
Radboud
Dissertation
Series

Guiding
 Automated Theorem Proving

with Machine Learning
Jelle Piepenbrock

Institute for Computing
and Information Sciences

Guiding
Automated Theorem Proving

with Machine Learning

Jelle Piepenbrock

Author: Jelle Hermanus Piepenbrock
Title: �Guiding Automated Theorem Proving with Machine Learning

Radboud Dissertations Series
ISSN: 2950-2772 (Online); 2950-2780 (Print)

Published by RADBOUD UNIVERSITY PRESS
Postbus 9100, 6500 HA Nijmegen, The Netherlands
www.radbouduniversitypress.nl

Design: Jelle Hermanus Piepenbrock
Cover: Proefschrift AIO | Guntra Laivacuma
Printing: DPN Rikken/Pumbo

ISBN: 9789465150499
DOI: 10.54195/9789465150499
Free download at: https://doi.org/10.54195/9789465150499
© 2025 Jelle Hermanus Piepenbrock

This is an Open Access book published under the terms of Creative Commons
Attribution-Noncommercial-NoDerivatives International license (CC BY-NC-ND 4.0). This
license allows reusers to copy and distribute the material in any medium or format in
unadapted form only, for noncommercial purposes only, and only so long as attribution
is given to the creator, see http://creativecommons.org/licenses/by-nc-nd/4.0/.

Guiding
Automated Theorem Proving

with Machine Learning

Proefschrift ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.M. Sanders,
volgens besluit van het college voor promoties

in het openbaar te verdedigen op

dinsdag 11 maart 2025
om 16.30 precies

door

Jelle Hermanus Piepenbrock

Promotor:

• Prof. dr. T.M. Heskes

Copromotoren:

• Dr. M. Janota (České vysoké učeńı technické v Praze, Tsjechië)

• Dr. J. Urban (České vysoké učeńı technické v Praze, Tsjechië)

Manuscriptcommissie:

• Prof. dr. J.H. Geuvers

• Prof. dr. S. Schulz (Duale Hochschule Baden-Württemberg Stuttgart,
Duitsland)

• Dr. M. Johansson (Chalmers University, Zweden)

Guiding
Automated Theorem Proving

with Machine Learning

Dissertation to obtain the degree of doctor
from Radboud University Nijmegen

on the authority of the Rector Magnificus prof. dr. J.M. Sanders,
according to the decision of the Doctorate Board

to be defended in public on

Tuesday, March 11, 2025
at 4.30 pm

by

Jelle Hermanus Piepenbrock

Supervisor:

• Prof. dr. T.M. Heskes

Co-Supervisors:

• Dr. M. Janota (Czech Technical University in Prague, Czech Republic)

• Dr. J. Urban (Czech Technical University in Prague, Czech Republic)

Manuscript Committee:

• Prof. dr. J.H. Geuvers

• Prof. dr. S. Schulz (Baden-Württemberg Cooperative State University,
Germany)

• Dr. M. Johansson (Chalmers University, Sweden)

Contents

1 Introduction 1
1.1 Automated Theorem Proving . 2

1.1.1 Classical Propositional Logic 2
1.1.2 Practical Uses of Propositional Logic 4
1.1.3 SAT solvers . 5
1.1.4 Resolution and the Search for the Empty Clause 6
1.1.5 DPLL & CDCL: Solving By Decision and Backtracking . 7
1.1.6 SMT solvers . 9
1.1.7 Quantifiers & First-Order Logic 11
1.1.8 First-Order Resolution & Equality 14
1.1.9 Modern ATPs: Superposition and more 15

1.2 Machine Learning . 16
1.2.1 Learning By Example . 16
1.2.2 Learning By Stepping Away From Errors: Gradient Descent 17
1.2.3 Structural Learning: Graph Data 21

1.3 Thesis Outline & Research Questions 24

2 Invariant Neural Architecture for Learning Term Synthesis in Instan-
tiation Proving 27
2.1 Introduction . 28
2.2 Methods . 30

2.2.1 Solving by Instantiation 30
2.2.2 Combining an Instantiator with a Ground Solver 31
2.2.3 Ground Solver for CC + SAT 32
2.2.4 Incremental Instantiation Procedure 32
2.2.5 Neural Network Architecture 34
2.2.6 Dataset of Mathematical Problems 38

vii

viii Contents

2.2.7 CC + SAT Implementation 39
2.2.8 Generating Training Data Via Random Grounding 39
2.2.9 Neural Network Data Processing and Training Details . . 40

2.3 Results . 43
2.3.1 Prediction Model Selection 43
2.3.2 Validation and Instance Accuracy of the Neural Networks 44
2.3.3 Self-Improving Loop (M2k Dataset) 45
2.3.4 Self-Improving Loop (Full Dataset) 47
2.3.5 Comparison with existing provers 49

2.4 Related Work . 49
2.5 Conclusion . 50
2.6 Acknowledgements . 51

3 Guiding an Instantiation Prover with Graph Neural Networks 53
3.1 Introduction . 54
3.2 iProver . 54

3.2.1 iProver and the Inst-Gen Calculus 54
3.2.2 Guiding iProver . 55

3.3 Name-Independent Graph Neural Network 56
3.4 Interactive Mode . 57
3.5 GPU Server . 59
3.6 Experimental Setting . 60

3.6.1 Evaluation Problems . 60
3.6.2 Data: Classic vs Dynamic 60
3.6.3 iProver Settings . 61

3.7 Results . 62
3.7.1 Holdout Set Performance 64
3.7.2 Transfer to Newly Added Mizar Articles 65

3.8 Conclusion . 65
3.9 Acknowledgements . 66

4 Instantiation in SMT solvers with Graph Neural Networks 67
4.1 Introduction . 67
4.2 Proving By Instantiation . 69
4.3 Neural Instantiation for cvc5 . 71
4.4 Experiments . 75

4.4.1 Small Dataset . 76
4.4.2 Large Dataset (MPTP1147) 78

4.5 Conclusion . 80

Contents ix

4.6 Acknowledgements . 81

5 Guiding an Automated Theorem Prover with Neural Rewriting 83
5.1 Introduction . 84

5.1.1 Contributions . 84
5.2 ATP and Suggestion of Lemmas by Neural

Rewriting . 86
5.3 AIM Conjecture and the AIMLEAP RL

Environment . 86
5.3.1 The AIMLEAP RL Environment 88

5.4 Rewriting in Robinson Arithmetic as an RL Task 88
5.5 Reinforcement Learning Methods 89

5.5.1 Reinforcement Learning Baselines 89
5.5.2 Stratified Shortest Solution Imitation Learning 92

5.6 Neural Architectures . 94
5.7 Experiments . 96

5.7.1 Robinson Arithmetic Dataset 96
5.7.2 AIM Conjecture Dataset 98
5.7.3 Implementation Details 102

5.8 Conclusion and Future Work . 103

6 Conclusion 105

Bibliography 109

Appendix A: Chapter 2 125
A.1 Congruence Closure + SAT . 125
A.2 Comparison with Existing Provers 125
A.3 Random Instantiator . 126
A.4 Training Curves . 126
A.5 Training on Generated Proofs . 127
A.6 On Keeping General Clauses & Training Data Alignment 127
A.7 Scaling & Decomposition of the Task 128
A.8 Using other Ground Solvers . 130

Appendix B: Chapter 3 131
B.1 Server Settings . 131
B.2 iProver Settings . 131
B.3 GNN Settings . 133

x Contents

Research Data Management 135

Summary 137

Samenvatting 139

Contributions & Publication List 141

Acknowledgements 143

Curriculum vitae 145

Chapter 1

Introduction

The formalization and automation of reasoning are long-standing goals in the
sciences [18]. The practical implementation of reasoning based on machine-
based calculations was not in reach for most of that history and is a relatively
recent achievement, with the possibilities perhaps appearing as a vision on the
horizon in the late 19th century to people like Babbage and Lovelace, who
were working on their analytical engine [3]. However, many people throughout
history have seen the advantage of automation, even back in antiquity.

A famous example is the Antikythera mechanism, which is a type of hand-
driven analog computer that functions as a model of the solar system [35]. The
artifact was built to predict the positions of astronomical objects in the second
or first century BC. This type of special-purpose computer is more limited than
the general-purpose computing paradigm that emerged in the 20th century after
the work of Turing [127] and others. However, it indicates that, for a long time,
people have understood that encoding knowledge inside mechanical artifacts
and using them to derive the consequences could be a useful activity.

In this thesis, the focus is on improving modern computerized reasoning
mechanisms with machine learning. While for many reasoning tasks, the proce-
dures themselves are guaranteed to lead to correct answers, they may not finish
in a practical time span, due to the space of possible consequences to reckon
with being very large. Therefore, we applied machine learning to speed up the
processes and improve the reasoning procedures. In the most basic sense, the
goal is to compile statistics on what reasoning steps led to successful proofs, and
then refocus the reasoning procedure to make reasoning steps that are similar
to these successful choices. The statistics may be compressed (and ideally also

1

2 Chapter 1. Introduction

generalized [77]) in the form of a statistical predictor, such as a neural network,
in a process known as machine learning. In this parlance, it becomes possible
to think of the neural network statistical predictor as controlling and directing
the reasoning search procedure, to guide it towards fast and correct conclusions.
We will now go into more detail on the logical theories that underlie the modern
automated reasoning procedures considered in this thesis. Afterwards, we intro-
duce the machine learning methods used to control and guide these reasoning
engines.

1.1 Automated Theorem Proving

In this section, we explain aspects of the field of automated reasoning or auto-
mated theorem proving (ATP) in such a way that someone from the machine
learning field can, after reading, understand the main mechanisms of the auto-
mated reasoning systems used in the later research chapters. This is not meant
to be an exhaustive account of ATP, but as a guide to ease readers into the
context where machine learning was applied.

1.1.1 Classical Propositional Logic

In order to do reasoning, one must first choose a logic. The most widely used
logical system is that of classical propositional logic. We specify classical here
because there are other propositional logics that are not the same as the theory
which is often referred to as propositional logic.

Classical propositional logic concerns itself with whether statements or propo-
sitions are true or false. These propositions can be combined using logical con-
nectives, such as and, or, implies, and not. Consider two propositions a and
b. These are propositions that cannot be further decomposed: they are atomic.
One can make a new proposition that is only true when both a and b are true.
This is called an ‘and’ statement or a conjunction and is usually denoted by the
symbol ∧:

a ∧ b.

Similarly, combined statements can be constructed to be true when at least
one of their constituents is true (‘or’, denoted by ∨). This is also known as a
disjunction:

a ∨ b.

1.1. Automated Theorem Proving 3

One can also discuss the opposite of a proposition by using logical negation
(‘not’, ¬). In classical logic, the following holds:

a = ¬¬a,

which says that double negation recovers the original proposition, where = is
meant as logical equivalence.

In fact, these three connectives, ∧,∨,¬ are a complete set of logical operators
and we do not need any more of them [97] to represent propositions in classical
propositional logic.1 In logical reasoning, one often speaks of implications, i.e.
that the truth of one statement implies the truth of another. This is how
reasoning is often represented: a statement can be proven to be true by proving
that it follows from the assumptions (or ‘axioms’) by a chain of implications. If
a implies b, it can be written as follows, using the =⇒ symbol:

a =⇒ b.

This new implies symbol can be written out in terms of two of the three con-
nectives we introduced above:

(a =⇒ b) = (¬a ∨ b),

which means that for a statement a to imply a statement b, either a is not true,
or b is true.

While logical statements are often described in terms of the three operations
∧,∨,¬, it is possible to use only one operation: the NAND, or ‘not and’ oper-
ation. This is an operation with the following logical content in terms of the
connectives already introduced:

NAND(a, b) = ¬(a ∧ b).

This NAND operator has a very practical property: it by itself is enough to,
by composing it, construct any proposition. As modern computer circuits are
built using logical operations, this also means that one can construct any com-
puter circuit implementing a propositional statement with just a single com-
ponent.2 A circuit that computes the ‘or’ function can be constructed from

1Strictly, even (∧ and ¬) or (∨ and ¬) together are enough, as ∨ and ∧ can be expressed
in terms of each other with the help of ¬, via DeMorgan’s laws: ¬(a ∧ b) = ¬a ∨ ¬b and
¬(a ∨ b) = ¬a ∧ ¬b.

2This also holds for its counterpart, NOR.

4 Chapter 1. Introduction

NAND operations: or(a, b) = NAND(NAND(a, a),NAND(b, b)). This exam-
ple was intended to prompt the reader to think about how the ‘basic unit’ of
a logical reasoning system influences how easily or compactly one can write
down and reason about certain propositions. While it is possible to construct
a modern computer from just NAND gates, it could generate large circuits, as
several NANDs have to be composed to implement the other operations such
as or, and, implies, not, which are closer to the usual way a programmer or a
mathematician is trained to think.

Now, we might consider an example of how one would encode the real world
into propositional logic statements. Imagine that it is a cold winter day, and
you want to decide whether you can go outside without being too cold. You
need to wear warm clothes, and (in this example) you need to cover your hands,
torso, head, and legs. However, you have both gloves and mittens that you can
use to cover your hands, but you cannot wear both at the same time. Logically,
you might think of the proposition ‘ready to go outside’ in the following way:

ReadyToGoOutside =

WoolHat ∧WinterSweater

∧(Mittens ∨Gloves)

∧{¬(Mittens ∧Gloves)}
∧¬ShortPants

where we have used more informative names than a and b that were used in
the definitions above, but the way the propositions that make up the larger
statement are treated did not change.

1.1.2 Practical Uses of Propositional Logic

While the above example is small and concise enough to figure out a way to con-
figure the components without the help of a computer, the same principles can
be scaled up to encode more complicated logical statements. From chess and su-
doku puzzles to extremely large industrial designs, the language of propositional
logic can be used to formally capture the problems. In our example, we had
some intuition about the meaning of the propositions, i.e. the words mittens or
gloves, etc. allow the human brain to import some contextual knowledge that
makes it possible to intuitively grasp the problem. However, what should be
the procedure when one is handed a (possibly extremely) large logical statement
and asked the question “is this statement true?” or “is this statement false?”.
One way is to phrase the problem in terms of satisfiability. For a statement to

1.1. Automated Theorem Proving 5

be satisfiable, there has to be a setting for the propositional variables (such as
a, b or Gloves) that make the statement evaluate to true. Such a setting is an
assignment. The relationship between a satisfiable statement and a true state-
ment is that while a satisfiable statement only needs to have one assignment
that makes the statement evaluate to true, a true statement evaluates to true
under all assignments. When there is no assignment under which a statement
or problem evaluates to true, it is called unsatisfiable.

Because we know each proposition can only either be true or false, we could
adopt a strategy of patiently checking each possible setting of the truth values of
each atomic proposition. We could for each setting then check whether the entire
statement evaluates to true. However, there are exponentially many different
truth value settings that have to be checked (2N , where N is the number of
variables), and in the worst case, the very last setting that has to be checked
can be the right one. Many researchers during the last century have investigated
more practical, faster strategies to check whether a problem is satisfiable: in
modern days, this area of research is known as ‘SAT solving’.

1.1.3 SAT solvers

A satisfiability solver, or SAT solver in short, aims to exploit structure in the
problem to answer the question of whether a given problem is satisfiable or
not [79]. The problems are usually standardized in a format known as conjunc-
tive normal form (CNF), which can be written as follows:

N
i=1




Ki
j=1

lij


 ,

where N is the number of statements connected by ∧ symbols. In the CNF
SAT solving context, each atomic proposition is usually called a variable (for
example, v) and a particular positive or negative (v or ¬v) occurrence of the
variable is called a literal (here denoted by various different l). The


and


symbols are shorthand for a conjunction or disjunction with potentially many
subexpressions. Each of these top-level parts in the ∧ expression is called a
clause. Ki is the number of literals l, or statements connected by ∨ in each
particular clause i. Any statement in propositional logic can be rewritten to
this form.

SAT solvers can differ in their implementations and strategies to exploit the
structure of particular problems. As a guide to intuition, consider again the
structure of the winter clothing example in Section 1.1.1. Notice that the outer

6 Chapter 1. Introduction

part of the problem, which consists of ‘and’ statements, has the property that
if even one of its parts cannot be satisfied, then the entire statement cannot be
satisfied. This means that when a problem is written in CNF form, where all
the clauses are connected by conjunctions (∧), one can potentially save a lot of
work. If one can find out that one of the clauses can never be satisfied, then
the problem cannot be satisfied.

1.1.4 Resolution and the Search for the Empty Clause

The first procedures we want to discuss are (propositional) resolution and the
Davis-Putnam procedure [27]. This allows us to introduce terms and concepts
that will be valuable later. Let us assume that the following two propositions
are true:

a =⇒ b

a

which is the well-known setup known asmodus ponens that allows us to conclude
that b must also be true. Said in natural language: if “a implies b” is true, and
“a” is true, then “b” must be true. Consider now the alternative representation
of =⇒ from Section 1.1.1:

¬a ∨ b

a

which makes it clear what the underlying structure is: if one has two clauses
that contain literals of opposite polarity, the clauses may be contracted together
or ‘resolved’. This resolution operation can be written in proof style formatting
as follows:

¬a ∨ b a
b

.

The comparison with implication makes clear the mechanics of the resolution
operation, but it is not limited to such simple cases: as long as there are literals
of the same variable with opposite polarity, two clauses can be resolved and a
new clause can be derived. A more general specification of the resolution rule
is thus:

¬r ∨∨
li r ∨∨

lj∨
li ∨

∨
lj

,

where r is the variable that the clauses are being resolved on, the literals in
the first clause that are not ¬r are labelled by i, and the literals in the second

1.1. Automated Theorem Proving 7

clause that are not r are labelled by j. All the non-r literals are combined into
a newly derived clause.

Now we consider how these chains of implications, or more generally, res-
olutions, can be used to construct proofs. The clause derived by resolution
(resolvent) can be both longer and shorter than its parent clauses. The resol-
vent will have fewer literals than some of its parents when at least one of the
parents has only one literal. This is important, because, in the end, we may end
up with two single-literal clauses (unit clauses) of opposite polarity that both
have to be true to satisfy the problem. Resolving two such clauses will clearly
lead us to a conflict : ¬a a

⊥ ,

where we have used ⊥ to denote the empty clause. This can also be thought of
as ‘deriving false’. For an intuition on this, consider that for an ‘or’ statement
to be true, at least one of the subexpressions has to be true: if there are zero
subexpressions, the statement is therefore false.

This situation means that there is a conflict that follows from our current
assignment. If we can change the assignment of certain variables, we may
backtrack and search for another path through the search space. If we cannot
change the assignments of variables (for example because they appear in unit
clauses), or we have already tried all the other options, we can conclude that
the problem is unsatisfiable. In many provers, one adds the negated version of
a conjecture to a set of axioms that are presumed to be non-contradictory: if
the problem is found to be unsatisfiable in such a situation, the conclusion is
that the conjecture must be true given the axioms.

While this resolution style solving was one of the first ways to automate
propositional logic and resolution is also still the lens through which theory
about proof complexity is done [51], modern SAT solvers are mainly powered
by somewhat different principles. In Section 1.1.8, we will revisit resolution in
a more general setting.

1.1.5 DPLL & CDCL: Solving By Decision and Backtracking

The basic conceptual framework within which most modern SAT solvers operate
is that of decide and backtrack [79]. In these algorithms, the central operation
that moves the solving forward is the decision to set a variable to a certain value,
and then examining the consequences of that for the rest of the formula. When
no more easily found consequences can be obtained, one makes a new decision
on a variable and the process is repeated until either a satisfiable assignment is
found or when there is a conflicting consequence of the current variable settings.

8 Chapter 1. Introduction

In case of a conflict, one may backtrack and set the variables in a different way
and continue the search. In the most basic version of this type of algorithm,
the unsatisfiability of a set of clauses can only be proven after exhaustively
going through each combination of variable settings and finding that every one
of them leads to a conflict. The DPPL algorithm, which is named after its
authors Davis, Putnam, Logemann, and Loveland contains, in addition to the
backtracking, pure literal elimination and unit propagation [26].

In pure literal elimination, we take advantage of variables that occur always
with positive or always with negative polarity (which makes it a pure literal
in this terminology). If this happens with positive polarity, we can assign this
literal the value true, as there are no opposing polarity literals. Similarly, we can
assign this literal the value false if this happens with negative polarity. Doing
this will make the clauses that contain the pure literal automatically satisfied
and they do not have to be considered further for the satisfiability search. In
this way, a part of the problem can be eliminated and the search space reduced.

Unit propagation makes use of the observation that a clause with a single
literal (a unit clause) in it leaves the algorithm no choice: this literal has to be
true to make the clause true and thus to satisfy the problem. This information
can then be propagated to other clauses that contain the corresponding variable,
as they now have one more true or false literal. The clauses with a true literal
can be removed from the search. Clauses that contain the opposite polarity
literal of the unit clause literal may also be simplified as the algorithm has just
concluded that this opposite polarity literal cannot be true and therefore it can
be removed from the clause. Deciding on a value for a variable can be seen as
(temporarily) adding a unit clause, containing only the corresponding literal,
to the problem.

In the most basic DPLL setup, we simply backtrack and try another variable
assignment after we find a conflict. However, we may try to learn from the
conflict, to find out what the cause of the conflict is, so that we may discourage
the search procedure from trying assignments that do not work for the same
underlying reason as that particular conflict. That is the central idea of the
conflict-driven clause learning (CDCL) algorithm [78].

The core idea of the CDCL algorithm is still to decide on the truth value of
certain variables and then to propagate the consequences. However, in a CDCL
solver, the solver may learn from the conflicts. We show a partial solver state
below, where we show some of the variable decisions and the part of the current
clause set that is relevant to this current explanation. Imagine that during the
solving process, we are forced by the previous decisions and propagations to
conclude that ¬e and e are both necessarily true in our current part of the

1.1. Automated Theorem Proving 9

search space. That is clearly impossible and the origins of this conflict can be
traced back. In this case, we concluded that ¬e is true because we set d to false,
and we concluded that e is true because we set f to false.

Current variable decisions: . . . , d = false, f = false, . . .

Clauses: . . . , ¬d ∨ ¬e, ¬f ∨ e, . . .

If we want to find a satisfying assignment, the solver must be prevented from
setting variables in such a way that this current conflict is created again in the
future. In this example, the solver must be denied the possibility of setting
both d and f to false, i.e. the following condition must be enforced:

¬(¬d ∧ ¬f),

which can be rewritten to the clause:

d ∨ f.

To make sure that the part of the search space that leads to the current conflict
is blocked off, the learned clause d ∨ f is added to the clause set. While the
current example was very simple, the same concept also holds for conflicts that
are found much deeper in the branching search tree. This principle of learning
conflict clauses is very powerful and used in modern SAT solving techniques to
great effect.

1.1.6 SMT solvers

Up to this point, only values of true and false for our variables have been
considered. However, in many settings, we may want to reason about variables
with a different meaning. For example, we may want to ask questions about
quantities: “Is it possible to fill each fruit basket with more than 5 apples under
certain conditions?” We will take these integer number variables as an example
of how to naively encode quantitative statements into propositional logic. We
will start with a simple question: is the number x bigger than the number y?
The question is now how to encode integer numbers into two-valued (Boolean)
variables that can only be set to true or false. For this, the binary encoding
can be used, where false = 0 and true = 1 (where one position, or one boolean
variable of information, is called a bit). Note that these symbols 0 and 1 do
not have the full meaning of the integers we usually associate with them (for
example, the number 2 does not yet exist). To make it concrete, we will use a

10 Chapter 1. Introduction

2-bit integer that will encode the non-negative integers in the following (usual)
way:

00 ≡ 0

01 ≡ 1

10 ≡ 2

11 ≡ 3,

which means that it is now possible to speak about the numbers 0 up to and
including 3 in terms of Boolean variables. The next step is then to implement a
comparison operation that allows the computer to decide whether one number is
larger than another number. This can be done by asking whether the number
x in binary notation has a lexicographically greater encoding than the other
number y. This results in the following propositions, when calling the left bit
x1 or y1 and the right bit x2 or y2:

(x1 ∧ ¬y1)∨
((x1 ∧ y1) ∧ (x2 ∧ ¬y2))∨

((¬x1 ∧ ¬y1) ∧ (x2 ∧ ¬y2)).

Put in natural language, the cases in which x is greater than y are:

1. The left bit of x is 1 and the left bit of y is 0.

2. The left bit of both x and y is 1 and the right bit of x is 1 while the right
bit of y is 0.

3. The left bit of both x and y is 0 and the right bit of x is 1 while the right
bit of y is 0.

The above propositional constraints can be converted into conjunctive nor-
mal form, for example by using the Tseytin transformation [96]. Note that it is
also possible to use DeMorgan’s laws (Section 1.1.1) to convert to CNF, but the
resulting formula might grow much larger than the formula one started with.

The number of resulting constraints of such a naive Boolean encoding of
integers can grow large (and here we have only implemented the ‘greater than’
operation, not the properties of multiplication and ‘less than’, and so on). In ad-
dition, we can only encode properties up to a finite range of integers, according
to how many bits we used for the encoding.

One might want to have a convenient type of variable that automatically
entails all the usual properties of integers. All the rules and constraints that

1.1. Automated Theorem Proving 11

come with a certain type of object are called a theory. The theory can then be
used at any time when reasoning about the specific properties of the type of
object is necessary. Because the theory can be specialized and take the types
into account, it is also possible to implement more efficient reasoning procedures
that are not constrained by the propositional logic of the SAT solver. That is the
logic behind the field of satisfiability modulo theories solvers (SMT solvers) [86]:
to dispatch reasoning about specific theories to specialized solvers and treat the
results that these routines return as propositional statements, with which a
satisfiability solver can deal. For example, if there is a formula that contains
the expression 5 > 7, then an integer arithmetic theory would quickly conclude
that the expression must be false, allowing the rest of the SMT solver to continue
without keeping the details of the integer arithmetic theory in focus.

Most SMT solvers support several different theories and also combinations
of theories: one might have a procedure that uses both the bitvector and the
integer arithmetic theories, for example [6]. The SMT solver contains as its
core inference engine a CDCL-based SAT solver, such as MiniSAT [33] or Cad-
ical [10].

This separation of concerns allows a more user-friendly interface, where the
system already knows, for instance, what integers are and what properties they
are expected to have, instead of having to define those in the input problem in
terms of propositional constraints. It also allows smart optimization procedures
that can use the particularities of the domain theory to speed up the reasoning.

1.1.7 Quantifiers & First-Order Logic

The SMT approach allows us to encode many different types of problems into
logical formulas to which automated reasoning can be applied. However, there
are still more aspects to explain before the full power of mathematical reasoning
is available to us.

The first of these is the introduction of predicates. A predicate is a kind
of function that maps an object to the {true, false} options available in the
propositional world. They can be used to implement all kinds of questions:
one can imagine a predicate Animal(X), with X a variable, which returns true
when the object is an animal, and false otherwise. It may also be the case
that one wants to express a relation between two sets of objects, i.e. Knows(X,
Y), which could stand for whether persons X know persons Y. Along with
these predicates or relational symbols, we also have function symbols, which
denote mathematical functions that do not necessarily output either true or
false. Function symbols are used to construct more complicated terms. A

12 Chapter 1. Introduction

function symbol with zero input arguments (arity 0) is called a constant. In this
context, a term is an expression constructed from variables, function symbols,
and constants. For example, as a term, we may have a binary function f applied
to two constants a and b: f(a, b).

The last addition is the concept of quantification. Imagine that we are
trying to encode knowledge about a particular problem that contains constraints
in the form of integer values, for example, the dimensions of some industrial
design problem or a number theory problem. We might then want to encode
that a certain proposition is true for all integers. The “for all” concept is
indicated with the universal quantification symbol ∀. For example, the following
statement:

∀ Integer X. (X < 0) ∨ (X = 0) ∨ (X > 0),

which encodes that all integers must be negative, equal to zero, or positive.
Note that conceptually, the ∀ symbol can be thought of as invoking a large
number of propositions, in this case, a proposition with three sub-conditions for
each possible integer. Also note that if we had stated the conditions as:

∀ Integer X. (X < 0) ∨ (X > 0), (1.1)

then we could have supplied the integer 0 for which the expression evaluates to
false. The act of picking out specific members of the set of possible terms is
called instantiation.

In addition to the ∀-type statements, there are also statements that are of
the form “There is at least one such object such that some conditions are true”.
This is called the existential quantifier, ∃. For example:

¬ ∃ Integer X. ¬((X < 0) ∨ (X > 0)), (1.2)

which says, “there does not exist an integer which is not negative or positive”.
The existential quantifier can be thought of as invoking many different sub-
statements, all of them connected by an or. The attentive reader may have
already noticed that statements 1.1 and 1.2 seem to mean the same thing: asking
whether something is true for all instances is the same as asking whether there
does not exist an instance for which it is false. The universal and existential
quantifiers are thus related in a similar way to how DeMorgan’s laws connect
∧ and ∨.

Note that in the above example, we have used the Integer type to make
the example less cluttered, even though in first-order logic this is not automat-
ically included. The above example can either be seen as an SMT statement

1.1. Automated Theorem Proving 13

with quantifiers where the theory of integers is included as a theory and can be
invoked by using the Integer type, or as a shorthand rendering of a more com-
plicated first-order formula where there are unmentioned parts of the problem
that defined the Integer type.

As with propositional logic, there is a notion of a conjunctive normal form
(CNF) for first-order logic. While we will not go into detail here, there exists a
procedure to convert arbitrary first-order logic formulas into CNF (or clausal)
form. In the clausal form, all existential quantifiers have been eliminated using a
procedure called Skolemization and only universal quantifiers on the top level of
the formula remain, and the formula is, like before, converted into a conjunction
of disjunctions. A clause is a formula such as ∀X⃗ (l1∨· · ·∨ ln). A ground clause
is a clause without variables and a ground instance of a clause can be obtained
from a non-ground clause by substituting all variables with terms.

Herbrand’s theorem: Now that first-order logic has been introduced, we
can revisit the Davis-Putnam algorithm and the concept of resolution. The
general idea behind the Davis-Putnam algorithm hinges on Herbrand’s theo-
rem [50]3.In the context of clausal (CNF) first-order logic, Herbrand’s theorem
says that a set T of clauses is unsatisfiable if and only if there is a finite set T ′

of ground instances of clauses in T which is unsatisfiable. Therefore, if we can
find a finite, concrete set of ground consequences of the set of clauses that is
unsatisfiable, we can conclude that the set of clauses is unsatisfiable.

The problem is then: how do we choose which ground instances we will
evaluate? In some sense, a large part of the research in this thesis is focused on
this exact question. In the original Davis-Putnam procedure, one simply starts
enumerating all possible ground instances, occasionally calling a (resolution-
based) SAT solver to check whether a propositional contradiction can be found.
Chapter 2 included in this PhD thesis can be seen as a modern variant of this
approach, where machine learning is used to generate the ground instances,
whereafter a modern CDCL SAT procedure is used to check whether the prob-
lem is unsatisfiable. Chapter 3 of this thesis intervenes in the clause selection
mechanism of the prover iProver, which also works on similar principles. Chap-
ter 4 in this thesis also takes a similar viewpoint, where the enumerative in-
stantiation procedure in an SMT solver is guided by machine learning to pick
better instantiations.

