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Chapter 1

General introduction

Imagine you have just relocated and you wake up during the night in your new
bedroom. You decide to get a glass of water from the kitchen. To do so, you first
have to navigate to reach the door of your bedroom in complete darkness. In your
mind, you have a rough idea about the distance from your bed to the door, but you
are not very certain about this estimate. As you carefully start walking, the motor
system generates movement which is sensed by multiple sensory systems. For
example, the otoliths in your inner ear relay information about your linear motion.
Furthermore, you are using your hands to feel around, gathering more information
about where you are and how close you are to the door. Suddenly, your hands
touch the bedroom door, revealing it to be much closer than anticipated based on
the layout of your old bedroom. The memory of your old room has interfered with
estimating the distance to the new door. This example illustrates the central
question of this thesis: how does our memory of past experiences influence our
spatial perception?

Spatial perception refers to the ability to perceive our own orientation and position
in space as well as the orientation and position of objects around us, which enables
us to successfully interpret and navigate our surroundings. In this thesis, |
investigate how spatial perception, specifically the perception of our orientation
(Chapter 2) and self-motion (Chapters 3 and 4) in space, is affected by the memory
of past experiences. In the remainder of this chapter, | first discuss the functioning
of the sensory systems involved in spatial perception. Second, | describe how
different types of sensory information might be integrated with memorized prior
knowledge to form a percept. Finally, spatial perception experiments are described,
as well as systematic trial-to-trial errors in the behavior of participants that are
often observed in these experiments.
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1.1 Sensory signals in spatial perception

We experience the world through our sensors. Each sensory system contains
specialized receptors that convert properties of the environment into neural
activity. Sensory information in the form of action potentials then travels through
afferent neurons in peripheral nerves to the central nervous system. The combined
firing pattern of groups of sensory neurons encodes different features of the
sensory input, such as stimulus intensity or duration. To determine our orientation
and position in space, the brain appears to utilize and combine information from
multiple sensory systems (Angelaki & Cullen, 2008; Clemens et al., 2011). The
sensory signals involved in spatial perception are primarily provided by the visual,
vestibular, somatosensory and motor systems.

The visual system plays an important role in spatial perception as it allows us to
perceive different features of objects in the environment. This includes the
orientation of static objects, such as buildings or trees, which can provide
information about the direction of gravity and help us form an internal self-
orientation estimate (Li & Matin, 2005). Static monocular and binocular cues also
transmit information about where objects are positioned in space relative to
ourselves (Brenner & Smeets, 2018). When we move through the environment, the
apparent motion of objects across our retinae, referred to as optic flow (Gibson,
1950), generates dynamic information about our orientation and position in space.
In darkness or in the case of an impaired visual system, these visual signals are
completely absent or less available, forcing us to rely on other senses to form an
orientation or position estimate. In this thesis, | investigate how humans perceive
their orientation or self-motion when visual signals are unavailable.

1.1.1 Vestibular receptors

Together with the auditory cochlea, the peripheral vestibular system is located
inside the labyrinth of the inner ear. This labyrinth lies within the head’s temporal
bone and contains ducts (the semicircular canals) and chambers (the ampullae,
utricle and saccule) filled with endolymph (see Figure 1.1A).

Semicircular canals

The three semicircular canals measure angular velocity of the head in space
brought about by angular movements (i.e., rotations). The canals are roughly
arranged in three orthogonal planes: the lateral canal is positioned in the head’s
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yaw axis, the posterior canal in the head’s roll axis and the anterior canal in the
pitch axis, tilted approximately 30° upward from the head’s horizontal plane
(Blanks et al., 1975). At the base of each canal lies a chamber (ampulla), which

contains hair cells. The hair cell endings (cilia) are embedded in a gelatinous
membrane (cupula), through which the endolymph cannot pass. When the head is
rotated relative to the body, or in the case of a full-body rotation, the canal rotates
but the endolymph lags behind due to the fluid’s inertia. This lag causes the
endolymph to press against the elastic cupula within the ampulla, which in turn
bends the embedded cilia. The flow of the endolymph is proportional to the head’s
angular acceleration, whereas the cupula deflection is roughly proportional to the
head’s angular velocity (Obrist, 2011). The afferent neurons have a spontaneous
firing rate, which increases or decreases depending on how the cilia are deflected.
The cilia consist of one long kinocilium and shorter stereocilia. Bending the
stereocilia towards the kinocilium opens mechanically-gated ion channels at the
tips of the stereocilia, allowing the influx of potassium, which depolarizes the hair
cell’s membrane. This depolarization opens voltage-gated calcium channels at the
base of the hair cell. The subsequent influx of calcium results in the increased
release of neurotransmitters that bind to receptors of the afferent neurons, causing
increased neural firing. Bending the stereocilia away from the kinocilium causes the
mechanically-gated channels to close, which hyperpolarizes the hair cell, resulting
in a decrease in neurotransmitter release and afferent firing. The canals in one ear
form pairs with the canals in the other ear, with their cilia oriented in opposite
directions. The same head rotation therefore causes the corresponding hair cells to
produce excitatory signals in one ear and inhibitory signals in the other ear, from
which the direction of the head movement can be deduced (Purves et al., 2001;
Kolb & Whishaw, 2014; Niehof, 2020; Kirby et al., 2024).

Otolith organs

In addition to the semicircular canals, the vestibular system contains the utricle
and the saccule, referred to as the otolith organs. The otolith organs measure both
static head orientation (i.e., head tilt relative to gravity) and dynamic head
displacements (i.e., linear acceleration of the head). The utricle is oriented along
the head’s horizontal plane and the saccule along the head’s vertical plane. Both
otolith organs consist of macula tissue made up from hair cells and support cells
(see Figure 1.1A, inset). The cilia of the hair cells extend into the otolithic
membrane, a gelatinous layer on top of the macula. The top surface of the otolithic
membrane is embedded with calcium carbonate crystals (otoconia), adding weight
to the membrane. When the head is roll-tilted rightward relative to gravity, the
otolithic membrane and therefore the cilia are displaced relative to the macula
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with gravitational acceleration -a (see Figure 1.1B). This results in depolarization of
some hair cells and hyperpolarization of others, encoding the orientation of the
head. However, when the head is upright and laterally translated leftward with
linear acceleration a, the cilia are similarly displaced due to the membrane’s
inertia, thus resulting in the same neural signal (see Figure 1.1C; Purves et al.,
2001; Kolb & Whishaw, 2014; Niehof, 2020; Kirby et al.,, 2024). In real-world
conditions, both forces act upon the head. To disambiguate between these forces,
it is thought that the brain relies on signals from the semicircular canals and visual
system (Laurens & Angelaki, 2011). In the more controlled spatial perception
experiments presented in this thesis, participants are either roll-tilted or laterally
translated with the head fixed upright, such that the otoliths either encode head
tilt or linear acceleration.

Vestibular afferents can be categorized as regular or irregular in terms of their
resting discharge variability (Cullen, 2019). In macaque monkeys, it has been found
that regular otolith afferents transmit more information about static head tilt
relative to gravity than irregular otolith afferents, whereas irregular afferents
provide more information about translational motion than regular afferents (Jamali
et al,, 2019).
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Cilia Hair cell membrane
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Figure 1.1. A: Anatomy of the vestibular system, illustrating the semicircular canals and the two
otolith organs, the utricle and the saccule. Inset: A simplified schematic of the utricle when the head
is upright. The macula tissue consists of hair cells surrounded by support cells. The cilia of the hair
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cells are encapsulated in the otolithic membrane, a gelatinous layer on top of the macula. Embedded
in the top surface of this membrane are calcium carbonate crystals, the otoconia. B: When the head
is roll-tilted rightward relative to gravity, the otolithic membrane is shifted relative to the macula
with gravitational acceleration -a in the axis of the macula, displacing the cilia of the hair cells. C:
The cilia are displaced in the same manner, and thus the same neural signal is generated, when the
head is upright and laterally translated leftward with linear acceleration a, causing the otolithic
membrane to move with inertial acceleration -a. Figure adapted from images published under the CC
BY 4.0 license (Kirby et al., 2024).

1.1.2 Somatosensory receptors

Nerve endings in the muscles, tendons and joints, referred to as proprioceptors,
provide information about the orientation and displacement of the body in space.
Movement stretches the muscle spindles and Golgi tendon organs, which are
sensory receptors that detect muscle stretch and tension, respectively.
Mechanoreceptors in musculoskeletal joints are thought to function as ‘limit
detectors’, providing information about extreme joint positions to prevent injury
(Tuthill & Azim, 2018). The somatosensory system also contains receptors for pain
(nociceptors) and temperature (thermoreceptors), as well as mechanoreceptors
(corpuscles) that measure pressure, touch, and vibration (Purves et al., 2001; Kolb
& Whishaw, 2014). These receptors are found in the skin as well as in the body’s
interior. Studies on postural perception have suggested that the trunk contains
somatic ‘graviceptors’, pointing to pressure receptors around the kidneys and in the
cardiovascular system. When the body is tilted, the kidney slightly shifts within its
surrounding capsule and blood shifts within the cardiovascular system, stimulating
pressure receptors which in turn signal information about the body’s orientation in
space (Mittelstaedt, 1997, 1998; Vaitl et al., 1997, 2002).

1.1.3 Sensorineural processing

Brainstem and cerebellum

The signals from the semicircular canals and otolith organs are transmitted by
afferent neurons in the vestibulocochlear nerve (cranial nerve VIII) to the vestibular
nuclei in the brainstem (Khan & Chang, 2013). Proprioceptive information travels to
the dorsal column nuclei in the brainstem, via the spinal cord (Delhaye et al., 2018).
From the brainstem, both types of sensory information are relayed via the
thalamus to the cortex as well as to the cerebellum.

Within the cerebellum, the fastigial nucleus (rFN) is suggested to be involved in
reference frame transformations (Cullen, 2019, 2023). Because of the vestibular

13
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labyrinth’s location, which is fixed to the head, vestibular information is encoded in
a head-centered reference frame. However, to keep our balance (e.g., through
vestibulo-spinal reflexes), this information has to be transformed into a body-
centered reference frame, which involves the integration of vestibular signals and
neck proprioceptive signals. Experiments in rhesus monkeys indicate that this
integration takes place in the rFN (Brooks & Cullen, 2009). Similarly, the vestibular
cerebellum in monkeys is suggested to be involved in the transformation from a
head-centered into a head-in-space reference frame by integrating otolith and canal
information (Laurens et al., 2013).

There is also evidence that the rFN plays a role in distinguishing between sensory
signals that are the result of our own movements (reafferent signals) and sensory
signals that are generated by externally imposed passive motion (exafferent signals;
Brooks et al., 2015). The cerebellum is believed to encode a forward model that
computes the expected reafferent signal brought about by our motor command
(von Holst & Mittelstaedt, 1950; Mittelstaedt, 1997). If the expected reafferent signal
matches the actual sensory signal (i.e., if there is no sensory prediction error), the
sensory signal is considered a result of our own movement and the cerebellum
sends a reafference cancellation signal to the vestibular nuclei in the brainstem,
suppressing the sensory signal (Brooks et al., 2015; Cullen, 2019, 2023). In the
situation where there is a sensory prediction error, the sensory signal must have
been (partially) generated by external motion and the neurons in the vestibular
nuclei are not suppressed.

Thalamus and cortex

Neural signals from the vestibular, dorsal column, and deep cerebellar nuclei are
relayed to the ventral posterior lateral nucleus (VPL) in the thalamus (Lopez &
Blanke, 2011; Cullen, 2019). The thalamus in turn projects to cortical areas such as
the temporo-parietal junction (TPJ), the anterior parietal cortex (APC), and the
posterior parietal cortex (PPC) (Hitier et al.,, 2014; Ventre-Dominey, 2014;
Orban et al., 2021), which are thought to be homologues of the parieto-insular
vestibular cortex (PIVC), area 2v, area 3a, and the ventral intraparietal area (VIP) in
monkeys (Lopez & Blanke, 2011; Cullen, 2019; see Figure 1.2). Both human and
animal studies suggest that these cortical areas are involved in the processing of
vestibular, visual, and somatosensory signals, and multisensory integration of these
signals (see Section 1.2).
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Figure 1.2. (Part of the) cortical projections of sensory afferents relevant for spatial perception. The
ventral posterior lateral nucleus (VPL) in the thalamus projects to the temporo-parietal junction
(TPJ), the anterior parietal cortex (APC), and the posterior parietal cortex (PPC). These cortical areas
may be homologous to multisensory areas found in monkeys, shown in italics (P/VC: parieto-insular
vestibular cortex, VIP: ventral intraparietal area). Figure adapted from image published under the CC
BY-SA 3.0 license (NEUROtiker, 2007).

