The
local invariant for references states that the incoming edges are the singleton set
containing the value, and that the outgoing edges are empty. The local invariant for
a channel that contains a value v states that the incoming edges are the singleton
set containing !𝛷𝛷, and that the outgoing edges are owned by the predicate 𝛷𝛷 v.
The local invariant for an empty channel states that the incoming edges are the set
containing !𝛷𝛷 and ?𝛷𝛷, and that the outgoing edges are empty. The local invariant
for a logical object that does not exist in the physical configuration, states that the
incoming and outgoing edges are empty.

6.6.3 Weakest Preconditions

We have now defined the invariant, but we still need to define the weakest
preconditions, which is the main difficulty. In order to do so, we first define a
partial invariant, which states that the invariant holds for all threads and channels in
the configuration, except for the thread that our WP is currently considering: �

236

6.6 formal adequacy proof

I◦(σ, tid,Σ) ≜ ∃G : CGraph. ∀ν.

{
in_labelsG(ν) = ∅ ∧ out_edgesG(ν) = Σ if ν = tid

local_inv(σ[ν], in_labelsG(ν), out_edgesG(ν)) if ν ≠ tid

The partial invariant I◦(σ, tid,Σ) states that there is a connectivity graph G that is
strongly acyclic, and that for every value of ν, the local invariant local_inv holds,
except for the thread tid, for which we require that the incoming edges are empty,
and the outgoing edges are Σ.

Using this partial invariant, we can define the weakest preconditions, which we
define by cases depending on whether the expression is a value or not:

WP0 v {𝛷𝛷} Σ ≜ ⋄𝛷𝛷 v �

WP0 e {𝛷𝛷} Σ ≜ ∀tid, e,h. ⊲ I◦((e,h), tid,Σ) →
⋄ (reducible_or_blocked◦(e,h,Σ) ∧ preserved(e, e,h, tid))

preserved(e, e,h, tid) ≜ ∀e′,h′, enew. (e,h) −→p (e′,h′, enew) →
⊲∃Σ′. I◦((e ++ enew,h′), tid,Σ′) ∧WP0 e′ {𝛷𝛷} Σ′

This definition states that if the expression is a value, then the WP holds if the
predicate holds for the value (for technical step-indexing reasons, there is a ⋄
modality in front of the predicate, to allow us to remove ⊲ from pure assumptions).
If the expression is not a value, then we operate under the assumption that the
partial invariant I◦((e,h), tid,Σ) holds (under the later modality). We must then
show that the expression is either reducible or blocked, expressed by the predicate
reducible_or_blocked◦(e,h,Σ). This means that e can either step in the context of the
heap h, or that e is blocked on a receive operation on a channel for which Σ contains
the ?𝛷𝛷 protocol. Secondly, we must show that the invariant and WP are preserved:
if e steps to e′, then we must find a Σ′ such that the partial invariant holds for the
new configuration (e ++ enew,h′), and the WP holds for e′ under Σ′. Here, enew is the
list of new threads that are spawned by the step, and Σ′ are the new outgoing edges
that are owned by the current thread tid.

recursion The reader may have noticed that the definition of the WP and the
partial invariant are mutually recursive, in more than one way. This problem is
addressed by step-indexing, which allows us to define the WP and the partial
invariant using guarded recursion, because all recursive occurrences are under a
later modality.

framing For WP0 e {𝛷𝛷}, the frame rule of separation logic does not hold.
Inspired by Charguéraud (2020), we can lift it to a frame preserving WP, which does
satisfy the frame rule:

WP e {𝛷𝛷} ≜ ∀R.
?
⊲R −∗ WP0 e {v. R ∗𝛷𝛷 v} �

237

6.7 semantic typing

In this definition, there is a later modality (⊲) in front of R, but only if e is not a
value. This makes sure that we get the step-framing rule of Iris: ⊲R ∗ WP e {𝛷𝛷} ⊢
WP e {v. R ∗𝛷𝛷 v} if e ∉Val.

6.6.4 Weakest Precondition Rules and Adequacy

With the definition of the weakest precondition connective at hand, we prove the
weakest preconditions rules of LinearActris. These proofs are relatively complex, as
we need to reason about the connectivity graph, and how it is transformed when we
perform a step, as shown in Figure 42.

The adequacy proof (Theorem 6.5.4) follows the structure sketched in Section 6.5,
by proving the initialization, preservation, and progress theorems. For the progress
theorem, we use the fact that the connectivity graph is acyclic, which means that
we can always find a thread that can step. Formally, we apply the principle of
waiting induction (Jacobs et al., 2022a). We refer the interested reader to the Coq
mechanization for the full details.

6.7 semantic typing

Semantic type soundness is an approach to proving safety by building a logical
relations model. We follow the “logical approach” to semantic typing (Appel et al.,
2007; Dreyer et al., 2011; Jung et al., 2018a; Timany et al., 2022) where we define the
logical relations model using a program logic—in our case, LinearActris–instead of
directly in terms of the operational semantics of the programming language. Our
development is based on the semantic type safety proof by Hinrichsen et al. (2021)
for an affine session-typed language using the Actris logic. A crucial different is that
by using LinearActris instead of Actris, we obtain deadlock- and leak freedom for all
typeable programs as a consequence of our strong adequacy theorem (Theorem 6.5.4).

Our type system is inspired by the GV family (Wadler, 2012; Gay and Vasconcelos,
2010), but uses strong updates to track changes to the session types of channels.
Moreover, our type system is more expressive than earlier deadlock-free type systems
that have appeared in the literature: it supports the combination of session-typed
channels with recursive types, subtyping, term- and session type polymorphism,
and unique mutable references.

We present the semantic type system and its soundness theorem (Section 6.7.1),
and then elaborate on how the semantic type soundness is related to conventional
syntactic type soundness (Section 6.7.2).

6.7.1 Type System

An overview of the key definitions appears in Figure 43. We omit details about
unique mutable references, polymorphism, and copy (a.k.a. unrestricted) types for

238

6.7 semantic typing

In this definition, there is a later modality (⊲) in front of R, but only if e is not a
value. This makes sure that we get the step-framing rule of Iris: ⊲R ∗ WP e {𝛷𝛷} ⊢
WP e {v. R ∗𝛷𝛷 v} if e ∉Val.

6.6.4 Weakest Precondition Rules and Adequacy

With the definition of the weakest precondition connective at hand, we prove the
weakest preconditions rules of LinearActris. These proofs are relatively complex, as
we need to reason about the connectivity graph, and how it is transformed when we
perform a step, as shown in Figure 42.

The adequacy proof (Theorem 6.5.4) follows the structure sketched in Section 6.5,
by proving the initialization, preservation, and progress theorems. For the progress
theorem, we use the fact that the connectivity graph is acyclic, which means that
we can always find a thread that can step. Formally, we apply the principle of
waiting induction (Jacobs et al., 2022a). We refer the interested reader to the Coq
mechanization for the full details.

6.7 semantic typing

Semantic type soundness is an approach to proving safety by building a logical
relations model. We follow the “logical approach” to semantic typing (Appel et al.,
2007; Dreyer et al., 2011; Jung et al., 2018a; Timany et al., 2022) where we define the
logical relations model using a program logic—in our case, LinearActris–instead of
directly in terms of the operational semantics of the programming language. Our
development is based on the semantic type safety proof by Hinrichsen et al. (2021)
for an affine session-typed language using the Actris logic. A crucial different is that
by using LinearActris instead of Actris, we obtain deadlock- and leak freedom for all
typeable programs as a consequence of our strong adequacy theorem (Theorem 6.5.4).

Our type system is inspired by the GV family (Wadler, 2012; Gay and Vasconcelos,
2010), but uses strong updates to track changes to the session types of channels.
Moreover, our type system is more expressive than earlier deadlock-free type systems
that have appeared in the literature: it supports the combination of session-typed
channels with recursive types, subtyping, term- and session type polymorphism,
and unique mutable references.

We present the semantic type system and its soundness theorem (Section 6.7.1),
and then elaborate on how the semantic type soundness is related to conventional
syntactic type soundness (Section 6.7.2).

6.7.1 Type System

An overview of the key definitions appears in Figure 43. We omit details about
unique mutable references, polymorphism, and copy (a.k.a. unrestricted) types for

238

6.7 semantic typing

Term types:
any ≜ λw. Emp

Z ≜ λw. w ∈ Z

A ⊸ B ≜ λw. ∀v. ⊲(Av) −∗ wp (w v) {B}
ch S ≜ λw. w S

Session types:

!A.S ≜ !(v :Val)⟨v⟩{Av}; S

?A.S ≜ ?(v :Val)⟨v⟩{Av}; S

Subtyping:

A <: B ≜ ∀v. A v −∗ B v

S <: T ≜ S ⊑ T

Judgments:

Γ ⊨ σ ≜ ∗(x,A)∈Γ . A(σ(x))
Γ ⊨ e : A ⊨Γ ′ ≜ ∀σ. (Γ ⊨ σ) −∗

wp e[σ] {v. Av ∗ (Γ ′ ⊨ σ)}

Semantic typing rules for terms: �

Γ1, x :A ⊨ e : B ⊨[]
Γ1 · Γ2 ⊨ λx. e : A ⊸ B ⊨Γ2

Γ1 ⊨ e1 : A ⊨Γ2 Γ2, x :A ⊨ e2 : B ⊨Γ3

Γ1 ⊨ let x = e1 in e2 : B ⊨Γ3 \ x
Semantic typing rules for channels:

Γ2 ⊨ e : ch S ⊸ any ⊨[]
Γ1 · Γ2 ⊨ fork e : ch S ⊨Γ1

Γ ⊨ e : A ⊨Γ ′, x : ch (!A.S)
Γ ⊨ send x e : 1 ⊨Γ ′, x : ch S

Γ , x : ch (?A.S) ⊨ recv x : A ⊨Γ , x : ch S

Figure 43: Typing judgements and type formers of the semantic type system.

brevity’s sake, and refer the interested reader to our Coq mechanization and the
affine type system which we adopted (Hinrichsen et al., 2021), as the details revolving
these aspects are mostly unchanged.

type formers . The type system consists of two kinds of types, term types and
session types. We have the usual linear term type constructs such as any, Z, and
A ⊸ B, in addition to the channel type ch S, which is parametric on a session type
S. We support the usual session types such as !A.S and !A.S, as well as the ones for
closing and branching (omitted for brevity’s sake).

In a semantic type system, term types are defined as propositions over values
(Type ≜Val → aProp). For example, the type ch S is defined in terms of the channel
ownership c ↣ S. Session types S are defined using our dependent protocols p. We
use the protocol binders to capture that channels exchange values v for which the
term type predicate A holds.

typing judgment. As we work with a language with strong updates, we use a
typing judgment Γ ⊨ e : A ⊨Γ ′ with a pre- and post-context Γ , Γ ′ ∈ List(String ×Type),
similar to RustBelt (Jung et al., 2018a). Using the post-context can track how types
of variables change throughout evaluation.

We use closing substitutions to define our typing contexts, as is standard in
logical relation models. Closing substitutions σ ∈ String fin−⇀ Val are finite partial
functions that map the free variables of an expression to corresponding values.

239

6.7 semantic typing

Closing substitutions come with a judgment Γ ⊨ σ, which expresses that the closing
substitution σ is well-typed in the context Γ . The judgment says that for every typed
variable (x,A) ∈ Γ there is a corresponding value in the closing substitution σ(x), for
which we own the resources A(σ(x)).

The typing judgment Γ ⊨ e : A ⊨Γ ′ is defined using our weakest precondition.
That is, given a closing substitution σ and resources Γ ⊨ σ for the pre-context Γ , the
weakest precondition holds for e (under substitution with σ), with the postcondition
stating that the resources Av for the resulting value v are owned separately from the
resources Γ ′ ⊨ σ for the post-context Γ ′.

typing rules . In a semantic type system, every typing rule corresponds to a
lemma, which states that if the premises hold semantically, then the conclusion
holds semantically. These lemmas are proved using the rules of LinearActris, by
unfolding the typing judgment and the type formers, which yields goals that are
directly provable using the corresponding weakest precondition rules.

semantic type soundness . As the semantic typing judgment is defined in
terms of weakest precondition, we obtain a type soundness theorem as a direct
corollary of adequacy (Theorem 6.5.4).

Theorem 6.7.1 (Semantic type soundness �). If [] ⊨ e : any ⊨[] holds, and ([e], ∅)�∗

(e,h), then either (e,h) can step, or e are all values and h = ∅.

This theorem says that our type systems ensures there are no deadlocks and
data leaks. We obtain a similar type soundness theorem for safety (no illegal non-
blocking operations, such as use-after-free) using LinearActris’s safety theorem
(Theorem 6.5.5).

6.7.2 From Semantic Type Soundness to Syntactic Type Soundness

Our semantic type system employs the foundational approach to logical relations,
inspired by Appel and McAllester (2001); Ahmed (2004); Ahmed et al. (2010); Jung
et al. (2018a). That is, we define types and type rules semantically as combinators
and lemmas in our program logic. The conventional approach to formalizing type
systems is to define types syntactically, then define the typing rules as an inductively
generated relation, and prove that if a term is syntactically well-typed, it upholds
the properties expected by the type system.

We can recover this approach by defining a syntactic type system Γ ⊢ e : A ⊣ Γ ′

whose typing rules mirror the semantic typing rules. This makes it trivial to prove
the following theorem:

Theorem 6.7.2 (Fundamental theorem of logical relations). If a term is syntactically
typed, then it is semantically typed, i.e., Γ ⊢ e : A ⊣ Γ ′ implies Γ ⊨ e : A ⊨Γ ′.

240

6.7 semantic typing

Closing substitutions come with a judgment Γ ⊨ σ, which expresses that the closing
substitution σ is well-typed in the context Γ . The judgment says that for every typed
variable (x,A) ∈ Γ there is a corresponding value in the closing substitution σ(x), for
which we own the resources A(σ(x)).

The typing judgment Γ ⊨ e : A ⊨Γ ′ is defined using our weakest precondition.
That is, given a closing substitution σ and resources Γ ⊨ σ for the pre-context Γ , the
weakest precondition holds for e (under substitution with σ), with the postcondition
stating that the resources Av for the resulting value v are owned separately from the
resources Γ ′ ⊨ σ for the post-context Γ ′.

typing rules . In a semantic type system, every typing rule corresponds to a
lemma, which states that if the premises hold semantically, then the conclusion
holds semantically. These lemmas are proved using the rules of LinearActris, by
unfolding the typing judgment and the type formers, which yields goals that are
directly provable using the corresponding weakest precondition rules.

semantic type soundness . As the semantic typing judgment is defined in
terms of weakest precondition, we obtain a type soundness theorem as a direct
corollary of adequacy (Theorem 6.5.4).

Theorem 6.7.1 (Semantic type soundness �). If [] ⊨ e : any ⊨[] holds, and ([e], ∅)�∗

(e,h), then either (e,h) can step, or e are all values and h = ∅.

This theorem says that our type systems ensures there are no deadlocks and
data leaks. We obtain a similar type soundness theorem for safety (no illegal non-
blocking operations, such as use-after-free) using LinearActris’s safety theorem
(Theorem 6.5.5).

6.7.2 From Semantic Type Soundness to Syntactic Type Soundness

Our semantic type system employs the foundational approach to logical relations,
inspired by Appel and McAllester (2001); Ahmed (2004); Ahmed et al. (2010); Jung
et al. (2018a). That is, we define types and type rules semantically as combinators
and lemmas in our program logic. The conventional approach to formalizing type
systems is to define types syntactically, then define the typing rules as an inductively
generated relation, and prove that if a term is syntactically well-typed, it upholds
the properties expected by the type system.

We can recover this approach by defining a syntactic type system Γ ⊢ e : A ⊣ Γ ′

whose typing rules mirror the semantic typing rules. This makes it trivial to prove
the following theorem:

Theorem 6.7.2 (Fundamental theorem of logical relations). If a term is syntactically
typed, then it is semantically typed, i.e., Γ ⊢ e : A ⊣ Γ ′ implies Γ ⊨ e : A ⊨Γ ′.

240

6.8 related and future work

By combining the fundamental theorem and semantic type soundness, we obtain
the conventional syntactic type soundness result:

Corollary 6.7.3 (Syntactic type soundness). If [] ⊢ e : any ⊣ [] is derivable, and
([e], ∅)�∗ (e,h), then either (e,h) can step, or e are all values and h = ∅.

Because this is trivial yet laborious, we favour the foundational approach to semantic
typing.

6.8 related and future work

We first discuss other approaches to prove deadlock freedom (Section 6.8.1), then
compare to the original Actris logic (Section 6.8.2), and discuss mechanizations of
session types (Section 6.8.3), and channel implementations (Section 6.8.4). Finally,
we discuss related work on models of separation logic (Section 6.8.5).

6.8.1 Proof Methods for Deadlock Freedom

linear session types The GV type system (Wadler, 2012; Gay and Vasconcelos,
2010) and follow-up work (Lindley and Morris, 2015, 2016a, 2017; Fowler et al.,
2019, 2021) ensure deadlock freedom for a functional language with session types
by linearity. Earlier work proved deadlock freedom for a linear π-calculus using a
graphical approach (Carbone and Debois, 2010). Toninho et al. (2013); Toninho
(2015)’s deadlock-free SILL embeds session-typed processes into a functional
language via a monad. Like GV, the seminal paper by Caires and Pfenning (2010)
and Toninho (2015)’s PhD thesis spurred a series of derivatives (Caires et al., 2013;
Pérez et al., 2014; Das et al., 2018), in which deadlock freedom is guaranteed by
linearity. The contribution of our work is to obtain deadlock freedom from linearity
in separation logic instead of a type system.

multiparty session types Multiparty session types (Honda et al., 2008, 2016)
generalize session types from bidirectional channels to n-to-n channels. To ensure
deadlock freedom, multiparty session type systems use a consistency check that
generalizes the duality condition of binary session types. The consistency check can
be performed via projections of a global type, or via an explicit check on a collection
of local types (Scalas and Yoshida, 2019). Purely multiparty approaches generally
assume a static topology, and thus do not support dynamic creation of threads and
channels. This makes them orthogonal in the programs they can establish to be
deadlock free compared to linear binary session types (hybrid approaches exist, see
below).

lock orders Dijkstra originally proposed lock orders as a mechanism to ensure
deadlock freedom for his Dining Philosophers problem (Dijkstra, 1971). Lock orders
have been incorporated into a number of verification tools and separation logics

241

6.8 related and future work

that support proving deadlock freedom, for example (Leino et al., 2010; Le et al.,
2013; Zhang et al., 2016; Hamin and Jacobs, 2018). Lock orders are also used in the
TaDA Live separation logic for proving liveness of concurrent programs (D’Osualdo
et al., 2021b). Lock-order based approaches are orthogonal in expressive strength
compared to session types. For instance, it is far from clear how to build a logical
relation for a language with session types in terms of a separation logic with lock
orders. In the session-typed source language, deadlock freedom is ensured by
linearity, and it does not seem possible to translate this into order-based reasoning
in the target program logic. Since session types do not have order obligations, it is
not clear how the order conditions on the receive operations are justified.

choreographies Choreographic languages (Montesi, 2021; Cruz-Filipe et al.,
2021b,a,b) allow the programmer to write a global program that is automatically split
into local programs that communicate via channels for which deadlock freedom is
guaranteed by construction. Since choreographies are based on program generation,
they are very different from our approach.

usages and obligations Yet another mechanism for deadlock freedom are
usages and obligations (Kobayashi, 1997; Igarashi and Kobayashi, 1997; Kobayashi
et al., 1999; Igarashi and Kobayashi, 2001; Kobayashi, 2002b; Igarashi and Kobayashi,
2004), which ensure that channels are used in a non-deadlocking order. In contrast
to lock orders, the priority involved in usages and obligations always increases in
the order. These mechanisms have also been extended to session-typed languages
(Dardha and Gay, 2018). Similar to lock orders, usages and obligations entail
additional proof obligations, and as such, are orthogonal to obtaining deadlock
freedom from linearity.

hybrid approaches Message passing has been extended with locks and sharing
(Benton, 1994; Villard et al., 2009; Reed, 2009b; Lozes and Villard, 2011, 2012; Pfenning
and Griffith, 2015; Balzer et al., 2018, 2019; Hinrichsen et al., 2020; Qian et al., 2021;
Rocha and Caires, 2021; Jacobs and Balzer, 2023). Some of these approaches ensure
deadlock or leak freedom, e.g., via lock orders, linearity, or other checks. Multiparty
session types have been combined with linearity to guarantee progress beyond one
session (Carbone et al., 2015, 2016, 2017; Jacobs et al., 2022b). In this chapter we used
bidirectional channels (built on top of one-shot channels) as the sole concurrency
primitive. In future work, we would like to add locks and multiparty session types,
inspired by the preceding work.

6.8.2 Comparison with Actris

Separation logic has been extended with session-type based mechanisms to reason
about message-passing programs (Francalanza et al., 2011; Lozes and Villard, 2012;
Craciun et al., 2015; Oortwijn et al., 2016; Hinrichsen et al., 2020, 2022). Most closely

242

6.8 related and future work

that support proving deadlock freedom, for example (Leino et al., 2010; Le et al.,
2013; Zhang et al., 2016; Hamin and Jacobs, 2018). Lock orders are also used in the
TaDA Live separation logic for proving liveness of concurrent programs (D’Osualdo
et al., 2021b). Lock-order based approaches are orthogonal in expressive strength
compared to session types. For instance, it is far from clear how to build a logical
relation for a language with session types in terms of a separation logic with lock
orders. In the session-typed source language, deadlock freedom is ensured by
linearity, and it does not seem possible to translate this into order-based reasoning
in the target program logic. Since session types do not have order obligations, it is
not clear how the order conditions on the receive operations are justified.

choreographies Choreographic languages (Montesi, 2021; Cruz-Filipe et al.,
2021b,a,b) allow the programmer to write a global program that is automatically split
into local programs that communicate via channels for which deadlock freedom is
guaranteed by construction. Since choreographies are based on program generation,
they are very different from our approach.

usages and obligations Yet another mechanism for deadlock freedom are
usages and obligations (Kobayashi, 1997; Igarashi and Kobayashi, 1997; Kobayashi
et al., 1999; Igarashi and Kobayashi, 2001; Kobayashi, 2002b; Igarashi and Kobayashi,
2004), which ensure that channels are used in a non-deadlocking order. In contrast
to lock orders, the priority involved in usages and obligations always increases in
the order. These mechanisms have also been extended to session-typed languages
(Dardha and Gay, 2018). Similar to lock orders, usages and obligations entail
additional proof obligations, and as such, are orthogonal to obtaining deadlock
freedom from linearity.

hybrid approaches Message passing has been extended with locks and sharing
(Benton, 1994; Villard et al., 2009; Reed, 2009b; Lozes and Villard, 2011, 2012; Pfenning
and Griffith, 2015; Balzer et al., 2018, 2019; Hinrichsen et al., 2020; Qian et al., 2021;
Rocha and Caires, 2021; Jacobs and Balzer, 2023). Some of these approaches ensure
deadlock or leak freedom, e.g., via lock orders, linearity, or other checks. Multiparty
session types have been combined with linearity to guarantee progress beyond one
session (Carbone et al., 2015, 2016, 2017; Jacobs et al., 2022b). In this chapter we used
bidirectional channels (built on top of one-shot channels) as the sole concurrency
primitive. In future work, we would like to add locks and multiparty session types,
inspired by the preceding work.

6.8.2 Comparison with Actris

Separation logic has been extended with session-type based mechanisms to reason
about message-passing programs (Francalanza et al., 2011; Lozes and Villard, 2012;
Craciun et al., 2015; Oortwijn et al., 2016; Hinrichsen et al., 2020, 2022). Most closely

242

6.8 related and future work

related to our work is Actris (Hinrichsen et al., 2020, 2022). Our work can be seen as a
linear, deadlock-free and leak-free variant of Actris. Actris additionally supports the
combination of message passing with locks. Incorporating locks in a deadlock-free
manner would be interesting future work.

In contrast to Actris, where channels are implemented using a pair of lock
protected buffers, we implement multi-shot channels on top of primitive one-shot
channels, inspired by subsequent work on a layered version of Actris (Jacobs et al.,
2023). As a result, similar to Jacobs et al. (2023)’s layered version of Actris, we do
not support asynchronous subtyping, as this is unsound for our implementation of
channels. Actris uses a recursive domain equation to constructs multi-shot protocols
directly, we follow Jacobs et al. (2023) to construct multi-shot protocols on top
of one-shot protocols. We expect that our approach can be applied to a setting
with buffered channels and recursive protocols as primitives. An interesting topic
for future work would be to investigate if we can obtain deadlock freedom for
asynchronous subtyping this way.

Another difference between Actris and LinearActris is that Actris has a single end
protocol end, transferring no resources, whereas we have two end protocols !end{P}
and ?end{P}, which transfer resources. We believe this to be a minor difference, and
expect that our results can be extended to Actris with a single end protocol.

6.8.3 Mechanization of Session Types

Hinrichsen et al. (2021) use Actris to prove soundness of a session type system via
the method of semantic typing, inspired by RustBelt (Jung et al., 2018a). We follow a
similar approach, but in addition to proving type safety, we prove deadlock and leak
freedom. Thiemann (2019) proves type safety of a linear GV-like session type system
using dependent types in Agda, Rouvoet et al. (2020) streamline this approach via
separation logic. Goto et al. (2016); Ciccone and Padovani (2020); Castro-Perez et al.
(2020); Reed (2009a); Chaudhuri et al. (2019) mechanize π-calculus with session types.
These works generally show safety, but Jacobs et al. (2022a)’s Coq mechanization
shows deadlock freedom. We generalize their approach of connectivity graphs to
the context of separation logic. Lastly, Castro-Perez et al. (2021); Jacobs et al. (2022b)
mechanize multiparty session types.

6.8.4 Verification of Message-Passing Implementations

While channels are a primitive of our operational semantics, others have verified
message-passing implementations that use atomic primitives, such as compare-
and-swap or atomic-exchange. Mansky et al. (2017) verifies a message-passing
system written in C using VST (Appel, 2014; Cao et al., 2018). Tassarotti et al. (2017)
proves the correctness of a compiler for an affine session-typed language, showing
that the target terminates iff the source program terminates (under fair scheduling

243

6.8 related and future work

assumptions). In the future, we would like to implement our channels using atomic
primitives. In this setting, it is less clear how to formulate the adequacy theorem. As
low-level implementations of channels perform busy loops, we would need a notion
such as progress under fair scheduling.

Recent work applies Actris to obtain reliable message-passing specifications for
channels built on top of UDP-like primitives (Gondelman et al., 2023). Similarly to
the shared memory setting, the implementation busy loops until a message has been
successfully transferred over the unreliable network, which can only be guaranteed
under fair scheduling and a fair network.

6.8.5 Linear Models of Separation Logic

The original presentations of sequential separation logic (O’Hearn et al., 2001) and
concurrent separation logic (CSL) (O’Hearn, 2004; Brookes, 2004) use a linear model.
For sequential separation logic, linearity gives leak freedom, and with scoped CSL-
style invariants this scales to concurrent programs that use parallel composition.
When extending the language with more general invariants mechanisms that support
unscoped thread creation (Hobor et al., 2008; Svendsen and Birkedal, 2014) the
situation becomes more complicated. Jung (2020, Thm 2) shows that linearity alone
does not give leak freedom, and other mechanisms are needed. (Bizjak et al., 2019)’s
Iron logic provides such a mechanism: by disallowing deallocation permissions
in invariants, leak freedom can be obtained. Unfortunately, ownership of the end
protocol needs to include permission to deallocate the channel, making Iron’s
invariants insufficient for higher-order session types.

While all resources in Iris are affine, and all resources in LinearActris are linear,
there have been various efforts to make hybrid models of separation logics that have
both linear and affine resources (Tassarotti et al., 2017; Cao et al., 2017; Krebbers
et al., 2018; Mansky, 2022). Typically they use some form of partial commutative
monoids equipped with an order that specifies which resources can be dropped. The
model of LinearActris is an instance of the step-indexed ordered resource algebra
model by Krebbers et al. (2018), taking the order to be the reflexive relation, meaning
no resources can be dropped. An interesting direction for future work is to add a
notion of ghost state to LinearActris, for which these hybrid models could be useful.

We hope that our work can be a step towards bringing deadlock and leak freedom
to full-fledged separation logics for fine-grained concurrency, such as Iris and VST.
This has been a longstanding challenge, on which recent progress has been made for
leak freedom (Bizjak et al., 2019), and termination, as well as termination-preserving
refinement (Spies et al., 2021; Tassarotti et al., 2017). Nevertheless, key challenges
related to Iris-style invariants remain. As channels can be seen as a particular type
of invariant, we hope that our connectivity graph approach can be generalized, e.g.,
to a linear form of invariants that are compatible with leak- and deadlock freedom.

244

6.8 related and future work

assumptions). In the future, we would like to implement our channels using atomic
primitives. In this setting, it is less clear how to formulate the adequacy theorem. As
low-level implementations of channels perform busy loops, we would need a notion
such as progress under fair scheduling.

Recent work applies Actris to obtain reliable message-passing specifications for
channels built on top of UDP-like primitives (Gondelman et al., 2023). Similarly to
the shared memory setting, the implementation busy loops until a message has been
successfully transferred over the unreliable network, which can only be guaranteed
under fair scheduling and a fair network.

6.8.5 Linear Models of Separation Logic

The original presentations of sequential separation logic (O’Hearn et al., 2001) and
concurrent separation logic (CSL) (O’Hearn, 2004; Brookes, 2004) use a linear model.
For sequential separation logic, linearity gives leak freedom, and with scoped CSL-
style invariants this scales to concurrent programs that use parallel composition.
When extending the language with more general invariants mechanisms that support
unscoped thread creation (Hobor et al., 2008; Svendsen and Birkedal, 2014) the
situation becomes more complicated. Jung (2020, Thm 2) shows that linearity alone
does not give leak freedom, and other mechanisms are needed. (Bizjak et al., 2019)’s
Iron logic provides such a mechanism: by disallowing deallocation permissions
in invariants, leak freedom can be obtained. Unfortunately, ownership of the end
protocol needs to include permission to deallocate the channel, making Iron’s
invariants insufficient for higher-order session types.

While all resources in Iris are affine, and all resources in LinearActris are linear,
there have been various efforts to make hybrid models of separation logics that have
both linear and affine resources (Tassarotti et al., 2017; Cao et al., 2017; Krebbers
et al., 2018; Mansky, 2022). Typically they use some form of partial commutative
monoids equipped with an order that specifies which resources can be dropped. The
model of LinearActris is an instance of the step-indexed ordered resource algebra
model by Krebbers et al. (2018), taking the order to be the reflexive relation, meaning
no resources can be dropped. An interesting direction for future work is to add a
notion of ghost state to LinearActris, for which these hybrid models could be useful.

We hope that our work can be a step towards bringing deadlock and leak freedom
to full-fledged separation logics for fine-grained concurrency, such as Iris and VST.
This has been a longstanding challenge, on which recent progress has been made for
leak freedom (Bizjak et al., 2019), and termination, as well as termination-preserving
refinement (Spies et al., 2021; Tassarotti et al., 2017). Nevertheless, key challenges
related to Iris-style invariants remain. As channels can be seen as a particular type
of invariant, we hope that our connectivity graph approach can be generalized, e.g.,
to a linear form of invariants that are compatible with leak- and deadlock freedom.

244

Part III

PA R A D O X - F R E E P R O B A B I L I S T I C P R O G R A M M I N G

Chapter 7

Paradoxes of Probabilistic Programming

abstract Probabilistic programming languages allow programmers to write
down conditional probability distributions that represent statistical and machine
learning models as programs that use observe statements. These programs are run by
accumulating likelihood at each observe statement, and using the likelihood to steer
random choices and weigh results with inference algorithms such as importance
sampling or MCMC. We argue that naive likelihood accumulation does not give
desirable semantics and leads to paradoxes when an observe statement is used
to condition on a measure-zero event, particularly when the observe statement is
executed conditionally on random data. We show that the paradoxes disappear if we
explicitly model measure-zero events as a limit of positive measure events, and that
we can execute these type of probabilistic programs by accumulating infinitesimal
probabilities rather than probability densities. Our extension improves probabilistic
programming languages as an executable notation for probability distributions by
making it more well-behaved and more expressive, by allowing the programmer to
be explicit about which limit is intended when conditioning on an event of measure
zero.

7.1 introduction

Probabilistic programming languages such as Stan (Carpenter et al., 2017), Church
(Goodman et al., 2008), and Anglican (Wood et al., 2014) allow programmers to
express probabilistic models in statistics and machine learning in a structured way,
and run these models with generic inference algorithms such as importance sampling,
Metropolis-Hastings, SMC, HMC. At its core, a probabilistic programming language
is a notation for probability distributions that looks much like normal programming
with calls to random number generators, but with an additional observe construct.

There are two views on probabilistic programming. The pragmatist says that
probabilistic programs are a convenient way to write down a likelihood function, and
the purist says that probabilistic programs are a notation for structured probabilistic
models. The pragmatist interprets an observe statement as “soft conditioning”, or
imperatively multiplying the likelihood function by some factor. The purist interprets
an observe statement as true probabilistic conditioning in the sense of conditional
distributions. The pragmatist may also want to write a probabilistic program to
compute the likelihood function of a conditional distribution, but the pragmatist is
not surprised that there are non-sensical probabilistic programs that do not express

246

Chapter 7

Paradoxes of Probabilistic Programming

abstract Probabilistic programming languages allow programmers to write
down conditional probability distributions that represent statistical and machine
learning models as programs that use observe statements. These programs are run by
accumulating likelihood at each observe statement, and using the likelihood to steer
random choices and weigh results with inference algorithms such as importance
sampling or MCMC. We argue that naive likelihood accumulation does not give
desirable semantics and leads to paradoxes when an observe statement is used
to condition on a measure-zero event, particularly when the observe statement is
executed conditionally on random data. We show that the paradoxes disappear if we
explicitly model measure-zero events as a limit of positive measure events, and that
we can execute these type of probabilistic programs by accumulating infinitesimal
probabilities rather than probability densities. Our extension improves probabilistic
programming languages as an executable notation for probability distributions by
making it more well-behaved and more expressive, by allowing the programmer to
be explicit about which limit is intended when conditioning on an event of measure
zero.

7.1 introduction

Probabilistic programming languages such as Stan (Carpenter et al., 2017), Church
(Goodman et al., 2008), and Anglican (Wood et al., 2014) allow programmers to
express probabilistic models in statistics and machine learning in a structured way,
and run these models with generic inference algorithms such as importance sampling,
Metropolis-Hastings, SMC, HMC. At its core, a probabilistic programming language
is a notation for probability distributions that looks much like normal programming
with calls to random number generators, but with an additional observe construct.

There are two views on probabilistic programming. The pragmatist says that
probabilistic programs are a convenient way to write down a likelihood function, and
the purist says that probabilistic programs are a notation for structured probabilistic
models. The pragmatist interprets an observe statement as “soft conditioning”, or
imperatively multiplying the likelihood function by some factor. The purist interprets
an observe statement as true probabilistic conditioning in the sense of conditional
distributions. The pragmatist may also want to write a probabilistic program to
compute the likelihood function of a conditional distribution, but the pragmatist is
not surprised that there are non-sensical probabilistic programs that do not express

246

7.1 introduction

any sensible statistical model. After all, if one writes down an arbitrary likelihood
function then it will probably not correspond to a sensible, structured, non-trivial
statistical model. The pragmatist blames the programmer for writing non-sensical
programs, just as it would have been the fault of the programmer if they had written
down the same likelihood function manually. The purist, on the other hand, insists
that any probabilistic program corresponds to structured statistical model, and that
each observe statement in a probabilistic program has a probabilistic interpretation
whose composition results in the statistical model. We will show that the current
state is not satisfactory for the purist, and we will show how to make probabilistic
programming languages satisfactory in this respect.

The difficulties with conditioning in probabilistic programs can be traced back to
a foundational issue in probability theory. When the event E being conditioned on
has nonzero probability, the conditional distribution P(A|E) is defined as:

P(A|E) = P(A∩ E)
P(E)

However, this formula for conditional probability is undefined when P(E) = 0, since
then also P(A ∩ E) = 0 and the fraction P(A|E) = 0

0 is undefined. In probabilistic
programming we often wish to condition on events E with probability 0, such as
“x = 3.4”, where x is a continuous random variable. There are several methods to
condition on measure-zero events. For continuous distributions that have probability
density functions, we can replace the probabilities in the above formula with
probability densities, which are (usually) nonzero even if P(E) is zero. For more
complicated situations, we can use the Radon–Nikodym derivative or disintegration
(Chang and Pollard, 1997; Shan and Ramsey, 2017; Dahlqvist and Kozen, 2020;
Ackermann et al., 2017).

A general method for conditioning on measure-zero events is to define a sequence
of events Eϵ parameterized by a number ϵ > 0 such that Eϵ in some sense converges
to E in the limit ϵ → 0, but P(Eϵ) > 0 for all ϵ > 0. We then define the conditional
distribution to be the limit of P(A|Eϵ):

P(A|E) = limϵ→0
P(A∩ Eϵ)

P(Eϵ)

In the book Probability Theory: The Logic of Science (Jaynes, 2003), E.T. Jaynes
explains that conditioning on measure-zero events is inherently ambiguous, because
it depends not just on E but also on the limiting operation Eϵ we choose:

Yet although the sequences {Aϵ} and {Bϵ} tend to the same limit “y = 0”,
the conditional densities [P(x|Aϵ) and P(x|Bϵ)] tend to different limits.
As we see from this, merely to specify “y = 0” without any qualifications
is ambiguous; it tells us to pass to a measure-zero limit, but does not tell
us which of any number of limits is intended. [...] Whenever we have a
probability density on one space and we wish to generate from it one

247

7.1 introduction

on a subspace of measure zero, the only safe procedure is to pass to an
explicitly defined limit by a process like [Aϵ and Bϵ]. In general, the final
result will and must depend on which limiting operation was specified.
This is extremely counter-intuitive at first hearing; yet it becomes obvious
when the reason for it is understood.

The other methods, such as dividing probability densities, implicitly make the choice
Eϵ for us. Conditioning on events of measure-zero using those methods can lead to
paradoxes such as the Borel-Komolgorov paradox, even in the simplest case when
probability density functions exist. Paradoxes occur because seemingly unimportant
restatements of the problem, such as using a different parameterization for the
variables, can affect the choice of Eϵ that those methods make, and thus change the
value of the limit. Consider the following probabilistic program:

h = rand(Normal(1.7, 0.5))

if rand(Bernoulli(0.5))

observe(Normal(h, 0.1), 2.0)

end

We first sample a value (say, a person’s height) from a prior normally distributed
around 1.7 meters and then with probability 0.5 we observe a measurement normally
distributed around the height to be 2.0. We ran this program in Anglican with
importance sampling, and obtained the following expectation values for h: 1.812
1.814 1.823 1.813 1.806 (10000 samples each). Suppose that we had measured the
height in centimeters instead of meters:

h = rand(Normal(170, 50))

if rand(Bernoulli(0.5))

observe(Normal(h, 10), 200)

end

We might naively expect this program to produce roughly the same output as the
previous program, but multiplied by a factor of 100 to account for the conversion of
meters to centimeters. Instead, we get 170.1 170.4 171.5 170.2 169.4. This behavior
happens because even though the units of the program appear to be correct, the
calculations that importance sampling does to estimate the expectation value involve
arithmetic with inconsistent units (in this case, adding a quantity with units m−1 to
a quantity with neutral units). The issue is not particular to Anglican or importance
sampling, but due to the interaction of stochastic branching with way the likelihood
is calculated with probability densities; other algorithms (Paige et al., 2014; Tolpin
et al., 2015) have the same behavior. In fact, formal semantics based on likelihood
accumulation, such as the commutative semantics (Staton, 2017) and the semantics
based on on Quasi-Borel spaces (Heunen et al., 2017), also perform arithmetic with

248

7.1 introduction

on a subspace of measure zero, the only safe procedure is to pass to an
explicitly defined limit by a process like [Aϵ and Bϵ]. In general, the final
result will and must depend on which limiting operation was specified.
This is extremely counter-intuitive at first hearing; yet it becomes obvious
when the reason for it is understood.

The other methods, such as dividing probability densities, implicitly make the choice
Eϵ for us. Conditioning on events of measure-zero using those methods can lead to
paradoxes such as the Borel-Komolgorov paradox, even in the simplest case when
probability density functions exist. Paradoxes occur because seemingly unimportant
restatements of the problem, such as using a different parameterization for the
variables, can affect the choice of Eϵ that those methods make, and thus change the
value of the limit. Consider the following probabilistic program:

h = rand(Normal(1.7, 0.5))

if rand(Bernoulli(0.5))

observe(Normal(h, 0.1), 2.0)

end

We first sample a value (say, a person’s height) from a prior normally distributed
around 1.7 meters and then with probability 0.5 we observe a measurement normally
distributed around the height to be 2.0. We ran this program in Anglican with
importance sampling, and obtained the following expectation values for h: 1.812
1.814 1.823 1.813 1.806 (10000 samples each). Suppose that we had measured the
height in centimeters instead of meters:

h = rand(Normal(170, 50))

if rand(Bernoulli(0.5))

observe(Normal(h, 10), 200)

end

We might naively expect this program to produce roughly the same output as the
previous program, but multiplied by a factor of 100 to account for the conversion of
meters to centimeters. Instead, we get 170.1 170.4 171.5 170.2 169.4. This behavior
happens because even though the units of the program appear to be correct, the
calculations that importance sampling does to estimate the expectation value involve
arithmetic with inconsistent units (in this case, adding a quantity with units m−1 to
a quantity with neutral units). The issue is not particular to Anglican or importance
sampling, but due to the interaction of stochastic branching with way the likelihood
is calculated with probability densities; other algorithms (Paige et al., 2014; Tolpin
et al., 2015) have the same behavior. In fact, formal semantics based on likelihood
accumulation, such as the commutative semantics (Staton, 2017) and the semantics
based on on Quasi-Borel spaces (Heunen et al., 2017), also perform arithmetic with

248

7.1 introduction

inconsistent units for this example. Lexical likelihood weighting (Wu et al., 2018)
does give a unit-consistent answer for this example1, but still exhibits unit anomalies
for other examples described in Section 7.3.

Unit errors in a programming language’s implementation or semantics may seem
like a very serious issue, but we do not believe that this is a show-stopper in practice,
because practitioners can always take the pragmatist view and avoid writing such
programs. Although we consider this to be an important foundational issue, it does
not invalidate existing work on probabilistic programming.

It is known that conditionals can be problematic. Some inference algorithms, like
SMC, will make assumptions that exclude observe inside conditionals. For example,
(van de Meent et al., 2018) mentions the following when describing SMC:

Each breakpoint2 needs to occur at an expression that is evaluated in every
execution of a program. In particular, this means that breakpoints should
not be associated with expressions inside branches of if expressions. [...]
An alternative design, which is often used in practice, is to simply break
at every observe and assert that each sample has halted at the same point
at run time.

If the design is used where breakpoints happen at every observe, then the assertion
that breakpoints should not be associated with expressions inside branches of if
expressions will disallow using SMC with programs that have observes inside
conditionals. Languages such as Stan, that do not have or do not allow stochastic
branching, also do not suffer from the preceding example. In section 7.3 we will
show that the problem is not limited to conditionals; there are programs that do not
have conditionals but nevertheless have paradoxical behavior. Furthermore, we show
that the standard method of likelihood accumulation for implementing probabilistic
programming languages can sometimes obtain an answer that disagrees with the
purist’s exact value for P(A|E) even if P(E) is nonzero, due to a confusion between
probabilities and probability densities.

We identify three types of paradoxes that affect probabilistic programming
languages that allow dynamically conditioning on events of measure-zero. These
paradoxes are based on the idea that it should not matter which parameter scale
we use for variables. It shouldn’t matter whether we use meters or centimeters
to measure height, but it also shouldn’t matter whether we use energy density
or decibels to measure sound intensity. The change from centimeters to meters

1 Many thanks to Alex Lew for pointing this out.
2 A breakpoint in the context of SMC is a designated point in the program where multiple instances of

the same program are synchronized and resampled. A simple form of resampling is to take a program
instance with current weight w, and flip a coin, and remove the program instance when the coin is heads,
and set its weight to 2w when the coin is tails. The purpose of this technique is improve efficiency by
probabilistically removing program instances that have reached a very low weight, without affecing the
overall expecation value. However, resampling is only a good idea if the weight w is small in comparison
to other instances, as we would introduce a lot of extra variance otherwise. Breakpoints are used to
determine whether a particular weight is small in a relative sense, by comparing it to the weight of other
instances at the same breakpoint.

249

7.1 introduction

involves a linear parameter transformation by cm = 0.01m, whereas the change
from energy density to decibels involves a nonlinear parameter transformation
decibels = log(energy density). We give several example programs that show that
the output of a probabilistic program can depend on the parameter scale used when
we condition on events of measure zero.

Following Jaynes’ advice, we extend the language with notation for explicitly
choosing which limit Eϵ we mean in an observe statement. We give an
implementation of likelihood accumulation using infinitesimal probabilities instead
of probability densities, and show that this does not suffer from the three types of
paradoxes. Infinitesimal probabilities give meaning to conditioning on measure-zero
events in terms of a limit of events of strictly positive measure. Since events of
strictly positive measure are unproblematic, paradoxes can no longer occur.

Furthermore, we add explicit language support for parameter transformations.
This is only soundly possible due to the introduction of infinitesimal probabilities.
We show that introducing a parameter transformation in an observe statement does
not change the behavior of the probabilistic program. That is, we show that in our
language, observe(D,I) has the same behavior as observe(D’,I’) where D’,I’ is
D,I in a different parameter scale.

Our contributions are the following.

• We identify a problem with existing probabilistic programming languages, in
which likelihood accumulation with probability densities can result in three
different types of paradoxes when conditioning on a measure-zero event. The
three paradoxes violate the principle that the output of a program should not
depend on the parameter scale used (Section 7.3).

• We analyze the event that probabilistic programs with observe statements
condition on, taking the paradox-free discrete case as a guide, in order to
determine what observe ought to mean in the continuous case (Section 7.2).