3For historical accuracy, we note that an earlier use of Herbrand’s theorem was by
Gilmore’s procedure [43]

14 Chapter 1. Introduction

1.1.8 First-Order Resolution & Equality

Instead of immediately starting to reason about the problem at the propositional
level by producing ground instances, it may be more efficient to reason on
the first-order level for a longer time [103]. The first-order quantifiers allow
us to reason about infinite domains without explicitly handling all the terms
contained in them. The resolution operation that is so central to the reasoning
at the propositional level has a first-order version, which works in a similar
way: when there are complementary literals in two clauses that may be unified
with each other, we may resolve the two clauses. Unification is the process of
finding a substitution that makes two terms with variables the same. Here,
we will confine ourselves to the first-order version of conjunctive normal form,
where there are only universally quantified variables scoped to each clause left
after a preprocessing transformation that includes Skolemization, which is a
way to eliminate existential quantifiers. In this notation, the actual ∀ symbols
are subsequently dropped as as each variable is universally quantified over at
the top level of the formula.

A small example where the unification of the two sides is simple because
there are only variables (X, Y) in the literals:

¬P (X) ∨Q(X) P (Y) ∨R(Y)

Q(Z) ∨R(Z)
,

where Z is a new variable in the resolvent clause that represents the unification
of X and Y . The general first-order resolution rule is also applicable when there
are, in addition to the complementary literals, an arbitrary number of other
literals in the two clauses. As an example of an application with substitution,
there is the following: if the right clause contained P (a) instead of P (Y), the
first-order resolution rule would still apply, as the two terms can be unified by
the substitution X → a. That gives:

¬P (X) ∨Q(X) P (a) ∨R(Y)

Q(a) ∨R(Y)
.

If there is more than one possible substitution that unifies the terms, one
usually uses the most general unifier. This is the unifier θ which unifies two
expressions and is most general in the sense that for all other unifiers k we could
find a substitution s such that applying s to θ gives k. In the following example,
the resolution rule can be applied using a more complication substitution:

¬P (f(X, g(Y))) ∨Q(X,Y) P (f(g(Z), V)) ∨R(Z, V)

Q(g(Z), Y) ∨R(Z, g(Y))
,

1.1. Automated Theorem Proving 15

where the most general unifiers are {X = g(Z), g(Y) = V }.
In many kinds of problems, it might be useful to be able to encode that

certain objects are equal under certain circumstances. While some provers
implement more specialized equality reasoning [6], one can use additional equa-
tional axioms to reason about the equality of terms. Such extra axioms encode
equality reasoning using axioms of reflexivity, symmetry, transitivity and ex-
tensionality:

A = A

(A = B) =⇒ (B = A)

((A = B) ∧ (B = C)) =⇒ (A = C)

A = B =⇒ f(A) = f(B).

In the last axiom, we use a function symbol f . At least one of these exten-
sionality axioms is required for each non-constant function or predicate symbol.
In the research discussed in Chapter 2, we made use of the equality reasoning
capabilities of a modern prover to lighten the load on the machine learning
component for the task of picking instantiations.

Given that there is equality defined on certain terms in the problem formula,
the prover may rewrite using those equality rules to solve the given problem.
For example, in Chapter 5 we show how a machine learning-guided equality
rewriter can be applied to certain equational reasoning tasks.

1.1.9 Modern ATPs: Superposition and more

Many modern automated theorem provers for first-order logic use the superpo-
sition calculus [74], which can be seen as a combination of first-order resolution
steps with equational reasoning. In this setup, the equalities between certain
terms are used to rewrite parts of the problem. For example, given an equality
between t1 and t2,

P (t3, t2) t1 ≃ t2

P (t3, t1) ¬P (X, t1) ∨R(X)

R(t3)
,

where X was substituted with t3 by unification. In the superposition procedure,
an ordering is imposed on the terms, so that the equality-based rewriting rules
can only be applied in one direction on each pair of terms. In the example, we
replace t2 with t1.

16 Chapter 1. Introduction

The procedure on a high level works as follows: select a given clause from the
available clauses and perform an inference step of this clause with all previously
selected clauses. This generates new clauses, which are added to the problem
(often with some kind of redundancy check performed first).

The first-order provers Vampire [102], E [111], Prover9 [80], and others have
this given clause loop as one of their main inference engines. The crucial part
is to choose which clauses will become the given clause and much work has
focused on finding good heuristics for this. For example, there has been machine
learning-related work on doing this for E [58], Vampire [61], Prover9 [2], and
other provers.

In this thesis, Chapter 3 concerns a learned clause selection heuristic in the
instantiation-based first-order prover iProver [72]. The configuration of iProver
used there does not use the same calculus as the superposition provers, but
a part of the mechanism is similar to the given clause loop. We investigate
whether it is possible to improve the instantiation calculus module of iProver
by selecting better clauses.

1.2 Machine Learning

In this section, we will give a short introduction to machine learning, especially
the type of machine learning technology that is necessary to understand the
research chapters in this thesis: the graph neural network.

1.2.1 Learning By Example

In many situations, it would be useful to have a way to create, from a set of data
points consisting of an input-output pair, an automated system that converts a
certain kind of input to a certain kind of output. The process of creating such
an automated system is known as (supervised) machine learning. In this sense
of the term, learning means the search for a function that converts the input
data into the output data. The goal is therefore to find a prediction function P
that maps from the input domain I to the output domain O,

P : I → O,

in a way that matches the data as well as possible. The input domain I may
be an image in the form of a collection of pixels, a graph that represents a
formula, an audio recording of an interview, or many other things that can
be characterized by numbers. In the most basic machine learning setups, the

1.2. Machine Learning 17

output domain O is generally a set of a few different classes that the input
data may be separated into (which is called a classification task) or a numerical
score that represents some useful quantity (in the case of a regression task).
The question then becomes: how does one obtain a function P that matches
the example data as closely as possible? First one has to fix a class of candidate
prediction functions that will be under consideration.

In this thesis, we are mostly concerned with the class of machine learning pre-
dictors called neural networks, which is a broad term that incorporates roughly
the mathematical functions that compose matrix multiplication operators with
differentiable nonlinear activation functions. Usually, the exact architecture of
the neural network, meaning the number of matrix multiplications and non-
linear activation layers and how their respective results are routed, is decided
upon and fixed at the start of the procedure. The focus after this decision
is on how to decide upon the exact values of the matrices used to define the
multiplication operations inside the network so that an error function or a cost
function is minimized. The process of finding suitable numerical parameters for
these matrices is called training the network. The set of data points used to
determine these parameters is called the training set.

While many different search procedures could be used, one of the most
common methods used is that of gradient descent.

1.2.2 Learning By Stepping Away From Errors: Gradient De-
scent

In order to explain how neural networks are trained by gradient descent, let us
first go to the example of a parabolic function. In high school mathematics,
most people learn how to find the minimum of a given parabola: one can solve
the quadratic equation that characterizes the parabola. However, although this
works for parabolas, it does not work for all functions. It is wholly unavailable
if one does not have an explicit form of the mathematical function to examine.
In many cases, one can perform local steps to find the minimum.

Finding a minimum via gradient descent: One characteristic of a
continuous function is its steepness at a certain point. This concept of the value
of the slope of a function is called the derivative. In a function with multiple
input parameters, the concept of gradient is usually used and expressed with the
∇ symbol which incorporates the partial derivatives. The derivative or gradient
can be used to find a local minimum of a function. The intuition behind it is the
following: if one wants to find the lowest point in a landscape, it is a reasonable
strategy (for many landscapes) to keep walking in the direction that points

18 Chapter 1. Introduction

4 2 0 2 4

x

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

y

x^2

tangent line at x=3

Figure 1.1: A parabola and the slope of the function at the value x = 3

downward. In our world, it is gravity that indicates what is up or down. In
machine learning, there is a concept of a loss function, which is a differentiable
function of the output of the neural network that quantifies the error of the
predictions.

In Figure 1.1, we show a parabola f with the derivative at a certain point
x = 3. As we are trying to find the minimum of the function, we will step in
the direction that is opposite to the derivative (see the minus sign in Equation
1.3). The next choice is then how large the step in that direction should be.
In the neural network literature, this step size is called the learning rate and
is denoted by the symbol α. The update equation that governs how we change
the parameter x according to the derivative therefore reads:

xt+1 = xt − α
d

dx
f(xt). (1.3)

By stepping in this direction, we can find a new x value that has a lower
associated value for the parabola f . Note that if α is set to a value that is
too large, we may end up with a value for x that is on the other side of the
minimum. In general, to guarantee convergence of the training process, prac-
titioners use decreasing learning rates, lowering them throughout the training
process. In addition to overshooting the minimum (remember that in general,
we do not know the overall shape of the function for which we are trying to find

1.2. Machine Learning 19

4 2 0 2 4

x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

Data from 1.0*sin(x)

Hypothesis 1, a=1.75

Hypothesis 2, a=1.5

Hypothesis 3, a=1.25

Hypothesis 4, a=1.0

Figure 1.2: An example of different function values for our modelM = a∗sin(x)
when changing the parameter a. The red line is the function from which are
data points are generated. This ‘true’ function can be unknown in machine
learning problems. The dots are data points taken from the function that we
want to approximate with our model.

a minimum), there is also a possibility that the minimum found is a sub-optimal
local minimum.

Now, the perspective in the usual machine learning situation is slightly dif-
ferent: often the function that we are trying to minimize is an error function,
a cost function, or a loss function that depends on the parameters of the net-
work and the training data points. These functions describe the quality of a
particular network output and are known at the start of the procedure. The
training data points are fixed and the learning procedure changes the param-
eters of the network. We are thus trying to change the network’s parameters
so that the value of the loss function decreases and the quality of the network
output increases.

In Figure 1.2, we show data points in the shape of a sinusoidal function.
We also show a possible progression of functions with different a. In this exam-
ple, we for simplicity assume that we chose the model M = a ∗ sin(x), which
corresponds to us assuming that our sought-after function is a sinusoidal func-
tion with a single trainable parameter a. In the gradient descent procedure,

20 Chapter 1. Introduction

we would first pick a data point (xk, yk), calculate the difference between our
model’s output on input xk and the example output yk using a loss function
such as the squared error. Then we calculate the derivative and update the
value of a using a step as described in Equation 1.3.

Nonlinear functions: Neural networks are compositions of (matrix) mul-
tiplication operators and nonlinear functions. The crucial principle when choos-
ing operations to incorporate into a neural network architecture is that one can
easily calculate and chain the gradient functions for the operations: in that way,
it will be possible to determine in which direction the parameters need to be
changed to obtain a better set of parameters.

To give an intuition on how a neural network might encode non-trivial func-
tions, we give the following example. Consider the following problem: we are
trying to predict based on two binary variables. For simplicity, there are four
data points, one for each of the possibilities. When one of the variables is true,
but not the other one, the value is 1, and 0 otherwise. This is exactly the XOR
function, or equivalently, the ‘not equals’ function.

Now, the task of the matrix parameters is to learn a function that uses a
combination and transformation of the input parameters to predict the output
as well as possible. The necessary function can be expressed in a standard multi-
layer perceptron architecture: first a matrix, followed by a nonlinear activation
function, and then an output vector. Conceptually, each first-layer unit (of
which there are two in this architecture, each with one weight for each input
variable) can be thought of as a feature extractor that notices relevant patterns
in the data. Possibly, there could be many more layers of these units that
extract more and more high-level features and patterns in the data: this is the
central concept in deep learning [76].

In Figure 1.3, we show a set of weights that computes the XOR function of
two binary variables. To see how these were obtained, one can revisit Section
1.1.1 of this introduction and realize that the XOR function can be seen as
(a ∨ b) ∧ (¬(a ∧ b)). This allows us to construct a weight setup that solves the
problem: one first-layer unit must be equivalent to OR (Unit 1 in our case)
and the other to AND (Unit 2 in our case), and the second-layer unit must
somehow combine the positive result of the first neuron with the negative result
of the second one. We have also introduced the concept of a bias, which is
similar to the intercept of a regression function. These are parameters which
are not dependent on the value of the input, which can for example be used to
implement a threshold value.

In this example, we acted with previously acquired knowledge on how the
function in the data could be decomposed into smaller relevant functions, but

1.2. Machine Learning 21

a

b

bias

Unit 1

Unit 2

Output Unit

-0.4

-0.80.5

0.5

0.5

0.5 -100

10

bias

-0.8

Figure 1.3: A small neural network that computes the XOR function. Each
red unit multiplies its input with the corresponding weights, sums the results,
and then applies a rectified linear unit function, max(0, x). The output of the
network is only positive when the input is (0, 1) or (1, 0), and 0 when the
input is (0, 0) or (1, 1). Positive output of the network is interpreted as 1. For
example, for the input (0, 0) Unit 1 computes max(0, 0.5 ∗ 0 + 0.5 ∗ 0− 0.4).

in general that luxury is not available: here, we have shown an example to
help intuition on how nonlinear neural networks can represent patterns in the
training data. In a typical machine learning task where neural networks are
used, many different weights in many different layers are initialized to random
values, which in many cases gives the optimization procedure enough options
to find a reasonable setting for the weights that corresponds to an acceptable
value for the loss function. Note that we rarely have the guarantee that the
optimization procedure finds the ‘real’ pattern in the data (if we even have
access to knowledge about such a pattern): the goal is to obtain an approximate
function that mimics the relationship between the input and output variables
in the data.

1.2.3 Structural Learning: Graph Data

The previous example concerned a type of input data shaped as a vector of
(binary) variables. However, in some cases, the data used for machine learning
is not easily capturable in such a form or has a different internal structure.
One might make use of certain inherent structure in the data and have the
representation of the neural network conform to that structure. One example
is how in image processing, it can be useful to incorporate a spatial bias into

22 Chapter 1. Introduction

Clause

Literal Literal Literal

Figure 1.4: Schematic depicting the neighbourhood of one clause node. Rep-
resentations of three literal nodes are used to update the representation of the
clause node.

the network. The successful convolutional neural networks assume that pixels
close to each other are more likely to form a useful pattern than pixels far away
from each other.

The mathematical and formula data processed in the thesis can be inter-
preted as having a graph structure. For example, a function application to a
constant can be represented as two graph nodes connected by an edge. The cor-
responding class of neural networks that deal with data structured as a graph is
called graph neural network. In a graph neural network, there are two kinds of
input data: the features associated with each node in the graph and the struc-
ture of the connection network between the nodes. The features associated with
each node allow us to distinguish different types of nodes and input information
about those nodes specifically.

The graph neural network uses the connectivity information to send mes-
sages from and to neighbouring nodes in a process called message passing. In
this way, information can be shared across the nodes while taking the input
graph structure into account.

For example, imagine that we have a SAT problem or a first-order problem in
CNF form (for the example, it only matters that there are literals and clauses).
For a given clause-type algorithm (see Section 1.1.9), the choice of given clause
is important for the performance of the procedure. Therefore, learning a scoring
mechanism for clauses can be useful.

In Figure 1.4, we show a schematic visualization of a small graph neigh-

1.2. Machine Learning 23

bourhood to illustrate the message-passing principle. We show a clause, which
in our graph is connected to the literals in the clause. Each node is initialized
with a numerical feature vector according to its type. Each node is then up-
dated with a function that takes as its arguments the current feature vector of
its neighbours. The multiple incoming message vectors are combined using an
aggregation function, which is permutation invariant (so without further mod-
ification, there is no ordering to the neighbours of the nodes). In the figure,
we show a single message-passing step for a single node, but in practice, the
vector representations of all nodes are updated according to their neighbours’
node vectors. We have assigned colors to the literals, to imply some different
characteristics that are relevant for the task of selecting clauses. Perhaps the
representations of the literals in the clause indicate that they will be useful in
a resolution operation (green color in the figure) or not (red color): the clause
representation vector would have to reflect that so that a prediction of useful-
ness can be made from the clause vector. The example in Figure 1.4 is simple,
but an example of a more complicated graph can be found in Chapter 2. In the
literature, there are also examples of SAT problem graph encodings, including
edges between the literal pairs with opposite polarity [117].

In Equation 1.4, we give an example of a possible node vector update rule
with a sum aggregation function and a neural network layer Φ.

xt+1
i = Φ




Ni
j=1

xt
j


 , (1.4)

where Ni is the number of neighbouring nodes for a node i. The neighbours
are indexed by j and x is a vector of numbers that represents a node. In some
architectures, the previous representation of node i is also used, which makes
preserving values over time steps t simpler. The update rule as a whole assem-
bles messages from neighbouring nodes, aggregates them into a single vector,
and then uses a neural network layer Φ with a learnable matrix transformation
and a nonlinearity to create the new node representation. At the end of a cer-
tain number of message passing steps, the representations are used to predict
some quantity. For example, the representations of clauses may be used to pre-
dict whether they are a good candidate to be a given clause or a representation
of a term or variable may be used to predict which instantiations are useful.

The expressivity of GNNs, in the sense of what functions a GNN can learn to
express, is an active field of research [134]. Especially the choice of aggregation
function can have an effect on what information is preserved.

24 Chapter 1. Introduction

1.3 Thesis Outline & Research Questions

We have introduced briefly most of the concepts needed to understand the
main contributions of the research chapters that follow. On the automated the-
orem proving side, we have given an introduction to propositional logic, SAT
solvers, SMT solvers, and first-order automated theorem provers. On the ma-
chine learning side, we gave a quick introduction to the main principles behind
neural networks, one of today’s most dominant machine learning methods. In
particular, we have explained the graph neural network, which is suited to the
type of data produced by automated theorem provers.

Automated theorem proving systems have to choose between many possible
steps in their search for a proof. With machine learning, we can analyze the
state of the prover and predict a course of action that will lead to a solution. In
this thesis, we combine automated theorem proving with machine learning, in
the form of graph neural networks. Of course, we are not the first to combine
machine learning and automated theorem provers. There is a thriving subfield
that concerns itself with the integration of machine learning into various kinds
of provers [11, 55]. In this introduction, we will not go into further detail, as
the chapters have their own sections that discuss related and previous works.

Many previous works focus on clause selection or premise selection as the
target for a machine learning heuristic, often in a superposition-based proving
system [45, 58, 123]. In our research, we have tried to focus on other aspects,
such as instantiation-based proving methods. We also incorporate a modern
machine learning method that is well suited to the type of graph-based data
that represents prover states: the graph neural network.

The following research questions will be discussed in this thesis. The research
questions are coupled to a Chapter in the thesis that corresponds to a research
project. The corresponding articles are cited below. The contributions to the
research projects made by me are specified in the separate ‘Contributions &
Publication List’ Chapter on page 141.

• How can proof instantiations be chosen by a neural network
based on the input formula?

As we have seen, a crucial part of computer algorithms for proving first-
order logic conjectures is choosing which instantiations to perform. The
space of possible instantiations is difficult to navigate, and the question
is whether it is possible to use machine learning to generate the instanti-
ations based on previously successful proof instantiations for other prob-
lems. In Chapter 2, we explore this with a novel approach that combines

1.3. Thesis Outline & Research Questions 25

a name-invariant graph neural network used for abstract pattern recogni-
tion with a recurrent neural network used for term synthesis for concrete
problems [94].

• How can an instantiation-calculus prover be guided by machine
learning?

In previous work, clause-selection guidance for automated theorem provers
using a superposition calculus was constructed [58]. The question arises
whether a similar approach also generalizes to other proof calculi. In
Chapter 3, we discuss research that uses a graph neural network to perform
clause-selection guidance in the instantiation-calculus prover iProver [23].

• How can the instantiation process within an SMT solver be con-
trolled by machine learning?

In SMT solvers, instantiation is an important step in the solving process.
In this research project, described in Chapter 4, we tightly integrated a
GNN into cvc5, where it controls both the selection of quantified expres-
sions to instantiate and the term rankings that are used to decide which
terms to use for the instantiations [93].

• How can machine learning learn to control an equational rewrit-
ing prover?

In many applications, it may be beneficial to have a specialized rewriting
engine or a preprocessor that handles a certain type of problem. In Chap-
ter 5, we investigate whether it is possible to control an equational proving
system and use it as a preprocessing step for a more general prover [92].

26 Chapter 1. Introduction

Chapter 2

Invariant Neural Architecture
for Learning Term Synthesis
in Instantiation Proving∗

Abstract

The development of strong CDCL-based propositional (SAT)
solvers has greatly advanced several areas of automated reasoning
(AR). One of the directions in AR is therefore to make use of SAT
solvers in expressive formalisms such as first-order logic, for which
large corpora of general mathematical problems exist today. This is
possible due to Herbrand’s theorem, which allows reduction of first-
order problems to propositional problems by instantiation. The core
challenge is synthesizing the appropriate instances from the typically
infinite Herbrand universe.

In this work, we develop a machine learning system targeting
this task, addressing its combinatorial and invariance properties. In
particular, we develop a GNN2RNN architecture based on a graph
neural network (GNN) that learns from problems and their solutions
independently of many symmetries and symbol names (addressing
the abundance of Skolems), combined with a recurrent neural net-
work (RNN) that proposes for each clause its instantiations. The

∗This chapter is based on an article of the same name published in the Journal of Symbolic
Computation [94].

27

28 Chapter 2. Neural Architecture for Term Synthesis in Instantiation Proving

architecture is then combined with an efficient ground solver and,
starting with zero knowledge, iteratively trained on a large corpus
of mathematical problems. We show that the system is capable of
solving many problems by such educated guessing, finding proofs for
32.12% of the training set. The final trained system solves 19.74%
of the unseen test data on its own. We also observe that the trained
system finds solutions that the iProver and CVC5 systems did not
find.

2.1 Introduction

Quantifiers lie at the heart of mathematical logic, modern mathematics and rea-
soning. They enable expressing statements about infinite domains. Practically
all today’s systems used for formalization of mathematics and software verifi-
cation are based on expressive foundations such as first-order and higher-order
logic, set theory and type theory, that make essential use of quantification.

Instantiation is a powerful tool for formal reasoning with quantifiers. The
power of instantiation is formalized by Herbrand’s theorem [50], which states
that a set S of first-order clauses is unsatisfiable if and only if there is a fi-
nite set of ground instances of S that is (propositionally) unsatisfiable. Her-
brand’s theorem further states that it is sufficient to consider instantiations
from the Herbrand universe, which consists of terms with no variables (ground
terms) constructed from the symbols appearing in the problem. This funda-
mental result has been explored in automated reasoning (AR) systems since the
1950s [25,27,110]. In particular, once the right instantiations are discovered, the
problem typically becomes easy to decide by state-of-the-art SAT solvers [73,79].

Coming up with the right instantiations is often difficult. As soon as there
are non-nullary functions (e.g., the successor, s(x)) in a problem, its set of
ground terms (the Herbrand universe) becomes infinite (e.g., s(0), s(s(0)), . . .).
There are typically many non-nullary functions in common mathematical prob-
lems. The general undecidability of theorem proving is obviously connected to
the hardness of finding the right instantiations, which includes finding arbitrar-
ily complex mathematical objects.

Investigating the interaction between symbolic computation, in the form of
an automated theorem proving system, and machine learning, to learn heuristics
to guide the choices of the provers, is a promising direction. In this way, both the

2.1. Introduction 29

powerful exact reasoning of the prover and the approximate, heuristic reasoning
of machine learning can be exploited.

Contributions: In this work we develop a completely naming-agnostic
machine learning (ML) method that automatically proposes suitable instantia-
tions. The system learns to instantiate from scratch, improving in an iterative
fashion. This is motivated both by the growing ability of ML methods to prune
the search space of automated theorem provers (ATPs) [67], and also by their
growing ability to synthesize various logical data [38,129]. In particular:

1. We decompose the problem of theorem proving into a neural instantiation
step followed by a ground solver (Section 2.2.2). We devise an incremental
procedure by which a predictor can propose instantiations (Section 2.2.4).

2. We develop a targeted GNN2RNN neural architecture based on a graph
neural network (GNN) that learns to represent the problems and their
clauses independently of many symmetries and symbol names (addressing
the abundance of Skolems), combined with a recurrent neural network
(RNN) that proposes for each clause its instantiations based on the GNN
characterization (Section 2.2.5).

3. We construct an initial corpus of instantiations by repeatedly running
a randomized grounding procedure followed by a ground solver (Sec-
tion 2.2.2) on 113 332 clausal ATP problems extracted from the Mizar
Mathematical Library. We analyze the solutions, showing that almost
two-thirds of the instances contain newly introduced Skolem symbols cre-
ated by the clausification (Section 2.2.8).

4. The GNN2RNN is trained and used to propose instances for the prob-
lems. Its training starts with the randomized solutions and continues by
incrementally learning from its own successful predictions. We show that
the system can predict the appropriate instances and that it can con-
tinually expand the set of proven problems, improving its performance
(Section 2.3).

5. The trained neural network when combined with the ground solver is
shown to be able to solve 19.74% of testing problems by making educated
guesses (Section 2.3). The system finds solutions that were not found by
existing systems such as iProver and CVC5. To our knowledge, this is
the first naming-agnostic neural system for general synthesis of relevant
elements from arbitrary Herbrand universes.

30 Chapter 2. Neural Architecture for Term Synthesis in Instantiation Proving

Ground Solver

Neural Instantiation

Instantiations

SAT

UNSAT
Ground Solver

Solver

Instantiations

SAT

UNSAT

SAT Model

A B

Figure 2.1: Solving problems by instantiation. On the left, in subfigure A,
we show a general scheme, which fits certain modes for existing automated
theorem provers such as iProver and SMT solvers such as CVC5. The first-
order prover or SMT solver can generate instantiations and call the ground
solver. The ground solver either finds a contradiction (and thus a proof) and
returns UNSAT, or it finds a suitable interpretation of the problem and returns
SAT with a propositional model, which the solver can use. On the right, in
subfigure B, we show our approach, in which the instantiation is done solely
by a neural component. Note that we currently do not use the SAT models
generated, but are using a “single-shot” approach.

2.2 Methods

2.2.1 Solving by Instantiation

First, we give an overview of the problem and recall existing approaches, after
which we explain our specific methods and solutions. For our examples and most
of our treatment in this work, we will work in first-order logic, but instantiation
can be used in a broader context, notably in higher-order and SMT solving [24].
In particular, we will work with clausal first-order problems: the problems are
expressed as a conjunction of clauses. These clauses contain literals which are
connected by disjunctions. The literals have as their head symbol a relational
symbol, which denotes a predicate that assigns a truth value, or a negation,
which negates that truth value. Under these symbols there are terms that can
be constructed from a combination of variables, function symbols and constants.
A term without variables is called a ground term.

The basic setting is that we have a set of (universally quantified) clauses
that can be instantiated to a set of clauses without variables (ground clauses)

2.2. Methods 31

which is unsatisfiable. Consider the following set of clauses:

∀x.P (f(x)) : Axiom 1 (2.1)

∀x.¬P (x) ∨Q(x) : Axiom 2 (2.2)

¬Q(f(g(c))) : Negated Conjecture (2.3)

Axioms 1 and 2 can be instantiated to create the ground clauses P (f(g(c))) and
¬P (f(g(c)))∨Q(f(g(c))) causing a propositional contradiction with the clause
¬Q(f(g(c))). In this example, the substitutions x → g(c) and x → f(g(c)) are
not hard, but in general, the process of choosing the right instantiations of even
a single quantified clause can be non-trivial. There can be many variables in
one clause, and, in the general case, we have to choose the right instantiations
for many clauses at once to arrive at a contradiction (and we might even need
several different instantiations of the same clause). This is a problem of high
combinatorial complexity, and there are several existing strategies to choose the
right terms for the corresponding variables.

The automated theorem prover iProver is based on the Inst-Gen calcu-
lus [73], in which the first-order instantiation and grounding are interwoven
with calls to a propositional SAT solver. The propositional model generated by
the SAT solver is then used to decide how to instantiate. In SMT [24], there are
several methods in use for instantiation, for example enumerative instantiation,
which simply enumerates term substitutions, prioritizing the ground terms cre-
ated earlier, E-matching [28], in which a pattern-matching strategy is used to
decide instantiations, and model-based instantiation [42].

In Figure 2.1A, we show the general framework for these solvers. There is
a solver, that can generate instantiations, which are passed to a ground solver
(for example, a propositional SAT solver in combination with congruence closure
procedures). This ground solver can produce SAT or UNSAT outcomes. In the
case of SAT, the generated propositional model can be used to decide the next
instantiations. However, it is difficult to decide what instantiations to use. In
the next sections, we explain the components of our learning-based approach to
this task.

2.2.2 Combining an Instantiator with a Ground Solver

Our general procedure is shown schematically in Figure 2.1B. We train a suit-
able neural architecture (Section 2.2.5) to do incremental instantiation (Sec-
tion 2.2.4) which is combined with an efficient ground solver.

There are several ways to combine instantiation of clausal first-order prob-
lems with decidable and efficient (un)satisfiability checking of their proposed

32 Chapter 2. Neural Architecture for Term Synthesis in Instantiation Proving

ground instances. The most direct approach (used in instantiation-based ATPs
such as iProver [72]) is to explicitly add axioms for equality, allowing their in-
stantiation as for any other axioms, and directly use SAT solvers for the ground
checking. An alternative approach is to avoid explicit addition of the equality
axioms, and instead use combinations of SAT solvers with ground congruence
closure [31, 85].

We have explored both approaches and ultimately decided to use the latter in
this work. The main reason is that the combinations of SAT solvers with ground
congruence closure are today very efficiently implemented [8], posing practically
no issues even with thousands of instances. Using the most direct approach
would, on the other hand, require a large number of additional instances of the
equality axioms to successfully solve the ground problems. In our preliminary
measurements, the average ratio of such necessary additional instances was over
40%, which would exponentially decrease the chance of predicting the right set
of instances.

2.2.3 Ground Solver for CC + SAT

We use as our ground solver an efficient combination of a SAT solver with
ground congruence closure (CC + SAT). In CC + SAT, the SAT solver abstracts
the ground atoms as propositional variables and starts producing satisfying
assignments (models) of this abstraction, which are then checked against the
properties of equality (reflexivity, symmetry, transitivity, congruence). This
process terminates when a model is found that satisfies the equality properties,
or when the SAT solver runs out of models to try. In that case, the original
ground problem is unsatisfiable.

2.2.4 Incremental Instantiation Procedure

We first give a high-level view of how the neural network predicts the instantia-
tions. The neural prediction is decomposed into levels, where each level deepens
the non-ground terms. The idea is depicted in Figure 2.2. At each level, the
network predicts a single function symbol for each variable of a given clause C.
Then, a new instance C1 of C is created by replacing the variables with the
proposed function symbols and fresh variables as their arguments. This whole
process is iterated.

Besides the increasing depth, the network also needs to be able to deal with
an arbitrary number of variables in each clause. This is handled in an RNN
fashion—variables are being predicted in a fixed order and the information

2.2. Methods 33

(1) instantiate x by head symbol h
with arity 2 and z by g of arity 1
(going from level0 to level1)

(2) instantiate x1, x2, z1 by
constants c, c, and e, respectively
(going from level1 to level2)

∀ x z P (f(x , z))

∀ x1 x2 z1 P (f(h(x1 , x2) , g(z1)))

P (f(h(c , c) , g(e)))

h/2 g/1

c/0 c/0 e/0

1

Figure 2.2: Term instantiation through incremental deepening. In the figure,
there are two instantiation steps, one after the other.

about the previous predictions is stored in a hidden state. Note that the number
of symbol predictions needed increases or decreases depending on the arity of
the predicted symbols. In particular, if all predicted symbols are constants
(symbols of arity 0), no new variables are generated and the process stops. We
are most often required to predict instances for multiple clauses at the same
time, as well as in some cases multiple instances for the same clause.