1.2 Integration of sensory and prior information

As discussed in the previous section, multiple sensory systems can provide
information about the same stimulus. For example, when crossing the street, our
visual and vestibular systems generate self-motion cues, which in turn provide
information about the remaining distance to the opposite sidewalk. The brain
might use the sensory signals in isolation to estimate the distance. However, each
individual sensory signal is a noisy representation of the true distance. A
statistically optimal approach would be to weigh the sensory signals relative to
their precision and to also incorporate any prior information that we have about
the distance (Landy et al., 1995; Jacobs, 1999; Ernst & Banks, 2002; Clemens, 2015).

15
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This idea is referred to as Bayesian inference and will be discussed in more
detail below.

1.2.1 Accuracy and precision

Before introducing Bayesian inference models, it is useful to discuss two distinct
concepts that can be used to describe a distribution of data points: accuracy (with
bias as its opposite) and precision (with variability as its opposite). These concepts
are illustrated in Figure 1.3, which shows different distributions of shots on

a target.
q
;
> c
= o
2 7}
S o]
= o
= a
Y

Accuracy

A 4

A

Bias

Figure 1.3. Targets with example shots (black points), illustrating different aspects of a distribution
of data points. A: Shots that are close to each other, i.e., relatively precise/with a low variability, but
systematically biased to the upper left. B: Shots that are on average close to the bullseye, i.e.,
relatively accurate/unbiased, with a similar precision as in A. C: Shots that are more variable than in
A, with a similarly sized bias toward the upper right. D: Shots with a similar accuracy, but a higher
variability than in B. Figure adapted from Sutter (2023).
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Accuracy is high when shots are on average close to the bullseye, i.e., when there is
no systematic deviation (bias). In Figure 1.3, this is true for panels B and D, while
panels A and C show biases with similar magnitudes in two different directions.

Precision is high when shots have only a small spread, as is the case in panels A
and B; panels C and D show more variability.

1.2.2 Bayesian inference

Imagine observing an unknown stimulus, x (e.g., the head tilted at an unknown roll
angle), resulting in a sensory measurement of this quantity, z, provided by one of
our sensory systems. We typically assume that the measurements of this sensory
system are on average unbiased but contaminated by independent Gaussian noise,
N(0,0?). The probability distribution of the measurement z given stimulus value
z is then:

P(z|z)=N (z,0%). (1.1)

Equation 1.1 is also referred to as the measurement distribution. From the brain’s
perspective, the sensory measurement is known, but the true stimulus has to be
inferred. In other words, we want to compute the likelihood of the stimulus given
the measurement, L (z|z), for all possible stimuli z. We assume that the
measurement distribution is used as the likelihood function, but instead of
interpreting it as a probability distribution across measurements, it is now
interpreted as a function of the stimulus (Girshick et al., 2011). Generally, we might

receive measurements from N sensory systems, zi,...,zy, possibly with IV
2

different variances, o7 , ...,

JEN. On the condition that the sensory measurements
are independent, we can compute the likelihood of each stimulus «x as:

C(:L']21,...,2N):P(z1,...,zN]m):HP(zn]m). (1.2)

n=1

Using Bayes’ rule (Bayes, 1763), it is now possible to compute the probability
distribution of the stimulus given the measurements:

P(z1,...,2y | ) P (z)
P(z1,...,2N) )

P(z|z1,...,2n) = (1.3)

In this equation, P (z) is the prior distribution of the stimulus. This distribution
expresses for every possible head roll-tilt angle how probable it is for that
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orientation to occur, before observing any sensory measurements. The
denominator, independent of stimulus «, is referred to as the marginal likelihood
and normalizes the integration of the prior and likelihood, resulting in the posterior
distribution, P (z | z1,...,2n). If the prior distribution and all sensory likelihoods
are Gaussian, then the posterior distribution will also be Gaussian. In this situation,
the prior and likelihoods can be regarded as similar signals, each transmitting an
estimate of the stimulus, which are then combined into the posterior distribution
(Ernst & Banks, 2002; Kording & Wolpert, 2004; Clemens, 2015).

How should we select a single estimate of the unknown stimulus z from the
posterior distribution? We generally select the stimulus with the largest posterior
probability, referred to as the maximum a posteriori (MAP) estimate:

T = argmax, P (z1,...,2ny | z) P (z). (1.4)

It can be shown that the solution for Z is a weighted sum of the peak of the prior
and the peaks of the sensory likelihoods (Landy et al., 1995; Jacobs, 1999; Ernst &
Banks, 2002; Bays & Wolpert, 2007; Clemens et al., 2011):

T = Wprior * Mprior + Wy * 21 4+ Wzy * 2N, (15)

with each weight equal to the signal’s normalized precision, defined as the inverse
of its variance (1/0?):

T— 1/012)ri0r (16)
R Ve Y e Vi
1/o?

(1.7)

w = .
. 1/0-[2)ri0r + 1/0-3'1 +oeee 1/0-21\;

From this follows that signals with a higher precision have a larger influence on the
posterior estimate. Since the weights add up to 1, each weight can be interpreted
as the relative contribution of its corresponding signal to the overall estimate.

The variance of the posterior distribution can be interpreted as a measure of the
brain’s uncertainty in the posterior estimate:

1
2
os = . 1.8
floh, H /02 102, (18)
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From Equation 1.8 follows that the posterior provides a more precise estimate than
we would obtain from the individual signals. The same solution arises when
minimizing the posterior variance (Ghahramani et al., 1997; Cooke, 2019). In other

words, the estimate is statistically optimal in terms of acquiring the minimum
possible variance given the individual signals (Ernst & Banks, 2002). This is
illustrated in Figure 1.4, which shows the posterior distribution for different
variances of the prior and likelihood. In all panels, the posterior variance is lower
than the variances of the prior and likelihood. However, optimal integration in
terms of a lower-variance posterior also results in a bias toward the prior
distribution (see Figure 1.4A). This is sometimes referred to as an accuracy-
precision trade-off’: an upright head-orientation prior will reduce perceptual
uncertainty at the expense of a bias toward the upright head orientation, which
becomes more pronounced at larger tilt angles (de Vrijer et al, 2009). In
Section 1.3.1, this bias is discussed in more detail.

A B C

% prior = 10°1 % jkgiihood = 20° % orior = 5% % pslinooa = 15° % prior = 20% jtinoog = 10°
JE—-
Likelihood
Posterior
-180 -80 0 90 180 -180 -90 0 90 180 -180 -90 0 90 180

Head roll-tilt angle (°)

Figure 1.4. Bayesian integration of prior and sensory signals representing information about an
unknown head roll-tilt angle. In all panels, the prior distribution (blue) is centered on 0°, which can
be interpreted as the most probable head orientation before observing any sensory measurements.
The sensory likelihood (red) is centered on 90°. The posterior distribution (yellow) is the result of
integrating the prior and likelihood, and the peak of this distribution depends on the individual
signals’ respective precisions. A: The posterior is shifted towards the more precise, i.e., lower-
variance, prior. B: The prior and likelihood have equal variances, and the posterior peak is the
average of the individual peaks. C: The posterior is shifted towards the more precise likelihood. In all
panels, the posterior distribution has a lower variance than the individual signals.

1. Note that on average the posterior mean, which coincides with the posterior mode (Equation 1.4) and
median when the distributions are Gaussian, is an optimal estimate as it minimizes the expected squared
error. In other words, where on a single trial (or in this case in a specific part of the tilt range) the
estimate may be off, the estimate is still the overall best possible estimate given the sensory uncertainty
and the prior.
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If all stimuli are equally likely to occur, a flat prior can be used in the integration. In
this case, the MAP estimate in Equation 1.4 reduces to the maximum likelihood
estimate (MLE):

T = argmax, P (z1,...,2y | @). (1.9)

Parameter estimation
To compute the posterior distribution, we need to know the variances of the

. .. . 2 2
individual signals, o 5,,0%5-- -,

U§N~ As our best guess for the value of these
model parameters, we generally use the maximum likelihood estimate of these

parameters given the data:
6 = argmax, P (di,...,dr | 6), (1.10)

where 0 = {o2,,.,0%,...,02.} and dy,...,dp are the data from T different
trials. For some problems, Equation 1.10 has a closed-form solution. However,
generally, no closed-form solution exists, leaving us to numerically approximate the
solution. Instead of maximizing the likelihood, most optimization algorithms

equivalently minimize the negative log-likelihood for numerical stability:
6 = argmin, [—In (P (dy,...,dr | 9))]. (1.11)

To find the numerical solution, we first define the likelihood function. This function
compares the model prediction, generated with specific parameter values, 6, to the
data and outputs a value indicating how likely it is that the data was generated by
this set of parameter values. The negative log-likelihood function is then minimized
by an optimization algorithm that evaluates the function for 6. Initially, the values
for @ might be a random guess. By comparing the output of the likelihood function
for different 0 values, the optimization algorithm further refines the estimate for
until it converges onto a ‘good enough’ guess, defined by a criterion that is
specified before running the optimization algorithm (Taboga, 2021).

The likelihood value of one converged model, Z:, can be compared to the likelihood
of a different model version. However, if the models have different numbers of
model parameters, K = |f|, the comparison should take this difference into
account. Two measures that are often used for model comparison are the Akaike
information criterion (AIC; Akaike, 1974) and the Bayesian information criterion
(BIC; Schwarz, 1978):
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AIC = —2In(L) + 2K, (1.12)

BIC = —2In(L) + KIn (T, (1.13)

where T is the number of explained data points. To increase the model likelihood,
one could add more parameters to the model, but this could lead to a model that
overfits the data and therefore does not generalize well to unseen data. The AIC
and BIC scores include a penalty term for the number of model parameters, where
the BIC score penalizes model complexity more than the AIC score (Bishop, 2006).
When comparing the AIC or BIC scores of multiple models, a lower score indicates a
more preferred model.

1.2.3 Sequential Bayesian inference

In Section 1.2.2, | described a general Bayesian inference model that computes the
posterior distribution of an unknown stimulus on a given trial (or more generally,
time point) based on that trial’s sensory measurement. Assuming independent
trials, on the next trial a new posterior distribution is computed based on the
measurement of that trial, independent of the estimate on the previous trial.
Instead, assuming dependence between consecutive trials, sequential Bayesian
inference models iteratively update over time by computing the posterior on a
given trial based on that trial’s measurement and the previous trial’s estimate.

In this context, the unknown stimulus on trial £, z;, that we try to estimate, can be
regarded as the model’s unobserved state that might change over time. The
sensory measurement, z;, is an observation of this hidden state. How the
measurement relates to the state and how the state evolves over time is captured
by the measurement and state transition equations, respectively. As an example,
we will define these equations as follows:

z¢ =z + 1, (1.14)
Ty = T4 1 + €, (1.15)

where 1 and ¢ refer to the measurement and process noise, respectively. Here, the
sensory measurement is assumed to be a noisy readout of the state, and the state
is assumed to depend only on the previous state, with random variation introduced
by process noise.

As before, we can compute the posterior distribution of the stimulus on trial ¢ by
applying Bayes’ rule:

21
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P (2| 2) P (2 | 21:0-1)

P 4) =
(2 | 21:4) P (20 | 214 1)

(1.16)

Contrary to the static Bayesian inference model outlined in Section 1.2.2, a
sequence of sensory measurements up to and including the current trial, 21, is
now available. Here, P (z;| ;) can be interpreted as the likelihood of the
measurement, which is a Gaussian distribution defined by the measurement
equation (see Equation 1.14). P (x| z14-1) can be seen as the prior for the
current state, before observing measurement z;, and is referred to as the predictive
distribution (Ho & Lee, 1964; Cooke, 2019).

If we assume the measurement and state transition models to be linear, and the
measurement and process noise to be normally distributed, say n ~ N(0,r) and
e ~ N(0,s), the derivations of the posterior mean and variance are
mathematically equivalent to the so-called Kalman filter equations (Kalman, 1960).
The Kalman filter model consists of two steps. The first step is the prediction step
in which the predictive distribution P(mt | Z1:t71) is computed. In our example,
P (x4 | z1:4-1) is Gaussian with the following mean Zy;_; and variance Py;_;:

Typ—1 = By_1)t—1, (1.17)
Py 1 =Py 11+ s. (1.18)

Here, the prediction of the state for the current trial, Zy; 1, is equal to the
posterior state estimate from the previous trial, Z;_;;_;, and the variance of the
predictive distribution, P;;_1, is equal to the posterior variance from the previous
trial, P;_1;_1, increased with process noise variance s.