• We propose a change to probabilistic programming languages to avoid the
paradoxes of the continuous measure-zero case, by changing the observe

construct to condition on measure-zero events E as an explicit limit ϵ → 0
of Eϵ (Sections 7.4 and 7.5), and

– a method for computing the limit by accumulating infinitesimal probabilities
instead of probability densities, which we use to implement the adjusted
observe construct,

– a theorem that shows that infinitesimal probabilities correctly compute the
limit of Eϵ, ensuring that programs that use observe on measure-zero events
are paradox free,

– a translation from the existing observe construct to our new observe construct,
which gives the same output if the original program was non-paradoxical,

250

7.1 introduction

involves a linear parameter transformation by cm = 0.01m, whereas the change
from energy density to decibels involves a nonlinear parameter transformation
decibels = log(energy density). We give several example programs that show that
the output of a probabilistic program can depend on the parameter scale used when
we condition on events of measure zero.

Following Jaynes’ advice, we extend the language with notation for explicitly
choosing which limit Eϵ we mean in an observe statement. We give an
implementation of likelihood accumulation using infinitesimal probabilities instead
of probability densities, and show that this does not suffer from the three types of
paradoxes. Infinitesimal probabilities give meaning to conditioning on measure-zero
events in terms of a limit of events of strictly positive measure. Since events of
strictly positive measure are unproblematic, paradoxes can no longer occur.

Furthermore, we add explicit language support for parameter transformations.
This is only soundly possible due to the introduction of infinitesimal probabilities.
We show that introducing a parameter transformation in an observe statement does
not change the behavior of the probabilistic program. That is, we show that in our
language, observe(D,I) has the same behavior as observe(D’,I’) where D’,I’ is
D,I in a different parameter scale.

Our contributions are the following.

• We identify a problem with existing probabilistic programming languages, in
which likelihood accumulation with probability densities can result in three
different types of paradoxes when conditioning on a measure-zero event. The
three paradoxes violate the principle that the output of a program should not
depend on the parameter scale used (Section 7.3).

• We analyze the event that probabilistic programs with observe statements
condition on, taking the paradox-free discrete case as a guide, in order to
determine what observe ought to mean in the continuous case (Section 7.2).

• We propose a change to probabilistic programming languages to avoid the
paradoxes of the continuous measure-zero case, by changing the observe

construct to condition on measure-zero events E as an explicit limit ϵ → 0
of Eϵ (Sections 7.4 and 7.5), and

– a method for computing the limit by accumulating infinitesimal probabilities
instead of probability densities, which we use to implement the adjusted
observe construct,

– a theorem that shows that infinitesimal probabilities correctly compute the
limit of Eϵ, ensuring that programs that use observe on measure-zero events
are paradox free,

– a translation from the existing observe construct to our new observe construct,
which gives the same output if the original program was non-paradoxical,

250

7.2 on the event that observe conditions on

– language support for parameter transformations, which we use to show
that the meaning of programs in our language is stable under parameter
transformations,

– an implementation of our language as an embedded DSL in Julia (Jacobs,
2020) (Section 7.6).

7.2 on the event that observe conditions on

Different probabilistic programming languages have different variants of the observe

statement. Perhaps it’s simplest variant, observe(b) takes a boolean b and conditions
on that boolean being true. For instance, if we throw two dice and want to condition
on the sum of the dice being 8, we can use this probabilistic program, in pseudocode:

function twoDice()

x = rand(DiscreteUniform(1,6))

y = rand(DiscreteUniform(1,6))

observe(x + y == 8)

return x

end

The program twoDice represents the conditional distribution P(x|x+ y = 8) where x

and y are uniformly distributed numbers from 1 to 6. We wrap the program in a
function and use the return value to specify the variable x whose distribution we are
interested in. Anglican has a defquery construct analogous to the function definition
that we use here.

Probabilistic programming languages allow us to sample from the distribution
specified by the probabilistic program and compute expectation values. The simplest
method to implement observe is rejection sampling (von Neumann, 1951; Goodman
et al., 2008): we start a trial by running the program from the beginning, drawing
random samples with rand, and upon encountering observe(x + y == 8) we test
the condition, and if the condition is not satisfied we reject the current trial and
restart the program from the beginning hoping for better luck next time. If all
observes in a trial are satisfied, then we reach the return statement and obtain a
sample for x. We estimate expectation values by averaging multiple samples.

What makes probabilistic programs such an expressive notation for probability
distributions is that we have access to use the full power of a programming language,
such as its control flow and higher order functions (Heunen et al., 2017). The
following example generates two random dice throws x and y, and a random
boolean b, and uses an observe statement to condition on the sum of the dice throws
being 8 if b = true, with control flow:

x = rand(DiscreteUniform(1,6))

251

7.2 on the event that observe conditions on

y = rand(DiscreteUniform(1,6))

b = rand(Bernoulli(0.5))

if b

observe(x + y == 8)

end

return x

This code expresses the conditional probability distribution P(x|E) where x,y,b are
distributed according to the given distributions, and E is the event (b = true∧x+y =
8) ∨ (b = false). That is, a trial is successful if x+ y = 8 or if b = false.

In general, a probabilistic program conditions on the event that the tests of all
observe statements that are executed succeed. A bit more formally, we have an
underlying probability space Ω and we think of an element ω ∈ Ω as the “random
seed” that determines the outcome of all rand calls (it is sufficient to take Ω = R;
a real number contains an infinite amount of information, sufficient to determine
the outcome of an arbitrary number of rand calls, even if those calls are sampling
from continuous distributions). The execution trace of the program is completely
determined by the choice ω ∈ Ω. For some subset E ⊂ Ω, the tests of all the observe

calls that are executed in the trace succeed. This is the event E that a probabilistic
program conditions on. Rejection sampling gives an intuitive semantics for the
observe statement:

For a boolean b, the statement observe(b) means that we
only continue with the current trial only if b = true. If b =

false we reject the current trial.

Unfortunately, rejection sampling can be highly inefficient when used to run
a probabilistic program. If we use 1000-sided dice instead of 6-sided dice, the
probability that the sum x + y is a particular fixed value is very small, so most
trials will be rejected and it may take a long time to obtain a successful sample.
Probabilistic programming languages therefore have a construct observe(D,x) that
means observe(rand(D) == x), but can be handled by more efficient methods such
as importance sampling or Markov Chain Monte Carlo (MCMC). The previous
example can be written using this type of observe as follows:

x = rand(DiscreteUniform(1,6))

b = rand(Bernoulli(0.5))

if b

observe(DiscreteUniform(1,6), 8 - x)

end

return x

252

7.2 on the event that observe conditions on

y = rand(DiscreteUniform(1,6))

b = rand(Bernoulli(0.5))

if b

observe(x + y == 8)

end

return x

This code expresses the conditional probability distribution P(x|E) where x,y,b are
distributed according to the given distributions, and E is the event (b = true∧x+y =
8) ∨ (b = false). That is, a trial is successful if x+ y = 8 or if b = false.

In general, a probabilistic program conditions on the event that the tests of all
observe statements that are executed succeed. A bit more formally, we have an
underlying probability space Ω and we think of an element ω ∈ Ω as the “random
seed” that determines the outcome of all rand calls (it is sufficient to take Ω = R;
a real number contains an infinite amount of information, sufficient to determine
the outcome of an arbitrary number of rand calls, even if those calls are sampling
from continuous distributions). The execution trace of the program is completely
determined by the choice ω ∈ Ω. For some subset E ⊂ Ω, the tests of all the observe

calls that are executed in the trace succeed. This is the event E that a probabilistic
program conditions on. Rejection sampling gives an intuitive semantics for the
observe statement:

For a boolean b, the statement observe(b) means that we
only continue with the current trial only if b = true. If b =

false we reject the current trial.

Unfortunately, rejection sampling can be highly inefficient when used to run
a probabilistic program. If we use 1000-sided dice instead of 6-sided dice, the
probability that the sum x + y is a particular fixed value is very small, so most
trials will be rejected and it may take a long time to obtain a successful sample.
Probabilistic programming languages therefore have a construct observe(D,x) that
means observe(rand(D) == x), but can be handled by more efficient methods such
as importance sampling or Markov Chain Monte Carlo (MCMC). The previous
example can be written using this type of observe as follows:

x = rand(DiscreteUniform(1,6))

b = rand(Bernoulli(0.5))

if b

observe(DiscreteUniform(1,6), 8 - x)

end

return x

252

7.2 on the event that observe conditions on

This relies on the fact that x + y == 8 is equivalent to y == 8 - x. The intuitive
semantics of observe(D,x) is as follows:

For discrete distributions D, the statement observe(D,x)
means that we sample from D and only continue with the

current trial if the sampled value is equal to x.

This variant of observe can be implemented more efficiently than rejection
sampling. We keep track of the weight of the current trial that represents the
probability that the trial is still active (i.e. the probability that it was not yet rejected).
An observe(D,x) statement will multiply the weight of the current trial by the
probability P(D,x) that a sample from D is equal to x:

For discrete distributions D, the statement observe(D,x) gets
executed as weight *= P(D,x), where P(D,x) is the

probability of x in D.

The output of a trial of a probabilistic program is now a weighted sample: a pair of
random value x and a weight. Weighted samples can be used to compute expectation
values as weighted averages (this is called importance sampling 3). Estimating an
expectation value using importance sampling will usually converge faster than
rejection sampling with a good proposal distribution, because importance sampling’s
observe will deterministically weigh the trial by the probability P(D,x) rather than
randomly rejecting the trial with probability 1 - P(D,x). If P(D,x) = 0.01 then
rejection sampling would reject 99% of trials, which is obviously very inefficient. It is
important to note that multiplying weight *= P(D,x) is the optimized implementation
of observe, and we may still semantically think of it as rejecting the trial if sample(D)
!= x.

If the distribution D is a continuous distribution, then the probability that a sample
from D is equal to any particular value x becomes zero, so rejection sampling will
reject 100% of trials; it becomes infinitely inefficient. This is not surprising, because
on the probability theory side, the event E that we are now conditioning on has
measure zero. Importance sampling, on the other hand, continues to work in some
cases, provided we replace probabilities with probability densities:

For continuous distributions D, the statement observe(D,x)
gets executed as weight *= pdf(D,x), where pdf(D,x) is

the probability density of x in D.

3 More advanced MCMC methods can use the weight to make intelligent choices for what to return from
rand calls, whereas importance sampling uses a random number generator for rand calls. We focus on
importance sampling because this is the simplest method beyond rejection sampling.

253

7.3 three types of paradoxes

For instance, if we want to compute E[x|x+ y = 8] where x and y are distributed
according to Normal(2, 3) distributions, conditioned on their sum being 8, we can
use the following probabilistic program:

x = rand(Normal(2,3))

observe(Normal(2,3), 8 - x)

return x

This allows us to draw (weighted) samples from the distribution P(x|x + y = 8)
where x,y are distributed according to Normal(2, 3). Unfortunately, as we shall see
in the next section, unlike the discrete case, we do not in general have a probabilistic
interpretation for observe(D,x) on continuous distributions D when control flow is
involved, and we can get paradoxical behavior even if control flow is not involved.

7.3 three types of paradoxes

We identify three types of paradoxes. The first two involve control flow where
we either execute observe on different variables in different control flow paths, or
an altogether different number of observes in different control flow paths. The
third paradox is a variant of the Borel-Komolgorov paradox and involves non-linear
parameter transformations.

7.3.1 Paradox of Type 1: Different Variables Observed in Different Control Flow Paths

Consider the following probabilistic program:

h = rand(Normal(1.7, 0.5))

w = rand(Normal(70, 30))

if rand(Bernoulli(0.5))

observe(Normal(h, 0.1), 2.0)

else

observe(Normal(w, 5), 90)

end

bmi = w / h^2

We sample a person’s height h and weight w from a prior, and then we observe a
measurement of the height or weight depending on the outcome of a coin flip. Finally,
we calculate the BMI, and want to compute its average. If h′ is the measurement
sampled from Normal(h, 0.1) and w′ is the measurement sampled from Normal(w, 5)
and b is the boolean sampled from Bernoulli(0.5), then the event that this program
conditions on is (b = true∧ h′ = 2.0) ∨ (b = false∧w′ = 90). This event has measure
zero.

254

7.3 three types of paradoxes

For instance, if we want to compute E[x|x+ y = 8] where x and y are distributed
according to Normal(2, 3) distributions, conditioned on their sum being 8, we can
use the following probabilistic program:

x = rand(Normal(2,3))

observe(Normal(2,3), 8 - x)

return x

This allows us to draw (weighted) samples from the distribution P(x|x + y = 8)
where x,y are distributed according to Normal(2, 3). Unfortunately, as we shall see
in the next section, unlike the discrete case, we do not in general have a probabilistic
interpretation for observe(D,x) on continuous distributions D when control flow is
involved, and we can get paradoxical behavior even if control flow is not involved.

7.3 three types of paradoxes

We identify three types of paradoxes. The first two involve control flow where
we either execute observe on different variables in different control flow paths, or
an altogether different number of observes in different control flow paths. The
third paradox is a variant of the Borel-Komolgorov paradox and involves non-linear
parameter transformations.

7.3.1 Paradox of Type 1: Different Variables Observed in Different Control Flow Paths

Consider the following probabilistic program:

h = rand(Normal(1.7, 0.5))

w = rand(Normal(70, 30))

if rand(Bernoulli(0.5))

observe(Normal(h, 0.1), 2.0)

else

observe(Normal(w, 5), 90)

end

bmi = w / h^2

We sample a person’s height h and weight w from a prior, and then we observe a
measurement of the height or weight depending on the outcome of a coin flip. Finally,
we calculate the BMI, and want to compute its average. If h′ is the measurement
sampled from Normal(h, 0.1) and w′ is the measurement sampled from Normal(w, 5)
and b is the boolean sampled from Bernoulli(0.5), then the event that this program
conditions on is (b = true∧ h′ = 2.0) ∨ (b = false∧w′ = 90). This event has measure
zero.

254

7.3 three types of paradoxes

Just like the program in the introduction, this program exhibits surprising behavior
when we change h from meters to centimeters: even after adjusting the formula
bmi = w/(0.01 · h)2 to account for the change of units, the estimated expectation
value for bmi still changes. Why does this happen?

The call to observe(D,x) is implemented as multiplying the weight by the
probability density of x in D. Importance sampling runs the program many times,
and calculates the estimate for bmi as a weighted average. Thus the program above
effectively gets translated as follows by the implementation:

weight = 1

h = rand(Normal(1.7, 0.5))

w = rand(Normal(70, 30))

if rand(Bernoulli(0.5))

weight *= pdf(Normal(h, 0.1), 2.0)

else

weight *= pdf(Normal(w, 90), 5)

end

bmi = w / h^2

Where pdf(Normal(µ,σ), x) is the probability density function of the normal
distribution:

pdf(Normal(µ,σ), x) = 1
σ
√

2π
e−

1
2 (

x−µ
σ)2

Importance sampling runs this program N times, obtaining a sequence
(bmik, weightk)k∈{1,...,N} .
It estimates E[bmi] with a weighted average:

E[bmi] ≈
∑N

k=1(weightk) · (bmik)∑N
k=1(weightk)

The problem that causes this estimate to change if we change the units of h is that
the formula adds quantities with inconsistent units: some weightk have unit m−1

(inverse length) and some have unit kg−1 (inverse mass).
It might be surprising that the weights have units at all, but consider that if we

have a probability distribution D over values of unit U, then the probability density
function pdf(D, x) has units U−1. The formula for pdf(Normal(µ,σ), x) shows this in
the factor of 1

σ in front of the (unitless) exponential, which has a unit because σ has
a unit.

The call pdf(Normal(h, 0.1), 2.0) has units m−1 and the call pdf(Normal(w,

90), 5) has units kg−1, and thus the variable weight has units m−1 or kg−1

depending on the outcome of the coin flip. The weighted average estimate for
E[bmi] adds weights of different runs together, which means that it adds values

255

7.3 three types of paradoxes

of unit m−1 to values of unit kg−1 . This manifests itself in the estimate changing
depending on whether we use m or cm: computations that do arithmetic with
inconsistent units may give different results depending on the units used. This calls
into question whether this estimate is meaningful, since the estimate depends on
whether we measure a value in m or cm, or in kg or g, which arguably should not
matter at all.

The reader might now object that conditionally executed observe statements
are always wrong, and probabilistic programs that use them should be rejected
as erroneous. However, in the discrete case there are no unit errors, because
in that case the weight gets multiplied by a probability rather than a probability
density, and probabilities are unitless. Furthermore, in the preceding section we
have seen that conditionally executed observe statements have a rejection sampling
interpretation in the discrete case. This gives the programs a probabilistic meaning
in terms of conditional distributions, even if the discrete observe statements are
inside conditionals. The event E that is being conditioned on involves the boolean
conditions of the control flow. Ideally we would therefore not want to blame the
programmer for using conditionals, but change the implementation of observe on
continuous variables so that the program is meaningful in the same way that the
analogous program on discrete variables is meaningful.

7.3.2 Paradox of Type 2: Different Number of Observes in Different Control Flow Paths

Let us analyze the program from the introduction:

h = rand(Normal(1.7, 0.5))

if rand(Bernoulli(0.5))

observe(Normal(h, 0.1), 2.0)

end

return h

This program exhibits unit anomalies for the same reason: some of the weightk have
units m−1 and some have no units, and adding those leads to the surprising behavior.
Rather than taking this behavior as a given, let us analyze what this program ought
to do, if we reason by analogy to the discrete case.

This program has the same structure as the dice program from section 2, the
difference being that we now use a normal distribution instead of a discrete uniform
distribution. By analogy to that discrete case, the event that is being conditioned on
is (b = true∧ h′ = 2.0) ∨ (b = false), where h′ is the measurement from Normal(h, 0.1).

Surprisingly, this event does not have measure zero with respect to the Lebesgue
measure on R × R × {true, false}. The event (b = true ∨ h′ = 2.0) has measure
zero, but the event b = false has measure 1

2 , so the entire event has measure 1
2 .

We can therefore unambiguously apply the definition of conditional probability
P(A|E) = P(A∩E)

P(E) . Our probability space is Ω = R × R × bool, corresponding to

256

7.3 three types of paradoxes

of unit m−1 to values of unit kg−1 . This manifests itself in the estimate changing
depending on whether we use m or cm: computations that do arithmetic with
inconsistent units may give different results depending on the units used. This calls
into question whether this estimate is meaningful, since the estimate depends on
whether we measure a value in m or cm, or in kg or g, which arguably should not
matter at all.

The reader might now object that conditionally executed observe statements
are always wrong, and probabilistic programs that use them should be rejected
as erroneous. However, in the discrete case there are no unit errors, because
in that case the weight gets multiplied by a probability rather than a probability
density, and probabilities are unitless. Furthermore, in the preceding section we
have seen that conditionally executed observe statements have a rejection sampling
interpretation in the discrete case. This gives the programs a probabilistic meaning
in terms of conditional distributions, even if the discrete observe statements are
inside conditionals. The event E that is being conditioned on involves the boolean
conditions of the control flow. Ideally we would therefore not want to blame the
programmer for using conditionals, but change the implementation of observe on
continuous variables so that the program is meaningful in the same way that the
analogous program on discrete variables is meaningful.

7.3.2 Paradox of Type 2: Different Number of Observes in Different Control Flow Paths

Let us analyze the program from the introduction:

h = rand(Normal(1.7, 0.5))

if rand(Bernoulli(0.5))

observe(Normal(h, 0.1), 2.0)

end

return h

This program exhibits unit anomalies for the same reason: some of the weightk have
units m−1 and some have no units, and adding those leads to the surprising behavior.
Rather than taking this behavior as a given, let us analyze what this program ought
to do, if we reason by analogy to the discrete case.

This program has the same structure as the dice program from section 2, the
difference being that we now use a normal distribution instead of a discrete uniform
distribution. By analogy to that discrete case, the event that is being conditioned on
is (b = true∧ h′ = 2.0) ∨ (b = false), where h′ is the measurement from Normal(h, 0.1).

Surprisingly, this event does not have measure zero with respect to the Lebesgue
measure on R × R × {true, false}. The event (b = true ∨ h′ = 2.0) has measure
zero, but the event b = false has measure 1

2 , so the entire event has measure 1
2 .

We can therefore unambiguously apply the definition of conditional probability
P(A|E) = P(A∩E)

P(E) . Our probability space is Ω = R × R × bool, corresponding to

256

7.3 three types of paradoxes

h ∼ Normal(1.7, 0.5), h′ ∼ Normal(h, 0.1), b ∼ Bernoulli(0.5), and A ⊆ Ω and E =
{(h,h′,b)|(b = true∧ h′ = 2.0) ∨ (b = false)} ⊆ X. The posterior P(A|E) = P(A∩E)

P(E) =
2 ·P(A∩E) = 2 ·P(A∩{(h,h′,b)|b = false}), so the marginal posterior for h is simply
Normal(1.7, 0.5). That is, the whole if statement with the observe ought to have no
effect.

We can understand this intuitively in terms of rejection sampling: if the sampled
boolean b = true, then the observe statement will reject the current trial with
probability 1, because the probability of sampling exactly 2.0 from a normal
distribution is zero. Hence if b = true then the trial will almost surely get rejected,
whereas if b = false the trial will not get rejected. The trials where b = true∧ h′ = 2.0
are negligibly rare, so even though the expectation of h is affected in those trials, they
do not contribute to the final expectation value; only trials with b = false do.

As an aside: if we added an extra unconditional observe(Normal(h, 0.1), 1.9)

to the program, then the whole event will have measure zero, but nevertheless, trials
with b = false will dominate over trials with b = true, relatively speaking. In general,
the control flow path with the least number of continuous observes dominates. If
there are multiple control flow paths with minimal number of observes, but also
control flow paths with a larger number of observes, we may have a paradox of
mixed type 1 & 2.

This reasoning would imply that the if statement and the observe statement are
irrelevant; the program ought to be equivalent to return rand(Normal(1.7, 0.5)).
If this still seems strange, consider the following discrete analogue:

h = rand(Binomial(10000, 0.5))

if rand(Bernoulli(0.5))

observe(binomial(10000, 0.9), h)

end

return h

That is, we first sample h between 0 and 10000 according to a binomial distribution,
and then with probability 0.5 we observe that h is equal to a number sampled from
another binomial distribution that gives a number between 0 and 10000. Since that
binomial distribution is highly biased toward numbers close to 10000, we might
expect the average value of h to lie significantly higher than 5000. This is not the
case. The rejection sampling interpretation tells us that most of the trials where the
coin flipped true, will be rejected, because the sample from Binomial(10000, 0.9) is
almost never equal to h. Thus, although those samples have an average significantly
above 5000, almost all of the successful trials will be trials where the coin flipped
false, and thus the expected value of h will lie very close to 5000.

Since we know that rejection sampling agrees with importance sampling in
expectation, importance sampling will also compute an estimate for the expectation
value of h that lies very close to 5000. The further we increase the number 10000,
the stronger this effect becomes, because the probability that the second sample is

257

7.3 three types of paradoxes

equal to h further decreases. In the continuous case this probability becomes 0, so
the successful samples will almost surely be from trials where the coin flipped to
false. Therefore the average value of h in the continuous case should indeed be 170,
unaffected by the if statement and the observe.

Another way to express this point, is that in the discrete case importance sampling,
rejection sampling, and the exact value given by the conditional expectation are all in
agreement, even if conditionals are involved. On the other hand, in the continuous
case, importance sampling with probability densities gives a different answer than
rejection sampling and the exact value given by the conditional expectation E[h|E]
(the latter two are equal to each other; both 1.7).

The reader may insist that the semantics of the program is defined to be weight
accumulation with probability densities, that is, the semantics of the program is
defined to correspond to

weight = 1

h = rand(Normal(1.7, 0.5))

if rand(Bernoulli(0.5))

weight *= pdf(Normal(h, 0.1), 2.0)

end

return h

We can only appeal to external principles to argue against this, such as unit
consistency, analogy with the discrete case, the probabilistic interpretation of
observe, and the rejection sampling interpretation of observe, but the reader may
choose to lay those principles aside and take this implementation of observe as
the semantics of observe. We do hope to eventually convince this reader that a
different implementation of observe that does abide by these principles, could be
interesting. Although our semantics will differ from the standard one, it will agree
with lexicographic likelihood weighting (Wu et al., 2018) for this example, which
does not exhibit this particular paradox.

7.3.3 Paradox of Type 3: Non-Linear Parameter Transformations

Consider the problem of conditioning on x = y given x ∼ Normal(10, 5) and y ∼
Normal(15, 5), and computing the expectation E[exp(x)]. Written as a probabilistic
program,

x = rand(Normal(10,5))

observe(Normal(15,5),x)

return exp(x)

In a physical situation, x,y might be values measured in decibels and exp(x), exp(y)
may be (relative) energy density. We could change parameters to a = exp(x) and

258

7.3 three types of paradoxes

equal to h further decreases. In the continuous case this probability becomes 0, so
the successful samples will almost surely be from trials where the coin flipped to
false. Therefore the average value of h in the continuous case should indeed be 170,
unaffected by the if statement and the observe.

Another way to express this point, is that in the discrete case importance sampling,
rejection sampling, and the exact value given by the conditional expectation are all in
agreement, even if conditionals are involved. On the other hand, in the continuous
case, importance sampling with probability densities gives a different answer than
rejection sampling and the exact value given by the conditional expectation E[h|E]
(the latter two are equal to each other; both 1.7).

The reader may insist that the semantics of the program is defined to be weight
accumulation with probability densities, that is, the semantics of the program is
defined to correspond to

weight = 1

h = rand(Normal(1.7, 0.5))

if rand(Bernoulli(0.5))

weight *= pdf(Normal(h, 0.1), 2.0)

end

return h

We can only appeal to external principles to argue against this, such as unit
consistency, analogy with the discrete case, the probabilistic interpretation of
observe, and the rejection sampling interpretation of observe, but the reader may
choose to lay those principles aside and take this implementation of observe as
the semantics of observe. We do hope to eventually convince this reader that a
different implementation of observe that does abide by these principles, could be
interesting. Although our semantics will differ from the standard one, it will agree
with lexicographic likelihood weighting (Wu et al., 2018) for this example, which
does not exhibit this particular paradox.

7.3.3 Paradox of Type 3: Non-Linear Parameter Transformations

Consider the problem of conditioning on x = y given x ∼ Normal(10, 5) and y ∼
Normal(15, 5), and computing the expectation E[exp(x)]. Written as a probabilistic
program,

x = rand(Normal(10,5))

observe(Normal(15,5),x)

return exp(x)

In a physical situation, x,y might be values measured in decibels and exp(x), exp(y)
may be (relative) energy density. We could change parameters to a = exp(x) and

258

7.4 avoiding events of measure zero with intervals

b = exp(y). Then a ∼ LogNormal(10, 5) and b ∼ LogNormal(15, 5). Since the event
x = y is the same as exp(x) = exp(y), we might naively expect the program to be
equivalent to:

a = rand(LogNormal(10,5))

observe(LogNormal(15,5),a)

return a

This is not the case. The two programs give different expectation values. Compared
to type 1 & 2 paradoxes, this type 3 paradox shows that the subtlety is not restricted
to programs that have control flow or to distributions that are not continuous; the
normal and lognormal distributions are perfectly smooth.

This paradox is closely related to the Borel-Komolgorov paradox. Another variant
of the original Borel-Komolgorov paradox has been expressed in Hakaru (Shan
and Ramsey, 2017), but is not expressible in Anglican or Stan. The reason is that
Hakaru allows the programmer to condition a measure-zero condition f(x,y) = 0
such as x + y − 8 = 0 directly without having to manually invert the relationship
to y = 8 − x, and performs symbolic manipulation to do exact Bayesian inference.
Hakaru allows a single such observe at the very end of a program, which allows it to
sidestep the previous paradoxes related to control flow. The semantics of the single
observe is defined by disintegration, which means that the semantics of a Hakaru
program depends on the form of f. That is, if we take another function g with the
same solution set g(x,y) = 0 as f, the output may change. The programmer can use
this mechanism to control which event they want to condition on. Our version of
the paradox shows that the subtlety of conditioning on measure-zero events is not
restricted to programs that use that type of disintegration.

7.4 avoiding events of measure zero with intervals

Unit anomalies cannot occur with discrete distributions, because in the discrete
case we only deal with probabilities and not with probability densities. Recall
that for discrete probability distributions D, an observe statement observe(D,x)

gets executed as weight *= P(D,x) where P(D,x) is the probability of x in the
distribution D. Probabilities have no units, so the weight variable stays unitless
and the weighted average is always unit correct if the probabilistic program is unit
correct, even if observe statements get executed conditionally. Furthermore, in the
discrete case we have a probabilistic and rejection sampling interpretation of observe,
and we may view weight accumulation as an optimization to compute the same
expectation values as rejection sampling, but more efficiently. We wish to extend
these good properties to the continuous case.

The reason that the discrete case causes no trouble is not due to D being discrete
per se. The reason it causes no trouble is that P(D,x) is a probability rather than
a probability density. In the continuous case the probability that rand(D) == x is

259

7.4 avoiding events of measure zero with intervals

zero, and that’s why it was necessary to use probability densities. However, even
in the continuous case, the probability that a sample from D lies in some interval is
generally nonzero. We shall therefore change the observe statement to observe(D,I)

where I is an interval, which conditions on the event rand(D) ∈ I. In the discrete
case we can allow I to be a singleton set, but in the continuous case we insist that I
is an interval of nonzero width.

We have the following rejection sampling interpretation for observe(D,I):

For continuous or discrete distributions D, the statement
observe(D,I) means that we sample from D and only

continue with the current trial if the sampled value lies in I.

And the following operational semantics for observe(D,I):

For continuous or discrete distributions D, the statement
observe(D,I) gets executed as weight *= P(D,I) where

P(D,I) is the probability that a value sampled from D lies in
I.

Let I = [a,b] = {x ∈ R : a ⩽ x ⩽ b}. We can calculate P(rand(D) ∈
[a,b]) = cdf(D,b) − cdf(D,a) using the cumulative density function cdf(D, x).
This probability allows us to update the weight of the trial. For instance, a call
observe(Normal(2.0,0.1),[a,b]) is executed as weight *= normalcdf(2.0,0.1,b)

- normalcdf(2.0,0.1,a) where normalcdf(µ,σ, x) is the cumulative density
function for the normal distribution.

Notice how this change from probability densities to probabilities prevents
unit anomalies: if we change the variables a,b from meters to centimeters, then
we must write observe(Normal(200,10), [a,b]), which gets executed as weight

*= normalcdf(200,10,b) - normalcdf(200,10,a). We introduced a factor 100 to
convert µ and σ from meters to centimeters. This conversion ensures that the result
of the program remains unchanged, because normalcdf(rµ, rσ, rx) = normalcdf(µ,σ, x)
for all r > 0. Hence the computed weight will be exactly the same whether we work
with meters or centimeters. On the other hand, for the probability density function it
is not the case that normalpdf(rµ, rσ, rx) = normalpdf(µ,σ, x). It is precisely this lack
of invariance that causes unit anomalies with probability densities.

7.4.1 Conditioning on Measure Zero Events as a Limit of Positive Measure Events

We can approximate the old observe(D,x) behavior with observe(D,I) by choosing
I = [x − 1

2w, x + 1
2w] to be a very small interval of width w around x (taking w to

be a small number, such as w = 0.0001). This has two important advantages over
observe(D,x):

260

7.4 avoiding events of measure zero with intervals

zero, and that’s why it was necessary to use probability densities. However, even
in the continuous case, the probability that a sample from D lies in some interval is
generally nonzero. We shall therefore change the observe statement to observe(D,I)

where I is an interval, which conditions on the event rand(D) ∈ I. In the discrete
case we can allow I to be a singleton set, but in the continuous case we insist that I
is an interval of nonzero width.

We have the following rejection sampling interpretation for observe(D,I):

For continuous or discrete distributions D, the statement
observe(D,I) means that we sample from D and only

continue with the current trial if the sampled value lies in I.

And the following operational semantics for observe(D,I):

For continuous or discrete distributions D, the statement
observe(D,I) gets executed as weight *= P(D,I) where

P(D,I) is the probability that a value sampled from D lies in
I.

Let I = [a,b] = {x ∈ R : a ⩽ x ⩽ b}. We can calculate P(rand(D) ∈
[a,b]) = cdf(D,b) − cdf(D,a) using the cumulative density function cdf(D, x).
This probability allows us to update the weight of the trial. For instance, a call
observe(Normal(2.0,0.1),[a,b]) is executed as weight *= normalcdf(2.0,0.1,b)

- normalcdf(2.0,0.1,a) where normalcdf(µ,σ, x) is the cumulative density
function for the normal distribution.

Notice how this change from probability densities to probabilities prevents
unit anomalies: if we change the variables a,b from meters to centimeters, then
we must write observe(Normal(200,10), [a,b]), which gets executed as weight

*= normalcdf(200,10,b) - normalcdf(200,10,a). We introduced a factor 100 to
convert µ and σ from meters to centimeters. This conversion ensures that the result
of the program remains unchanged, because normalcdf(rµ, rσ, rx) = normalcdf(µ,σ, x)
for all r > 0. Hence the computed weight will be exactly the same whether we work
with meters or centimeters. On the other hand, for the probability density function it
is not the case that normalpdf(rµ, rσ, rx) = normalpdf(µ,σ, x). It is precisely this lack
of invariance that causes unit anomalies with probability densities.

7.4.1 Conditioning on Measure Zero Events as a Limit of Positive Measure Events

We can approximate the old observe(D,x) behavior with observe(D,I) by choosing
I = [x − 1

2w, x + 1
2w] to be a very small interval of width w around x (taking w to

be a small number, such as w = 0.0001). This has two important advantages over
observe(D,x):

260

7.4 avoiding events of measure zero with intervals

1. We no longer get unit anomalies or other paradoxes; if we change the units of
x, we must also change the units of w, which keeps the weight the same.

2. Unlike for observe(D,x), we have an unambiguous probabilistic and rejection
sampling interpretation of observe(D,I) for intervals of nonzero width,
because the event being conditioned on has nonzero measure.

However, the number w = 0.0001 is rather arbitrary. We would like to let w → 0
and recover the functionality of observe(D,x) to condition on an exact value. With
sufficiently small w we can get arbitrarily close, but we can never recover its behavior
exactly.

We therefore parameterize probabilistic programs by a dimensionless parameter
eps. The BMI example then becomes:

function bmi_example(eps)

h = rand(Normal(170, 50))

w = rand(Normal(70, 30))

if rand(Bernoulli(0.5))

observe(Normal(200, 10), (h, A*eps))

else

observe(Normal(90, 5), (w, B*eps))

end

return w / h^2

end

Since eps is dimensionless, we can not simply use eps as the width of the intervals:
because h is in cm, the width of the interval around h has to be in cm, and the width
of the interval around w has to be in kg. We are forced to introduce a constant A
with units cm and a constant B with units kg that multiply eps in the widths of the
intervals in the observes.

We could now run importance sampling on bmi_example(eps) for n=10000 trials
for eps=0.1, eps=0.01, eps=0.001 and so on, to see what value it converges to. If we
run each of these independently, then the rand calls will give different results, so
there will be different randomness in each of these, and it may be difficult to see
the convergence. In order to address this, we can run the program with different
values of eps but with the same random seed for the random number generator.
This will make the outcomes of the rand calls the same regardless of the value of
eps. In fact, for a given random seed, the result of running importance sampling for
a given number of trials will be a deterministic function f(seed,eps) of the random
seed and eps

261

7.5 using infinitesimal numbers for measure-zero observations

If we assume that the program uses eps = ϵ only in the widths of the intervals,
and not in the rest of the program, then for a fixed seed, the function f(seed, ϵ) will
be a function of ϵ of a specific form, because importance sampling computes

f(seed, ϵ) =
∑N

k=1(weightk(ϵ)) · (valuek)∑N
k=1(weightk(ϵ))

In this fraction, the weightk are a function of ϵ, but the valuek are independent of
ϵ if ϵ only occurs inside the widths of intervals. Since the weight gets multiplied by
P(D, I) on each observe(D,I), the weightk(ϵ) is of a very specific form:

weightk(ϵ) = C · P(D1, (x1,w1ϵ)) · · · P(Dn, (xn,wnϵ))

where the constant C contains all the probabilities accumulated from observes that
did not involve ϵ, multiplied by a product of probabilities that did involve ϵ. Since
P(D, (x,wϵ)) = cdf(D, x+ 1

2wϵ) + cdf(D, x− 1
2wϵ), we could, in principle determine

the precise function weightk(ϵ) and hence f(seed, ϵ) for any given seed. We could
then, in principle, compute the exact limit of this function as ϵ → 0, with a computer
algebra system. This is, of course, impractical. The next section shows that we can
compute the limit efficiently by doing arithmetic with infinitesimal numbers.

7.5 using infinitesimal numbers for measure-zero observations

In order to recover the behavior of the old observe(D,x) using observe(D,I) with
an interval I = [x − 1

2w, x + 1
2w], we want to take the limit w → 0, to make [x −

1
2w, x + 1

2w] an infinitesimally small interval around x. We accomplish this using
symbolic infinitesimal numbers4 of the form rϵn, where r ∈ R and n ∈ Z. We
allow n < 0, so that rϵn can also represent “infinitely large” numbers as well as
“infinitesimally small” numbers. We will not make use of this possibility, but it
makes the definitions and proofs more general and more uniform.5

Definition 7.5.1. An infinitesimal number is a pair (r,n) ∈ R × Z,
which we write as rϵn.6

The infinitesimals of the form rϵ0 correspond to the real numbers.

4 In the philosophy literature there has been work on using non-standard analysis and other number
systems to handle probability 0 events, see (Pedersen, 2014) and (Hofweber, 2014) and references therein.

5 These infinitesimal numbers may be viewed as the leading terms of Laurent series. This bears some
resemblance to the dual numbers used in automatic differentiation, which represent the constant and
linear term of the Taylor series. In our case we only have the first nonzero term of the Laurent series, but
the order of the term is allowed to vary.

6 The exponent n of ϵ will play the same role as the number of densities d in lexicographic likelihood
weighting(Wu et al., 2018).

262

7.5 using infinitesimal numbers for measure-zero observations

If we assume that the program uses eps = ϵ only in the widths of the intervals,
and not in the rest of the program, then for a fixed seed, the function f(seed, ϵ) will
be a function of ϵ of a specific form, because importance sampling computes

f(seed, ϵ) =
∑N

k=1(weightk(ϵ)) · (valuek)∑N
k=1(weightk(ϵ))

In this fraction, the weightk are a function of ϵ, but the valuek are independent of
ϵ if ϵ only occurs inside the widths of intervals. Since the weight gets multiplied by
P(D, I) on each observe(D,I), the weightk(ϵ) is of a very specific form:

weightk(ϵ) = C · P(D1, (x1,w1ϵ)) · · · P(Dn, (xn,wnϵ))

where the constant C contains all the probabilities accumulated from observes that
did not involve ϵ, multiplied by a product of probabilities that did involve ϵ. Since
P(D, (x,wϵ)) = cdf(D, x+ 1

2wϵ) + cdf(D, x− 1
2wϵ), we could, in principle determine

the precise function weightk(ϵ) and hence f(seed, ϵ) for any given seed. We could
then, in principle, compute the exact limit of this function as ϵ → 0, with a computer
algebra system. This is, of course, impractical. The next section shows that we can
compute the limit efficiently by doing arithmetic with infinitesimal numbers.

7.5 using infinitesimal numbers for measure-zero observations

In order to recover the behavior of the old observe(D,x) using observe(D,I) with
an interval I = [x − 1

2w, x + 1
2w], we want to take the limit w → 0, to make [x −

1
2w, x + 1

2w] an infinitesimally small interval around x. We accomplish this using
symbolic infinitesimal numbers4 of the form rϵn, where r ∈ R and n ∈ Z. We
allow n < 0, so that rϵn can also represent “infinitely large” numbers as well as
“infinitesimally small” numbers. We will not make use of this possibility, but it
makes the definitions and proofs more general and more uniform.5

Definition 7.5.1. An infinitesimal number is a pair (r,n) ∈ R × Z,
which we write as rϵn.6

The infinitesimals of the form rϵ0 correspond to the real numbers.

4 In the philosophy literature there has been work on using non-standard analysis and other number
systems to handle probability 0 events, see (Pedersen, 2014) and (Hofweber, 2014) and references therein.

5 These infinitesimal numbers may be viewed as the leading terms of Laurent series. This bears some
resemblance to the dual numbers used in automatic differentiation, which represent the constant and
linear term of the Taylor series. In our case we only have the first nonzero term of the Laurent series, but
the order of the term is allowed to vary.

6 The exponent n of ϵ will play the same role as the number of densities d in lexicographic likelihood
weighting(Wu et al., 2018).

262

7.5 using infinitesimal numbers for measure-zero observations

Definition 7.5.2. Addition, subtraction, multiplication, and division on those
infinitesimal numbers are defined as follows:

rϵn ± sϵk =




(r± s)ϵn if n = k

rϵn if n < k

±sϵk if n > k

(rϵn) · (sϵk) = (r · s)ϵn+k

(rϵn)/(sϵk) =

(r/s)ϵn−k if s ≠ 0

undefined if s = 0

Like ordinary division, division of infinitesimals is a partial function, which is
undefined if the denominator is exactly zero.

These rules may be intuitively understood by thinking of ϵ as a very small number;
e.g. if n < k then ϵk will be negligible compared to ϵn, which is why we define
rϵn + sϵk = rϵn in that case, and keep only the lowest order term.

We represent intervals [x− 1
2w, x+ 1

2w] as midpoint-width pairs (x,w), where w

may be an infinitesimal number.

Definition 7.5.3. If D is a continuous distribution, we compute the probability
P(D, (x,w)) that X ∼ D lies in the interval (x,w) as:

P(D, (x,w)) =

cdf(D, x+ 1

2r) − cdf(D, x− 1
2r) if w = rϵ0 is not infinitesimal

pdf(D, x) · rϵn if w = rϵn is infinitesimal (n > 0)
(2)

Where cdf(D, x) and pdf(D, x) are the cumulative and probability density functions,
respectively.

Note that the two cases agree in the sense that if w is very small, then

cdf(D, x+ 1
2
w) − cdf(D, x− 1

2
w) ≈ d

dx
cdf(D, x) ·w = pdf(D, x) ·w

Definition 7.5.4. We say that f(x) is a “probability expression” in the variable x if f(x)
is defined using the operations +,−, ·, /, constants, and P(D, (s, rx)) where r, s ∈ R

are constants, and D is a probability distribution with differentiable cdf.
We can view f as a function from reals to reals (on the domain on which it is

defined, that is, excluding points where division by zero happens), or as a function
from infinitesimals to infinitesimals by re-interpreting the operations in infinitesimal
arithmetic. The value of f(ϵ) on the symbolic infinitesimal ϵ tells us something about
the limiting behavior of f(x) near zero:

Theorem 7.5.5. If f(x) is a probability expression, and if evaluation of f(ϵ) is not undefined,
and f(ϵ) = rϵn, then limx→0

f(x)
xn = r.

263

7.5 using infinitesimal numbers for measure-zero observations

Note that the theorem only tells us that limx→0
f(x)
xn = r if f(ϵ) evaluates to rϵn

with infinitesimal arithmetic. If evaluating f(ϵ) results in division by zero, then the
theorem does not give any information. In fact, the converse of the theorem does not
hold: it may be that limx→0

f(x)
xn = r but evaluating f(ϵ) results in division by zero.

Proof. By induction on the structure of the expression.
We know that evaluation of f(ϵ) did not result in division by zero, and f(ϵ) = rϵn.
We need to show that limx→0

f(x)
xn = r.

• If f(x) is a constant r, then we have f(ϵ) = rϵ0, and indeed limx→0
f(x)
x0 =

limx→0f(x) = r.

• If f(x) = P(D, (s, rx)). Now f(ϵ) = pdf(D, s) · rϵ, and

pdf(D, s) · r = r
d

dx
[cdf(D, x)]x=s

= rlimx→0
cdf(D, s+ x) − cdf(D, s− x)

2x

= limx′→0
cdf(D, s+ 1

2rx
′) − cdf(D, s− 1

2rx
′)

x′

= limx′→0
P(D, (s, rx′))

x′

• If f(x) = g(x) + h(x). Since evaluation of f(ϵ) did not result in division by zero,
neither did evaluation of the subexpressions g(ϵ) and h(ϵ), so g(ϵ) = r1ϵ

n1 and
h(ϵ) = r2ϵ

n2 for some r1, r2,n1,n2. Therefore, by the induction hypothesis we
have limx→0

g(x)
xn1 = r1 and limx→0

h(x)
xn2 = r2.

• Case n1 = n2: Now f(ϵ) = (r1 + r2)ϵn1 , and we have

limx→0
f(x)
xn1

=limx→0
g(x) + h(x)

xn1
= limx→0

g(x)
xn1

+ limx→0
h(x)
xn1

= r1 + r2

• Case n1 < n2: Now f(ϵ) = r1ϵ
n1 , and since limx→0

h(e)
xn2 = r2 we have

0 = 0 · r2 = (limx→0x
n2−n1) · (limx→0

h(x)
xn2

) = limx→0
xn2−n1h(x)

xn2
= limx→0

h(x)
xn1

Therefore

limx→0
f(x)
xn1

=limx→0
g(x) + h(x)

xn1
= limx→0

g(x)
xn1

+ limx→0
h(x)
xn1

= r1

• Case n1 > n2. Analogous to the previous case.

• If f(x) = g(x) − h(x). Analogous to the case for addition.

264

7.5 using infinitesimal numbers for measure-zero observations

Note that the theorem only tells us that limx→0
f(x)
xn = r if f(ϵ) evaluates to rϵn

with infinitesimal arithmetic. If evaluating f(ϵ) results in division by zero, then the
theorem does not give any information. In fact, the converse of the theorem does not
hold: it may be that limx→0

f(x)
xn = r but evaluating f(ϵ) results in division by zero.

Proof. By induction on the structure of the expression.
We know that evaluation of f(ϵ) did not result in division by zero, and f(ϵ) = rϵn.
We need to show that limx→0

f(x)
xn = r.

• If f(x) is a constant r, then we have f(ϵ) = rϵ0, and indeed limx→0
f(x)
x0 =

limx→0f(x) = r.