As an example, this iterative process would be able to generate the term
f(c, (f(c, c)) starting from f(x, y), but it would take 2 levels: one in which x
is set to c and y is set to f , and another level in which two fresh variables
generated under f are both instantiated with c.

∀xz. P (f(x, z)) x : h z : g

∀x1x2z1. P (f(h(x1, x2), g(z1))) x1 : c x2 : c z : e

P (f(h(c, c), g(e))) GNN
RNN RNN

1

Figure 2.3: Schematic of RNN Predictions corresponding to Figure 2.2. A GNN
communicates via variable representations to the RNN predictor and previous
predictions within the same clause are communicated by an RNN hidden state.
Figure 2.5 shows a more detailed procedure.

34 Chapter 2. Neural Architecture for Term Synthesis in Instantiation Proving

2.2.5 Neural Network Architecture

Mathematical problems often have many symmetries, making them challeng-
ing for the naive use of off-the-shelf sequence-based learning methods. Clausal
problems are invariant under the reordering of clauses and literals, renaming
of variables in each clause, and also under consistent renaming of symbols in a
problem. To address this, we base our architecture on a graph neural network
(GNN) with such properties proposed by [88] and used so far in several ATP
tasks [21, 57] to classify existing objects. In this work, we re-implement that
GNN in PyTorch [90], and add to it a novel anonymous, signature-bound recur-
rent neural network (RNN) that allows us to also generate new objects (clause
instantiations). The relation between the graph neural network and the RNN
is illustrated by Figure 2.3. To our knowledge, this is the first ML architecture
combining such strong invariant and nameless problem encoding with the need
for non-anonymous symbolic decoding (synthesis).

Next, we detail the neural network architecture. Code and data to run the
system is available on Github at https://github.com/JellePiepenbrock/ne
ural-synthesis.

Graph Neural Network

The GNN architecture we use is specifically constructed to be invariant to sym-
bol names, as it treats the input clauses in a fully anonymous manner [88].
In addition, the network has a notion of negation. The particular structure
of clausified first-order logic problems is taken into account, with clause nodes
able to communicate with literals, terms able to communicate with their sub-
terms, and all symbols able to directly communicate with all terms they are in.
The graph neural network is invariant to clause order permutations and literal
permutations.

In Figure 2.4, we show a schematic graph corresponding to the example in
Section 2.2.1 that indicates how the nodes are connected, from the graph neural
network’s perspective. For reading convenience, we repeat here the three clauses
from that example: Axiom 1: ∀x.P (f(x)), Axiom 2: ∀x.¬P (x) ∨Q(x) and the
negated conjecture ¬Q(f(g(c))).

There are term nodes T (three types of these are distinguished in the rep-
resentation: ‘standard’ terms, variables and literal), the symbol nodes S (which
can be function symbols or relational) and the clause nodes C (which can be
axioms or conjecture clauses).

When a problem is processed by the graph neural network, each node in
the graph is first given an initial numerical vector representation according to

2.2. Methods 35

Axiom 1 Axiom 2

Neg.
Conj.

P(f(x))

Q(x)

¬P(x)

¬Q(f(g(c))

P

f(g(c))f

g(c)g

cc

Q

f(x)

x

x

Node Types

Literal

Term

Relational
Symbol
Function Symbol
or Constant

Variable

Clause

Connection Types
Term-
Term

Clause-
Literal

Symbol-
Term

Figure 2.4: A schematic representation of the graph corresponding to the ex-
ample in Section 2.2.1. Note that several aspects of the GNN’s message passing
structure have been suppressed for visual clarity, such as the treatment of polar-
ity and the handling of argument ordering in terms with function arities higher
than 1.

its type. The representations of these nodes are then updated according to the
representations of each node’s neighbours (a process called message passing).
Each node aggregates the incoming vectors by aggregation operators, in our
case the element-wise mean and max functions. After aggregation, a linear
transformation in the form of a matrix with learnable parameters is applied to
the aggregated representation. Then a non-linear activation function is applied
which creates an updated vector representation. This update procedure can be
iterated, so that nodes that are not direct neighbours can also update according
to each other’s representations.

Different matrices are used for the transformation in different connection
types (for example, the transformation that updates clause representation has
different parameters than the transformation that updates symbol represen-

36 Chapter 2. Neural Architecture for Term Synthesis in Instantiation Proving

tations.) During the training procedure, these parameters will be tuned to
produce node vector representations that are useful to predict the instantiation
of clauses.

For a full exposition of the update equations used, we refer to Section 2
of [88]. For our purposes here, it is enough that after several message passing
rounds, the GNN outputs updated vector representations for the nodes in the
graph. These vector representations of the nodes, that can incorporate struc-
tural information about the graph surrounding each node, are then used to
predict how to instantiate the clauses.

RNN Function Symbol Prediction

RNN Initialization
Vector

Variable A

RNNSymbol Prompt
Vector

RNN Output
Vector

Symbol
Request

Layer

esk2_0Symbol Request
Vector

esk1_0

function_symbol

Compare
Request vector

with symbol
embeddings

Choose esk1_0

Prompting RNN to produce a symbol request Choosing the symbol which best matches the request vector

Figure 2.5: RNN architecture, shown predicting a symbol for Variable A, the
first variable in a clause. A special, trainable symbol prompt vector is used
to mark a step where the RNN must predict a symbol for the queried vari-
able. The vectors representing Variable A and the symbols esk1 0, esk2 0 and
function symbol are created by the GNN. GNN and RNN are trained end-
to-end as one. Variable vectors are colored yellow and symbol-related vectors
are green. Blue indicates that the vector is an intermediate vector or an RNN
state. Red indicates a transformation, calculation or a choice.

We modify the original GNN architecture to allow the network to produce
instantiations for each clause by using an RNN after running the GNN (Fig-
ure 2.5). The setup is as follows for the first variable in each clause. We predict
an output vector using the RNN by taking for every clause the representation
of the first variable that occurs (in de Bruijn order) from the set T, a special
symbol prompt vector and an initialization vector.

This RNN output vector is processed by the symbol request layer to give a
symbol request vector. The symbol request layer is a neural network linear layer
that has as its task to transform the RNN output vector into a vector similar

2.2. Methods 37

to the vector representing the required symbol. We compute the dot product
between this request vector and the representations of each function symbol
in the signature. We then apply the softmax function to get a probability
distribution over the function symbols for that variable. We then continue with
the next step of the procedure (see Figure 2.6), where the RNN gets its own
output from the previous step, the chosen symbols, as well as the representation
of the second variable.

Conditional Prediction

Variable A

RNN
Initialization

Vector

esk1_0 RNN

RNN Output
Vector

Variable B

RNNSymbol Prompt
Vector

RNN Output
Vector

Symbol
Request

Layer

esk2_0Symbol Request
Vector

esk1_0

function_symbol

Compare
Request vector

with symbol
embeddings

Choose
esk2_0

Loading previous choices Choosing symbol which best matches request vectorPrompting RNN to produce a symbol request

Figure 2.6: RNN architecture, shown in the process of predicting a symbol for
the second variable B in a clause. esk1 0 and esk2 0 are two symbol node rep-
resentations (for Skolem constants). Here esk1 0 was chosen for Variable A.
Before using the symbol prompt vector, the prefix of currently assigned symbols
is shown to the RNN and the RNN can predict a symbol for variable B condi-
tioned on the choice for A.

After having chosen a symbol for the previous variables, we want to choose
the next symbols while taking into account our earlier choices. To create symbol
predictions that are conditioned on the symbols that were already chosen for
other variables in the current clause, we created the setup as shown in Figure 2.6.
There, we schematically show the network in the process of predicting a symbol
for the second variable (B) in a clause. First, the network gets as its input
an initialization vector, a variable representation vector and the representation
vector of the symbol that was already chosen (esk1 0) for that variable (A). The
RNN then produces an output vector that should encode all the information
about these prior decisions that is necessary to predict the next symbol. In the
second step, the RNN processes this output vector, a vector representation of
the second variable and a special symbol prompt vector that indicates that the
loading of previous decisions has ended and that we are currently expecting a
new symbol prediction. The RNN then produces a new output vector, which we
process as a symbol request using the symbol request layer. A symbol is then

38 Chapter 2. Neural Architecture for Term Synthesis in Instantiation Proving

chosen according to the probability distribution induced by the dot products of
the request and the symbol vectors, as before.

During training, we maximize the probability of choosing the symbol used in
the known proof. During evaluation (Section 2.3) we can either (i) decode greed-
ily, choosing the maximum probability symbol, (ii) sample symbols according
to the distribution defined by the model (which introduces some randomness),
or (iii) use a beam search procedure to find the most likely sequences. In this
work, we always use the sampling method (ii), as it can produce varied output
and is easier to implement than beam search.

This procedure preserves the anonymity of the entire setup: the system is
invariant to naming. In the end, we obtain a mapping of variables to symbols
for each clause. In addition, the network can choose a special stop symbol
(represented by a special trainable vector) when shown the first variable, which
indicates that the clause should not be instantiated. This means the RNN
predictor is first performing a premise selection task and then an instantiation
task when the clause is selected. After all variables are processed, we show the
first variable again. The RNN can either produce stop, or another symbol to
continue producing another instance for the clause. If the RNN predicts a stop
symbol at a point where only some variables have been processed, we do not
use the sample. For our purposes here, we only produce instantiations where all
variables in a clause have been replaced by a symbol (which possibly has new
variables associated with it).

2.2.6 Dataset of Mathematical Problems

We use a dataset of 113 332 first-order ATP problems made available to us by the
AI4REASON project.2 They originate from the Mizar Mathematical Library
(MML) [66] and are exported to first-order logic by the MPTP system [128].
All these problems have an ATP proof (in general in a high time limit) found
either by the E/ENIGMA [57,112] systems or by the Vampire/Deepire [102,123]
systems. Additionally, the problems’ premises have been pseudo-minimized [64]
by iterated Vampire runs. In this procedure, input clauses are dismissed when
they are not necessary for the proof. We use the pseudo-minimized versions
because our focus here is on guiding instantiation rather than premise selection.
The problems come from 38 108 problem families, where each problem family
corresponds to one original Mizar theorem. Each theorem can have multiple
minimized ATP proofs using different sets of premises. The problems range
from easier to challenging ones, across mathematical fields such as topology,

2https://github.com/ai4reason/ATP_Proofs

2.2. Methods 39

set theory, logic, algebra and linear algebra, real, complex and multivariate
analysis, trigonometry, number and graph theory.

While we have 113 332 problems in the full dataset, a smaller subset was
selected to allow quicker iteration for some of our experiments. The problems
selected correspond to 2003 Mizar theorems known as the M2k subset, which is a
subset of related Mizar articles [67]. Since we typically have multiple premise se-
lections proving the same Mizar theorem, 4817 problems constitute the dataset
which we will refer to as our M2k Dataset.

2.2.7 CC + SAT Implementation

CC + SAT is a standard procedure used in state-of-the-art SMT solvers such
as CVC5 [6]. After some experiments comparing several CC + SAT imple-
mentations, we have chosen the implementation provided in the Vampire sys-
tem [74, 132]. The choice for using Vampire as CC + SAT backend was made
after also testing CVC5. We have found that Vampire’s parser was faster, while
there is no difference in the solved problems. We always use a 30s time limit for
the ground solver and a faster implementation allows a higher number of ground
instances to be given to the CC + SAT system. For more information, see also
Appendices A.1, A.2 and A.8. Note that all clauses with variables are removed
before calling Vampire in its CC + SAT mode.3. This means that Vampire
is really used only as a standard CC + SAT solver for ground problems and
no other parts of Vampire are being used for instantiation. In Section 2.2.4,
we explained how our procedure can produce non-ground clauses at each level,
which could potentially be made ground at the next level by instantiation with
constants.

2.2.8 Generating Training Data Via Random Grounding

To create our initial training dataset of instantiations, we use a randomized
grounding procedure. We first clausify the problems using E [112], and then
repeatedly run a randomized grounding procedure on all of them, followed by
the ground solver.

Randomized grounding can be parameterized in various ways. To develop
the initial dataset here we use a simple multi-pass randomized grounding with
settings that roughly correspond to our ML-guided instantiation architecture
(Section 2.2.5). These settings are as follows. We use at most two passes (lev-
els) of instantiation for every input clause. In the first pass, for each variable

3We call Vampire with the acc argument.

40 Chapter 2. Neural Architecture for Term Synthesis in Instantiation Proving

we randomly select an arbitrary function symbol from the problem’s signature,
and provide it (if non-constant) with fresh variables as arguments. In the sec-
ond pass, we ground all variables with randomly selected constants from the
problem’s signature. The first pass is repeated 25 times for each clause in its
input, and the second pass 5 times. The input to the first pass is the original
clausal problem. The input to the second pass is the (deduplicated) union of
the clauses produced in the first pass and of the original clauses.

This means that each input clause can produce up to (25 + 1) × 5 = 130
ground instances, potentially resulting in ground problems with thousands of
ground clauses. Such input sizes typically pose no problems to the ground solver.
The average ground problem sizes are however typically below 1000, because of
the overlaps and limited number of options during the random grounding.

The first run solves 3897 of the problems, growing to 7790 for the union of
the first 9 runs, and to 11 675 for the union of the first 100 runs. The 113 332
problems have on average 35.6 input clauses and the 3897 problems solved
in the first run have on average 12.8 input clauses. There are 6.0 instances
needed on average to solve a problem.4 Note that each clause can in general
be instantiated more than once. Also, 3.9 (almost two-thirds) of the instances
contain on average at least one Skolem symbol. For these symbols, the name
is not necessarily informative. These data statistics confirm that we would
strongly benefit from a learning architecture invariant under symbol renaming,
rather than off-the-shelf architectures (e.g., transformers) that depend on fixed
consistent naming. This motivates our use of a naming-invariant architecture
(Section 2.2.5). Appendix A.3 contains some more information on the random
instantiation.

2.2.9 Neural Network Data Processing and Training Details

In the following subsections, we will discuss practical details of the neural net-
work training process, such as the data split for evaluation purposes, the prepa-
ration of the data, the balancing of the loss contributions from different samples
and hyperparameters. Appendices A.5, A.6 and A.7 contain some more details
on the neural network choices and the training.

Data split

For the machine learning experiments, the Mizar theorems were split into 90%
training and validation data and 10% testing data. Of the largest set, 5% of

4Over 40 instances (max. 63) are used in some problems

2.2. Methods 41

data was used as the validation set and 95% as training data. Note that our split
keeps problems which are versions of the same theorem in the same section of
the split, so that data leakage between minor variations of the same proof idea
is prevented. Also, the fact that a problem is assigned to the training
set does not imply we already have a proof from the randomized
grounding: the split is done independently of the availability of a
solution. This means that each of these sets is a mixture of problems that
already have a proof from the randomized grounding and problems that do not
have one. In the end, we have 96 532 training, 5293 validation and 11 507 test
problems. For the M2k subset, we have 4163, 188 and 466 problems in the
respective sets.

Hardware

All experiments were run either on a DGX machine with 8 NVIDIA Tesla V100
GPUs with 32GB memory, 512GB RAM and 80 cores of Intel(R) Xeon(R) CPU
E5-2698 v4 @ 2.20GHz type (looping and running provers) or on a machine with
4 NVIDIA GTX 1080 GPUs with 12GB memory, 692GB RAM and 72 cores of
Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz type (only training).

Data Preparation

The initial training data were the cumulative proofs obtained by 9 runs of the
random instantiator with 25 samples on level0 and 5 on level1. For the full
dataset, there are 6592 solved training problems, while for the M2k set, there
are 421. If multiple proofs were found for a problem, one of those proofs was
chosen randomly. Note that the number of solved problems here can be lower
than the number of available training problems. If a given proof needed two
levels of instantiation, the proof is split into 2 training examples E1, E2. The
input part of E1 is the original CNF problem, while for E2 it is the CNF problem
with the right head symbols (and corresponding fresh variables) filled in for the
proof-related clauses. For E1, the label part corresponds to the head symbols
in the input of E2, while the labels for E2 are the constants that ground the
terms. The parameters of the neural network are trained by minimizing the
cross-entropy between the predicted distribution and the labels.

When there are multiple instantiations for the same clause needed for the
proof, we concatenate all the proof instantiations for a clause into a single se-
quence. The RNN component was trained to predict this concatenated sequence
of instantiations so that the model can capture the conditional dependence be-
tween multiple instantiations of one clause. To make it possible for the model to

42 Chapter 2. Neural Architecture for Term Synthesis in Instantiation Proving

stop instantiating a clause, a special stop vector is added in addition to the ac-
tual symbol vectors when comparing with the symbol request vectors. The label
corresponding to the stop vector was added to the end of each label sequence.
For clauses where no instantiation is part of the proof, the label sequence is
only the stop label. Therefore premise selection is included in the task.

While we choose to handle multiple instances for a clause sequentially with
an RNN, there is no ordering on these instances for a given clause. Therefore,
during training, we randomize the order in which the different label sequences
corresponding to different instances are concatenated. Each time a sample is
encountered, we use a randomized order (so over the training process, many
different orderings are observed, as a form of data augmentation). In principle,
the same holds for the ordering on the variables, but this ordering is not ran-
domized in the current setup, to limit the computational resources needed. The
variable order is as they appear in the clause.

Loss balancing

The number of choice points, and thus the number of contributions to the total
loss when naively added, is not the same for each training example. Some
training examples require as many as 100 symbols to be chosen, while others
need less than 10. Therefore, we normalize the loss contribution coming from
each training example in the batch by the number of choice points (i.e. the total
length of all the concatenated label sequences for all clauses with variables in
the training example). We then minimize the sum of these averages. This loss
corresponds better to our use case: it is more important to get all 3 instances
for a small problem, than it is to get 3 out of 80 instances for another bigger
problem.

Hyperparameters

The GNN was used with node and layer dimensions, for all nodes, set to 64.
The network uses 10 message passing steps, with different layer parameters
at each step. Each different node type is initialized with a different trainable
initial embedding of 64 numbers. The RNN consists of a linear neural network
layer with 192 inputs and 64 output dimensions followed by a rectified linear
unit activation function, followed by a linear layer of input size 64 and output
size of 64. The symbol request layer is a linear layer with 64 input and 64
output dimensions. To optimize the parameters of the network, the ADAM
algorithm [68] was used with learning rate 0.0001, minimizing the cross entropy
between the symbols used in the known proofs and the predicted symbols. The

2.3. Results 43

maximum number of RNN iterations per input clause (which limits the total
number of symbols chosen per clause) was set to 12.

Parameter settings such as layer size and learning rate were determined by
increasing them (decreasing in the case of learning rate) until the network reli-
ably converged to a low loss on the training dataset, indicating a capacity to fit
the data. In the end, we settled on 10 layers and 64-wide embedding dimensions,
starting from smaller ones. While this seems enough to fit the data reasonably,
we did not test networks that were deeper or wider than this. It is possible
that more performance can be gained with a more extensive examination of the
various hyperparameters.

2.3 Results

To characterize the performance of our setup, we carried out several experi-
ments. First, we explain the training of the initial network from the dataset
created by randomized grounding and how we selected specific predictors. We
also measure how well the predictors can generalize to samples not in the train-
ing data.

Second, we show the results of an iterated loop on the M2k dataset, where
we take this trained predictor and use it to predict solutions, add the new
solutions to the training data, and repeat. We use the same CC + SAT setup
as with the randomized grounding procedure. After showing that this iterated
procedure works, we also iterate on the full dataset, where we show how the
system can self-improve up to the point of proving some theorems existing
automated theorem provers did not find in 60s.

2.3.1 Prediction Model Selection

For the looping and evaluation experiments, we use the models that have the
earliest highest median validation accuracy (indicating that after this, the model
could start overfitting). For the predictor trained on the M2k set, this happened
after 56 passes over the training data. For the training on the full dataset, we
use checkpoint 79, for the same reason.5

5In Appendix A.4, we show a plot of accuracy during the training process.

44 Chapter 2. Neural Architecture for Term Synthesis in Instantiation Proving

2.3.2 Validation and Instance Accuracy of the Neural Net-
works

The training setting does not fully reflect how the model is used for the real
instantiation task. In the training procedure, accuracy is computed while the
input and the previous choices are always fully correct (i.e. according to the
labels). However, in the practical setting, the model can only run on its own
previously generated, and possibly suboptimal, output. This is explored in
Table 2.1.

Table 2.1: Coverage of the instantiations needed for the proof, on problems
from the validation set that the random instantiator found a proof for. The
columns indicate the maximum number of instantiations per clause (which are
sampled from the probability distribution learned by the model). The rows are
split into the results for level0 and level1. The accuracy corresponding to the
quantiles 0.1, 0.5 and 0.9 are given. Note that even if the instantiations of the
proof in our validation set for a given problem are not covered, the predicted
instances might constitute a different proof.

No. samples / clause 1 inst. 5 inst. 10 inst. 25 inst.

level0 - q=0.1 0.08 0.40 0.53 0.67
level0 - q=0.5 0.50 0.83 1.00 1.00
level0 - q=0.9 1.00 1.00 1.00 1.00
level1 - q=0.1 0.00 0.21 0.50 0.82
level1 - q=0.5 1.00 1.00 1.00 1.00
level1 - q=0.9 1.00 1.00 1.00 1.00

The results are for the model trained on the data from the proofs generated
by the random instantiator, but applied on unseen validation data and com-
pared to unseen proofs from the random instantiator (which may have 2 levels
of instantiation). We show the fraction of label instances covered as a function
of the number of samples taken per clause (more simply, the accuracy). The
accuracy values correspond to certain quantiles q. For example, a 0.67 score for
q = 0.1 means that for 10% of all problems, at least 33% of the required in-
stantiations are still missing. While the median (q = 0.5) and the 90th quantile
indicate that with 25 samples, most instantiations are covered, the q = 0.1 data
show that there is a subset of problems for which instances are missing. We
also see that, given correct instantiations on level0, filling in the right instances
on level1 (bottom 3 rows) is easier than starting from the base problem (top 3

2.3. Results 45

rows). In general, there is an indication that the predictor has learned the task.
Next, we show our iterative self-improvement experiments.

0 200 400 600 800 1000 1200

Iteration (* 1000 attempts)

400

600

800

1000

1200

P
r
o
o
f
s

e
n
c
o
u
n
t
e
r
e
d

Training set proofs gathered

Training problems with proofs

Restart with new model

Randomly solved (cumulative) with 416300 attempts

Figure 2.7: Number of problems with a solution (cumulative, M2k). Horizontal
dashed line indicates the number of problems solved by random attempts and
vertical dashed line indicates the time at which a newly trained model was
introduced.

2.3.3 Self-Improving Loop (M2k Dataset)

The previous section indicates that the model has learned to recreate the right
instances for many proofs on unseen data. Next, we test whether the system can
generate new proofs, and then learn from these new proofs, in a self-improving
loop. To test this capability, we do a looping experiment. We use two levels
of instantiation, limiting the maximum number of instantiations per clause to
25 and 5 respectively. This way we can compare to the random instantiator
baseline, which also uses 2 levels of instantiations with the same limits.

We run the system on problems from the training set, including those where
the random instantiator could not find a proof. We keep all the proofs, and
train again including the new proofs. This procedure is then repeated.

46 Chapter 2. Neural Architecture for Term Synthesis in Instantiation Proving

Because one full loop iteration can take time, we first test this setup on the
M2k subset. There are 4163 problems derived from the M2k theorems assigned
to the training set. Of these, the random instantiator solved 421 total in 9 runs
(this is the initial training data). In 100 runs (416 300 attempts total), it found
609. In each iteration, 1000 problems are attempted and 1000 random previous
proofs are trained on (but the model parameters are kept between iterations).
Every 10 iterations, we also run the proof attempts on the test set.

0 200 400 600 800 1000 1200

Iterations

10.0

12.5

15.0

17.5

20.0

22.5

25.0

P
e
r
c
e
n
t
a
g
e

p
r
o
v
e
d

Training

Training set % solved from 1000 sample problems

Restart with new model

Figure 2.8: Percentage of problems solved (training set problems, M2k)

After 580 loop iterations, there are 1102 problems from the training set
that we have a proof for (see Figure 2.7). However, the discovery of new proofs
stagnates after around 400 iterations. We concluded that restarting the training
with a fresh model might bring more new proofs, as by this point the training
solutions had been seen many times, which could lead to an overfit model.
The restart is therefore a chance for the model to find a new optimum that
possibly better incorporates recently added solutions. As seen in Figure 2.7,
this restarts the process and the system finds 146 more proofs, for a total of
1248. The system found almost double the amount of proofs as the random
instantiator (dashed red line) in the same amount of iterations, indicating that
the learned distribution of terms can lead to more proofs.

2.3. Results 47

0 20 40 60 80 100 120

Iterations

10

11

12

13

14

15

16

P
e
r
c
e
n
t
a
g
e

p
r
o
v
e
d

Test

Test set % problems solved

Restart with new model

Figure 2.9: Percentage of problems solved (test set problems, M2k)

In Figures 2.8 and 2.9, the non-cumulative training and test set performance
of the system are shown. The system learns how to prove around 22% of training
problems, which corresponds roughly to the ratio between 1248 solved training
problems and 4163 total training problems. Most training problems that were
solved once can be solved reliably after training on their solutions. On the
M2k test set, the behavior is similar, although the unseen data makes it harder:
the system can prove 14.5%, which is more than double the performance of 1
run of the random instantiator with the same sampling settings (6.9%). The
extra performance gain after the restart is noteworthy. This indicates that the
optimization found a more generalizable optimum when trained from scratch
with the solutions found before the restart of the self-improvement loop.

2.3.4 Self-Improving Loop (Full Dataset)

As the self-improvement loop was successful on the M2k dataset, the experiment
was repeated for the larger, full dataset. For this larger experiment, the system
uses 5 levels of instantiation, with (25, 5, 5, 5, 5) maximum samples per clause
for the respective levels. There are 10 000 proof attempts and 10 000 training
proofs are randomly selected from all proofs at each iteration.

48 Chapter 2. Neural Architecture for Term Synthesis in Instantiation Proving

0 10 20 30 40 50

Iterations

10

12

14

16

18

20

P
e
r
c
e
n
t
a
g
e

p
r
o
v
e
d

Test

Test set % problems solved

Restart with new model

Figure 2.10: Percentage of problems solved (test set problems, full set, sample
of 10 000 problems taken per iteration).

We start from the 6592 training problems solved by the random instantiator.
After 550 iterations, with a restart of the model included, there are 31 003
problems solved, more than 4.5× the number of solved problems the procedure
started with. This means that the system cumulatively found proofs of 32.12%
of the training dataset. With the predictor from the last iteration, the system
can prove 26.25% of training set problems. Most of the previously cumulatively
solved training problems are solved by the final system. In Figure 2.10, we can
see the progression of test performance. Of the full set of unseen test problems,
the final system can solve 19.74%.

The depth of the iteration procedure, or the number of levels, has an effect
of the number of proofs found. In general, allowing more levels improves the
performance. However, the number of clauses that serve as input for the next
level potentially grows as fast as the limit on the number of samples per clause.
Therefore, the smaller the number of levels, the faster the system runs in general.
We tried depths from 2-5, but there were diminishing returns in terms of number
of proofs and rising computational costs, which is why 5 was chosen as the limit.

2.4. Related Work 49

Table 2.2: Performance of various methods. iProver is used in pure instantiation
mode. Random is 1 run of the 2-level random grounding. In parentheses, we
indicate which dataset was used.

Time limit 1s 10s 60s Inst. + 30s

Random (all) - - - 3.44%
Neural (train) - - - 26.25%
Neural (test) - - - 19.74%
iProver (train) 43.28% 59.99% 67.6% -
iProver (test) 43.16% 59.75% 68.69% -
CVC5 (test) 83.44% 85.6% 86.28% -

2.3.5 Comparison with existing provers

Our system takes about 1 second per level of instantiation, plus a maximum of
30s for the ground solver (though most ground problems are solved in under 1
second). We compare the performance of our system with existing automated
provers. Table 2.2 shows the percentage of solved problems for various solvers
and Table 2.3 shows how many problems our system solved that were not solved
by the existing automated theorem provers. For each prover, there are some
solutions that our system adds. For iProver in instantiation mode, the set of
added solutions is the largest, but even for a highly optimized SMT solver like
CVC5, we can add some solutions. With the final cumulative 31 003 solutions,
we add 6821 new solutions compared to 1s iProver on the training problems,
or a 16.33% gain. On the test set (non-cumulative, last iteration predictor) we
add 317, or a 6.38% gain.

If we compare to the longest iProver run, there are still 97 test set problems
not found by iProver in 60s. Some types of problems seem to be dominant:
15 of the new solutions are about asymptotes, while 9 are about quaternions
and 7 are about complex numbers. While these types of problems are somewhat
prevalent in the dataset, they are not the most prevalent. Problems about finite
sequences, euclidean geometry and group theory are much more numerous.

2.4 Related Work

In addition to the recent general work on synthesis of logical data mentioned
in Section 2.1, there is recent work on choosing instantiations in automated
reasoning using ML, but with a different focus than our work. Several examples

50 Chapter 2. Neural Architecture for Term Synthesis in Instantiation Proving

Table 2.3: New solutions gained compared to existing provers. Solutions already
contained in the random instantiator runs that serve as the starting training
data are not counted.

Gain (# / %) vs. 1s vs. 10s vs 60s

vs iProver (train cumul.) 6821 / 16.33 3459 / 5.97 2471 / 3.79
vs iProver (test) 317 / 6.38 159 / 2.31 97 / 1.23
vs CVC5 (test) 75 / 0.78 73 / 0.74 73 / 0.74

are found in the SMT community, where gradient boosted tree algorithms were
used to filter possible terms [17, 34] and to rank them for the SMT solving
procedure [63]. These however work within the solving loop of an existing SMT
solver, whereas we are synthesizing instances, attempting to do most of the
non-ground reasoning within a trained neural network.

There is also work on synthesizing loop invariants, which is similar in spirit
to what is attempted in this work [118]. A difference is that we are synthesizing
many objects (instances of each clause) simultaneously, whereas loop invariant
synthesis is more concerned with a single object. Also, the specific grammar
of loop invariants used is limited, but we jointly learn synthesis over arbitrary
function signatures, within a single signature-invariant system.

2.5 Conclusion

We have developed a fully neural instantiation mechanism for many clauses at
the same time. Starting from data generated by randomly instantiating vari-
ables in problems from a real-world mathematics dataset, the machine learning
component can learn how to instantiate and improve based on its own newly
found proofs. The final system, after self-improvement on the full dataset, can
solve 26.25% of the training dataset, starting from a core of problems comprising
6.83 % obtained by a random instantiator. The system can also solve 19.74% of
the unseen test problems, indicating generalization capabilities. The total pool
of solved problems is more than 4.5× larger after the self-improvement loop.