The prediction step is followed by the update step, in which the posterior
distribution is computed by refining the prediction of the state, Z;; 1, by taking
into account the new measurement, z;. The posterior distribution is again Gaussian
with mean Z;; and variance Py

Py
K; = 1.19
t Py +r (1.19)
Ty = Ty + Ko (20 — Byea) (1.20)

Pt|t = (1 - Kt) Pt\tfl- (1-21)
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In Equation 1.19, K, is referred to as the Kalman gain, which is essentially a ratio
between the process noise and measurement noise that determines how much the
prediction of the state is shifted towards the measurement (see Equation 1.20). By

observing a new measurement, the variance of the predictive distribution is
reduced (see Equation 1.21). The posterior state estimate and variance, Z;; and
Pt|t7 become i‘\tfl‘tfl and Pt71|t71 on the next trial.

In a behavioral experiment, during which stimuli are typically randomly presented,
the participant may (implicitly) assume that the stimuli come from a static prior
distribution, i.e., a distribution of probable stimuli that does not change across
trials. However, in more naturalistic scenarios, stimuli often do not succeed one
another randomly. For example, when estimating tomorrow’s stock value, rather
than assuming that the values are randomly sampled from a fixed distribution, a
more useful, iterative assumption would be that tomorrow’s value is equal to
today’s value with a small, random variation. A third, intermediate assumption
would be to assume that the stimulus comes from a stimulus distribution of which
the mean can change across time. Whereas the static Bayesian inference model
only allows the incorporation of a static prior distribution, the sequential model
enables us to also test the iterative assumptions. To do so, the Kalman filter model
is extended to estimate two states, the stimulus x; and the mean of the estimated
stimulus distribution my, referred to as the two-state model (Glasauer & Shi, 2022):

z¢ = @ + nwithn ~ N(0,r), (1.22)
Ty = my_1 + €, withe, ~ N(0,v), (1.23)
my = my_1 + €, withe,, ~ N(0,q). (1.24)

In this model, variance v determines the width of the estimated stimulus
distribution and variance g determines how much the mean of this distribution
changes across trials. This model encompasses the static and iterative
assumptions. The static variant is obtained by fixing g at 0, such that the mean of
the stimulus distribution does not change across trials. By fixing v at 0, the
estimated stimulus is always equal to the estimated stimulus distribution mean,
resulting in a model where the estimated stimulus distribution is iteratively
updated on each trial (the iterative variant). In Chapter 3, | estimate the variance
parameters r, v and/or g from data gathered in a path integration experiment, in
order to evaluate whether different assumptions about the stimulus distribution
can explain the observed biases in this experiment (see Section 1.3.2).
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1.3 Studying spatial perception

A variety of experimental paradigms have been developed to study human spatial
orientation and self-motion perception. In Chapter 2, | study whether, instead of
using a Gaussian-distributed prior, spatial orientation estimates from two
laboratory-based psychophysical tasks can be better explained by a prior
distribution that matches the natural statistics of head orientations measured
outside the laboratory. In Chapters 3 and 4, | study how estimates of travelled
distance in a laboratory-based path integration task are affected by the distribution
and the presentation order of the experimental stimuli. These experimental
paradigms as well as typical perceptual biases that are often found in these
experiments are explained below in more detail.

1.3.1 Spatial orientation perception

In Chapter 2, | reanalyze previously gathered data (Clemens et al., 2011) from two
psychophysical tasks that measure how humans perceive body orientation and
visual vertical orientation in space: the subjective body tilt (SBT) and subjective
visual vertical (SVV) task, respectively (see Box 1). Clemens et al. (2011) found that
in the SBT task, participants accurately estimated their body orientation in space
across the measured tilt range. On the contrary, at large tilt angles in the SVV task,
the line orientation estimates were biased away from vertical toward the body
midline. This bias is referred to as the Aubert effect (Aubert, 1861). The findings
from both tasks were well explained by a Bayesian inference model (see
Section 1.2.2). This model provided an explanation for the Aubert effect by
including a Gaussian prior distribution of head orientation that was centered on
upright. In other words, the most probable head orientation before observing any
sensory measurements is the upright orientation, reflecting the observation that
our head is usually in an upright position during everyday behavior and that large
head roll-tilts are less common. The idea that orientation perception is influenced
by the statistics of natural stimuli has been substantiated by studies in the visual
domain. Examples of such visual scene statistics are light that usually comes from
above (Adams et al., 2004), and the predominance of horizontal and vertical
orientations (Girshick et al., 2011).
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Box 1. Psychophysical tasks

Psychophysical tasks measure the relationship between a physical stimulus
(e.g., the orientation of the body or the orientation of a visual line) and the
participant’s perception of this stimulus. A readout of this relationship is
obtained by systematically varying the stimulus value around a reference
value. On each trial, the participant indicates whether the stimulus
orientation is clockwise (CW) or counterclockwise (CCW) relative to the
reference orientation. The responses are used to estimate the parameters of
a psychometric function. A psychometric function that is often used is the
cumulative  Gaussian  function  including a lapse  parameter
(Clemens et al., 2011):

P(z) =X+ (1-2)) “ew 2t gy (1.25)

oV 27r

The mean of the curve p reflects the point of subjective equality (PSE) where
the participant perceives the stimulus orientation to be equal to the
reference orientation. A difference between p and the reference orientation
indicates a systematic perceptual bias. The variance of the curve o? can be
interpreted as a measure of perceptual uncertainty and is inversely related to
the precision (see Section 1.2.1). The lapse parameter A is included to
account for participant errors that are not related to the stimulus. To obtain
psychometric measures of spatial orientation perception, Clemens et al.
(2011) roll-tilted the participant using a vestibular chair (see Figure 1.5A).
Participants performed two psychophysical tasks in complete darkness: the
subjective body tilt (SBT) task (see Figure 1.5B), which provides a measure of
perceived body orientation in space, and the subjective visual vertical (SVV)
task (see Figure 1.5C), which provides a measure of perceived earth-
vertical orientation.
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SBT SwW
Gravity Gravity

Figure 1.5. A: Vestibular chair setup consisting of a computer-controlled chair that rotates
the participant in the roll axis. B: SBT task. On each trial, the participant is roll-tilted at a
given stimulus orientation and asked to indicate whether they perceive their orientation to
be CW or CCW relative to the reference orientation (dashed line). C: SVV task. On each trial,
the participant is roll-tilted at a given stimulus orientation and asked to indicate whether
they perceive the visual line orientation to be CW or CCW relative to gravity. Panel B and C are
adapted from Alberts et al. (2015).

To what extent does the assumed Gaussian prior distribution in the Bayesian
inference model of Clemens et al. (2011) match the distribution of head
orientations measured outside the laboratory? To answer this question, | analyze
previously gathered (but unpublished) data (Pomante, 2019) from five out-of-lab
tasks (see Box 2). The probability density function that best describes the natural
out-of-lab head orientations is subsequently incorporated as a prior distribution of
head orientation in the Clemens et al. (2011) model to evaluate to what extent
natural head statistics influence orientation perception.
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Box 2. Out-of-lab tasks

To measure natural motion statistics, we can make use of inertial
measurement units (IMUs). Each IMU contains an accelerometer, a gyroscope,
and a magnetometer. Using a Kalman filter model, the different sensor
measurements are combined to provide a measurement of the device’s
orientation with respect to a fixed reference frame (Xsens, 2018). By
attaching the IMUs to body segments, we can obtain a readout of the
segment’s orientation across time. Participants wore 11 IMUs placed on the
upper body (see Figure 1.6A) and performed 5 out-of-lab tasks in and around
the university: walking, running, sitting, standing, and going up and down
the stairs. Figure 1.6B shows example traces of head orientations in the roll
axis for one of the participants in the out-of-lab experiment. Pooling the data
of all tasks results in a distribution of natural head orientations (see
Figure 1.6C). Using maximum likelihood estimation, | identified the
probability density function (PDF) that best describes the head
orientation data.

A S B

Walking Running Sitting Standing  Stairs

PDF
N\
i
7

Figure 1.6. A: Placement of the IMUs on the upper body. Figure adapted from image
published under the CC BY 4.0 license (Servier, 2016). B: Example 60-s traces of the measured
head roll-tilt data in the five tasks for one participant. C: The best-fitting Gaussian (solid line)
and t-location-scale (dashed line) PDFs plotted on top of all head roll-tilt data, pooled across
tasks, for the same participant as in panel B.
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1.3.2 Self-motion perception

When we move along a path in space, we continuously keep track of our position
by integration of successive self-motion signals. This process is referred to as path
integration (Darwin, 1873; Mittelstaedt & Mittelstaedt, 1980; Etienne & Jeffery,
2004). Path integration is often studied using distance reproduction tasks: on each
trial, the participant is presented with a stimulus distance which they subsequently
try to reproduce. The reproduction task can be virtual, providing the participant
with only visual signals (Petzschner & Glasauer, 2011). Reproducing physical
distances, e.g., by walking (Lappe & Frenz, 2009) or driving a vehicle (Israél et al.,
1997), additionally generates vestibular, somatosensory, and reafferent sensory
signals. In Chapters 3 and 4, | study how the distribution and presentation order of
experimental stimuli affect vestibular self-motion perception using a physical path
integration task (see Box 3).
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Box 3. Path integration task

To study self-motion perception, we test participants in a path integration
task that makes use of a vestibular sled (see Figure 1.7). The vestibular sled
setup consists of a chair on top of a linear motion platform that can produce
lateral translations. A steering wheel is mounted on a table in front of the
chair. The sled can be passively moved by the experimenter or actively
controlled by the participant through rotation of the steering wheel. The
angle of the steering wheel relative to the upright steering wheel position
encodes the linear velocity of the sled. This means that the further CW/CCW
the steering wheel is rotated from its neutral position, the faster the sled
moves to the right/left. The sled can be stopped by rotating the steering
wheel back to the upright neutral position. During a trial of the path
integration task, the sled first passively moves the participant a pre-defined
stimulus distance. Subsequently, the participant is tasked with actively
reproducing this distance. By comparing the measured reproduced distances
to the stimulus distances, the participant’s reproduction behavior can
be quantified.

The task is performed in complete darkness and the participant wears
headphones that play white noise to mask the sound that is generated by the
sled. The head is fixated upright using ear cups such that the vestibular
signals encode lateral head movement. During the passive stimulus
movement, the participant receives no reafferent sensory signals, ensuring
that the sensory signals that are available during the stimulus movement are
limited to inertial (vestibular and somatosensory) signals. Somatosensory
signals (e.g., generated by the pressure of the chair against the body) seem
to play a minor role in self-motion perception compared to vestibular signals
(Walsh, 1961; Harris et al., 2002). Given that the stimulus movement mostly
activates the vestibular system, this task is therefore referred to in this thesis
as a vestibular path integration task.
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Figure 1.7. The vestibular sled setup, consisting of a chair on top of a linear motion platform.
Image reproduced (with permission) from van Helvert (2025).

Central tendency and serial dependence

It has often been observed that reproductions are not veridical but biased by
previously experienced stimuli. Two biases that are prevalent across reproduction
tasks are referred to as the central tendency effect and the serial dependence
effect. Central tendency describes the observation that reproductions are generally
biased toward the center value of the experimental stimulus distribution,
characterized by overestimations of short stimuli and underestimations of long
stimuli (Hollingworth, 1910). This effect has been observed in a wide range of
perceptual tasks, including the perception of distances (Loomis et al., 1993;
Philbeck & Loomis, 1997; Israél et al., 1997; Grasso et al., 1999; Riecke et al., 2002;
Bergmann et al., 2011; Petzschner & Glasauer, 2011; Petzschner et al., 2012;
Prsa et al., 2015), heading (Warren & Saunders, 1995; Sun et al., 2020), durations
(Jazayeri & Shadlen, 2010; Cicchini et al., 2012; Murai & Yotsumoto, 2016; Roach et
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al.,, 2017), line lengths (Duffy et al., 2010; Ashourian & Loewenstein, 2011), and
colors (Olkkonen & Allred, 2014; Olkkonen et al., 2014).