• If f(x) = P(D, (s, rx)). Now f(ϵ) = pdf(D, s) · rϵ, and

pdf(D, s) · r = r
d

dx
[cdf(D, x)]x=s

= rlimx→0
cdf(D, s+ x) − cdf(D, s− x)

2x

= limx′→0
cdf(D, s+ 1

2rx
′) − cdf(D, s− 1

2rx
′)

x′

= limx′→0
P(D, (s, rx′))

x′

• If f(x) = g(x) + h(x). Since evaluation of f(ϵ) did not result in division by zero,
neither did evaluation of the subexpressions g(ϵ) and h(ϵ), so g(ϵ) = r1ϵ

n1 and
h(ϵ) = r2ϵ

n2 for some r1, r2,n1,n2. Therefore, by the induction hypothesis we
have limx→0

g(x)
xn1 = r1 and limx→0

h(x)
xn2 = r2.

• Case n1 = n2: Now f(ϵ) = (r1 + r2)ϵn1 , and we have

limx→0
f(x)
xn1

=limx→0
g(x) + h(x)

xn1
= limx→0

g(x)
xn1

+ limx→0
h(x)
xn1

= r1 + r2

• Case n1 < n2: Now f(ϵ) = r1ϵ
n1 , and since limx→0

h(e)
xn2 = r2 we have

0 = 0 · r2 = (limx→0x
n2−n1) · (limx→0

h(x)
xn2

) = limx→0
xn2−n1h(x)

xn2
= limx→0

h(x)
xn1

Therefore

limx→0
f(x)
xn1

=limx→0
g(x) + h(x)

xn1
= limx→0

g(x)
xn1

+ limx→0
h(x)
xn1

= r1

• Case n1 > n2. Analogous to the previous case.

• If f(x) = g(x) − h(x). Analogous to the case for addition.

264

7.5 using infinitesimal numbers for measure-zero observations

• If f(x) = g(x) · h(x). Since evaluation of f(ϵ) did not result in division by zero,
neither did evaluation of the subexpressions g(ϵ) and h(ϵ), so g(ϵ) = r1ϵ

n1 and
h(ϵ) = r2ϵ

n2 for some r1, r2,n1,n2. Therefore, by the induction hypothesis we
have limx→0

g(x)
xn1 = r1 and limx→0

h(x)
xn2 = r2. Then

limx→0
f(x)

xn1+n2
= limx→0

g(x)
xn1

· h(x)
xn2

= (limx→0
g(x)
xn1

) · (limx→0
h(x)
xn2

) = r1 · r2

• If f(x) = g(x)/h(x). Since evaluation of f(ϵ) did not result in division by zero,
neither did evaluation of the subexpressions g(ϵ) and h(ϵ), so g(ϵ) = r1ϵ

n1 and
h(ϵ) = r2ϵ

n2 for some r1, r2,n1,n2. Therefore, by the induction hypothesis we
have limx→0

g(x)
xn1 = r1 and limx→0

h(x)
xn2 = r2. By the assumption that no division by

exactly zero occurred in the evaluation of f(ϵ), we have r2 ≠ 0. Then

limx→0
f(x)

xn1+n2
= limx→0

g(x)
xn1

/h(x)
xn2

= (limx→0
g(x)
xn1

)/(limx→0
h(x)
xn2

) = r1/r2

This finishes the proof. □

Some subtleties of limits and infinitesimals

In order to think about infinitesimals one must first choose a function f(x) of which
one wishes to learn something about the limit as x → 0. Thinking about infinitesimal
arithmetic independent of such a function leads to confusion. Furthermore, the
result of evaluating f(ϵ) depends not just on f(x) as a function on real numbers, but
also on the arithmetic expression used for computing f. Consider the functions f,g:

f(x) = 5 · x2 + 0 · x
g(x) = 5 · x2

As functions on real numbers, f = g, but nevertheless, with infinitesimal arithmetic
their results differ:

f(ϵ) = 0 · ϵ1

g(ϵ) = 5 · ϵ2

Applying the theorem to these results gives the following limits for f and g:

limx→0
f(x)
x

= 0

limx→0
g(x)
x2 = 5

Both of these limits are correct, but this example shows that which limit the theorem
says something about may depend on how the function is computed. The limit for g

265

7.5 using infinitesimal numbers for measure-zero observations

gives more information than the limit for f; the limit for f is conservative and does
not tell us as much as the limit for g does. Fortunately, this won’t be a problem for
our use case: we intend to apply the theorem to the weighted average of importance
sampling, where the probabilities may be infinitesimal numbers. In this case the
power of ϵ of the numerator and denominator are always the same, so the final
result will always have power ϵ0, and the theorem will then tell us about the limit
limx→0

f(x)
x0 = limx→0f(x).

Another subtlety is that the converse of the theorem does not hold. It is possible
that limx→0

f(x)
xn = r, but evaluation of f(ϵ) with infinitesimal arithmetic results in

division by exactly zero. An example is f(x) = x2

(x+x2)−x . We have limx→0f(x) = 1,

but when evaluating f(ϵ) = ϵ2

(ϵ+ϵ2)−ϵ , division by zero occurs, because we have the
evaluation sequence:

ϵ2

(ϵ+ ϵ2) − ϵ
→ ϵ2

ϵ− ϵ
→ ϵ2

0
→ undefined

If we used full Laurent series akϵ
k + ak+1ϵ

k+1 + . . . as our representation for
infinitesimal numbers, then we would potentially be able to compute more limits,
even some of those where exact cancellation happens in a denominator. Keeping
only the first term is sufficient for our purposes, and more efficient, because
our infinitesimal numbers are pairs (r,n) of a real (or floating point) number r

and an integer n, whereas Laurent series are infinite sequences of real numbers
(ak,ak+1, . . .).

The lemmas about computing limits have the form “For all a,b ∈ R, if limx→0f(x) =
a, and limx→0g(x) = b, and b ≠ 0, then limx→0

f(x)
g(x) = limx→0f(x)

limx→0g(x)”. It is not true in

general that limx→0
f(x)
g(x) =

limx→0f(x)
limx→0g(x) . It is possible that the limit on the left hand side

exists, even when the limits on the right hand side fail to exist, or when the right
hand side is 0

0 . Therefore, in order to apply these theorems about limits, we must
know that the right hand side is not undefined, prior to applying such a lemma. In
the proof above, the existence of the limits follows from the induction hypothesis,
and that the denominator is nonzero follows from the assumption that division by
zero does not occur. This is why we must assume that no division by exactly zero
occurs in the evaluation of f(ϵ) with infinitesimal arithmetic, and it is also why the
converse of the theorem does not hold.

7.5.1 Intervals of Infinitesimal Width Make Paradoxes Disappear

The proposed observe construct allows finite width intervals observe(D,(a,w))

where w is an expression that returns a number, as well as infinitesimal width
intervals, as in observe(D,(a,w*eps)) where w is some expression that returns a
number and eps is the symbolic infinitesimal ϵ. It is possible to allow higher powers
of eps to occur directly in the source program, and it is possible to allow eps to

266

7.5 using infinitesimal numbers for measure-zero observations

gives more information than the limit for f; the limit for f is conservative and does
not tell us as much as the limit for g does. Fortunately, this won’t be a problem for
our use case: we intend to apply the theorem to the weighted average of importance
sampling, where the probabilities may be infinitesimal numbers. In this case the
power of ϵ of the numerator and denominator are always the same, so the final
result will always have power ϵ0, and the theorem will then tell us about the limit
limx→0

f(x)
x0 = limx→0f(x).

Another subtlety is that the converse of the theorem does not hold. It is possible
that limx→0

f(x)
xn = r, but evaluation of f(ϵ) with infinitesimal arithmetic results in

division by exactly zero. An example is f(x) = x2

(x+x2)−x . We have limx→0f(x) = 1,

but when evaluating f(ϵ) = ϵ2

(ϵ+ϵ2)−ϵ , division by zero occurs, because we have the
evaluation sequence:

ϵ2

(ϵ+ ϵ2) − ϵ
→ ϵ2

ϵ− ϵ
→ ϵ2

0
→ undefined

If we used full Laurent series akϵ
k + ak+1ϵ

k+1 + . . . as our representation for
infinitesimal numbers, then we would potentially be able to compute more limits,
even some of those where exact cancellation happens in a denominator. Keeping
only the first term is sufficient for our purposes, and more efficient, because
our infinitesimal numbers are pairs (r,n) of a real (or floating point) number r

and an integer n, whereas Laurent series are infinite sequences of real numbers
(ak,ak+1, . . .).

The lemmas about computing limits have the form “For all a,b ∈ R, if limx→0f(x) =
a, and limx→0g(x) = b, and b ≠ 0, then limx→0

f(x)
g(x) = limx→0f(x)

limx→0g(x)”. It is not true in

general that limx→0
f(x)
g(x) =

limx→0f(x)
limx→0g(x) . It is possible that the limit on the left hand side

exists, even when the limits on the right hand side fail to exist, or when the right
hand side is 0

0 . Therefore, in order to apply these theorems about limits, we must
know that the right hand side is not undefined, prior to applying such a lemma. In
the proof above, the existence of the limits follows from the induction hypothesis,
and that the denominator is nonzero follows from the assumption that division by
zero does not occur. This is why we must assume that no division by exactly zero
occurs in the evaluation of f(ϵ) with infinitesimal arithmetic, and it is also why the
converse of the theorem does not hold.

7.5.1 Intervals of Infinitesimal Width Make Paradoxes Disappear

The proposed observe construct allows finite width intervals observe(D,(a,w))

where w is an expression that returns a number, as well as infinitesimal width
intervals, as in observe(D,(a,w*eps)) where w is some expression that returns a
number and eps is the symbolic infinitesimal ϵ. It is possible to allow higher powers
of eps to occur directly in the source program, and it is possible to allow eps to

266

7.5 using infinitesimal numbers for measure-zero observations

occur in other places than in widths of intervals, but for conceptual simplicity we
shall assume it does not, and that observe is always of one of those two forms. That
is, we will assume that eps is only used in order to translate exact conditioning
observe(D,x) to observe(D,(x,w*eps)).

We translate the example from the introduction as follows:

h = rand(Normal(170, 50))

if rand(Bernoulli(0.5))

observe(Normal(200, 10), (h,w*eps))

end

Where the pair (h,w*eps) represents an interval of width w*eps centered around h,
in order to condition on the observation to be “exactly h”.

Let us now investigate the meaning of this program according to the rejection
sampling interpretation of observe. Assuming the coin flip results in true, we
reject the trial if the sample from Normal(200, 10) does not fall in the interval
[h − 1

2wϵ,h + 1
2wϵ]. If the coin flip results in false, we always accept the trial. If

we let ϵ → 0 then the probability of rejecting the trial goes to 1 if the coin flips to
true, so almost all successful trials will be those where the coin flipped to false.
Therefore the expected value of h converges to 170 as ϵ → 0, and expected value of
running this program should be 170.

We translate the BMI example as follows:

h = rand(Normal(170, 50))

w = rand(Normal(70, 30))

if rand(Bernoulli(0.5))

observe(Normal(200, 10), (h, A*eps))

else

observe(Normal(90, 5), (w, B*eps))

end

bmi = w / h^2

Where A and B are constants with units cm and kg, respectively. The units force us
to introduce these constants: since (h, A*eps) represents an interval centered at h
(in cm), the width A*eps must also be a quantity in cm. If we change the units of h
or w, we also need to change the units of A or B. If we change the units of h and A

from centimeters to meters, the numerical value of h and A will both get multiplied
by 1

100 . This additional factor for A*eps, which cannot be provided in the original
non-interval type of observe(D,x) statement, is what will make this program behave
consistently under change of units.

Both branches of the if statement contain observes with intervals of infinitesimal
width, so with rejection sampling both branches will be rejected with probability 1,

267

7.5 using infinitesimal numbers for measure-zero observations

regardless of the outcome of the coin flip. We must therefore interpret the example
with eps tending to 0, but not being exactly 0. If we chose A to be 1 meter, and B to
be 1 kg, and change B to be 1000 kg, then the observe in the else branch is 1000x
more likely to succeed compared to before, because the width of the interval goes
from 1*eps to 1000*eps. If we made this change then most of the successful trials
would be trials where the coin flipped to false. Thus even in the infinitesimal case,
the relative sizes of the intervals matter a great deal. The relative sizes of the intervals
are an essential part of the probabilistic program, and omitting them will inevitably
lead to unit anomalies, because changing units also requires resizing the intervals by
a corresponding amount (by 1000× in case we change w from kg to g). If we do not
resize the intervals, that changes the relative rejection rates of the branches, or the
relative weights of the trials, and thus the estimated expectation value E[bmi]. As
Jaynes notes, conditioning on measure-zero events is ambiguous; even though in the
limit the intervals (w,1*eps) and (w,1000*eps) both tend to the singleton set {w},
relative to the interval (h,A*eps) it matters which of these limits is intended, and the
final result will and must depend on which limit was specified.

We translate the third example as follows:

x = rand(Normal(10,5))

observe(Normal(15,5), (x,eps))

return exp(x)

After a parameter transformation from x to exp(x) we get the following program:

exp_x = rand(LogNormal(10,5))

observe(LogNormal(15,5), (exp_x,exp_x*eps))

return exp_x

Note that the width of the interval is now exp_x*eps and not simply eps. In general,
if we apply a differentiable function f to an interval of width ϵ around x, we obtain
an interval of width f′(x)ϵ around f(x). If we take the exponential of an interval of
small width ϵ around x, we get an interval of width exp(x)ϵ around exp(x), not an
interval of width ϵ around exp(x). Both of these programs should give the same
estimate for the expectation value of exp(x), so that infinitesimal width intervals
allow us to correctly express non-linear parameter transformations without running
into Borel-Komolgorov-type paradoxes.

7.5.2 On the Meaning of “Soft Conditioning”

It is debatable whether conditioning on small but finite width intervals is preferable
to conditioning on measure zero events. Real measurement devices do not measure
values to infinite precision. If a measurement device displays 45.88, we might
take that to mean an observation in the interval [45.875, 45.885]. The measurement

268

7.5 using infinitesimal numbers for measure-zero observations

regardless of the outcome of the coin flip. We must therefore interpret the example
with eps tending to 0, but not being exactly 0. If we chose A to be 1 meter, and B to
be 1 kg, and change B to be 1000 kg, then the observe in the else branch is 1000x
more likely to succeed compared to before, because the width of the interval goes
from 1*eps to 1000*eps. If we made this change then most of the successful trials
would be trials where the coin flipped to false. Thus even in the infinitesimal case,
the relative sizes of the intervals matter a great deal. The relative sizes of the intervals
are an essential part of the probabilistic program, and omitting them will inevitably
lead to unit anomalies, because changing units also requires resizing the intervals by
a corresponding amount (by 1000× in case we change w from kg to g). If we do not
resize the intervals, that changes the relative rejection rates of the branches, or the
relative weights of the trials, and thus the estimated expectation value E[bmi]. As
Jaynes notes, conditioning on measure-zero events is ambiguous; even though in the
limit the intervals (w,1*eps) and (w,1000*eps) both tend to the singleton set {w},
relative to the interval (h,A*eps) it matters which of these limits is intended, and the
final result will and must depend on which limit was specified.

We translate the third example as follows:

x = rand(Normal(10,5))

observe(Normal(15,5), (x,eps))

return exp(x)

After a parameter transformation from x to exp(x) we get the following program:

exp_x = rand(LogNormal(10,5))

observe(LogNormal(15,5), (exp_x,exp_x*eps))

return exp_x

Note that the width of the interval is now exp_x*eps and not simply eps. In general,
if we apply a differentiable function f to an interval of width ϵ around x, we obtain
an interval of width f′(x)ϵ around f(x). If we take the exponential of an interval of
small width ϵ around x, we get an interval of width exp(x)ϵ around exp(x), not an
interval of width ϵ around exp(x). Both of these programs should give the same
estimate for the expectation value of exp(x), so that infinitesimal width intervals
allow us to correctly express non-linear parameter transformations without running
into Borel-Komolgorov-type paradoxes.

7.5.2 On the Meaning of “Soft Conditioning”

It is debatable whether conditioning on small but finite width intervals is preferable
to conditioning on measure zero events. Real measurement devices do not measure
values to infinite precision. If a measurement device displays 45.88, we might
take that to mean an observation in the interval [45.875, 45.885]. The measurement

268

7.5 using infinitesimal numbers for measure-zero observations

may in addition measure the true value x plus some Normal(0,sigma) distributed
noise rather than the true value x. In this case it might be appropriate to use
observe(Normal(x,sigma), (45.88, 0.01)). The finite precision of the device and
its noisy measurement are in principle two independent causes of uncertainty. The
rejection sampling interpretation of this program is that we first sample a value
from Normal(x,sigma) and then continue with the current trial if this lies in the
interval [45.875, 45.885], which matches the two sources of uncertainty. An argument
for using infinitesimal width intervals is that observe on a finite interval requires
the evaluation of the distribution’s CDF, which is usually more complicated and
expensive to compute than the distribution’s PDF.

The term “soft conditioning” is sometimes used for observe(D,x) statements,
particularly when the distribution D is the normal distribution. This term can be
interpreted as an alternative to the rejection sampling interpretation in several ways:

1. Rather than conditioning on x being exactly y, we instead condition on x being
“roughly” y.

2. The statement observe(D,x) means that we continue with the current trial
with probability pdf(D,x) and reject it otherwise.

We argue that neither of these interpretations is completely satisfactory. For (1) it is
unclear what the precise probabilistic meaning of conditioning on x being “roughly”
y is. One possible precise meaning of that statement is that we reject the trial if the
difference |x−y| is too large, and continue otherwise, but this is not what a statement
such as observe(Normal(y,0.01), x) does. Rather, it weighs trials where x is close
to y higher, and smoothly decreases the weight as the distance between x and y

gets larger. It may seem that (2) makes this idea precise, but unfortunately pdf(D,x)

is not a probability but a probability density, and can even have units or be larger
than 1. Furthermore, the statement “continue with the current trial with probability
pdf(D,x)” seems to have nothing to do with the distribution D as a probability
distribution, and instead seems to be a statement that suggests that the statistical
model is a biased coin flip rather than drawing a sample from D. Indeed, under our
rejection sampling interpretation, if one wants to have a program whose statistical
model is about coin flips, one can use the program observe(Bernoulli(f(x)),

true). That program does mean “flip a biased coin with heads probability f(x) and
continue with the current trial if the coin landed heads”. This makes sense for any
function f(x) provided the function gives us a probability in the range [0, 1]. If that
function has a roughly bump-like shape around y, then this will indeed in some
sense condition on x being roughly y. The function C exp((x −A)2/B) similar to
the PDF of the normal distribution does have a bump-like shape around A, so it is
possible to use that function for f, if one makes sure that B and C are such that it is
unitless and everywhere less than 1 (note that this normalization is not the same as
the normalization that makes its integral sum to 1).

We therefore suggest to stick with the rejection sampling interpretation of
observe statements, and suggest that a statistician who wants to do “soft

269

7.5 using infinitesimal numbers for measure-zero observations

conditioning” in the senses (1) and (2) writes their probabilistic program using
observe(Bernoulli(f(x)), true) where f is a function of the desired soft shape
rather than observe(D,x) where the PDF of D has that shape.

7.5.3 Importance Sampling with Infinitesimal Probabilities

To do importance sampling for programs with infinitesimal width intervals we need
to change almost nothing. We execute a call observe(D,I) as weight *= P(D,I)

where P(D,I) has been defined in (2). Since P(D,I) returns an infinitesimal number
if the width of I is infinitesimal, the computed weight variable will now contain a
symbolic infinitesimal number rϵn (where n is allowed to be 0), rather than a real
number. It will accumulate the product of some number of ordinary probabilities
(for observe on discrete distributions or continuous distributions with an interval of
finite width) and a number of infinitesimal probabilities (for observe on continuous
distributions with intervals of infinitesimal width).

We now simply evaluate the estimate for E[V] using the usual weighted average
formula, with infinitesimal arithmetic

E[V] ≈
∑N

k=0(weightk) · (Vk)∑N
k=0(weightk)

(3)

In the denominator we are adding numbers of the form weightk = wkϵ
nk . Only the

numbers with the minimum value nk = nmin matter; the others are infinitesimally
small compared to those, and do not get taken into account due to the definition
of (+) on infinitesimal numbers. The same holds for the numerator: the values
Vk associated with weights that are infinitesimally smaller do not get taken into
account (an optimized implementation could reject a trial as soon as weight becomes
infinitesimally smaller than the current sum of accumulated weights, since those
trials will never contribute to the estimate of E[V]). Therefore the form of the fraction
is

E[V] ≈ Aϵnmin

Bϵnmin
=

A

B
ϵnmin−nmin =

A

B
ϵ0

that is, the infinitesimal factors cancel out in the estimate for E[V], and we obtain a
non-infinitesimal result.

We shall now suppose that the symbolic infinitesimal eps only occurs in the width
of intervals in observe(D,(x,r*eps)) calls, and not, for instance, in the return value
of the probabilistic program. In this case, the estimate (3) of E[V] satisfies the
conditions of Theorem 7.5.5. The calculated estimate may be viewed as a probability
expression f(ϵ) of ϵ (Definition 7.5.4), and since f(ϵ) = A

B ϵ0, the theorem implies
that limx→0f(x) = A

B . Therefore the estimate calculated by importance sampling with
infinitesimal arithmetic indeed agrees with taking the limit ϵ → 0. Figure 44 shows
three example probabilistic programs that are parameterized by the interval width.

270

7.5 using infinitesimal numbers for measure-zero observations

conditioning” in the senses (1) and (2) writes their probabilistic program using
observe(Bernoulli(f(x)), true) where f is a function of the desired soft shape
rather than observe(D,x) where the PDF of D has that shape.

7.5.3 Importance Sampling with Infinitesimal Probabilities

To do importance sampling for programs with infinitesimal width intervals we need
to change almost nothing. We execute a call observe(D,I) as weight *= P(D,I)

where P(D,I) has been defined in (2). Since P(D,I) returns an infinitesimal number
if the width of I is infinitesimal, the computed weight variable will now contain a
symbolic infinitesimal number rϵn (where n is allowed to be 0), rather than a real
number. It will accumulate the product of some number of ordinary probabilities
(for observe on discrete distributions or continuous distributions with an interval of
finite width) and a number of infinitesimal probabilities (for observe on continuous
distributions with intervals of infinitesimal width).

We now simply evaluate the estimate for E[V] using the usual weighted average
formula, with infinitesimal arithmetic

E[V] ≈
∑N

k=0(weightk) · (Vk)∑N
k=0(weightk)

(3)

In the denominator we are adding numbers of the form weightk = wkϵ
nk . Only the

numbers with the minimum value nk = nmin matter; the others are infinitesimally
small compared to those, and do not get taken into account due to the definition
of (+) on infinitesimal numbers. The same holds for the numerator: the values
Vk associated with weights that are infinitesimally smaller do not get taken into
account (an optimized implementation could reject a trial as soon as weight becomes
infinitesimally smaller than the current sum of accumulated weights, since those
trials will never contribute to the estimate of E[V]). Therefore the form of the fraction
is

E[V] ≈ Aϵnmin

Bϵnmin
=

A

B
ϵnmin−nmin =

A

B
ϵ0

that is, the infinitesimal factors cancel out in the estimate for E[V], and we obtain a
non-infinitesimal result.

We shall now suppose that the symbolic infinitesimal eps only occurs in the width
of intervals in observe(D,(x,r*eps)) calls, and not, for instance, in the return value
of the probabilistic program. In this case, the estimate (3) of E[V] satisfies the
conditions of Theorem 7.5.5. The calculated estimate may be viewed as a probability
expression f(ϵ) of ϵ (Definition 7.5.4), and since f(ϵ) = A

B ϵ0, the theorem implies
that limx→0f(x) = A

B . Therefore the estimate calculated by importance sampling with
infinitesimal arithmetic indeed agrees with taking the limit ϵ → 0. Figure 44 shows
three example probabilistic programs that are parameterized by the interval width.

270

7.5 using infinitesimal numbers for measure-zero observations

The blue lines show several runs of the probabilistic program as a function of the
interval width, and the orange line shows the result when taking the width to be ϵ.
Taking the width to be exactly 0 results in division by zero in the weighted average,
but taking it to be ϵ correctly computes the limit: the blue lines converge to the
orange lines as the width goes to 0.

7.5.4 Observe on Points and on Intervals

We may take a program written using observe(D,x) with exact conditioning
on points, and convert it to our language by replacing such calls with
observe(D,(x,w*eps)) where w is some constant to make the units correct. For
programs that exhibit a paradox of type 1 by executing a different number of
observes depending on the outcome of calls to rand, the computed expectation
values will change. However, for programs that always execute the same number
of observe calls, regardless of the outcome of rand calls, the computed expectation
values will not be affected by this translation. To see this, note that a call to
observe(D,x) will multiply weight *= pdf(D,x), whereas observe(D,(x,w*eps))

will multiply weight *= pdf(D,x)*w*eps. Thus if the observe calls are the same in
all trials, the only difference is that weight will contain an extra factor of wϵ in all
trials. The net result is that both the numerator and denominator in the weighted
average get multiplied by the factor wϵ, which has no effect. Thus this translation is
conservative with respect to the old semantics, in the sense that it does not change
the result that already well-behaved probabilistic programs compute.

7.5.5 Parameter Transformations as a Language Feature

The three paradoxes we identified all have to do with parameter transformations.
We explicitly add parameter transformations as a language feature. A parameter
transformation T allows us to transform a probability distribution D to T (D), such
that sampling from T (D) is the same as sampling from D and then applying the
function T to the result. In order to ensure that the distribution T (D) has a probability
density function we require T to be continuously differentiable. We can also use a
parameter transformation to transform an interval from I to T (I) = {T (x) : x ∈ I}
which contains all the numbers T (x) for x ∈ I. In order to ensure that the transformed
interval is again an interval, we require that T is monotone, that is, whenever a < b

we also have T (a) < T (b). In this case, T ’s action on an interval [a,b] is simple:
T ([a,b]) = [T (a), T (a)].

Definition 7.5.6. A parameter transformation T : RA → RB is a continuously
differentiable function with T ′(x) > 0 for all x ∈ RA, where RA ⊆ R and RB ⊆ R are
intervals representing its domain and range.

271

7.5 using infinitesimal numbers for measure-zero observations

function example1(w)
height=rand(Normal(1.70,0.2))
weight=rand(Normal(70,30))
if rand(Bernoulli(0.5))
observe(Normal(2.0,0.1),
Interval(height,10*w))

else
observe(Normal(90,5),
Interval(weight,w))

end
return weight / height^2
end

function example2(w)
height=rand(Normal(1.7,0.5))
if rand(Bernoulli(0.5))
observe(Normal(2.0,0.1),
Interval(height,w))

end
return height
end

function example3(w)
x=rand(Normal(10,5))
observe(Normal(15,5),
Interval(x,w))

return x
end

Figure 44: Three example programs evaluated with finite width intervals with width going
to zero (blue curves that bend) and with infinitesimal width (orange curves that
are horizontal plus noise). The finite width result correctly converges to the
infinitesimal result in the limit w → 0. Note that for infinitessimal width, the result
no longer depends on w. The graphs show this as a straight line, for comparison
with the curve for finite width. The variance is due to choosing a different random
seed for each execution.

272

7.5 using infinitesimal numbers for measure-zero observations

function example1(w)
height=rand(Normal(1.70,0.2))
weight=rand(Normal(70,30))
if rand(Bernoulli(0.5))
observe(Normal(2.0,0.1),
Interval(height,10*w))

else
observe(Normal(90,5),
Interval(weight,w))

end
return weight / height^2

end

function example2(w)
height=rand(Normal(1.7,0.5))
if rand(Bernoulli(0.5))
observe(Normal(2.0,0.1),
Interval(height,w))

end
return height

end

function example3(w)
x=rand(Normal(10,5))
observe(Normal(15,5),
Interval(x,w))

return x
end

Figure 44: Three example programs evaluated with finite width intervals with width going
to zero (blue curves that bend) and with infinitesimal width (orange curves that
are horizontal plus noise). The finite width result correctly converges to the
infinitesimal result in the limit w → 0. Note that for infinitessimal width, the result
no longer depends on w. The graphs show this as a straight line, for comparison
with the curve for finite width. The variance is due to choosing a different random
seed for each execution.

272

7.5 using infinitesimal numbers for measure-zero observations

A strictly monotone function has an inverse on its range, so parameter
transformations have an inverse T−1 and T−1(y) = T ′(T−1(y))−1 > 0, so the inverse of
a parameter transformation is again a parameter transformation.

Example 7.5.7. The function T1(x) = exp(x) is a parameter transformation T1 : (−∞,∞) →
[0,∞). The function T2(x) = 100x is a parameter transformation T2 : (−∞,∞) → (−∞,∞).

The transformation T1 can be used to convert decibels to energy density, and T2

can be used to convert meters to centimeters.
Probability distributions need to support 3 operations: random sampling with

rand(D), computing the CDF with cdf(D,x) and computing the PDF with pdf(D,x).
We define these operations for the transformed distribution T (D).

Definition 7.5.8. Given a continuous probability distribution D and a parameter
transformation T , we define the operations:

rand(T (D)) = T(rand(D))
cdf(T (D), x) = cdf(D, T−1(x))
pdf(T (D), x) = pdf(D, T−1(x)) · (T−1)′(x)

This definition matches how probability distributions transform in probability theory.
Our implementation represents a parameter transformation T as the 4-tuple of
functions (T , T ′, T−1, (T−1)′), so that we have access to the inverse and derivative.

Definition 7.5.9. Given an interval (a,w) with midpoint a ∈ R and width w ∈ R ,
we let l = T (a− w

2) and r = T (a+ w
2) and define:

T ((a,w)) =
(
l+ r

2
, r− l

)

This performs parameter transformation on an interval represented as a midpoint-
width pair. If the width is infinitesimal, we need a different rule.

Definition 7.5.10. Given an interval (a,w) with midpoint a ∈ R and infinitesimal
width w, we define :

T ((a,w)) = (T (a), T ′(a) ·w)

This performs parameter transformation on an infinitesimal width interval, which
gets transformed to an interval whose width is larger by a factor T ′(a). The key
lemma about parameter transformations is that they do not affect the value of the
(possibly infinitesimal) probability of a (possibly infinitesimal) interval.

Lemma 7.5.11. Let T be a parameter transformation, D a distribution, and I an interval.
Then P(T (D), T (I)) = P(D, I) where P is the probability function defined at (2).

Proof. We distinguish non-infinitesimal intervals from infinitesimal intervals.

273

7.5 using infinitesimal numbers for measure-zero observations

• If I = (a,w) is non infinitesimal, then by Definition (2):

P(D, (a,w)) = cdf(D,a+ 1
2
w) − cdf(D,a− 1

2
w)

For T ((a,w)) we have, where l = T (a− w
2) and r = T (a+ w

2):

T ((a,w)) = (l+ r

2
, r− l)

and by (2):

P(T (D), T ((a,w))) = cdf(T (D), l+ r

2
+ 1

2
(r− l)) − cdf(T (D), l+ r

2
− 1

2
(r− l))

= cdf(T (D), r) − cdf(T (D), l)
= cdf(D, T−1(r)) − cdf(D, T−1(l))

= cdf(D, T−1(T (a+ w

2
))) − cdf(D, T−1(T (a− w

2
)))

= cdf(D,a+ w

2
) − cdf(D,a− w

2
)

• If I = (a, rϵn) is infinitesimal (n > 0), then by definition (2):

P(D, (a,w)) = pdf(D, x) · rϵn

For T ((a, rϵn)) we have:

T ((a, rϵn)) = (T (a), T ′(a) · rϵn)

and by (2):

P(T (D), T ((a, rϵn))) = pdf(T (D), T (a)) · T ′(a) · rϵn

= pdf(D, T−1(T (a))) · (T−1)′(T (a)) · T ′(a) · rϵn

= pdf(D,a) · rϵn

□

This lemma implies that the effect of observe(T(D),T(I)) is the same as
observe(D,I), since observe(D,I) does weight *= P(D,I). This property of
observe ensures the absence of parameter transformation paradoxes, not only
of the three examples we gave, but in general: it does not matter which parameter
scale we use; the weight accumulated remains the same.

274

7.5 using infinitesimal numbers for measure-zero observations

• If I = (a,w) is non infinitesimal, then by Definition (2):

P(D, (a,w)) = cdf(D,a+ 1
2
w) − cdf(D,a− 1

2
w)

For T ((a,w)) we have, where l = T (a− w
2) and r = T (a+ w

2):

T ((a,w)) = (l+ r

2
, r− l)

and by (2):

P(T (D), T ((a,w))) = cdf(T (D), l+ r

2
+ 1

2
(r− l)) − cdf(T (D), l+ r

2
− 1

2
(r− l))

= cdf(T (D), r) − cdf(T (D), l)
= cdf(D, T−1(r)) − cdf(D, T−1(l))

= cdf(D, T−1(T (a+ w

2
))) − cdf(D, T−1(T (a− w

2
)))

= cdf(D,a+ w

2
) − cdf(D,a− w

2
)

• If I = (a, rϵn) is infinitesimal (n > 0), then by definition (2):

P(D, (a,w)) = pdf(D, x) · rϵn

For T ((a, rϵn)) we have:

T ((a, rϵn)) = (T (a), T ′(a) · rϵn)

and by (2):

P(T (D), T ((a, rϵn))) = pdf(T (D), T (a)) · T ′(a) · rϵn

= pdf(D, T−1(T (a))) · (T−1)′(T (a)) · T ′(a) · rϵn

= pdf(D,a) · rϵn

□

This lemma implies that the effect of observe(T(D),T(I)) is the same as
observe(D,I), since observe(D,I) does weight *= P(D,I). This property of
observe ensures the absence of parameter transformation paradoxes, not only
of the three examples we gave, but in general: it does not matter which parameter
scale we use; the weight accumulated remains the same.

274

7.6 implementation in julia

7.6 implementation in julia

We have implemented the constructs described in the preceding sections as a simple
embedded DSL in the Julia programming language, with the following interface:

• Infinitesimal numbers rϵn constructed by Infinitesimal(r,n), with predefined
eps = Infinitesimal(1.0,1), and overloaded infinitesimal arithmetic operations
+,-,*,/ according to Definition 7.5.2.

• Probability distributions D with random sampling rand(D) and cdf(D,x) and
pdf(D,x). These distributions are provided by Julia’s Distributions package,
which supports beta, normal, Cauchy, Chi-square, Bernoulli, Binomial, and many
other continuous distributions and discrete distributions.

• Intervals constructed by Interval(mid,width), where width may be infinitesimal,
and an operation P(D,I) to compute the (possibly infinitesimal) probability that
a sample from D lies in the interval I. If I is infinitesimal, then this uses the PDF,
and if I has finite width, then this uses the CDF, according to Definition 7.5.3.

• Parameter transformations T represented as 4-tuples (T , T ′, T−1, (T−1)′), with
operations T(D) and T(I) to transform probability distributions and intervals,
according to Definitions 7.5.8, 7.5.9, and 7.5.10.

• The main operations of probabilistic programming DSL are the following:

– rand(D), where D is a distribution provided by Julia’s Distributions package.

– observe(D,I), where D is a continuous distribution and I is an interval, or
D is a discrete distribution and I is an element, implemented as weight *=

P(D,I)

– importance(trials,program) which does importance sampling, where
trials is the number of trials to run, and program is a probabilistic program
written as a Julia function that uses rand and observe, and returns the value
that we wish to estimate the expectation value of. Importance sampling is
implemented as described in Section 7.5.3.

The example in the introduction can be written as follows:

function example1_m()

h = rand(Normal(1.7,0.5))

if rand(Bernoulli(0.5))

observe(Normal(2.0,0.1), Interval(h,eps))

end

return h

end

estimate = importance(1000000,example1_m)

275

7.7 conclusion & future work

This program will produce an estimate very close to 1.7. If we change the units to
centimeters, we will get an estimate very close to 170, as expected:

function example1_cm()

h = rand(Normal(170,50))

if rand(Bernoulli(0.5))

observe(Normal(200,10), Interval(h,100*eps))

end

return h

end

estimate = importance(1000000,example1_cm)

The artifact contains the other examples from the paper and further examples to
illustrate the use of the DSL (Jacobs, 2020).

7.7 conclusion & future work

We have seen that naive likelihood accumulation results in unit anomalies when
observe statements with continuous distributions are executed conditionally on
random data, and we have shown that the culprit is the use of probability densities.
From an analysis of what observe statements mean in the discrete case, we motivated
a switch to interval-based observe statements, which have a probabilistic and rejection
sampling interpretation. To recover the behavior of measure-zero observe statements
we introduced intervals with infinitesimal width. This results in the accumulation
of infinitesimal probabilities rather than probability densities, which solves the
unit anomalies and paradoxes even when conditioning on events of measure zero.
Infinitesimal probabilities also enabled us to implement parameter transformations
that do not change the behavior of the program. We implemented this form of
probabilistic programming as an embedded DSL in Julia.

This improves the state of the art in two ways:

1. It fixes unit and parameter transformation paradoxes, which result in surprising
and in some cases arguably incorrect behavior in existing probabilistic
programming languages when continuous observe statements are executed
conditionally on random data, or when nonlinear parameter transformations
are performed.

2. It gives the observe statement a probabilistic and rejection sampling
interpretation, with measure zero conditioning as a limiting case when
the observation interval is of infinitesimal width.

We hope that this will have a positive impact on the development of the formal
semantic foundations of probabilistic programming languages, potentially reducing
the problem of conditioning to events of positive measure. On the implementation
side, we hope to generalize more powerful inference algorithms such as Metropolis-
Hastings and SMC to work with infinitesimal probabilities.

276

7.7 conclusion & future work

This program will produce an estimate very close to 1.7. If we change the units to
centimeters, we will get an estimate very close to 170, as expected:

function example1_cm()

h = rand(Normal(170,50))

if rand(Bernoulli(0.5))

observe(Normal(200,10), Interval(h,100*eps))

end

return h

end

estimate = importance(1000000,example1_cm)

The artifact contains the other examples from the paper and further examples to
illustrate the use of the DSL (Jacobs, 2020).

7.7 conclusion & future work

We have seen that naive likelihood accumulation results in unit anomalies when
observe statements with continuous distributions are executed conditionally on
random data, and we have shown that the culprit is the use of probability densities.
From an analysis of what observe statements mean in the discrete case, we motivated
a switch to interval-based observe statements, which have a probabilistic and rejection
sampling interpretation. To recover the behavior of measure-zero observe statements
we introduced intervals with infinitesimal width. This results in the accumulation
of infinitesimal probabilities rather than probability densities, which solves the
unit anomalies and paradoxes even when conditioning on events of measure zero.
Infinitesimal probabilities also enabled us to implement parameter transformations
that do not change the behavior of the program. We implemented this form of
probabilistic programming as an embedded DSL in Julia.

This improves the state of the art in two ways:

1. It fixes unit and parameter transformation paradoxes, which result in surprising
and in some cases arguably incorrect behavior in existing probabilistic
programming languages when continuous observe statements are executed
conditionally on random data, or when nonlinear parameter transformations
are performed.

2. It gives the observe statement a probabilistic and rejection sampling
interpretation, with measure zero conditioning as a limiting case when
the observation interval is of infinitesimal width.

We hope that this will have a positive impact on the development of the formal
semantic foundations of probabilistic programming languages, potentially reducing
the problem of conditioning to events of positive measure. On the implementation
side, we hope to generalize more powerful inference algorithms such as Metropolis-
Hastings and SMC to work with infinitesimal probabilities.

276

Part IV

G E N E R A L A N D E F F I C I E N T AU T O M ATA
M I N I M I Z AT I O N

Chapter 8

Fast Coalgebraic Bisimilarity Minimization

abstract Coalgebraic bisimilarity minimization generalizes classical automaton
minimization to a large class of automata whose transition structure is specified
by a functor, subsuming strong, weighted, and probabilistic bisimilarity. This
offers the enticing possibility of turning bisimilarity minimization into an off-the-
shelf technology, without having to develop a new algorithm for each new type
of automaton. Unfortunately, there is no existing algorithm that is fully general,
efficient, and able to handle large systems.

We present a generic algorithm that minimizes coalgebras over an arbitrary functor
in the category of sets as long as the action on morphisms is sufficiently computable.
The algorithm makes at most 𝒪𝒪𝒪m logn) calls to the functor-specific action, where n

is the number of states and m is the number of transitions in the coalgebra.
While more specialized algorithms can be asymptotically faster than our algorithm

(usually by a factor of 𝒪𝒪𝒪mn)), our algorithm is especially well suited to efficient
implementation, and our tool Boa often uses much less time and memory on existing
benchmarks, and can handle larger automata, despite being more generic.

8.1 introduction

State-based systems arise in various shapes throughout computer science: as
automata for regular expressions, as control-flow graphs of programs, Markov
decision processes, (labelled) transition systems, or as the small-step semantics
of programming languages. If the programming language of interest involves
concurrency, bisimulation can capture whether two systems exhibit the same
behavior (Winskel, 1993; Milner, 1980). In model checking, a state-based system is
derived from the implementation and then checked against its specification.

It is often beneficial to reduce the size of a state-based system by merging all
equivalent states. Moore’s algorithm (Moore, 1956) and Hopcroft’s 𝒪𝒪𝒪𝒪Σ| n logn)
algorithm (Hopcroft, 1971) do this for the deterministic finite automata that arise from
regular expressions over alphabet Σ, and produce the equivalent automaton with
minimal number of states. In model checking, state-space reduction can be effective
as a preprocessing step (Baier and Katoen, 2008). For instance, in probabilistic model
checking, the time saved in model checking due to the smaller system exceeds the
time needed to minimize the system (Katoen et al., 2007).

Subsequent to Hopcroft (1971), a variety of algorithms were developed for
minimizing different types of automata. Examples are algorithms for

278

Chapter 8

Fast Coalgebraic Bisimilarity Minimization

abstract Coalgebraic bisimilarity minimization generalizes classical automaton
minimization to a large class of automata whose transition structure is specified
by a functor, subsuming strong, weighted, and probabilistic bisimilarity. This
offers the enticing possibility of turning bisimilarity minimization into an off-the-
shelf technology, without having to develop a new algorithm for each new type
of automaton. Unfortunately, there is no existing algorithm that is fully general,
efficient, and able to handle large systems.

We present a generic algorithm that minimizes coalgebras over an arbitrary functor
in the category of sets as long as the action on morphisms is sufficiently computable.
The algorithm makes at most 𝒪𝒪𝒪m logn) calls to the functor-specific action, where n

is the number of states and m is the number of transitions in the coalgebra.
While more specialized algorithms can be asymptotically faster than our algorithm

(usually by a factor of 𝒪𝒪𝒪mn)), our algorithm is especially well suited to efficient
implementation, and our tool Boa often uses much less time and memory on existing
benchmarks, and can handle larger automata, despite being more generic.

8.1 introduction

State-based systems arise in various shapes throughout computer science: as
automata for regular expressions, as control-flow graphs of programs, Markov
decision processes, (labelled) transition systems, or as the small-step semantics
of programming languages. If the programming language of interest involves
concurrency, bisimulation can capture whether two systems exhibit the same
behavior (Winskel, 1993; Milner, 1980). In model checking, a state-based system is
derived from the implementation and then checked against its specification.

It is often beneficial to reduce the size of a state-based system by merging all
equivalent states. Moore’s algorithm (Moore, 1956) and Hopcroft’s 𝒪𝒪𝒪𝒪Σ| n logn)
algorithm (Hopcroft, 1971) do this for the deterministic finite automata that arise from
regular expressions over alphabet Σ, and produce the equivalent automaton with
minimal number of states. In model checking, state-space reduction can be effective
as a preprocessing step (Baier and Katoen, 2008). For instance, in probabilistic model
checking, the time saved in model checking due to the smaller system exceeds the
time needed to minimize the system (Katoen et al., 2007).

Subsequent to Hopcroft (1971), a variety of algorithms were developed for
minimizing different types of automata. Examples are algorithms for

278

8.1 introduction

• transition systems (without action labels) (Kanellakis and Smolka, 1983, 1990),
labelled transition systems (Valmari, 2009), which arise from the verification of
concurrent systems,

• weighted bisimilarity (Valmari and Franceschinis, 2010) for Markov chains and
probabilistic settings (such as probabilistic model checking (Katoen et al., 2007)),

• Markov decision processes (Baier et al., 2000; Groote et al., 2018) that combine
concurrency with probabilistic branching,

• weighted tree automata (Björklund et al., 2009, 2007) that arise in natural language
processing (May and Knight, 2006).

Recently, those algorithms and system equivalences were subsumed by a
coalgebraic generalization (Dorsch et al., 2017; Deifel et al., 2019; Wißmann et al.,
2021). This generic algorithm is parametrized by a (Set-)functor that describes the
concrete system type of interest. Functors are a standard notion in category theory
and a key notion in the Haskell programming language. In coalgebraic automaton
minimization, the functor is used to attach transition data to each state of the
automaton. For instance, the powerset functor models non-deterministic branching
in transition systems, and the probability distribution functor models probabilistic
branching in Markov chains.

The users of a coalgebraic minimization algorithm may create their own system
type by composing the provided basic functors, allowing them to freely combine
deterministic, non-deterministic, and probabilistic behavior. For instance, the functor
to model Markov decision processes is the composition of the functors of transition
systems and the functor for probability distributions. This generalization points
to the enticing possibility of turning automata minimization for different types of
automata into an off-the-shelf technology.

Unfortunately, there are two problems that currently block this vision. Firstly,
although the generic algorithm has excellent 𝒪𝒪𝒪m logn) asymptotic complexity,
where n is the number of states and m is the number of edges, it is slow in practice,
and the data structures required for partition refinement suffer from hungry memory
usage. A machine with 16GB of RAM required several minutes to minimize tree
automata with 150 thousand states and ran out of memory when minimizing tree
automata larger than 160 thousand states (Deifel et al., 2019; Wißmann et al., 2021).
This problem has also been observed for algorithms for specific automata types, e.g.,
transition systems (Valmari, 2010). In order to increase the total memory available,
a distributed partition refinement algorithm has been developed (Birkmann et al.,
2022), (and previously also for specific automata types, e.g., labelled transition
systems (Blom and Orzan, 2005)), but this algorithm runs in 𝒪𝒪𝒪n2) and requires
expensive distributed hardware.