The combination of a neural instantiator with a strong ground solver with a
congruence closure mechanism combines two techniques according to their re-
spective strengths: the graph neural network that can learn global heuristics for
the instantiation of first-order variables is combined with the fast and optimized
reasoning components of SAT-based solvers to propagate the consequences of

2.6. Acknowledgements 51

the instantiations.
While the current system does not outperform highly engineered existing

systems, such as iProver or CVC5, in absolute terms, we do gain new proofs
compared to them. This indicates that the system has learned how to synthe-
size instantiations that are hard to reach for these systems. Taking these results
in combination with the demonstrated self-improvement capabilities of the ar-
chitecture, we believe that this opens up a new research direction of theorem
proving systems that incorporate learned neural synthesis, applicable not only
in instantiation, but also in other settings such as tableaux and saturation-style
proving.

A possible future direction of research could be to close the loop in Figure
2.1B: the neural network’s prediction of instantiations could benefit from ex-
plicit information about the SAT model. Another direction could be the direct
integration of a similar neural instantiation method into an SMT solver.

2.6 Acknowledgements

This work was partially supported by the European Regional Development Fund
under the Czech project AI&Reasoning no. CZ.02.1.01/0.0/0.0/15 003/0000466
(JP, JU), the European Union under the project ROBOPROX
(reg. no. CZ.02.01.01/00/22 008/0004590) (MJ), Amazon Research Awards
(JP, JU), by the Czech MEYS under the ERC CZ project POSTMAN no.
LL1902 (JP, MJ, JU), EPSRC grant EP/V000497/1 UK (KK), and the EU
ICT-48 2020 project TAILOR no. 952215 (JU).

52 Chapter 2. Neural Architecture for Term Synthesis in Instantiation Proving

Chapter 3

Guiding an Instantiation
Prover with Graph Neural
Networks∗

Abstract

In this work we extend an instantiation-based theorem prover
iProver with machine learning (ML) guidance based on graph neu-
ral networks. For this we implement an interactive mode in iProver,
which allows communication with an external agent via network
sockets. The external (ML-based) agent guides the proof search
by scoring generated clauses in the given clause loop. Our evalua-
tion on a large set of Mizar problems shows that the ML guidance
outperforms iProver’s standard human-programmed priority queues,
solving more than twice as many problems in the same time. To our
knowledge, this is the first time the performance of a state-of-the-art
instantiation-based system is doubled by ML guidance.

∗This chapter is based on the article of the same name published in the International Con-
ference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR) 2023 [23].

53

54 Chapter 3. Guiding an Instantiation Prover with Graph Neural Networks

3.1 Introduction

In the recent years, machine learning (ML) and related AI methods are increas-
ingly combined with automated deduction. One of the most interesting tasks in
this area is equipping fast state-of-the-art automated theorem provers (ATPs)
with efficient internal guidance of their calculi based on learning from many
previous proof-search decisions. This is challenging, because the fast ATPs typ-
ically generate and evaluate thousands to millions of inferences within seconds.
While related AI/TP tasks such as learning-based premise selection [1], tac-
tical guidance [41], and neural conjecturing [129] can use relatively slow and
expensive ML methods that are called only rarely on a single problem, internal
guidance requires efficient ML methods and their nontrivial integration with
the fast ATPs.

In the last five years, several advances in internal guidance were made for
connection-based [67,99,135] and resolution/superposition-based ATPs [45,59,
123]. However, there has so far been only limited success in guiding instantiation-
based systems, which are – thanks to the integration with powerful SAT solvers
– today becoming very competitive [30].

In this work we therefore develop strong internal ML guidance for one of
today’s main instantiation-based theorem provers: iProver [72] (Section 3.2).
In more detail, the ML guidance is based on naming-invariant graph neural
networks (GNNs) (Section 3.3). To combine the two, we develop an interactive
mode in iProver, which allows communication with external agents via network
sockets (Section 3.4). The GNN guidance is then implemented as an instance
of such an external agent – a GPU server (Section 3.5). Our evaluation on a
large set of Mizar problems (Section 3.6) shows that the ML guidance doubles
the performance of iProver’s standard human-programmed priority queues (Sec-
tion 3.7). To our knowledge, this is the first time a state-of-the-art instantiation-
based system is considerably improved by neural ML guidance.

3.2 iProver

3.2.1 iProver and the Inst-Gen Calculus

iProver [72] is an automated theorem prover for quantified first-order logic. At
the core of iProver is an instantiation calculus, Inst-Gen [36, 73], which can be
combined with resolution and superposition calculi [32]. The Inst-Gen calculus
is based on propositional reasoning to deal with propositional abstractions of
first-order clauses and model-guided incremental instantiations using unification

3.2. iProver 55

to generate new first-order instances. At a high level, the procedure works as
follows.

Given a set of first-order clauses S, its propositional abstraction S⊥ is ob-
tained by mapping all variables to a designated ground term ⊥. A propositional
solver is applied to S⊥ and it either proves that S⊥ is unsatisfiable and in this
case the set of first-order clauses S is also unsatisfiable or shows that S⊥ is
satisfiable and in this case returns a propositional model of the abstraction S⊥.
This propositional model is analysed if it can be extended to a full first-order
model. If it can not be extended then it is possible to show that there must be
complementary literals in the model that are unifiable. In this case the Inst-
Gen calculus produces instances of relevant clauses with the most general unifier
which resolves this conflict in the model and provide sufficient information to
the propositional solver that this conflict will not occur in the future. This loop
is repeated with more instances added until the unsatisfiability is witnessed
by the propositional abstraction or a saturated set is obtained (possibly in the
limit) in which case the original first-order formula is satisfiable. The Inst-Gen
calculus is refutationally complete, which means that if the set of first-order
clauses S is unsatisfiable then in a finite number of iterations, the propositional
abstraction of derived instantiations S′⊥ will be unsatisfiable [36].

3.2.2 Guiding iProver

iProver leverages the power of propositional solvers for a) solving propositional
abstractions, and b) guiding instantiations based on propositional models. Al-
though this approach often works well in practice, one of the major bottlenecks
is the number of generated first-order instances with only a few of them usually
needed in the final proof.

In this work we therefore investigate how machine learning can be used to
select iProver inferences that are most likely to be used in a proof. In particular,
the propositional model typically leads to multiple Inst-Gen inferences that can
be made to provide sufficient information to the propositional solver that will
avoid particular conflicting assignment of unifiable literals in the propositional
model. Figure 3.1 shows an overall scheme of the approach. The ML advice
will be used to select the clauses for performing the Inst-Gen inferences (see
Section 3.4 for details).

56 Chapter 3. Guiding an Instantiation Prover with Graph Neural Networks

3.3 Name-Independent Graph Neural Network

To learn a machine learning heuristic for clause selection in the Inst-Gen cal-
culus, we use a graph neural network [106]. Specifically, we use a PyTorch [90]
implementation of the name-independent architecture developed originally for
connection provers [88], but also used for the recent ENIGMA systems for the
E automated theorem prover [46].

In this work, we will give a brief primer on the main ideas underlying this
neural network architecture, so far as they are directly relevant to the current
work. Given a first-order logic problem expressed as a set of clauses named
Clauses, we parse the problem and create a (hyper)graph that represents the
problem. In this representation, three different types of nodes are distinguished.
These are the clause nodes C, the symbol nodes S and the term nodes T . The
collection of all nodes is the set N . Each clause node corresponds to a clause in
the input file. Symbol nodes correspond to either function or predicate symbols.

The structure of the original first-order problem is reflected in the edges
connecting these different types of nodes. This allows the network to see how
the symbols are used without knowing their names, and therefore handle com-
mon ATP issues such as the typically quite unstable naming of Skolem symbols
between problems. It is also important when used in ITP-based (hammer)
scenarios, where new terminology is introduced frequently during the formal-
ization (see Section 3.7.2). There are several different types of edges between
the nodes. Clauses are connected to their literals, while the polarity of the
literals is explicitly handled (so the network has a built-in notion of negation).
Symbols are connected to the terms they are used in. For example, given a term
f(t1, . . . , tk) ∈ T , with k subterms labelled as ti, the nodes corresponding to the
function symbol f ∈ S will be connected to ti via the term node f(t1, . . . , tk),
for 1 ≤ i ≤ k.

This graph representation then contains the relationships between the var-
ious mathematical objects occurring in the problem. The basic idea of using
this representation to learn a heuristic for clause selection is to let each node
exchange messages with its neighbours, to update some state representation ac-
cording to a learned transformation parameterized by weights that are learned
by gradient descent on an error function. This message passing is iterated for
a fixed amount of steps, after which the representations for clauses are used to
predict whether the clause is useful or not. Initially, each node is represented
by a vector of floating point numbers (embedding), which differs based on the
type of node. We distinguish the following node types: conjecture clauses, non-
conjecture clauses, function symbol nodes, predicate symbols, terms, literals

3.4. Interactive Mode 57

and variables.
After some message-passing steps, the predicted probability of a clause be-

ing useful for the proof is computed by another learned transformation that
takes the final representation of each clause node and combines this with the
representation of the conjecture clauses. This predicted score for the clauses is
then used to influence iProver’s clause priority queues. The machine learning
system is trained by minimizing, through gradient descent, the binary cross-
entropy error function that measures how well the network can predict which
clauses are useful for the proofs and which ones are not. In Appendix B.3 we
give more details on GNN settings.

3.4 Interactive Mode

We have newly developed an Interactive Mode for iProver, which is in detail de-
scribed in our repository.2 In this mode, iProver communicates with an external
agent (EA) (e.g., ML-based, that can be written in any language, e.g., Python)
via TCP/IP sockets. The external agent can be used to provide proof search
guidance by either assigning scores to clauses which are used for prioritising
them for the next inferences or explicitly selecting the given clause for the next
inferences. The communication is bi-directional:

• iProver submits different messages to the agent, such as the given clauses,
generated clauses, simplified clauses etc.

• The agent can guide the iProver search by different actions such as se-
lection of the given clause, assigning scores for clauses in passive queues
etc.

Figure 3.1 details the given clause loop extended with the external guidance.
The Input clauses are first submitted to the Unprocessed set and simplified
(simp I). Then, the EA evaluates the clauses and assigns scores that are used as
priorities in passive priority queues. These are used to store Passive clauses, i.e.,
the clauses that are waiting to be involved in inferences. Each priority queue is
based on a lexicographic combination of different clause features, such as: the
number of literals, the number of variables, clause age, proof distance from the
conjecture, etc. Priority queues are combined in a round-robin fashion with
specified multipliers. The EA scores are treated as one of the clause features
and can be used in a standalone priority queue based on just EA scores or
combined in queues with other clause priority features.

2https://gitlab.com/korovin/iprover/-/blob/master/README-interactive.md

58 Chapter 3. Guiding an Instantiation Prover with Graph Neural Networks

Passive Queues Given Clause
simp II

External AgentSatisfiable

passive
empty

Active

Instantiation Inferences

UnprocessedExternal Agent
simp I

clause
scores

Input

SAT Solver

grounding

Unsatisfiable
unsat

Figure 3.1: Interactive Given Clause Loop in iProver

3.5. GPU Server 59

The Given Clause is the clause selected from the priority queues for the
next inferences with clauses stored in the Active set. The Given Clause is also
submitted to the EA to be used as a part of the context for the next rounds of
evaluations. After all inferences between the Given Clause and clauses in Active
are performed, the Given Clause is moved to Active and all newly derived
clauses are moved to the Unprocessed set. Groundings of clauses from the
Unprocessed are also submitted to the SAT solver which is executed with some
specified intervals. If the SAT solver returns that the accumulated groundings
are unsatisfiable, then the Input set of first-order clauses is also unsatisfiable
and the problem is solved. If the Passive Queues are empty then due to the
completeness of the procedure [36, 73], the Input set is satisfiable.

The problem of selecting the most suitable given clause is the “Holy Grail”
of automated theorem proving: with perfect clause selection the proof can be
directly reconstructed. In most cases, though the clause selection is far from
perfect which results in an explosion in the search space. One of our main
contributions is to show that an External Agent based on GNN models can be
trained to select clauses considerably better than human-based fine tuning of
priorities.

3.5 GPU Server

We have developed3 an external agent that uses a trained GNN to score clauses
generated in the given clause loop. The main function is similar to E/ENIGMA,
where a Python GPU server [45] is used to reduce the overhead of repeated
model loading. However, in ENIGMA, the score requests are created as full
graphs already in E, where the context consisting of the given clauses and con-
jectures is added to the generated clauses that are to be scored, and hence the
server is stateless. The sole purpose of the server there is to receive the queries,
evaluate them using a GPU, and send the results back. Here, we instead build
a richer stateful server that keeps track of the given clauses and conjectures,
and is itself capable of generating in various ways the context that is used to
score the requests.

The agent is a Python server that contains three types of processes. The
main process checks a network socket and distributes the incoming connections
to the state processes. Each state process handles one client (iProver) connec-
tion. Whenever the state process receives a score request, it adds the context

3https://gitlab.ciirc.cvut.cz/chvalkar/iprover-gnn-server, https://github.com
/JellePiepenbrock/iprover-gnn-server

60 Chapter 3. Guiding an Instantiation Prover with Graph Neural Networks

of the given clauses and conjectures and sends a request to a GPU process. To
create contexts, the state process must keep all the generated clauses, given
clauses, and conjectures in its memory. The GPU process then evaluates the
clauses using a GNN preloaded on a GPU and sends the scores back to the state
process that communicates them to the client iProver. While this architecture
is more involved than the simple ENIGMA server, it is more flexible, allow-
ing different parameterizations and experiments with the GNN guidance. We
show in Section 3.7 that the overhead incurred by this more involved guiding
architecture is reasonably low, and that its use results in very high real time
improvements of iProver’s performance. See also Appendix B.1 for more details
on the server settings.

3.6 Experimental Setting

3.6.1 Evaluation Problems

The evaluation is performed on a large benchmark of 57 880 problems4 originat-
ing from the Mizar Mathematical Library (MML) [66] exported to first-order
logic by MPTP [128]. The Mizar problems are split5 (in a 90-5-5% ratio) into
3 subsets: (1) 52k problems for training, (2) 2896 problems for development,
and (3) 2896 problems for final evaluation (holdout). We use this split for the
evaluation done here. Since we are interested in internal ATP guidance and
not premise selection, we use problems with premises limited to those used in
the human-written Mizar proofs (bushy problems). As an additional measure of
the generalization, we also evaluate (Section 3.7.2) the trained system on 13 370
theorems in 242 articles that were added in a newer version of MML (1382) and
thus never seen during the training. More than half of those problems contain
new terminology.

3.6.2 Data: Classic vs Dynamic

The training data are collected from previous successful runs. The standard
approach (classic data), which was introduced by the ENIGMA systems, is to
take all given clauses and consider those that ended up in the proof as useful
(positive clauses) and those not used as useless (negative clauses). Hence, for
each proof, we have one training example (a graph of clauses) containing the
useful/useless clauses and the conjecture we want to prove. However, the size

4http://grid01.ciirc.cvut.cz/~mptp/1147/MPTP2/problems_small_consist.tar.gz
5http://grid01.ciirc.cvut.cz/~mptp/Mizar_eval_final_split

3.6. Experimental Setting 61

of such a training example corresponds to the final size of the set of all given
clauses proposed in the proof search, not to the intermediate sizes of the actual
score requests generated multiple times during the proof search. This means
that in the classic setting, the distribution of the training graph sizes may
be shifted quite far from the actual distribution encountered during the proof
search. Such subtle shifts between the training and evaluation distributions
have quite often a negative effect on the performance of more complex machine
learning architectures.

To remedy that, we experiment with using the actual score requests (dy-
namic data) from the proof searches as the training data. However, such score
requests contain not only the given clauses but also the passive clauses. It is not
always clear how the passive clauses should be labeled, since they may or may
not lead to an alternative proof. For simplicity, we use a common pragmatic
approach and consider them as negatives. We also want to prevent the learning
from focusing on too many minor alternative proofs of the same problem and
neglecting problems that have fewer proofs. When we learn from multiple col-
lections of proofs (produced in multiple iterations of the proving and learning
over the training data), we sample these proofs so that each problem contributes
the same number of training examples.

3.6.3 iProver Settings

We run iProver using its instantiation mode.6 The score requests are performed
in batches of size approximately 1000 to improve the performance. For details,
see Appendix B.2. For our evaluations of the baseline non-guided iProver, we
run it with its standard human-programmed priority queues for clause selec-
tion in the Inst-Gen calculus in three different modes. These modes are the
non-interactive mode, the interactive mode without ML evaluation, and the
interactive mode with ML evaluation that is ignored.

In the non-interactive mode, iProver does not communicate with the server.
In the interactive mode without ML evaluation (no eval), the ML server returns
zeros without any evaluation. The purpose of this mode is to measure the
overhead caused by the communication protocol and processing requests. In the
interactive mode with ignored ML evaluation (ignore eval), the server evaluates
clauses but the scores are ignored by iProver. By running in this mode, we can
investigate the overhead incurred by the ML calculations.

6Recent iProver can also use superposition and resolution and combine them with instan-
tiation. However, in this work our focus is to establish if instantiation-based methods can be
effectively guided by learning.

62 Chapter 3. Guiding an Instantiation Prover with Graph Neural Networks

In the setting where the scores provided by the server are used for clause
selection, we use two modes: solo and coop. In the solo mode, there is just
one priority queue ordered by the scores provided by the server. In the coop
mode, we combine server-provided scores with the human-programmed priority
queues in an equal ratio, see Appendix B.2.

3.7 Results
As a starting reference point, we run iProver with the human-programmed
priority queues for clause selection to collect the initial training examples. In
this mode, without being slowed down by the server (non-interactive mode),
iProver solves 502 theorems out of the 2896 theorems in the development set
(Section 3.6.1) in 15 seconds. However, to extract the training data, we need
to run iProver in the interactive mode. It solves 451 and 482 theorems in the
development set in ignore eval and no eval modes, respectively. Therefore, there
is some overhead from the communication and GNN calculations, but its impact
is manageable.

Using the no eval mode, we get 9087 training proofs and also 482 proofs in the
development set that are used as a validation set for finding the best performing
model. We train three models, one with classic data and two with dynamic data
(taking randomly 4 or 10 queries from the successful runs, respectively). Each
model is run in either solo, or coop mode. Two best performing models on the
development set were trained on dynamic data using 4 and 10 samples and run
in the coop mode, see Table 3.1. We use these two models to obtain further
training data for the next iteration. It is worth mentioning that models trained
on dynamic data perform significantly better than models trained on classic
data.

In the next iteration, we use all proofs found so far by iProver in the no eval
mode together with the proofs found using the two best performing models.
This yields 14 994 and 834 proved theorems on the training and development set,
respectively. We again trained three models, from which the best performing
was the model trained on the dynamic data using 4 samples run in the solo mode.
The model using 10 dynamic samples run in the coop mode was reasonably
complementary, and we also used it for the next iteration.7

In the last iteration, we trained on 18 452 theorems solved (using possibly
multiple proofs available for each theorem) on the training set and used 1026

7It is likely that the model with 10 dynamic samples performed worse than the model
trained on 4 dynamic samples per problem, because models in this iteration were trained for
a shorter period of time.

3.7. Results 63

problems solved on the development set for evaluating the best performing mod-
els. In this iteration, we also trained dynamic models with an increased size of
embeddings (from 16 to 32) and the number of layers (from 10 to 11). Increas-
ing the size of embeddings leads to a better performance, see Table 3.1, but
increasing solely the number of layers does not. However, the best performing
models come from increasing both the size of embeddings and the number of
layers.

64 Chapter 3. Guiding an Instantiation Prover with Graph Neural Networks

3.7.1 Holdout Set Performance

Table 3.1: Proving-learning iterations and their performance on the devel and
holdout sets. Model parameters are the size of embeddings (d) and the number
of layers (l).

Iter. Solver (15 s) Data Model Devel Holdout Train

Ignore eval 451 455
No eval 482 475 9087
Non-interactive 502 500

0 Solo classic d = 16, l = 10 663 656
0 Coop classic d = 16, l = 10 699 704
0 Solo dynamic (4) d = 16, l = 10 714 723
0 Coop dynamic (4) d = 16, l = 10 744 729 13 403
0 Solo dynamic (10) d = 16, l = 10 739 739
0 Coop dynamic (10) d = 16, l = 10 760 759 13 534

1 Solo dynamic (4) d = 16, l = 10 951 945 16 964
1 Coop dynamic (10) d = 16, l = 10 834 835 14 953

2 Solo classic d = 16, l = 10 674 689
2 Coop classic d = 16, l = 10 739 741
2 Solo dynamic (4) d = 16, l = 10 1004 1017
2 Solo dynamic (4) d = 16, l = 11 1003 987
2 Solo dynamic (4) d = 32, l = 10 1028 1032
2 Solo dynamic (4) d = 32, l = 11 1033 1032
2 Coop dynamic (4) d = 16, l = 10 955 945
2 Coop dynamic (4) d = 16, l = 11 945 942
2 Coop dynamic (4) d = 32, l = 10 984 990
2 Coop dynamic (4) d = 32, l = 11 988 983
2 Solo dynamic (10) d = 16, l = 10 1018 1022
2 Solo dynamic (10) d = 16, l = 11 922 901
2 Solo dynamic (10) d = 32, l = 10 1068 1063
2 Solo dynamic (10) d = 32, l = 11 1094 1093
2 Coop dynamic (10) d = 16, l = 10 955 956
2 Coop dynamic (10) d = 16, l = 11 897 883
2 Coop dynamic (10) d = 32, l = 10 1018 1024
2 Coop dynamic (10) d = 32, l = 11 1037 1034

iProver using guidance from our best performing model solves 1094 problems
on the development set and 1093 on the holdout set. Moreover, it solves a very
similar fraction of problems on the training set. Similar results hold also for
other models, see Table 3.1.

3.8. Conclusion 65

The training procedure seems to be quite robust to overfitting on the training
data and to generalize well. This could be due to several aspects: (i) different
runs lead to different sets of given clauses, (ii) only a limited number of the
dynamic samples is seen during the training per problem (4 or 10), and (iii) the
contexts are randomly sampled from the available given clauses.

Interestingly, when we evaluate just the accuracy of the trained GNN model,
its performance on the train, development and holdout sets slightly differs. The
GNN has a balanced accuracy of 0.9503 on the training examples, 0.9397 on
the examples from the development set that were used for selecting the best
performing model, and 0.9406 on the examples from the holdout set. This
difference is probably not large enough to cause significant differences in the
ultimate ATP performance.

3.7.2 Transfer to Newly Added Mizar Articles

We have also tested our trained system on the problems from a newer version of
Mizar (1382) that has 242 new articles and 13 370 theorems in them; more than
half of which contain new terminology. Whereas iProver in the non-interactive
mode solves 1662 theorems, iProver guided by our best model (dynamic trained
on 10 samples with d = 32 and l = 11) solves 3657 theorems. Hence the im-
provement is similar to the results on the dataset that we used for our training,
see Section 3.6.1.

3.8 Conclusion

We have developed efficient learning-based guidance for the Inst-Gen calcu-
lus and shown that the performance of the instantiation prover iProver is
very substantially improved by doing the inferences recommended by a name-
independent graph neural network. The number of theorems proved on our
holdout set by the ML-guided iProver is more than doubled compared to the
number of proofs the unguided solver can find. Additionally, we found that the
model also generalizes very well to a large number of problems added to the
Mizar Mathematical Library much later than our initial data set. This indi-
cates that we can reasonably expect the trained predictors to generalize to new
problems coming in over time.

The interactive interface of iProver that we have developed here can be used
for other purposes. The interface exposes some of the internal data of iProver,
which may be further relevant to the clause prediction task. We have already
seen that the dynamic setting improves over the classic ENIGMA setting. In

66 Chapter 3. Guiding an Instantiation Prover with Graph Neural Networks

the future, we could use the interface e.g. for giving the GNNs access to the
SAT model which may serve as a semantic characterization of the search.

3.9 Acknowledgements

This work was partially supported by the European Regional Development Fund
under the Czech project AI&Reasoning no. CZ.02.1.01/0.0/0.0/15 003/0000466
(KC, JP, JU), Amazon Research Awards (JP, JU), by the Czech MEYS un-
der the ERC CZ project POSTMAN no. LL1902 (KC, JP), EPSRC grant
EP/V000497/1 UK (KK), and the EU ICT-48 2020 project TAILOR no. 952215
(JU).

Chapter 4

Instantiation in SMT solvers
with Graph Neural Networks∗

Abstract

The cvc5 solver is today one of the strongest systems for solving
first order problems with theories but also without them. In this
work we equip its enumeration-based instantiation with a neural
network that guides the choice of the quantified formulas and their
instances. For that we develop a relatively fast graph neural net-
work that repeatedly scores all available instantiation options with
respect to the available formulas. The network runs directly on a
CPU without the need for any special hardware. We train the neural
guidance on a large set of proofs generated by the e-matching instan-
tiation strategy and evaluate its performance on a set of previously
unseen problems.

4.1 Introduction

In recent years, machine learning (ML) and neural methods have been increas-
ingly used to guide the search procedures of automated theorem provers (ATPs).

∗This chapter is based on the article “First experiments with Neural cvc5” published in
the International Conference on Logic for Programming, Artificial Intelligence and Reasoning
(LPAR) 2024 [93].

67

68 Chapter 4. Instantiation in SMT solvers with Graph Neural Networks

Such methods have been so far developed for choosing inferences in connec-
tion tableaux systems [65, 67, 99, 130, 135], resolution/superposition-based sys-
tems [45, 57, 58, 123], SAT solvers [116], tactical ITPs [5, 12, 13, 40, 41, 71, 105]
and most recently also for the iProver [72] instantiation-based system [23]. In
SMT (Satisfiability Modulo Theories), ML has so far been mainly used for tasks
such as portfolio and strategy optimization [4,95,115]. Previous work [17,34,63]
has explored fast non-neural ML guiding methods based on decision trees and
manual features. Direct neural guidance of state-of-the-art SMT systems such
as cvc5 [6] and Z3 [29] however has not been attempted yet.

One reason for that is the large number of choices typically available within
the standard SMT procedures. Any ground term that already exists in the
current context can be used to instantiate any free variable in the problem.
While e.g. in the resolution/superposition systems, only the choice of the given
clause can be guided and the rest of the work (its particular inferences with
the set of processed clauses) is computed automatically by the ATPs,2 in SMT,
the trained ML system needs to make many more and finer decisions. This is
both more fragile — due to the many interconnected low-level decisions instead
of one high-level decision — and also slower. The ML (and especially neural)
guidance is typically much more expensive than the standard guiding heuris-
tics implemented in the systems, and the more low-level and exhaustive such
guidance is, the larger the slowdown incurred by it becomes.

Despite that, there is a good motivation for experimenting with neural guid-
ance for instantiation. Today’s instantiation-based systems and SMT solvers
such as cvc5, iProver and Z3 are becoming competitive on large sets of re-
lated problems coming e.g. from the hammer [16] links between ITPs and
ATPs, and even for problems that do not contain explicit theories in the SMT
sense [15, 30, 46]. The problems that they solve are often complementary to
those solved by the state-of-the-art superposition-based systems such as E [112]
and Vampire [102].

Contributions: In this work we develop efficient neural guidance for the enu-
merative instantiation in cvc5. We first give a brief overview of the instantiation
procedures used by cvc5 (and generally SMTs) in Section 4.2. We then design
a graph neural network (GNN) that is trained on cvc5’s proofs and tightly
integrated with cvc5’s proof search. This yields a neurally guided version of
cvc5 that runs reasonably fast without the need for specialized hardware, such
as GPUs. Section 4.3 explains the GNN design, its training, collection of the
training data from cvc5 and the neural instantiation procedure. Finally in Sec-

2This is similar also in the iProver instantiation-based system with its given-clause loop.

4.2. Proving By Instantiation 69

tion 4.4, we show that the GNN-guided enumeration mode outperforms cvc5’s
standard enumeration by 72% in real (CPU) time. This is measured on pre-
viously unseen problems extracted from the Mizar Mathematical library, after
training the GNN on many proofs obtained on a large training set. We also
investigate the behavior of cvc5’s instantiation strategies, in terms of the num-
ber of instantiations performed in successful proof attempts. We show that
e-matching can instantiate many more times than the enumeration strategies
on our dataset. When we compensate for this, we arrive at an ML solver that
improves on the enumeration mode by 109% in real time.

4.2 Proving By Instantiation

Quantifiers are essential in mathematics and reasoning. Practically, all today’s
systems used to formalize mathematics and for software verification are based
on foundations such as first-order and higher-order logic, set theory and type
theory, which make extensive use of quantification. Instantiation is a power-
ful method for formal reasoning with quantifiers. For example, the statement
“All countries are completely in the northern hemisphere” is a quantified (false)
statement, where “All countries” is a quantifier. This statement is readily shown
false by instantiating with the country Brazil. The power of instantiation is for-
malized by Herbrand’s theorem [50], which states that a set S of first-order
clauses is unsatisfiable if and only if there is a finite set of ground instances
of S that is unsatisfiable. In other words, quantifiers in false formulas can al-
ways be eliminated by a finite number of appropriate instantiations. Herbrand’s
theorem further states that it is sufficient to consider instantiations from the
Herbrand universe, which consists of ground terms constructed from the sym-
bols appearing in the problem. This fundamental result has been explored in
automated reasoning (AR) systems since the 1950s [25, 27,36,110].

SMT solvers such as cvc5 and z3 handle quantifiers in a loop illustrated by
Figure 4.1. The loop alternates between the quantifier module, which provides
new instantiations (called lemmas), and the SAT solver, which decides whether
the instantiations already lead to unsatisfiability. In the context of this work,
we refer to one iteration of this high-level loop as a round.

There is extensive work on techniques that calculate new instantiations.
Here we provide a concise explanation of three different quantifier instantiation
methods implemented in cvc5. While e-matching is usually seen as the standard
method (and is in fact part of the default procedure of cvc5), we start with the
enumerative instantiation method in our explanation, as it is relatively simple

70 Chapter 4. Instantiation in SMT solvers with Graph Neural Networks

and allows us to introduce concepts more gradually.

Enumerative Instantiation: exhaustively instantiates with ground terms
present in the current context [100]. In each round, it instantiates each quan-
tified expression3 with a tuple of ground terms—one term per variable. For a
schematic overview, see Figure 4.2. The default strategy of the solver is to first

Quantifier
Instantiation

SAT Solver

New lemmaSAT Model

UNSAT

Figure 4.1: High-level architecture of cvc5. The techniques explained in Sec-
tion 4.2, as well as our neural method (Section 4.3 and on), are particular cases
of the top rectangle.

try the instantiations that use terms that were created earlier in the process (or
were already in the input problem) — we refer to this as the age heuristic. For
instance, for the ground part {p(c)} and the quantifier ∀x. q(f(x)), the solver
would instantiate by c in the first round and by f(c) in the second round. There
is also the option to restrict the set of terms using the relevant domain, but in
our experiments we turn this off. Disabling this option simplifies the integration
of the machine learning component. The relevant domain option is also turned
off in our machine learning experiments. When we say enumeration mode, we
mean the pure enumeration without relevant domain. The enumeration proce-
dure only produces one instantiation per quantified expression per round.