Serial dependence refers to the finding that the reproduction on the current trial is
affected by the stimulus on the previous trial (Holland & Lockhead, 1968; Cross,
1973). Attractive serial dependence reflects reproductions that are biased toward
the previous stimulus (Fischer & Whitney, 2014; Liberman et al., 2014; Motala et al.,
2020; Manassi & Whitney, 2022, 2024; Guan & Goettker, 2024), whereas repulsive
serial dependence indicates reproductions that are biased away from the previous
stimulus (Fritsche et al., 2017; Sun et al., 2020). Both the central tendency and
serial dependence biases reflect an effect of stimulus history but on different
timescales: central tendency can be seen as the long-term effect of the measured
stimuli across the experiment, whereas serial dependence captures the short-term
effect of the previous stimulus (Saarela et al., 2023).

In Chapter 3, | study whether central tendency and serial dependence effects are
present in vestibular path integration behavior. Furthermore, | examine whether the
experimental stimulus distribution from which the stimulus distances are sampled,
as well as the presentation order of the stimulus distances, affect these biases in
vestibular path integration. Stimulus distances are sampled from two probability
distributions, covering a range of short and long distances, and presented in two
experimental conditions with different presentation orders. In the blocked
condition, the short and long distances are presented in two separate blocks,
whereas in the mixed condition, the same short and long distances are randomly
interleaved. The effects of stimulus distribution (short/long) and presentation order
(mixed/blocked) on the central tendency and serial dependence biases are then
evaluated. Finally, | test to what extent the biases can be explained by sequential
Bayesian inference models with different assumptions about the experimental
stimulus distribution (see Section 1.2.3; Glasauer & Shi, 2022).

In Chapter 4, | examine a different aspect of the stimulus presentation order: the
amount of autocorrelation in the stimulus sequence. Autocorrelation measures the
similarity between values in a sequence. More specifically, it quantifies the
correlation of a sequence with a lagged version of itself, where the lag-1
autocorrelation indicates how similar each value in the sequence is to the
immediately preceding value. When stimuli are randomly sampled from the
stimulus distribution (as in Chapter 3), the autocorrelation is (close to) 0. However,
a value in a time series (e.g., today’s stock value or temperature) is often similar to
the previous value, resulting in an autocorrelated sequence. We can create a
stimulus sequence with a high autocorrelation by simulating a random walk, where
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the next stimulus is equal to the current stimulus plus a small normally-distributed
random shift.

Studies on duration reproduction indicate that the autocorrelation of the stimulus
sequence could cause a central tendency bias (Glasauer & Shi, 2021). The central
tendency effect was present in reproduced durations when stimulus durations were
presented in a randomized order (i.e., with no autocorrelation), whereas the effect
was diminished when the same stimuli were presented in a random-walk order
(i.e., with a high autocorrelation). The autocorrelation of the stimuli also seems to
affect the serial dependence bias in duration reproductions: in the randomized
order, the reproductions showed attractive serial dependence while in the random-
walk order, the reproductions reflected repulsive serial dependence (Glasauer &
Shi, 2022). In Chapter 4, | explore whether the amount of autocorrelation in the
stimulus sequence could similarly affect the biases in vestibular path integration.
To do so, stimulus distances are presented in a no- and high-autocorrelation
condition, and the biases in the measured reproduced distances are compared
across conditions. Central tendency and serial dependence are computed using a
multiple linear regression model that controls for a potential indirect effect of the
serial dependence bias on the central tendency bias (and vice versa) through the
autocorrelated stimulus sequence (see Box 4).

Box 4. Central tendency and serial dependence computation

Central tendency is quantified as the slope of the linear least-squares
regression of the reproduction error on the current trial, e;, on the stimulus
distance on the current trial, s;. Here, the reproduction error refers to the
difference between the reproduced and stimulus distance. A central tendency
effect is indicated by a negative slope: shorter distances result in a more
positive reproduction error than longer distances. Serial dependence is
expressed as the slope of the linear regression of the current reproduction
error, e, on the stimulus distance on the previous trial, s;_1. The two biases
are presented in a graph in Figure 1.8A. This figure illustrates the situation in
which there is autocorrelation in the stimulus sequence, i.e., the value for s;
depends on the value of s;_;. When computing the central tendency effect
(i.e., the direct effect of s; on e;), we see that there may also be an indirect
effect of s; on e; via s;_1. Here, s;_1 is a common cause of both s; and e,
and to isolate the direct effect of s; on e;, the values for s;_; should be
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adjusted for in the central tendency regression. Similarly, when computing
the serial dependence effect (i.e., the direct effect of s;_1 on e;), there is an

indirect effect through s;. Here, s;_1, s¢, and e; form a causal chain, and to
isolate the direct effect of s;_1 on e; we should again control for the
intermediate variable in the serial dependence computation. By adjusting for
St, We can test whether s;_1 and e; are conditionally independent.

This idea is formalized by the graphical d-separation criterion for directed
acyclic graphs (DAGs; Pearl, 2009). The criterion states that if two variables X
and Y form a causal chain (see Figure 1.8B) or have a common cause (see
Figure 1.8C), the variables are conditionally independent if we condition on
intermediate variable M. If two variables have a common effect (see
Figure 1.8D), they are conditionally independent, unless we condition on M.

On 20

B

Central Serial
tendency dependence

Figure 1.8. A: Graph illustrating the relationship between the central tendency and serial
dependence effects when there is autocorrelation in the stimulus sequence. Nodes s, s;_1,
and e; represent the stimulus distance on the current trial, the stimulus distance on the
previous trial, and the reproduction error on the current trial, respectively. B, C: Causal chain
and common cause structures, respectively. Conditioning (in gray) on variable M renders
variables X and Y conditionally independent. D: Common effect structure, in which X and Y
are conditionally independent unless M is conditioned on.
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1.4 Thesis outline

In this thesis, | investigate the effect of prior information about previously
experienced stimuli on spatial perception. | focus on two aspects of spatial
perception: spatial orientation (Chapter 2) and self-motion perception (Chapters 3
and 4).

In Chapter 2, | examine to what extent different Bayesian prior distributions of
head orientation can explain spatial orientation behavior. More specifically, | study
whether spatial orientation estimates measured in two psychophysical tasks are
better explained by a prior distribution that matches head orientations measured
outside the laboratory, than by the previously assumed Gaussian prior distribution.

In Chapter 3, | examine whether central tendency and serial dependence biases are
present in vestibular path integration behavior, and to what extent sequential
Bayesian inference models can explain these biases. Additionally, | study how
different experimental stimulus distributions (covering a range of short/long
distances) and stimulus presentation orders (mixed/blocked) affect the central
tendency and serial dependence biases.

In Chapter 4, | examine whether central tendency and serial dependence biases in
vestibular path integration can be explained by different amounts of
autocorrelation in the stimulus sequence. More specifically, stimulus distances are
presented in a randomized order (with no autocorrelation) and in a random-walk
order (with a high amount of autocorrelation), and the measured biases are
compared across conditions.

In Chapter 5, | summarize and discuss the main findings of this thesis. Additionally,
| identify limitations and propose ideas for future research.
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Chapter 2

Natural statistics of head roll:

Implications for Bayesian inference in
spatial orientation

This chapter has been adapted from:

Willemsen, S. C. M. J., Oostwoud Wijdenes, L., van Beers, R. J., Koppen, M., &
Medendorp, W. P. (2022). Natural statistics of head roll: Implications for Bayesian

inference in spatial orientation. Journal of Neurophysiology, 128(6), 1409-1420, with
corrections incorporated from the published corrigendum.
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2.1 Abstract

We previously proposed a Bayesian model of multisensory integration in spatial
orientation (Clemens et al., 2011). Using a Gaussian prior, centered on an upright
head orientation, this model could explain various perceptual observations in roll-
tilted participants, such as the subjective visual vertical, the subjective body tilt
(Clemens et al., 2011), the rod-and-frame effect (Alberts et al., 2016), as well as
their clinical (Alberts et al., 2015) and age-related deficits (Alberts et al., 2019).
Because it is generally assumed that the prior reflects an accumulated history of
previous head orientations, and recent work on natural head motion suggests non-
Gaussian statistics, we examined how the model would perform with a non-
Gaussian prior. In the present study, we first experimentally generalized the
previous observations in showing that also the natural statistics of head orientation
are characterized by long tails, best quantified as a t-location-scale distribution.
Next, we compared the performance of the Bayesian model and various model
variants using such a t-distributed prior to the original model with the Gaussian
prior on their accounts of previously published data of the subjective visual vertical
and subjective body tilt tasks. All of these variants performed substantially worse
than the original model, suggesting a special value of the Gaussian prior. We
provide computational and neurophysiological reasons for the implementation of
such a prior, in terms of its associated precision-accuracy trade-off in vertical
perception across the tilt range.
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2.2 Introduction

Sensory systems are thought to be optimized for processing naturalistic stimuli
(Attneave, 1954; Simoncelli & Olshausen, 2001; Carriot et al., 2014; Mitchell et al.,
2018). Given the uncertainty in the moment-to-moment sensory information, the
statistical regularities within the sensory environment, which can be inferred from
an accumulated history of the system’s previous sensory states, add informational
value to creating perception. For example, it has been shown that the “light-comes-
from-above” experience is used to interpret complex and ambiguous visual input
(Adams et al.,, 2004) and that the predominance of horizontal and vertical
orientations in natural scenes is used in visual orientation perception (Girshick et
al.,, 2011).

Bayesian theory provides a formal framework to describe sensory processing under
uncertainty. According to this theory, next to the available sensory evidence also a
default assumption about the state, expressed in the form of a prior distribution, is
taken into account. Bayes’ rule is the statistically optimal way to combine this prior
with noisy sensory information. In laboratory-based paradigms, the prior often
accounts for otherwise unexplainable biases (Mamassian & Goutcher, 2001; de
Vrijer et al., 2008). Although the prior distribution can be of any type (Stocker &
Simoncelli, 2006; Girshick et al., 2011), it is often assumed to be a Gaussian
distribution for reasons of computational convenience (Bishop, 2006; Parise et
al., 2014).

Earlier work from our laboratory has proposed a Bayesian model of multisensory
integration for spatial orientation (Clemens et al., 2011). In this model, we assumed
that, to process vestibular and other sensory information, the brain uses a
Gaussian prior centered on upright. Based on this prior, the model could explain
the well-known Aubert effect, the underestimation of head tilt, when the head is
roll-oriented using a vestibular chair (Aubert, 1861; Udo De Haes, 1970;
Mittelstaedt, 1983; van Beuzekom & van Gisbergen, 2000). In subsequent studies,
we showed that this model could also explain age-related sensory reweighting in
spatial orientation (Alberts et al., 2019), certain behavioral observations in patients
(Alberts et al., 2015), and visual contextual effects on spatial orientation (Alberts et
al., 2016). The model could also explain vertical perception in monkeys and
proprioceptive reweighting following complete vestibular loss (Angelaki & Laurens,
2020). However, whether the Gaussian prior in this model reflects the statistics of
head orientation during natural activities is unclear.
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There are studies that suggest that natural motion statistics are typically
described by non-Gaussian distributions (Schwabe & Blanke, 2008; Carriot et
al., 2014; Hausamann et al., 2019). For example, Carriot et al. (2014) recorded
the head’s angular velocity and linear acceleration while participants
performed everyday movements such as walking, running, or riding a bus.
Measured probability distributions of the head’s angular velocity and linear
acceleration were not Gaussian but had long tails as quantified by large
positive excess kurtosis values. Hausamann et al. (2019) measured head and
trunk movements for long durations (>10 h) without explicit instructions and
reported skewed acceleration distributions.

Building further on this work, in the present study, we test the hypothesis that the
Aubert effect in spatial orientation is explained by a prior that corresponds to the
statistics of head orientation during natural activities. Adding to and generalizing
the existing literature about the statistics of natural head motion, we first recorded
head orientation in human participants while they performed everyday movements
and calculated probability density distributions of head orientation in space. The
kurtosis values obtained generally indicated clearly non-Gaussian distributions.
Next, the original Gaussian model by Clemens et al. (2011) with a closed-form
solution was converted into a numerical model to enable computations with non-
Gaussian priors. This numerical model was fit to the previously obtained
psychometric data on spatial orientation to test whether alternative real-world
priors account for laboratory-derived Aubert effects. As all data are interpreted
within the general structure of the model by Clemens et al. (2011), we begin with a
short modeling background.