Secondly, the generic algorithm does not work for all Set-functors, because it places
certain restrictions on the functor type necessary for the tight run time complexity.
For instance, the algorithm is not capable of minimizing frames for the monotone

279

8.1 introduction

neighbourhood logic (Hansen and Kupke, 2004), arising in game theory (Parikh,
1985; Peleg, 1987; Pauly, 2001).

We present a new algorithm that works for all system types given by computable
Set-functors, requiring only an implementation of the functor’s action on morphisms,
which is then used to compute so-called signatures of states, a notion originally
introduced for labelled transition systems (Blom and Orzan, 2005). The algorithm
makes at most 𝒪𝒪𝒪m logn) calls to the functor implementation, where n and m are
the number of states and edges in the automaton, respectively. In almost all instances,
one such call takes 𝒪𝒪𝒪k) time, where k is the maximum out-degree of a state, so the
overall run time is in 𝒪𝒪𝒪km logn). We compensate for this extra factor because our
algorithm has been designed to be efficient in practice and does not need large data
structures: we only need the automaton with predecessors and a refinable partition
data structure.

We provide an implementation of our algorithm in our tool called Boa. The user of
the tool can either encode their system type as a composition of the functors natively
supported by Boa, or extend Boa with a new functor by providing a small amount of
Rust code that implements the functor’s action on morphisms.

Empirical evaluation of our implementation shows that the memory usage is
much reduced, in certain cases by more than 100x compared to the distributed
algorithm (Birkmann et al., 2022), such that the benchmarks that were used to
illustrate its scalability can now be solved on a single computer. Running time
is also much reduced, in certain cases by more than 3000x, even though we run
on a single core rather than a distributed cluster. We believe that this is a major
step towards coalgebraic partition refinement as an off-the-shelf technology for
automaton minimization.

the rest of the paper is structured as follows .

• Section 8.2: Coalgebraic bisimilarity minimization and our algorithm in a nutshell.

• Section 8.3: The formal statement of behavioral equivalence of states, and
examples for how this reduces to known notions of equivalence for particular
instantiations.

• Section 8.4: Detailed description of our coalgebraic minimization algorithm for
any computable set functor, and time complexity analysis showing that the
algorithm makes at most 𝒪𝒪𝒪m logn) calls to the functor operation.

• Section 8.5: Instantiations of the algorithm showing its genericity.

• Section 8.6: Benchmark results showing our algorithm outperforms earlier work.

• Section 8.7: Conclusion and future work.

280

8.1 introduction

neighbourhood logic (Hansen and Kupke, 2004), arising in game theory (Parikh,
1985; Peleg, 1987; Pauly, 2001).

We present a new algorithm that works for all system types given by computable
Set-functors, requiring only an implementation of the functor’s action on morphisms,
which is then used to compute so-called signatures of states, a notion originally
introduced for labelled transition systems (Blom and Orzan, 2005). The algorithm
makes at most 𝒪𝒪𝒪m logn) calls to the functor implementation, where n and m are
the number of states and edges in the automaton, respectively. In almost all instances,
one such call takes 𝒪𝒪𝒪k) time, where k is the maximum out-degree of a state, so the
overall run time is in 𝒪𝒪𝒪km logn). We compensate for this extra factor because our
algorithm has been designed to be efficient in practice and does not need large data
structures: we only need the automaton with predecessors and a refinable partition
data structure.

We provide an implementation of our algorithm in our tool called Boa. The user of
the tool can either encode their system type as a composition of the functors natively
supported by Boa, or extend Boa with a new functor by providing a small amount of
Rust code that implements the functor’s action on morphisms.

Empirical evaluation of our implementation shows that the memory usage is
much reduced, in certain cases by more than 100x compared to the distributed
algorithm (Birkmann et al., 2022), such that the benchmarks that were used to
illustrate its scalability can now be solved on a single computer. Running time
is also much reduced, in certain cases by more than 3000x, even though we run
on a single core rather than a distributed cluster. We believe that this is a major
step towards coalgebraic partition refinement as an off-the-shelf technology for
automaton minimization.

the rest of the paper is structured as follows .

• Section 8.2: Coalgebraic bisimilarity minimization and our algorithm in a nutshell.

• Section 8.3: The formal statement of behavioral equivalence of states, and
examples for how this reduces to known notions of equivalence for particular
instantiations.

• Section 8.4: Detailed description of our coalgebraic minimization algorithm for
any computable set functor, and time complexity analysis showing that the
algorithm makes at most 𝒪𝒪𝒪m logn) calls to the functor operation.

• Section 8.5: Instantiations of the algorithm showing its genericity.

• Section 8.6: Benchmark results showing our algorithm outperforms earlier work.

• Section 8.7: Conclusion and future work.

280

8.2 fast coalgebraic bisimilarity minimization in a nutshell

8.2 fast coalgebraic bisimilarity minimization in a nutshell

This section presents the key ideas of our fast coalgebraic minimization algorithm.
We start with an introduction to coalgebra, and how the language of category
theory provides an elegant unifying framework for different types of automata.
No knowledge of category theory is assumed; we will go from the concrete to the
abstract, and category theoretic notions have been erased from the presentation as
much as possible.

Let us thus start by looking at three examples of automata: deterministic finite
automata on the alphabet {a,b}, transition systems, and Markov chains. The
usual way of visualizing is depicted in the first row of Figure 45. For instance, a
deterministic finite automaton on state set C is usually described via a transition
function δ : C× {a,b} → C and a set of accepting states F ⊆ C (the initial state is not
relevant for the task of computing equivalent states). In order to generalize various
types of automata, however, we take a state-centric point of view, where we consider
all the data as being attached to a particular state:

• In a finite automaton on the alphabet {a,b} each state has two successors: one for
the input letter a and one for the input letter b. Each state also carries a boolean
that determines whether the state is accepting (double border), or not (single
border). For instance, state 3 in the deterministic automaton in the left column of
Figure 45 is not accepting, but after transitioning via a it goes to state 5, which is
accepting. We can specify any deterministic automaton entirely via a map

c : C → {F, T} ×C×C

This map sends every state q ∈ C to (x,qa,qb) := c(q), where x ∈ {F, T} specifies
if q is accepting, and qa,qb ∈ C are the target states for in input a and b,
respectively.

• A transition system consists of a (finite) set of locations C, plus a (finite) set of
transitions “→” ⊆ C×C. For instance, state 3 in the figure can transition to state
4 or 5 or to itself, whereas 5 cannot transition anywhere. A transition system is
specified by a map

c : C → 𝒫𝒫f(C)

where 𝒫𝒫f(C) is the set of finite subsets of C. This map sends every location q to
the set of locations c(q) ⊆ C to which a transition exists.

• A Markov chain consists of a set of states, and for each state a probability
distribution over all states describes the transition behavior. That is, for each
pair of states q,q′ ∈ C, the probability pq,q′ ∈ [0, 1] denoting the probability
to transition from q to q′. We also attach a boolean label to each state (again,
indicated by double border). For instance, state 1 in the figure steps to state 2

281

8.2 fast coalgebraic bisimilarity minimization in a nutshell

DFA Transition system Markov chain

1

2 3

4 5

a b

a

b

a

b

b

a

a

b

1

2 3

4 5

1

2 3

4 5

1
3

2
3

1
2

1
2

1
2

1
4

1
4

1
2

1
2

1

Functor F(X) = {F, T} ×X×X F(X) = 𝒫𝒫f(X) F(X) = {F, T} ×𝒟𝒟𝒟X)

Coalgebra
c : C → F(C)

1 ↦→ (F, 2, 3)
2 ↦→ (F, 4, 3)
3 ↦→ (F, 5, 3)
4 ↦→ (T, 5, 4)
5 ↦→ (T, 4, 4)

1 ↦→ {2, 3, 4}
2 ↦→ {1, 4}
3 ↦→ {3, 4, 5}
4 ↦→ {4, 5}
5 ↦→ { }

1 ↦→ (F, {2 : 1
3 , 3 : 2

3})
2 ↦→ (F, {2 : 1

2 , 4 : 1
2})

3 ↦→ (F, {2 : 1
4 , 4 : 1

2 , 5 :
1
4})
4 ↦→ (T, {4 :1})
5 ↦→ (F, {3 : 1

2 , 4 : 1
2})

Equivalence 2 ≡ 3, 4 ≡ 5 1 ≡ 2, 3 ≡ 4 2 ≡ 3 ≡ 5

Minimized
c′ : C′→F(C′)

1 ↦→ (F, 2, 2)
2 ↦→ (F, 4, 2)
4 ↦→ (T, 4, 4)

1 ↦→ {1, 3}
3 ↦→ {3, 5}
5 ↦→ { }

1 ↦→ (F, {2 :1})
2 ↦→ (F, {2 : 1

2 , 4 : 1
2})

4 ↦→ (T, {4 :1})

Figure 45: Examples of different system types and their encoding as coalgebras for the state
set C = {1, 2, 3, 4, 5}.

with probability 1
3 and to state 3 with probability 2

3 . Such a Markov chain is
specified by a map

c : C → {F, T} ×𝒟𝒟𝒟C)

where 𝒟𝒟𝒟C) is the set of finite probability distributions over C.

We call the data c(q) attached to a state q the successor structure of the state q.
By generalizing the pattern above, different types of automata can be treated

in a uniform way: In all these examples, we have a set of states C (where C =
{1, 2, 3, 4, 5} in the figure), and then a map c : C → F(C) for the successor structures,
for some construction F turning the set of states C into another set F(C). Such a
mapping F : Set → Set (in programming terms one should think of F as a type
constructor) is called a functor, and describes the automaton type. This point of view
allows us to easily consider variations, such as labelled transition systems, given
by F(X) = 𝒫𝒫f({a,b} × X), and Markov chains where the states are not labelled but
the transitions are labelled, given by F(X) = 𝒟𝒟𝒟𝒟a,b} × X). Other examples, such
as monoid weighted systems, Markov Decision processes, and tree automata, are
given in Section 8.3. Representing an automaton of type F by attaching a successor
structure of type F(C) to each state q ∈ C brings us to the following definition:

282

8.2 fast coalgebraic bisimilarity minimization in a nutshell

DFA Transition system Markov chain

1

2 3

4 5

a b

a

b

a

b

b

a

a

b

1

2 3

4 5

1

2 3

4 5

1
3

2
3

1
2

1
2

1
2

1
4

1
4

1
2

1
2

1

Functor F(X) = {F, T} ×X×X F(X) = 𝒫𝒫f(X) F(X) = {F, T} ×𝒟𝒟𝒟X)

Coalgebra
c : C → F(C)

1 ↦→ (F, 2, 3)
2 ↦→ (F, 4, 3)
3 ↦→ (F, 5, 3)
4 ↦→ (T, 5, 4)
5 ↦→ (T, 4, 4)

1 ↦→ {2, 3, 4}
2 ↦→ {1, 4}
3 ↦→ {3, 4, 5}
4 ↦→ {4, 5}
5 ↦→ { }

1 ↦→ (F, {2 : 1
3 , 3 : 2

3})
2 ↦→ (F, {2 : 1

2 , 4 : 1
2})

3 ↦→ (F, {2 : 1
4 , 4 : 1

2 , 5 :
1
4})
4 ↦→ (T, {4 :1})
5 ↦→ (F, {3 : 1

2 , 4 : 1
2})

Equivalence 2 ≡ 3, 4 ≡ 5 1 ≡ 2, 3 ≡ 4 2 ≡ 3 ≡ 5

Minimized
c′ : C′→F(C′)

1 ↦→ (F, 2, 2)
2 ↦→ (F, 4, 2)
4 ↦→ (T, 4, 4)

1 ↦→ {1, 3}
3 ↦→ {3, 5}
5 ↦→ { }

1 ↦→ (F, {2 :1})
2 ↦→ (F, {2 : 1

2 , 4 : 1
2})

4 ↦→ (T, {4 :1})

Figure 45: Examples of different system types and their encoding as coalgebras for the state
set C = {1, 2, 3, 4, 5}.

with probability 1
3 and to state 3 with probability 2

3 . Such a Markov chain is
specified by a map

c : C → {F, T} ×𝒟𝒟𝒟C)

where 𝒟𝒟𝒟C) is the set of finite probability distributions over C.

We call the data c(q) attached to a state q the successor structure of the state q.
By generalizing the pattern above, different types of automata can be treated

in a uniform way: In all these examples, we have a set of states C (where C =
{1, 2, 3, 4, 5} in the figure), and then a map c : C → F(C) for the successor structures,
for some construction F turning the set of states C into another set F(C). Such a
mapping F : Set → Set (in programming terms one should think of F as a type
constructor) is called a functor, and describes the automaton type. This point of view
allows us to easily consider variations, such as labelled transition systems, given
by F(X) = 𝒫𝒫f({a,b} × X), and Markov chains where the states are not labelled but
the transitions are labelled, given by F(X) = 𝒟𝒟𝒟𝒟a,b} × X). Other examples, such
as monoid weighted systems, Markov Decision processes, and tree automata, are
given in Section 8.3. Representing an automaton of type F by attaching a successor
structure of type F(C) to each state q ∈ C brings us to the following definition:

282

8.2 fast coalgebraic bisimilarity minimization in a nutshell

Definition 8.2.1. An automaton of type F, or finite F-coalgebra, is a pair (C, c) of a
finite set of states C, and a function c : C → F(C) that attaches the successor structure
of type F(C) to each state in C.

Since C is a finite set of states, we can give such a map c by listing what each state
in C maps to. For the concrete automata in Figure 45, the representation using such
a mapping c : C → F(C) is given in the “Coalgebra” row.

8.2.1 Behavioral Equivalence of States in F-automata, Generically

We now know how to uniformly represent an automaton of type F, but we need a
uniform way to state what it means for states to be equivalent. Intuitively, we
would like to say that two states are equivalent if the successor structures attached
to the two states by the map c : C → F(C) are equivalent. The difficulty is that the
successor structure may itself contain other states, so equivalence of states requires
equivalence of successor structures and vice versa.

A way to cut this knot is to consider a proposed equivalence of states, and then
define what it means for this equivalence to be valid, namely: an equivalence of states
is valid if proposed to be equivalent states have equivalent successor structures, where
equivalence of the successor structures is considered up to the proposed equivalence
of states. In short, the proposed equivalence should be compatible with the transition
structure specified by the successor structures.

Rather than representing a proposed equivalence as an equivalence relation R ⊆
C × C on the state space C, it is better to use a surjective map r : C → C′ that
assigns to each state a canonical representative in C′ identifying its equivalence
class (also called block). That is, two states q,q′ are equivalent according to r, if
r(q) = r(q′). Intuitively, r partitions the states into blocks or equivalence classes
{q ∈ C | r(q) = y} ⊆ C for each canonical representative y ∈ C′. Not only does this
representation of the equivalence avoid quadratic overhead in the implementation,
but it is also more suitable to state the stability condition:

An equivalence r : C → C′ is stable, if for every two equivalent states q1,q2 (i.e.,
with r(q1) = r(q2)), the successor structures c(q1) and c(q2) attached to the states
become equal after replacing states q inside the successor structures with their
canonical representative r(q).

This guarantees that we can build a minimized automaton with the canonical
representatives r(q) ∈ C′ as state space. If we do this replacement for both the
source and the target of all transitions, we obtain a potentially smaller automaton
c′ : C′ → F(C′).

In order to gain intuition about this, let us investigate our three examples in
Figure 45:

• In the finite automaton, the states 4 ≡ 5 and 2 ≡ 3 can be shown to be equivalent,
so we have C′ = {1, 2, 4} and r : C → C′ with 3 ↦→ 2 and 5 ↦→ 4 (and also 1 ↦→ 1,
2 ↦→ 2, 4 ↦→ 4, which we will use implicitly in future examples). We can check that

283

8.2 fast coalgebraic bisimilarity minimization in a nutshell

this equivalence is compatible with c by verifying that the successor structures of
supposedly equivalent states become equal after substituting 5 ↦→ 4 and 3 ↦→ 2.
After substituting 5 ↦→ 4 we indeed have that c(2) = (F, 4, 3) and c(3) = (F, 5, 3)
become equal, and that c(4) = (T, 5, 4) and c(5) = (T, 4, 4) become equal. So this
equivalence is stable.

• For the transition system, the states 3 ≡ 4 are equivalent, and 1 ≡ 2 are equivalent.
We can verify, for instance, that states c(1) = {2, 3, 4} and f(2) = {1, 4} are
equivalent, because after substituting 4 ↦→ 3 and 2 ↦→ 1, we indeed have {1, 3, 3} =
{1, 3}, because duplicates can be removed from sets. Note that it is important that
the data for transition systems are sets rather than lists or multisets. Multisets
also give a valid type of automaton, but they do not give the same notion of
equivalence.

• For the Markov chain, we can verify 2 ≡ 3 ≡ 5. Consider that all three of these
states step to state 4 with probability 1

2 . With the remaining probability 1
2 these

states step to one of the states 2 ≡ 3 ≡ 5, i.e. they stay in this block. State 3 steps
to either state 2 or 5 with probability of 1

4 each. If we however assume that state 5
behaves equivalent to 2, then the branching of state 3 is the same as going to state
2 with probability 1

4 + 1
4 = 1

2 directly. Thus, when substituting 5 ↦→ 2 and 3 ↦→ 2
the distribution c(3) = (F, {2 : 1

4 , 4 : 1
2 , 5 : 1

4}), collapses to (F, {2 : 1
2 , 4 : 1

2}). In other
words, edges to equivalent states get merged by summing up their probability.

Here we assumed that we were given an equivalence, which we check to be stable.
Our next task is to determine how to find the maximal stable equivalence. We shall
see that this only requires a minor modification to checking that a given equivalence
is stable: if we discover that an equivalence is not stable, we can use that information
to iteratively refine the equivalence until it is stable.

8.2.2 Minimizing F-automata, Generically: The Naive Algorithm

In this section we describe a naive but generic method for minimizing F-automata
(König and Küpper, 2014). The method is based on the observation that we can start
by optimistically assuming that all states are equivalent, and then use the stability
check described in the preceding section to determine how to split up into finer
blocks. By iterating this procedure we will arrive at the minimal automaton.

Let us thus see what happens if we blindly assume all states to be equivalent,
and perform the substitution where we change every state to state 1. For the finite
automaton in Figure 45, we get

1 ↦→ (F, 1, 1) 2 ↦→ (F, 1, 1) 3 ↦→ (F, 1, 1) 4 ↦→ (T, 1, 1) 5 ↦→ (T, 1, 1)

Clearly, even though we assumed all states to be equivalent, the states 1, 2, 3 are still
distinct from 4, 5 because the former three are not accepting whereas the latter two

284

8.2 fast coalgebraic bisimilarity minimization in a nutshell

this equivalence is compatible with c by verifying that the successor structures of
supposedly equivalent states become equal after substituting 5 ↦→ 4 and 3 ↦→ 2.
After substituting 5 ↦→ 4 we indeed have that c(2) = (F, 4, 3) and c(3) = (F, 5, 3)
become equal, and that c(4) = (T, 5, 4) and c(5) = (T, 4, 4) become equal. So this
equivalence is stable.

• For the transition system, the states 3 ≡ 4 are equivalent, and 1 ≡ 2 are equivalent.
We can verify, for instance, that states c(1) = {2, 3, 4} and f(2) = {1, 4} are
equivalent, because after substituting 4 ↦→ 3 and 2 ↦→ 1, we indeed have {1, 3, 3} =
{1, 3}, because duplicates can be removed from sets. Note that it is important that
the data for transition systems are sets rather than lists or multisets. Multisets
also give a valid type of automaton, but they do not give the same notion of
equivalence.

• For the Markov chain, we can verify 2 ≡ 3 ≡ 5. Consider that all three of these
states step to state 4 with probability 1

2 . With the remaining probability 1
2 these

states step to one of the states 2 ≡ 3 ≡ 5, i.e. they stay in this block. State 3 steps
to either state 2 or 5 with probability of 1

4 each. If we however assume that state 5
behaves equivalent to 2, then the branching of state 3 is the same as going to state
2 with probability 1

4 + 1
4 = 1

2 directly. Thus, when substituting 5 ↦→ 2 and 3 ↦→ 2
the distribution c(3) = (F, {2 : 1

4 , 4 : 1
2 , 5 : 1

4}), collapses to (F, {2 : 1
2 , 4 : 1

2}). In other
words, edges to equivalent states get merged by summing up their probability.

Here we assumed that we were given an equivalence, which we check to be stable.
Our next task is to determine how to find the maximal stable equivalence. We shall
see that this only requires a minor modification to checking that a given equivalence
is stable: if we discover that an equivalence is not stable, we can use that information
to iteratively refine the equivalence until it is stable.

8.2.2 Minimizing F-automata, Generically: The Naive Algorithm

In this section we describe a naive but generic method for minimizing F-automata
(König and Küpper, 2014). The method is based on the observation that we can start
by optimistically assuming that all states are equivalent, and then use the stability
check described in the preceding section to determine how to split up into finer
blocks. By iterating this procedure we will arrive at the minimal automaton.

Let us thus see what happens if we blindly assume all states to be equivalent,
and perform the substitution where we change every state to state 1. For the finite
automaton in Figure 45, we get

1 ↦→ (F, 1, 1) 2 ↦→ (F, 1, 1) 3 ↦→ (F, 1, 1) 4 ↦→ (T, 1, 1) 5 ↦→ (T, 1, 1)

Clearly, even though we assumed all states to be equivalent, the states 1, 2, 3 are still
distinct from 4, 5 because the former three are not accepting whereas the latter two

284

8.2 fast coalgebraic bisimilarity minimization in a nutshell

1 ↦→ (F, 1, 1)
2 ↦→ (F, 1, 1)
3 ↦→ (F, 1, 1)
4 ↦→ (T, 1, 1)
5 ↦→ (T, 1, 1)

1 ↦→ (F, 1, 1)
2 ↦→ (F, 4, 1)
3 ↦→ (F, 4, 1)
4 ↦→ (T, 4, 4)
5 ↦→ (T, 4, 4)

1 ↦→ (F, 2, 2)
2 ↦→ (F, 4, 2)
3 ↦→ (F, 4, 2)
4 ↦→ (T, 4, 4)
5 ↦→ (T, 4, 4)

1 ↦→ {1}
2 ↦→ {1}
3 ↦→ {1}
4 ↦→ {1}
5 ↦→ { }

1 ↦→ {1}
2 ↦→ {1}
3 ↦→ {1, 5}
4 ↦→ {1, 5}
5 ↦→ { }

1 ↦→ {1, 3}
2 ↦→ {1, 3}
3 ↦→ {3, 5}
4 ↦→ {3, 5}
5 ↦→ { }

1 ↦→ (F, {1 : 1})
2 ↦→ (F, {1 : 1})
3 ↦→ (F, {1 : 1})
4 ↦→ (T, {1 : 1})
5 ↦→ (F, {1 : 1})

1 ↦→ (F, {1 : 1})
2 ↦→ (F, {1 : 1

2 , 4 : 1
2})

3 ↦→ (F, {1 : 1
2 , 4 : 1

2})
4 ↦→ (T, {4 : 1})
5 ↦→ (F, {1 : 1

2 , 4 : 1
2})

1 ↦→ (F, {2 : 1})
2 ↦→ (F, {2 : 1

2 , 4 : 1
2})

3 ↦→ (F, {2 : 1
2 , 4 : 1

2})
4 ↦→ (T, {4 : 1})
5 ↦→ (F, {2 : 1

2 , 4 : 1
2})

Figure 46: Execution of the naive algorithm for the three automata of Figure 45.

are. Therefore, even if we initially assumed all states to be equivalent, we discover
inequivalent states. Let us thus try the equivalence 1 ≡ 2 ≡ 3 and 4 ≡ 5, and apply
substitution where we send 2 ↦→ 1, 3 ↦→ 1 and 5 ↦→ 4:

1 ↦→ (F, 1, 1) 2 ↦→ (F, 4, 1) 3 ↦→ (F, 4, 1) 4 ↦→ (T, 4, 4) 5 ↦→ (T, 4, 4)

We have now discovered three distinct blocks of states: state 1, states 2 ≡ 3 and states
4 ≡ 5. If we apply a substitution for that equivalence, we get:

1 ↦→ (F, 2, 2) 2 ↦→ (F, 4, 2) 3 ↦→ (F, 4, 2) 4 ↦→ (T, 4, 4) 5 ↦→ (T, 4, 4)

We did not discover new blocks; we still have three distinct blocks of states: 1, states
2 ≡ 3 and states 4 ≡ 5. Hence, there is no need to change the substitution map
sending each state to a representative in the ≡-class, and so we reached a fixed point.
We can now read off the minimized automaton by deleting states 3 and 5 from the
last automaton above.

The reader may observe that the process sketched above is quite general, and
can be used to minimize a large class of automata. The sketch translates into the
pseudocode in Algorithm 1.

285

8.2 fast coalgebraic bisimilarity minimization in a nutshell

Algorithm 1 Sketch of the naive partition refinement algorithm
procedure NaiveAlgorithm(automaton) ⊲ Finds equivalent states of automaton

Put all states in one block (i.e., assume that all states are equivalent)
while number of blocks grows do

Substitute current block numbers in the successor structures
Split up blocks according to the successor structures

The execution trace of this naive algorithm for our three example automata of
Figure 45 can be found in Figure 46. What the algorithm only needs is the ability
to obtain a canonicalized successor structure after applying a substitution to the
successor states. In general this may involve some amount of computation. For
instance, for transition systems, a purely textual substitution would lead to {1, 1, 1}
assuming all states are conjectured equivalent in the first step, and the canonical
form of this set is {1}. Note that the states 1− 4 all have successor structure {1} in
the first step of the algorithm, but they get distinguished from state 5, which has
successor structure { }.

We see that in order to talk about equivalence of states, and in order to perform
minimization, we need a notion of substitution and canonicalization. As it turns out,
this corresponds exactly to the standard definition of functor in category theory (for
Set):

Definition 8.2.2. F : Set → Set is a functor, if given an p : A → B (i.e., a
“substitution”), we have a mapping F[p] : F(A) → F(B). Furthermore, this operation
must satisfy F[id] = id and F[p ◦ g] = F[p] ◦ F[g].

We thus require all automata types to be given by functors in the sense of
Theorem 8.2.2. We can then talk about equivalence of states, and minimize automata
by repeatedly applying this operation F[p] as sketched above. A more formal naive
algorithm will be discussed in Section 8.4.2.

8.2.3 The Challenge: A Generic and Efficient Algorithm

The problem with the naive algorithm sketched in Section 8.2.2 is that it processes all
transitions in every iteration of the main loop. In certain cases, partition refinement
(in general) may take Θ(n) iterations to converge, where n is the number of states.
This can happen, for instance, if the automaton has a long chain of transitions, so in
each iteration, only one state is moved to a different block. Figure 47 contains three
example automata for which the naive algorithm takes Θ(n) iterations (provided
one generalizes the examples to have n nodes).

Since naive algorithm computes new successor structures for all states in each
iteration, the functor operation is applied 𝒪𝒪𝒪n2) times in total. Thus, the challenge
we set out to solve is the following:

286

8.2 fast coalgebraic bisimilarity minimization in a nutshell

Algorithm 1 Sketch of the naive partition refinement algorithm
procedure NaiveAlgorithm(automaton) ⊲ Finds equivalent states of automaton

Put all states in one block (i.e., assume that all states are equivalent)
while number of blocks grows do

Substitute current block numbers in the successor structures
Split up blocks according to the successor structures

The execution trace of this naive algorithm for our three example automata of
Figure 45 can be found in Figure 46. What the algorithm only needs is the ability
to obtain a canonicalized successor structure after applying a substitution to the
successor states. In general this may involve some amount of computation. For
instance, for transition systems, a purely textual substitution would lead to {1, 1, 1}
assuming all states are conjectured equivalent in the first step, and the canonical
form of this set is {1}. Note that the states 1− 4 all have successor structure {1} in
the first step of the algorithm, but they get distinguished from state 5, which has
successor structure { }.

We see that in order to talk about equivalence of states, and in order to perform
minimization, we need a notion of substitution and canonicalization. As it turns out,
this corresponds exactly to the standard definition of functor in category theory (for
Set):

Definition 8.2.2. F : Set → Set is a functor, if given an p : A → B (i.e., a
“substitution”), we have a mapping F[p] : F(A) → F(B). Furthermore, this operation
must satisfy F[id] = id and F[p ◦ g] = F[p] ◦ F[g].

We thus require all automata types to be given by functors in the sense of
Theorem 8.2.2. We can then talk about equivalence of states, and minimize automata
by repeatedly applying this operation F[p] as sketched above. A more formal naive
algorithm will be discussed in Section 8.4.2.

8.2.3 The Challenge: A Generic and Efficient Algorithm

The problem with the naive algorithm sketched in Section 8.2.2 is that it processes all
transitions in every iteration of the main loop. In certain cases, partition refinement
(in general) may take Θ(n) iterations to converge, where n is the number of states.
This can happen, for instance, if the automaton has a long chain of transitions, so in
each iteration, only one state is moved to a different block. Figure 47 contains three
example automata for which the naive algorithm takes Θ(n) iterations (provided
one generalizes the examples to have n nodes).

Since naive algorithm computes new successor structures for all states in each
iteration, the functor operation is applied 𝒪𝒪𝒪n2) times in total. Thus, the challenge
we set out to solve is the following:

286

8.2 fast coalgebraic bisimilarity minimization in a nutshell

1 2

3

4

56

7

8

a a

a

a

aa

a

a

b
b

b

b
b

b

b

b

1

2

3

4

5

1

2

3

4

5

6

7

8

9

0

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Figure 47: Examples of shapes of automata on which the naive algorithm runs in Θ(n2).

Can we find an asymptotically and practically efficient algorithm for
automaton minimization that uses only the successor structure recomputation
operation F[p]?

By using only F[p], we do not impose further conditions on the functor F beside
F[p] being computable. Since the algorithm does not inspect F any further, the only
condition imposed on the functor is that F[p] is computable for all substitutions p

on the state space.

8.2.4 Hopcroft’s Trick: The Key to Efficient Minimization

A key part of the solution is a principle often called “Hopcroft’s trick” or “half
the size” trick, which underlies all known asymptotically efficient automata
minimization algorithms. To understand the trick, consider the following game:

1. We start with a set of objects, e.g., {1, 2, 3, 4, 5, 6, 7, 8, 9}.

2. We chop the set into two parts arbitrarily, e.g., {1, 3, 5, 7, 9}, {2, 4, 6, 8}.

3. We select one of the sets, and chop it up arbitrarily again, e.g.,
{1, 3}, {5, 7, 9}, {2, 4, 6, 8}.

4. We continue the game iteratively (possibly until all sets are singletons).

Once the game is complete, we trace back the history of one particular element, say
3, and count how many times it was in the smaller part of a split:

The number of times an element was part of the smaller half of a split is
𝒪𝒪𝒪logn).

One can prove this bound by considering the evolution of the size of the set
containing the element. Initially, this size is n. Each time the element was part of

287

8.2 fast coalgebraic bisimilarity minimization in a nutshell

the smaller part of the split, the size of the surrounding set gets cut in at least half,
which can happen at most 𝒪𝒪𝒪logn) times before we reach a singleton.

This indicates that for efficient algorithms, we should make sure that the running
time of the algorithm is only proportional to the smaller halves of the splits. In other
words, when we split a block, we have to make sure that we do not loop over the
larger half of the split.

A slightly more general bound results from considering a game where we can
split each set into an arbitrary number of parts, rather than 2:

The number of times an element was part of a smaller part of the split is
𝒪𝒪𝒪logn).

In this case, “a smaller part of the split” is to be understood as any part
of the split except the largest part. Thus, if we split {1, 2, 3, 4, 5, 6, 7, 8, 9} into
{1, 3}, {5, 7, 9}, {2, 4, 6, 8}, then {1, 3}, {5, 7, 9} are both considered “smaller parts”,
whereas {2, 4, 6, 8} is the larger part.

In terms of algorithm design, our goal shall thus be that when we do a k-way split
of a block, we may do operations proportional to all the k− 1 smaller parts of the
split, but never an operation proportional to the largest part of the split.

8.2.5 A Sketch of our Generic and Efficient Algorithm

We design our algorithm based on the naive algorithm and Hopcroft’s trick. The
main problem with the naive algorithm is that it recomputes the successor structures
of all states at each step. The reader may already have noticed that many of the
successor structures in fact stay the same, and are unnecessarily recomputed. The
successor structure of a state only changes if the block number of one of its successors
changes. The key to a more efficient algorithm is to minimize the number of times a block
number changes, so that successor structure recomputation is avoided as much as possible.

In the naive algorithm, we see that when we split a block of states into smaller
blocks, we have freedom about which numbers to assign to each new sub-block. We
therefore choose to keep the old number for the largest sub-block. Hopcroft’s trick will
then ensure that a state’s number changes at most 𝒪𝒪𝒪logn) times.

In order to reduce recomputation of successor structures, our algorithm tracks for
each block of states (i.e., states with the same block number), which of the states are
dirty, meaning that at least one of their successors’ number changed. The remaining
states in the block are clean, meaning that the successors did not change.

Importantly, all clean states of a block have the same successor structure, because (A)
their successors did not change (B) if their successor structure was different in the
last iteration, they would have been placed in different blocks. Therefore, in order
to recompute the successor structures of a block, it suffices to recompute the dirty
states and one of the clean states, because we know that all the clean states have the
same successor structure.

This sketch translates into the pseudocode of Algorithm 2.

288

8.2 fast coalgebraic bisimilarity minimization in a nutshell

the smaller part of the split, the size of the surrounding set gets cut in at least half,
which can happen at most 𝒪𝒪𝒪logn) times before we reach a singleton.

This indicates that for efficient algorithms, we should make sure that the running
time of the algorithm is only proportional to the smaller halves of the splits. In other
words, when we split a block, we have to make sure that we do not loop over the
larger half of the split.

A slightly more general bound results from considering a game where we can
split each set into an arbitrary number of parts, rather than 2:

The number of times an element was part of a smaller part of the split is
𝒪𝒪𝒪logn).

In this case, “a smaller part of the split” is to be understood as any part
of the split except the largest part. Thus, if we split {1, 2, 3, 4, 5, 6, 7, 8, 9} into
{1, 3}, {5, 7, 9}, {2, 4, 6, 8}, then {1, 3}, {5, 7, 9} are both considered “smaller parts”,
whereas {2, 4, 6, 8} is the larger part.

In terms of algorithm design, our goal shall thus be that when we do a k-way split
of a block, we may do operations proportional to all the k− 1 smaller parts of the
split, but never an operation proportional to the largest part of the split.

8.2.5 A Sketch of our Generic and Efficient Algorithm

We design our algorithm based on the naive algorithm and Hopcroft’s trick. The
main problem with the naive algorithm is that it recomputes the successor structures
of all states at each step. The reader may already have noticed that many of the
successor structures in fact stay the same, and are unnecessarily recomputed. The
successor structure of a state only changes if the block number of one of its successors
changes. The key to a more efficient algorithm is to minimize the number of times a block
number changes, so that successor structure recomputation is avoided as much as possible.

In the naive algorithm, we see that when we split a block of states into smaller
blocks, we have freedom about which numbers to assign to each new sub-block. We
therefore choose to keep the old number for the largest sub-block. Hopcroft’s trick will
then ensure that a state’s number changes at most 𝒪𝒪𝒪logn) times.

In order to reduce recomputation of successor structures, our algorithm tracks for
each block of states (i.e., states with the same block number), which of the states are
dirty, meaning that at least one of their successors’ number changed. The remaining
states in the block are clean, meaning that the successors did not change.

Importantly, all clean states of a block have the same successor structure, because (A)
their successors did not change (B) if their successor structure was different in the
last iteration, they would have been placed in different blocks. Therefore, in order
to recompute the successor structures of a block, it suffices to recompute the dirty
states and one of the clean states, because we know that all the clean states have the
same successor structure.

This sketch translates into the pseudocode of Algorithm 2.

288

8.2 fast coalgebraic bisimilarity minimization in a nutshell

Algorithm 2 Sketch of the optimized partition refinement algorithm
procedure PartRefSetFun(automaton) ⊲ Finds equivalent states of automaton

Put all states in one block (i.e., assume that all states are equivalent)
Mark all states dirty
while number of blocks grows do

Pick a block with dirty states
Compute the successor structures of the dirty states and one clean state
Mark all states in the block clean
Split up the block, keeping the old block number for the largest sub-block
Mark all predecessors of changed states dirty

Let us investigate the complexity of this algorithm in terms of the number of
successor structure recomputations. By Hopcroft’s trick, a state’s number can now
change at most 𝒪𝒪𝒪logn) times, since we do not change the block number of the
largest sub-block. Whenever we change a state’s number, all the predecessors of
that state will need to be marked dirty, and be recomputed. If we take a more
global view, we can see that a recomputation may be triggered for every edge in the
automaton, for each time the number of the destination state of the edge changes.
Therefore, if there are m edges, there will be at most 𝒪𝒪𝒪m logn) successor structure
recomputations, i.e., at most 𝒪𝒪𝒪m logn) calls to the functor operation.

In order to make the algorithm asymptotically efficient in terms of the total number
of primitive computation steps, we must make sure to never do any operation that
is proportional to the number of clean states in a block. Importantly, we must be
able to split a block into k sub-blocks without iterating over the clean states. To do
this, we have to devise efficient data structures to keep track of the blocks and their
dirty states (Section 8.4.3).

We implement our algorithm (Section 8.4.4) with these data structures and efficient
methods for computing the functor operation in our tool, Boa. When using Boa, the
user can either encode their automata using a composition of the built-in functors,
or implement their own functor operation and instantiate the algorithm with that.

Practical efficiency of the algorithm

Previous work on algorithms that apply to classes of functors that support more
specialized operations in addition to just the functor operation can give better
asymptotic complexity when one considers more fine-grained accounting than
just the number of calls to the functor operation (Dorsch et al., 2017; Wißmann
et al., 2020; Deifel et al., 2019; Wißmann et al., 2021). Perhaps surprisingly, even
though our algorithm is very generic and does not have access to these specialized
operations, our algorithm is much faster than the more specialized algorithm in
practice (Section 8.6).

However, the limiting factor in practice is not necessarily time but space. The
aforementioned algorithm requires on the order of 16GB of RAM for minimizing

289

8.3 coalgebra and bisimilarity, formally

automata with 150 thousand states (Deifel et al., 2019; Wißmann et al., 2021). In order
to be able to access more memory, distributed algortithms have been developed
(Birkmann et al., 2022; Blom and Orzan, 2005). Using a cluster with 265GB of
memory, the distributed algorithm was able to minimize an automaton with 1.3
million states and 260 million edges. By contrast, Boa is able to minimize the same
automaton using only 1.7GB of memory.

The reason is that we do not need any large auxiliary data structures; most of the
1.7GB is used for storing the automaton itself. Furthermore, because we only need
to compute the functor operation for states in the automaton, we are able to store
the automaton in an efficient immutable binary format.

In the rest of the paper we will first give a more formal definition of bisimilarity
in coalgebras (Section 8.3), we describe how we represent our automata, and which
basic operations we need (Section 8.4.1), we describe the auxiliary data structures
required by our algorithm (Section 8.4.3), we describe our algorithm and provide
complexity bounds (Section 8.4.4), we show a variety of functor instances that our
algorithm can minimize (Section 8.5), we compare the practical performance to
earlier work (Section 8.6), and we conclude the paper (Section 8.7).

8.3 coalgebra and bisimilarity, formally

In this section we define formally what it means for two states in a coalgebra to be
behaviorally equivalent, and we give examples to show that behavioral equivalence
in coalgebras reduces to known notions of bisimilarity for specific functors.

Recall that we model state-based systems as coalgebras for set functors
(Theorem 8.2.2):

Definition 8.3.1. An F-coalgebra consists of a carrier set C and a structure map
c : C → FC.

Intuitively, the carrier C of a coalgebra (C, c) is the set of states of the system, and
for each state x ∈ C, the map provides c(x) ∈ FC that is the structured collection of
successor states of x. If F = 𝒫𝒫f , then c(x) is simply a finite set of successor states. The
functor determines a canonical notion of behavioral equivalence.

Definition 8.3.2. A homomorphism between coalgebras h : (C, c) → (D,d) is a map
h : C → D with F[h](c(x)) = d(h(x)) for all x ∈ C. States x,y in a coalgebra (C, c) are
behaviorally equivalent if there is some other coalgebra (D,d) and a homomorphism
h : (C, c) → (D,d) such that h(x) = h(y).

Example 8.3.3. We consider coalgebras for the following functors (see also Table 1):

1. Coalgebras for 𝒫𝒫f are finitely-branching transition systems and states x,y are
behaviorally equivalent iff they are bisimilar.

290

8.3 coalgebra and bisimilarity, formally

automata with 150 thousand states (Deifel et al., 2019; Wißmann et al., 2021). In order
to be able to access more memory, distributed algortithms have been developed
(Birkmann et al., 2022; Blom and Orzan, 2005). Using a cluster with 265GB of
memory, the distributed algorithm was able to minimize an automaton with 1.3
million states and 260 million edges. By contrast, Boa is able to minimize the same
automaton using only 1.7GB of memory.

The reason is that we do not need any large auxiliary data structures; most of the
1.7GB is used for storing the automaton itself. Furthermore, because we only need
to compute the functor operation for states in the automaton, we are able to store
the automaton in an efficient immutable binary format.

In the rest of the paper we will first give a more formal definition of bisimilarity
in coalgebras (Section 8.3), we describe how we represent our automata, and which
basic operations we need (Section 8.4.1), we describe the auxiliary data structures
required by our algorithm (Section 8.4.3), we describe our algorithm and provide
complexity bounds (Section 8.4.4), we show a variety of functor instances that our
algorithm can minimize (Section 8.5), we compare the practical performance to
earlier work (Section 8.6), and we conclude the paper (Section 8.7).

8.3 coalgebra and bisimilarity, formally

In this section we define formally what it means for two states in a coalgebra to be
behaviorally equivalent, and we give examples to show that behavioral equivalence
in coalgebras reduces to known notions of bisimilarity for specific functors.

Recall that we model state-based systems as coalgebras for set functors
(Theorem 8.2.2):

Definition 8.3.1. An F-coalgebra consists of a carrier set C and a structure map
c : C → FC.

Intuitively, the carrier C of a coalgebra (C, c) is the set of states of the system, and
for each state x ∈ C, the map provides c(x) ∈ FC that is the structured collection of
successor states of x. If F = 𝒫𝒫f , then c(x) is simply a finite set of successor states. The
functor determines a canonical notion of behavioral equivalence.

Definition 8.3.2. A homomorphism between coalgebras h : (C, c) → (D,d) is a map
h : C → D with F[h](c(x)) = d(h(x)) for all x ∈ C. States x,y in a coalgebra (C, c) are
behaviorally equivalent if there is some other coalgebra (D,d) and a homomorphism
h : (C, c) → (D,d) such that h(x) = h(y).

Example 8.3.3. We consider coalgebras for the following functors (see also Table 1):

1. Coalgebras for 𝒫𝒫f are finitely-branching transition systems and states x,y are
behaviorally equivalent iff they are bisimilar.

290

8.3 coalgebra and bisimilarity, formally

2. An (algebraic) signature is a set Σ together with a map ar : Σ → N. The elements of
σ ∈ Σ are called operation symbols and ar(σ) is the arity. Every signature induces a
functor defined by

Σ̃X = {(σ, x1, . . . , xar(σ)) | σ ∈ Σ, x1, . . . , xar(σ) ∈ X}

on sets and for maps f : X → Y defined by

Σ̃[f](σ, x1, . . . , xar(σ)) = (σ, f(x1), . . . , f(xar(σ))).

A state in a Σ̃-coalgebra describes a possibly infinite Σ-tree, with nodes labelled by
σ ∈ Σ with ar(σ) many children. Two states are behaviorally equivalent iff they
describe the same Σ-tree.

3. Deterministic finite automata on alphabet A are coalgebras for the signature Σ with 2
operation symbols of arity |A| . States are behaviorally equivalent iff they accept the
same language.

4. For a commutative monoid (M,+, 0), the monoid-valued functor M(X) (Gumm and
Schröder, 2001, Def. 5.1) can be thought of as M-valued distributions over X:

M(X) := {µ : X → M | µ(x) ≠ 0 for only finitely many x ∈ X}

The map f : X → Y is sent by M(−) to

M(f) : M(X) → M(Y) M(f)(µ) =
(
y ↦→

∑
x∈X,f(x)=y

µ(x)
)

Coalgebras for M(−) are weighted systems whose weights come from M.

A coalgebra c : C → M(C), sends a state x ∈ C and another state y ∈ C to a weight
m := c(x)(y) ∈ M which is understood as the weight of the transition x

m−→ y, where
c(x)(y) = 0 is understood as no transition. The coalgebraic behavioral equivalence
captures weighted bisimilarity (Klin, 2009). Concretely, a weighted bisimulation is an
equivalence relation R ⊆ C×C such that for all xRy and z ∈ C:

∑
zRz′

c(x)(z′) =
∑
zRz′

c(y)(z′)

5. Taking M = (Q,+, 0), we get that M(X) are linear combinations over X. If we restrict
to the subfunctor 𝒟𝒟𝒟X) = {f ∈ Q

(X)
⩾0 |

∑
x∈X f(x) = 1} where the weights are

nonnegative and sum to 1, we get (rational finite support) probability distributions
over X.1

1 In models of computation where addition of rational numbers isn’t linear time, one can restrict to
fixed-precision rationals Qq = { p

q | p ∈ Z} for some fixed q ∈ N>0 to obtain our time complexity bound.

291

8.4 coalgebraic partition refinement

Table 1: List of functors, their coalgebras, and the accompanying notion of behavioral
equivalence. The first five is given in Theorem 8.3.3, the last introduced later in
Section 8.5.