E-matching: In e-matching instantiation [31, 84], the solver looks for instan-
tiations (substitutions) that yield an existing ground term, modulo equality.
Since there may be many such terms, it only considers terms fitting a certain
pattern—called a trigger. Triggers may be provided by the user or generated
by heuristics. As an example, consider the ground facts {a = f(17), p(a)} and
the quantifier formula ∀x.¬p(f(x)) ∨ x < 0. The trigger p(f(x)) would cause
e-matching to instantiate x with 17 because the term p(f(17)) fits the trigger

3These are in general formulas, however in our experiments here we restrict ourselves to
clausal problems.

4.3. Neural Instantiation for cvc5 71

and it is semantically equal to the existing term p(a). This instantiation would
yield the lemma ¬p(f(17))∨ 17 < 0, which would give a contradiction with the
ground facts. Preliminary investigations indicate that it is possible to use a
similar machine learning setup as we used here to choose the triggers, but we
leave it for future work here. Note that in contrast to the enumeration mode,
e-matching may produce (potentially many) more than one instantiation per
quantified expression per round. This difference in generative capacity becomes
relevant in our experiments (Section 4.4).

Conflict-driven Instantiation: In conflict-driven quantifier instantiation [101],
the solver looks for easily-detectable contradictions between the quantified part
and the current model of the ground part; this reasoning is done modulo equal-
ity. As an example, consider a modelM that contains the facts {f(a) ̸= g(b), b =
h(a)} and there is a quantified formula ∀x. f(x) ̸= g(h(x)). Then, the solver
quickly identifies that instantiating x with a causes a contradiction with M and
therefore, yielding the lemma f(a) ̸= g(h(a)). Adding this lemma effectively
excludes M from further search. The method only looks for instantiations that
guarantee a conflict with the current model and aims to be fast and is therefore
inherently incomplete. This technique is part of the default settings of cvc5
and we can turn this off using --no-cbqi to arrive at a solver that uses only
e-matching to instantiate.

Term Creation & Proliferation: In any of these strategies, new ground
terms are created by the instantiations that they propose. For example, when a
subterm f(f(X)) is instantiated with a constant c, the new ground term f(f(c))
is created, as well as its subterm f(c), if this subterm did not already exist as
a ground term in the problem. Potentially, this can create a lot of new terms,
which make the problem of choosing terms for instantiations harder.

4.3 Neural Instantiation for cvc5

Setting: We build our neural guidance on top of the enumerative instantiation.
This is because (i) enumeration is the conceptually simplest of the instantiation
strategies, (ii) it is general and complete, and (iii) it allows fine-grained control
over the instantiations (which can however also have the downsides mentioned
in Section 4.1). That said, our current neural guidance method is not necessar-
ily complete — it may be very unfair. This is exactly the objective of training
a machine learning heuristic: we want to learn from previous proofs how we
can push the solver to be biased towards choices similar to the ones that were
previously successful. While in principle, it is possible to create the training

72 Chapter 4. Instantiation in SMT solvers with Graph Neural Networks

QE1 QE2 QE3 QE4 QE5

Enumerative Instantiation

Asserted Quantified Expressions

Variables Term Selection Lemma Construction

Implies

QE3(A,B,C) QE3(t7,t7, t1)

A

B

C

t7

t7

t1

t4 t2 t3

t6 t2 t3

t4 t5

Decreasing Term Scores

Figure 4.2: A schematic description of 1 instantiation within the enumerative
instantiation procedure, which we heavily modify to create our neural solver.
In the example a new ground lemma is created by instantiating the variables
(A,B,C) in quantified expression 3 (QE3) with the ground terms (t7, t7, t1)
respectively. In the default enumerative instantiation procedure, all quantified
expressions are instantiated each round.

data for the neural network also from the enumerative instantiation mode, we
chose to use the e-matching procedure for that. This is because e-matching is
much stronger on our dataset of FOL problems (see Section 4.4), providing us
with much more training data. This is similar to the experiments done with
the E and ENIGMA systems in [44], where the training data collected from the
“smart” E strategies are used to train guidance for a tabula rasa version of E.

GNN: While many different neural network methods can be used to guide au-
tomated theorem provers, a natural choice, based on the graph representation
that cvc5 uses for the proof state, is the class of predictors called graph neural
networks (GNNs) [106]. On a high level, GNNs represent each node in a graph
with a vector of floating point numbers, and update these vectors using the vec-
tor representations of neighbouring nodes in the graph. By using optimization
procedures, the GNN ‘learns’ to aggregate and update the node representations
in such a way that at the end of several iterations of this neighbourhood-based
updating procedure (usually called message passing), the node representations

4.3. Neural Instantiation for cvc5 73

contain useful information to predict some relevant quantity. In our setting,
these relevant quantities are: (i) scores for each quantified expression that rep-
resent whether this expression should be instantiated and (ii) scores for each pair
of variables and terms that represent whether this particular variable should be
instantiated with a particular term.

We implement a custom GNN using the C++ frontend of PyTorch [90].
ML-guided ATPs often use a separate GPU server [23, 46], to which multiple
prover processes send their requests for advice. Here, we are however interested
in a tight integration within cvc5, allowing the ML component to use only one
CPU thread. This also means that no time is lost communicating and encod-
ing/decoding between different processes and different programming languages.

GNN Proof State Representation: Each cvc5 state is represented as a
graph. Its nodes represent cvc5 expressions. They have a kind, such as BOUND
VARIABLE, APPLY, etc. Each of the kinds that cvc5 recognizes internally is
given a separately trainable embedding (vector in Rn) that serves as the initial
embedding of each node before the message passing phase (see below). The
edges between nodes are collected by modifying the DAG that cvc5 uses to
represent the state. The GNN uses a bidirectional (cyclic) version of the DAG.
For example, if we have a term f(c), we have not only an edge from f to c,
but also an edge going the other way. We also use edge types to encode the
argument ordering. For example, in f(c, d) the edge from f to c has a differ-
ent type than the edge from f to d. We recognize up to 5 different argument
positions, with the fifth used to represent all remaining positions. Each edge
type has a numerical vector associated with it that is used to make it possible
to distinguish argument order during the message passing procedure.

GNN Message Passing: For the message passing part of the GNN, a concate-
nation of the mean and max aggregation of neighbourhood messages is used.
We have also implemented and tested the simpler mean and the more compli-
cated attention-based aggregation methods. However, the mean-max version
had the best balance of complexity and performance.4 Similarly, we tested the
GNN with 2, 4, 10, 20 and 30 message passing layers, all with separate param-
eters. We found that 10 layers was a reasonable trade-off between the extra
capability to fit the data and the execution speed within cvc5.

The different edge types are handled by adding a trainable vector e (which
differs for each of the recognized edge types) to each source node in an edge,

4Here we consider both the complexity of the implementation and the computational
complexity of the quadratic attention mechanism.

74 Chapter 4. Instantiation in SMT solvers with Graph Neural Networks

before doing the neighbourhood accumulations. This method avoids having sep-
arate weight matrices and thus message passing rounds for each edge type [107],
which could complicate and possibly slow down the computations. In addition,
these edge vectors can be seen as analogous to the positional encodings often
used in transformer architectures. The embedding update rules (for embedding
size K) are as follows for a single node j with N neighbours labeled by i:

st = xt + etypeij

xj
t+1 = RELU(W · CONCAT(

1

N

N∑
i=0

sit,max(st))) + xj
t ,

where we compute a “source” vector s for each neighbour i depending on the
type of the edge from i to j. The MAX function returns a vector that is the
elementwise maximum over all the neighbourhood vectors. The matrix st has
the shape N ×K and xj

t+1 is a vector of size K. W is a linear transformation
from dimensions 2K to K. CONCAT is a concatenation function that takes two
vectors of size K and returns a vector of size 2K. RELU is the Rectified Linear
Unit function, max(0, x), computed elementwise. The above is performed for
each node and its neighbourhood, in each message passing step. Each message
passing step uses its own weight matrix W . At the end of each message passing
step, we add to each node the associated xt vector, which serves as a residual
connection, a way to easily propagate information unchanged through the layers,
if it is useful. In our experiments, the embedding size K was set to 64.

GNN Output: To decide what the solver should do, we use two different
outputs of the GNN (see also Figure 4.2): (i) probability distributions for each
of the top-level asserted quantified expressions, and (ii) for each variable a
probability distribution over the terms of the right type, which we interpret
as a probability that substituting this term in the variable leads to a useful
instantiation. For output (i), note that we output a separate prediction for
each quantified expression, which we can interpret as the probability that this
quantified expression will be useful for the proof.

After the message passing steps, we have embeddings corresponding to each
node in the graph. For the quantified expression selection task, we take all the
nodes corresponding to the currently asserted top-level quantified expressions
and apply a matrix transformation (a Linear layer) of size K × 1 to each one,
and use a sigmoid transformation to obtain a score between 0 and 1 for each
one. Binary cross-entropy loss is used to train the network to optimize the
scores according to the data.

4.4. Experiments 75

For the term ranking task, we take the embedding representing variables,
and then for each variable the embeddings representing terms of the correct
type. We apply separate trainable linear transformations (of size K to K) to
the term and variable embeddings and then compute dot products to obtain a
distribution of term scores for each variable. We use a softmax transformation
and cross-entropy loss to train the network to give high scores to variable-term
substitutions occurring in the data.

Training Data Extraction: We have modified cvc5 to export the current
proof state as a graph. For a particular problem, we extract for each solver
round (Section 4.2 and Figure 4.1) the graph representation corresponding to
the current proof state. To each such graph we also assign labels that indicate
which quantified expressions and their instantiations were useful for the proof.
In particular, our exporter labels instantiations as the correct answer as soon
as the right ground terms become available. We also keep track of which in-
stantiations were already done at a certain point in the run, so the GNN is
not instructed to repeat instantiations. When there are multiple useful instan-
tiations for the same quantified expression in a given proof state, we pick one
at random. This is motivated by the enumerative instantiation mode’s default
behavior, where we only instantiate each expression once in every round.

Training Details: For a given set of training problems, we might have many
transitions for a single problem and few for another one. To balance this out,
in each iteration over the dataset, we randomly sample one of the transitions
associated with the known proof for each training problem. The Adam opti-
mizer implemented in PyTorch was used with default parameters, except for
the learning rate, which was set to 0.0001.

4.4 Experiments

All our experiments were run on a machine with Intel(R) Xeon(R) CPU E5-
2698 v4 @ 2.20GHz CPU, 512GB RAM and NVIDIA Tesla V100 GPUs. The
GPUs were used only for training the GNN. The trained neural models were
always run on a single CPU when used for prediction inside cvc5. Our code and
the trained GNN weights are available from our public repository.5

5https://github.com/JellePiepenbrock/mlcvc5-LPAR

76 Chapter 4. Instantiation in SMT solvers with Graph Neural Networks

4.4.1 Small Dataset

We first experimented with a small set of related problems extracted from the
Mizar library. In particular, the MPTP2078 benchmark6 [1] has been used for
several earlier AI/TP experiments [65,67,75]. To make this smaller benchmark
compatible with the larger benchmark we ultimately use (see below), we up-
date the problems there to their version corresponding to the MML version
1147. This yields 2172 problems. These problems were split into three different
sets, the training set (80%), the development set (10%) and the holdout set
(10%). The training set consists of problems where we are allowed to learn
from solutions that we have, the development set consists of problems that we
may tune the performance of our algorithm on and the holdout set is a set that
is not used to tune parameters.

To collect training data for our approach, we ran our modified (Section 4.3)
version of cvc5 in only e-matching mode.7 The states, as well as the instan-
tiations done were logged. These were converted into training data using the
procedure described in Section 4.3. We end up with 814 solved problems, from
which we extract 1934 training transitions. The model was then trained for
2000 iterations over the dataset.

In Table 4.1, we show the results of running various versions of cvc5 for 10s
on the development and holdout sets.8 The top 3 rows in the table correspond to
a binary release of cvc5. The enumeration mode is observed to be a lot weaker
on this dataset than e-matching. We also show a dry run, which is a run where
we call the GNN to compute all the scores for quantified expressions (QEs)
and term-variable combinations, but where we ignore those scores and simply
use the default enumeration strategy’s suggestions. This allows us to gauge
the slowdown caused by calling the GNN and its message passing and scoring
procedures. While the 10s timeout can be seen as relatively short compared to
the multi-minute timeouts used in competitions like SMTCOMP, it is indicative
of the performance in a hammer-type setting.

We can use the scores (which are between 0 and 1 for each QE) predicted
by the GNN in different ways. Here, we experimented with two procedures
for the quantified expression scores: (i) QSampling, where we take the scores
associated with each QE and interpret this as the probability of using this QE
in this round. A sampling procedure decides, by drawing a random number
between 0 and 1 and comparing it with the score given, whether to instantiate

6https://github.com/JUrban/MPTP2078
7This means that we use the --no-cbqi and --no-cegqi parameters.
8In the evaluations, we always use 15 parallel processes, however each problem always

uses a single CPU.

4.4. Experiments 77

this QE in this round. If the random number is higher than the score, we do
not use the QE in this round. (ii) Threshold, where we compare the score to a
threshold number and only instantiate the QEs with scores above the threshold.
In our tuning phase (done on the development set), we found that a very low
threshold9 value (0.00001) was the best setting for the Threshold variant. In
general, false negatives (preventing a QE from being instantiated) seem to be
a bigger problem for the solver than false positives. As in premise selection,
having some extra QEs instantiated does not seem to be as problematic as
omitting some necessary ones.

Table 4.1: Number of problems solved by 10s runs on the devel and holdout
parts of the small dataset. Bcvc5 is an unchanged binary release of cvc5. ML-
cvc5 is our modified version. Some of the changes cause a slowdown.

Development Holdout

Bcvc5 — default strategies 148 134
Bcvc5 — only e-matching 129 115
Bcvc5 — only enumeration 48 49
MLcvc5 — dry run 33 22
MLcvc5 — model (QSampling) 49 29
MLcvc5 — model (Threshold — 1 × 10-5) 54 35

Comparing the ‘Bcvc5 — only enumeration’ and ‘MLcvc5 — dry run’ in
Table 4.1 we see that the performance hit caused by calling the GNN is quite
significant. However, we see that both on the development and holdout sets we
do improve on the performance of the dry run. This means the predictions of the
GNN are useful. Unfortunately, we are not able to improve on the binary version
of enumeration on the holdout set. On the development set, we can improve
on it by a few problems. The split between training, development and holdout
was done randomly to prevent a bias in the different sets. However, several of
the methods seem to have worse performance on the holdout set here. A larger
selection of problems could help alleviate this. While these results indicate that
the GNN can be useful for the guidance of cvc5 in the enumeration mode, this
training dataset might be too small to learn sufficiently strong GNN guidance.

9We tested the following thresholds: 0.5, 0.4, 0.3, 0.2, 0.1, 0.01, 0.001, 0.0001 and 0.00001.

78 Chapter 4. Instantiation in SMT solvers with Graph Neural Networks

4.4.2 Large Dataset (MPTP1147)

In the final evaluation we use the full MPTP 1147 benchmark, used previously
in the Mizar40 [66] and Mizar60 [60] experiments. This dataset is more than 25x
as large as the MPTP2078-induced subset (57917 problems in total). We use
the train/devel/holdout split as defined in the previous work [23, 60]. Running
on the training problems with the data collection mode of cvc5 with only e-
matching active gives us 10945 solved problems, which we use to generate the
training data. The model was trained for 150 iterations on this training dataset.
After 150 epochs, the model has 82.9% accuracy on predicting the right terms
for each variable on the training problems. For the quantified expression task,
which scores the QEs between 0 and 1, 70.7% of useful quantified expressions are
given a score above 0.5, while 88.3% of the non-useful quantified expressions are
given a score below 0.5. While the model did not perfectly fit the training data,
it has some capacity to learn the data. In Table 4.2, we show the development

Table 4.2: MML1147: Number of problems solved by 10s runs. On both the
development and the holdout sets the GNN-guided enumeration mode outper-
forms the unguided enumeration mode. Both the development and holdout sets
contain 2896 problems.

Development Holdout

Bcvc5 — only e-matching 1096 1107
Bcvc5 — only enumeration 183 195
MLcvc5 — dry run 119 120
MLcvc5 — model (QSampling) 288 300
MLcvc5 — model (Threshold - 1x10-5, 1 inst) 324 336
MLcvc5 — model (Threshold - 1x10-5, 10 inst) 410 407

and holdout set performance of the ML-guided cvc5, along with various control
experiments. We observe that the performance of the enumeration mode was
improved by up to 72% (336/195 = 1.723) when we use the Threshold (1 inst)
variant of our network. As a sanity check, we also ran a randomized dry run
experiment on the development set, where we computed all the model scores,
but used a randomly shuffled term ordering (instead of the age-based ordering
for the usual dry run). This mode only solved 10 problems from the development
set. These results taken together indicate that the network has learned a useful
strategy from the e-matching generated training data, which it can apply in the
ML enumeration mode.

4.4. Experiments 79

E-matching Enumeration Dry run ML (Thr) ML (Thr,10x)

0

1

2

3

4

5

I
n
s
t
a
n
t
i
a
t
i
o
n
s

(
L
o
g
-
s
c
a
l
e
,

b
a
s
e

1
0
)

Figure 4.3: Violin plots of the number of instantiations performed in successful
runs for Bcvc5 e-matching, Bcvc5 enumeration, dry run, the ML strategy with
threshold 1e-5, and the ML strategy with 10x as many instantiations per quan-
tifier per round. The white dots indicate the medians. The respective medians
are 2235, 1026, 373.5, 250 and 1620.

Comparison of number of instantiations: While the runtime of all solvers
was limited to 10s on 1 CPU, the various versions and settings of cvc5 can vary
in terms of the absolute number of instantiations done within the same real
time. The enumeration mode strives to perform at least 1 instantiation for each
QE per round (Figures 4.1 and 4.2), and will not generally instantiate more than
once for each QE in each round. E-matching, however, is not bound by this and
will instantiate based on the number of pattern matches (which can be high). In
Figure 4.3, we show the number of instantiations done in successful runs for five
strategies. The median number for e-matching is an order of magnitude higher
than in the ML strategy. E-matching is much more prolific than enumeration,
and the ML strategy is less prolific in 10s than enumeration due to a combination
of QEs that are not used and the GNN slowdown. The number of instantiations
is of course also mediated by the time spent in computing the neural network’s
predictions. This time varies heavily per problem and potentially per run,
depending on the size of the initial problem and how much the graph grows each
round (for example due to a lot of new lemmas and terms). In the successful
runs on the MPTP1147 development set, there are neural network predictions
that take below 40ms and ones that take more than 2400ms.

80 Chapter 4. Instantiation in SMT solvers with Graph Neural Networks

GNN run with multiple instantiations: The above analysis indicates that
some difference in performance is due to the difference in the raw number of
instantiations done. As we are already incurring the cost of computing the
GNN advice, it might be the case that instantiation with multiple high-scoring
tuples per round, instead of only 1 per QE as the original enumeration does, is
a better use of the GNN advice. To test this, we ran a version of the ML mode
that performs up to 10 instantiations per QE per round (see Table 4.2). This
led to 407 solved holdout problems (again in 10s real time). This is a 109%
increase compared to the unmodified enumeration mode (407/195 = 2.09).

Overlaps of sets: In Table 4.3, we show the set differences between the sets
of solved problems for e-matching, enumeration and the best-performing ML
setting on the holdout set. We observe that we can solve many problems that
were not solved by the unguided enumeration mode, but that the e-matching
mode is stronger than our method on this dataset.

Table 4.3: Set differences in terms of number of solved problems on holdout set,
row minus column. Example: the ML solves 246 problems that the enumeration
mode does not. ML means the predictor with (Threshold 1x10-5, 10 inst).

Bcvc5 e-mat Bcvc5 - enum ML

Bcvc5 — e-matching 0 922 717
Bcvc5 — enum 10 0 34
ML 17 246 0

4.5 Conclusion

In this work, we have shown that it is possible to improve cvc5’s enumerative
instantiation by using an efficient graph neural network trained on many related
problems. Our best result is 109% improvement in (realistically low) real time
and with exactly the same hardware resources (i.e., a single CPU). This is done
here so far in a first-order clausal setting without theories, however extensions
to non-clausal SMT with theories should be mostly straightforward.

While e-matching largely dominates on first-order logic problems extracted
from the Mizar Mathematical Library, on problems from the SMTLIB database,
the enumeration procedure is much more competitive [62], and can even outper-
form e-matching on certain types of benchmarks. In principle, we can extend
the current method to SMT problems, aside from the fact that the logging pro-

4.6. Acknowledgements 81

cedure that extracts training data from cvc5 runs needs to be modified. This
could lead to some difficulties with tracing of instantiations, as it is not always
clear how a term came to be (as the mechanism may be ‘hidden’ inside a theory
component).

Future work will also investigate whether a better balance between the com-
putation of the advice itself and the number of instantiations done based on this
advice can be found. We may be under-utilizing the expensive advice of the
GNN. Another direction of investigation will be the optimization of the speed
of the neural network: it may be possible to use a much smaller neural network
and still get reasonable predictions, but much faster. We will also investigate
the generalization performance of the method. For example, testing the per-
formance on problems extracted from other systems, such as Isabelle or Coq
could be insightful. In general, our work shows for the first time that efficient
real-time neural guidance for SMT solvers is possible.

4.6 Acknowledgements

This work was partially supported by the European Regional Development Fund
under the Czech project AI&Reasoning no. CZ.02.1.01/0.0/0.0/15 003/0000466
(JP, JU), the European Union under the project ROBOPROX
(reg. no. CZ.02.01.01/00/22 008/0004590) (MJ), Amazon Research Awards (JP,
JU), by the Czech MEYS under the ERC CZ project POSTMAN no. LL1902
(JP, MJ, JU, JJ), ERC PoC grant no. 101156734 FormalWeb3 (JJ), and the
EU ICT-48 2020 project TAILOR no. 952215 (JU).

82 Chapter 4. Instantiation in SMT solvers with Graph Neural Networks

Chapter 5

Guiding an Automated
Theorem Prover with Neural
Rewriting∗

Abstract

Automated theorem provers (ATPs) are today used to attack
open problems in several areas of mathematics. An ongoing project
by Kinyon and Veroff uses Prover9 to search for the proof of the
Abelian Inner Mapping (AIM) Conjecture, one of the top open con-
jectures in quasigroup theory. In this work, we improve Prover9 on
a benchmark of AIM problems by neural synthesis of useful alter-
native formulations of the goal. In particular, we design the 3SIL
(stratified shortest solution imitation learning) method. 3SIL trains
a neural predictor through a reinforcement learning (RL) loop to
propose correct rewrites of the conjecture that guide the search.

3SIL is first developed on a simpler, Robinson arithmetic rewrit-
ing task for which the reward structure is similar to theorem proving.
There we show that 3SIL outperforms other RL methods. Next we
train 3SIL on the AIM benchmark and show that the final trained
network, deciding what actions to take within the equational rewrit-

∗This chapter is based on the article of the same name published in the International
Joint Conference on Automated Reasoning (IJCAR), 2022 [92].

83

84 Chapter 5. Guiding an Automated Theorem Prover with Neural Rewriting

ing environment, proves 70.2% of problems, outperforming Wald-
meister (65.5%). When we combine the rewrites suggested by the
network with Prover9, we prove 8.3% more theorems than Prover9
in the same time, bringing the performance of the combined system
to 90%.

5.1 Introduction

Machine learning (ML) has recently proven its worth in a number of fields, rang-
ing from computer vision [49], to speech recognition [47], to playing games [83,
119] with reinforcement learning (RL) [125]. It is also increasingly applied
in automated and interactive theorem proving. Learned predictors have been
used for premise selection [1] in hammers [16], to improve clause selection in
saturation-based theorem provers [22], to synthesize functions in higher-order
logic [38], and to guide connection-tableau provers [67] and interactive theorem
provers [5, 14, 41].

Future growth of the knowledge base of mathematics and the complexity of
mathematical proofs will increase the need for proof checking and better com-
puter support and automation. Simultaneously, the growing complexity of soft-
ware will increase the need for formal verification to prevent failure modes [29].
Automated theorem proving and mathematics will benefit from more advanced
ML integration. One of the mathematical subfields that makes substantial use
of automated theorem provers is the field of quasigroup and loop theory [91].

5.1.1 Contributions

In this work, we propose to use a neural network to suggest lemmas to the
Prover9 [80] ATP system by rewriting parts of the conjecture (Section 5.2). We
test our method on a dataset of theorems collected in the work on the Abelian
Inner Mapping (AIM) Conjecture [70] in loop theory. For this, we use the
AIMLEAP proof system [19] as a reinforcement learning environment. This
setup is described in Section 5.3. For development we used a simpler Robinson
arithmetic rewriting task (Section 5.4). With the insights derived from this and
a comparison with other methods, we describe our own 3SIL method in Section
5.5. We use a neural network to process the state of the proving attempt, for
which the architecture is described in Section 5.6. The results on the Robinson
arithmetic task are described in Section 5.7.1. We show our results on the

5.1. Introduction 85

Phase 1 Phase 2

Rewrite Conjecture &
Collect Lemmas

ATP Search With Added
Lemmas

Predictor

RL Environment

RL Loop

Starting Goal

3 = 1 + 1 + 1

 Rewritten Goal

 3 = 1 + 2

 Collected Lemma

 1 + 1 + 1 = 1 + 2

Guidance Lemmas

ATP Search
ATP Input

Figure 5.1: Schematic representation of the proposed guidance method. In the
first phase, we run a reinforcement learning loop to propose actions that rewrite
a conjecture. This predictor is trained using the AIMLEAP proof environment.
We collect the rewrites of the LHS and RHS of the conjecture. In the second
phase, we add the rewrites to the ATP search input, to act as guidance. In
this specific example, we only rewrote the conjecture for 1 step, but the added
guidance lemmas are in reality the product of many steps in the RL loop.

AIMLEAP proving task, both using our predictor as a stand-alone prover and
by suggesting lemmas to Prover9 in Section 5.7.2. Our contributions are:

1. We propose a training method for reinforcement learning in theorem prov-
ing settings: stratified shortest solution imitation learning (3SIL). This
method is suited to the structure of theorem proving tasks. This method
and the reasoning behind it are explained in Section 5.5.

2. We show that 3SIL outperforms other baseline RL methods on a sim-
pler, Robinson arithmetic rewriting task for which the reward structure
is similar to theorem proving (Section 5.7.1).

3. We show that a standalone neurally guided prover trained by the 3SIL
method outperforms the hand-engineeredWaldmeister prover on the AIM-
LEAP benchmark (Section 5.7.2).

4. We show that using a neural rewriting step that suggests rephrased ver-
sions of the conjecture to be added as lemmas improves the ATP perfor-
mance on equational problems (Sections 5.2 and 5.7.2).

86 Chapter 5. Guiding an Automated Theorem Prover with Neural Rewriting

5.2 ATP and Suggestion of Lemmas by Neural
Rewriting

Saturation-based ATPs make use of the given clause [89] algorithm, which we
briefly explain as background. A problem is expressed as a conjunction of many
initial clauses (i.e., the clausified axioms and the negated goal which is always an
equation in the AIM dataset). The algorithm starts with all the initial clauses
in the unprocessed set. We then pick a clause from this set to be the given
clause and move it to the processed set and do all inferences with the clauses in
the processed set. The newly inferred clauses are added to the unprocessed set.
This concludes one iteration of the algorithm, after which we pick a new given
clause and repeat [69]. Typically, this approach is designed to be refutationally
complete, i.e., the algorithm is guaranteed to eventually find a contradiction if
the original goal follows from the axioms.

This process can produce a lot of new clauses and the search space can
become quite large. In this work, we modify the standard loop by adding useful
lemmas to the initial clause set. These lemmas are proposed by a neural network
that was trained from zero knowledge to rewrite the left- and right-hand sides
of the initial goal to make them equal by using the axioms as the available
rewrite actions. Even though the neural rewriting might not fully succeed, the
rewrites produced by this process are likely to be useful as additional lemmas
when added to the problem. This idea is schematically represented in Figure
5.1.

5.3 AIM Conjecture and the AIMLEAP RL
Environment

Automated theorem proving has been applied in the theory surrounding the
Abelian Inner Mapping Conjecture, known as the AIM Conjecture. This is one
of the top open conjectures in quasigroup theory. Work on the conjecture has
been going on for more than a decade. Automated theorem provers use hundreds
of thousands of inference steps when run on problems from this theory.

As a testbed for our machine learning and prover guidance methods we use a
previously published dataset of problems generated by the AIM conjecture [19].
The dataset comes with a simple prover called AIMLEAP that can take ma-
chine learning advice.2 We use this system as an RL environment. AIMLEAP

2https://github.com/ai4reason/aimleap

5.3. AIM Conjecture and the AIMLEAP RL
Environment 87

keeps the state and carries out the cursor movements (the cursor determines
the location of the rewrite) and rewrites that a neural predictor chooses.

The AIM conjecture concerns specific structures in loop theory [70]. A loop
is a quasigroup with an identity element. A quasigroup is a generalization of
a group that does not preserve associativity. This manifests in the presence
of two different ‘division’ operators, one left-division (\) and one right-division
(/). We briefly explain the conjecture to show the nature of the data.

For loops, three inner mapping functions (left-translation L, right-translation
R, and the mapping T) are:

L(u, x, y) := (y ∗ x)\(y ∗ (x ∗ u))
R(u, x, y) := ((u ∗ x) ∗ y)/(x ∗ y)

T (u, x) := x\(u ∗ x)

These mappings can be seen as measures of the deviation from commutativity
and associativity. The conjecture concerns the consequences of these three
inner mapping functions forming an Abelian (commutative) group. There are
two more notions, the associator function a and the commutator function K :

a(x, y, z) := (x ∗ (y ∗ z))\((x ∗ y) ∗ z) K(x, y) := (y ∗ x)/(x ∗ y)

From these definitions, the conjecture can be stated. There are two parts to
the conjecture. For both parts, the following equalities need to hold for all u,
v, x, y, and z :

a(a(x, y, z), u, v) = 1 a(x, a(y, z, u), v) = 1 a(x, y, a(z, u, v)) = 1

where 1 is the identity element. These are necessary, but not sufficient for the
two main parts of the conjecture. The first part of the conjecture asks whether
a loop modulo its center is a group. In this context, the center is the set of all
elements that commute with all other elements. This is the case if

K(a(x, y, z), u) = 1.

The second part of the conjecture asks whether a loop modulo its nucleus is an
Abelian group. The nucleus is the set of elements that associate with all other
elements. This is the case if:

a(K(x, y), z, u) = 1 a(x,K(y, z), u) = 1 a(x, y,K(z, u)) = 1.

88 Chapter 5. Guiding an Automated Theorem Prover with Neural Rewriting

5.3.1 The AIMLEAP RL Environment

Currently, work in this area is done using automated theorem provers such as
Prover9 [70, 80]. This has led to some promising results, but the search space
is enormous. The main strategy for proving the AIM conjecture thus far has
been to prove weaker versions of the conjecture (using additional assumptions)
and then import crucial proof steps into the stronger version of the proof. The
Prover9 theorem prover is especially suited to this approach because of its well-
established hints mechanism [131]. The AIMLEAP dataset is derived from this
Prover9 approach and contains around 3468 theorems that can be proven with
the supplied definitions and lemmas [19].