2.2.1 Modeling background

Clemens et al. (2011) proposed a Bayesian model of the transformation and
integration of various sensory signals (from body, head, and neck) into two spatial
orientation estimates: the subjective body tilt (SBT) and subjective visual vertical
(SWV) (see Figure 2.1). The sensory signals considered are body orientation in space
from tactile receptors in the skin, head orientation in space as being provided by
the otoliths, and head orientation relative to the body by neck proprioception.
These sensory signals are represented by Gaussian distributions. The neck signal
provides a transformation between body orientation and head orientation, thus
creating indirect sources of information for both estimates. Final optimal estimates
involve the integration of direct and indirect information as well as
prior information.
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Figure 2.1. Schematic representation of the sensory integration model by Clemens et al. (2011).
Body somatosensors, neck proprioceptors, and otoliths measure the orientation of the body in space
(Bg), the head on the body (H ), and the head in space (H g), respectively. The neck signal enables
a reference frame transformation of the body-tilt signal into a head-in-space signal (fys1) and a
transformation of the head-tilt signal into a body-in-space signal (fpsi). To compute the optimal
estimate of body orientation (BS), the body-tilt signal is combined with the transformed head-tilt
signal, assuming a uniform body-in-space prior. The optimal estimate of head-in-space orientation
(fIS) is determined by integration of the otolith signal, the transformed body-in-space signal and a
head-in-space prior. The original model by Clemens et al. (2011) represents the head-in-space prior
as a Gaussian distribution with a mean fixed at 0 and standard deviation oggp. In the current study,
we consider a t-location-scale distribution with a location parameter fixed at 0, scale parameter
ousp, and shape parameter vygp as head-in-space prior. To acquire an estimate of the line-in-space
orientation, fIS is combined with estimates of the eye-in-head (E‘H) and line-on-eye (EE)
orientation. SBT, subjective body tilt; SVV, subjective visual vertical.

Clemens et al. (2011) took all three sensory distributions to be unbiased Gaussians,
i.e., with a mean equal to the actual tilt angle. The standard deviations of the body
sensor and neck sensor constitute two free parameters ogs and oup, respectively,
whereas the standard deviation of the otolith signal is assumed to increase linearly
with absolute tilt angle (de Vrijer et al., 2008, 2009), requiring another two free
parameters ags and bys, with ogs = ags - [tilt| + bps.

Because the SBT data were virtually unbiased across the tilt range, an
uninformative, flat body-in-space prior was used, but Clemens et al. (2011)
included a head-in-space prior centered on zero to account for the systematic
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underestimation at large tilt angles as observed in the SVV data - the Aubert effect.
This prior distribution was also assumed to be Gaussian, with standard deviation
ousp as another free parameter.

As the SVV pertains to the perceived orientation of a visual line, the final head-in-
space estimate is to be supplemented with an eye-in-head estimate (E ), involving
the amplitude of the uncompensated ocular counterroll (Apcr) as a free
parameter, and a retinal line orientation estimate (Lg), assumed to be accurate.
Both Ey and Lg have small noise levels (<1°), which were ignored. In addition to
the six parameters mentioned, the model has a seventh parameter A to account for
lapses with an upper bound of 0.06.

In the current study, we focused on the assumption that prior knowledge about
head orientation is represented as a Gaussian distribution, and we wanted to test
whether the Clemens et al. (2011) model can better explain the data using a prior
distribution corresponding more closely to the statistics of head orientation in
everyday life. Based on previous results (Schwabe & Blanke, 2008; Carriot et al.,
2014; Hausamann et al., 2019) as well as newly recorded data (see Methods and
Results), we considered the t-location-scale distribution as an alternative
distribution for the head-in-space prior. The t-location-scale distribution is
symmetric and unimodal (bell-shaped), like the Gaussian, but it has heavier tails. It
has one more parameter than the Gaussian distribution, which influences the
shape of the distribution. The t-location-scale probability density function is
given by

_ v+l

p(myu,a,u):ﬁ 1+1<””_")2 2, (2.1)

g

where T'(-) is the gamma function, p the location parameter, o the scale
parameter, and v the shape parameter (v > 0). Smaller values of v yield heavier
tails; as v increases towards infinity, the t-location-scale distribution approaches
the Gaussian distribution. A direct consequence of this adaptation to the Clemens
et al. (2011) model is that closed-form expressions for the posterior distribution in
terms of the likelihood and prior distributions no longer exist. All computations
were therefore done numerically.
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2.3 Methods

2.3.1 Data sets

Two data sets were used to test the model predictions. The first data set, collected
previously, is extensively described in Clemens et al. (2011). This data collection
tabulates psychometric data of seven participants (6 males, 1 female), aged 23-
65 yr, each performing the SBT and SVV task at different tilt angles, passively
imposed by a vestibular chair. Each participant performed 20 experimental sessions
of 45 min each, yielding over 15 h of recording time. In short, in the SBT task,
participants were first rotated to a randomly chosen tilt angle and then asked to
indicate whether their body orientation was clockwise (CW) or counterclockwise
(CCW) from an instructed reference orientation [i.e., either upright (0°), 45° or 90°
right side down, or 45° or 90° left side down]. Responses were collected using the
method of constant stimuli, yielding 140 data points for each instructed reference
orientation. The SVV was tested at nine roll-tilt angles, ranging from -120° to 120° at
30° intervals. At each tilt angle, a luminous line was briefly flashed, and the
participant indicated whether its orientation in space was CW or CCW from the
perceived direction of gravity. The line orientation was selected randomly from a
set of 11 line orientations. Each set was tested 12 times, thus yielding a total of
132 data points for each tilt angle. The original model by Clemens et al. (2011),
which assumed a Gaussian head-in-space prior, provided a very good account of
these data.

The second data set was collected anew as a supplement to the existing literature
about the statistics of natural head motion (Carriot et al., 2014; Hausamann et al.,
2019; MacNeilage, 2020). Six participants (3 males, 3 females) aged 23-28 yr, free of
any known neurological or movement disorders, gave written informed consent to
track their unconstrained naturalistic motion using inertial measurement units
(Xsens MTw Awinda), placed on the pelvis, shoulders, sternum, upper arms,
forearms, hands, and head. The system was calibrated while the participant was
standing in a relaxed, upright position, with their feet parallel to each other and
their arms flat against their body, while looking straight ahead with a natural head
position. Analogous to Carriot et al. (2014), participants performed five different
naturalistic tasks in and around our university, each one to three times, for 2 min
each: walking, running, going up and down the stairs, sitting, and standing. This
study was approved by the ethics committee of the Faculty of Social Sciences of
Radboud University Nijmegen, the Netherlands. To bring this data set to bear on
the Clemens et al. (2011) model, we analyzed the roll-tilt angles of the head in
space, in degrees. The preprocessing of the raw head orientation data (which was
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measured in quaternion form) consisted of transforming the raw data to Euler roll-
tilt angles in degrees. Head orientation distributions are described in terms of four
statistical moments: mean, standard deviation, skewness, and kurtosis. To
determine which probability distribution best captured the natural head statistics,
theoretical distributions were fitted to the head orientation data using Matlab’s
built-in maximum likelihood estimation function. We considered the following
probability distributions: the Gaussian, logistic, t-location-scale (McDonald &
Newey, 1988), extreme value (Gumbel, 1985), and generalized extreme value
distributions (Jenkinson, 1955). The resulting fits were ranked using the Akaike
information criterion (AIC).

2.3.2 Modeling

Model implementation

The model was implemented in Matlab (R2019a, RRID: SCR_001622) and
numerically simulated under different assumptions of the prior distribution.
Incorporating a non-Gaussian prior into the model caused the closed-form
expressions in the original model to no longer exist. Therefore, the probability
distributions in the new model implementation were numerically approximated in a
circular plane with a resolution of 0.1°. A smaller step size did not impact the
model predictions but increased the duration of the fitting procedure considerably.

The model was evaluated 500 times for each tilt angle tested in the SBT and SVV
tasks. On each of these 500 replications, the mean of each sensory signal (ugs,
pus, and pups) was randomly drawn from a circular normal distribution, using the
actual tilt angle on that trial (Bg, Hp, or Hg) as mean and the standard deviation
of the sensory signal (ops, ous, or ous) as standard deviation. The distributions of
the indirect signals (fpsr and fusi) were computed following the expressions in
Clemens et al. (2011) (Equations 2, 4, 6, and 8) as circular normal distributions with
means pps — uu and ups + ppp and standard deviations \/insjta%m and
\/‘71235 + 0'12_IB, respectively. The body-in-space posterior distribution consists of an
integration of the directly and indirectly measured body-in-space information.
Similarly, the head-in-space posterior distribution was computed by integrating the
(direct and indirect) sensory information and the prior distribution. Taking the
mode of the posterior distributions then resulted in the final, optimal estimates
(denoted by Bg and lEIS in Figure 2.1). Note that with the prior in the form of a
t-location-scale distribution, the resulting posterior is no longer symmetric. Finally,
we averaged the modes across the 500 model simulations to determine ,u(BS) and
p(I:IS) for each tilt angle tested in the two tasks. Similarly, the variance of the
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modes represents 02(Byg) and o®(H ). We verified our numerical implementation
by fitting the model with a Gaussian prior and found similar model likelihoods and
fitted parameter values via the original estimation procedure used in Clemens et al.
(2011), validating the new implementation.

Model variants and their evaluation

The numerical model version allows to test the model architecture under various
assumptions. Models were fitted to the data set from Clemens et al. (2011) by
minimizing the negative log-likelihood function using the Matlab function fmincon
[see Clemens et al. (2011) for a detailed description of the fitting procedure]. We
tested various variants of the model with a Gaussian prior (GP models) or a
t-location-scale prior (TP models), which are summarized in Figure 2.4. We
computed AIC scores to evaluate their performance by accounting for different
numbers of free parameters. A lower AIC score indicates a better description of the
data by a model variant.

Model variant 1: m1-GP. This GP model is the numerical version of the original
model by Clemens et al. (2011) (from here on denoted as the m1-GP model). The
original model contains seven free parameters: ays, bus, oBs, ous, 4Aocr, A, and
ousp as the standard deviation of the Gaussian prior. Per participant, this model
was fitted 100 times. For half of the fitting runs, random values within fixed bounds
(ans: [0, 0.5]°/°, bus, o0BS, OHB, oHSP: [1e-05, 50]°, Aocr: [0, 30]°, A: [0, 0.06]) were
used as start values for the free parameters to maximize the possibility of
convergence to the global minimum. The remaining runs were started with the
fitted values from the Clemens et al. (2011) study. Note, allowing a free parameter
for the mean of the prior led to a fitted value close to 0. Therefore, this parameter
was fixed at 0 during fitting.

Model variant 2: m2-TP. This TP model fitted the Clemens et al. (2011) data set with
the same free parameters but under the assumption of a t-location-scale prior
(from here on denoted as the m2-TP model), which turned out to be the best
description of the naturalistic head orientations in our data (see Figure 2.2B),
corroborating previous literature (Carriot et al., 2014). The shape parameter of the
t-location-scale-prior distribution (vpsp) was fixed at the average parameter value
of the best-fitting distribution on the naturalistic head orientation data (see
Supplemental Table 2.52 in the Supplemental material). The fitting procedure was
as for model 1. In further analyses, we also fitted this model using the shape
parameter fixed at either 6, 10, 25, 50, 100, or 300 (resembling a Gaussian
distribution), each fitted 50 times.
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Model variant 3: m3-GP, m3-TP. In models 1 and 2, the standard deviation of the
otolith noise depends linearly on the absolute head tilt. Instead, in model variant 3,
we fitted a TP model without an imposed relationship between otolith noise and
tilt angle, i.e., we allowed the standard deviation of the otolith noise to be a free
parameter for each absolute tilt angle (from here on denoted as the m3-TP model).
We used the fitted intercept and slope values of the Clemens et al. (2011) study to
compute a standard deviation for each tilt angle. These values were then used as
the initial values for the free parameters in the fitting procedure, after which the
parameters could take on any value within [1e-05, 50]°. We also repeated the fitting
procedure with random start values for the free parameters. For comparison, this
assumption was also tested for a Gaussian prior (the m3-GP model). Each version
was fitted 100 times.

Model variant 4. This model variant involved a Gaussian-mixture distribution as
head-in-space prior. A mixture of two Gaussians with the same mean but different
SDs yields a distribution with heavier tails (to approximate the measured prior). We
tested a prior distribution characterized by three parameters: the standard
deviations of the two Gaussians, opsp—1 and opgsp-—2, and their mixing coefficient
¢, defined between 0 and 1, which weighs the two distributions. The means of both
Gaussians were fixed at 0. The fitted values from Clemens et al. (2011) were used as
start values for the fitting procedure, where the fitted value for the standard
deviation of the prior, opsp, served as start value for oggp_1. The start value for
ousp—2 Was 50° and the initial value of the mixing coefficient was valued either
0.25, 0.5, 0.75, or 1. The model was fitted 50 times for each of the different start
values for the mixing coefficient.