Functor F(X) Coalgebras c : C → FC Coalgebraic equivalence

𝒫𝒫f(X) Transition Systems (Strong) Bisimilarity
𝒫𝒫f(A×X) Labelled Transition Systems (Strong) Bisimilarity
M(X) Weighted Systems (for a monoid M) Weighted Bisimilarity
𝒫𝒫f(𝒟𝒟𝒟X)) Markov Decision Processes Probabilistic Bisimilarity
M(Σ̃X) Weighted Tree Automata Backwards Bisimilarity

𝒩𝒩𝒩X) Monotone Neighbourhood Frames Monotone Bisimilarity

6. For two functors F and G, we can consider the coalgebra over their composition
F ◦G. Taking F = 𝒫𝒫f and G = A× (−), coalgebras over F ◦G are labelled transition
systems with strong bisimilarity. Taking F = 𝒫𝒫f and G = 𝒟𝒟 , coalgebras over F ◦G
are Markov decision processes with probabilistic bisimilarity (Larsen and Arne Skou,
1991, Def. 6.3), (Bartels et al., 2003, Thm. 4.2). For F = M(−) and G = Σ for some
signature functor, FG-coalgebras are weighted tree automata and coalgebraic behavioral
equivalence is backward bisimilarity (Deifel et al., 2019; Björklund et al., 2009).

Sometimes, we need to reason about successors and predecessors of a general
F-coalgebra:

Definition 8.3.4. Given a coalgebra c : C → FC and a state x ∈ C, we say that
y ∈ C is a successor of x if c(x) is not in the image of Fiy : F(C \ {y}) → FC, where
iy : C \ {y} ↣ C is the canonical inclusion. Likewise, x is a predecessor of y, and the
outdegree of x is the number of successors of x.

Intuitively, y is a successor of x if y appears somewhere in the term that defines
c(x) ∈ F(C), like we did in the “coalgebra” row in Figure 45. We will access the
predecessors in the minimization algorithm, and moreover, the total and maximum
number of successors will be used in the run time complexity analysis.

8.4 coalgebraic partition refinement

In this section we will describe how the coalgebraic notions of the preceding section
can be used for automata minimization.

8.4.1 Representing Abstract Data

When writing an abstract algorithm, it is crucial for the complexity analysis, how
the abstract data is actually represented in memory. We understand finite sets like

292

8.4 coalgebraic partition refinement

Table 1: List of functors, their coalgebras, and the accompanying notion of behavioral
equivalence. The first five is given in Theorem 8.3.3, the last introduced later in
Section 8.5.

Functor F(X) Coalgebras c : C → FC Coalgebraic equivalence

𝒫𝒫f(X) Transition Systems (Strong) Bisimilarity
𝒫𝒫f(A×X) Labelled Transition Systems (Strong) Bisimilarity
M(X) Weighted Systems (for a monoid M) Weighted Bisimilarity
𝒫𝒫f(𝒟𝒟𝒟X)) Markov Decision Processes Probabilistic Bisimilarity
M(Σ̃X) Weighted Tree Automata Backwards Bisimilarity

𝒩𝒩𝒩X) Monotone Neighbourhood Frames Monotone Bisimilarity

6. For two functors F and G, we can consider the coalgebra over their composition
F ◦G. Taking F = 𝒫𝒫f and G = A× (−), coalgebras over F ◦G are labelled transition
systems with strong bisimilarity. Taking F = 𝒫𝒫f and G = 𝒟𝒟 , coalgebras over F ◦G
are Markov decision processes with probabilistic bisimilarity (Larsen and Arne Skou,
1991, Def. 6.3), (Bartels et al., 2003, Thm. 4.2). For F = M(−) and G = Σ for some
signature functor, FG-coalgebras are weighted tree automata and coalgebraic behavioral
equivalence is backward bisimilarity (Deifel et al., 2019; Björklund et al., 2009).

Sometimes, we need to reason about successors and predecessors of a general
F-coalgebra:

Definition 8.3.4. Given a coalgebra c : C → FC and a state x ∈ C, we say that
y ∈ C is a successor of x if c(x) is not in the image of Fiy : F(C \ {y}) → FC, where
iy : C \ {y} ↣ C is the canonical inclusion. Likewise, x is a predecessor of y, and the
outdegree of x is the number of successors of x.

Intuitively, y is a successor of x if y appears somewhere in the term that defines
c(x) ∈ F(C), like we did in the “coalgebra” row in Figure 45. We will access the
predecessors in the minimization algorithm, and moreover, the total and maximum
number of successors will be used in the run time complexity analysis.

8.4 coalgebraic partition refinement

In this section we will describe how the coalgebraic notions of the preceding section
can be used for automata minimization.

8.4.1 Representing Abstract Data

When writing an abstract algorithm, it is crucial for the complexity analysis, how
the abstract data is actually represented in memory. We understand finite sets like

292

8.4 coalgebraic partition refinement

the carrier of the input coalgebra as finite cardinals C � {0, . . . , |C| − 1} ⊆ N, and a
map f : C → D for finite C is represented by an array of length |C| .

coalgebra implementation The coalgebra c : C → FC that we wish to
minimize is given to the algorithm as a black-box, because it only needs to interact
with the coalgebra via a specific interface. Whenever the algorithm comes up
with a partition p : C → C′, two states x,y ∈ C need to be moved to different
blocks if F[p](c(x)) ≠ F[p](c(y)). Hence, the algorithm needs to derive F[p](c(x))
for states of interest x ∈ C. Since all partitions are finite, we can assume C′ ⊆ N,
and so for simplicity, we consider partitions as maps p : C → N with the image
I⇕(p) = {0, . . . , |C′| − 1} and so F[p](c(x)) is an element of the set FN.

For the case of labelled transition systems, i.e. F(X) = 𝒫𝒫f(A × X), the binary
representation of F[p](c(x)) is called the signature of x ∈ C with respect to p (Blom and
Orzan, 2005). This straightforwardly generalizes to arbitrary functors F (Birkmann
et al., 2022; Wißmann et al., 2020), so we reuse the terminology signature for the
binary encoding of the successor structure of x ∈ C with respect to the blocks the
partition p of the previous iteration.

Beside the signatures, the optimized minimization algorithm needs to be able to
determine the predecessors of a state, in order to determine which states to mark
dirty. Formally, we require:

Definition 8.4.1. The implementation of an F-coalgebra c : C → FC is the data
(n, sig, pred) where:

1. n ∈ N is a natural number such that C � {0, . . . ,n− 1}

2. sig : C× (C → N) → 2∗ is a function that given a state and a partition, computes
the successor structure of the state (represented a binary data), satisfying for
all partitions p : C → N (encoded as an array of size |C|) that

∀x,y ∈ C : sig(x,p) = sig(y,p) ⇔ F[p](c(x)) = F[p](c(y)) (4)

3. pred : C → 𝒫𝒫fC is a function such that pred(x) contains the predecessors of x.

Passing such a general interface makes the algorithm usable as a library, because
the coalgebra can be represented in an arbitrary fashion in memory, as long as the
above functions can be implemented.

The equivalence involving sig (4) specifies that the binary data of type 2∗ returned
by sig is some normalized representation of F[p](c(x)) ∈ FN. For example, in the
implementation for F = 𝒫𝒫f , an element of FN = 𝒫𝒫fN is a set of natural numbers.
Since e.g. {2, 0} and {0, 2, 2} ∈ 𝒫𝒫fN are the same set, the sig function essentially
needs to sort the arising sets and remove duplicates:

Example 8.4.2. We can represent 𝒫𝒫f-coalgebras c : C → 𝒫𝒫fC by keeping for every state
x ∈ C an array of its successors c(x) ⊆ C in memory. As a pre-processing step, we directly

293

8.4 coalgebraic partition refinement

Algorithm 3 Renumbering an array using radix sort

procedure Renumber(p : B → 2∗)
Create a new array r of size |B| containing numbers 0..|B|
Sort r by the key p : B → 2∗ using radix-sort
Create a new array p′ : B → N

j ← 0
for i ∈ 0..|B| do

if i > 0 and p[r[i− 1]] ≠ p[r[i]] then j ← j+ 1
p′[r[i]] ← j

return p′

compute the predecessors for each state x ∈ C and keep them as an array pred(x) ⊆ C for
every state x in memory as well (computing the predecessors of all states can be done in
linear time, and thus does not affect the complexity of the algorithm). With n := |C| , the
remaining function sig is implemented as follows:

1. Given p : C → N and x ∈ C, create a new array t of integers of size |c(x)| . For each
successor y ∈ c(x), add p(y) ∈ N to t; this runs linearly in the length of t because we
assume that the map p is represented as an array with 𝒪𝒪𝒪1) access.

2. Sort t via radix sort and then remove all duplicates, with both steps taking linear time.

3. Return the binary data blob of the integer array t.

For 𝒫𝒫f , the computation of the signature of a state x ∈ C thus takes 𝒪𝒪𝒪𝒪c(x)|) time.

We discuss further instances in Section 8.5 later.

renumber By encoding everything as binary data in a normalized way, we are
able to make heavy use of radix sort, and thus achieve linear bounds on sorting
tasks. This trick is also used in the complexity analysis of Kanellakis and Smolka,
who refer to it as lexicographic sorting method by Aho, Hopcroft, and Ullman (Aho
et al., 1974). We use this trick in order to turn arrays of binary data p : B → 2∗ into
their corresponding partitions p′ : B → {0, . . . , |I⇕(p)| − 1} satisfying p(x) = p(y) ⇐⇒
p′(x) = p′(y) for all x,y ∈ B. The pseudocode is listed in Algorithm 3: first, a
permutation r : B → B is computed such that p ◦ r : B → 2∗ is sorted. This radix sort
runs in 𝒪𝒪𝒪♯(p)), where ♯(p) =

∑
x∈B |p(x)| is the total size of the entire array p. Since

identical entries in p are now adjacent, a simple for-loop iterates over r and readily
assigns block numbers.

Lemma 8.4.3. Algorithm 3 runs in time 𝒪𝒪𝒪♯(p)) for the parameter p : B → 2∗ and returns
a map p′ : B ↠ b for some b ∈ N such that for all x,y ∈ B we have p(x) = p(y) ⇔ p′(x) =
p′(y).

In the actual implementation, we use hash maps to implement Renumber. This is
faster in practice but due to the resolving of hash-collisions, the theoretical worst-case
complexity of the implementation has an additional log factor.

294

8.4 coalgebraic partition refinement

Algorithm 3 Renumbering an array using radix sort

procedure Renumber(p : B → 2∗)
Create a new array r of size |B| containing numbers 0..|B|
Sort r by the key p : B → 2∗ using radix-sort
Create a new array p′ : B → N

j ← 0
for i ∈ 0..|B| do

if i > 0 and p[r[i− 1]] ≠ p[r[i]] then j ← j+ 1
p′[r[i]] ← j

return p′

compute the predecessors for each state x ∈ C and keep them as an array pred(x) ⊆ C for
every state x in memory as well (computing the predecessors of all states can be done in
linear time, and thus does not affect the complexity of the algorithm). With n := |C| , the
remaining function sig is implemented as follows:

1. Given p : C → N and x ∈ C, create a new array t of integers of size |c(x)| . For each
successor y ∈ c(x), add p(y) ∈ N to t; this runs linearly in the length of t because we
assume that the map p is represented as an array with 𝒪𝒪𝒪1) access.

2. Sort t via radix sort and then remove all duplicates, with both steps taking linear time.

3. Return the binary data blob of the integer array t.

For 𝒫𝒫f , the computation of the signature of a state x ∈ C thus takes 𝒪𝒪𝒪𝒪c(x)|) time.

We discuss further instances in Section 8.5 later.

renumber By encoding everything as binary data in a normalized way, we are
able to make heavy use of radix sort, and thus achieve linear bounds on sorting
tasks. This trick is also used in the complexity analysis of Kanellakis and Smolka,
who refer to it as lexicographic sorting method by Aho, Hopcroft, and Ullman (Aho
et al., 1974). We use this trick in order to turn arrays of binary data p : B → 2∗ into
their corresponding partitions p′ : B → {0, . . . , |I⇕(p)| − 1} satisfying p(x) = p(y) ⇐⇒
p′(x) = p′(y) for all x,y ∈ B. The pseudocode is listed in Algorithm 3: first, a
permutation r : B → B is computed such that p ◦ r : B → 2∗ is sorted. This radix sort
runs in 𝒪𝒪𝒪♯(p)), where ♯(p) =

∑
x∈B |p(x)| is the total size of the entire array p. Since

identical entries in p are now adjacent, a simple for-loop iterates over r and readily
assigns block numbers.

Lemma 8.4.3. Algorithm 3 runs in time 𝒪𝒪𝒪♯(p)) for the parameter p : B → 2∗ and returns
a map p′ : B ↠ b for some b ∈ N such that for all x,y ∈ B we have p(x) = p(y) ⇔ p′(x) =
p′(y).

In the actual implementation, we use hash maps to implement Renumber. This is
faster in practice but due to the resolving of hash-collisions, the theoretical worst-case
complexity of the implementation has an additional log factor.

294

8.4 coalgebraic partition refinement

The renumbering can be understood as the compression of a map p : B → 2∗ to an
integer array p′ : B → N. In the algorithm, the array elements of type 2∗ are encoded
signatures of states.

8.4.2 The Naive Method Coalgebraically

To illustrate the use of the encoding and notions defined above, let us restate the
naive method (Algorithm 1, (König and Küpper, 2014; Kanellakis and Smolka, 1983))
in Algorithm 4. Recall that the basic idea is that it computes a sequence of partitions
pi : C → Pi (i ∈ N) for a given input coalgebra c : C → FC. Initially this partition

identifies all states p0 : C → 1. In the first iteration, the map p′ : (C c−→ FC
F[p]−−−→ FN)

sends each state to its output behavior (this distinguishes final from non-final states
in DFAs and deadlock from live states in transition systems). Then this partition is
refined successively under consideration of the transition structure: x,y are identified
by pi+1 : C → Pi+1 iff they are identified by the composed map

C
c−→ FC

F[pi]−−−−→ FPi.

The algorithm terminates as soon as pi = pi+1, which then identifies precisely the
behaviorally equivalent states in the input coalgebra (C, c).

Algorithm 4 The naive algorithm, also called final chain partitioning

procedure NaiveAlgorithm’(c : C → FC)
Create a new array p : C → N := (x ↦→ 0) ⊲ i.e. p[x] = 0 for all x ∈ C
while |I⇕(p)| changes do

compute p′ : C → 2∗ := x ↦→ sig(x,p) ⊲ p′[x] ∈ 2∗ is the encoding of
F[p](c(x)) ∈ FN

p : C → N ← Renumber(p′)

Recently, Birkmann et al. (Birkmann et al., 2022) have adapted this algorithm to a
distributed setting, with a run time in 𝒪𝒪𝒪m · n).

8.4.3 The Refinable Partition Data Structure

For the naive method it sufficed to represent the quotient on the state space p : C →
N by a simple array. For more efficient algorithms like our Algorithm 2, it is crucial
to quickly perform certain operations on the partition, for which we have built upon
a refinable partition data structure (Valmari, 2009; Valmari and Lehtinen, 2008). The
data structure keeps track of the partition of the states into blocks. A key requirement
for our algorithm is the ability to split a block into k sub-blocks, where k is arbitrary.
The refinable partition also tracks for each state whether it is clean or dirty, and a
worklist of blocks with at least one dirty state.

295

8.4 coalgebraic partition refinement

Let us define the exposed functionality of the refinable partition data structure:

1. Given (the natural number identifying) a block B, return its dirty states Bdi in
𝒪𝒪𝒪𝒪Bdi|).

2. Given a block B, return one arbitrary clean state in 𝒪𝒪𝒪1) if there is any. We
denote this by the set Bcl1 of cardinality at most 1. Bcl1 contains a clean state of
B or is empty if all states of B are dirty.

3. Return an arbitrary block with a dirty state and remove it from the worklist, in
𝒪𝒪𝒪1).

4. MarkDirty(s): mark state s dirty, and put its block on the worklist, in 𝒪𝒪𝒪1).

5. Split(B,A): split a block B into many sub-blocks according to an array
A : Bdi → N. The array A indicates that the i-th dirty state is placed in
the sub-block A[i], meaning that two states s1, s2 stay together iff A[s1] = A[s2].
The clean states are placed in the 0-th sub-block, with those states satisfying
A[s] = 0.

The block identifier of B gets re-used as the identifier for largest sub-block, and
all states of B are marked clean. Split returns the list of all newly allocated
sub-blocks, i.e. those except the re-used one.

For the time complexity of our algorithm, it is important that Split(B,A) runs
in time 𝒪𝒪𝒪𝒪Bdi|), regardless of the number of clean states.

In order to implement these operations with the desired run time complexity, we
maintain the following data structures:

• loc2state is an array of size |C| containing all states of C. Every block is a section
of this array, and the other stuctures are used to quickly find and update the
entries in the loc2state array. A visualization of an extract of this array is shown
in Algorithm 5; for example lowermost row shows three blocks of size 5, 3, and 1,
respectively.

• The array state2loc is inverse to loc2state; state2loc[s] provides the index
(“location”) of state s in loc2state.

• blocks is an array of tuples (start,mid, end) and specifies the blocks of the
partition. A block identifier B is simply an index in this array and blocks[B] =
(start,mid, end) means that block B starts at loc2state[start] and ends before
loc2state[end], as indicated in the visualization in Algorithm 5. The range
start..mid contains the clean states of B and mid..end the dirty states. E.g. mid =
end iff the block has no dirty states.

• The array block_of of size |C| that maps every state s ∈ C to the ID B =
block_of[s] of its surrounding block.

296

8.4 coalgebraic partition refinement

Let us define the exposed functionality of the refinable partition data structure:

1. Given (the natural number identifying) a block B, return its dirty states Bdi in
𝒪𝒪𝒪𝒪Bdi|).

2. Given a block B, return one arbitrary clean state in 𝒪𝒪𝒪1) if there is any. We
denote this by the set Bcl1 of cardinality at most 1. Bcl1 contains a clean state of
B or is empty if all states of B are dirty.

3. Return an arbitrary block with a dirty state and remove it from the worklist, in
𝒪𝒪𝒪1).

4. MarkDirty(s): mark state s dirty, and put its block on the worklist, in 𝒪𝒪𝒪1).

5. Split(B,A): split a block B into many sub-blocks according to an array
A : Bdi → N. The array A indicates that the i-th dirty state is placed in
the sub-block A[i], meaning that two states s1, s2 stay together iff A[s1] = A[s2].
The clean states are placed in the 0-th sub-block, with those states satisfying
A[s] = 0.

The block identifier of B gets re-used as the identifier for largest sub-block, and
all states of B are marked clean. Split returns the list of all newly allocated
sub-blocks, i.e. those except the re-used one.

For the time complexity of our algorithm, it is important that Split(B,A) runs
in time 𝒪𝒪𝒪𝒪Bdi|), regardless of the number of clean states.

In order to implement these operations with the desired run time complexity, we
maintain the following data structures:

• loc2state is an array of size |C| containing all states of C. Every block is a section
of this array, and the other stuctures are used to quickly find and update the
entries in the loc2state array. A visualization of an extract of this array is shown
in Algorithm 5; for example lowermost row shows three blocks of size 5, 3, and 1,
respectively.

• The array state2loc is inverse to loc2state; state2loc[s] provides the index
(“location”) of state s in loc2state.

• blocks is an array of tuples (start,mid, end) and specifies the blocks of the
partition. A block identifier B is simply an index in this array and blocks[B] =
(start,mid, end) means that block B starts at loc2state[start] and ends before
loc2state[end], as indicated in the visualization in Algorithm 5. The range
start..mid contains the clean states of B and mid..end the dirty states. E.g. mid =
end iff the block has no dirty states.

• The array block_of of size |C| that maps every state s ∈ C to the ID B =
block_of[s] of its surrounding block.

296

8.4 coalgebraic partition refinement

• worklist is a list of block identifiers and mentions those blocks with at least one
dirty state.

Algorithm 5 Refinable partition data structure with n-way split
procedure MarkDirty(s)

⊲ Determine the block data ⊳
B := block_of[s]
j := state2loc[s]
(start,mid, end) := blocks[B]
⊲ Do nothing if already dirty ⊳
if mid ⩽ j then return
⊲ Add to worklist if first dirty state ⊳
if mid = end then
worklist.add(B)
⊲ Swap s with the last clean state ⊳
s′ := loc2state[mid− 1]
state2loc[s′] := j
state2loc[s] := mid
loc2state[j] := s′

loc2state[mid] := s
⊲ Move marker to make s dirty ⊳
blocks[B].mid −= 1

s1 s2 s3 s4 s5 s6 s7 s8 s9· · · · · ·

clean dirty states Bdi

block B

start endmid

s1 s2 s4 s3 s5 s6 s7 s8 s9· · · · · ·

s1 s2 s4 s7 s8 s3 s6 s9 s5· · · · · ·

MarkDirty(s3)

Split(B,[1, 2, 1, 0, 0, 1])

procedure Split(B, A : Bdi → N)
⊲ Cumulative counts of sub-block sizes ⊳
(start,mid, end) := blocks[B]
D[0.. maxi A[i] + 1] := 0
D[0] := mid− start
for j ∈ Bdi do

D[A[j]] += 1
imax = argmaxi D[i]
for i ∈ 1..|D| do

D[i] += D[i− 1]
⊲ Re-order the states by A-value ⊳
dirty := copy(loc2state[mid..end])
for i ∈ reverse(0..|A|) do

D[A[i]] −= 1
j := start+D[A[i]]
loc2state[j] := dirty[i]
state2loc[loc2state[i]] := j

D[0] −= mid− start
⊲ Create blocks and assign IDs ⊳
D.add(end− start)
old_block_count := |blocks|
for i ∈ 0..|D| − 1 do

j0 := start+D[i]
j1 := start+D[i+ 1]
if i = imax then

blocks[B] = (j0, j1, j1)
else

blocks.add(j0, j1, j1)
idx := |blocks| − 1
block_of[loc2state[j0..j1]] :=
idx

return old_block_count..|blocks|

With this data, we can implement the above-mentioned interface:

1. For a block B, its dirty states Bdi are the states loc2state[mid..end] where
blocks[B] = (start,mid, end).

2. One arbitrary clean state Bcl1 of a given block B is determined in a similar
fashion: for blocks[B] = (start,mid, end), if start = mid, then there is no
clean state Bcl1 = {}, and otherwise we chose Bcl1 = {loc2state[start]}.

297

8.4 coalgebraic partition refinement

3. Returning an arbitrary block containing a dirty state is just a matter of
extracting one element from worklist.

4. The pseudocode of MarkDirty is listed in Algorithm 5: when marking a state
s ∈ C dirty, we first find the boundaries (start,mid, end) = blocks[B] of the
surrounding block B = block_of[s]. By the index state2loc[s], we can check
in 𝒪𝒪𝒪1) whether s is in the first (“clean”) or second (“dirty”) part of the block.
Only if s wasn’t dirty already, we need to do something: if B did not contain
dirty states yet (start = mid), B now needs to be added to the worklist. Then,
we change the location of s in the main array such that it becomes the last
clean state, and then we make it dirty by decrementing the index mid.

In the example in Algorithm 5, the content of loc2state is visualized. The
bold dashed line visualizes the mid position, so states on the left of it are clean,
states on the right are dirty. The call to MarkDirty(s3) transforms the first
row into the second row: it does so by moving s3 from the clean states of B to
the dirty ones, while s4 stays clean.

5. The pseudocode of Split is listed in Algorithm 5: for a block B, the caller
provides us with an array A : Bdi → N that specifies which of the states stay
together and which are moved to separate blocks. In the visualized example,
A = [1, 2, 1, 0, 0, 1] represents the map

s3 ↦→ 1, s5 ↦→ 2, s6 ↦→ 1, s7 ↦→ 0, s8 ↦→ 0, s9 ↦→ 1

So Split(B,A) needs to create new blocks s3, s6, s9 and s5, while s7, s8 stay with
the clean states. In any case, the clean states stay in the same block, so we can
understand A as an efficient representation of the map

Ā : B → N Ā(s) =
{
A(s) if s ∈ Bdi,

0 otherwise.

Then, two states s, s′ ∈ B stay in the same block iff Ā[s] = Ā[s′]. In the
implementation, we first create an auxiliary array D which has different
meanings. Before the definition of imax, it counts the sizes of the resulting
blocks:

D[i] = {j ∈ B | Ā[j] = i}.

We compute D by initializing D[0] with the number of clean states (mid− start)
and iterating over A. The index of the largest block remembered in imax,
and then we change the meaning of D such that it now holds partial sums
D[i] :=

∑
0⩽j<i D[j]. For every new block i, this sum D[i] denotes the end of

the block, relative to the start of the old block B.

We use the sums to re-order the states such that states belonging to the same
sub block come next to each other. The for-loop moves every state i ∈ B to

298

8.4 coalgebraic partition refinement

3. Returning an arbitrary block containing a dirty state is just a matter of
extracting one element from worklist.

4. The pseudocode of MarkDirty is listed in Algorithm 5: when marking a state
s ∈ C dirty, we first find the boundaries (start,mid, end) = blocks[B] of the
surrounding block B = block_of[s]. By the index state2loc[s], we can check
in 𝒪𝒪𝒪1) whether s is in the first (“clean”) or second (“dirty”) part of the block.
Only if s wasn’t dirty already, we need to do something: if B did not contain
dirty states yet (start = mid), B now needs to be added to the worklist. Then,
we change the location of s in the main array such that it becomes the last
clean state, and then we make it dirty by decrementing the index mid.

In the example in Algorithm 5, the content of loc2state is visualized. The
bold dashed line visualizes the mid position, so states on the left of it are clean,
states on the right are dirty. The call to MarkDirty(s3) transforms the first
row into the second row: it does so by moving s3 from the clean states of B to
the dirty ones, while s4 stays clean.

5. The pseudocode of Split is listed in Algorithm 5: for a block B, the caller
provides us with an array A : Bdi → N that specifies which of the states stay
together and which are moved to separate blocks. In the visualized example,
A = [1, 2, 1, 0, 0, 1] represents the map

s3 ↦→ 1, s5 ↦→ 2, s6 ↦→ 1, s7 ↦→ 0, s8 ↦→ 0, s9 ↦→ 1

So Split(B,A) needs to create new blocks s3, s6, s9 and s5, while s7, s8 stay with
the clean states. In any case, the clean states stay in the same block, so we can
understand A as an efficient representation of the map

Ā : B → N Ā(s) =
{
A(s) if s ∈ Bdi,

0 otherwise.

Then, two states s, s′ ∈ B stay in the same block iff Ā[s] = Ā[s′]. In the
implementation, we first create an auxiliary array D which has different
meanings. Before the definition of imax, it counts the sizes of the resulting
blocks:

D[i] = {j ∈ B | Ā[j] = i}.

We compute D by initializing D[0] with the number of clean states (mid− start)
and iterating over A. The index of the largest block remembered in imax,
and then we change the meaning of D such that it now holds partial sums
D[i] :=

∑
0⩽j<i D[j]. For every new block i, this sum D[i] denotes the end of

the block, relative to the start of the old block B.

We use the sums to re-order the states such that states belonging to the same
sub block come next to each other. The for-loop moves every state i ∈ B to

298

8.4 coalgebraic partition refinement

the end of the new block A[i] and decrements D[A[i]] such that the next state
belonging to A[i] is inserted before that. Finally, we do not need to move the
clean states to sub-block 0, so we simply decrement D[0] by the number of
clean states. Since we have inserted all the elements at the end of their future
subblocks and have decremented the entry of D during each insertion, the
entries of D now point to the first element of each future subblock.

Having the states in the right position within B, we can now create the
subblocks with the right boundaries. For convenience, we add the (relative)
end of B to D, because then, every sub block i ranges from D[i] to D[i+ 1]. We
had saved the index of the largest subblock imax, which will inherit the block
identifier of B and the entry blocks[B]. For all other subblocks, we add a new
block to blocks. All new blocks have no dirty states, so mid = end for the new
entries. If we have added a new block, then we need to update block_of[s] for
every state s in the subblock.

8.4.4 Optimized Algorithm

With the refinable partition data structure at hand, we can improve on the naive
algorithm without restricting the choice of F. Our efficient algorithm is given in
Algorithm 6. We start by creating a refinable partition data structure with a single
block for all the states. We then iterate while there is still a block with dirty states,
i.e. with states whose signatures should be recomputed. We split the block into
sub-blocks in a refinement step that is similar to the naive algorithm, and re-use the
old block for the largest sub-block.

To achieve our complexity bound, this splitting must happen in time |Bdi| ,
regardless of the number of clean states. Fortunately, this is possible because
the clean states all have the same signature, because all their successors remained
unchanged. Hence, it suffices to compute the signature for one arbitrary clean state,
denoted by Bcl1 . Depending on the functor, it might happen that there are dirty states
d ∈ Bdi that have the same signature as the clean states. Having marked a state as
“dirty” just means that the signature might have changed compared to the previous
run, so it might be that the signature of a dirty state turns out to be identical to the
clean states in the block B.

The wrapper Renumber′ then first compresses p : Bdi → 2∗ to A : Bdi → N. Then,
Renumber′ ensures that those dirty states d ∈ Bdi with the same signature as the
clean states satisfy A(d) = 0. This is used in Split: in the splitting operation, two
dirty states d,d′ ∈ Bdi stay in the same block iff A(d) = A(d′) and the clean states
end up in the same block as the dirty states d with A(d) = 0.

After the block B is split, we need to mark all states x ∈ B as dirty whose signature
might have possibly changed due to the updated partition. If the successor y of
x ∈ B was moved to a new block, i.e. if p(y) changed, this might affect the signature

299

8.4 coalgebraic partition refinement

Algorithm 6 Optimized Partition Refinement for all Set functors

procedure PartRefSetFun(C, sig, pred) ⊲ i.e. for the implementation of c : C → FC
Create a new refinable partition structure p : C → N

Init p to have one block of all states, and all states marked dirty.
while there is a block B with a dirty state do

Compute signatures,
in total 𝒪𝒪𝒪m logn) calls
to the coalgebra

Compute the arrays
(sigsdi : Bdi → 2∗) := (x ↦→ sig(x,p))
(sigscl : Bcl1 → 2∗) := (x ↦→ sig(x,p))

Split B according to
signatures in 𝒪𝒪𝒪𝒪Bdi|)

A : Bdi → N := Renumber′(sigsdi, sigscl)
Bnew := Split(B,A)

Mark dirty all states with
a successor in a new block
in total time 𝒪𝒪𝒪m logn)

for every B′ ∈ Bnew and s ∈ B′ do
for every s′ ∈ pred(s) do

MarkDirty(s′)
return the partition p

procedure Renumber’(p : Bdi → 2∗,q : Bcl1 → 2∗)
(A : Bdi → N) := Renumber(p)

Ensure A(d)=0 for all
states d with the same
signature as clean states.

if d ∈ Bdi, c ∈ Bcl1 with p(d) = q(c) then
Swap the values 0 and A(d) in array A

return A

of x. Conversely, if no successor of x changed block, then the signature of x remains
unchanged:

Lemma 8.4.4. If for a finite coalgebra c : C → FC, two partitions p1,p2 : C → N satisfy
p1(y) = p2(y) for all successors y of x ∈ C, then F[p1](c(x)) = F[p2](c(x)).

We can now prove correctness of the partition refinement for coalgebras:

Theorem 8.4.5. For a given coalgebra c : C → FC, Algorithm 6 computes behavioral
equivalence.

8.4.5 Complexity Analysis

We structure the complexity analysis as a series of lemmas phrased in terms of the
number of states n = |C| and the total number of transitions m defined by

m :=
∑
x∈C

|pred(x)|

As a first observation, we exploit that Split re-uses the block index for the largest
resulting block. Thus, whenever x is moved to a block with a different index, the
new block has at most half the size of the old block, leading to the logarithmic factor,
by Hopcroft’s trick:

300

8.4 coalgebraic partition refinement

Algorithm 6 Optimized Partition Refinement for all Set functors

procedure PartRefSetFun(C, sig, pred) ⊲ i.e. for the implementation of c : C → FC
Create a new refinable partition structure p : C → N

Init p to have one block of all states, and all states marked dirty.
while there is a block B with a dirty state do

Compute signatures,
in total 𝒪𝒪𝒪m logn) calls
to the coalgebra

Compute the arrays
(sigsdi : Bdi → 2∗) := (x ↦→ sig(x,p))
(sigscl : Bcl1 → 2∗) := (x ↦→ sig(x,p))

Split B according to
signatures in 𝒪𝒪𝒪𝒪Bdi|)

A : Bdi → N := Renumber′(sigsdi, sigscl)
Bnew := Split(B,A)

Mark dirty all states with
a successor in a new block
in total time 𝒪𝒪𝒪m logn)

for every B′ ∈ Bnew and s ∈ B′ do
for every s′ ∈ pred(s) do

MarkDirty(s′)
return the partition p

procedure Renumber’(p : Bdi → 2∗,q : Bcl1 → 2∗)
(A : Bdi → N) := Renumber(p)

Ensure A(d)=0 for all
states d with the same
signature as clean states.

if d ∈ Bdi, c ∈ Bcl1 with p(d) = q(c) then
Swap the values 0 and A(d) in array A

return A

of x. Conversely, if no successor of x changed block, then the signature of x remains
unchanged:

Lemma 8.4.4. If for a finite coalgebra c : C → FC, two partitions p1,p2 : C → N satisfy
p1(y) = p2(y) for all successors y of x ∈ C, then F[p1](c(x)) = F[p2](c(x)).

We can now prove correctness of the partition refinement for coalgebras:

Theorem 8.4.5. For a given coalgebra c : C → FC, Algorithm 6 computes behavioral
equivalence.

8.4.5 Complexity Analysis

We structure the complexity analysis as a series of lemmas phrased in terms of the
number of states n = |C| and the total number of transitions m defined by

m :=
∑
x∈C

|pred(x)|

As a first observation, we exploit that Split re-uses the block index for the largest
resulting block. Thus, whenever x is moved to a block with a different index, the
new block has at most half the size of the old block, leading to the logarithmic factor,
by Hopcroft’s trick:

300

8.4 coalgebraic partition refinement

Lemma 8.4.6. A state is moved into a new block at most 𝒪𝒪𝒪logn) times, that is, for every
x ∈ C, the value of p(x) in Algorithm 6 changes at most ⌈log2 |C|⌉ many times.

When a state is moved to a different block, all its predecessors are marked dirty. If
there are m transitions in the system, and each state is moved to different block at
most logn times, then:

Lemma 8.4.7. MarkDirty is called at most m · ⌈logn⌉ + n many times (including
initialization).

In the actual implementation, we arrange the pointers in the initial partition
directly such that all states are marked dirty when the main loop is entered for the
first time. The overall run time is dominated by the complexity of sig and pred. Here,
we assume that sig always takes at least the time needed to write its return value.
On the other hand, we allow that pred returns a pre-computed array by reference,
taking only 𝒪𝒪𝒪1) time. The pre-computation of pred can be done at the beginning of
the algorithm by iterating over the entire coalgebra once, e.g. it can be done along
with input parsing. This runs linear in the overall size of the coalgebra, and thus is
dominated by the complexity of the algorithm:

Proposition 8.4.8. The run time complexity of Algorithm 6 amounts to the time spent in
sig and in pred plus 𝒪𝒪𝒪m · logn+n).

Thus, it remains to count how often the algorithm calls sig. Roughly, sig is called
for every state that becomes dirty, so we can show:

Theorem 8.4.9. The number of invocations of sig in Algorithm 6 is bounded by 𝒪𝒪𝒪m ·
logn+n).

Corollary 8.4.10. If sig takes f time, if pred runs in 𝒪𝒪𝒪1) (returning a reference) and m ⩾ n,
then Algorithm 6 computes behavioral equivalence in the input coalgebra in 𝒪𝒪𝒪f ·m · logn)
time.

Example 8.4.11. For 𝒫𝒫f-coalgebras, sig takes 𝒪𝒪𝒪k) time, if every state has at most k

successors. Then Algorithm 6 minimizes 𝒫𝒫f -coalgebras in time 𝒪𝒪𝒪k ·m · logn). Note that
m ⩽ k · n, so the complexity is also bounded by 𝒪𝒪𝒪k2 · n logn).

8.4.6 Comparison to Related Work on the Algorithmic Level

We can classify partition refinement algorithms by their time complexity, and by the
classes of functors they are applicable to. For concrete system types, there are more
algorithms than we can recall, so instead, we focus on early representatives and on
generic algorithms.

the hopcroft line of work . One line of work originates in Hopcroft’s 1971
work on DFA minimization (Hopcroft, 1971), and continues with Kanellakis and

301

8.4 coalgebraic partition refinement

Smolka’s (Kanellakis and Smolka, 1983, 1990) work on partition refinement for
transition systems running in 𝒪𝒪𝒪k2n logn) where k is the maximum out-degree. It
was a major achievement by Paige and Tarjan (Paige and Tarjan, 1987) to reduce
the run time to 𝒪𝒪𝒪kn logn) by counting transitions and storing these transition
counters in a clever way, which subsequently lead to a fruitful line of research on
transition system minimization (Garavel and Lang, 2022). This was generalized
to coalgebras in Deifel, Dorsch, Milius, Schröder and Wißmann’s work on CoPaR,
which is applicable to a large class of functors satisfying their zippability condition.
These algorithms keep track of a worklist of blocks with respect to which other blocks
still have to be split. Our algorithm, by contrast, keeps track of a worklist of blocks
that themselves still potentially have to be split. Although similar at first sight, they
are fundamentally different: in the former, one is given a block, and must determine
how to split all the predecessor blocks, whereas in our case one is given a block,
which is then split based on its successors.

The advantage of the former class of algorithms is that they have optimal time
complexity 𝒪𝒪𝒪kn logn), provided one can implement the special splitting procedure
for the functor. The additional memory needed for the transition counters is linear
in kn.

Our algorithm, by contrast, has an extra factor of k, but is applicable to all
computable set-functors. By investing this extra time-factor k, we reduce the memory
consumption because we do not need to maintain transition counters or intermediate
states like CoPaR.

A practical advantage of our algorithm is that one recomputation of a block split
can take into account the changes to all the other blocks that happened since the
recomputation. The Hopcroft-CoPaR line of work, on the other hand, has to consider
each change of the other blocks separately. This advantage is of no help in the
asymptotic complexity, because in the worst case only one other split happened each
time, and then our algorithm does in 𝒪𝒪𝒪k) what CoPaR can do in 𝒪𝒪𝒪1). However, as
we shall see in the benchmarks of Section 8.6, in practice our algorithm outperforms
CoPaR and mCRL2, even though our algorithm is applicable to a more general class
of functors.

the moore line of work . Another line of work originates in Moore’s 1956
work on DFA minimization (Moore, 1956), which in retrospect is essentially the
naive algorithm specialized to DFAs. In this class, the most relevant for us is the
algorithm by König and Küpper (König and Küpper, 2014) for coalgebras, and the
distributed algorithm of Birkmann, Deifel, and Milius (Birkmann et al., 2022). Like
our algorithm, algorithms in this class split a block based on its successors, and can
be applied to general functors. Unlike the Hopcroft-CoPaR line of work and our
algorithm, the running time of these algorithms is 𝒪𝒪𝒪kn2).

Another relevant algorithm in this class is the algorithm of Blom and Orzan
(Blom and Orzan, 2005) for transition systems. Their main algorithm runs in time
𝒪𝒪𝒪kn2), but in a side note they mention a variation of their algorithm that runs in

302

8.4 coalgebraic partition refinement

Smolka’s (Kanellakis and Smolka, 1983, 1990) work on partition refinement for
transition systems running in 𝒪𝒪𝒪k2n logn) where k is the maximum out-degree. It
was a major achievement by Paige and Tarjan (Paige and Tarjan, 1987) to reduce
the run time to 𝒪𝒪𝒪kn logn) by counting transitions and storing these transition
counters in a clever way, which subsequently lead to a fruitful line of research on
transition system minimization (Garavel and Lang, 2022). This was generalized
to coalgebras in Deifel, Dorsch, Milius, Schröder and Wißmann’s work on CoPaR,
which is applicable to a large class of functors satisfying their zippability condition.
These algorithms keep track of a worklist of blocks with respect to which other blocks
still have to be split. Our algorithm, by contrast, keeps track of a worklist of blocks
that themselves still potentially have to be split. Although similar at first sight, they
are fundamentally different: in the former, one is given a block, and must determine
how to split all the predecessor blocks, whereas in our case one is given a block,
which is then split based on its successors.

The advantage of the former class of algorithms is that they have optimal time
complexity 𝒪𝒪𝒪kn logn), provided one can implement the special splitting procedure
for the functor. The additional memory needed for the transition counters is linear
in kn.

Our algorithm, by contrast, has an extra factor of k, but is applicable to all
computable set-functors. By investing this extra time-factor k, we reduce the memory
consumption because we do not need to maintain transition counters or intermediate
states like CoPaR.

A practical advantage of our algorithm is that one recomputation of a block split
can take into account the changes to all the other blocks that happened since the
recomputation. The Hopcroft-CoPaR line of work, on the other hand, has to consider
each change of the other blocks separately. This advantage is of no help in the
asymptotic complexity, because in the worst case only one other split happened each
time, and then our algorithm does in 𝒪𝒪𝒪k) what CoPaR can do in 𝒪𝒪𝒪1). However, as
we shall see in the benchmarks of Section 8.6, in practice our algorithm outperforms
CoPaR and mCRL2, even though our algorithm is applicable to a more general class
of functors.

the moore line of work . Another line of work originates in Moore’s 1956
work on DFA minimization (Moore, 1956), which in retrospect is essentially the
naive algorithm specialized to DFAs. In this class, the most relevant for us is the
algorithm by König and Küpper (König and Küpper, 2014) for coalgebras, and the
distributed algorithm of Birkmann, Deifel, and Milius (Birkmann et al., 2022). Like
our algorithm, algorithms in this class split a block based on its successors, and can
be applied to general functors. Unlike the Hopcroft-CoPaR line of work and our
algorithm, the running time of these algorithms is 𝒪𝒪𝒪kn2).

Another relevant algorithm in this class is the algorithm of Blom and Orzan
(Blom and Orzan, 2005) for transition systems. Their main algorithm runs in time
𝒪𝒪𝒪kn2), but in a side note they mention a variation of their algorithm that runs in

302

8.5 instances

𝒪𝒪𝒪n logn) iterations. They do not further analyse the time complexity or describe
how to implement an iteration, because the main focus of their paper is a distributed
implementation of the 𝒪𝒪𝒪kn2) algorithm, and the 𝒪𝒪𝒪n logn) variation precludes
distributed implementation. Out of all algorithms, Blom and Orzan’s 𝒪𝒪𝒪n logn)
variation is the most similar to our algorithm, in particular because their algorithm
is in the Moore line of work, yet also re-uses the old block for the largest sub-
block (which is a feature that usually appears in the Hopcroft-CoPaR line of work).
However, their block splitting is different from ours and is only correct for labelled
transition systems but can not be easily applied to general functors F.

8.5 instances

We give a list of examples of instances that can be supported by our algorithm. We
start with the instances that were already previously supported by CoPaR, and then
give examples of instances that were not previously supported by n logn algorithms.

8.5.1 Instances also Supported by CoPaR

products and coproducts The simplest instances are those built using the
product F×G and disjoint union F+G, or in general, signature functors for countable
signatures Σ. The binary encoding of an element of signature functor (σ, x1, . . . , xk) ∈
Σ̃X starts with a specification of σ, followed by the concatenation of encodings of the
parameters x1, . . . , xk. The functor implementation can simply apply the substitution
recursively to these elements x1, . . . , xk, without any further need for normalization.

powerset The finite powerset functor 𝒫𝒫f can be used to model transition
systems as coalgebras. In conjunction with products and coproducts, we can
model nondeterministic (tree) automata and labelled transition systems. The binary
encoding of an element {x1, . . . , xk} of the powerset functor, is stored as a list of
elements prefixed by its length. The functor implementation can recursively apply
the substitution to the elements of a set {x1, . . . , xk}, and subsequently normalize by
sorting the resulting elements and removing adjacent duplicates.

monoid-valued functors The binary encoding of µ ∈ M(X) (for a countable
monoid M) is an array of pairs (xi,µ(xi)). The binary encoding stores a list of these
pairs prefixed by the length of the list. The functor implementation recursively
applies the substitution to the xi, and then sorts the pairs by the xi value, and
removes adjacent duplicate xi by summing up their associated monoid values µ(xi).

303

8.5 instances

8.5.2 Instances not Supported by CoPaR

composition of functors without intermediate states The
requirement of zippability in the m logn algorithm (Deifel et al., 2019) is not
closed under the composition of functors F ◦G. As a workaround, one can introduce
explicit intermediate states between F- and G-transitions. This introduces potentially
many more states into the coalgebra, which leads to increased memory usage. Our
algorithm can use the composed functor directly without splitting states, because it
works for any computable functor. This is important for practical efficiency.

monotone modal logics and monotone bisimulation When reasoning
about game-theoretic settings (Parikh, 1985; Peleg, 1987; Pauly, 2001), the arising
modal logics have modal operators that talk about the ability of agents to enforce
properties in the future. This leads to monotone modal logics whose domain of
reasoning are monotone neighbourhood frames and the canonical notion of equivalence
is monotone bisimulation. It was shown by Hansen and Kupke (Hansen and Kupke,
2004) that these are an instance of coalgebras and coalgebraic behavioral equivalence
for the monotone neighbourhood functor. Instead of the original definition, it suffices
for our purposes to work with the following equivalent characterization:

Definition 8.5.1 ((Hansen and Kupke, 2004, Lem 3.3)). The monotone neighbourhood
functor
𝒩𝒩 : Set → Set is given by

𝒩𝒩X = {N ∈ 𝒫𝒫f𝒫𝒫fX | N upwards closed} and 𝒩𝒩𝒩f : X → Y)(N) = ↑{f[S] | S ∈ N}.

where ↑ denotes upwards closure.

Hence, in a coalgebra c : C → 𝒩𝒩C, the successor structure of a state x ∈ C is an
upwards closed family of neighbourhoods c(x).

To avoid redundancy, we do not keep the full neighbourhoods in memory, but
only the least elements in this family: given a family N ∈ 𝒩𝒩X for finite X, we define
the map

atomX : 𝒫𝒫f𝒫𝒫fX → 𝒫𝒫f𝒫𝒫fX atomX(N) = {S ∈ N | S′ ∈ N : S′ ⫋ S}

which transforms a monotone family into an antichain by taking the minimal
elements in the monotone family.