There are 177 possible actions in the AIMLEAP environment [19]. We
handle the proof state as a tree, with the root node being an equality node.
Three actions are cursor movements, where the cursor can be moved to an
argument of the current position. The other actions all rewrite the current
term at the cursor position with various axioms, definitions and lemmas that
hold in the AIM context. As an example, this is one of the theorems in the
dataset (\ and = are part of the language):

T (T (T (x, T (x, y)\1), T (x, y)\1), y) = T ((T (x, y)\1)\1, T (x, y)\1) .

The task of the machine learning predictor is to process the proof state
and recognize which actions are most likely to lead to a proof, meaning that
the two sides of the starting equation are equal according to the AIMLEAP
system. The only feedback that the environment gives is whether a proof has
been found or not: there is no intermediate reward (i.e. rewards are sparse).
The ramifications of this are further discussed in Section 5.5.1.

5.4 Rewriting in Robinson Arithmetic as an RL Task

To develop a machine learning method that can help solve equational theorem
proving problems, we considered a simpler arithmetic task, which also has a tree-
structured input and a sparse reward structure: the normalization of Robinson
arithmetic expressions. The task is to normalize a mathematical expression to
one specific form. This task has been implemented as a Python RL environment,
which we make available.3 The learning environment incorporates an existing
dataset, constructed by Gauthier for RL experiments in the interactive theorem
prover HOL4 [37]. Our RL setup for the task is also modeled after [37].

3https://github.com/JellePiepenbrock/neural_rewriting

5.5. Reinforcement Learning Methods 89

In more detail, the formalism that we use as an RL environment is Robinson
arithmetic (RA). RA is a simple arithmetic theory. Its language contains the
successor function S, addition + and multiplication * and one constant, the 0.
The theory considers only non-negative numbers and we only use four axioms of
RA. Numbers are represented by the constant 0 with the appropriate number
of successor functions applied to it. The task for the agent is to rewrite an
expression until there are only nodes of the successor or 0 types. Effectively, we
are asking the agent to calculate the value of the expression. As an example,
S(S(0)) + S(0), representing 2 + 1, needs to be rewritten to S(S(S(0))).

The expressions are represented as a tree data structure. Within the envi-
ronment, there are seven different rewrite actions available to the agent. The
four axioms (equations) defining these actions are x+0 = x, x+S(y) = S(x+y),
x ∗ 0 = 0 and x ∗ S(y) = (x ∗ y) + x, where the agent can apply the equations
in either direction. There is one exception: the multiplication by 0 cannot be
applied from right to left, as this would require the agent to introduce a fresh
term which is out of scope for the current work. The place where the rewrite is
applied is denoted by the location of the cursor in the expression tree.

In addition to the seven rewrite actions, the agent can move the cursor to
one of the children of the current cursor node. This gives a total number of
nine actions. Moving to a child of a node with only one child counts as moving
to the left child. After a rewriting action, the cursor is reset to the root of the
expression. More details on the actions are in the RewriteRL repository.

5.5 Reinforcement Learning Methods

This section describes the reinforcement learning methods, while Section 5.6
then further explains the particular neural architectures that are trained in
the RL loops. We first briefly explain here the approaches that we used as
reinforcement learning (RL) baselines, and then we go into detail about the
proposed 3SIL method.

5.5.1 Reinforcement Learning Baselines

General RL setup

For comparison, we used implementations of four established reinforcement
learning baseline methods. In reinforcement learning, we consider an agent
that is acting within an environment. The agent can take actions a from the
action-space A to change the state s ∈ S of the environment. The agent can be

90 Chapter 5. Guiding an Automated Theorem Prover with Neural Rewriting

rewarded for certain actions taken in a certain state, with the reward given by
the reward function R : (S×A) → R. The behavior of the environment is given
by the state transition function P : (S × A) → S. The history of the agent’s
actions and the environment states and rewards at each timestep t are collected
in tuples (st, at, rt). For a given history of a certain agent within an environ-
ment, we call the list of tuples (st, at, rt) describing this history an episode.
The policy function π : S → A allows the agent to decide which action to take.
The agent’s goal is to maximize the return R: the sum of discounted rewards∑

t≥0 γ
trt, where γ is a discount factor that allows control over how heavily re-

wards further in the future should be weighted. We will use Rt when we mean
R, but calculated only from rewards from timestep t on. In the end, we are
thus looking for a policy function π that maximizes the sum R of (discounted)
expected rewards [125].

In our setting, every proof attempt (in the AIM setting) or normalization
attempt (in the Robinson arithmetic setting) corresponds to an episode. The
reward structure of theorem proving is such that there is only a reward of 1 at
the end of a successful episode (i.e. a proof was found in AIM). Unsuccessful
episodes get a reward of 0 at every timestep t.

A2C

The first method, Advantage Actor-Critic, or A2C [82] contains ideas on which
the other three RL baseline methods build, so we will go into more detail about
this method, while keeping the explanation for the other methods brief. For
details we refer to the corresponding papers.

A2C attempts to find suitable parameters for an agent by minimizing a loss
function consisting of two parts:

L = LA2C
policy + LA2C

value .

In addition to the policy function π, the agent has access to a value function
V : S → R, that predicts the sum of future rewards obtained when given a
state. In practice, both the policy and the value function are computed by a
neural network predictor. The parameters of the predictor are set by stochastic
gradient descent to minimize L. The set of parameters of the predictor that
defines the policy function π is named θ, while the parameters that define the
value function are named µ. The first part of the loss is the policy loss, which
for one time step has the form

LA2C
policy = − log πθ(at|st)A(st, at) ,

5.5. Reinforcement Learning Methods 91

where A(s, a) is the advantage function. The advantage function can be formu-
lated in multiple ways, but the simplest is as Rt − Vµ(st). That is to say: the
advantage of an action in a certain state is the difference between the discounted
rewards Rt after taking that action and the value estimate of the current state.

Minimizing LA2C
policy amounts to maximizing the log probability of predicting

actions that are judged by the advantage function to lead to high reward.
The value estimates Vµ(s) for computing the advantage function are supplied

by the value predictor Vµ with parameters µ, which is trained using the loss:

LA2C
value =

1

2
(Rt − Vµ(st))

2
,

which minimizes the advantage function. The logic of this is that the value
estimate at timestep t, Vµ(st), will learn to incorporate the later rewards Rt,
ensuring that when later seeing the same state, the possible future reward will
be considered. Note that the sets of parameters θ and µ are not necessarily
disjoint (see Section 5.6).

Note how the above equations are affected if there is no non-zero reward rt
obtained at any timestep. In that case, the value function Vµ(st) will estimate
(correctly) that any state will get 0 reward, which means that the advantage
function A(s, a) will also be 0 everywhere. This means that LA2C

policy will be 0
in most cases, which will lead to no or little change in the parameters of the
predictor: learning will be very slow. This is the difficult aspect of the structure
of theorem proving: there is only reward at the end of a successful proof, and
nowhere else. This implies a possible strategy is to imitate successful episodes,
without a value function. In this case, we would only need to train a policy
function, and no approximate value function. This is an aspect we explore in
the design of our own method 3SIL, which we will explain shortly.

Compared to two-player games, such as chess and go, for which many ap-
proaches have been tailored and successfully used [120], theorem-proving has
the property that it is hard to collect useful examples to learn from, as only
successful proofs are likely to contain useful knowledge. In chess or go, how-
ever, one player almost always wins and the other loses, which means that we
can at least learn from the difference between the two strategies used by those
players. As an example, we executed 2 million random proof attempts on the
AIMLEAP environment, which led to 300 proofs to learn from, whereas in a
two-player setting like chess, we would get 2 million games in which one player
would likely win.

ACER The second RL baseline method we tested in our experiments is
ACER, Actor-Critic with Experience Replay [133]. This approach can make

92 Chapter 5. Guiding an Automated Theorem Prover with Neural Rewriting

use of data from older episodes to train the current predictor. ACER applies
corrections to the value estimates so that data from old episodes may be used
to train the current policy. It also uses trust region policy optimization [108]
to limit the size of the policy updates. This method is included as a baseline
to check if using a larger replay buffer to update the parameters would be
advantageous.

PPO Our third RL baseline is the widely used proximal policy optimization
(PPO) algorithm [109]. It restricts the size of the parameter update to avoid
causing a large difference between the original predictor’s behavior and the
updated version’s behavior. The method is related to the above trust region
policy optimization method. In this way, PPO addresses the training instability
of many reinforcement learning approaches. It has been used in various settings,
for example complex video games [9]. With its versatility, the PPO algorithm is
well-positioned. We use the PPO algorithm with clipped objective, as in [109].

SIL-PAAC Our final RL baseline uses only the transitions with positive
advantage to train on for a portion of the training procedure, to learn more
from good episodes. This was proposed as self-imitation learning (SIL) [87]. To
avoid confusion with the method that we are proposing, we extend the acronym
to SIL-PAAC, for positive advantage actor-critic. This algorithm outperformed
A2C on the sparse-reward task Montezuma’s Revenge (a puzzle game). As
theorem proving has a sparse reward structure, we included SIL-PAAC as a
baseline. More information about the implementations for the baselines can be
found in the Implementation Details section at the end of this work.

5.5.2 Stratified Shortest Solution Imitation Learning

We introduce stratified shortest solution imitation learning (3SIL) to tackle the
equational theorem proving domain. It learns to explicitly imitate the actions
taken during the shortest solutions found for each problem in the dataset. We do
this by minimizing the cross-entropy −log p(asolution|st) between the predictor
output and the actions taken in the shortest solution. This is in contrast to
the baseline methods, where value functions are used to judge the utility of
decisions.

In our procedure this is not the case. Instead, we build upon the assumption
for data selection that shorter proofs are better in the context of theorem prov-
ing and expression normalization. In a sense, we value decisions from shorter
proofs more and explicitly imitate those transitions. We keep a history H for
each problem, where we store the current shortest solution (states seen and ac-
tions taken) found for that problem in the training dataset. We can also store

5.5. Reinforcement Learning Methods 93

Algorithm 1 CollectEpisode

Input: problem p, policy πθ, problem history H
Generate episode by following noisy version of πθ on p
If solution, add list of tuples (s, a) to H[p]
Keep k shortest solutions in H[p]

Algorithm 2 3SIL

Input: set of problems P, randomly initialized policy πθ, batch size B, num-
ber of batches NB, problem history H, number of warmup episodesm, number
of episodes f , max epochs ME
Output: trained policy πθ, problem history H
for e = 0 to ME− 1 do
if e = 0 then num = m else num = f

for i = 0 to num− 1 do
CollectEpisode(sample(P), πθ, H) (Algorithm 1)

end for
for i = 0 to NB− 1 do

Sample B tuples (s, a) with uniform probability for each problem in H

Update θ to lower −∑B
b=0 log πθ(ab|sb) by gradient descent

end for
end for

multiple shortest solutions for each problem if there are multiple strategies for
a proof (the number of solutions kept is governed by the parameter k).

During training, in the case k = 1, we sample state-action pairs from each
problem’s current shortest solution at an equal probability (if a solution was
found). To be precise, we first randomly pick a theorem for which we have a so-
lution, and then randomly sample one transition from the shortest encountered
solution. This directly counters one of the phenomena that we had observed:
the training examples for the baseline methods tend to be dominated by very
long episodes (as they contribute more states and actions). This stratified sam-
pling method ensures that problems with short proofs get represented equally
in the training process.

The 3SIL algorithm is described in more detail in Algorithm 2. Sampling
from a noisy version of policy πθ means that actions are sampled from the
predictor-defined distribution and in 5% of cases a random valid action is se-

94 Chapter 5. Guiding an Automated Theorem Prover with Neural Rewriting

lected. This is also known as the ϵ-greedy policy (with ϵ at 0.05).
Related Methods Our approach is similar to the imitation learning algo-

rithm DAGGER (Dataset Aggregation), which was used for several games [104]
and modified for branch-and-bound algorithms in [48]. The behavioral cloning
(BC) technique used in robotics [126] also shares some elements. 3SIL signifi-
cantly differs from DAGGER and BC because it does not use an outside expert
to obtain useful data, because of the stratified sampling procedure, and because
of the selection of the shortest solutions for each problem in the training dataset.
We include as an additional baseline an implementation of behavioral cloning
(BC), where we regard proofs already encountered as coming from an expert.
We minimize cross-entropy between the actions in proofs we have found and
the predictions to train the predictor. For BC, there is no stratified sampling
or shortest solution selection, only the minimization of cross-entropy between
actions taken from recent successful solutions and the predictor’s output.

Extensions For the AIM tasks, we introduce two other techniques, biased
sampling and episode pruning. In biased sampling, problems without a solution
in the history are sampled 5 times more during episode collection than solved
problems to accelerate progress. This was determined by testing 1, 2, 5 and 10
as sampling proportions. For episode pruning, when the agent encountered the
same state twice, we prune the episode to exclude the looping before storing
the episode. This helps the predictor learn to avoid these loops.

5.6 Neural Architectures

The tree-structured states representing expressions occurring during the tasks
will be processed by a neural network. The neural network takes the tree-
structured state and predicts an action to take that will bring the expression
closer to being normalized or the theorem closer to being proven.

There are two main components to the neural network we use: an em-
bedding tree neural network that outputs a numerical vector representing the
tree-structured proof state and a second processor network that takes this vec-
tor representation of the state and outputs a distribution of the actions possible
in the environment.4

Tree neural networks have been used in various settings, such as natural
language processing [56] and also in Robinson arithmetic expression embed-
ding [39]. These networks consist of smaller neural networks, each representing

4In the reinforcement learning baselines that we use, this second processor network has
the additional task of predicting the value of a state.

5.6. Neural Architectures 95

Successor Layer 16D 0-vector

Addition Layer

Processor Network

16D 0-vector

p(action | s) V(s)

Embedding

Figure 5.2: Schematic representation of the creation of a representation of an
expression (an embedding) using different neural network layers to represent dif-
ferent operations. The figure depicts the creation of a numerical representation
for the Robinson arithmetic expression (S(0)+0). Note that the successor layer
and the addition layer consist of trainable parameters, for which the values are
set through gradient descent.

one of the possible functions that occur in the expressions. For example, there
will be separate networks representing addition and multiplication. The cursor
is a special unary operation node with its own network that we insert into the
tree at the current location. For each unique constant, such as the constant 0
in RA or the identity element 1 for the AIM task, we generate a random vector
(from a standard normal distribution) that will represent this leaf. In the case
of the AIM task, these vectors are parameters that can be optimized during
training.

At prediction time, the numerical representation of a tree is constructed
by starting at the leaves of the tree, for which we can look up the generated
vectors. These vectors act as input to the neural networks that represent the
parent node’s operation, yielding a new vector, which now represents the subtree
of the parent node. The process repeats until there is a single vector for the
entire tree after the root node is processed (see also Figure 5.2).

The neural networks representing each operation consist of a linear trans-
formation, a non-linearity in the form of a rectified linear unit (ReLU) and
another linear transformation. In the case of binary operations, the first linear
transformation will have an input dimension of 2n and an output dimension of
n, where n is the dimension of the vectors representing leaves of the tree (the

96 Chapter 5. Guiding an Automated Theorem Prover with Neural Rewriting

internal representation size). The weights representing these transformations
are randomly initialized at the beginning of training.

When we have obtained a single vector embedding representing the entire
tree data structure, this vector serves as the input to the predictor neural net-
work, which consists of three linear layers, with non-linearities (Sigmoid/ReLU)
in between these layers. The last layer has an output dimension equal to the
number of possible actions in the environment. We obtain a probability distri-
bution over the actions, e.g. by applying the softmax function to the output
of this last layer. In the cases where we also need a value prediction, there
is a parallel last layer that predicts the state’s value (usually referred to as a
two-headed network [120]). The internal representation size n for the Robinson
arithmetic experiments is set to 16, for the AIM task this is 32. The number of
neurons in each layer (except for the last one) of the predictor networks is 64.

In the AIM dataset task, an arbitrary number of variables can be introduced
during the proof. These are represented by untrainable random vectors. We
add a special neural network (with the same architecture as the networks rep-
resenting unary operations, so from size n to n) that processes these vectors
before they are processed by the rest of the tree neural network embedding.
The idea is that this neural network learns to project these new variable vec-
tors into a subspace and that an arbitrary number of variables can be handled.
The vectors are resampled at the start of each episode, so the agent cannot
learn to recognize specific variables. This approach was partly inspired by the
prime mechanism in [39], but we use separate vectors for all variables instead
of building vectors sequentially. All our neural networks are implemented using
the PyTorch library [90].

5.7 Experiments

We first describe our experiments on the Robinson arithmetic task, with which
we designed the properties of our 3SIL approach with the help of comparisons
with other algorithms. We then train a predictor using 3SIL on the AIMLEAP
loop theory dataset, which we evaluate both as a standalone prover within the
RL environment and as a neural guidance mechanism for the ATP Prover9.

5.7.1 Robinson Arithmetic Dataset

Dataset details The Robinson arithmetic dataset [37] is split into three dis-
tinct sets, based on the number of steps that it takes a fixed rewriting strategy
to normalize the expression. This fixed strategy, LOPL, which stands for left

5.7. Experiments 97

0 50 100 150 200

Epochs

0

2

4

6

8

10

12

L
ev
el

BC

PPO

ACER

3SIL (k=1)

3SIL (k=2)

Figure 5.3: The level in the curriculum reached by each method. Each method
was run three times. The bold line shows the mean performance and the shaded
region shows the minimum and maximum performance. K is the number of
proofs stored per problem.

outermost proof length, always rewrites the leftmost possible element. If it takes
this strategy less than 90 steps to solve the problem, it is in the low difficulty
category. Problems with a difficulty between 90 and 130 are in the medium
category and a greater difficulty than 130 leads to the high category. The high
dataset also contains problems the LOPL strategy could not solve within the
time limit. The low dataset is split into a training and testing set. We train on
the low difficulty problems, but after training we also test on problems with a
higher difficulty. Because we have a difficulty measure for this dataset, we use
a curriculum setup. We start by learning to normalize the expressions that a
fixed strategy can normalize in a small number of steps. This setup is similar
to [37].

Training setup The 400 problems with the lowest difficulty are the starting
point. Every time an agent reaches a 95 percent success rate when evaluated on
a sample of size 400 from these problems, we add 400 more difficult problems
to the set of training problems P . One iteration of the collection and training
phase is called an epoch. Agents are evaluated after every epoch. The blocks
of size 400 are called levels. The number of episodes m and f are set to 1000.
For 3SIL and BC, the batch size BS is 32 and the number of batches NB is
250. The baselines are configured so that the number of episodes and training
transitions is at least as many as the 3SIL/BC approaches. Episodes that take
over 100 steps are stopped. ADAM [68] is used as an optimizer.

Results on RA curriculum In Figure 5.3, we show the progression through
the training curriculum for behavioral cloning (BC), the RL methods (PPO,

98 Chapter 5. Guiding an Automated Theorem Prover with Neural Rewriting

ACER) and two configurations of 3SIL. Behavioral cloning simply imitates ac-
tions from successful episodes. Of the RL baselines, PPO reaches the second
level in one run, while ACER steadily solves the first level and in the best run
solves around 80% of the second level. Both methods do not learn enough solu-
tions for the second level to advance to the third. A2C and SIL-PAAC do not
reach the second level, so these are left out of the plot. However, they do learn
to solve about 70-80% of the first 400 problems. From these results we can
conclude that the RL baselines do not perform well on this task in our experi-
ment. We attribute this to the difficulty of learning a good value function due
to the sparse rewards (Section 5.5.1). Our hypothesis is that because this value
estimate influences the policy updates, the RL methods do not learn well on
this task. Note that the two methods with a trust region update mechanism,
ACER and PPO, perform better than the methods without this mechanism.
From these results, it is clear that 3SIL with 1 shortest proof stored, k = 1, is
the best-performing configuration. It reaches the end of the training curriculum
of about 5000 problems in 40 epochs. We experimented with k = 3 and k = 4,
but these were both worse than k = 2.

Generalization While our approach works well on the training set, we
must check if the predictors generalize to unseen examples. Only the methods
that reached the end of the curriculum are tested. In Table 5.1, we show the
results of evaluating the performance of our predictors on the three different
test sets: the unseen examples from the low dataset and the unseen examples
from the medium and high datasets. Because we expect longer solutions, the
episode limits are expanded from 100 steps to 200 and 250 for the medium and
high datasets respectively. For the low and medium datasets, the second of
which contains problems with more difficult solutions than the training data,
the predictors solve almost all test problems. For the high difficulty dataset, the
performance drops by at least 20 percentage points. Our method outperforms
the Monte Carlo Tree Search approach used in [37] on the same datasets, which
got to 0.954 on the low dataset with 1600 iterations and 0.786 on the medium
dataset (no results on the high dataset were reported). These results indicate
that this training method might be strong enough to perform well on the AIM
rewriting RL task.

5.7.2 AIM Conjecture Dataset

Training setup

Finally, we train and evaluate 3SIL on the AIM Conjecture dataset. We apply
3SIL (k = 1) to train predictors in the AIMLEAP environment. Ten percent of

5.7. Experiments 99

Table 5.1: Generalization with greedy evaluation on the test set for the Robinson
arithmetic normalization tasks, shown as average success rate and standard
deviation from 3 training runs. Generalization is high on the low and medium
difficulty (training data is similar to the low difficulty dataset). With high
difficulty data, performance drops.

Low Medium High

3SIL (k=1) 1.00 ± 0.01 0.98 ± 0.03 0.77 ± 0.10
3SIL (k=2) 0.99 ± 0.00 0.96 ± 0.01 0.66 ± 0.08
BC 0.98 ± 0.01 0.98 ± 0.01 0.56 ± 0.05

the AIM dataset is used as a hold-out test set, not seen during training. As there
is no estimate for the difficulty of the problems in terms of the actions available
to the predictor, we do not use a curriculum ordering for these experiments.
The number m of episodes collected before training is set to 2,000,000. These
random proof attempts result in about 300 proofs. The predictor learns from
these proofs and afterwards the search for new proofs is also guided by its
predictions. For the AIM experiments, episodes are stopped after 30 steps in
the AIMLEAP environment. The predictors are trained for 100 epochs. The
number of collected episodes per epoch f is 10,000. The successful proofs are
stored, and the shortest proof for each theorem is kept. NB is 500 and BS is set
to 32. The number of problems with a solution in the history after each epoch
of the training run is shown in Figure 5.4.

0 20 40 60 80

Epochs

0

500

1000

1500

2000

2500

3000

T
ra
in
in
g
pr
ob
le
m
s
so
lv
ed

3SIL (k=1)

Figure 5.4: The number of training problems for which a solution was encoun-
tered and stored (cumulative). At the start of the training, the models rapidly
collect more solutions, but after 100 epochs, the process slows down and settles
at about 2500 problems with known solutions. The minimum, maximum and
mean of three runs are shown.

100 Chapter 5. Guiding an Automated Theorem Prover with Neural Rewriting

Results as a standalone prover

After 100 epochs, about 2500 of 3114 problems in the training dataset have a
solution in their history. To test the generalization capability of the predic-
tors, we inspect their performance on the holdout test set problems. In Table
5.2 we compare the success rate of the trained predictors on the holdout test
set with three different automated theorem provers: E [111, 113], Waldmeis-
ter [52] and Prover9. E is currently one of the best overall automated theorem
provers [124], Waldmeister is a prover specialized in memory-efficient equational
theorem proving [53] and Prover9 is the theorem prover that is used for AIM
conjecture research and the prover that the dataset was generated by. Wald-
meister and E are the best performing solvers in competitions for the relevant
unit equality (UEQ) category [124].

Table 5.2: Theorem proving performance on the hold-out test set in fraction of
problems solved. Means and standard deviations are the results of evaluations
of 3 different predictors from 3 different training runs on the 354 unseen test
set problems.

Method Success Rate

Prover9 (60s) 0.833
E (60s) 0.802
Predictor + AIMLEAP(60s) 0.702 ± 0.015
Waldmeister (60s) 0.655
Predictor + AIMLEAP (1x) 0.586 ± 0.029

The results show that a single greedy evaluation of the predictor trying to
solve the problem in the AIMLEAP environment is not as strong as the theorem
proving software. However, the theorem provers got 60 seconds of execution
time, and the execution of the predictor, including interaction with AIMLEAP,
takes on average less than 1 second. We allowed the predictor setup to use 60
seconds, by running attempts in AIMLEAP until the time was up, sampling
actions from the predictor’s distribution with 5% noise, instead of using greedy
execution. With this approach, the predictor setup outperforms Waldmeister.5

Figure 5.5 shows the overlap between the problems solved by each prover. The
diagram shows that each theorem prover found a few solutions that no other

5After the initial experiments, we also evaluated Twee [121], which won the most recent
UEQ track: it can prove most of the test problems in 60s, only failing for 1 problem.

5.7. Experiments 101

2.6%

3.5%

2.6%

2.9%

4.0%

5.8%

11.6%

1.7%

0.9%

1.7%

4.9%

0.6%

2.0%

8.7%

46.5%

Waldmeister

E

Prover9

Predictor + AIMLEAP

Figure 5.5: Venn diagram of the test set problems solved by each solver with
60s time limit.

prover could find within the time limit. Almost half of all problems from the
test set that are solved are solved by all four systems.

Results of neural rewriting combined with Prover9

We also combine the predictor with Prover9. In this setup, the predictor modi-
fies the starting form of the goal, for a maximum of 1 second in the AIMLEAP
environment. This produces new expressions on one or both sides of the equal-
ity. We then add, as lemmas, equalities between the left-hand side of the goal
before the predictor’s rewriting and after each rewriting (see Figure 5.1). The
same is done for the right-hand side. For each problem, this procedure yields
new lemmas that are added to the problem specification file that is given to
Prover9.

In Table 5.3, it is shown that adding lemmas suggested by the rewriting
actions of the trained predictor improves the performance of Prover9. Running
Prover9 for 2 seconds results in better performance than running it for 1 second,
as expected. The combined (1s + 1s) system improved on Prover9’s 2-second
performance by 12.7% (= 0.841/0.746), indicating that the predictor suggests
useful lemmas. Additionally, 1 second of neural rewriting combined with 59
seconds of Prover9 search proves almost 8.3% (= 0.902/0.833) more theorems
than Prover9 with a 60 second time limit (Table 5.2).

102 Chapter 5. Guiding an Automated Theorem Prover with Neural Rewriting

Table 5.3: Prover9 theorem proving performance on the hold-out test set when
injecting lemmas suggested by the learned predictor. Prover9 ’s performance
increases when using the suggested lemmas.

Method Success Rate

Prover9 (1s) 0.715
Prover9 (2s) 0.746
Prover9 (60s) 0.833
Rewriting (1s) + Prover9 (1s) 0.841 ± 0.019
Rewriting (1s) + Prover9 (59s) 0.902 ± 0.016

5.7.3 Implementation Details

All experiments for the Robinson task were run on a 16 core Intel(R) Xeon(R)
CPU E5-2670 0 @ 2.60GHz. The AIM experiments were run on a 72 core In-
tel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz. All calculations were done on
CPU. The PPO implementation was adapted from an existing implementa-
tion [7]. The model was updated every 2000 timesteps, the PPO clip coefficient
was set to 0.2. The learning rate was 0.002 and the discount factor γ was set to
0.99. The ACER implementation was adapted from an available implementa-
tion [20]. The replay buffer size was 20,000. The truncation parameter was 10
and the model was updated every 100 steps. The replay ratio was set to 4. Trust
region decay was set to 0.99 and the constraint was set to 1. The discount factor
was set to 0.99 and the learning rate to 0.001. Off-policy minibatch size was
set to 1. The A2C and SIL implementations were based on Pytorch actor-critic
example code available at the PyTorch repository [98]. For the A2C algorithm,
we experimented with two formulations of the advantage function: the 1-step
lookahead estimate (rt + γVµ(st+1))− Vµ(st) and the Rt − Vµ(st) formulation.
However, we did not observe different performance, so we opted in the end for
the 1-step estimate favored in the original A2C publication. For SIL-PAAC, we
implemented the SIL loss on top of the A2C implementation. There is also a
prioritized replay buffer with an exponent of 0.6, as in the original paper. Each
epoch, 8000 (250 batches of size 32) transitions were taken from the prioritized
replay buffer in the SIL step of the algorithm. The size of the prioritized replay
buffer was 40,000. The critic loss weight was set to 0.01 as in the original paper.
For the 3SIL and behavioral cloning implementations, we sample 8000 transi-
tions (250 batches of size 32) from the replay buffer or history. For behavioral

5.8. Conclusion and Future Work 103

cloning, we used a buffer of size 40,000. An example implementation of 3SIL
can be found in the RewriteRL repository. On the Robinson arithmetic task,
for 3SIL and BC, the evaluation is done greedily (always take the highest prob-
ability actions). For the other methods, we performed experiments with both
greedy and non-greedy (sample from the predictor distribution and add 5%
noise) evaluation and show the results of the best-performing setting (which in
most cases was the non-greedy evaluation, except for PPO). On the AIM task,
we evaluate greedily with 3SIL.

AIMLEAP expects a distance estimate for each applicable action. This
represents the estimated distance to a proof. This behavior was converted to a
reinforcement learning setup by always setting the chosen action of the model
to the minimum distance and all other actions to a distance larger than the
maximum proof length. Only the chosen action is then carried out.

Versions of the automated theorem provers used: Version 2.5 of E [114], the
Nov 2017 version of Prover9 [81] and the Feb 2018 version of Waldmeister [54]
and version 2.4.1 of Twee [122].

5.8 Conclusion and Future Work

Our experiments show that a neural rewriter, trained with the 3SIL method that
we designed, can learn to suggest useful lemmas that assist an ATP and improve
its proving performance. With the same limit of 1 minute, Prover9 managed
to prove close to 8.3% more theorems. Furthermore, our 3SIL training method
is powerful enough to train an equational prover from zero knowledge that can
compete with hand-engineered provers, such as Waldmeister. Our system on its
own proves 70.2% of the unseen test problems in 60s, while Waldmeister proved
65.5%.

In future work, we will apply our method to other equational reasoning tasks.
An especially interesting research direction concerns selecting which proofs to
learn from: some sub-proofs might be more general than other sub-proofs. The
incorporation of graph neural networks instead of tree neural networks may
improve the performance of the predictor, since in graph neural networks in-
formation not only propagates from the leaves to the root, but also through all
other connections.

104 Chapter 5. Guiding an Automated Theorem Prover with Neural Rewriting

Acknowledgements

We would like to thank Chad Brown for his work with the AIMLEAP software.
In addition, we thank Thibault Gauthier and Bartosz Piotrowski for their help
with the Robinson arithmetic rewriting task and the AIM rewriting task re-
spectively. We also thank the referees of the IJCAR conference for their useful
comments.

This work was partially supported by the European Regional Development
Fund under the Czech project AI&Reasoning no. CZ.02.1.01/0.0/0.0/15 003/
0000466 (JP, JU), Amazon Research Awards (JP, JU) and by the Czech MEYS
under the ERC CZ project POSTMAN no. LL1902 (JP, MJ).