Model variant 5: m5-GP, m5-TP. In the original model, the sensory measurements at
a particular tilt angle are assumed to be unbiased on average but contaminated
with independent Gaussian noise. This is referred to as a measurement
distribution, i.e., the distribution of sensory tilt signals that is produced when the
head is tilted at a specific angle. However, the brain must perform the inverse
approach to find out which tilt angle has been responsible for the sensory signal
that it receives. Hence, it must compute the sensory likelihoods. If the
measurement distribution of a sensory signal is Gaussian with a constant standard
deviation, irrespective of tilt, the likelihoods will be Gaussian as well. For the
otoliths, however, the standard deviation of the noise was assumed to be
increasing with tilt angle, which formally results in a skewed otolith likelihood [see
Girshick et al. (2011) for a more detailed explanation]. This nonlinear
transformation was neglected in the original model - we assumed a symmetric
otolith likelihood - but was put to test in variant 5. This model variant contained
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the same free parameters as m1-GP and m2-TP and was again fitted 100 times per
prior form (from here on denoted as the m5-GP and m5-TP models).

2.4 Results

We investigated the role of the prior’s form in a Bayesian model of spatial
orientation, as assessed by the subjective visual vertical and subjective body tilt
tasks at tilt angles between -120° to 120° using non-naturalistic stimuli in a
laboratory-based environment. Data from these tasks were previously collected and
extensively described and modeled using a Gaussian head-tilt prior in Clemens et
al. (2011). However, more recent work on head motion statistics reported that
probability distributions of angular velocity and linear acceleration averaged across
natural activities were not Gaussian, showing large positive excess kurtosis values
(Carriot et al., 2014). We first examined whether this observation can be generalized
to head tilt distributions by measuring the head orientation statistics of human
participants during typical everyday activities, and subsequently tested whether
the model fit of the Clemens et al. (2011) data can be improved by canceling the
restriction to a Gaussian prior and allowing prior distributions more akin to these
naturalistic head orientation distributions.

2.4.1 Natural head orientation statistics

Figure 2.2A shows head orientation as a function of time for the various activities
(i.e., walking, running, going up and down the stairs, sitting, and standing),
separately for each participant. We found that the recorded head orientations
varied across the activities. For example, over consecutive samples, the changes in
head tilt were smaller during sitting and standing than during the other activities.
Furthermore, we found that probability distributions of head orientation pooled
across activities were not Gaussian (Figure 2.2B) as quantified by large (between 5
and 142) kurtosis values across participants (Figure 2.2B, insets). This indicates that
head tilt distributions have longer tails and a higher peak than would be expected
from normally distributed data. Across participants the ranges of the first three
statistical moments of the head orientation data were M = —-2.9° —1.0°,
SD =6.3" —10.3" and S = —2.1 — 3.2, indicating that the head tilt distribution
centers on upright and shows no systematic skewness.

We next tested for each participant which of several probability distributions - the
Gaussian, logistic, t-location-scale, extreme value, and generalized extreme value
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distributions - best accounted for the measured head orientation statistics. We
found that, pooled across activities, a t-location-scale distribution provided the
best fit for five of the six participants, outperforming the Gaussian distribution in
all cases (compare solid and dashed lines in Figure 2.2B). The relatively skewed
data of participant 2 are described best by the extreme value distribution, followed
by the t-location-scale distribution. We refer to Supplemental Table 2.S1 in the
Supplemental material for a comparison of the AIC scores of all fitted distributions.
The parameters of the fitted t-location-scale distribution are consistent across
participants (see Supplemental Table 2.52); the location parameter is close to 0
(range: -1.9° to 1.1°), indicating that participants held their head on average
upright, the scale parameter ranged between 3.9° and 6.8°, and the shape
parameter was small (range: 2.2 - 4.3), corresponding to a characterization in terms
of long tails. The results are consistent with previously reported distributions of
head velocity and acceleration (Carriot et al., 2014; Hausamann et al., 2019).
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Figure 2.2. A: Representative 60-s traces of the measured head orientations during the different
activities, for each participant. B: Fitted normal (solid line) and t-location-scale (dashed line)
probability density distributions (PDFs), plotted on top of all head roll-tilt data, pooled across
activities for each participant in the naturalistic motion tracking experiment. Insets show the four
statistical moments (mean M, standard deviation SD, skewness S and kurtosis K) of the
pooled data.
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2.4.2 Bayesian modeling of spatial orientation

Model variants 1 and 2

We subsequently tested the assumption that these natural statistics of head
orientation are used as a prior in spatial orientation and can account for the
observations in the SVV and SBT tasks reported by Clemens et al. (2011). Within the
structure of their Bayesian model of spatial orientation (Figure 2.1), we compared
the predicted performance in the SBT and SVV tasks under the assumption of a
Gaussian-head-tilt prior (m1-GP) and a t-location-scale prior [m2-TP, shape
parameter fixed at 3.4, which was the average best-fitting shape parameter value
on the naturalistic head orientation data (see Supplemental Table 2.52)].

Figure 2.3 shows these predictions as the average (+SD) of the individual best fits
superimposed on the mean data across participants. The prediction of the m1-GP
model replicates well the closed-form model fit. In contrast, the m2-TP model
provides a poor fit, both with regard to the observed bias in the SVV (the Aubert
effect) and, more prominently, its variance. Also, the variance of the SBT seems not
well accounted for by this TP model.
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Figure 2.3. Predictions of the m1-GP (orange) and m2-TP models (v = 3.4, blue) of the SBT (left
column) and SVV (right column), generated with the best-fitting parameter values per participant and
then averaged across participants, plotted on top of the mean parameters from the psychometric fits
(+). Shaded areas and error bars show one standard deviation above and below the participant mean.
SBT, subjective body tilt; SVV, subjective visual vertical.

To compare the quality of various model variants, we computed their AIC scores,
averaged across participants. The baseline in this comparison is the mean AIC score
of the m1-GP model, set to zero at the left in Figure 2.4. As shown, the m2-TP
model (v = 3.4) performs substantially worse than the m1-GP model.
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Figure 2.4. Comparison of the mean best Akaike information criterion (AIC) scores over participants
of the different model variants, relative to the mean AIC score (439.2) of the Gaussian-prior model
(m1-GP). A lower value indicates a better fit to the data. The different model variants are explained
above (see Methods, Modeling, Model variants and their evaluation).

Table 2.1 illustrates the best-fit parameter values for each participant for the m1-GP
and m2-TP (v = 3.4) models as well as the fit parameters reported in Clemens et
al. (2011) based on the original closed-form implementation. Comparing the m1-GP
model with the closed-form implementation reveals similar fitted parameter values,
confirming the numerical implementation of the Clemens et al. (2011) model. The
best-fitting m2-TP model yields large interparticipant variability for most of the
parameters, suggesting that this TP variant does not capture the data very well.
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Table 2.1. Best-fitting parameter values for the original implementation of the model as presented in
Clemens et al. (2011) (O), the numerical model with a Gaussian prior (m1-GP) and the numerical
model with the t-location-scale prior (m2-TP, v = 3.4). The mean parameter values and their
respective standard deviations are computed by averaging across participants. The fit parameters
had the following lower and upper bounds: agg: [0, 0.51°/°, bys, oBs, ouB, cgsp: [1e-50, 50]°,
Aocr: [0,30]°, X: [0, 0.06] (fitted lapse rates not presented).

Parameter ans (°/°) bus (°) ops (°)

Model version o m1-GP m2-TP [0} m1-GP m2-TP [0} m1-GP m2-TP

Participant

1 0.23 0.23 0.23 12 14 5.5 12.3 12.4 8.2
2 0.12 0.12 0.24 12 1.2 0.8 8.4 8.3 9.8

3 0.20 0.21 0.32 11 11 0.5 6.7 6.4 3.1
4 0.07 0.07 0.30 3.9 3.9 30.7 12.6 12.6 9.9

5 0.11 0.11 0.49 33 3.4 227 15.0 15.1 9.9

6 0.23 0.23 0.18 3.0 3.2 3.1 8.0 8.2 6.1

7 0.20 0.20 0.18 3.2 34 2.5 12.7 12.6 40.8
Mean + 016+ 017+ 028%  24% 2.5+ 9.4+ 108+  10.8+ 125+
) 0.06 0.06 0.11 12 1.2 12.2 3.1 3.2 12.7
Parameter ous (°) Aocr () ousp (°)
Modelversion O m1-GP  m2-TP o m1-GP  m2-TP o m1-GP  m2-TP

Participant

1 &3 33 47:5 27.0 26.9 7.0 11.6 11.5 38.8
2 6.4 6.7 49.9 17.0 17.1 11.5 9.4 9.7 18.0
3 93 10.4 30.4 17.5 17.6 10.0 14.4 15,3 30.4
4 7.1 7.1 38.3 0.0 0.0 30.0 11.2 11.2 15.5
5 3.6 3.6 38.9 1.0 1.0 29.7 18.7 18.8 17.6
6 1.8 2.0 35.9 18.8 18.8 2.4 9.5 9.6 35.5
7 3.0 3.0 15 20.8 20.7 1.8 12.8 12.9 21.2
Mean * 49+ 52+ 346+ 14.6 £ 146 + 13.2+ 125+ 12.7+ 253+
SD 2.7 3.0 16.1 10.2 10.1 11.9 3.2 3.3 9.5

Within the context of the m2-TP model, the decay rate of the prior distribution is
captured by the shape parameter. The larger the value of this parameter, the closer
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the distribution approximates a Gaussian distribution. Figure 2.5 illustrates the
predictions of the m2-TP model with the shape parameter fixed at 6, 10, 25, 50, 100,
and 300 and averaged across participants, superimposed on the prediction of the
m1-GP model. The model fit clearly improves with a larger shape parameter, which
is confirmed by the corresponding AAIC scores in Figure 2.4, suggesting that the
model better operates as the t-location-scale prior approximates a Gaussian. This is
in stark contrast with the shape parameter values of 2.2 - 4.3 that we observed in
the natural head orientations.
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Figure 2.5. Predictions of the m2-TP model with different shape parameters (v = 6, 10, 25, 50, 100, or
300) and the m1-GP model, plotted on top of the mean parameters from the psychometric fits (s).
Data are in the same format as in Figure 2.3.

Model variant 3

We next examined if releasing other model constraints can redeem the TP model.
One constraint of the original model is that the standard deviation of the otolith
noise depends linearly on the (absolute) tilt angle. In model variant 3, we lifted this
constraint and fitted the GP and TP models with the standard deviation of the
otolith noise as a free parameter for each absolute tilt angle. With this additional
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flexibility, the m3-GP model still performed very well, but the m3-TP model did not
improve, showing a higher AAIC score than without this flexibility (see Figure 2.4).

Figure 2.6 shows for both models the best-fitting values of otolith noise SD as a
function of tilt angle, averaged across participants. For both models, there seems

to be a linear relationship with absolute tilt angle, validating this constraint within
the original model.
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Figure 2.6. Best-fitting otolith noise values of the Gaussian-prior (orange) and t-location-scale-prior
(blue) models as a function of tilt angle, averaged across participants. Shaded areas show one
standard deviation above and below the participant mean.

Model variant 4

In model variant 4, we tested if a head-tilt prior that consists of a mixture of two
Gaussians, which compared with a t-location-scale distribution, can result in an
alternative prior distribution with longer tails than a single Gaussian, fitted the data
of Clemens et al. (2011). The AIC score of the best-fitting Gaussian-mixture-prior
model is comparable to the m1-GP model AIC score [but slightly higher, caused by
the extra free parameters of the Gaussian-mixture prior (see Figure 2.4)]. However,
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we found the mixing coefficients to be exactly 1, reducing the Gaussian-mixture
distribution in fact to the single Gaussian distribution of the m1-GP model. Thus,
the m1-GP model holds as the most parsimonious explanation of the data.

Model variant 5

Finally, we fitted a model variant that contains a skewed distribution for the otolith
likelihood instead of the symmetric, Gaussian otolith likelihood in the original
model. Again, the GP version of this model outperformed the same model with a
t-location-scale prior. Furthermore, the m5-GP model performed worse than the
original model in terms of AIC score (see Figure 2.4) and the m5-TP variant did not
lead to an improved fit, showing a similar AAIC score as the m2-TP
(v = 3.4) model.