Definition 8.5.2. We can implement 𝒩𝒩-coalgebras as follows: For a coalgebra c : C →
𝒩𝒩C, keep for every state x ∈ C an array of arrays representing atomC(c(x)) ∈ 𝒫𝒫f𝒫𝒫fX.
The predecessors of a state y needs to be computed in advance and is given by

pred(y) = {x ∈ C | y ∈ A for some A ∈ atomC(c(x))}.

304

8.5 instances

8.5.2 Instances not Supported by CoPaR

composition of functors without intermediate states The
requirement of zippability in the m logn algorithm (Deifel et al., 2019) is not
closed under the composition of functors F ◦G. As a workaround, one can introduce
explicit intermediate states between F- and G-transitions. This introduces potentially
many more states into the coalgebra, which leads to increased memory usage. Our
algorithm can use the composed functor directly without splitting states, because it
works for any computable functor. This is important for practical efficiency.

monotone modal logics and monotone bisimulation When reasoning
about game-theoretic settings (Parikh, 1985; Peleg, 1987; Pauly, 2001), the arising
modal logics have modal operators that talk about the ability of agents to enforce
properties in the future. This leads to monotone modal logics whose domain of
reasoning are monotone neighbourhood frames and the canonical notion of equivalence
is monotone bisimulation. It was shown by Hansen and Kupke (Hansen and Kupke,
2004) that these are an instance of coalgebras and coalgebraic behavioral equivalence
for the monotone neighbourhood functor. Instead of the original definition, it suffices
for our purposes to work with the following equivalent characterization:

Definition 8.5.1 ((Hansen and Kupke, 2004, Lem 3.3)). The monotone neighbourhood
functor
𝒩𝒩 : Set → Set is given by

𝒩𝒩X = {N ∈ 𝒫𝒫f𝒫𝒫fX | N upwards closed} and 𝒩𝒩𝒩f : X → Y)(N) = ↑{f[S] | S ∈ N}.

where ↑ denotes upwards closure.

Hence, in a coalgebra c : C → 𝒩𝒩C, the successor structure of a state x ∈ C is an
upwards closed family of neighbourhoods c(x).

To avoid redundancy, we do not keep the full neighbourhoods in memory, but
only the least elements in this family: given a family N ∈ 𝒩𝒩X for finite X, we define
the map

atomX : 𝒫𝒫f𝒫𝒫fX → 𝒫𝒫f𝒫𝒫fX atomX(N) = {S ∈ N | S′ ∈ N : S′ ⫋ S}

which transforms a monotone family into an antichain by taking the minimal
elements in the monotone family.

Definition 8.5.2. We can implement 𝒩𝒩-coalgebras as follows: For a coalgebra c : C →
𝒩𝒩C, keep for every state x ∈ C an array of arrays representing atomC(c(x)) ∈ 𝒫𝒫f𝒫𝒫fX.
The predecessors of a state y needs to be computed in advance and is given by

pred(y) = {x ∈ C | y ∈ A for some A ∈ atomC(c(x))}.

304

8.6 benchmarks

For the complexity analysis, we specify the out-degree as

k := max
x∈C

∑
S∈atomC(c(x))

|S| .

For the signature sig(x,p) of a state x w.r.t. p : C → N, do the following:

1. Compute 𝒫𝒫f[𝒫𝒫f[p]](t) for t := atomC(c(x)) by using the sig-implementation of
𝒫𝒫f first for each nested set and then on the outer set. This results in a new set
of sets t′ := 𝒫𝒫f[𝒫𝒫f[p]](t).

2. For the normalization, iterate over all pairs S, T ∈ t′ and remove T if S ⫋ T .
This step is not linear in the size of t′ but takes 𝒪𝒪𝒪k2) time.

For such a monotone neighbourhood frame c : C → 𝒩𝒩C, note that for states x ∈ C,
another state y ∈ C might be contained in multiple sets S ∈ c(x). Still, the definition
of m in the complexity analysis is agnostic of this.

Proposition 8.5.3. For a monotone neighbourhood frame c : C → 𝒩𝒩C, let k ∈ N be such
that |atomC(c(x))| ⩽ k for all x ∈ C. Algorithm 6 computes monotone bisimilarity in
𝒪𝒪𝒪k2 ·m logn) time.

8.6 benchmarks

To evaluate the practical performance and memory usage of our algorithm, we
have implemented it in our tool Boa (Jacobs and Wissmann, 2022), written in Rust.
The user of Boa can either use a composition of the built-in functors to describe
their automaton type, or implement their own automaton type by implementing
the interface of Section 8.4.1 in Rust. The user may then input the data of their
automaton using either a textual format akin to the representation in the “Coalgebra”
row of Figure 45, or use Boa’s more efficient and compact binary input format.

We test Boa on the benchmark suite of Birkmann, Deifel and Milius (Birkmann et al.,
2022), consisting of real-world benchmarks (fms & wlan – from the benchmark suite
of the PRISM model checker (Kwiatkowska et al., 2011)), and randomly generated
benchmarks (wta – weighted tree automata). For the wta benchmarks, the size of
the first 5 was chosen such that CoPaR (Deifel et al., 2019) uses 16GB of memory,
and the size of the 6th benchmark was chosen by Birkmann, Deifel and Milius to
demonstrate the scalability of their distributed algorithm.

The benchmark results are given in Table 2. The first columns list the type of
benchmark and the size of the input coalgebra. For the size, the column n denotes
the number of states and m is the number of edges as defined in Section 8.4.5. In the
wlan benchmarks for CoPaR (Deifel et al., 2019; Wißmann et al., 2021), the reported
number of states and eges also include intermediate states introduced by CoPaR in
order to cope with functor composition, a preprocessing step which we do not need
in Boa, and thus are different from the numbers in Table 2 here.

305

8.6 benchmarks

The three subsequent columns list the running time of CoPaR, DCPR, and Boa. The
last two columns list the memory usage of DCPR and Boa. The benchmark results
for DCPR and CoPaR are those reported by Birkmann, Deifel and Milius (Birkmann
et al., 2022), and were run on their high performance computing cluster with 32
workers on 8 nodes with two Xeon 2660v2 chips (10 cores per chip + SMT) and 64GB
RAM. The memory usage of DCPR is per worker, indicated by the ×32.

Execution times of CoPaR were taken using one node of the cluster. Some entries
for CoPaR are missing, indicating that it ran out of its 16GB of memory. The
benchmark results for our algorithm were obtained on one core of a 2.3GHz MacBook
Pro 2019.

A point to note is that compared to CoPaR, the distributed algorithm does best
on the randomly generated benchmarks. The distributed algorithm beats CoPaR
in execution time by taking advantage of the large parallel compute power of the
HPC cluster. This comes at the cost of 𝒪𝒪𝒪n2) worst case complexity, but randomly
generated benchmarks are more or less the best case for the distributed algorithm,
and require only a very small constant number of iterations, so that the effective
complexity is 𝒪𝒪𝒪n). The real world benchmarks on the other hand, and especially
the wlan benchmarks, need more iterations, which results in sequential CoPaR
outperforming DCPR. In general, benchmarks with transition systems with long
shortest path lengths will truly trigger the worst case of the 𝒪𝒪𝒪n2) algorithm, and
can make its execution time infeasably long. In summary, the benchmarks here are
not chosen to be favourable to CoPaR and our algorithm, as they do not trigger the
time complexity advantage to the full extent.

Nevertheless, our algorithm outperforms both CoPaR and DCPR by a large margin.
On the synthetic benchmarks (wta), roughly speaking, when CoPaR takes 10 minutes,
DCPR takes one minute, and our algorithm takes a second. On the real-world
wlan benchmark, the difference with DCPR is greatest, with the largest benchmark
requiring almost an hour on the HPC cluster for DCPR, whereas our algorithm
completes the benchmark in less than a second on a single thread.

Sequential CoPaR is unable to run the largest wta benchmarks, because it requires
more memory than the 16GB limit. The distributed algorithm is able to spread the
required memory usage among 32 workers, thus staying under the 16GB limit per
worker. Our algorithm uses sufficiently less memory to be able to run all benchmarks
on a single machine. In fact, it uses significantly less memory than DCPR uses per
worker. There are several reasons for this:

• Our algorithm does not require large hash tables.

• Our algorithm uses an binary representation with simple in-memory dictionary
compression.

• We operate directly on the composed functor instead of splitting states into pieces.

306

8.6 benchmarks

The three subsequent columns list the running time of CoPaR, DCPR, and Boa. The
last two columns list the memory usage of DCPR and Boa. The benchmark results
for DCPR and CoPaR are those reported by Birkmann, Deifel and Milius (Birkmann
et al., 2022), and were run on their high performance computing cluster with 32
workers on 8 nodes with two Xeon 2660v2 chips (10 cores per chip + SMT) and 64GB
RAM. The memory usage of DCPR is per worker, indicated by the ×32.

Execution times of CoPaR were taken using one node of the cluster. Some entries
for CoPaR are missing, indicating that it ran out of its 16GB of memory. The
benchmark results for our algorithm were obtained on one core of a 2.3GHz MacBook
Pro 2019.

A point to note is that compared to CoPaR, the distributed algorithm does best
on the randomly generated benchmarks. The distributed algorithm beats CoPaR
in execution time by taking advantage of the large parallel compute power of the
HPC cluster. This comes at the cost of 𝒪𝒪𝒪n2) worst case complexity, but randomly
generated benchmarks are more or less the best case for the distributed algorithm,
and require only a very small constant number of iterations, so that the effective
complexity is 𝒪𝒪𝒪n). The real world benchmarks on the other hand, and especially
the wlan benchmarks, need more iterations, which results in sequential CoPaR
outperforming DCPR. In general, benchmarks with transition systems with long
shortest path lengths will truly trigger the worst case of the 𝒪𝒪𝒪n2) algorithm, and
can make its execution time infeasably long. In summary, the benchmarks here are
not chosen to be favourable to CoPaR and our algorithm, as they do not trigger the
time complexity advantage to the full extent.

Nevertheless, our algorithm outperforms both CoPaR and DCPR by a large margin.
On the synthetic benchmarks (wta), roughly speaking, when CoPaR takes 10 minutes,
DCPR takes one minute, and our algorithm takes a second. On the real-world
wlan benchmark, the difference with DCPR is greatest, with the largest benchmark
requiring almost an hour on the HPC cluster for DCPR, whereas our algorithm
completes the benchmark in less than a second on a single thread.

Sequential CoPaR is unable to run the largest wta benchmarks, because it requires
more memory than the 16GB limit. The distributed algorithm is able to spread the
required memory usage among 32 workers, thus staying under the 16GB limit per
worker. Our algorithm uses sufficiently less memory to be able to run all benchmarks
on a single machine. In fact, it uses significantly less memory than DCPR uses per
worker. There are several reasons for this:

• Our algorithm does not require large hash tables.

• Our algorithm uses an binary representation with simple in-memory dictionary
compression.

• We operate directly on the composed functor instead of splitting states into pieces.

306

8.7 conclusion and future work

Even the largest benchmarks stay far away from the 16GB memory limit. We are
thus able to minimize large coalgebraic transition systems on cheap, consumer grade
hardware.

To assess the cost of genericity, we also compare with mCRL2, a full toolset for the
verification of concurrent systems. Among many other tasks, mCRL2 also supports
minimization of transition systems by strong bisimilarity as part of the ltsconvert

command2 and even implements multiple algorithms for that, out of which the
algorithm by Jansen et al. (Jansen et al., 2020) turned out to be the fastest. For
benchmarking, we ran its implementation in mCRL2 and compared the fastest with
the run time of Boa. As input files, we used the very large transition systems (VLTS)
benchmark suite3. Unfortunately, the benchmark suite is not available online in an
open format, so the files were converted with the CADP tool to the plain text .aut
format, supported by mCRL2 and our tool. The results are shown in Table 3. The
benchmark consists of two series of input files, cwi and vasy, whose file sizes ranged
from a few KB to hundreds of MB (biggest vasy ws 145MB in zipped format and
biggest cwi was 630MB zipped). Surprisingly, Boa is significantly faster than the
bisimilarity minimization implemented in mCRL2. On all input files, mCRL2 and Boa
agreed on the size of the resulting partition, giving confidence in the correctness of
the computed partition. It should be noted that mCRL2 supports a wide range of
bisimilarity notions (e.g. branching bisimilarity), which our algorithm can not cover.

8.7 conclusion and future work

The coalgebraic approach enables generic tools for automata minimization, applying
to different types of input automata. With our coalgebraic partition refinement
algorithm, implemented in our tool Boa, we reduce the time and memory use
compared to previous work. This comes at the cost of an extra factor of k (the
outdegree of a state) in the time-complexity compared to asymptotically optimal
algorithms. Though our asymptotic complexity is not as good as the asymptotically
fastest but less generic algorithms, the evaluation shows the efficiency of our
algorithm.

We wish to expand the supported system equivalence notions. So far, our
algorithm is applicable to functors on Set. More advanced equivalence and
bisimilarity notions such as trace equivalence (Silva and Sokolova, 2011; Hasuo
et al., 2007), branching bisimulations, and others from the linear-time-branching
spectrum (van Glabbeek, 2001), can be understood coalgebraically using graded
monads (Dorsch et al., 2019; Milius et al., 2015), corresponding to changing the base
category of the functor from Set to, for example, the Eilenberg-Moore (Silva et al.,
2013) or Kleisli (Hasuo et al., 2007) category of a monad. For branching bisimulation,
efficient algorithms exist (Jansen et al., 2020; Groote and Vaandrager, 1990), whose
ideas might embed into our framework. We conjecture that it is possible to adapt the

2 https://www.mcrl2.org/web/user_manual/tools/release/ltsconvert.html
3 https://cadp.inria.fr/resources/vlts/

307

8.7 conclusion and future work

algorithm to nominal sets, in order to minimize (orbit-)finite coalgebras there (Kozen
et al., 2015; Milius et al., 2016; Schröder et al., 2017; Wißmann, 2023).

Up-to techniques provide another successful line of research for deciding
bisimilarity. Bonchi and Pous (Bonchi and Pous, 2013) provide a construction
for deciding bismilarity of two particular states of interest, where the transition
structure is unfolded lazily while the reasoning evolves. By computing the partitions
in a similarly lazy way, performance of our minimization algorithm can hopefully
be improved even further.

308

8.7 conclusion and future work

algorithm to nominal sets, in order to minimize (orbit-)finite coalgebras there (Kozen
et al., 2015; Milius et al., 2016; Schröder et al., 2017; Wißmann, 2023).

Up-to techniques provide another successful line of research for deciding
bisimilarity. Bonchi and Pous (Bonchi and Pous, 2013) provide a construction
for deciding bismilarity of two particular states of interest, where the transition
structure is unfolded lazily while the reasoning evolves. By computing the partitions
in a similarly lazy way, performance of our minimization algorithm can hopefully
be improved even further.

308

8.7 conclusion and future work

benchmark time (s) memory (MB)

type n % red m CoPaR DCPR Boa DCPR Boa

fms 35910 0% 237120 4 2 0.02 13×32 6
fms 152712 0% 1111482 17 8 0.10 62×32 20
fms 537768 0% 4205670 68 26 0.40 163×32 72
fms 1639440 0% 13552968 232 84 1.29 514×32 199
fms 4459455 0% 38533968 – 406 4.60 1690×32 557

wlan 248503 56% 437264 39 297 0.11 90×32 15
wlan 607727 59% 1162573 105 855 0.30 147×32 38
wlan 1632799 78% 3331976 – 2960 0.81 379×32 92

wta5(2) 86852 0% 21713000 537 71 0.85 701×32 179
wta4(2) 92491 0% 18498200 723 67 0.96 728×32 154
wta3(2) 134207 0% 20131050 689 113 1.34 825×32 175
wta2(2) 138000 0% 13800000 467 129 0.98 715×32 126
wta1(2) 154863 0% 7743150 449 160 0.74 621×32 80
wta3(2) 1300000 0% 195000000 – 1377 22.58 7092×32 1647

wta5(W) 83431 0% 16686200 642 52 1.01 663×32 142
wta4(W) 92615 0% 23153750 511 61 1.21 849×32 193
wta3(W) 94425 0% 14163750 528 59 0.76 639×32 124
wta2(W) 134082 0% 13408200 471 76 0.96 675×32 124
wta1(W) 152107 0% 7605350 566 79 0.76 642×32 82
wta3(W) 944250 0% 141637500 – 675 15.18 6786×32 1231

wta5(Z) 92879 0% 18575800 463 56 0.67 754×32 161
wta4(Z) 94451 0% 23612750 445 61 0.81 871×32 199
wta3(Z) 100799 0% 15119850 391 64 0.62 628×32 135
wta2(Z) 118084 0% 11808400 403 74 0.66 633×32 113
wta1(Z) 156913 0% 7845650 438 82 0.68 677×32 93
wta3(Z) 1007990 0% 151198500 – 645 19.55 5644×32 1325

Table 2: Time and memory usage comparison on the benchmarks of Birkmann, Deifel and
Milius (Birkmann et al., 2022). The columns n, %red, m give the number of states, the
percentage of redundant states, and the number of edges, respectively. The results for
Boa are an average of 10 runs. The results for CoPaR and DCPR are those reported in
Birkmann, Deifel and Milius (Birkmann et al., 2022). The memory usage of DCPR is
per worker, indicated by ×32 (for the 32 workers on the HPC cluster)
The functors associated with the benchmarks are as follows: fms: F(X) = Q(X),
wlan: F(X) = N ×𝒫𝒫f (N ×𝒟𝒟𝒟X)), wtar(M): F(X) = M×M(4×Xr) where r indicates the
branching factor of the tree automaton, and M = W is the monoid of 64-bit words
with bitwise-or, M = Z is the monoid of integers with addition, and M = 2 is the
monoid of booleans with logical-or.

309

8.7 conclusion and future work

benchmark time (s) memory (MB)

type n % red m mCRL2 Boa mCRL2 Boa

cwi 142472 97% 925429 0.85 0.08 99 15
cwi 214202 63% 684419 0.63 0.15 111 16
cwi 371804 90% 641565 0.38 0.11 95 22
cwi 566640 97% 3984157 6.19 0.44 414 60
cwi 2165446 98% 8723465 10.72 1.52 978 166
cwi 2416632 96% 17605592 14.87 1.56 1780 247
cwi 7838608 87% 59101007 231.08 17.43 5777 816
cwi 33949609 99% 165318222 312.11 35.41 16698 2809

vasy 52268 84% 318126 0.31 0.04 48 7
vasy 65537 0% 2621480 6.62 0.14 553 28
vasy 66929 0% 1302664 2.56 0.08 275 18
vasy 69754 0% 520633 0.93 0.04 128 11
vasy 83436 0% 325584 0.38 0.04 86 10
vasy 116456 0% 368569 0.47 0.06 105 15
vasy 164865 99% 1619204 1.92 0.23 162 22
vasy 166464 49% 651168 0.81 0.08 116 16
vasy 386496 99% 1171872 0.67 0.08 133 28
vasy 574057 99% 13561040 18.84 2.41 1277 141
vasy 720247 99% 390999 0.38 0.05 88 31
vasy 1112490 99% 5290860 8.86 0.78 579 93
vasy 2581374 0% 11442382 31.95 2.30 2691 285
vasy 4220790 67% 13944372 31.82 2.87 2293 311
vasy 4338672 40% 15666588 34.89 3.12 3160 372
vasy 6020550 99% 19353474 34.91 4.11 2124 534
vasy 6120718 99% 11031292 15.56 2.37 1297 325
vasy 8082905 99% 42933110 72.45 3.79 4313 719
vasy 11026932 91% 24660513 60.57 6.26 2768 661
vasy 12323703 91% 27667803 63.49 8.16 3103 740

Table 3: Time and memory usage comparison on the VLTS benchmark suite (for space reasons,
we have excluded the very short running benchmarks). The columns n, %red, m give
the number of states, the percentage of redundant states, and the number of edges,
respectively. The results are an average of 10 runs. For mCRL2, the default bisim
option was used, which runs the JGKW algorithm (Jansen et al., 2020).

310

8.7 conclusion and future work

benchmark time (s) memory (MB)

type n % red m mCRL2 Boa mCRL2 Boa

cwi 142472 97% 925429 0.85 0.08 99 15
cwi 214202 63% 684419 0.63 0.15 111 16
cwi 371804 90% 641565 0.38 0.11 95 22
cwi 566640 97% 3984157 6.19 0.44 414 60
cwi 2165446 98% 8723465 10.72 1.52 978 166
cwi 2416632 96% 17605592 14.87 1.56 1780 247
cwi 7838608 87% 59101007 231.08 17.43 5777 816
cwi 33949609 99% 165318222 312.11 35.41 16698 2809

vasy 52268 84% 318126 0.31 0.04 48 7
vasy 65537 0% 2621480 6.62 0.14 553 28
vasy 66929 0% 1302664 2.56 0.08 275 18
vasy 69754 0% 520633 0.93 0.04 128 11
vasy 83436 0% 325584 0.38 0.04 86 10
vasy 116456 0% 368569 0.47 0.06 105 15
vasy 164865 99% 1619204 1.92 0.23 162 22
vasy 166464 49% 651168 0.81 0.08 116 16
vasy 386496 99% 1171872 0.67 0.08 133 28
vasy 574057 99% 13561040 18.84 2.41 1277 141
vasy 720247 99% 390999 0.38 0.05 88 31
vasy 1112490 99% 5290860 8.86 0.78 579 93
vasy 2581374 0% 11442382 31.95 2.30 2691 285
vasy 4220790 67% 13944372 31.82 2.87 2293 311
vasy 4338672 40% 15666588 34.89 3.12 3160 372
vasy 6020550 99% 19353474 34.91 4.11 2124 534
vasy 6120718 99% 11031292 15.56 2.37 1297 325
vasy 8082905 99% 42933110 72.45 3.79 4313 719
vasy 11026932 91% 24660513 60.57 6.26 2768 661
vasy 12323703 91% 27667803 63.49 8.16 3103 740

Table 3: Time and memory usage comparison on the VLTS benchmark suite (for space reasons,
we have excluded the very short running benchmarks). The columns n, %red, m give
the number of states, the percentage of redundant states, and the number of edges,
respectively. The results are an average of 10 runs. For mCRL2, the default bisim
option was used, which runs the JGKW algorithm (Jansen et al., 2020).

310

Part V

C O N C L U S I O N A N D F U T U R E W O R K

Chapter 9

Conclusion and Future Work

Let us conclude this thesis with a summary of the main contributions and a
discussion of future work.

part 1 : types for deadlock and leak free concurrency

This part of the thesis contributes three new type systems that guarantee deadlock
and leak freedom for concurrent programs.

• A language with locks (Chapter 2),

• A language with multiparty message passing (Chapter 3),

• A minimalist language with barriers (Chapter 4).

In each case, the concurrency constructs in these languages are first-class or higher-
order, meaning that they can be passed around as values and stored in data structures,
and even recursively applied to themselves.

To prove the soundness of these type systems, we developed a proof method for
deadlock and leak freedom for such higher-order concurrent programs (Chapter 1).

future work The type systems presented are for core-calculi, and although
they support important features such as data types and recursion, they lack many
of the convenience features that are present in real-world programming languages.
It would be interesting to extend these type systems to more realistic languages,
and develop realistic implementations of these languages and type systems. An
interesting challenge in this regard is to develop type inference algorithms for these
type systems, which might be challenging for the type systems with lock groups and
multiparty session types.

Another line of future work is to give a general notion of a deadlock free
concurrency construct, to capture the commonalities between constructs such as
locks and session-typed channels. This would involve an interface with operations
(such as acquire and release for locks, and send and receive for channels), and a set
of laws that these operations must satisfy.

Another limitation of connectivity graphs is that they require a 1-to-1
correspondence between physical objects in the run-time configuration, and cgraph
objects. This is not always the case in practice. For example, in the case of lock
groups, we have to treat the lock group as a single run-time object, even though

312

Chapter 9

Conclusion and Future Work

Let us conclude this thesis with a summary of the main contributions and a
discussion of future work.

part 1 : types for deadlock and leak free concurrency

This part of the thesis contributes three new type systems that guarantee deadlock
and leak freedom for concurrent programs.

• A language with locks (Chapter 2),

• A language with multiparty message passing (Chapter 3),

• A minimalist language with barriers (Chapter 4).

In each case, the concurrency constructs in these languages are first-class or higher-
order, meaning that they can be passed around as values and stored in data structures,
and even recursively applied to themselves.

To prove the soundness of these type systems, we developed a proof method for
deadlock and leak freedom for such higher-order concurrent programs (Chapter 1).

future work The type systems presented are for core-calculi, and although
they support important features such as data types and recursion, they lack many
of the convenience features that are present in real-world programming languages.
It would be interesting to extend these type systems to more realistic languages,
and develop realistic implementations of these languages and type systems. An
interesting challenge in this regard is to develop type inference algorithms for these
type systems, which might be challenging for the type systems with lock groups and
multiparty session types.

Another line of future work is to give a general notion of a deadlock free
concurrency construct, to capture the commonalities between constructs such as
locks and session-typed channels. This would involve an interface with operations
(such as acquire and release for locks, and send and receive for channels), and a set
of laws that these operations must satisfy.

Another limitation of connectivity graphs is that they require a 1-to-1
correspondence between physical objects in the run-time configuration, and cgraph
objects. This is not always the case in practice. For example, in the case of lock
groups, we have to treat the lock group as a single run-time object, even though

312

conclusion and future work

it is composed of multiple physical locks. Similarly, in the case of multiparty
session types, we have to treat the session as a single run-time object, even though
it is composed of multiple physical channels. It would be interesting to extend
connectivity graphs to support a 1-to-many correspondence between connectivity
graph objects and physical objects.

Lastly, it would be interesting to extend the proof method for deadlock and leak
freedom to support stronger results such as liveness and termination. This might
possibly be achieved by taking inspiration from from liveness logics such as LiLi
(Liang and Feng, 2016) and TaDa Live (D’Osualdo et al., 2021b), and existing work
on liveness in Iris (Tassarotti et al., 2017; Spies et al., 2021).

part 2 : separation logics for verified message passing

This part of the thesis first contributes a new proof technique for the soundness
of separation logics for message passing concurrency (Chapter 5). Secondly, it
contributes a new separation logic for message passing concurrency (Chapter 6),
which guarantees deadlock and leak freedom. To my knowledge, this is the first
separation logic where deadlock and leak freedom follows automatically from
linearity in a manner that is analogous to the type systems in Chapters 2 to 4, and
hence freely supports higher-order channels.

future work The primary future challenge for this chapter is to extend the
deadlock and leak free separation logic to support other higher-order concurrency
constructs. In particular, it would be interesting to extend the separation logic to
support locks. Beyond this, it would be interesting to extend the separation logic to
support general user-defined concurrency constructs, such as one can do with the
Iris separation logic (Jung et al., 2015, 2016, 2018b; Krebbers et al., 2018). In short,
we would like to extend Iris with support for deadlock and leak freedom, while
retaining the ability to support user-defined higher-order concurrency constructs.

part 3 : paradox-free probabilistic programming

This part of the thesis contributes an analysis of the paradoxes that arise in
probabilistic programming (Chapter 7). It also contributes a new probabilistic
programming language that is free from these paradoxes, using infinitesimal width
intervals. In this language, programs are automatically covariant under parameter
transformations.

future work In the future, it would be interesting to integrate the constructs
of the language with industrial strength probabilistic programming languages
(Carpenter et al., 2017; van de Meent et al., 2018; Bingham et al., 2018; Phan et al.,

313

conclusion and future work

2019). On the theory side, it would be interesting to give a more careful account of
its semantics along the lines of Staton (2017); Heunen et al. (2017)

Radul and Alexeev (2021) have developed a similar language, but with support
for vector-valued random variables. That work was published subequently to our
paper, but developed independently:

Jacobs (2021) clarifies the scalar-wise treatment by using formal
infinitesimals, which notation we adopt in Section 5.2, and also handles
conditioning on (unary) transformations of scalar random variables. Our
contributions can be viewed as a concurrently-developed extension of
the system of Jacobs (2021) to vectorvalued distributions.

It would be interesting to extend our language to support vector-valued
distributions, and go further to support other forms of conditioning, for instance,
such as in Hakaru (Narayanan et al., 2016).

part 4 : general and efficient automaton minimization

This part of the thesis contributes a new algorithm for automaton minimization
(Chapter 8). The algorithm works for a general class of automata (coalegbraic
automata specified by a computable Set-functor), and is efficient both in theory and
in practice.

future work We wish to expand the supported system equivalence notions.
So far, our algorithm is applicable to functors on Set. More advanced equivalence
and bisimilarity notions such as trace equivalence (Silva and Sokolova, 2011; Hasuo
et al., 2007), branching bisimulations, and others from the linear-time-branching
spectrum (van Glabbeek, 2001), can be understood coalgebraically using graded
monads (Dorsch et al., 2019; Milius et al., 2015), corresponding to changing the base
category of the functor from Set to, for example, the Eilenberg-Moore (Silva et al.,
2013) or Kleisli (Hasuo et al., 2007) category of a monad. For branching bisimulation,
efficient algorithms exist (Jansen et al., 2020; Groote and Vaandrager, 1990), whose
ideas might embed into our framework. We conjecture that it is possible to adapt the
algorithm to nominal sets, in order to minimize (orbit-)finite coalgebras there (Kozen
et al., 2015; Milius et al., 2016; Schröder et al., 2017; Wißmann, 2023).

Up-to techniques provide another successful line of research for deciding
bisimilarity. Bonchi and Pous (Bonchi and Pous, 2013) provide a construction
for deciding bismilarity of two particular states of interest, where the transition
structure is unfolded lazily while the reasoning evolves. By computing the partitions
in a similarly lazy way, performance of our minimization algorithm can hopefully
be improved even further.

314

conclusion and future work

2019). On the theory side, it would be interesting to give a more careful account of
its semantics along the lines of Staton (2017); Heunen et al. (2017)

Radul and Alexeev (2021) have developed a similar language, but with support
for vector-valued random variables. That work was published subequently to our
paper, but developed independently:

Jacobs (2021) clarifies the scalar-wise treatment by using formal
infinitesimals, which notation we adopt in Section 5.2, and also handles
conditioning on (unary) transformations of scalar random variables. Our
contributions can be viewed as a concurrently-developed extension of
the system of Jacobs (2021) to vectorvalued distributions.

It would be interesting to extend our language to support vector-valued
distributions, and go further to support other forms of conditioning, for instance,
such as in Hakaru (Narayanan et al., 2016).

part 4 : general and efficient automaton minimization

This part of the thesis contributes a new algorithm for automaton minimization
(Chapter 8). The algorithm works for a general class of automata (coalegbraic
automata specified by a computable Set-functor), and is efficient both in theory and
in practice.

future work We wish to expand the supported system equivalence notions.
So far, our algorithm is applicable to functors on Set. More advanced equivalence
and bisimilarity notions such as trace equivalence (Silva and Sokolova, 2011; Hasuo
et al., 2007), branching bisimulations, and others from the linear-time-branching
spectrum (van Glabbeek, 2001), can be understood coalgebraically using graded
monads (Dorsch et al., 2019; Milius et al., 2015), corresponding to changing the base
category of the functor from Set to, for example, the Eilenberg-Moore (Silva et al.,
2013) or Kleisli (Hasuo et al., 2007) category of a monad. For branching bisimulation,
efficient algorithms exist (Jansen et al., 2020; Groote and Vaandrager, 1990), whose
ideas might embed into our framework. We conjecture that it is possible to adapt the
algorithm to nominal sets, in order to minimize (orbit-)finite coalgebras there (Kozen
et al., 2015; Milius et al., 2016; Schröder et al., 2017; Wißmann, 2023).

Up-to techniques provide another successful line of research for deciding
bisimilarity. Bonchi and Pous (Bonchi and Pous, 2013) provide a construction
for deciding bismilarity of two particular states of interest, where the transition
structure is unfolded lazily while the reasoning evolves. By computing the partitions
in a similarly lazy way, performance of our minimization algorithm can hopefully
be improved even further.

314

Part VI

Bibliography

Nathanael L. Ackermann, Cameron E. Freer, and Daniel M. Roy. 2017. On
computability and disintegration. Mathematical Structures in Computer Science
(2017). https://doi.org/10.1017/S0960129516000098

Amal Ahmed. 2004. Semantics of Types for Mutable State. Ph. D. Dissertation. Princeton
University.

Amal Ahmed, Andrew W. Appel, Christopher D. Richards, Kedar N. Swadi, Gang
Tan, and Daniel C. Wang. 2010. Semantic foundations for typed assembly
languages. TOPLAS (2010). https://doi.org/10.1145/1709093.1709094

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. 1974. The Design and Analysis
of Computer Algorithms.

Pierre America and Jan J. M. M. Rutten. 1989. Solving Reflexive Domain Equations in
a Category of Complete Metric Spaces. JCSS (1989). https://doi.org/10.1007/

3-540-19020-1_13

Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki.
2016. The Essence of Dependent Object Types. https://doi.org/10.1007/

978-3-319-30936-1_14

Andrew W. Appel. 2014. Program Logics for Certified Compilers.

Andrew W. Appel and David McAllester. 2001. An Indexed Model of Recursive
Types for Foundational Proof-Carrying Code. TOPLAS (2001). https://doi.org/

10.1145/504709.504712

Andrew W. Appel, Paul-André Melliès, Christopher D. Richards, and Jérôme
Vouillon. 2007. A very modal model of a modern, major, general type system. In
POPL. https://doi.org/10.1145/1190216.1190235

Alen Arslanagic, Jorge A. Pérez, and Erik Voogd. 2019. Minimal Session Types
(Pearl). In ECOOP. https://doi.org/10.4230/LIPIcs.ECOOP.2019.23

Federico Aschieri, Agata Ciabattoni, and Francesco A. Genco. 2017. Gödel logic:
From natural deduction to parallel computation. In LICS. https://doi.org/10.

1109/LICS.2017.8005076

Arnon Avron. 1991. Hypersequents, Logical Consequence and Intermediate Logics
for Concurrency. Annals of Mathematics and Artificial Intelligence (1991). https:

//doi.org/10.1007/BF01531058

316

Bibliography

Nathanael L. Ackermann, Cameron E. Freer, and Daniel M. Roy. 2017. On
computability and disintegration. Mathematical Structures in Computer Science
(2017). https://doi.org/10.1017/S0960129516000098

Amal Ahmed. 2004. Semantics of Types for Mutable State. Ph. D. Dissertation. Princeton
University.

Amal Ahmed, Andrew W. Appel, Christopher D. Richards, Kedar N. Swadi, Gang
Tan, and Daniel C. Wang. 2010. Semantic foundations for typed assembly
languages. TOPLAS (2010). https://doi.org/10.1145/1709093.1709094

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. 1974. The Design and Analysis
of Computer Algorithms.

Pierre America and Jan J. M. M. Rutten. 1989. Solving Reflexive Domain Equations in
a Category of Complete Metric Spaces. JCSS (1989). https://doi.org/10.1007/

3-540-19020-1_13

Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki.
2016. The Essence of Dependent Object Types. https://doi.org/10.1007/

978-3-319-30936-1_14

Andrew W. Appel. 2014. Program Logics for Certified Compilers.

Andrew W. Appel and David McAllester. 2001. An Indexed Model of Recursive
Types for Foundational Proof-Carrying Code. TOPLAS (2001). https://doi.org/

10.1145/504709.504712

Andrew W. Appel, Paul-André Melliès, Christopher D. Richards, and Jérôme
Vouillon. 2007. A very modal model of a modern, major, general type system. In
POPL. https://doi.org/10.1145/1190216.1190235

Alen Arslanagic, Jorge A. Pérez, and Erik Voogd. 2019. Minimal Session Types
(Pearl). In ECOOP. https://doi.org/10.4230/LIPIcs.ECOOP.2019.23

Federico Aschieri, Agata Ciabattoni, and Francesco A. Genco. 2017. Gödel logic:
From natural deduction to parallel computation. In LICS. https://doi.org/10.

1109/LICS.2017.8005076

Arnon Avron. 1991. Hypersequents, Logical Consequence and Intermediate Logics
for Concurrency. Annals of Mathematics and Artificial Intelligence (1991). https:

//doi.org/10.1007/BF01531058

316

bibliography

Christel Baier, Bettina Engelen, and Mila Majster-Cederbaum. 2000. Deciding
Bisimilarity and Similarity for Probabilistic Processes. J. Comput. Syst. Sci. (2000).
https://doi.org/10.1006/jcss.1999.1683

Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. https:

//doi.org/10.5555/1373322

Stephanie Balzer and Frank Pfenning. 2017. Manifest Sharing with Session Types.
ICFP (2017). https://doi.org/10.1145/3110281

Stephanie Balzer, Frank Pfenning, and Bernardo Toninho. 2018. A Universal Session
Type for Untyped Asynchronous Communication. In CONCUR. https://doi.

org/10.4230/LIPIcs.CONCUR.2018.30

Stephanie Balzer, Bernardo Toninho, and Frank Pfenning. 2019. Manifest Deadlock-
Freedom for Shared Session Types. In ESOP. https://doi.org/10.1007/

978-3-030-17184-1_22

Falk Bartels, Ana Sokolova, and Erik de Vink. 2003. A hierarchy of probabilistic
system types. In Coagebraic Methods in Computer Science, CMCS 2003. https:

//doi.org/10.1016/j.tcs.2004.07.019

Nick Benton. 1994. A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models
(Extended Abstract). In CSL. https://doi.org/10.1007/BFb0022251

Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola
Dezani-Ciancaglini, and Nobuko Yoshida. 2008. Global Progress in Dynamically
Interleaved Multiparty Sessions. In CONCUR. https://doi.org/10.1007/

978-3-540-85361-9_33

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan,
Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D.
Goodman. 2018. Pyro: Deep Universal Probabilistic Programming. Journal of
Machine Learning Research (2018). https://doi.org/10.5555/3322706.3322734

Lars Birkedal, Bernhard Reus, Jan Schwinghammer, Kristian Støvring, Jacob
Thamsborg, and Hongseok Yang. 2011. Step-indexed kripke models over recursive
worlds. In POPL. https://doi.org/10.1145/1926385.1926401

Lars Birkedal, Kristian Støvring, and Jacob Thamsborg. 2010. The category-theoretic
solution of recursive metric-space equations. TCS (2010). https://doi.org/10.

1016/j.tcs.2010.07.010

Fabian Birkmann, Hans-Peter Deifel, and Stefan Milius. 2022. Distributed
Coalgebraic Partition Refinement. In TACAS. https://doi.org/10.1007/

978-3-030-99527-0_9

317

bibliography

Ales Bizjak, Daniel Gratzer, Robbert Krebbers, and Lars Birkedal. 2019. Iron:
Managing obligations in higher-order concurrent separation logic. POPL (2019).
https://doi.org/10.1145/3290378

Johanna (Högberg) Björklund, Andreas Maletti, and Jonathan May. 2007.
Bisimulation Minimisation for Weighted Tree Automata. In Developments in
Language Theory, DLT 2007. https://doi.org/10.1007/978-3-540-73208-2

Johanna (Högberg) Björklund, Andreas Maletti, and Jonathan May. 2009. Backward
and forward bisimulation minimization of tree automata. Theor. Comput. Sci. (2009).
https://doi.org/10.1016/j.tcs.2009.03.022

Stefan Blom and Simona Orzan. 2005. Distributed state space minimization.
International Journal on Software Tools for Technology Transfer (2005). https:

//doi.org/10.1007/s10009-004-0185-2

Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. 2010. A Theory of
Design-by-Contract for Distributed Multiparty Interactions. In CONCUR. https:

//doi.org/10.1007/978-3-642-15375-4_12

Filippo Bonchi and Damien Pous. 2013. Checking NFA equivalence with
bisimulations up to congruence. In POPL. https://doi.org/10.1145/2429069.

2429124

Stephen D. Brookes. 2004. A Semantics for Concurrent Separation Logic. In CONCUR.
https://doi.org/10.1007/978-3-540-28644-8_2

Luís Caires and Jorge A. Pérez. 2016. Multiparty Session Types Within a
Canonical Binary Theory, and Beyond. In FORTE. https://doi.org/10.1007/

978-3-319-39570-8_6

Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. 2013. Behavioral
Polymorphism and Parametricity in Session-Based Communication. In ESOP.
https://doi.org/10.1007/978-3-642-37036-6_19

Luís Caires and Frank Pfenning. 2010. Session Types as Intuitionistic Linear
Propositions. In CONCUR. https://doi.org/10.1007/978-3-642-15375-4_16

Luís Caires, Frank Pfenning, and Bernardo Toninho. 2016. Linear Logic Propositions
as Session Types. Math. Struct. Comput. Sci. (2016). https://doi.org/10.1017/

S0960129514000218

Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W.
Appel. 2018. VST-Floyd: A Separation Logic Tool to Verify Correctness of C
Programs. JAR (2018). https://doi.org/10.1007/s10817-018-9457-5

Qinxiang Cao, Santiago Cuellar, and Andrew W. Appel. 2017. Bringing
Order to the Separation Logic Jungle. In APLAS. https://doi.org/10.1007/

978-3-319-71237-6_10

318

bibliography

Ales Bizjak, Daniel Gratzer, Robbert Krebbers, and Lars Birkedal. 2019. Iron:
Managing obligations in higher-order concurrent separation logic. POPL (2019).
https://doi.org/10.1145/3290378

Johanna (Högberg) Björklund, Andreas Maletti, and Jonathan May. 2007.
Bisimulation Minimisation for Weighted Tree Automata. In Developments in
Language Theory, DLT 2007. https://doi.org/10.1007/978-3-540-73208-2

Johanna (Högberg) Björklund, Andreas Maletti, and Jonathan May. 2009. Backward
and forward bisimulation minimization of tree automata. Theor. Comput. Sci. (2009).
https://doi.org/10.1016/j.tcs.2009.03.022

Stefan Blom and Simona Orzan. 2005. Distributed state space minimization.
International Journal on Software Tools for Technology Transfer (2005). https:

//doi.org/10.1007/s10009-004-0185-2

Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. 2010. A Theory of
Design-by-Contract for Distributed Multiparty Interactions. In CONCUR. https:

//doi.org/10.1007/978-3-642-15375-4_12

Filippo Bonchi and Damien Pous. 2013. Checking NFA equivalence with
bisimulations up to congruence. In POPL. https://doi.org/10.1145/2429069.

2429124

Stephen D. Brookes. 2004. A Semantics for Concurrent Separation Logic. In CONCUR.
https://doi.org/10.1007/978-3-540-28644-8_2

Luís Caires and Jorge A. Pérez. 2016. Multiparty Session Types Within a
Canonical Binary Theory, and Beyond. In FORTE. https://doi.org/10.1007/

978-3-319-39570-8_6

Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. 2013. Behavioral
Polymorphism and Parametricity in Session-Based Communication. In ESOP.
https://doi.org/10.1007/978-3-642-37036-6_19

Luís Caires and Frank Pfenning. 2010. Session Types as Intuitionistic Linear
Propositions. In CONCUR. https://doi.org/10.1007/978-3-642-15375-4_16

Luís Caires, Frank Pfenning, and Bernardo Toninho. 2016. Linear Logic Propositions
as Session Types. Math. Struct. Comput. Sci. (2016). https://doi.org/10.1017/

S0960129514000218

Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W.
Appel. 2018. VST-Floyd: A Separation Logic Tool to Verify Correctness of C
Programs. JAR (2018). https://doi.org/10.1007/s10817-018-9457-5

Qinxiang Cao, Santiago Cuellar, and Andrew W. Appel. 2017. Bringing
Order to the Separation Logic Jungle. In APLAS. https://doi.org/10.1007/

978-3-319-71237-6_10

318

bibliography

Marco Carbone and Søren Debois. 2010. A Graphical Approach to Progress for
Structured Communication in Web Services. In ICE. https://doi.org/10.4204/

EPTCS.38.4

Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schürmann, and Philip
Wadler. 2016. Coherence Generalises Duality: A Logical Explanation of Multiparty
Session Types. In CONCUR. https://doi.org/10.4230/LIPIcs.CONCUR.2016.33

Marco Carbone, Fabrizio Montesi, Carsten Schürmann, and Nobuko Yoshida. 2015.
Multiparty Session Types as Coherence Proofs. In CONCUR. https://doi.org/

10.4230/LIPIcs.CONCUR.2015.412

Marco Carbone, Fabrizio Montesi, Carsten Schürmann, and Nobuko Yoshida. 2017.
Multiparty session types as coherence proofs. Acta Informatica (2017). https:

//doi.org/10.1007/s00236-016-0285-y

Bob Carpenter, Andrew Gelman, Matthew Hoffman, Daniel Lee, Ben Goodrich,
Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell.
2017. Stan: A Probabilistic Programming Language. Journal of Statistical Software,
Articles (2017). https://doi.org/10.18637/jss.v076.i01

David Castro-Perez, Francisco Ferreira, Lorenzo Gheri, and Nobuko Yoshida.
2021. Zooid: A DSL for Certified Multiparty Computation: From Mechanised
Metatheory to Certified Multiparty Processes. In PLDI. https://doi.org/10.

1145/3453483.3454041

David Castro-Perez, Francisco Ferreira, and Nobuko Yoshida. 2020. EMTST:
Engineering the Meta-theory of Session Types. In TACAS. https://doi.org/

10.1007/978-3-030-45237-7_17

Stefano Ceri, Georg Gottlob, and Letizia Tanca. 1989. What you Always Wanted to
Know About Datalog (And Never Dared to Ask). IEEE Trans. Knowl. Data Eng.
(1989). https://doi.org/10.1109/69.43410

Joseph Chang and David Pollard. 1997. Conditioning as disintegration. Statistica
Neerlandica (1997). https://doi.org/10.1111/1467-9574.00056

Arthur Charguéraud. 2020. Separation logic for sequential programs (functional
pearl). ICFP (2020). https://doi.org/10.1145/3408998

Kaustuv Chaudhuri, Leonardo Lima, and Giselle Reis. 2019. Formalized Meta-
Theory of Sequent Calculi for Linear Logics. Theoretical Computer Science (2019).
https://doi.org/10.1016/j.tcs.2019.02.023

Ruofei Chen, Stephanie Balzer, and Bernardo Toninho. 2022. Ferrite: A Judgmental
Embedding of Session Types in Rust. In ECOOP. https://doi.org/10.4230/

LIPIcs.ECOOP.2022.22

319

bibliography

Adam Chlipala. 2013. The Bedrock structured programming system: combining
generative metaprogramming and Hoare logic in an extensible program verifier.
In ICFP. https://doi.org/10.1145/2500365.2500592

Chromium. 2020. Memory safety. https://www.chromium.org/Home/

chromium-security/memory-safety/

Luca Ciccone and Luca Padovani. 2020. A Dependently Typed Linear π-Calculus in
Agda. In PPDP. https://doi.org/10.1145/3414080.3414109

David G. Clarke, John Potter, and James Noble. 1998. Ownership Types for Flexible
Alias Protection. In Proceedings of the 1998 ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages & Applications, OOPSLA 1998, Vancouver,
British Columbia, Canada, October 18-22, 1998. https://doi.org/10.1145/286936.