Chapter 6

Conclusion

Here, a summary and discussion of the general conclusions of the research work
in this thesis are included. There were overarching trends that may be useful
to emphasize. With the benefit of hindsight, patterns in the conception, devel-
opment, and execution of the research work can be observed. The main focus
of this thesis was to guide automated theorem proving systems with machine
learning heuristics. To be more specific, the projects focused on using graph
neural network heuristics to analyze the proof states and predict quantities that
influence the instantiation and rewriting choices of the various systems. First,
what was accomplished in the research projects associated with each Chapter is
briefly stated, and then a more general perspective using the experiences from
the projects is provided.

In Chapter 2, it was investigated how a neural network could be used to
predict the proof instantiations based on a first-order formula. Our chosen ap-
proach, with a graph neural network for embedding the formula and a recurrent
neural network for the prediction of the right symbols to construct terms, was
able to learn how to prove using instantiations.

Chapter 3 contained a description of how a graph neural network can be
used to guide an instantiation calculus prover. In particular, the guidance for
the clause selection mechanism inside the prover was targeted.

In Chapter 4, it was explained how the instantiation process within an SMT
solver could be controlled by a graph neural network. In this instance, the
network was equipped with the ability to predict which part of the formula to
instantiate and which terms to use.

Chapter 5 described the use of a neural network to control an equational

105

106 Chapter 6. Conclusion

rewriting system. After training, the system could in many cases successfully
use rewriting rules to complete the proof goal.

The three different instantiation projects that form Chapters 2 to 4 together
illustrated the main choice points to be considered when integrating machine
learning methods, especially computationally costly ones, into fast-paced auto-
mated theorem provers. A balance has to be maintained between fine-grained
control, computational requirements, difficulty of implementation, and predic-
tor performance.

In the project described in Chapter 2, all the first-order instantiation rea-
soning was supposed to be done by the neural network component, while the
ground reasoning was done by a non-ML component. This turned out to be a
challenging task for the neural network, as the predictions for multiple different
clauses had to be consistent to arrive at a proof. In this project, the framing of
the task was perhaps too difficult for the machine learning methods. From this,
a lesson was learned to involve more capacities of the already existing prover
systems in the process.

The project described in Chapter 3 scaled back the task of the machine
learning component: the task here was to predict which clauses would be useful
for the instantiation calculus, and the rest of the first-order reasoning then was
handled by iProver as normal. This separation of concerns led to improved
performance.

The third project, described in Chapter 4, occupied a space in between the
other two instantiation projects: here, the graph neural network predicted the
clause scores and term scores which were used in the enumerative instantiation
procedure. Although we predicted multiple quantities that, in principle, would
allow quite fine-grained control over the solver, we could fall back on the enu-
meration procedure when the predictions did not deliver an immediately useful
result. Compared especially to the work described in Chapter 2, where the ML
component selected all instantiations without a fail-safe mechanism, this kind
of hybrid architecture was a more elegant option.

In all of the projects, the extraction of the training data from the solvers
posed technical and conceptual challenges. Even though integrating deeply into
a solver gave potentially more control, it was not always clear how to cleanly
obtain all relevant prover state information. Even after the training data corre-
sponding to a proof was obtained, conceptual difficulties remained around the
existence of multiple proofs. While we often chose to use the proofs obtained
in the smallest number of steps, it remains to be seen whether preferring cer-
tain types of proofs as training data could lead to more generalizable machine
learning heuristics for theorem proving.

107

In general, it was shown that integrating graph neural networks with an
automated theorem proving system was possible in instantiation-based proving
systems and rewriting systems and that it could improve the decision-making
of the provers in certain circumstances. However, there are many more possible
future paths that can be explored.

In particular, decreasing the difference in speed between the fast ATP sys-
tems and the comparatively slow graph neural network systems would be a
useful avenue of future research. In the last few years, many techniques, such
as quantization of network parameters and network distillation, have shown
promise, and these could be applied to the situations described in this thesis.
Another way to handle this problem would be a smart method to interleave the
ATP and ML systems: perhaps, the expensive ML predictions can be limited
to decisions that are particularly difficult for the existing systems.

108 Chapter 6. Conclusion

Bibliography

[1] Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., and Ur-
ban, J. Premise selection for mathematics by corpus analysis and kernel
methods. J. Autom. Reasoning 52, 2 (2014), 191–213.

[2] Aleksandrova, K., Jakub̊uv, J., and Kaliszyk, C. Prover9 un-
leashed: Automated configuration for enhanced proof discovery. In LPAR
2024: Proceedings of 25th Conference on Logic for Programming, Artifi-
cial Intelligence and Reasoning, Port Louis, Mauritius, May 26-31, 2024
(2024), N. S. Bjørner, M. Heule, and A. Voronkov, Eds., vol. 100 of EPiC
Series in Computing, EasyChair, pp. 360–369.

[3] Babbage, C., and Babbage, H. P. Babbage’s calculating engines: be-
ing a collection of papers relating to them; their history, and construction.
1889.

[4] Balunovic, M., Bielik, P., and Vechev, M. T. Learning to solve
SMT formulas. In NeurIPS (2018), pp. 10338–10349.

[5] Bansal, K., Loos, S. M., Rabe, M. N., Szegedy, C., and Wilcox,
S. HOList: An environment for machine learning of higher order logic
theorem proving. In ICML (2019), vol. 97 of Proceedings of Machine
Learning Research, PMLR, pp. 454–463.

[6] Barbosa, H., Barrett, C. W., Brain, M., Kremer, G., Lach-
nitt, H., Mann, M., Mohamed, A., Mohamed, M., Niemetz, A.,
Nötzli, A., Ozdemir, A., Preiner, M., Reynolds, A., Sheng, Y.,
Tinelli, C., and Zohar, Y. cvc5: A versatile and industrial-strength
SMT solver. In Tools and Algorithms for the Construction and Analysis
of Systems - 28th International Conference, TACAS 2022, Held as Part
of the European Joint Conferences on Theory and Practice of Software,

109

110 Bibliography

ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part I
(2022), D. Fisman and G. Rosu, Eds., vol. 13243 of Lecture Notes in
Computer Science, Springer, pp. 415–442.

[7] Barhate, N. Implementation of PPO algorithm. https://github.com
/nikhilbarhate99.

[8] Barrett, C. W., Sebastiani, R., Seshia, S. A., and Tinelli, C.
Satisfiability modulo theories. In Handbook of Satisfiability - Second Edi-
tion, A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds., vol. 336
of Frontiers in Artificial Intelligence and Applications. IOS Press, 2021,
pp. 1267–1329.

[9] Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P.,
Dennison, C., Farhi, D., Fischer, Q., Hashme, S., Hesse, C.,
et al. DOTA 2 with large scale deep reinforcement learning. arXiv
preprint arXiv:1912.06680 (2019).

[10] Biere, A., Faller, T., Fazekas, K., Fleury, M., Froleyks, N.,
and Pollitt, F. CaDiCaL 2.0. In Computer Aided Verification - 36th
International Conference, CAV 2024, Montreal, QC Canada, July 24-
27, 2024, Proceedings, Part I (2024), A. Gurfinkel and V. Ganesh, Eds.,
vol. 14681 of LNCS, Springer, pp. 133–152.

[11] Blaauwbroek, L., Cerna, D. M., Gauthier, T., Jakub̊uv, J.,
Kaliszyk, C., Suda, M., and Urban, J. Learning guided automated
reasoning: A brief survey. Logics and Type Systems in Theory and Prac-
tice: Essays Dedicated to Herman Geuvers on The Occasion of His 60th
Birthday (2024), 54–83.

[12] Blaauwbroek, L., Olšák, M., Rute, J., Massolo, F. I. S., Piepen-
brock, J., and Pestun, V. Graph2tac: Online representation learning
of formal math concepts. In Forty-first International Conference on Ma-
chine Learning.

[13] Blaauwbroek, L., Urban, J., and Geuvers, H. Tactic learning and
proving for the Coq proof assistant. In LPAR (2020), vol. 73 of EPiC
Series in Computing, EasyChair, pp. 138–150.

[14] Blaauwbroek, L., Urban, J., and Geuvers, H. The Tactician - A
seamless, interactive tactic learner and prover for Coq. In CICM (2020),
vol. 12236 of Lecture Notes in Computer Science, Springer, pp. 271–277.

Bibliography 111

[15] Blanchette, J. C., Böhme, S., and Paulson, L. C. Extending
sledgehammer with SMT solvers. J. Autom. Reason. 51, 1 (2013), 109–
128.

[16] Blanchette, J. C., Kaliszyk, C., Paulson, L. C., and Urban, J.
Hammering towards QED. J. Formalized Reasoning 9, 1 (2016), 101–148.

[17] Blanchette, J. C., Ouraoui, D. E., Fontaine, P., and Kaliszyk,
C. Machine Learning for Instance Selection in SMT Solving. In AITP
2019 - 4th Conference on Artificial Intelligence and Theorem Proving
(Obergurgl, Austria, Apr. 2019).

[18] Boole, G. An investigation of the laws of thought: on which are founded
the mathematical theories of logic and probabilities, vol. 2. Walton and
Maberly, 1854.

[19] Brown, C. E., Piotrowski, B., and Urban, J. Learning to advise
an equational prover. Artificial Intelligence and Theorem Proving (2020).

[20] Chételat, D. Implementation of ACER algorithm. https://github.c
om/dchetelat/acer.

[21] Chvalovský, K., Jakub̊uv, J., Olšák, M., and Urban, J. Learn-
ing theorem proving components. In Automated Reasoning with An-
alytic Tableaux and Related Methods - 30th International Conference,
TABLEAUX 2021, Birmingham, UK, September 6-9, 2021, Proceedings
(2021), A. Das and S. Negri, Eds., vol. 12842 of Lecture Notes in Computer
Science, Springer, pp. 266–278.

[22] Chvalovský, K., Jakub̊uv, J., Suda, M., and Urban, J. ENIGMA-
NG: efficient neural and gradient-boosted inference guidance for E.
In International Conference on Automated Deduction (2019), Springer,
pp. 197–215.

[23] Chvalovský, K., Korovin, K., Piepenbrock, J., and Urban, J.
Guiding an instantiation prover with graph neural networks. In LPAR
2023: Proceedings of 24th International Conference on Logic for Program-
ming, Artificial Intelligence and Reasoning, Manizales, Colombia, 4-9th
June 2023 (2023), R. Piskac and A. Voronkov, Eds., vol. 94 of EPiC
Series in Computing, EasyChair, pp. 112–123.

[24] Clarke, E. M., Henzinger, T. A., Veith, H., Bloem, R., et al.
Handbook of model checking, vol. 10. Springer, 2018.

112 Bibliography

[25] Davis, M. The early history of automated deduction. In Handbook of
Automated Reasoning. Elsevier and MIT Press, 2001, pp. 3–15.

[26] Davis, M., Logemann, G., and Loveland, D. A machine program
for theorem-proving. Communications of the ACM 5, 7 (1962), 394–397.

[27] Davis, M., and Putnam, H. A Computing Procedure for Quantification
Theory. Journal of the ACM 7, 1 (1960), 215–215.

[28] De Moura, L., and Bjørner, N. Efficient e-matching for smt solvers.
In Automated Deduction–CADE-21: 21st International Conference on
Automated Deduction Bremen, Germany, July 17-20, 2007 Proceedings
21 (2007), Springer, pp. 183–198.

[29] de Moura, L. M., and Bjørner, N. Z3: An Efficient SMT Solver.
In TACAS (2008), C. R. Ramakrishnan and J. Rehof, Eds., vol. 4963 of
LNCS, Springer, pp. 337–340.

[30] Desharnais, M., Vukmirovic, P., Blanchette, J., and Wenzel,
M. Seventeen provers under the hammer. In ITP (2022), vol. 237 of
LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 8:1–8:18.

[31] Detlefs, D., Nelson, G., and Saxe, J. B. Simplify: A theorem
prover for program checking. J. ACM 52, 3 (2005), 365–473.

[32] Duarte, A., and Korovin, K. Implementing superposition in iProver
(system description). In Automated Reasoning - 10th International Joint
Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings,
Part II (2020), N. Peltier and V. Sofronie-Stokkermans, Eds., vol. 12167
of Lecture Notes in Computer Science, Springer, pp. 388–397.

[33] Eén, N., and Sörensson, N. An extensible sat-solver. In Theory and
Applications of Satisfiability Testing, 6th International Conference, SAT
2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised
Papers (2003), E. Giunchiglia and A. Tacchella, Eds., vol. 2919 of Lecture
Notes in Computer Science, Springer, pp. 502–518.

[34] El Ouraoui, D. Méthodes pour le raisonnement d’ordre supérieur dans
SMT, Chapter 5. PhD thesis, Université de Lorraine, 2021.

[35] Freeth, T., Higgon, D., Dacanalis, A., MacDonald, L., Geor-
gakopoulou, M., and Wojcik, A. A model of the cosmos in the
ancient greek antikythera mechanism. Scientific reports 11, 1 (2021),
5821.

Bibliography 113

[36] Ganzinger, H., and Korovin, K. New directions in instantiation-
based theorem proving. In 18th IEEE Symposium on Logic in Computer
Science (LICS 2003), 22-25 June 2003, Ottawa, Canada, Proceedings
(2003), IEEE Computer Society, pp. 55–64.

[37] Gauthier, T. Deep reinforcement learning in HOL4. arXiv preprint
arXiv:1910.11797v1 (2019).

[38] Gauthier, T. Deep reinforcement learning for synthesizing functions in
higher-order logic. In LPAR (2020), vol. 73 of EPiC Series in Computing,
EasyChair, pp. 230–248.

[39] Gauthier, T. Tree neural networks in HOL4. In International Confer-
ence on Intelligent Computer Mathematics (2020), Springer, pp. 278–283.

[40] Gauthier, T., Kaliszyk, C., and Urban, J. TacticToe: Learning to
reason with HOL4 tactics. In LPAR-21, 21st International Conference
on Logic for Programming, Artificial Intelligence and Reasoning, Maun,
Botswana, May 7-12, 2017 (2017), pp. 125–143.

[41] Gauthier, T., Kaliszyk, C., Urban, J., Kumar, R., and Norrish,
M. Tactictoe: Learning to prove with tactics. J. Autom. Reason. 65, 2
(2021), 257–286.

[42] Ge, Y., and de Moura, L. M. Complete instantiation for quantified
formulas in satisfiabiliby modulo theories. In Computer Aided Verifica-
tion, 21st International Conference, CAV (2009), pp. 306–320.

[43] Gilmore, P. C. A proof method for quantification theory: Its justifi-
cation and realization. IBM Journal of Research and Development 4, 1
(1960), 28–35.

[44] Goertzel, Z. A. Make E smart again (short paper). In IJCAR
(2) (2020), vol. 12167 of Lecture Notes in Computer Science, Springer,
pp. 408–415.

[45] Goertzel, Z. A., Chvalovský, K., Jakub̊uv, J., Olšák, M., and
Urban, J. Fast and slow enigmas and parental guidance. In Frontiers
of Combining Systems - 13th International Symposium, FroCoS 2021,
Birmingham, UK, September 8-10, 2021, Proceedings (2021), B. Konev
and G. Reger, Eds., vol. 12941 of Lecture Notes in Computer Science,
Springer, pp. 173–191.

114 Bibliography

[46] Goertzel, Z. A., Jakub̊uv, J., Kaliszyk, C., Olsák, M., Piepen-
brock, J., and Urban, J. The Isabelle ENIGMA. In ITP (2022),
vol. 237 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
pp. 16:1–16:21.

[47] Graves, A., Fernández, S., Gomez, F., and Schmidhuber, J. Con-
nectionist temporal classification: labelling unsegmented sequence data
with recurrent neural networks. In Proceedings of the 23rd International
Conference on Machine Learning (2006), pp. 369–376.

[48] He, H., Daume III, H., and Eisner, J. M. Learning to search in
branch and bound algorithms. Advances in Neural Information Processing
Systems 27 (2014), 3293–3301.

[49] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for
image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2016), pp. 770–778.

[50] Herbrand, J. Recherches sur la théorie de la démonstration. Doctorat
d’état, La Faculté des Sciences de Paris, 1930.

[51] Heule, M. J., and Biere, A. Proofs for satisfiability problems. All
about Proofs, Proofs for all (2015).

[52] Hillenbrand, T. Citius altius fortius: Lessons learned from the theorem
prover WALDMEISTER. ENTCS 86, 1 (2003), 9–21.

[53] Hillenbrand, T., Buch, A., Vogt, R., and Löchner, B. WALD-
MEISTER - High-Performance Equational Deduction. Journal of Auto-
mated Reasoning 18 (2004), 265–270.

[54] Hillenbrand, T., Buch, A., Vogt, R. and Löchner, B. Waldmeis-
ter. https://www.mpi-inf.mpg.de/departments/automation-of-log
ic/software/waldmeister/download.

[55] Holden, S. B., et al. Machine learning for automated theorem proving:
Learning to solve sat and qsat. Foundations and Trends® in Machine
Learning 14, 6 (2021), 807–989.

[56] Irsoy, O., and Cardie, C. Deep recursive neural networks for composi-
tionality in language. Advances in Neural Information Processing Systems
27 (2014), 2096–2104.

Bibliography 115

[57] Jakub̊uv, J., Chvalovský, K., Olšák, M., Piotrowski, B., Suda,
M., and Urban, J. ENIGMA anonymous: Symbol-independent in-
ference guiding machine (system description). In Automated Reason-
ing - 10th International Joint Conference, IJCAR 2020, Paris, France,
July 1-4, 2020, Proceedings, Part II (2020), N. Peltier and V. Sofronie-
Stokkermans, Eds., vol. 12167 of Lecture Notes in Computer Science,
Springer, pp. 448–463.

[58] Jakub̊uv, J., and Urban, J. ENIGMA: efficient learning-based in-
ference guiding machine. In Intelligent Computer Mathematics - 10th
International Conference, CICM 2017, Edinburgh, UK, July 17-21, 2017,
Proceedings (2017), H. Geuvers, M. England, O. Hasan, F. Rabe, and
O. Teschke, Eds., vol. 10383 of Lecture Notes in Computer Science,
Springer, pp. 292–302.

[59] Jakub̊uv, J., and Urban, J. Hammering Mizar by learning clause guid-
ance. In 10th International Conference on Interactive Theorem Proving,
ITP 2019, September 9-12, 2019, Portland, OR, USA (2019), J. Harrison,
J. O’Leary, and A. Tolmach, Eds., vol. 141 of LIPIcs, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, pp. 34:1–34:8.

[60] Jakub̊uv, J., Chvalovský, K., Goertzel, Z. A., Kaliszyk, C.,
Olsák, M., Piotrowski, B., Schulz, S., Suda, M., and Urban,
J. MizAR 60 for Mizar 50. In ITP (2023), vol. 268 of LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, pp. 19:1–19:22.

[61] Jakub̊uv, J., Suda, M., and Urban, J. Automated invention of strate-
gies and term orderings for vampire. In GCAI 2017, 3rd Global Conference
on Artificial Intelligence, Miami, FL, USA, 18-22 October 2017 (2017),
C. Benzmüller, C. L. Lisetti, and M. Theobald, Eds., vol. 50 of EPiC
Series in Computing, EasyChair, pp. 121–133.

[62] Janota, M., Barbosa, H., Fontaine, P., and Reynolds, A. Fair
and adventurous enumeration of quantifier instantiations. In 2021 Formal
Methods in Computer Aided Design (FMCAD) (2021), IEEE, pp. 256–
260.

[63] Janota, M., Piepenbrock, J., and Piotrowski, B. Towards learning
quantifier instantiation in SMT. In 25th International Conference on
Theory and Applications of Satisfiability Testing, SAT 2022, August 2-5,
2022, Haifa, Israel (2022), K. S. Meel and O. Strichman, Eds., vol. 236 of
LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 7:1–7:18.

116 Bibliography

[64] Kaliszyk, C., and Urban, J. Learning-assisted automated reasoning
with Flyspeck. J. Autom. Reasoning 53, 2 (2014), 173–213.

[65] Kaliszyk, C., and Urban, J. FEMaLeCoP: Fairly efficient ma-
chine learning connection prover. In Logic for Programming, Artificial
Intelligence, and Reasoning - 20th International Conference, LPAR-20
2015, Suva, Fiji, November 24-28, 2015, Proceedings (2015), M. Davis,
A. Fehnker, A. McIver, and A. Voronkov, Eds., vol. 9450 of Lecture Notes
in Computer Science, Springer, pp. 88–96.

[66] Kaliszyk, C., and Urban, J. MizAR 40 for Mizar 40. J. Autom.
Reasoning 55, 3 (2015), 245–256.

[67] Kaliszyk, C., Urban, J., Michalewski, H., and Olšák, M. Rein-
forcement learning of theorem proving. In Advances in Neural Informa-
tion Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal,
Canada. (2018), pp. 8836–8847.

[68] Kingma, D. P., and Ba, J. Adam: A method for stochastic optimiza-
tion. In 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings
(2015), Y. Bengio and Y. LeCun, Eds.

[69] Kinyon, M. Proof simplification and automated theorem proving. CoRR
abs/1808.04251 (2018).

[70] Kinyon, M., Veroff, R., and Vojtěchovský, P. Loops with abelian
inner mapping groups: An application of automated deduction. In Auto-
mated Reasoning and Mathematics. Springer, 2013, pp. 151–164.

[71] Komendantskaya, E., Heras, J., and Grov, G. Machine learning
in Proof General: Interfacing interfaces. In UITP (2012), vol. 118 of
EPTCS, pp. 15–41.

[72] Korovin, K. iProver - an instantiation-based theorem prover for first-
order logic (system description). In Automated Reasoning, 4th Interna-
tional Joint Conference, IJCAR 2008, Sydney, Australia, August 12-15,
2008, Proceedings (2008), A. Armando, P. Baumgartner, and G. Dowek,
Eds., vol. 5195 of Lecture Notes in Computer Science, Springer, pp. 292–
298.

Bibliography 117

[73] Korovin, K. Inst-Gen - A modular approach to instantiation-based auto-
mated reasoning. In Programming Logics - Essays in Memory of Harald
Ganzinger (2013), A. Voronkov and C. Weidenbach, Eds., vol. 7797 of
Lecture Notes in Computer Science, Springer, pp. 239–270.

[74] Kovács, L., and Voronkov, A. First-order theorem proving and Vam-
pire. In CAV (2013), N. Sharygina and H. Veith, Eds., vol. 8044 of LNCS,
Springer, pp. 1–35.

[75] Kühlwein, D., van Laarhoven, T., Tsivtsivadze, E., Urban, J.,
and Heskes, T. Overview and evaluation of premise selection techniques
for large theory mathematics. In IJCAR (2012), B. Gramlich, D. Miller,
and U. Sattler, Eds., vol. 7364 of LNCS, Springer, pp. 378–392.

[76] LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. Nature 521,
7553 (2015), 436–444.

[77] Li, M., and Vitányi, P. An introduction to Kolmogorov complexity and
its applications. Springer-Verlag, 2008.

[78] Marques-Silva, J., and Sakallah, K. A. Grasp-a new search al-
gorithm for satisfiability. In Proceedings of International Conference on
Computer Aided Design (1996), IEEE, pp. 220–227.

[79] Marques-Silva, J. P., Lynce, I., and Malik, S. Conflict-driven
clause learning SAT solvers. In Handbook of Satisfiability, A. Biere,
M. Heule, H. van Maaren, and T. Walsh, Eds., vol. 185 of Frontiers in
Artificial Intelligence and Applications. IOS Press, 2009, pp. 131–153.

[80] McCune, W. Prover9 and Mace. http://www.cs.unm.edu/~mccune/

prover9/, 2010.

[81] McCune, W. Prover9. https://github.com/ai4reason/Prover9.

[82] Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T.,
Harley, T., Silver, D., and Kavukcuoglu, K. Asynchronous meth-
ods for deep reinforcement learning. In International conference on ma-
chine learning (2016), pp. 1928–1937.

[83] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,
Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,
Ostrovski, G., et al. Human-level control through deep reinforcement
learning. Nature 518, 7540 (2015), 529–533.

118 Bibliography

[84] Moskal, M., Lopuszański, J., and Kiniry, J. R. E-matching for
fun and profit. Electronic Notes in Theoretical Computer Science 198, 2
(2008), 19–35.

[85] Nieuwenhuis, R., and Oliveras, A. Fast congruence closure and
extensions. Inf. Comput. 205, 4 (2007), 557–580.

[86] Nieuwenhuis, R., Oliveras, A., and Tinelli, C. Solving sat and
sat modulo theories: From an abstract davis–putnam–logemann–loveland
procedure to dpll (t). Journal of the ACM (JACM) 53, 6 (2006), 937–977.

[87] Oh, J., Guo, Y., Singh, S., and Lee, H. Self-imitation learning. In
International Conference on Machine Learning (2018), pp. 3878–3887.

[88] Olšák, M., Kaliszyk, C., and Urban, J. Property invariant embed-
ding for automated reasoning. In ECAI 2020 - 24th European Conference
on Artificial Intelligence, 29 August-8 September 2020, Santiago de Com-
postela, Spain, August 29 - September 8, 2020 - Including 10th Conference
on Prestigious Applications of Artificial Intelligence (PAIS 2020) (2020),
G. D. Giacomo, A. Catalá, B. Dilkina, M. Milano, S. Barro, A. Bugaŕın,
and J. Lang, Eds., vol. 325 of Frontiers in Artificial Intelligence and Ap-
plications, IOS Press, pp. 1395–1402.

[89] Overbeek, R. A. A new class of automated theorem-proving algorithms.
J. ACM 21, 2 (Apr. 1974), 191–200.

[90] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L.,
Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J.,
and Chintala, S. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems
32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 8024–8035.

[91] Phillips, J., and Stanovský, D. Automated theorem proving in quasi-
group and loop theory. AI Communications 23, 2-3 (2010), 267–283.

[92] Piepenbrock, J., Heskes, T., Janota, M., and Urban, J. Guid-
ing an automated theorem prover with neural rewriting. In Automated
Reasoning - 11th International Joint Conference, IJCAR 2022, Haifa, Is-
rael, August 8-10, 2022, Proceedings (2022), J. Blanchette, L. Kovács,

Bibliography 119

and D. Pattinson, Eds., vol. 13385 of Lecture Notes in Computer Science,
Springer, pp. 597–617.

[93] Piepenbrock, J., Janota, M., Urban, J., and Jakub̊uv, J. First
experiments with neural cvc5. In LPAR 2024: Proceedings of 25th Con-
ference on Logic for Programming, Artificial Intelligence and Reasoning,
Port Louis, Mauritius, May 26-31, 2024 (2024), N. S. Bjørner, M. Heule,
and A. Voronkov, Eds., vol. 100 of EPiC Series in Computing, EasyChair,
pp. 264–277.

[94] Piepenbrock, J., Urban, J., Korovin, K., Olšák, M., Heskes, T.,
and Janota, M. Invariant neural architecture for learning term synthesis
in instantiation proving. Journal of Symbolic Computation 128 (2025),
102375.

[95] Pimpalkhare, N., Mora, F., Polgreen, E., and Seshia, S. A. Med-
leySolver: Online SMT algorithm selection. In Theory and Applications of
Satisfiability Testing – SAT 2021 (Cham, 2021), C.-M. Li and F. Manyà,
Eds., Springer International Publishing, pp. 453–470.

[96] Plaisted, D. A., and Greenbaum, S. A structure-preserving clause
form translation. J. Symb. Comput. 2, 3 (1986), 293–304.

[97] Post, E. The two-valued iterative systems of mathematical logic. Annals
of Mathematics Studies (1941).

[98] PyTorch. RL Examples. https://github.com/pytorch/examples/tr
ee/main/reinforcement_learning.

[99] Rawson, M., and Reger, G. lazycop: Lazy paramodulation meets
neurally guided search. In TABLEAUX (2021), vol. 12842 of Lecture
Notes in Computer Science, Springer, pp. 187–199.

[100] Reynolds, A., Barbosa, H., and Fontaine, P. Revisiting enumer-
ative instantiation. In Tools and Algorithms for the Construction and
Analysis of Systems: 24th International Conference, TACAS 2018, Held
as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings,
Part II 24 (2018), Springer, pp. 112–131.

[101] Reynolds, A., Tinelli, C., and de Moura, L. M. Finding conflicting
instances of quantified formulas in SMT. In Formal Methods in Computer-
Aided Design, FMCAD 2014, Lausanne, Switzerland, October 21-24, 2014
(2014), IEEE, pp. 195–202.

120 Bibliography

[102] Riazanov, A., and Voronkov, A. The design and implementation of
VAMPIRE. AI Commun. 15, 2-3 (2002), 91–110.

[103] Robinson, J. A. A machine-oriented logic based on the resolution prin-
ciple. J. ACM 12, 1 (jan 1965), 23–41.

[104] Ross, S., Gordon, G., and Bagnell, D. A reduction of imitation
learning and structured prediction to no-regret online learning. In Pro-
ceedings of the 14th International Conference on Artificial Intelligence
and Statistics (2011), pp. 627–635.

[105] Sanchez-Stern, A., Alhessi, Y., Saul, L., and Lerner, S. Gen-
erating correctness proofs with neural networks. In Proceedings of the
4th ACM SIGPLAN International Workshop on Machine Learning and
Programming Languages (New York, NY, USA, 2020), MAPL 2020, As-
sociation for Computing Machinery, p. 1–10.

[106] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE transactions
on neural networks 20, 1 (2008), 61–80.

[107] Schlichtkrull, M., Kipf, T. N., Bloem, P., Van Den Berg, R.,
Titov, I., and Welling, M. Modeling relational data with graph con-
volutional networks. In The Semantic Web: 15th International Confer-
ence, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, Proceedings
15 (2018), Springer, pp. 593–607.

[108] Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In Proceedings of the 32nd Interna-
tional Conference on Machine Learning (Lille, France, 07–09 Jul 2015),
F. Bach and D. Blei, Eds., vol. 37 of Proceedings of Machine Learning
Research, PMLR, pp. 1889–1897.

[109] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347 (2017).

[110] Schulz, S. A Comparison of Different Techniques for Grounding Near-
Propositional CNF Formulae. In Proc. of the 15th FLAIRS, Pensacola
(2002), S. Haller and G. Simmons, Eds., AAAI Press, pp. 72–76.

[111] Schulz, S. E - A Brainiac Theorem Prover. AI Commun. 15, 2-3 (2002),
111–126.

Bibliography 121

[112] Schulz, S. System description: E 1.8. In LPAR (2013), K. L. McMillan,
A. Middeldorp, and A. Voronkov, Eds., vol. 8312 of LNCS, Springer,
pp. 735–743.

[113] Schulz, S., Cruanes, S., and Vukmirovic, P. Faster, higher,
stronger: E 2.3. In Automated Deduction - CADE 27 - 27th Interna-
tional Conference on Automated Deduction, Natal, Brazil, August 27-30,
2019, Proceedings (2019), P. Fontaine, Ed., vol. 11716 of Lecture Notes in
Computer Science, Springer, pp. 495–507.

[114] Schulz, S. Eprover. https://wwwlehre.dhbw-stuttgart.de/~sschu

lz/E/E.html.