2.5 Discussion

The starting point of the present study is the Bayesian model of spatial orientation
that we first proposed in 2011 based on recordings in a non-naturalistic laboratory-
based environment (Clemens et al., 2011). Specifically, a Gaussian-prior probability
distribution of head roll was imposed to explain biases in the subjective vertical -
known as the Aubert effect (see Figure 2.1). This prior probability distribution was
regarded as a Bayesian observer’s assumption that the head is usually nearly
upright (Eggert, 1998; de Vrijer et al., 2008). Under the assumption that human
observers are performing Bayesian inference for spatial orientation, we asked the
question whether this form of the prior probability distribution is consistent with
the natural statistics of head orientation, generated by human participants during
everyday activities.

The answer is no. We found that the natural statistics of head orientation were
poorly represented by Gaussian probability distributions but were characterized by
long tails, as quantified by large kurtosis values. This observation extends
observations by Carriot et al. (2014) on head velocity and acceleration
distributions. Their kurtosis values (>10) are similar to the range we found
(between 5 and 14, with the exception of the much larger kurtosis value of
participant 6). In both studies, these statistics are based on the combined
distribution of all activities tested, even though the range of head orientations
varied across the activities. Also, separate analyses of the activities within subjects
revealed distributions with excess kurtosis in nearly all cases (see Supplemental
Table 2.S3), suggesting that the kurtosis does not originate from sampling from
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different Gaussian distributions. This does not seem a divergent finding, as
Schwabe & Blanke (2008) also reported deviations of normality of measured head
pitch of human participants when they were standing, walking around, or moving
as if they were playing tennis. Similar observations were made in visual and
auditory modalities (Ruderman & Bialek, 1994; Attias & Schreiner, 1996; Geisler,
2008; Pavao et al., 2020). Also in songbirds, the distribution of the sung pitches is

observed to have long, non-Gaussian tails (Zhou et al., 2018).

To model the naturalistic head orientation data, we fitted several probability
distributions - the Gaussian, logistic, t-location-scale, extreme value, and
generalized extreme value distributions - to the head orientation data of each
participant. A Gaussian distribution was never the best-fitting function but was
always outperformed by a t-location-scale distribution. The t-location-scale
distribution approaches the Gaussian distribution as the shape parameter tends to
infinity, whereas smaller values of the shape parameter yield heavier tails. The
latter is what we observed. The best-fitting shape parameter ranged between 2.2
and 4.3 across our participants.

We further performed a Bayesian modeling analysis using the t-location-scale
distribution of head roll as the prior. To this end, the original closed-form Bayesian
model by Clemens et al. (2011) was turned into a numerical version. Although the
numerical model could equally well account for response bias and variance in the
subjective visual vertical and subjective body tilt tasks under the assumption of a
Gaussian prior as the original model (see Figure 2.3), it failed dramatically with a
t-location-scale prior (see AAIC scores in Figure 2.4). Indeed, the larger we allowed
the shape parameter of the t-location-scale prior to be, i.e., the better it
approximated a Gaussian, the better the model accounted for SVV and SBT
performance. Adding more flexibility to the model by releasing constraints on the
otolith likelihood did not improve the model with the t-location-scale prior form.
Fitting the model with a Gaussian-mixture prior (an alternative prior distribution
allowing long tails) returned a single Gaussian distribution as the best account.
Also extending the model by including the nonlinear transformation between the
otolith measurement distribution and likelihood failed to improve the t-location-
scale prior fit (see Figure 2.4).

Given that natural statistics of head orientation are best characterized by a non-
Gaussian distribution, why is SVV and SBT performance so much better accounted
for by a Bayesian observer assuming a Gaussian head-in-space prior? We can only
speculate about the answers to this question. First, the statistics of natural head
motion may simply not be incorporated as a prior in such perceptual computations.
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Carriot et al. (2014) have shown that the statistics of signals experienced during
active movements differed from those experienced during passive movement. For
instance, their participants experienced greater translational accelerations and
angular velocities during active motion than passive motion. Typically, during
active exploitation, the system relies heavily on sensory feedback to control our
body to remain within limits of stability and to prevent falling. A t-distribution prior
could define a “zone of stability” - a movement-relevant prior distribution to
control the deliberate exploration of plausible motor commands that keeps the
body within the borders of postural stability [cf. Zhou et al. (2018)].

A more theoretical explanation arises if one realizes that observing new evidence
not always reduces uncertainty under Bayes’ rule. In other words, a posterior
distribution does not necessarily have a lower variance than the prior or likelihood
distributions it is based upon. It can be shown that this holds in the case when the
prior and likelihoods are Gaussian, but not in all other cases (Petty, 2018).
Figure 2.7 illustrates this point. The posterior that follows from a Gaussian
likelihood and t-location-scale prior can have a larger variance than either prior or
likelihood, consistent with the predictions in Figure 2.3, where the SD of the SVV
posterior is much larger with a t-location-scale prior than with a Gaussian prior.
This increase in width (or decrease in precision) occurs when the distance between
the prior and likelihood means becomes large enough. Hence, a t-location-scale
prior can lead to a negative information gain (Petty, 2018), which is a situation that
the brain may want to prevent. Instead, the posterior yields a smaller variance if it
follows from a Gaussian prior. Gaussian priors will reduce the variance of the
posterior across all Gaussian sensory likelihoods, thus creating a positive
information gain (irrespective of the distance between the prior and likelihood
distribution). New sensory evidence will thus decrease the system’s uncertainty
about the state it has adopted. In functional terms, for vertical perception, a
Gaussian prior therefore amounts to a particular precision-accuracy trade-off
across the tilt range; it suppresses uncertainty at the expense of a systematic bias
at larger tilt angles (de Vrijer et al., 2008). This cannot generally be achieved with a
t-location-scale prior in the context of the structure of the model by Clemens et al.
(2011). We do not argue that no other model structures can be conceived that deal
with  this notion, but such conceptual analysis goes beyond the
present investigation.
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Figure 2.7. A: Integrating a t-location-scale prior (blue), which resembles the natural statistics of
head orientations, with a Gaussian likelihood distribution (black) can lead to a posterior distribution
(red) with a larger variance than the variances of the individual signals in the integration. B: Instead,
the integration of a Gaussian prior (orange) and Gaussian likelihood (black) always results in a
Gaussian posterior (red) with a lower variance than the variances of the individual signals.

The subsequent question then is, how can the brain develop a Gaussian head-in-
space prior, while the natural head motion statistics are best approximated by a
t-location-scale distribution? As in any biological system, neural variability plays a
role in vestibular processing and determines the neural code at central levels
(Sadeghi et al., 2007). Therefore, the signals at the level of the vestibular afferents
will be noisier than the signals measured by the inertial measurement units, which
will be close to the actual physical orientations. In other words, vestibular
processing of head orientation signals is corrupted by additive (or multiplicative)
noise (Mallery et al., 2010). Based on the central limit theorem, this could, over an
extended exposure to natural stimuli and daily life tasks, convert the heavy-tailed
distribution of measured head orientations into a more Gaussian distribution at the
central level. If so, our results suggest that the brain stores this information and
uses it as a prior in sensory processing for vertical perception.

At the neural level, vestibular afferents transmit data to the brain in trains of action
potentials, and the brain needs to decode this information in terms of the head
orientation, as well as other kinematic variables of head motion. It has been
suggested that regular afferents transmit more information about changes in static
head orientations than irregular afferents (Sadeghi et al., 2007; Jamali et al., 2019).
The likelihood distribution of the head’s kinematic state at the time of a spike of a
given neuron differs from the prior distribution of states (Paulin & Hoffman, 2019).
Because a single spike transmits only a small amount of information, the observer’s
uncertainty about the head’s kinematic state will be reduced (i.e., the variance of
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the posterior distribution will be smaller) if the prior distribution of states has a
Gaussian form. More generally, it has been suggested that Bayesian computations
with prior probabilities can rely on population vector decoding of neural
populations with nonuniform preferred directions (Girshick et al., 2011; Cuturi &
MacNeilage, 2013).

As a final note, the considerations above assume the notion of a stable real-world
prior, derived from the statistics of movements during natural activities over a long
time. Stable priors have also been suggested for processing in other sensory
modalities, e.g., predominance of horizontal and vertical orientations in natural
scenes for visual orientation perception (Attneave, 1954; Simoncelli & Olshausen,
2001; Vinje & Gallant, 2002; Girshick et al., 2011). However, priors could also be
more flexible, or context-dependent, and adapt over a short time scale, as for
example has been shown in perceptual (Roach et al.,, 2017), motor (Kording &
Wolpert, 2004), or language-learning experiments (Griffiths & Kalish, 2005). It
remains to be tested how participants can develop a context- or task-dependent
prior based on the orientations experienced during the experiment. The optimal
strategy, in this case, is called dynamic or sequential Bayesian inference, which
assumes conditionally independent measurements and Markovian dynamics. Under
a recursive structure, it minimizes uncertainty in task outcome or state by using the
posterior distribution given all previous measurements as the prior distribution for
inferring the posterior on the next trial (Doucet et al., 2001; Verstynen & Sabes,
2011; Petzschner et al., 2015; Zhou et al., 2018). More specifically, a prior belief is
computed by prediction, requiring a kinematic forward model, and then the
posterior is updated by combining the likelihood with the prior (Laurens & Droulez,
2007; Ellis & Mast, 2017). It would be an interesting avenue for future work to
embed the spatial orientation model of Clemens et al. (2011) in this framework to
find out which specific kinematic model could explain the dynamic SVV and SBT.
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2.6 Supplemental material

Table 2.S1. Best-fitting distributions on the head roll-tilt data pooled across activities, per
participant, and their respective AIC scores, relative to best fitting distribution.

Participant Fitted probability distribution AIC
1 t-location-scale 0
logistic 5338.41
extreme value 18082.09
normal 24217.90
generalized extreme value 44213.82
2 extreme value 0
t-location-scale 11050.19
logistic 15751.84
generalized extreme value 32034.44
normal 33534.12
3 t-location-scale 0
logistic 5968.01
normal 29410.35
extreme value 32701.38
generalized extreme value 51737.02
4 t-location-scale 0
logistic 2560.41
normal 13790.25
generalized extreme value 29936.73
extreme value 44681.60
5 t-location-scale 0
logistic 11048.67
normal 31269.14
generalized extreme value 47624.77
extreme value 66517.03
6 t-location-scale 0
logistic 12507.65
normal 92083.58
generalized extreme value 250067.32

extreme value 373372.50
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Table 2.S2. Location, scale and (in the case of the t-location-scale distribution) shape parameter
values of the t-location-scale and normal distributions that were fitted on the data pooled across
activities for each participant. The bottom row shows the mean location, scale and shape parameters
of the distributions, averaged across participants. The mean value of the shape parameter is used in
the model fitting (see Methods, Modeling, Model variants and their evaluation, Model variant 2).

. Probability Location Scale Shape
Participant .. .
distributions parameter (°) parameter (°) parameter
1 t-location-scale -1.91 6.77 3.28
normal -2.86 10.32
2 t-location-scale -0.79 5.57 3.33
normal -2.27 8.48
3 t-location-scale 0.95 4.81 3.55
normal 0.25 7.23
4 t-location-scale 1.11 4.39 3.52
normal 0.86 6.29
5 t-location-scale 1.05 3.93 2.23
normal 1.04 7.37
6 t-location-scale -0.11 491 4.28
normal 0.00 8.69
Mean t-location-scale 0.05 5.06 3.36
normal -0.50 8.06
Table 2.S3. Kurtosis values of the data of each activity of each participant.
Participant Walking Running Standing Sitting Stairs
1 7.24 11.27 7.23 2.83 6.68
2 8.95 3.99 12.89 26.80 2.46
3 13.70 9.26 23.85 7.11 5.36
4 5.31 4.37 4.48 5.20 3.79
5 15.86 4.17 14.07 57.37 3.51
6 5.59 4.16 83.99 3.56 5.50
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Central tendency and serial dependence
in vestibular path integration

This chapter has been adapted from:

Willemsen, S. C. M. J., Oostwoud Wijdenes, L., van Beers, R. J., Koppen, M., &
Medendorp, W. P. (2024). Central tendency and serial dependence in vestibular path
integration. Journal of Neurophysiology, 132(5), 1481-1493.
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3.1 Abstract

Path integration, the process of updating one’s position using successive self-
motion signals, has previously been studied with visual distance reproduction tasks
in which optic flow patterns provide information about traveled distance. These
studies have reported that reproduced distances show two types of systematic
biases: central tendency and serial dependence. In the present study, we
investigated whether these biases are also present in vestibular path integration.
Participants were seated on a linear motion platform and performed a distance
reproduction task in total darkness. The platform first passively moved the
participant a predefined stimulus distance, which they then actively reproduced by
steering the platform back the same distance. Stimulus distances were sampled
from short- and long-distance probability distributions and presented either in a
randomized order or in separate blocks to study the effect of presentation context.
Similar to the effects observed in visual path integration, we found that reproduced
distances showed an overall positive central tendency effect as well as a positive,
attractive serial dependence effect. Furthermore, reproduction behavior was
affected by presentation context. These results were mostly consistent with
predictions of a Bayesian Kalman filter model, originally proposed for visual
path integration.
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3.2 Introduction

How do we keep track of our position when navigating our surroundings? An
important aspect of human spatial navigation is path integration, which is the
process of continuously updating one’s position using successive self-motion
signals (Mittelstaedt & Mittelstaedt, 1980; Etienne & Jeffery, 2004). These self-
motion signals can come from various senses, such as the visual and vestibular
systems (ter Horst et al., 2015), and can also be derived from motor signals
(Laurens & Angelaki, 2017; van Helvert et al., 2022; Cullen, 2023).