286947

Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko
Yoshida. 2013. Inference of Global Progress Properties for Dynamically
Interleaved Multiparty Sessions. In COORDINATION. https://doi.org/10.1007/

978-3-642-38493-6_4

Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani.
2016. Global Progress for Dynamically Interleaved Multiparty Sessions. MSCS
(2016). https://doi.org/10.1017/S0960129514000188

The Coq-std++ Team. 2021. An extended “standard library” for Coq.

The Coq Team. 2021. The Coq Proof Assistant. https://doi.org/10.5281/zenodo.

4501022

Andreea Costea, Wei-Ngan Chin, Shengchao Qin, and Florin Craciun. 2018.
Automated Modular Verification for Relaxed Communication Protocols. In APLAS.
https://doi.org/10.1007/978-3-030-02768-1_16

Florin Craciun, Tibor Kiss, and Andreea Costea. 2015. Towards a Session Logic for
Communication Protocols. In ICECCS. https://doi.org/10.1109/ICECCS.2015.

33

Karl Crary, Robert Harper, and Sidd Puri. 1999. What is a Recursive Module?. In
PLDI. https://doi.org/10.1145/301618.301641

Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. 2021a. Certifying
Choreography Compilation. In ICTAC. https://doi.org/10.1007/

978-3-030-85315-0_8

Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. 2021b. Formalising a
Turing-Complete Choreographic Language in Coq. In ITP. https://doi.org/10.

4230/LIPIcs.ITP.2021.15

320

bibliography

Adam Chlipala. 2013. The Bedrock structured programming system: combining
generative metaprogramming and Hoare logic in an extensible program verifier.
In ICFP. https://doi.org/10.1145/2500365.2500592

Chromium. 2020. Memory safety. https://www.chromium.org/Home/

chromium-security/memory-safety/

Luca Ciccone and Luca Padovani. 2020. A Dependently Typed Linear π-Calculus in
Agda. In PPDP. https://doi.org/10.1145/3414080.3414109

David G. Clarke, John Potter, and James Noble. 1998. Ownership Types for Flexible
Alias Protection. In Proceedings of the 1998 ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages & Applications, OOPSLA 1998, Vancouver,
British Columbia, Canada, October 18-22, 1998. https://doi.org/10.1145/286936.

286947

Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko
Yoshida. 2013. Inference of Global Progress Properties for Dynamically
Interleaved Multiparty Sessions. In COORDINATION. https://doi.org/10.1007/

978-3-642-38493-6_4

Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani.
2016. Global Progress for Dynamically Interleaved Multiparty Sessions. MSCS
(2016). https://doi.org/10.1017/S0960129514000188

The Coq-std++ Team. 2021. An extended “standard library” for Coq.

The Coq Team. 2021. The Coq Proof Assistant. https://doi.org/10.5281/zenodo.

4501022

Andreea Costea, Wei-Ngan Chin, Shengchao Qin, and Florin Craciun. 2018.
Automated Modular Verification for Relaxed Communication Protocols. In APLAS.
https://doi.org/10.1007/978-3-030-02768-1_16

Florin Craciun, Tibor Kiss, and Andreea Costea. 2015. Towards a Session Logic for
Communication Protocols. In ICECCS. https://doi.org/10.1109/ICECCS.2015.

33

Karl Crary, Robert Harper, and Sidd Puri. 1999. What is a Recursive Module?. In
PLDI. https://doi.org/10.1145/301618.301641

Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. 2021a. Certifying
Choreography Compilation. In ICTAC. https://doi.org/10.1007/

978-3-030-85315-0_8

Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. 2021b. Formalising a
Turing-Complete Choreographic Language in Coq. In ITP. https://doi.org/10.

4230/LIPIcs.ITP.2021.15

320

bibliography

Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. 2014. TaDA:
A Logic for Time and Data Abstraction. In ECOOP. https://doi.org/10.1007/

978-3-662-44202-9_9

Fredrik Dahlqvist and Dexter Kozen. 2020. Semantics of higher-order probabilistic
programs with conditioning, In POPL. https://doi.org/10.1145/3371125

Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer.
2020. RustBelt meets relaxed memory. POPL (2020). https://doi.org/10.1145/

3371102

Ornela Dardha and Simon J. Gay. 2018. A New Linear Logic for Deadlock-
Free Session-Typed Processes. In FOSSACS. https://doi.org/10.1007/

978-3-319-89366-2_5

Ornela Dardha, Elena Giachino, and Davide Sangiorgi. 2012. Session types revisited.
In PPDP. https://doi.org/10.1145/2370776.2370794

Ornela Dardha, Elena Giachino, and Davide Sangiorgi. 2017. Session types revisited.
Inf. Comput. (2017). https://doi.org/10.1016/j.ic.2017.06.002

Ankush Das, Jan Hoffmann, and Frank Pfenning. 2018. Work Analysis with Resource-
Aware Session Types. In LICS. https://doi.org/10.1145/3209108.3209146

Hans-Peter Deifel, Stefan Milius, Lutz Schröder, and Thorsten Wißmann. 2019.
Generic Partition Refinement and Weighted Tree Automata. In Formal Methods –
The Next 30 Years, Proc. 3rd World Congress on Formal Methods (FM 2019). https:

//doi.org/10.1007/978-3-030-30942-8_18

Romain Demangeon and Kohei Honda. 2012. Nested Protocols in Session Types. In
CONCUR. https://doi.org/10.1007/978-3-642-32940-1_20

Pierre-Malo Deniélou and Nobuko Yoshida. 2011. Dynamic multirole session types.
In POPL. https://doi.org/10.1145/1926385.1926435

Farzaneh Derakhshan, Stephanie Balzer, and Limin Jia. 2021. Session Logical
Relations for Noninterference. In LICS. https://doi.org/10.1109/LICS52264.

2021.9470654

Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida, and Sophia
Drossopoulou. 2006. Session Types for Object-Oriented Languages. In ESOP.
https://doi.org/10.1007/11785477_20

Edsger W. Dijkstra. 1965. EWD 310: Hierarchical Ordering of Sequential Processes.
https://www.cs.utexas.edu/users/EWD/ewd03xx/EWD310.PDF

Edsger W. Dijkstra. 1971. Hierarchical Ordering of Sequential Processes. Acta
Informatica (1971). https://doi.org/10.1007/BF00289519

321

bibliography

Ulrich Dorsch, Stefan Milius, and Lutz Schröder. 2019. Graded Monads and Graded
Logics for the Linear Time - Branching Time Spectrum. In CONCUR. https:

//doi.org/10.4230/LIPIcs.CONCUR.2019.36

Ulrich Dorsch, Stefan Milius, Lutz Schröder, and Thorsten Wißmann. 2017. Efficient
Coalgebraic Partition Refinement. In CONCUR. https://doi.org/10.4230/

LIPIcs.CONCUR.2017.32

Emanuele D’Osualdo, Julian Sutherland, Azadeh Farzan, and Philippa Gardner.
2021a. TaDA Live: Compositional Reasoning for Termination of Fine-grained
Concurrent Programs. TOPLAS (2021). https://doi.org/10.1145/3477082

Emanuele D’Osualdo, Julian Sutherland, Azadeh Farzan, and Philippa Gardner.
2021b. TaDA Live: Compositional Reasoning for Termination of Fine-grained
Concurrent Programs. TOPLAS (2021). https://doi.org/10.1145/3477082

Derek Dreyer, Amal Ahmed, and Lars Birkedal. 2011. Logical step-indexed logical
relations. LMCS (2011). https://doi.org/10.1109/LICS.2009.34

Thomas Ehrhard. 2018. An Introduction to Differential Linear Logic: Proof-Nets,
Models and Antiderivatives. Math. Struct. Comput. Sci. (2018). https://doi.org/

10.1017/S0960129516000372

Thomas Ehrhard and Laurent Regnier. 2006. Differential Interaction Nets. Theor.
Comput. Sci. (2006). https://doi.org/10.1016/j.tcs.2006.08.003

Frantisek Farka, Aleksandar Nanevski, Anindya Banerjee, Germán Andrés Delbianco,
and Ignacio Fábregas. 2021. On Algebraic Abstractions for Concurrent Separation
Logics. POPL (2021). https://doi.org/10.1145/3434286

Matthias Felleisen. 1991. On the expressive power of programming languages. Science
of Computer Programming (1991). https://doi.org/10.1016/0167-6423(91)

90036-W

Simon Fowler, Wen Kokke, Ornela Dardha, Sam Lindley, and J. Garrett Morris. 2021.
Separating Sessions Smoothly. In CONCUR. https://doi.org/10.4230/LIPIcs.

CONCUR.2021.36

Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. 2019. Exceptional
Asynchronous Session Types: Session Types Without Tiers. POPL (2019). https:

//doi.org/10.1145/3290341

Adrian Francalanza, Julian Rathke, and Vladimiro Sassone. 2011. Permission-Based
Separation Logic for Message-Passing Concurrency. LMCS (2011). https://doi.

org/10.2168/LMCS-7(3:7)2011

Hubert Garavel and Frédéric Lang. 2022. Equivalence Checking 40 Years After: A
Review of Bisimulation Tools. https://doi.org/10.1007/978-3-031-15629-8_

13

322

bibliography

Ulrich Dorsch, Stefan Milius, and Lutz Schröder. 2019. Graded Monads and Graded
Logics for the Linear Time - Branching Time Spectrum. In CONCUR. https:

//doi.org/10.4230/LIPIcs.CONCUR.2019.36

Ulrich Dorsch, Stefan Milius, Lutz Schröder, and Thorsten Wißmann. 2017. Efficient
Coalgebraic Partition Refinement. In CONCUR. https://doi.org/10.4230/

LIPIcs.CONCUR.2017.32

Emanuele D’Osualdo, Julian Sutherland, Azadeh Farzan, and Philippa Gardner.
2021a. TaDA Live: Compositional Reasoning for Termination of Fine-grained
Concurrent Programs. TOPLAS (2021). https://doi.org/10.1145/3477082

Emanuele D’Osualdo, Julian Sutherland, Azadeh Farzan, and Philippa Gardner.
2021b. TaDA Live: Compositional Reasoning for Termination of Fine-grained
Concurrent Programs. TOPLAS (2021). https://doi.org/10.1145/3477082

Derek Dreyer, Amal Ahmed, and Lars Birkedal. 2011. Logical step-indexed logical
relations. LMCS (2011). https://doi.org/10.1109/LICS.2009.34

Thomas Ehrhard. 2018. An Introduction to Differential Linear Logic: Proof-Nets,
Models and Antiderivatives. Math. Struct. Comput. Sci. (2018). https://doi.org/

10.1017/S0960129516000372

Thomas Ehrhard and Laurent Regnier. 2006. Differential Interaction Nets. Theor.
Comput. Sci. (2006). https://doi.org/10.1016/j.tcs.2006.08.003

Frantisek Farka, Aleksandar Nanevski, Anindya Banerjee, Germán Andrés Delbianco,
and Ignacio Fábregas. 2021. On Algebraic Abstractions for Concurrent Separation
Logics. POPL (2021). https://doi.org/10.1145/3434286

Matthias Felleisen. 1991. On the expressive power of programming languages. Science
of Computer Programming (1991). https://doi.org/10.1016/0167-6423(91)

90036-W

Simon Fowler, Wen Kokke, Ornela Dardha, Sam Lindley, and J. Garrett Morris. 2021.
Separating Sessions Smoothly. In CONCUR. https://doi.org/10.4230/LIPIcs.

CONCUR.2021.36

Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. 2019. Exceptional
Asynchronous Session Types: Session Types Without Tiers. POPL (2019). https:

//doi.org/10.1145/3290341

Adrian Francalanza, Julian Rathke, and Vladimiro Sassone. 2011. Permission-Based
Separation Logic for Message-Passing Concurrency. LMCS (2011). https://doi.

org/10.2168/LMCS-7(3:7)2011

Hubert Garavel and Frédéric Lang. 2022. Equivalence Checking 40 Years After: A
Review of Bisimulation Tools. https://doi.org/10.1007/978-3-031-15629-8_

13

322

bibliography

Simon J. Gay and Malcolm Hole. 2005. Subtyping for session types in the pi calculus.
Acta Informatica (2005). https://doi.org/10.1007/s00236-005-0177-z

Simon J. Gay, Peter Thiemann, and Vasco T. Vasconcelos. 2020. Duality of Session
Types: The Final Cut. In PLACES. https://doi.org/10.4204/EPTCS.314.3

Simon J. Gay and Vasco Thudichum Vasconcelos. 2010. Linear Type Theory
for Asynchronous Session Types. JFP (2010). https://doi.org/10.1017/

S0956796809990268

Silvia Ghilezan, Jovanka Pantovic, Ivan Prokic, Alceste Scalas, and Nobuko Yoshida.
2021. Precise subtyping for asynchronous multiparty sessions. POPL (2021).
https://doi.org/10.1145/3434297

Elena Giachino, Naoki Kobayashi, and Cosimo Laneve. 2014. Deadlock Analysis
of Unbounded Process Networks. In CONCUR. https://doi.org/10.1007/

978-3-662-44584-6_6

Léon Gondelman, Jonas Kastberg Hinrichsen, Mário Pereira, Amin Timany, and
Lars Birkedal. 2023. Verifying Reliable Network Components in a Distributed
Separation Logic with Dependent Separation Protocols. ICFP (2023). https:

//doi.org/10.1145/3607859

Noah Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, and
Joshua B. Tenenbaum. 2008. Church: a language for generative models. In UAI.
https://doi.org/10.5555/2969033.2969207

Noah D Goodman and Andreas Stuhlmüller. 2014. The Design and Implementation
of Probabilistic Programming Languages. http://dippl.org.

Daniele Gorla. 2010. Towards a unified approach to encodability and separation
results for process calculi. Information and Computation (2010). https://doi.org/

10.1016/j.ic.2010.05.002

Matthew A. Goto, Radha Jagadeesan, Alan Jeffrey, Corin Pitcher, and James Riely.
2016. An Extensible Approach to Session Polymorphism. MSCS (2016). https:

//doi.org/10.1017/S0960129514000231

Jan Friso Groote and Frits W. Vaandrager. 1990. An Efficient Algorithm for Branching
Bisimulation and Stuttering Equivalence. In Automata, Languages and Programming,
17th International Colloquium, ICALP90, Warwick University, England, UK, July 16-20,
1990, Proceedings. https://doi.org/10.1007/BFb0032063

Jan Friso Groote, Jao Rivera Verduzco, and Erik P. de Vink. 2018. An Efficient
Algorithm to Determine Probabilistic Bisimulation. Algorithms (2018). https:

//doi.org/10.3390/a11090131

323

bibliography

Dan Grossman, J. Gregory Morrisett, Trevor Jim, Michael W. Hicks, Yanling Wang,
and James Cheney. 2002. Region-Based Memory Management in Cyclone. In PLDI.
https://doi.org/10.1145/512529.512563

H. Peter Gumm and Tobias Schröder. 2001. Monoid-labeled transition systems. In
Coalgebraic Methods in Computer Science, CMCS 2001. https://doi.org/10.1016/

S1571-0661(04)80908-3

Jafar Hamin and Bart Jacobs. 2018. Deadlock-Free Monitors. In ESOP. https:

//doi.org/10.1007/978-3-319-89884-1_15

Helle Hvid Hansen and Clemens Kupke. 2004. A Coalgebraic Perspective on
Monotone Modal Logic. Electron. Notes Theor. Comput. Sci. (2004). https://doi.

org/10.1016/j.entcs.2004.02.028

Robert Harper. 2016. Practical Foundations for Programming Languages (2nd ed.).
https://doi.org/10.5555/3002812

Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. 2007. Generic Trace Semantics via
Coinduction. LMCS (2007). https://doi.org/10.2168/LMCS-3(4:11)2007

Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. 2017. A convenient
category for higher-order probability theory. In LICS. https://doi.org/10.1109/

LICS.2017.8005137

Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. 2020. Actris:
Session-Type Based Reasoning in Separation Logic. POPL (2020). https://doi.

org/10.1145/3371074

Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. 2022. Actris 2.0:
Asynchronous Session-Type Based Reasoning in Separation Logic. LMCS (2022).
https://doi.org/10.46298/lmcs-18(2:16)2022

Jonas Kastberg Hinrichsen, Daniël Louwrink, Robbert Krebbers, and Jesper Bengtson.
2021. Machine-checked semantic session typing. In CPP. https://doi.org/10.

1145/3437992.3439914

C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun.
ACM (1969). https://doi.org/10.1145/363235.363259

Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. 2008. Oracle
Semantics for Concurrent Separation Logic. In ESOP. https://doi.org/10.1007/

978-3-540-78739-6_27

Thomas Hofweber. 2014. Infinitesimal Chances. Philosophers’ Imprint (2014).

Steven Holtzen, Guy Van den Broeck, and Todd Millstein. 2020. Scaling Exact
Inference for Discrete Probabilistic Programs. Proc. ACM Program. Lang. (OOPSLA)
(2020). https://doi.org/10.1145/342820

324

bibliography

Dan Grossman, J. Gregory Morrisett, Trevor Jim, Michael W. Hicks, Yanling Wang,
and James Cheney. 2002. Region-Based Memory Management in Cyclone. In PLDI.
https://doi.org/10.1145/512529.512563

H. Peter Gumm and Tobias Schröder. 2001. Monoid-labeled transition systems. In
Coalgebraic Methods in Computer Science, CMCS 2001. https://doi.org/10.1016/

S1571-0661(04)80908-3

Jafar Hamin and Bart Jacobs. 2018. Deadlock-Free Monitors. In ESOP. https:

//doi.org/10.1007/978-3-319-89884-1_15

Helle Hvid Hansen and Clemens Kupke. 2004. A Coalgebraic Perspective on
Monotone Modal Logic. Electron. Notes Theor. Comput. Sci. (2004). https://doi.

org/10.1016/j.entcs.2004.02.028

Robert Harper. 2016. Practical Foundations for Programming Languages (2nd ed.).
https://doi.org/10.5555/3002812

Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. 2007. Generic Trace Semantics via
Coinduction. LMCS (2007). https://doi.org/10.2168/LMCS-3(4:11)2007

Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. 2017. A convenient
category for higher-order probability theory. In LICS. https://doi.org/10.1109/

LICS.2017.8005137

Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. 2020. Actris:
Session-Type Based Reasoning in Separation Logic. POPL (2020). https://doi.

org/10.1145/3371074

Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. 2022. Actris 2.0:
Asynchronous Session-Type Based Reasoning in Separation Logic. LMCS (2022).
https://doi.org/10.46298/lmcs-18(2:16)2022

Jonas Kastberg Hinrichsen, Daniël Louwrink, Robbert Krebbers, and Jesper Bengtson.
2021. Machine-checked semantic session typing. In CPP. https://doi.org/10.

1145/3437992.3439914

C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun.
ACM (1969). https://doi.org/10.1145/363235.363259

Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. 2008. Oracle
Semantics for Concurrent Separation Logic. In ESOP. https://doi.org/10.1007/

978-3-540-78739-6_27

Thomas Hofweber. 2014. Infinitesimal Chances. Philosophers’ Imprint (2014).

Steven Holtzen, Guy Van den Broeck, and Todd Millstein. 2020. Scaling Exact
Inference for Discrete Probabilistic Programs. Proc. ACM Program. Lang. (OOPSLA)
(2020). https://doi.org/10.1145/342820

324

bibliography

Kohei Honda. 1993. Types for Dyadic Interaction. In CONCUR. https://doi.org/

10.1007/3-540-57208-2_35

Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. 1998.
Language Primitives and Type Discipline for Structured Communication-Based
Programming. In ESOP. https://doi.org/10.1007/BFb0053567

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty Asynchronous
Session Types. In POPL. https://doi.org/10.1145/1328438.1328472

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty Asynchronous
Session Types. J. ACM (2016). https://doi.org/10.1145/2827695

John Hopcroft. 1971. An n logn algorithm for minimizing states in a finite automaton.
In Theory of Machines and Computations.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. 2007. Introduction to
automata theory, languages, and computation, 3rd Edition.

Raymond Hu and Nobuko Yoshida. 2017. Explicit Connection Actions in Multiparty
Session Types. In FASE. https://doi.org/10.1007/978-3-662-54494-5_7

Raymond Hu, Nobuko Yoshida, and Kohei Honda. 2008. Session-Based
Distributed Programming in Java. In ECOOP. https://doi.org/10.1007/

978-3-540-70592-5_22

Atsushi Igarashi and Naoki Kobayashi. 1997. Type-Based Analysis of Communication
for Concurrent Programming Languages. In SAS. https://doi.org/10.1007/

BFb0032742

Atsushi Igarashi and Naoki Kobayashi. 2001. A Generic Type System for the Pi-
calculus. In POPL. https://doi.org/10.1145/360204.360215

Atsushi Igarashi and Naoki Kobayashi. 2004. A Generic Type System for the
Pi-calculus. Theoretical Computer Science (2004). https://doi.org/10.1016/

S0304-3975(03)00325-6

Atsushi Igarashi, Peter Thiemann, Vasco T. Vasconcelos, and Philip Wadler. 2017.
Gradual session types. ICFP (2017). https://doi.org/10.1145/3110282

Keigo Imai, Nobuko Yoshida, and Shoji Yuen. 2019. Session-Ocaml: A Session-
Based Library with Polarities and Lenses. Science of Computer Programming (2019).
https://doi.org/10.1016/j.scico.2018.08.005

Keigo Imai, Shoji Yuen, and Kiyoshi Agusa. 2010. Session Type Inference in Haskell.
In PLACES. https://doi.org/10.4204/EPTCS.69.6

Jules Jacobs. 2020. Paradoxes of Probabilistic Programming: Artifact. https:

//doi.org/10.5281/zenodo.4075076

325

bibliography

Jules Jacobs and Stephanie Balzer. 2023. Higher-Order Leak and Deadlock Free Locks.
Proc. ACM Program. Lang. POPL (2023). https://doi.org/10.1145/3571229

Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. 2021. Appendix and Coq
mechanization of “Connectivity Graphs: A Method for Proving Deadlock Freedom
Based on Separation Logic”.

Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. 2022a. Connectivity graphs: a
method for proving deadlock freedom based on separation logic. POPL (2022).
https://doi.org/10.1145/3498662

Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. 2022b. Multiparty GV:
Functional Multiparty Session Types with Certified Deadlock Freedom. Proc.
ACM Program. Lang. ICFP (2022). https://doi.org/10.1145/3547638

Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers. 2023. Dependent
Session Protocols in Separation Logic from First Principles (Archived Artifact).
https://zenodo.org/record/7993904

Jules Jacobs and Thorsten Wissmann. 2022. Boa: binary coalgebraic partition
refinement. https://doi.org/10.5281/zenodo.7150706

David N. Jansen, Jan Friso Groote, Jeroen J. A. Keiren, and Anton Wijs. 2020. An
O(m log n) algorithm for branching bisimilarity on labelled transition systems. In
TACAS. https://doi.org/10.1007/978-3-030-45237-7_1

Edwin Thompson Jaynes. 2003. Probability theory: The logic of science.

Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis Larsen. 2015a.
Session Types for Rust. In WGP. https://doi.org/10.1145/2808098.2808100

Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis Larsen. 2015b.
Session types for Rust. In ICFP. https://doi.org/10.1145/2808098.2808100

Jacques-Henri Jourdan, François Pottier, and Xavier Leroy. 2012. Validating LR(1)
Parsers. In ESOP. https://doi.org/10.1007/978-3-642-28869-2_20

Ralf Jung. 2020. Understanding and Evolving the Rust Programming Language. Ph. D.
Dissertation. Universität des Saarlandes.

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2018a.
RustBelt: Securing the Foundations of the Rust Programming Language. POPL
(2018). https://doi.org/10.1145/3158154

Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016. Higher-order
ghost state. In ICFP. https://doi.org/10.1145/2951913.2951943

326

bibliography

Jules Jacobs and Stephanie Balzer. 2023. Higher-Order Leak and Deadlock Free Locks.
Proc. ACM Program. Lang. POPL (2023). https://doi.org/10.1145/3571229

Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. 2021. Appendix and Coq
mechanization of “Connectivity Graphs: A Method for Proving Deadlock Freedom
Based on Separation Logic”.

Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. 2022a. Connectivity graphs: a
method for proving deadlock freedom based on separation logic. POPL (2022).
https://doi.org/10.1145/3498662

Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. 2022b. Multiparty GV:
Functional Multiparty Session Types with Certified Deadlock Freedom. Proc.
ACM Program. Lang. ICFP (2022). https://doi.org/10.1145/3547638

Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers. 2023. Dependent
Session Protocols in Separation Logic from First Principles (Archived Artifact).
https://zenodo.org/record/7993904

Jules Jacobs and Thorsten Wissmann. 2022. Boa: binary coalgebraic partition
refinement. https://doi.org/10.5281/zenodo.7150706

David N. Jansen, Jan Friso Groote, Jeroen J. A. Keiren, and Anton Wijs. 2020. An
O(m log n) algorithm for branching bisimilarity on labelled transition systems. In
TACAS. https://doi.org/10.1007/978-3-030-45237-7_1

Edwin Thompson Jaynes. 2003. Probability theory: The logic of science.

Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis Larsen. 2015a.
Session Types for Rust. In WGP. https://doi.org/10.1145/2808098.2808100

Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis Larsen. 2015b.
Session types for Rust. In ICFP. https://doi.org/10.1145/2808098.2808100

Jacques-Henri Jourdan, François Pottier, and Xavier Leroy. 2012. Validating LR(1)
Parsers. In ESOP. https://doi.org/10.1007/978-3-642-28869-2_20

Ralf Jung. 2020. Understanding and Evolving the Rust Programming Language. Ph. D.
Dissertation. Universität des Saarlandes.

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2018a.
RustBelt: Securing the Foundations of the Rust Programming Language. POPL
(2018). https://doi.org/10.1145/3158154

Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016. Higher-order
ghost state. In ICFP. https://doi.org/10.1145/2951913.2951943

326

bibliography

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal,
and Derek Dreyer. 2018b. Iris from the ground up: A modular foundation for
higher-order concurrent separation logic. JFP (2018). https://doi.org/10.1017/

S0956796818000151

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars
Birkedal, and Derek Dreyer. 2015. Iris: Monoids and Invariants as an Orthogonal
Basis for Concurrent Reasoning. In POPL. https://doi.org/10.1145/2676726.

2676980

Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis.
2017. Strong Logic for Weak Memory: Reasoning About Release-Acquire
Consistency in Iris. In ECOOP. https://doi.org/10.4230/LIPIcs.ECOOP.2017.

17

Paris C. Kanellakis and Scott A. Smolka. 1983. CCS Expressions, Finite State
Processes, and Three Problems of Equivalence. In Proceedings of the Second Annual
ACM Symposium on Principles of Distributed Computing. https://doi.org/10.

1145/800221.806724

Paris C. Kanellakis and Scott A. Smolka. 1990. CCS Expressions, Finite State
Processes, and Three Problems of Equivalence. Inf. Comput. (1990). https:

//doi.org/10.1016/0890-5401(90)90025-D

Ioannis T. Kassios and Eleftherios Kritikos. 2013. A Discipline for Program
Verification Based on Backpointers and Its Use in Observational Disjointness.
In ESOP. https://doi.org/10.1007/978-3-642-37036-6_10

Joost-Pieter Katoen, Tim Kemna, Ivan Zapreev, and David Jansen. 2007. Bisimulation
Minimisation Mostly Speeds Up Probabilistic Model Checking. In TACAS. https:

//doi.org/10.1007/978-3-540-71209-1

Alex C. Keizer, Henning Basold, and Jorge A. Pérez. 2021. Session Coalgebras:
A Coalgebraic View on Session Types and Communication Protocols. https:

//doi.org/10.1007/978-3-030-72019-3_14

Bartek Klin. 2009. Structural Operational Semantics for Weighted Transition Systems.
In Semantics and Algebraic Specification: Essays Dedicated to Peter D. Mosses on the
Occasion of His 60th Birthday.

Donald E. Knuth. 1965. On the Translation of Languages from Left to Right. Inf.
Control. (1965). https://doi.org/10.1016/S0019-9958(65)90426-2

Naoki Kobayashi. 1997. A Partially Deadlock-Free Typed Process Calculus. In LICS.
https://doi.org/10.1109/LICS.1997.614941

Naoki Kobayashi. 2002a. A Type System for Lock-Free Processes. I&C (2002).
https://doi.org/10.1006/inco.2002.3171

327

bibliography

Naoki Kobayashi. 2002b. Type Systems for Concurrent Programs. https://doi.

org/10.1007/978-3-540-40007-3_26

Naoki Kobayashi. 2005. Type-Based Information Flow Analysis for the Pi-Calculus.
Acta Informatica (2005). https://doi.org/10.1007/s00236-005-0179-x

Naoki Kobayashi. 2006. A New Type System for Deadlock-Free Processes. In
CONCUR. https://doi.org/10.1007/11817949_16

Naoki Kobayashi and Cosimo Laneve. 2017. Deadlock Analysis of Unbounded
Process Networks. Inf. Comput. (2017). https://doi.org/10.1016/j.ic.2016.03.

004

Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. 1999. Linearity and the
pi-calculus. TOPLAS (1999). https://doi.org/10.1145/330249.330251

Naoki Kobayashi, Shin Saito, and Eijiro Sumii. 2000. An Implicitly-Typed Deadlock-
Free Process Calculus. In CONCUR. https://doi.org/10.1007/3-540-44618-4_

35

Wen Kokke. 2019. Rusty Variation: Deadlock-free Sessions with Failure in Rust. In
ICE. https://doi.org/10.4204/EPTCS.304.4

Wen Kokke and Ornela Dardha. 2021a. Deadlock-Free Session Types in Linear
Haskell. In Haskell Symposium. https://doi.org/10.1145/3471874.3472979

Wen Kokke and Ornela Dardha. 2021b. Deadlock-free session types in linear Haskell.
In Haskell Symposium. https://doi.org/10.1145/3471874.3472979

Wen Kokke and Ornela Dardha. 2021c. Prioritise the Best Variation. In FORTE.
https://doi.org/10.1007/978-3-030-78089-0_6

Wen Kokke, Fabrizio Montesi, and Marco Peressotti. 2019. Better Late Than Never: a
Fully-Abstract Semantics for Classical Processes. POPL (2019). https://doi.org/

10.1145/3290337

Barbara König and Sebastian Küpper. 2014. Generic Partition Refinement Algorithms
for Coalgebras and an Instantiation to Weighted Automata. In Theoretical Computer
Science, IFIP TCS 2014. https://doi.org/10.1007/978-3-662-44602-7

Dexter Kozen, Konstantinos Mamouras, Daniela Petrisan, and Alexandra Silva. 2015.
Nominal Kleene Coalgebra. In Automata, Languages, and Programming, ICALP 2015.
https://doi.org/10.1007/978-3-662-47666-6

Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver
Kaiser, Amin Timany, Arthur Charguéraud, and Derek Dreyer. 2018. MoSeL: A
General, Extensible Modal Framework for Interactive Proofs in Separation Logic.
ICFP (2018). https://doi.org/10.1145/3236772

328

bibliography

Naoki Kobayashi. 2002b. Type Systems for Concurrent Programs. https://doi.

org/10.1007/978-3-540-40007-3_26

Naoki Kobayashi. 2005. Type-Based Information Flow Analysis for the Pi-Calculus.
Acta Informatica (2005). https://doi.org/10.1007/s00236-005-0179-x

Naoki Kobayashi. 2006. A New Type System for Deadlock-Free Processes. In
CONCUR. https://doi.org/10.1007/11817949_16

Naoki Kobayashi and Cosimo Laneve. 2017. Deadlock Analysis of Unbounded
Process Networks. Inf. Comput. (2017). https://doi.org/10.1016/j.ic.2016.03.

004

Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. 1999. Linearity and the
pi-calculus. TOPLAS (1999). https://doi.org/10.1145/330249.330251

Naoki Kobayashi, Shin Saito, and Eijiro Sumii. 2000. An Implicitly-Typed Deadlock-
Free Process Calculus. In CONCUR. https://doi.org/10.1007/3-540-44618-4_

35

Wen Kokke. 2019. Rusty Variation: Deadlock-free Sessions with Failure in Rust. In
ICE. https://doi.org/10.4204/EPTCS.304.4

Wen Kokke and Ornela Dardha. 2021a. Deadlock-Free Session Types in Linear
Haskell. In Haskell Symposium. https://doi.org/10.1145/3471874.3472979

Wen Kokke and Ornela Dardha. 2021b. Deadlock-free session types in linear Haskell.
In Haskell Symposium. https://doi.org/10.1145/3471874.3472979

Wen Kokke and Ornela Dardha. 2021c. Prioritise the Best Variation. In FORTE.
https://doi.org/10.1007/978-3-030-78089-0_6

Wen Kokke, Fabrizio Montesi, and Marco Peressotti. 2019. Better Late Than Never: a
Fully-Abstract Semantics for Classical Processes. POPL (2019). https://doi.org/

10.1145/3290337

Barbara König and Sebastian Küpper. 2014. Generic Partition Refinement Algorithms
for Coalgebras and an Instantiation to Weighted Automata. In Theoretical Computer
Science, IFIP TCS 2014. https://doi.org/10.1007/978-3-662-44602-7

Dexter Kozen, Konstantinos Mamouras, Daniela Petrisan, and Alexandra Silva. 2015.
Nominal Kleene Coalgebra. In Automata, Languages, and Programming, ICALP 2015.
https://doi.org/10.1007/978-3-662-47666-6

Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver
Kaiser, Amin Timany, Arthur Charguéraud, and Derek Dreyer. 2018. MoSeL: A
General, Extensible Modal Framework for Interactive Proofs in Separation Logic.
ICFP (2018). https://doi.org/10.1145/3236772

328

bibliography

Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and
Lars Birkedal. 2017a. The Essence of Higher-Order Concurrent Separation Logic.
In ESOP. https://doi.org/10.1007/978-3-662-54434-1_26

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017b. Interactive Proofs in
Higher-Order Concurrent Separation Logic. In POPL. https://doi.org/10.1145/

3009837.3009855

Marta Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0:
Verification of Probabilistic Real-Time Systems. In Computer Aided Verification.
https://doi.org/10.1007/978-3-642-22110-1_47

Kim Guldstrand Larsen and Arne Arne Skou. 1991. Bisimulation through
Probabilistic Testing. Inform. Comput. (1991). https://doi.org/10.1016/

0890-5401(91)90030-6

Duy-Khanh Le, Wei-Ngan Chin, and Yong Meng Teo. 2013. An Expressive
Framework for Verifying Deadlock Freedom. In ATVA. https://doi.org/10.

1007/978-3-319-02444-8_21

K. Rustan M. Leino, Peter Müller, and Jan Smans. 2010. Deadlock-Free Channels
and Locks. In ESOP. https://doi.org/10.1007/978-3-642-11957-6_22

Xavier Leroy. 2006. Formal certification of a compiler back-end or: programming
a compiler with a proof assistant. In POPL. https://doi.org/10.1145/1111037.

1111042

Hongjin Liang and Xinyu Feng. 2016. A program logic for concurrent objects under
fair scheduling. In POPL. https://doi.org/10.1145/2837614.2837635

Sam Lindley and J. Garrett Morris. 2015. A Semantics for Propositions as Sessions.
In ESOP. https://doi.org/10.1007/978-3-662-46669-8_23

Sam Lindley and J. Garrett Morris. 2016a. Embedding session types in Haskell. In
Haskell Symposium. https://doi.org/10.1145/2976002.2976018

Sam Lindley and J. Garrett Morris. 2016b. Embedding Session Types in Haskell. In
Haskell Symposium. https://doi.org/10.1145/2976002.2976018

Sam Lindley and J. Garrett Morris. 2016c. Talking Bananas: Structural Recursion For
Session Types. In ICFP. https://doi.org/10.1145/2951913.2951921

Sam Lindley and J. Garrett Morris. 2017. Lightweight Functional Session Types. In
Behavioural Types: from Theory to Tools.

Étienne Lozes and Jules Villard. 2011. Reliable Contracts for Unreliable Half-Duplex
Communications. In Web Services and Formal Methods - 8th International Workshop,
WS-FM 2011, Clermont-Ferrand, France, September 1-2, 2011, Revised Selected Papers.
https://doi.org/10.1007/978-3-642-29834-9_2

329

bibliography

Étienne Lozes and Jules Villard. 2012. Shared Contract-Obedient Endpoints. In ICE.
https://doi.org/10.4204/EPTCS.104.3

William Mansky. 2022. Bringing Iris into the Verified Software Toolchain. https:

//doi.org/10.48550/arXiv.2207.06574

William Mansky, Andrew W. Appel, and Aleksey Nogin. 2017. A verified messaging
system. OOPSLA (2017). https://doi.org/10.1145/3133911

Nicholas D. Matsakis and Felix S. Klock. 2014. The Rust language. In HILT. https:

//doi.org/10.1145/2663171.2663188

Jonathan May and Kevin Knight. 2006. Tiburon: A Weighted Tree Automata
Toolkit. In Implementation and Application of Automata. https://doi.org/10.1007/

11812128_11

Glen Mével and Jacques-Henri Jourdan. 2021. Formal verification of a concurrent
bounded queue in a weak memory model. ICFP (2021). https://doi.org/10.

1145/3473571

Stefan Milius, Dirk Pattinson, and Lutz Schröder. 2015. Generic Trace Semantics
and Graded Monads. In 6th Conference on Algebra and Coalgebra in Computer Science,
CALCO 2015. https://doi.org/10.4230/LIPIcs.CALCO.2015.253

Stefan Milius, Lutz Schröder, and Thorsten Wißmann. 2016. Regular Behaviours
with Names. Applied Categorical Structures (2016). https://doi.org/10.1007/

s10485-016-9457-8

Robin Milner. 1978. A Theory of Type Polymorphism in Programming. J. Comput.
Syst. Sci. (1978). https://doi.org/10.1016/0022-0000(78)90014-4

Robin Milner. 1980. A Calculus of Communicating Systems. https://doi.org/10.

1007/3-540-10235-3

Fabrizio Montesi. 2021. Introduction to Choreographies. (2021).

Fabrizio Montesi and Marco Peressotti. 2018. Classical Transitions. CoRR (2018).
arXiv:1803.01049 http://arxiv.org/abs/1803.01049

Edward F. Moore. 1956. Gedanken-Experiments on Sequential Machines. https://doi.

org/doi:10.1515/9781400882618-006

Dimitris Mostrous and Nobuko Yoshida. 2015. Session typing and asynchronous
subtyping for the higher-order π-calculus. Inf. Comput. (2015). https://doi.org/

10.1016/j.ic.2015.02.002

Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. 2009. Global Principal
Typing in Partially Commutative Asynchronous Sessions. In ESOP. https://doi.

org/10.1007/978-3-642-00590-9_23

330

bibliography

Étienne Lozes and Jules Villard. 2012. Shared Contract-Obedient Endpoints. In ICE.
https://doi.org/10.4204/EPTCS.104.3

William Mansky. 2022. Bringing Iris into the Verified Software Toolchain. https:

//doi.org/10.48550/arXiv.2207.06574

William Mansky, Andrew W. Appel, and Aleksey Nogin. 2017. A verified messaging
system. OOPSLA (2017). https://doi.org/10.1145/3133911

Nicholas D. Matsakis and Felix S. Klock. 2014. The Rust language. In HILT. https:

//doi.org/10.1145/2663171.2663188

Jonathan May and Kevin Knight. 2006. Tiburon: A Weighted Tree Automata
Toolkit. In Implementation and Application of Automata. https://doi.org/10.1007/

11812128_11

Glen Mével and Jacques-Henri Jourdan. 2021. Formal verification of a concurrent
bounded queue in a weak memory model. ICFP (2021). https://doi.org/10.

1145/3473571

Stefan Milius, Dirk Pattinson, and Lutz Schröder. 2015. Generic Trace Semantics
and Graded Monads. In 6th Conference on Algebra and Coalgebra in Computer Science,
CALCO 2015. https://doi.org/10.4230/LIPIcs.CALCO.2015.253

Stefan Milius, Lutz Schröder, and Thorsten Wißmann. 2016. Regular Behaviours
with Names. Applied Categorical Structures (2016). https://doi.org/10.1007/

s10485-016-9457-8

Robin Milner. 1978. A Theory of Type Polymorphism in Programming. J. Comput.
Syst. Sci. (1978). https://doi.org/10.1016/0022-0000(78)90014-4

Robin Milner. 1980. A Calculus of Communicating Systems. https://doi.org/10.

1007/3-540-10235-3

Fabrizio Montesi. 2021. Introduction to Choreographies. (2021).

Fabrizio Montesi and Marco Peressotti. 2018. Classical Transitions. CoRR (2018).
arXiv:1803.01049 http://arxiv.org/abs/1803.01049

Edward F. Moore. 1956. Gedanken-Experiments on Sequential Machines. https://doi.

org/doi:10.1515/9781400882618-006

Dimitris Mostrous and Nobuko Yoshida. 2015. Session typing and asynchronous
subtyping for the higher-order π-calculus. Inf. Comput. (2015). https://doi.org/

10.1016/j.ic.2015.02.002

Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. 2009. Global Principal
Typing in Partially Commutative Asynchronous Sessions. In ESOP. https://doi.

org/10.1007/978-3-642-00590-9_23

330

bibliography

Peter Müller. 2002. Modular Specification and Verification of Object-Oriented Programs.
https://doi.org/10.1007/3-540-45651-1

Magnus O. Myreen and Scott Owens. 2012. Proof-Producing Synthesis of ML from
Higher-Order Logic. SIGPLAN Not. (2012). https://doi.org/10.1145/2398856.

2364545

Hiroshi Nakano. 2000. A modality for recursion. In LICS. https://doi.org/10.

1109/LICS.2000.855774

Aleksandar Nanevski, Anindya Banerjee, Germán Andrés Delbianco, and Ignacio
Fábregas. 2019. Specifying Concurrent Programs in Separation Logic: Morphisms
and Simulations. OOPSLA (2019). https://doi.org/10.1145/3360587

Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert
Zinkov. 2016. Probabilistic inference by program transformation in Hakaru (system
description). In International Symposium on Functional and Logic Programming - 13th
International Symposium, FLOPS 2016, Kochi, Japan, March 4-6, 2016, Proceedings.
Springer. https://doi.org/10.1007/978-3-319-29604-3_5

Joachim Niehren, Jan Schwinghammer, and Gert Smolka. 2005. A Concurrent
Lambda Calculus with Futures. https://doi.org/10.1007/11559306_14

Joachim Niehren, Jan Schwinghammer, and Gert Smolka. 2006. A concurrent lambda
calculus with futures. Theor. Comput. Sci. (2006). https://doi.org/10.1016/j.

tcs.2006.08.016

Peter W. O’Hearn. 2004. Resources, Concurrency and Local Reasoning. In CONCUR.
https://doi.org/10.1007/978-3-540-28644-8_4

Peter W. O’Hearn and David J. Pym. 1999. The Logic Of Bunched Implications.
Bulletin of Symbolic Logic (1999). https://doi.org/10.2307/421090

Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local Reasoning
about Programs that Alter Data Structures. In CSL. https://doi.org/10.1007/

3-540-44802-0_1

Wytse Oortwijn, Stefan Blom, and Marieke Huisman. 2016. Future-based Static
Analysis of Message Passing Programs. In PLACES. https://doi.org/10.4204/

EPTCS.211.7

Susan S. Owicki and David Gries. 1976. Verifying Properties of Parallel Programs: An
Axiomatic Approach. CACM (1976). https://doi.org/10.1145/360051.360224

Luca Padovani. 2014. Deadlock and lock freedom in the linear π-calculus. In LICS.
https://doi.org/10.1145/2603088.2603116

Luca Padovani. 2017. A simple library implementation of binary sessions. JFP (2017).
https://doi.org/10.1017/S0956796816000289

331

bibliography

Brooks Paige, Frank Wood, Arnaud Doucet, and Yee Whye Teh. 2014. Asynchronous
Anytime Sequential Monte Carlo. In Advances in Neural Information Processing
Systems 27.

Robert Paige and Robert E. Tarjan. 1987. Three partition refinement algorithms.
SIAM J. Comput. (1987).

Rohit Parikh. 1985. The Logic of Games and its Applications. In Topics in the
Theory of Computation, Selected Papers of the International Conference on ‘Foundations
of Computation Theory’, FCT '83. https://doi.org/10.1016/s0304-0208(08)

73078-0

Joachim Parrow. 1998. Trios in Concert. In Proof, Language and Interaction: Essays in
Honour of Robin Milner.

Marc Pauly. 2001. Logic for Social Software. Ph. D. Dissertation. https://dare.uva.

nl/search?identifier=9ad66ec5-063d-4673-8563-91369d0af7aa

Arthur Paul Pedersen. 2014. Comparative Expectations. Studia Logica (2014).

David Peleg. 1987. Concurrent Dynamic Logic. J. ACM (1987). https://doi.org/

10.1145/23005.23008

Jorge A. Pérez, Luís Caires, Frank Pfenning, and Bernardo Toninho. 2014. Linear
Logical Relations and Observational Equivalences for Session-Based Concurrency.
I&C (2014). https://doi.org/10.1016/j.ic.2014.08.001

Frank Pfenning and Dennis Griffith. 2015. Polarized Substructural Session Types. In
FoSSaCS. https://doi.org/10.1007/978-3-662-46678-0_1

Du Phan, Neeraj Pradhan, and Martin Jankowiak. 2019. Composable Effects for
Flexible and Accelerated Probabilistic Programming in NumPyro. arXiv preprint
arXiv:1912.11554 (2019).