[115] Scott, J., Niemetz, A., Preiner, M., Nejati, S., and Ganesh,
V. MachSMT: A machine learning-based algorithm selector for SMT
solvers. In Tools and Algorithms for the Construction and Analysis of
Systems (Cham, 2021), J. F. Groote and K. G. Larsen, Eds., Springer
International Publishing, pp. 303–325.

[116] Selsam, D., and Bjørner, N. Guiding high-performance sat solvers
with unsat-core predictions. In Theory and Applications of Satisfiability
Testing–SAT 2019: 22nd International Conference, SAT 2019, Lisbon,
Portugal, July 9–12, 2019, Proceedings 22 (2019), Springer, pp. 336–353.

[117] Selsam, D., Lamm, M., Bünz, B., Liang, P., de Moura, L., and
Dill, D. L. Learning a SAT solver from single-bit supervision. In 7th
International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019 (2019), OpenReview.net.

[118] Si, X., Dai, H., Raghothaman, M., Naik, M., and Song, L. Learn-
ing loop invariants for program verification. Advances in Neural Informa-
tion Processing Systems 31 (2018).

[119] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van
Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneer-
shelvam, V., Lanctot, M., et al. Mastering the game of go with deep
neural networks and tree search. Nature 529, 7587 (2016), 484–489.

[120] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I.,
Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton,
A., et al. Mastering the game of go without human knowledge. Nature
550, 7676 (2017), 354–359.

122 Bibliography

[121] Smallbone, N. Twee: An equational theorem prover. In Automated
Deduction - CADE 28 - 28th International Conference on Automated De-
duction, Virtual Event, July 12-15, 2021, Proceedings (2021), A. Platzer
and G. Sutcliffe, Eds., vol. 12699 of Lecture Notes in Computer Science,
Springer, pp. 602–613.

[122] Smallbone, N. Twee 2.4.1. https://github.com/nick8325/twee/rel
eases/download/2.4.1/twee-2.4.1-linux-amd64.

[123] Suda, M. Improving enigma-style clause selection while learning from
history. In CADE (2021), vol. 12699 of Lecture Notes in Computer Sci-
ence, Springer, pp. 543–561.

[124] Sutcliffe, G. The CADE-27 automated theorem proving system com-
petition - CASC-27. AI Communications 32, 5-6 (2020), 373–389.

[125] Sutton, R. S., and Barto, A. G. Reinforcement learning: An intro-
duction. 2018.

[126] Torabi, F., Warnell, G., and Stone, P. Behavioral cloning from
observation. In Proceedings of the 27th International Joint Conference on
Artificial Intelligence (2018), IJCAI’18, AAAI Press, p. 4950–4957.

[127] Turing, A. M. On computable numbers, with an application to the
entscheidungsproblem. Proc. London Math. Soc. s2-42, 1 (1937), 230–
265.

[128] Urban, J. MPTP 0.2: Design, implementation, and initial experiments.
J. Autom. Reasoning 37, 1-2 (2006), 21–43.

[129] Urban, J., and Jakub̊uv, J. First neural conjecturing datasets and
experiments. In Intelligent Computer Mathematics - 13th International
Conference, CICM 2020, Bertinoro, Italy, July 26-31, 2020, Proceedings
(2020), C. Benzmüller and B. R. Miller, Eds., vol. 12236 of Lecture Notes
in Computer Science, Springer, pp. 315–323.

[130] Urban, J., Vyskočil, J., and Štěpánek, P. MaLeCoP: Machine
learning connection prover. In TABLEAUX (2011), K. Brünnler and
G. Metcalfe, Eds., vol. 6793 of LNCS, Springer, pp. 263–277.

[131] Veroff, R. Using hints to increase the effectiveness of an automated
reasoning program: Case studies. J. Autom. Reason. 16, 3 (1996), 223–
239.

Bibliography 123

[132] Voronkov, A. AVATAR: the architecture for first-order theorem
provers. In Computer Aided Verification - 26th International Confer-
ence, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 18-22, 2014. Proceedings (2014), A. Biere
and R. Bloem, Eds., vol. 8559 of Lecture Notes in Computer Science,
Springer, pp. 696–710.

[133] Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R.,
Kavukcuoglu, K., and de Freitas, N. Sample efficient actor-critic
with experience replay. International Conference on Learning Represen-
tations (2016).

[134] Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful are
graph neural networks? In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019
(2019), OpenReview.net.

[135] Zombori, Z., Urban, J., and Olšák, M. The role of entropy in guiding
a connection prover. In TABLEAUX (2021), vol. 12842 of Lecture Notes
in Computer Science, Springer, pp. 218–235.

124 Bibliography

Appendix A: Chapter 2

A.1 Congruence Closure + SAT

After the ML instantiator has instantiated the clauses in a problem, we remove
all clauses that still have variables and send the remaining, ground part of the
problem to Vampire. We use Vampire with the − − acc option that activates
congruence closure and use a time limit of 30s. However, the vast majority of
executions finish in under 1 second.

A.2 Comparison with Existing Provers

We compare with iProver, another system that in one of its modes relies mainly
on instantiation to prove problems. We use the following flags for iProver, to
confine it to a pure instantiation-based mode:

--schedule none

--superposition_flag false

--resolution_flag false

--inst_prop_sim_given false

--inst_prop_sim_new false

For our comparisons with CVC5, we used the default settings, with the newest
version as of March 2023.

125

126 Appendix A: Chapter 2

A.3 Random Instantiator

In Figure A.3.1 we include a plot of the number of training set proofs cumula-
tively found by the random instantiator on the M2k subset of the training set.
For the full dataset, the random instantiator cumulatively solves 9923 training

Figure A.3.1: Cumulative M2k solutions by random instantiation limited to the
training set.

problems after 100 passes with two instantiation levels.
We have also attempted to extract a training set of instantiation proofs from

iProver, but encountered difficulties extracting training data. Exactly tracing
all the steps as they happened, transforming them so that the ML system
can replicate them, is difficult, especially because of differences in handling of
equality. As we expected similar difficulties with other systems, we chose to start
from random instantiations, in the exact same setting as our ML predictor.

A.4 Training Curves

Figures A.4.1 and A.4.2 correspond to the model training on the full (non-M2k)
training dataset. We can see that the model can reach very high performance
on the training set (even achieving 0.95 median accuracy), but stops improving
on validation after about 40 epochs.

A.5. Training on Generated Proofs 127

0 20 40 60 80 100

Epoch

0.03

0.04

0.05

0.06

0.07

0.08

C
E

L
o
s
s

Losses

Training

Validation

Figure A.4.1: Loss curve for a model trained on the 25-5 random instantiator
data.

A.5 Training on Generated Proofs

In some cases, during the looping experiments, multiple different proofs of the
same problem can be generated. In that case, we keep the proof with fewer
levels of instantiation (if there is a difference) to train on. The underlying idea
is that we should train the instantiation system to be as concise as possible and
that it should prefer proofs with shallower terms.

A.6 On Keeping General Clauses & Training Data
Alignment

When a clause is instantiated, we can either keep the parent clause of the
instance around in our set of clauses, or the parent can be deleted. However,
deletion would correspond to the assertion that no more instances of that parent
clause are necessary anymore. As it is possible for the system to miss crucial
instantiations, the parent clauses are kept so that they may be instantiated on
the next level again. Deleting the parent clauses was also briefly tested, but led
to worse preliminary performance.

This also leads to an interesting issue, as our training data is constructed to

128 Appendix A: Chapter 2

0 20 40 60 80 100

Epoch

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

M
e
d
i
a
n

A
c
c
u
r
a
c
y

Median Accuracy

Training

Validation

Figure A.4.2: Median accuracy for a model trained on the 25-5 random instan-
tiator data.

not include the parent clauses anymore, when the instances have been created
(the training data is cleared of any superfluous steps). However, keeping the
parent clauses in the training data did not lead to better results. This remains
to be further investigated.

Another potential issue is that during inference time, the system produces
unnecessary instantiations, which are then part of the input at the next in-
stantiation level. This means that the input graphs start looking more and
more dissimilar from the training data. Preliminary attempts to remedy this
difference by also training on the data as it is during inference time however
did not lead to better results. There may be a balance to strike in the relative
importance of training on the various types of data.

A.7 Scaling & Decomposition of the Task

The GNN part of the approach scales at a maximum quadratically with the
number of nodes (the sum of the number of clauses, literals and terms in the
parsed problem), in the case of a complete graph. However, our graphs are
not close to complete graphs. For the RNN part, the memory requirements
scale linearly according to the number of clauses with variables in the problem

A.7. Scaling & Decomposition of the Task 129

C and also linearly with the number of required samples per clause (i.e. 25
or 5). The RNN time requirements in theory scale linearly with the size of
the largest instance needed, measured in the number of variables. However in
practice we cap the RNN at 12 iterations. The scaling of the method as a
whole is dependent on the size (in terms of levels needed to generate the needed
terms) of typical proofs and on the accuracy of the instances generated. If the
probability distribution that is learned is very focused, only a few unnecessary
instances are generated, which keeps the growth of the clause set under control.

The looping experiments, where the network learns from a starting dataset to
prove more and more theorems, can take days to complete. On the M2k dataset,
one looping iteration (including training procedures) takes around 5 minutes
(with 1000 attempts per iteration), whereas it takes around 50–60 minutes for
the experiments on the full dataset (with 10 000 attempts per iteration). The
M2k looping experiment was run with softmax temperature 2, and for the full
dataset experiment the temperature was set to 1. The higher the temperature,
the more unique instances are created. With 5 levels of instantiation, too many
instances can slow down the procedure.

The total space of possible instantiations is impossible for us to examine.
We have therefore chosen to use our level-based approach, where we construct
the necessary terms from top to bottom. Other decompositions of the task are
possible. For example, new terms could be constructed bottom-up, starting
with already existing ground terms.

Having chosen to use the level-based approach, there are still other choices
to make. For example, does the current state of the variable-symbol mapping
in other clauses influence our choice of a symbol for a particular variable in
our current clause? When considering the task itself, of course the instantia-
tions of other clauses impact the viability of instantiations in the current clause.
However, we have chosen to decompose the process in two parts: the graph neu-
ral network (GNN) can see the entire graph, but the recurrent neural network
(RNN) that produces the instances can only see the variable embeddings for 1
particular clause (and to get instances for all clauses, we run the same RNN in
parallel). For the system to work, the coordination of which instantiation strat-
egy to pursue in the RNN must be happening in the GNN part, when the clause,
symbol and variable embedding vectors are determined. We found this to be an
acceptable trade-off, as it allowed us to consider each clause somewhat separate
from the other ones, simplifying and speeding up our instantiation sampling
procedure. A probability distribution that considers the combinatorial number
of choices made in all the other clauses at all times would be very expensive to
evaluate.

130 Appendix A: Chapter 2

A.8 Using other Ground Solvers

We tested whether using CVC5 as our ground solver would change the results.
We used three levels of neural instantiations on the test set problems, and
removed all clauses with variables. Then, we ran either Vampire (with acc
argument) or CVC5 (default parameters). We found no difference, with both
systems solving the exact same amount of problems: 904, 1909, 2146 at the
respective levels. This indicates that the precise choice of ground solver, as
long as CC + SAT is present, does not influence our results.

Appendix B: Chapter 3

B.1 Server Settings

We run the server with 48 state workers, 32 GPU workers, and the query max
size is 2048. The context is created from a random sample of at most 512 given
clauses and all negated conjectures (may be among given clauses). In no eval
mode we run the server with the --zero_scores option.

The evaluations were run on NVIDIA DGX-1 with dual 20-core Inter E5-
2698 v4, 512 GB RAM, and 8 NVIDIA Tesla V100 GPU cards.

B.2 iProver Settings

We compile iProver (branch 2022_sockets) with STATIC=true z3=false in
the debug mode (let dbg_global_flag = true), which is useful for extracting
proofs for further iterations. For every problem, we run
tptp4X -t noint -u machine -N to rename integers to constants.

We always run 16 iProvers in parallel on the same machine as we run the
server and they communicate via the loopback network interface. The server
overhead is relatively small (overall load is usually 22–23) with a GPU utilization
between 10–20% even with our biggest models (d = 32 and l = 11). Time limits
(in real time) are always 15 seconds.

The detailed settings are as follows.

Non-interactive mode

iproveropt \

--interactive_mode false \

--inst_learning_loop_flag false \

131

132 Appendix B: Chapter 3

--schedule none \

--preprocessing_flag false \

--instantiation_flag true \

--superposition_flag false \

--resolution_flag false \

--time_out_real 15 \

--inst_unprocessed_bound 1000

Ignore eval and no eval mode

iproveropt \

--interactive_mode true \

--external_ip_address "127.0.0.1" \

--external_port "12300" \

--inst_learning_loop_flag false \

--schedule none \

--preprocessing_flag false \

--instantiation_flag true \

--superposition_flag false \

--resolution_flag false \

--time_out_real 15 \

--inst_unprocessed_bound 1000

Solo mode

iproveropt \

--interactive_mode true \

--external_ip_address "127.0.0.1" \

--external_port "12300" \

--inst_learning_loop_flag false \

--schedule none \

--preprocessing_flag false \

--instantiation_flag true \

--superposition_flag false \

--resolution_flag false \

--inst_passive_queue_type priority_queues \

--inst_passive_queues_freq "[1]" \

--inst_passive_queues "[[+external_score]]" \

--time_out_real 15 \

--inst_unprocessed_bound 1000

B.3. GNN Settings 133

Coop mode

iproveropt \

--interactive_mode true \

--external_ip_address "127.0.0.1" \

--external_port "12300" \

--inst_learning_loop_flag false \

--schedule none \

--preprocessing_flag false \

--instantiation_flag true \

--superposition_flag false \

--resolution_flag false \

--inst_passive_queue_type priority_queues \

--inst_passive_queues_freq "[27;25;2]" \

--inst_passive_queues "[[+external_score];

[-conj_dist;+conj_symb;-num_var];

[+age;-num_symb]]" \

--time_out_real 15 \

--inst_unprocessed_bound 1000

B.3 GNN Settings

We trained models with node, symbol, and clause embeddings of size 16 with
10 layers. In the last iteration, we also tried models with embeddings of size
32 and with 11 layers. We have not performed other hyperparameter searches.
Layer normalization is used after every message passing step to ensure training
stability.

The models were trained on various servers with NVIDIA GTX 1080 Ti,
Tesla V100, and A40 GPUs. We trained each model for roughly two days (with
a limit of 100 epochs). The only exception was iteration 1 where we trained
models just for one day to get more proofs quickly. The Adam optimization
algorithm with a learning rate 0.0005 was used for training.

134 Appendix B: Chapter 3

Research Data Management

This thesis research has been carried out under the research data management
policy of the Institute for Computing and Information Sciences of Radboud
University, The Netherlands1. The chapters themselves contain links to repos-
itories associated with the research projects. Here, those links are collected,
along with links to archived versions.

• Chapter 2:

– https://github.com/JellePiepenbrock/neural-synthesis

– DOI: https://doi.org/10.5281/zenodo.14616518

• Chapter 3:

– https://github.com/JellePiepenbrock/iprover-gnn-server

– DOI: https://doi.org/10.5281/zenodo.14616489

• Chapter 4:

– https://github.com/JellePiepenbrock/mlcvc5-LPAR

– DOI: https://doi.org/10.5281/zenodo.14616456

• Chapter 5:

– https://github.com/JellePiepenbrock/neural_rewriting

– DOI: https://doi.org/10.5281/zenodo.14616272

1https://www.ru.nl/en/institute-for-computing-and-information-sciences/resear

ch, last accessed January 15, 2025.

135

136 Research Data Management

Summary

Mathematics can be formalized to allow a computer to execute the proof steps
and recognize whether a statement has been proven. Computer systems that
automate mathematics are called automated theorem provers (ATP). A collec-
tion of assumptions, called axioms, is entered into the system in combination
with a goal statement or conjecture. The system has inference rules, which
prescribe how the axioms and conjecture may be handled during a search for a
proof.

Depending on the exact ATP system, the allowed inference rules may vary.
However, the number of possible choices at each point in the process can become
very large, which makes the search space towards a proof difficult to navigate.
It would be useful to have a system that can predict which choices are better
than other ones, so that a proof may be reached earlier in the search procedure.

The field of machine learning is concerned with creating mathematical mod-
els that approximate relationships between quantities that are expressed in
example data. The process has the following steps: showing the system the
expected output quantity that is associated with a particular input, measuring
the difference between the expected output and the current prediction of the
mathematical model and then modifying the system so that the difference will
be smaller. At the end of the procedure, one ends up with a model that predicts
the value of the expected output quantity.

In this thesis, automated theorem proving is combined with machine learn-
ing. The machine learning component is tasked with learning to predict which
choices in the proving process are useful and which are not. This information
can be learned from already finished proofs. The overall goal is to improve the
performance of the automated theorem proving systems in terms of theorems
proven in a particular time period. In particular, a class of machine learning
models called graph neural networks is used to process mathematical data and
the state information of the automated provers at particular times.

137

138 Summary

The first research project develops a system that replaces variables in first-
order logic problems with more concrete terms in a process called instantiation.
This is accomplished with two ML approaches: a graph neural network that
creates representations for the symbols and subcomponents of the mathematical
problem and a recurrent neural network that predicts which symbols should be
used to create the instantiation terms. The system can start learning from
scratch to prove 19.7% of the unseen problems in our dataset.

The second research project integrates a graph neural network with the
clause selection component of the automated theorem prover iProver. This
prover uses an instantiation calculus and the clause selection guides which
clauses will be used for instantiation. The predictions of the graph neural
network improve the performance of iProver in its instantiation mode.

The third research project in this thesis concerns the integration of a graph
neural network into the satisfiability modulo theories (SMT) solver cvc5. The
ML predictor can control the instantiation process within cvc5 by choosing
the subformula to instantiate, as well as by ranking the terms with which to
instantiate that subformula. In a dataset of first-order logic problems, the ML
predictor improves the performance of the enumerative instantiation system
within cvc5.

In the fourth research project, a tree neural network is used to learn a
rewriting policy for a dataset of loop theory problems. The system learns how
to solve more than half of the unseen problems from scratch by rewriting using
the rewriting rules until the goal is reached.

The work in this thesis shows that guiding automated theorem proving with
machine learning is possible for instantiation-based and rewriting-based proving
systems. Different methods to integrate machine learning into the provers are
explored. The lessons learned can be used in the further development of machine
learning heuristics for automated theorem proving systems. Future work is
possible in the direction of improving the speed of the predictors and in exploring
whether particular kinds of proof are especially useful to train the predictor in
comparison with other kinds.

Samenvatting

Wiskunde kan worden geformaliseerd zodat een computer bewijsstappen kan
uitvoeren en kan herkennen wanneer een stelling bewezen is. Computersyste-
men die wiskunde automatiseren worden automated theorem provers (Neder-
lands: automatische stellingbewijzers, afgekort: ATP) genoemd. Een collectie
van aannames, axioma’s genoemd, wordt ingevoerd in combinatie met een doel-
stelling. Het systeem heeft regels voor geldige gevolgtrekkingen, die voorschri-
jven hoe de axioma’s en doelstelling mogen worden behandeld gedurende de
zoektocht naar een bewijs.

Afhankelijk van het specifieke ATP systeem kunnen de geldige vormen van
gevolgtrekking verschillen. Het aantal mogelijke keuzes op ieder moment in
het proces kan zeer groot worden, wat het moeilijk maakt door de zoekruimte
richting een bewijs te navigeren. Het zou nuttig zijn om een systeem te hebben
dat kan voorspellen welke keuzes beter zijn dan andere, zodat eerder in de
zoekprocedure een bewijs kan worden gevonden.

Het onderzoeksveld machine learning (Nederlands: machinaal leren, afkort-
ing: ML) houdt zich bezig met het creëren van wiskundige modellen die ver-
banden tussen variabelen benaderen, die kenmerkend zijn in data. Het proces
bevat de volgende stappen: Het systeem het verwachte antwoord op basis van
bepaalde invoerdata laten zien, het verschil meten tussen het verwachte antwo-
ord en de voorspelling van het model en tot slot het systeem aanpassen zodat
dit verschil kleiner wordt. Aan het einde van deze procedure heeft men een
model dat waardes voorspelt op basis van de invoerdata.

In dit proefschrift wordt automated theorem proving gecombineerd met ma-
chine learning. De machine learning component heeft als taak te leren voor-
spellen welke keuzes in het bewijsproces nuttig zijn en welke niet. Deze infor-
matie kan worden geleerd uit reeds voltooide bewijzen. Het algemene doel is om
het vermogen van de automated theorem proving systemen te verbeteren, uitge-
drukt in het aantal stellingen die kunnen worden bewezen in een bepaalde peri-

139

140 Samenvatting

ode. Er wordt een klasse van machine learning modellen gebruikt die graph neu-
ral networks (graaf neurale netwerken) heet voor het verwerken van wiskundige
data en de informatie over de staat van de automated theorem provers op spec-
ifieke punten in het proces.

Het eerste onderzoeksproject in dit proefschrift ontwikkelt een systeem dat
variabelen in eerste-orde logicaproblemen vervangt door meer concrete termen
in een proces dat instantiation (instantiatie) heet. Dit wordt bereikt met twee
verschillende ML methodes: een graph neural network dat representaties creëert
voor de symbolen en subcomponenenten van het wiskundige probleem en een
recurrent neural network (recurrent neuraal netwerk) dat voorspelt welke sym-
bolen gebruikt moeten worden om de instantiatietermen te construeren. Het
systeem kan beginnen met leren vanuit het niets totdat het 19.7% van de
ongeziene bewijzen in onze dataset kan bewijzen.

Het tweede onderzoeksproject integreert een graph neural network met de
clause selection component van de automatische bewijzer iProver. Deze bewi-
jzer gebruikt een instantiatiecalculus en clause selection bepaalt welke feiten
worden gebruikt voor instantiatie. De voorspellingen van het graph neural net-
work verbeteren de prestaties van iProver in de instantiatiemodus.

Het derde onderzoeksproject behandelt de integratie van een graph neural
network met de satisfiability modulo theories (SMT) probleemoplosser cvc5. De
ML voorspeller kan het instantiatieproces in cvc5 controleren door de subfor-
mule om te instantieren te kiezen en door de termen waarmee deze subformule
kan worden gëınstantieerd te rangschikken. De ML voorspellingen verbeteren
de prestaties van het enumeratieve instantiatiesysteem in cvc5.

In het vierde onderzoeksproject wordt een tree neural network gebruikt om
een strategie voor het herschrijven van problemen uit een dataset over quasi-
groepen te leren. Het systeem leert meer dan de helft van de ongeziene proble-
men in de dataset op te lossen door de problemen te herschrijven tot het doel
bereikt is.

Het werk in dit proefschrift laat zien dat het besturen van automated the-
orem proving met machine learning mogelijk is in het geval van systemen
gebaseerd op instantiatie en herschrijven. Verschillende methodes om ma-
chine learning te integreren met de bewijzers worden verkend. De lessen die
geleerd zijn kunnen worden gebruikt in het verder ontwikkelen van heuristieken
gebaseerd op machine learning voor automated theorem proving. Toekomstig
werk kan zich richten op het verbeteren van de snelheid van de voorspellers en op
het onderzoeken of er een specifieke stijl van bewijs bestaat waar de voorspellers
beter van leren dan andere stijlen.

Contributions & Publication
List

The introduction to the topics of automated theorem proving and machine
learning serving as Chapter 1 of this PhD thesis was written specifically by
me for this purpose and has not appeared anywhere else before. Tom Heskes,
Mikoláš Janota, and Josef Urban helped proofread the text.

Chapter 2 is based on a journal paper “Invariant Neural Architecture for
Learning Term Synthesis in Instantiation Proving” published in the Journal
of Symbolic Computation. The implementation of the system, the experimen-
tal evaluation, and the writing of the initial text of the paper were done by
me. Josef Urban provided the initial random instantiations dataset. Josef Ur-
ban and Mikoláš Janota advised the implementation and experimental work.
Miroslav Oľsák assisted in changing the first-order parser to fulfill the require-
ments needed for the system. Josef Urban, Konstantin Korovin, Mikoláš Janota,
and Tom Heskes helped proofread and improve the text of the paper.

Chapter 3 is based on a conference paper “Guiding an Instantiation Prover
with Graph Neural Networks” published at LPAR 2023. I implemented the
graph neural network and initial integration with the machine learning server
code. Konstantin Korovin created a communication API within iProver to
interact with the ML server. Karel Chvalovský did the final training and ex-
perimental evaluation of the system with the iProver integration. The initial
writing of the text of the paper was mostly divided along these lines. Josef
Urban advised and proofread the paper.

Chapter 4 is based on a conference paper “First Experiments with Neural
cvc5” published at LPAR 2024. I implemented the system, did the experimental
evaluation of the system, and wrote the initial text of the paper. Mikoláš Janota
advised conceptually and also practically on how to integrate with the cvc5
codebase. Jan Jakub̊uv helped migrate the codebase to a newer version of cvc5.

141

142 Contributions & Publication List

Josef Urban advised on project direction and the Mizar dataset. Everyone
helped proofread and improve the paper text.

Chapter 5 is based on a conference paper “Guiding an Automated Theorem
Prover with Neural Rewriting” published at IJCAR 2022. I implemented the
system, did the experimental evaluation, and wrote the initial text of the paper.
Tom Heskes, Mikoláš Janota, and Josef Urban advised and helped improve the
final text of the paper.

Below is a list of works that I co-authored during the PhD that were accepted
and published in scientific venues:

1. Jelle Piepenbrock, Josef Urban, Konstantin Korovin, Miroslav Oľsák, Tom
Heskes, Mikoláš Janota: Invariant Neural Architecture for Learning Term
Synthesis in Instantiation Proving. Journal of Symbolic Computation
(Chapter 2)

2. Jan Jakub̊uv, Mikoláš Janota, Jelle Piepenbrock and Josef Urban: Ma-
chine Learning for Quantifier Selection in cvc5. ECAI 2024

3. Jason Rute, Miroslav Oľsák, Lasse Blaauwbroek, Fidel Ivan Schaposnik
Massolo, Jelle Piepenbrock, Vasily Pestun: Graph2Tac: Online Represen-
tation Learning of Formal Math Concepts. ICML 2024

4. Jelle Piepenbrock, Mikoláš Janota, Josef Urban, Jan Jakub̊uv: First Ex-
periments with Neural cvc5. LPAR 2024 (Chapter 4)

5. Pedro Orvalho, Jelle Piepenbrock, Mikoláš Janota, Vasco M. Manquinho:
Graph Neural Networks for Mapping Variables Between Programs. ECAI
2023

6. Karel Chvalovský, Konstantin Korovin, Jelle Piepenbrock, Josef Urban:
Guiding an Instantiation Prover with Graph Neural Networks. LPAR
2023 (Chapter 3)

7. Jelle Piepenbrock, Tom Heskes, Mikoláš Janota, Josef Urban: Guiding an
Automated Theorem Prover with Neural Rewriting. IJCAR 2022 (Chap-
ter 5)

8. Zarathustra Amadeus Goertzel, Jan Jakub̊uv, Cezary Kaliszyk, Miroslav
Oľsák, Jelle Piepenbrock, Josef Urban: The Isabelle ENIGMA. ITP 2022

9. Mikoláš Janota, Jelle Piepenbrock, Bartosz Piotrowski: Towards Learning
Quantifier Instantiation in SMT. SAT 2022

Acknowledgements

Many people have been part of my adventure these last few years. Here I want
to express my gratitude to them.

First I would like to thank my supervisors during this PhD journey: Tom
Heskes, Mikoláš Janota and Josef Urban. I was very lucky to get a group of
supervisors with whom I got along on both a personal and research level. All of
you have been inspiring for me. I would also like to say something about each
of you separately.

I would like to thank Tom Heskes for his calm stewardship during my time
as a PhD student: always approachable, even when in another country, for both
advice and encouraging words. I always felt that I was in good hands.

I would like to thank Mikoláš Janota for his trust and willingness to integrate
me into his project. I knew that I could always walk into his office and ask for
technical explanations of complicated software or for an enthusiastic whiteboard
session on concepts that were new to me.

I would like to thank Josef Urban for his limitless interest and motivation
for advancing artificial intelligence in theorem proving. I learned a lot from him
and I admire his ability to be an enthusiastic driving force in the community.
He shaped, in Prague and through the AITP conference, a great environment
for research.

I would also like to thank the people in and associated with the AI depart-
ment at CIIRC and the broader community for making the research a lively
activity: Thibault Gauthier, Martin Suda, Filip Bártek, Mirek Oľsák, Lasse
Blaauwbroek, Bartosz Piotrowski, Chad Brown, Karel Chvalovský, Jan Hůla,
Jan Jakub̊uv, Pedro Orvalho, Zar Goertzel, Michael Rawson, Jason Rute, Yu-
taka Nagashima, Konstantin Korovin, Cezary Kaliszyk, David Cerna and many
others.

I would like to thank Herman Geuvers, Moa Johansson and Stephan Schulz
for reviewing my manuscript and their useful suggestions on how to improve it.

143

144 Acknowledgements

I would like to thank Teven Le Scao, Barbora Hudcová, Hugo Cisneros and
Kateryna Zorina for making my stay in Prague so good that I wanted to stay
longer!

I would like to thank the people in and around the Data Science group at
ICIS, where I felt at home: Charlotte Cambier van Nooten, Paulus Meessen,
Emma Gerritse, Nik Vaessen, Marc Hermes, Gabriel Bucur, Parisa Naseri, Roel
Bouman, and many others as well.

I would like to thank Alex Kolmus, Simon Brugman, Mick van Hulst and
Roeland Wiersema for sharing with me very interesting and formative moments.

I would like to thank my mother Jacqueline and father Fred for all the
support along the way! They gave me the freedom and opportunity to pursue
my interests. With their encouragement, they laid the foundation on which I
could build. I would also like to thank my sister Diede for her enthusiasm and
support, even if sometimes she was half a world away. I know that I can always
count on her.

And, of course, I also want to thank Mirthe for everything: you were there
for all the highs and the lows. The knowledge that I could always return home
to you made the whole process a lot more enjoyable.

Curriculum vitae

Education

• PhD in Computer Science, Radboud University 2020 – 2024

• MSc. in Computing Science, Radboud University 2018 – 2020

• MSc. in Molecular Life Sciences, Radboud University 2016 – 2020

• BSc. in Molecular Life Sciences, Radboud University 2012 – 2015

Employment

• Promovendus, Radboud University 2020 – 2024

• Junior Research Scientist, Czech Institute for Informatics, Robotics
and Cybernetics, Czech Technical University in Prague 2020 – 2023

• Co-Founder, GraphKite 2017 – 2021

145

9 789465 150499

	Cover
	Colophon
	Contents
	Chapter 1. Introduction
	Chapter 2. Invariant Neural Architecture for Learning Term Synthesisin Instantiation Proving
	Chapter 3. Guiding an Instantiation Prover with Graph Neural Networks
	Chapter 4. Instantiation in SMT solvers with Graph Neural Networks
	Chapter 5. Guiding an Automated Theorem Prover with Neural Rewriting
	Chapter 6. Conclusion
	Bibliography
	Appendix A: Chapter 2
	Appendix B: Chapter 3
	Research Data Management
	Summary
	Samenvatting
	Contributions & Publication List
	Acknowledgements
	Curriculum vitae