Benjamin C. Pierce. 2002. Types and Programming Languages (1st ed.). https://doi.

org/10.5555/509043

Riccardo Pucella and Jesse A. Tov. 2008. Haskell session types with (almost) no class.
In Haskell Symposium. https://doi.org/10.1145/1411286.1411290

Zesen Qian, G. A. Kavvos, and Lars Birkedal. 2021. Client-Server Sessions in Linear
Logic. ICFP (2021). https://doi.org/10.1145/3473567

Boqin Qin, Yilun Chen, Zeming Yu, Linhai Song, and Yiying Zhang. 2020.
Understanding memory and thread safety practices and issues in real-world
Rust programs. In PLDI. https://doi.org/10.1145/3385412.3386036

Alexey Radul and Boris Alexeev. 2021. The Base Measure Problem and its Solution.
In AISTATS. http://proceedings.mlr.press/v130/radul21a.html

332

bibliography

Brooks Paige, Frank Wood, Arnaud Doucet, and Yee Whye Teh. 2014. Asynchronous
Anytime Sequential Monte Carlo. In Advances in Neural Information Processing
Systems 27.

Robert Paige and Robert E. Tarjan. 1987. Three partition refinement algorithms.
SIAM J. Comput. (1987).

Rohit Parikh. 1985. The Logic of Games and its Applications. In Topics in the
Theory of Computation, Selected Papers of the International Conference on ‘Foundations
of Computation Theory’, FCT '83. https://doi.org/10.1016/s0304-0208(08)

73078-0

Joachim Parrow. 1998. Trios in Concert. In Proof, Language and Interaction: Essays in
Honour of Robin Milner.

Marc Pauly. 2001. Logic for Social Software. Ph. D. Dissertation. https://dare.uva.

nl/search?identifier=9ad66ec5-063d-4673-8563-91369d0af7aa

Arthur Paul Pedersen. 2014. Comparative Expectations. Studia Logica (2014).

David Peleg. 1987. Concurrent Dynamic Logic. J. ACM (1987). https://doi.org/

10.1145/23005.23008

Jorge A. Pérez, Luís Caires, Frank Pfenning, and Bernardo Toninho. 2014. Linear
Logical Relations and Observational Equivalences for Session-Based Concurrency.
I&C (2014). https://doi.org/10.1016/j.ic.2014.08.001

Frank Pfenning and Dennis Griffith. 2015. Polarized Substructural Session Types. In
FoSSaCS. https://doi.org/10.1007/978-3-662-46678-0_1

Du Phan, Neeraj Pradhan, and Martin Jankowiak. 2019. Composable Effects for
Flexible and Accelerated Probabilistic Programming in NumPyro. arXiv preprint
arXiv:1912.11554 (2019).

Benjamin C. Pierce. 2002. Types and Programming Languages (1st ed.). https://doi.

org/10.5555/509043

Riccardo Pucella and Jesse A. Tov. 2008. Haskell session types with (almost) no class.
In Haskell Symposium. https://doi.org/10.1145/1411286.1411290

Zesen Qian, G. A. Kavvos, and Lars Birkedal. 2021. Client-Server Sessions in Linear
Logic. ICFP (2021). https://doi.org/10.1145/3473567

Boqin Qin, Yilun Chen, Zeming Yu, Linhai Song, and Yiying Zhang. 2020.
Understanding memory and thread safety practices and issues in real-world
Rust programs. In PLDI. https://doi.org/10.1145/3385412.3386036

Alexey Radul and Boris Alexeev. 2021. The Base Measure Problem and its Solution.
In AISTATS. http://proceedings.mlr.press/v130/radul21a.html

332

bibliography

Jason Reed. 2009a. A Hybrid Logical Framework. Ph. D. Dissertation. Carnegie Mellon
University.

Jason Reed. 2009b. A Judgmental Deconstruction of Modal Logic. (2009). http:

//www.cs.cmu.edu/~jcreed/papers/jdml.pdf

John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data
Structures. In LICS. https://doi.org/10.1109/LICS.2002.1029817

Eric Roberts. 2001. An Overview of MiniJava. SIGCSE Bull. (2001). https://doi.

org/10.1145/366413.364525

Pedro Rocha and Luís Caires. 2021. Propositions-as-types and shared state. ICFP
(2021). https://doi.org/10.1145/3473584

Arjen Rouvoet, Robbert Krebbers, and Eelco Visser. 2021. Intrinsically Typed
Compilation With Nameless Labels. POPL (2021). https://doi.org/10.1145/

3434303

Arjen Rouvoet, Casper Bach Poulsen, Robbert Krebbers, and Eelco Visser. 2020.
Intrinsically-Typed Definitional Interpreters for Linear, Session-Typed Languages.
In CPP. https://doi.org/10.1145/3372885.3373818

Hannes Saffrich and Peter Thiemann. 2023. Polymorphic Typestate for Session Types.
In PPDP. https://doi.org/10.1145/3610612.3610624

Alceste Scalas and Nobuko Yoshida. 2016a. Lightweight Session Programming in
Scala. In ECOOP. https://doi.org/10.4230/LIPIcs.ECOOP.2016.21

Alceste Scalas and Nobuko Yoshida. 2016b. Lightweight Session Programming in
Scala. In ECOOP. https://doi.org/10.4230/LIPIcs.ECOOP.2016.21

Alceste Scalas and Nobuko Yoshida. 2019. Less is more: multiparty session types
revisited. POPL (2019). https://doi.org/10.1145/3290343

Lutz Schröder, Dexter Kozen, Stefan Milius, and Thorsten Wißmann. 2017. Nominal
Automata with Name Binding. In FoSSaCS 2017. https://doi.org/10.1007/

978-3-662-54458-7_8

Chung-Chieh Shan and Norman Ramsey. 2017. Exact Bayesian inference by symbolic
disintegration, In POPL. https://doi.org/10.1145/3009837.3009852

Alexandra Silva, Filippo Bonchi, Marcello M. Bonsangue, and Jan J. M. M. Rutten.
2013. Generalizing determinization from automata to coalgebras. LMCS (2013).
https://doi.org/10.2168/LMCS-9(1:9)2013

Alexandra Silva and Ana Sokolova. 2011. Sound and Complete Axiomatization of
Trace Semantics for Probabilistic Systems. Electronic Notes in Theoretical Computer
Science (2011). https://doi.org/10.1016/j.entcs.2011.09.027

333

bibliography

Matthieu Sozeau. 2009. A New Look at Generalized Rewriting in Type Theory. JFR
(2009). https://doi.org/10.6092/issn.1972-5787/1574

Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert Krebbers,
Derek Dreyer, and Lars Birkedal. 2021. Transfinite Iris: resolving an existential
dilemma of step-indexed separation logic. In PLDI. https://doi.org/10.1145/

3453483.3454031

Sam Staton. 2017. Commutative Semantics for Probabilistic Programming. In
Proceedings of the 26th European Symposium on Programming Languages and Systems -
Volume 10201. https://doi.org/10.1007/978-3-662-54434-1_32

Kasper Svendsen and Lars Birkedal. 2014. Impredicative concurrent abstract
predicates. In ESOP. https://doi.org/10.1007/978-3-642-54833-8_9

Joseph Tassarotti, Ralf Jung, and Robert Harper. 2017. A Higher-Order Logic for
Concurrent Termination-Preserving Refinement. In ESOP. https://doi.org/10.

1007/978-3-662-54434-1_34

The Rust Team. 2023a. Fearless Concurrency. https://doc.rust-lang.org/book/

ch16-00-concurrency.html

The Rust Team. 2023b. Reference Cycles Can Leak Memory. https://doc.

rust-lang.org/book/ch15-06-reference-cycles.html

The Rust Team. 2023c. The Rust Programming Language. https://www.rust-lang.

org/

Peter Thiemann. 2019. Intrinsically-Typed Mechanized Semantics for Session Types.
In PPDP. https://doi.org/10.1145/3354166.3354184

Peter Thiemann and Vasco T. Vasconcelos. 2020. Label-dependent session types.
POPL (2020). https://doi.org/10.1145/3371135

Gavin Thomas. 2019. https://msrc.microsoft.com/blog/2019/07/

a-proactive-approach-to-more-secure-code/

Amin Timany, Robbert Krebbers, Derek Dreyer, and Lars Birkedal. 2022. A Logical
Approach to Type Soundness.

Mads Tofte and Jean-Pierre Talpin. 1997. Region-based Memory Management. Inf.
Comput. (1997). https://doi.org/10.1006/inco.1996.2613

David Tolpin, Jan-Willem van de Meent, Brooks Paige, and Frank Wood. 2015.
Output-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs. In
Machine Learning and Knowledge Discovery in Databases. https://doi.org/10.1007/

978-3-319-23525-7_19

334

bibliography

Matthieu Sozeau. 2009. A New Look at Generalized Rewriting in Type Theory. JFR
(2009). https://doi.org/10.6092/issn.1972-5787/1574

Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert Krebbers,
Derek Dreyer, and Lars Birkedal. 2021. Transfinite Iris: resolving an existential
dilemma of step-indexed separation logic. In PLDI. https://doi.org/10.1145/

3453483.3454031

Sam Staton. 2017. Commutative Semantics for Probabilistic Programming. In
Proceedings of the 26th European Symposium on Programming Languages and Systems -
Volume 10201. https://doi.org/10.1007/978-3-662-54434-1_32

Kasper Svendsen and Lars Birkedal. 2014. Impredicative concurrent abstract
predicates. In ESOP. https://doi.org/10.1007/978-3-642-54833-8_9

Joseph Tassarotti, Ralf Jung, and Robert Harper. 2017. A Higher-Order Logic for
Concurrent Termination-Preserving Refinement. In ESOP. https://doi.org/10.

1007/978-3-662-54434-1_34

The Rust Team. 2023a. Fearless Concurrency. https://doc.rust-lang.org/book/

ch16-00-concurrency.html

The Rust Team. 2023b. Reference Cycles Can Leak Memory. https://doc.

rust-lang.org/book/ch15-06-reference-cycles.html

The Rust Team. 2023c. The Rust Programming Language. https://www.rust-lang.

org/

Peter Thiemann. 2019. Intrinsically-Typed Mechanized Semantics for Session Types.
In PPDP. https://doi.org/10.1145/3354166.3354184

Peter Thiemann and Vasco T. Vasconcelos. 2020. Label-dependent session types.
POPL (2020). https://doi.org/10.1145/3371135

Gavin Thomas. 2019. https://msrc.microsoft.com/blog/2019/07/

a-proactive-approach-to-more-secure-code/

Amin Timany, Robbert Krebbers, Derek Dreyer, and Lars Birkedal. 2022. A Logical
Approach to Type Soundness.

Mads Tofte and Jean-Pierre Talpin. 1997. Region-based Memory Management. Inf.
Comput. (1997). https://doi.org/10.1006/inco.1996.2613

David Tolpin, Jan-Willem van de Meent, Brooks Paige, and Frank Wood. 2015.
Output-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs. In
Machine Learning and Knowledge Discovery in Databases. https://doi.org/10.1007/

978-3-319-23525-7_19

334

bibliography

Bernardo Toninho. 2015. A Logical Foundation for Session-Based Concurrent Computation.
Ph. D. Dissertation. Carnegie Mellon University and New University of Lisbon.

Bernardo Toninho, Luís Caires, and Frank Pfenning. 2011. Dependent session types
via intuitionistic linear type theory. In PPDP. https://doi.org/10.1145/2003476.

2003499

Bernardo Toninho, Luís Caires, and Frank Pfenning. 2013. Higher-Order Processes,
Functions, and Sessions: A Monadic Integration. In ESOP. https://doi.org/10.

1007/978-3-642-37036-6_20

Bernardo Toninho and Nobuko Yoshida. 2018. Depending on Session-Typed
Processes. In FOSSACS. https://doi.org/10.1007/978-3-319-89366-2_7

Bernardo Toninho and Nobuko Yoshida. 2019. Interconnectability of Session-Based
Logical Processes. POPL (2019). https://doi.org/10.1145/3242173

Antti Valmari. 2009. Bisimilarity Minimization in 𝒪𝒪𝒪m logn) Time. In Applications
and Theory of Petri Nets, PETRI NETS 2009. https://doi.org/10.1007/

978-3-642-02424-5

Antti Valmari. 2010. Simple Bisimilarity Minimization in O(m log n) Time. Fundam.
Informaticae (2010). https://doi.org/10.3233/FI-2010-369

Antti Valmari and Giuliana Franceschinis. 2010. Simple 𝒪𝒪𝒪m logn) Time Markov
Chain Lumping. In TACAS.

Antti Valmari and Petri Lehtinen. 2008. Efficient Minimization of DFAs with Partial
Transition. In STACS. https://doi.org/10.4230/LIPIcs.STACS.2008.1328

Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. 2018. An
Introduction to Probabilistic Programming. https://arxiv.org/abs/1809.10756

Rob J. van Glabbeek. 2001. The Linear Time - Branching Time Spectrum I. In Handbook
of Process Algebra. https://doi.org/10.1016/b978-044482830-9/50019-9

Vasco T. Vasconcelos. 2012. Fundamentals of Session Types. I&C (2012). https:

//doi.org/10.1016/j.ic.2012.05.002

Jules Villard, Étienne Lozes, and Cristiano Calcagno. 2009. Proving Copyless Message
Passing. In APLAS. https://doi.org/10.1007/978-3-642-10672-9_15

John von Neumann. 1951. Various Techniques Used in Connection with Random
Digits. In Monte Carlo Method. Chapter 13.

Philip Wadler. 2012. Propositions as Sessions. In ICFP. https://doi.org/10.1145/

2364527.2364568

Glynn Winskel. 1993. The formal semantics of programming languages - an introduction.

335

bibliography

Thorsten Wißmann, Hans-Peter Deifel, Stefan Milius, and Lutz Schröder. 2021. From
generic partition refinement to weighted tree automata minimization. Formal
Aspects of Computing (2021). https://doi.org/10.1007/s00165-020-00526-z

Thorsten Wißmann. 2023. Supported Sets – A New Foundation For Nominal Sets And
Automata. In Computer Science Logic (CSL’23). http://arxiv.org/abs/2201.09825

Thorsten Wißmann, Ulrich Dorsch, Stefan Milius, and Lutz Schröder. 2020. Efficient
and Modular Coalgebraic Partition Refinement. Logical Methods in Computer Science
(2020). https://doi.org/10.23638/LMCS-16(1:8)2020

Frank Wood, Jan-Willem van de Meent, and Vikash Mansinghka. 2014. A New
Approach to Probabilistic Programming Inference. In AISTATS. http://jmlr.

org/proceedings/papers/v33/wood14.html

Andrew K. Wright and Matthias Felleisen. 1994. A Syntactic Approach to Type
Soundness. I&C (1994). https://doi.org/10.1006/inco.1994.1093

Yi Wu, Siddharth Srivastava, Nicholas Hay, Simon Du, and Stuart Russell.
2018. Discrete-Continuous Mixtures in Probabilistic Programming: Generalized
Semantics and Inference Algorithms. In Proceedings of the 35th International
Conference on Machine Learning. http://proceedings.mlr.press/v80/wu18f.html

Uma Zalakain and Ornela Dardha. 2021. π with Leftovers: A Mechanisation in Agda.
In FORTE. https://doi.org/10.1007/978-3-030-78089-0_9

Dan Zhang, Dragan Bosnacki, Mark van den Brand, Cornelis Huizing, Bart
Jacobs, Ruurd Kuiper, and Anton Wijs. 2016. Verifying Atomicity Preservation
and Deadlock Freedom of a Generic Shared Variable Mechanism Used in
Model-To-Code Transformations. In MODELSWARD. https://doi.org/10.1007/

978-3-319-66302-9_13

Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova, and Nobuko
Yoshida. 2020. Statically verified refinements for multiparty protocols. OOPSLA
(2020). https://doi.org/10.1145/3428216

336

bibliography

Thorsten Wißmann, Hans-Peter Deifel, Stefan Milius, and Lutz Schröder. 2021. From
generic partition refinement to weighted tree automata minimization. Formal
Aspects of Computing (2021). https://doi.org/10.1007/s00165-020-00526-z

Thorsten Wißmann. 2023. Supported Sets – A New Foundation For Nominal Sets And
Automata. In Computer Science Logic (CSL’23). http://arxiv.org/abs/2201.09825

Thorsten Wißmann, Ulrich Dorsch, Stefan Milius, and Lutz Schröder. 2020. Efficient
and Modular Coalgebraic Partition Refinement. Logical Methods in Computer Science
(2020). https://doi.org/10.23638/LMCS-16(1:8)2020

Frank Wood, Jan-Willem van de Meent, and Vikash Mansinghka. 2014. A New
Approach to Probabilistic Programming Inference. In AISTATS. http://jmlr.

org/proceedings/papers/v33/wood14.html

Andrew K. Wright and Matthias Felleisen. 1994. A Syntactic Approach to Type
Soundness. I&C (1994). https://doi.org/10.1006/inco.1994.1093

Yi Wu, Siddharth Srivastava, Nicholas Hay, Simon Du, and Stuart Russell.
2018. Discrete-Continuous Mixtures in Probabilistic Programming: Generalized
Semantics and Inference Algorithms. In Proceedings of the 35th International
Conference on Machine Learning. http://proceedings.mlr.press/v80/wu18f.html

Uma Zalakain and Ornela Dardha. 2021. π with Leftovers: A Mechanisation in Agda.
In FORTE. https://doi.org/10.1007/978-3-030-78089-0_9

Dan Zhang, Dragan Bosnacki, Mark van den Brand, Cornelis Huizing, Bart
Jacobs, Ruurd Kuiper, and Anton Wijs. 2016. Verifying Atomicity Preservation
and Deadlock Freedom of a Generic Shared Variable Mechanism Used in
Model-To-Code Transformations. In MODELSWARD. https://doi.org/10.1007/

978-3-319-66302-9_13

Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova, and Nobuko
Yoshida. 2020. Statically verified refinements for multiparty protocols. OOPSLA
(2020). https://doi.org/10.1145/3428216

336

Coq formalization index

cgraphs/cgraph.v
� Definition cgraph_wf, p.56
� Lemma cgraph_ind”, p.58
� Lemma delete_edge_wf, p.56
� Lemma edge_out_disjoint,

p.57
� Lemma exchange, p.56
� Lemma insert_edge_wf, p.56
� Lemma no_self_edge, p.57

cgraphs/genericinv.v
� inv_alloc_lrs, p.142
� Lemma inv_alloc_l, p.60
� Lemma inv_alloc_lr, p.61
� Lemma inv_alloc_r, p.60
� Lemma inv_dealloc, p.60
� Lemma inv_exchange, p.59

cgraphs/seplogic.v
� Definition own, p.137

dlfactris/base_logic/adequacy.v
� Lemma adequacy, p.229, 230
� Lemma inv_global_progress,

p.229
� Lemma inv_initialization,

p.229
� Lemma inv_preservation,

p.229
dlfactris/base_logic/aprop.v

� Definition aProp_own, p.221
� Definition own_chan_def,

p.235
� Module Export

aProp_solution, p.235
dlfactris/base_logic/miniprot.v

� Record miniprot, p.227
dlfactris/base_logic/wp.v

� Lemma wp_alloc, p.221
� Lemma wp_send, p.227

� Lemma wp_val, p.221
� Local Definition wp_def, p.237

dlfactris/base_logic/wp_prim.v
� Definition ginv, p.236
� Definition wp_prim_pre, p.237
� Local Definition inv’_pre,

p.236
� Local Definition

thread_inv_pre, p.236
dlfactris/examples/sort.v

� Lemma sort_client_func_spec,
p.215

dlfactris/examples/tour.v
� Definition prog1, p.216
� Definition prog1_prot1, p.216
� Definition prog1_prot2, p.217
� Definition prog2, p.217
� Definition prog2_prot, p.217
� Definition prog3, p.217
� Definition prog3_prot, p.218
� Definition prog4, p.218
� Definition prog4_prot, p.218
� Definition prog5, p.218
� Definition prog5_prot1, p.219
� Definition prog5_prot2, p.219
� Definition prog6, p.219
� Definition prog6_prot2, p.219
� Definition prog7, p.219
� Definition prog7_prot, p.220

dlfactris/lang/lang.v
� Inductive expr, p.216

dlfactris/logrel/term_types.v
� Definition lty_any, p.239

dlfactris/logrel/term_typing_judgment.v
� Lemma ltyped_soundness,

p.240
dlfactris/session_logic/imp.v

337

INDEX

� Definition fork_chan, p.228
� Lemma wp_fork_chan, p.222

dlfactris/session_logic/sessions.v
� Definition end_prot, p.222
� Definition msg_prot, p.228

dlfactris/session_logic/sub.v
� Definition subprot, p.228

dlfactris/session_logic/tele_imp.v
� Lemma dual_end, p.222

lambdabar/definitions.v
� Definition deadlock_free, p.168
� Definition fully_reachable,

p.168
� Definition global_progress,

p.168
� Definition type_safety, p.168
� Definition waiting, p.167
� Inductive reachable, p.168
� Record deadlock, p.168

lambdabar/theorems.v
� Lemma

fully_reachable_global_progress,
p.169

� Lemma
fully_reachable_iff_deadlock_free,
p.168

� Lemma
fully_reachable_type_safety,
p.169

� Lemma
typed_full_reachability,
p.169

locks/lambdalock/definitions.v
� deadlock, p.94
� deadlock_free, p.94
� expr_waiting, p.93
� fully_reachable, p.94
� global_progress, p.94
� reachable, p.94
� type_safety, p.95
� waiting, p.93

locks/lambdalock/invariant.v

� full_reachability, p.96
� preservation, p.96

locks/lambdalock/langdef.v
� ctx, p.89
� expr, p.19, p.87, p.104
� local_step, p.89
� pure_step, p.89
� step, p.89
� type, p.86
� typed, p.87, 88
� val, p.89

locks/lambdalock/theorems.v
� Lemma

fully_reachable_global_progress,
p.95

� Lemma
fully_reachable_iff_deadlock_free,
p.94

� Lemma
fully_reachable_type_safety,
p.95

� typed_full_reachability, p.95
� typed_global_progress, p.92

locks/lambdalockpp/langdef.v
� expr, p.104
� typed, p.100

miniactris/base.v
� Definition chan_inv, p.194
� Definition dual, p.190
� Definition is_chan0, p.190,

p.194
� Definition new1, p.183
� Definition prog_single, p.182
� Definition prot, p.190, p.195
� Definition prot_single, p.191
� Definition recv1, p.183
� Definition send1, p.183
� Instance is_chan0_contractive,

p.200
� Lemma dual_dual, p.195
� Lemma new1_spec0, p.190
� Lemma recv1_spec0, p.190

338

INDEX

� Definition fork_chan, p.228
� Lemma wp_fork_chan, p.222

dlfactris/session_logic/sessions.v
� Definition end_prot, p.222
� Definition msg_prot, p.228

dlfactris/session_logic/sub.v
� Definition subprot, p.228

dlfactris/session_logic/tele_imp.v
� Lemma dual_end, p.222

lambdabar/definitions.v
� Definition deadlock_free, p.168
� Definition fully_reachable,

p.168
� Definition global_progress,

p.168
� Definition type_safety, p.168
� Definition waiting, p.167
� Inductive reachable, p.168
� Record deadlock, p.168

lambdabar/theorems.v
� Lemma

fully_reachable_global_progress,
p.169

� Lemma
fully_reachable_iff_deadlock_free,
p.168

� Lemma
fully_reachable_type_safety,
p.169

� Lemma
typed_full_reachability,
p.169

locks/lambdalock/definitions.v
� deadlock, p.94
� deadlock_free, p.94
� expr_waiting, p.93
� fully_reachable, p.94
� global_progress, p.94
� reachable, p.94
� type_safety, p.95
� waiting, p.93

locks/lambdalock/invariant.v

� full_reachability, p.96
� preservation, p.96

locks/lambdalock/langdef.v
� ctx, p.89
� expr, p.19, p.87, p.104
� local_step, p.89
� pure_step, p.89
� step, p.89
� type, p.86
� typed, p.87, 88
� val, p.89

locks/lambdalock/theorems.v
� Lemma

fully_reachable_global_progress,
p.95

� Lemma
fully_reachable_iff_deadlock_free,
p.94

� Lemma
fully_reachable_type_safety,
p.95

� typed_full_reachability, p.95
� typed_global_progress, p.92

locks/lambdalockpp/langdef.v
� expr, p.104
� typed, p.100

miniactris/base.v
� Definition chan_inv, p.194
� Definition dual, p.190
� Definition is_chan0, p.190,

p.194
� Definition new1, p.183
� Definition prog_single, p.182
� Definition prot, p.190, p.195
� Definition prot_single, p.191
� Definition recv1, p.183
� Definition send1, p.183
� Instance is_chan0_contractive,

p.200
� Lemma dual_dual, p.195
� Lemma new1_spec0, p.190
� Lemma recv1_spec0, p.190

338

INDEX

� Lemma send1_spec0, p.190
miniactris/imp.v

� Definition close_imp, p.185
� Definition is_chan_imp, p.198,

199
� Definition new_imp, p.185
� Definition prog_imp, p.186
� Definition prot_sum, p.199
� Definition recv_imp, p.185
� Definition send_imp, p.185
� Definition wait_imp, p.185
� Fixpoint prot_sum’, p.199
� Lemma close_imp_spec, p.199
� Lemma new_imp_spec, p.199
� Lemma prog_imp_spec, p.200
� Lemma recv_imp_spec, p.199
� Lemma send_imp_spec, p.199
� Lemma subprot_is_chan_imp,

p.199
� Lemma wait_imp_spec, p.199

miniactris/send_close.v
� Definition is_chan’, p.204
� Definition prot’, p.204
� Definition send_close, p.204
� Lemma new_spec’, p.205
� Lemma recv_spec’, p.205
� Lemma send_close_spec’,

p.205
� Lemma send_spec’, p.205

miniactris/session.v
� Definition close, p.184
� Definition close_prot, p.197
� Definition new, p.184
� Definition prog_add, p.184
� Definition prog_add_rec, p.201
� Definition prot_add, p.196
� Definition prot_add_rec, p.200
� Definition recv, p.184
� Definition recv_prot, p.196
� Definition send, p.184
� Definition send_prot, p.197
� Definition wait, p.184
� Definition wait_prot, p.197

� Lemma close_prot_dual, p.195
� Lemma close_spec, p.195
� Lemma new_spec, p.195
� Lemma prog_add_rec_spec,

p.201
� Lemma prog_add_spec, p.196
� Lemma recv_prot_dual, p.195
� Lemma recv_spec, p.195
� Lemma send_prot_dual, p.195
� Lemma send_spec, p.195
� Lemma subprot_frame_recv,

p.198
� Lemma subprot_frame_send,

p.198
� Lemma subprot_recv, p.197
� Lemma subprot_send, p.197
� Lemma wait_prot_dual, p.195
� Lemma wait_spec, p.195

miniactris/sub.v
� Definition is_chan, p.194
� Definition subprot, p.194
� Lemma is_chan0_is_chan,

p.194
� Lemma new1_spec, p.194
� Lemma recv1_spec, p.194
� Lemma send1_spec, p.194
� Lemma subprot_is_chan, p.194

miniactris/sym_close.v
� Definition dual’, p.203
� Definition end_inv, p.203
� Definition is_chan’, p.203
� Definition prot’, p.202
� Definition subprot’, p.203
� Definition sym_close, p.202
� Lemma sym_close_spec, p.203

multiparty/binary.v
� CloseB, p.129
� CloseB_typed, p.129
� ForkB, p.129
� ForkB_typed, p.129
� projGM_0, p.129
� projGM_1, p.129
� RecvB, p.129

339

INDEX

� RecvB_typed, p.129
� SendB, p.129
� SendB_typed, p.129
� session_typeB, p.128
� toG, p.129
� toM, p.129

multiparty/definitions.v
� deadlock, p.131
� deadlock_free, p.131
� fully_reachable, p.131
� Inductive object, p.140
� reachable, p.131

multiparty/globaltypes.v
� consistent_gt_consistent, p.134
� global_type, p.127
� guarded, p.127
� proj, p.127
� rglobal_type, p.134
� rproj, p.134, 135
� sbufprojs, p.135
� sbufs_typed_gt_subufs_typed,

p.135
multiparty/invariant.v

� bufs_typed_dealloc, p.139
� bufs_typed_init, p.139
� bufs_typed_pop, p.139
� bufs_typed_push, p.139
� Definition invariant, p.139
� invariant_init, p.140
� preservation, p.140

multiparty/langdef.v
� consistent, p.133
� ctx, p.123

� expr, p.123
� head_step, p.123
� heap, p.122
� sbufs_typed, p.133
� session, p.123
� session_type, p.125
� type, p.125
� typed, p.125
� unrestricted, p.126
� val, p.123

multiparty/progress.v
� strong_progress, p.142

multiparty/rtypesystem.v
� rtyped, p.138
� typed_rtyped, p.138

multiparty/theorems.v
� deadlock_freedom, p.132
� global_progress, p.130
� reachability_deadlock, p.132

sessiontypes/progress.v
� Definition active, p.53
� Definition obj_refs, p.64
� Definition waiting, p.53
� Inductive reachable, p.65
� Lemma deadlock_freedom,

p.66
� Lemma global_progress, p.66
� Lemma

reachability_deadlock_freedom,
p.65

� Lemma strong_progress, p.65
� Record deadlock, p.64, 65

340

INDEX

� RecvB_typed, p.129
� SendB, p.129
� SendB_typed, p.129
� session_typeB, p.128
� toG, p.129
� toM, p.129

multiparty/definitions.v
� deadlock, p.131
� deadlock_free, p.131
� fully_reachable, p.131
� Inductive object, p.140
� reachable, p.131

multiparty/globaltypes.v
� consistent_gt_consistent, p.134
� global_type, p.127
� guarded, p.127
� proj, p.127
� rglobal_type, p.134
� rproj, p.134, 135
� sbufprojs, p.135
� sbufs_typed_gt_subufs_typed,

p.135
multiparty/invariant.v

� bufs_typed_dealloc, p.139
� bufs_typed_init, p.139
� bufs_typed_pop, p.139
� bufs_typed_push, p.139
� Definition invariant, p.139
� invariant_init, p.140
� preservation, p.140

multiparty/langdef.v
� consistent, p.133
� ctx, p.123

� expr, p.123
� head_step, p.123
� heap, p.122
� sbufs_typed, p.133
� session, p.123
� session_type, p.125
� type, p.125
� typed, p.125
� unrestricted, p.126
� val, p.123

multiparty/progress.v
� strong_progress, p.142

multiparty/rtypesystem.v
� rtyped, p.138
� typed_rtyped, p.138

multiparty/theorems.v
� deadlock_freedom, p.132
� global_progress, p.130
� reachability_deadlock, p.132

sessiontypes/progress.v
� Definition active, p.53
� Definition obj_refs, p.64
� Definition waiting, p.53
� Inductive reachable, p.65
� Lemma deadlock_freedom,

p.66
� Lemma global_progress, p.66
� Lemma

reachability_deadlock_freedom,
p.65

� Lemma strong_progress, p.65
� Record deadlock, p.64, 65

340

Research data management

This thesis research has been carried out under the research data management policy
of the Institute for Computing and Information Science of Radboud University, The
Netherlands.1

The following research code repositories have been produced during this Ph.D.
research:

chapter 1 : Jules Jacobs, Stephanie Balzer, Robbert Krebbers; https://doi.org/
10.5281/zenodo.5675249

chapter 2 : Jules Jacobs, Stephanie Balzer; https://doi.org/10.5281/zenodo.

7150549

chapter 3 : Jules Jacobs, Stephanie Balzer, Robbert Krebbers; https://doi.org/
10.5281/zenodo.6884760

chapter 4 : Jules Jacobs; https://doi.org/10.5281/zenodo.6560443

chapter 5 : Jules Jacobs, Jonas Kastberg Hinrichsen, Robbert Krebbers; https:

//doi.org/10.5281/zenodo.7993904

chapter 6 : Jules Jacobs, Jonas Kastberg Hinrichsen, Robbert Krebbers; https:

//doi.org/10.5281/zenodo.8422755

chapter 7 : Jules Jacobs; https://doi.org/10.5281/zenodo.4075076

chapter 8 : Jules Jacobs, Thorsten Wißmann; https://doi.org/10.5281/zenodo.
7150706

Additionally, for the reader’s convenience, the Coq mechanizations have been
hosted on a separate web page that is interlinked with this thesis:

https://apndx.org/thesis/

1 https://www.ru.nl/en/institute-for-computing-and-information-sciences/research, last accessed
May 10, 2024

341

Summary

This thesis is about type systems for deadlock and leak free concurrency, separation
logics for verified message passing, paradox-free probabilistic programming, and
general and efficient coalgebraic automata minimization. In each case we aspire to
guarantee beneficial properties ‘by construction’, as inherent consequences of the
design of the system:

types for deadlock and memory leak-free concurrency :
Languages such as Rust guarantee memory safety and race freedom by type
checking, but Rust programs can deadlock and leak memory. By enforing
a carefully designed linear typing discipline, we obtain new concurrent
languages with locks and channels in which deadlock freedom and memory
leak freedom are guaranteed by type checking. A key challenge is proving this
formally, for which we introduce a proof technique called connectivity graphs.

separation logics for verified message passing :
We show that concurrent separation logic and message passing are a perfect
match, by using nested invariants to markedly simplify the soundness proof
of an Actris-style separation logic for the verification of message passing
programs. We then develop a new separation logic for verifying that message
passing programs are deadlock free and memory leak free. These properties
follow automatically from the linearity of the separation logic, without any
additional proof obligations.

paradox-free probabilistic programming :
Probabilistic modeling languages suffer from paradoxes when conditioning
on events of measure zero. This can even lead to different answers depending
on whether the modeler is working in metric or imperial units. We show that
we can avoid these paradoxes with a simple change to the modeling language.
The resulting language guarantees that all probabilistic programs are invariant
under change of parameterization, and its semantics of conditioning on events
of measure zero relate to conditioning on events of positive measure in a
natural way.

general and efficient coalgebraic automata minimization :
A variety of automaton types and minimization algorithms exist, often tailored
to specific cases. By imposing a coalgebraic structure on automata, we can
exploit their shared characteristics. This allows us to develop a unified
minimization algorithm that works across a general class of automata, while
being efficient both in theory and in practice.

342

Summary

This thesis is about type systems for deadlock and leak free concurrency, separation
logics for verified message passing, paradox-free probabilistic programming, and
general and efficient coalgebraic automata minimization. In each case we aspire to
guarantee beneficial properties ‘by construction’, as inherent consequences of the
design of the system:

types for deadlock and memory leak-free concurrency :
Languages such as Rust guarantee memory safety and race freedom by type
checking, but Rust programs can deadlock and leak memory. By enforing
a carefully designed linear typing discipline, we obtain new concurrent
languages with locks and channels in which deadlock freedom and memory
leak freedom are guaranteed by type checking. A key challenge is proving this
formally, for which we introduce a proof technique called connectivity graphs.

separation logics for verified message passing :
We show that concurrent separation logic and message passing are a perfect
match, by using nested invariants to markedly simplify the soundness proof
of an Actris-style separation logic for the verification of message passing
programs. We then develop a new separation logic for verifying that message
passing programs are deadlock free and memory leak free. These properties
follow automatically from the linearity of the separation logic, without any
additional proof obligations.

paradox-free probabilistic programming :
Probabilistic modeling languages suffer from paradoxes when conditioning
on events of measure zero. This can even lead to different answers depending
on whether the modeler is working in metric or imperial units. We show that
we can avoid these paradoxes with a simple change to the modeling language.
The resulting language guarantees that all probabilistic programs are invariant
under change of parameterization, and its semantics of conditioning on events
of measure zero relate to conditioning on events of positive measure in a
natural way.

general and efficient coalgebraic automata minimization :
A variety of automaton types and minimization algorithms exist, often tailored
to specific cases. By imposing a coalgebraic structure on automata, we can
exploit their shared characteristics. This allows us to develop a unified
minimization algorithm that works across a general class of automata, while
being efficient both in theory and in practice.

342

Samenvatting

Dit proefschrift gaat over type systemen voor deadlock- en geheugenlek-vrije
programmeertalen, separatielogica voor geverifieerde message-passing, paradox-
vrije probabilistisch programmeren, en generieke en efficiënte coälgebraïsche
automatenminimalisatie. In elk van de volgende gevallen streven we ernaar om
gunstige eigenschappen inherent te garanderen:

types voor deadlock- en geheugenlek-vrije concurrency :
Talen zoals Rust garanderen geheugenveiligheid en racevrijheid door middel
van typechecking, maar Rust-programma’s kunnen nog steeds vastlopen en
geheugen lekken. Door een zorgvuldig ontworpen lineaire type-discipline
verkrijgen we een taal met locks en channels waarin zowel deadlock-vrijheid als
geheugenlek-vrijheid gegarandeerd zijn door typechecking. De belangrijkste
uitdaging is dit formeel te bewijzen.

separatielogica voor geverifieerde message-passing :
We laten zien dat separatielogica en message-passing perfect samengaan,
door gebruik te maken van geneste invarianten om de correctheid van een
message-passing separatielogica aanzienlijk te vereenvoudigen. Vervolgens
ontwikkelen we een nieuwe separatielogica voor het verifiëren dat message-
passing programma’s zowel deadlock-vrij als geheugenlek-vrij zijn. Deze
eigenschappen volgen automatisch uit de lineariteit van de separatielogica,
zonder enige extra bewijsverplichtingen.

paradox-vrij probabilistisch programmeren :
Probabilistische modelleertalen kampen met paradoxen wanneer ze
conditioneren op gebeurtenissen van maat nul. Dit kan leiden tot uiteenlopende
antwoorden die afhangen van de eenheden die de modelleur gebruikt
(bijvoorbeeld metrische of imperiale lengtematen). We laten zien dat we
deze paradoxen kunnen vermijden met een eenvoudige aanpassing van de
modelleertaal. De resulterende taal garandeert dat alle probabilistische
programma’s invariant zijn onder verandering van parameterisatie, en
de semantiek van conditionering op gebeurtenissen van maat nul op een
natuurlijke manier gerelateerd is aan conditionering op gebeurtenissen van
positieve maat.

generieke en efficiënte coälgebraïsche automatenminimalisatie :
Er bestaan verschillende automaatminimalisatiealgoritmen, toegespitst op
specifieke gevallen. Door een coälgebraïsche structuur op automaten te leggen
ontwikkelen we een generiek minimalisatiealgoritme dat zowel theoretisch als
in de praktijk efficiënt is voor een algemene klasse van automaten.

343

Curriculum vitae

Jules Jacobs was born on October 17, 1989 in Nijmegen, the Netherlands. He studied
mathematics and physics (bachelor), and mathematics (master) at Leiden University,
obtaining a cum laude grade for his master thesis on the topic of differential topology.

He started his PhD research at Delft University of Technology, under the
supervision of Robbert Krebbers and Eelco Visser, later continued at Radboud
University Nijmegen, under the supervision of Robbert Krebbers and Herman
Geuvers, with Stephanie Balzer from Carnegie Mellon University as copromotor. His
PhD research focused on mathematical foundations of programming languages, in
particular type systems for deadlock free concurrency, separation logic, coalgebraic
minimization, and probabilistic programming. During his PhD, he also helped
teach courses in this area, and co-supervised bachelor and master students. Jules is
currently a postdoc at Cornell University, working with Nate Foster and Alexandra
Silva.

344

Curriculum vitae

Jules Jacobs was born on October 17, 1989 in Nijmegen, the Netherlands. He studied
mathematics and physics (bachelor), and mathematics (master) at Leiden University,
obtaining a cum laude grade for his master thesis on the topic of differential topology.

He started his PhD research at Delft University of Technology, under the
supervision of Robbert Krebbers and Eelco Visser, later continued at Radboud
University Nijmegen, under the supervision of Robbert Krebbers and Herman
Geuvers, with Stephanie Balzer from Carnegie Mellon University as copromotor. His
PhD research focused on mathematical foundations of programming languages, in
particular type systems for deadlock free concurrency, separation logic, coalgebraic
minimization, and probabilistic programming. During his PhD, he also helped
teach courses in this area, and co-supervised bachelor and master students. Jules is
currently a postdoc at Cornell University, working with Nate Foster and Alexandra
Silva.

344

Titles in the IPA Dissertation Series since 2021

D. Frumin. Concurrent Separation
Logics for Safety, Refinement, and Security.
Faculty of Science, Mathematics and
Computer Science, RU. 2021-01

A. Bentkamp. Superposition for Higher-
Order Logic. Faculty of Sciences,
Department of Computer Science,
VU. 2021-02

P. Derakhshanfar. Carving Information
Sources to Drive Search-based Crash
Reproduction and Test Case Generation.
Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2021-03

K. Aslam. Deriving Behavioral
Specifications of Industrial Software
Components. Faculty of Mathematics
and Computer Science, TU/e. 2021-04

W. Silva Torres. Supporting Multi-
Domain Model Management. Faculty of
Mathematics and Computer Science,
TU/e. 2021-05

A. Fedotov. Verification Techniques for
xMAS. Faculty of Mathematics and
Computer Science, TU/e. 2022-01

M.O. Mahmoud. GPU Enabled
Automated Reasoning. Faculty of
Mathematics and Computer Science,
TU/e. 2022-02

M. Safari. Correct Optimized GPU
Programs. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2022-03

M. Verano Merino. Engineering
Language-Parametric End-User Programming
Environments for DSLs. Faculty of

Mathematics and Computer Science,
TU/e. 2022-04

G.F.C. Dupont. Network Security
Monitoring in Environments where Digital
and Physical Safety are Critical. Faculty
of Mathematics and Computer Science,
TU/e. 2022-05

T.M. Soethout. Banking on Domain
Knowledge for Faster Transactions. Faculty
of Mathematics and Computer Science,
TU/e. 2022-06

P. Vukmirović. Implementation of
Higher-Order Superposition. Faculty
of Sciences, Department of Computer
Science, VU. 2022-07

J. Wagemaker. Extensions of (Concurrent)
Kleene Algebra. Faculty of Science,
Mathematics and Computer Science,
RU. 2022-08

R. Janssen. Refinement and Partiality for
Model-Based Testing. Faculty of Science,
Mathematics and Computer Science,
RU. 2022-09

M. Laveaux. Accelerated Verification
of Concurrent Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2022-10

S. Kochanthara. A Changing Landscape:
On Safety & Open Source in Automated
and Connected Driving. Faculty of
Mathematics and Computer Science,
TU/e. 2023-01

L.M. Ochoa Venegas. Break the
Code? Breaking Changes and Their
Impact on Software Evolution. Faculty
of Mathematics and Computer Science,
TU/e. 2023-02

N. Yang. Logs and models in engineering
complex embedded production software
systems. Faculty of Mathematics and
Computer Science, TU/e. 2023-03

J. Cao. An Independent Timing Analysis
for Credit-Based Shaping in Ethernet TSN.
Faculty of Mathematics and Computer
Science, TU/e. 2023-04

K. Dokter. Scheduled Protocol
Programming. Faculty of Mathematics
and Natural Sciences, UL. 2023-05

J. Smits. Strategic Language Workbench
Improvements. Faculty of Electrical
Engineering, Mathematics, and
Computer Science, TUD. 2023-06

A. Arslanagić. Minimal Structures
for Program Analysis and Verification.
Faculty of Science and Engineering,
RUG. 2023-07

M.S. Bouwman. Supporting Railway
Standardisation with Formal Verification.
Faculty of Mathematics and Computer
Science, TU/e. 2023-08

S.A.M. Lathouwers. Exploring
Annotations for Deductive Verification.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2023-09

J.H. Stoel. Solving the Bank, Lightweight
Specification and Verification Techniques
for Enterprise Software. Faculty of
Mathematics and Computer Science,
TU/e. 2023-10

D.M. Groenewegen. WebDSL: Linguistic
Abstractions for Web Programming.
Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2023-11

D.R. do Vale. On Semantical Methods
for Higher-Order Complexity Analysis.
Faculty of Science, Mathematics and
Computer Science, RU. 2024-01

M.J.G. Olsthoorn. More Effective Test
Case Generation with Multiple Tribes of
AI. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2024-02

B. van den Heuvel. Correctly
Communicating Software: Distributed,
Asynchronous, and Beyond. Faculty of
Science and Engineering, RUG. 2024-03

H.A. Hiep. New Foundations for
Separation Logic. Faculty of Mathematics
and Natural Sciences, UL. 2024-04

C.E. Brandt. Test Amplification For
and With Developers. Faculty of
Electrical Engineering, Mathematics,
and Computer Science, TUD. 2024-05

J.I. Hejderup. Fine-Grained Analysis
of Software Supply Chains. Faculty
of Electrical Engineering, Mathematics,
and Computer Science, TUD. 2024-06

J. Jacobs. Guarantees by construction.
Faculty of Science, Mathematics and
Computer Science, RU. 2024-07

	Cover
	Colophon
	Acknowledgments
	Contents
	Introduction
	Part I. TYPES FOR DEADLOCK AND LEAK FREE CONCURRENCY
	Chapter 1. Connectivity Graphs: A Method for Proving Deadlock Freedom Based on Separation Logic
	Chapter 2. Higher-Order Leak and Deadlock Free Locks
	Chapter 3. Multiparty GV: Functional Multiparty Session Types with Certified Deadlock Freedom
	Chapter 4. A Self-Dual Distillation of Session Types

	Part II. SEPARATION LOGICS FOR MESSAGE PASSING
	Chapter 5. Dependent Session Protocols in Separation Logic from First Principles
	Chapter 6. Deadlock-Free Separation Logic: Linearity Yields Progress for Dependent Higher-Order Message Passing

	Part III. PARADOX-FREE PROBABILISTIC PROGRAMMING
	Chapter 7. Paradoxes of Probabilistic Programming

	Part IV. GENERAL AND EFFICIENT AUTOMATA MINIMIZATION
	Chapter 8. Fast Coalgebraic Bisimilarity Minimization

	Part V. CONCLUSION AND FUTURE WORK
	Chapter 9. Conclusion and Future Work

	Part VI
	Bibliography
	Coq formalization index
	Research data management
	Summary
	Samenvatting
	Curriculum vitae
	Titles in the IPA Dissertation Series since 2021