To investigate the mechanisms underlying path integration, studies often make use
of distance reproduction tasks (Israél et al., 1997; Lappe & Frenz, 2009; Petzschner
& Glasauer, 2011). Typically, in such tasks, a participant is virtually or physically
moved an unspecified distance and then asked to reproduce that same distance.
Generally, participants show systematic biases in their reproductions. Some studies
show an overall overestimation (Redlick et al., 2001; Lappe & Frenz, 2009), whereas
others report an underestimation of the reproduced distance (Frenz & Lappe, 2005;
Lappe et al.,, 2011). There is also work that reports that shorter distances are
overestimated while longer distances are underestimated (Loomis et al., 1993;
Israél et al., 1997; Philbeck & Loomis, 1997; Grasso et al., 1999; Riecke et al., 2002;
Bergmann et al., 2011; Petzschner & Glasauer, 2011; Prsa et al., 2015).

The underestimation of traveled distance has been modeled by assuming that the
integration of self-motion information is leaky (Mittelstaedt & Glasauer, 1991; Lappe
et al., 2007). This model can also predict an overestimation if instead of the already
traveled distance, the remaining distance to a target position must be judged
(Lappe et al., 2007). However, these types of models cannot explain the observation
that reproduced distances are also affected by the history of experienced distances
(Petzschner & Glasauer, 2011). Indeed, several studies have shown that path
integration is biased by the distribution of distances a participant encounters
during an experiment as well as the sequence in which these distances are
presented (Sun et al., 2020; Glasauer & Shi, 2022). The former is referred to as the
central tendency bias (Hollingworth, 1910) and the latter as serial dependence
(Holland & Lockhead, 1968; Cross, 1973), both well-known observations across
perceptual domains (Saarela et al., 2023). What is the origin of these biases in
path integration?

Recent studies suggest that the observed biases do not reflect a distorted
integration process but rather arise from probabilistic computations that perform
near-optimal Bayesian inference on noisy but unbiased self-motion velocity signals
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(Jirgens & Becker, 2006; Petzschner & Glasauer, 2011; Petzschner et al., 2012; Prsa
et al., 2015; Lakshminarasimhan et al.,, 2018). In more detail, because sensory
information and motor commands, as well as the neural processing itself, are
endowed with intrinsic random noise, the self-motion cues should not be treated
as point estimates but rather be approached as probability distributions. For path
integration, the Bayesian framework states that the observer estimates the most
probable distance (the posterior) by integrating noisy sensory signals (the
likelihood) with prior expectations (as derived from past experiences), following
Bayes’ rule.

In support, Lakshminarasimhan et al. (2018) found that the bias in visual path
integration was better explained by a Bayesian prior favoring slower speeds than
by leaky integration of unbiased self-motion velocity. Glasauer & Shi (2022) showed
that a static Bayesian prior, i.e., a distribution with a fixed variance and a fixed
mean, could account for central tendency biases in visual path integration but
could not explain the serial dependence effects showing that responses were
attracted toward the previously presented distance. To account for both types of
biases, they proposed instead a Bayesian model that assumes that stimuli are
drawn from a distribution with a fixed variance but whose mean changes from trial
to trial (Glasauer & Shi, 2022). Can this model also explain the biases in vestibular
(or more generally, idiothetic) path integration?

In the present study, we first investigated whether the central tendency and serial
dependence effects are also observed in vestibular path integration. If path
integration relies on a single multimodal representation of estimated distance
irrespective of the type of sensory input, then we expect to find similar central
tendency and attractive serial dependence biases as observed in visual path
integration (Glasauer & Shi, 2022). However, it is also possible that the reproduced
distances show no or even repulsive serial dependence, biasing perception away
from the previously presented distance to increase overall sensitivity to different
distances instead of keeping the continuity of vestibular path integration (Sun et
al., 2020). To obtain more insight into the origin of the biases, we studied whether
these biases are affected by the presentation context in which the stimulus
distances are experienced. To do this, we sampled distances from two probability
distributions covering a range of “short” and “long” distances and created two
different contexts by changing the order in which the stimuli were presented.
Second, we tested whether the reproduced distances and observed biases, and
their potential dependence on presentation context, could be explained by the
model proposed by Glasauer & Shi (2022) for visual path integration.
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3.3 Methods

3.3.1 Participants

Thirty-one participants took part in the experiment. All participants were naive as
to the purpose of the study and had normal or corrected-to-normal vision as well
as no hearing issues or history of motion sickness. The experiment took ~90 min,
and participants received course credits or €15 as reimbursement. One participant
was excluded because of problems with sound masking during the task, so that
data of 30 participants (11 men and 19 women, aged 18 - 31 yr) are reported. The
study was approved by the ethics committee of the Faculty of Social Sciences of
Radboud University Nijmegen, and all participants gave written informed consent.

3.3.2 Setup

We implemented a distance reproduction task using a vestibular sled, consisting of
a chair mounted on top of a linear motion platform, that moved along the
participant’s interaural axis on an ~95-cm-long track (see Figure 3.1). A linear motor
(TB15N; Tecnotion, Almelo, The Netherlands) and servo drive (Kollmorgen S700;
Danaher, Washington, DC) were used to power and control the platform.
Participants wore a five-point seat belt, and their head was fixated with ear cups.
The chair contained emergency buttons that could be pressed at any time during
the experiment to stop the motion of the platform. The platform could move
passively, i.e., outside of the participant’s control, or actively, by the participant
rotating a steering wheel (G27 Racing Wheel; Logitech, Lausanne, Switzerland) that
was mounted on a table at chest level in front of them. The steering wheel had a
range of rotation from -450° to +450° with a resolution of 0.0549° and encoded the
linear velocity of the sled (1 cm/s per degree). The mapping between the steering
wheel angle and sled velocity was kept constant throughout the experiment. The
task took place in total darkness and did not contain visual stimuli. We used an
OLED screen (55EA8809-ZC; LG, Seoul, South Korea) placed in front of the sled to
present instruction messages that explained the task before data collection started.
The participant wore in-ear headphones with active noise canceling
(QuietComfort 20; Bose, Framingham, MA) that played a white noise sound to mask
noise produced by the motion platform, alternated by single-tone beeps indicating
the different stages of each trial. The experiment code was written in Python
(v.3.6.9; Python Software Foundation).
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3.3.3 Reproduction task

Participants performed a vestibular distance reproduction task (see Figure 3.1).
Every trial started with a stimulus movement, where the chair was passively moved
by a predefined distance. The participant’s task was then to actively reproduce the
distance by steering the sled in the opposite direction: the reproduction movement.
In essence, the participant always had to move the chair back to the location from
which the stimulus movement started. The direction of the stimulus movement was
the same across the trials of one participant. Half of the participants were
randomly assigned to leftward stimulus movements and the other half to rightward
stimulus movements.

—

I Detour movements (3.1-3.6 s)

) I

Stimulus movement (1.3-1.65s) Reproduction movement

Figure 3.1. Distance reproduction task in a vestibular sled. Participants were seated in a chair
mounted on top of a linear motion platform. At the start of each trial, participants were moved to a
new start position via two detour movements (A). Then, a low-tone beep cued that the participant
would be moved over the stimulus distance (B). Finally, a high-tone beep instructed the participant
to use the steering wheel to move the sled over the same distance in the opposite direction: the
reproduced distance (C).

Before the stimulus movement, the chair was passively moved via two random
detour movements to one of two start locations, to ensure enough space on the
track for the upcoming stimulus movement. Detours were used to prevent
participants from receiving feedback about their previously reproduced distance.
The first detour moved the chair to a random location within +30 cm from the
middle of the track with a random duration between 1.8 s and 2.3 s. The second
detour movement subsequently brought the chair to the start location in 1.3 s. This
start location was on the left side of the track for rightward stimulus movements
and on the right side of the track for leftward stimulus movements.

Subsequently, a low-tone beep was played to alert the participant to the upcoming
stimulus movement. This movement had a random duration between 1.3 s and
1.6 s. The lower bound was determined such that none of the stimulus movements
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had a peak acceleration exceeding 1 G and a peak absolute velocity exceeding 100
cm/s. The upper bound resulted in the shortest stimulus movement having a peak
acceleration of ~38 cm/s? and a peak absolute velocity of ~20 cm/s, such that the
vestibular thresholds for perceiving the direction of linear lateral movements were
well exceeded (Kingma, 2005). All passive movements, i.e., the detours and
stimulus movement, followed a minimum-jerk profile.

After the stimulus movement finished and a random waiting time between 0.5 s

and 1 s had passed, a high-tone beep cued the participant to make the
reproduction movement by steering the sled in the opposite direction for the same
distance as the stimulus movement. If the participant moved the steering wheel too
soon (i.e., before the beep), the trial was aborted. Participants could steer the sled
up to a maximum absolute velocity of 100 cm/s and could stop the movement by
rotating the steering wheel back to the upright position. The chair stopped moving
when the absolute velocity became lower than 2 cm/s, after which the trial ended.
To cover the case that the participant intends to stop the sled movement but fails
to rotate the wheel completely upright, the movement also ended when the
absolute velocity fell below 6 cm/s while the steering wheel angle was constant for
100 ms or the steering changed direction (mean + SD: 87 + 78 trials). Participants
were instructed to make one smooth movement, i.e., it was not possible to steer
back or resume steering after the chair had come to a stop. Participants were free
to choose the duration of their reproduction and did not receive feedback about
their reproduction performance (except in the training block, see below).

3.3.4 Paradigm

We sampled the stimulus distances from two probability distributions covering a
range of short and long distances (see Figure 3.2A). Because magnitudes seem to
be internally represented on a logarithmic scale (Dehaene, 2003; Jiirgens & Becker,
2006; Stocker & Simoncelli, 2006; Durgin et al., 2009; Petzschner & Glasauer, 2011),
we sampled the stimulus distances from log-normal distributions. Log-transforming
these distances yielded equal-variance normal distributions (see Figure 3.2A, inset).
Before log-transforming, we divide the distances by a reference distance (1 cm) so
all log-transformed distances are dimensionless. Stimulus distances on linear scale
varied overall between 17 cm and 60 cm. The medians of the short and long
stimulus distributions were 24.6 cm and 45 cm, respectively, where the distance
between the medians of the distributions was determined such that there was a
negligible probability of 0.0001 for a random draw from the long distribution to be
shorter than a random draw from the short distribution. The variances of the short
and long log-normal distributions were 8.2 cm? and 27.4 cm?, respectively.
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Per participant, we randomly sampled 65 distances from each distribution and used
these to generate two presentation contexts (see Figure 3.2B). In the “blocked”
context the short and long distances were presented in separate blocks and
therefore separated in time, whereas in the “mixed” context the same short and
long distances were randomly interleaved. Participants experienced both contexts
during one experimental session of 260 test trials, where the order of the contexts
(including the order of the short and long blocks in the blocked context) was
counterbalanced across participants. There was no instruction about the existence
of the two types of distances and contexts. After every 52 trials (i.e., ~10 min), there
was a short break (~2 min) during which the lights were turned on to prevent
dark adaptation.
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Figure 3.2. A: Distributions of stimulus distances. Distances were sampled from two log-normal
probability distributions on linear scale covering a “short” (blue) and a “long” (orange) range of
distances. Dashed lines indicate the median distance. Inset: The same probability distributions on
logarithmic scale. B: Example presentation order of stimulus distances. In the blocked context, short
and long distances were presented in blocks; in the mixed context, the same distances were
randomly interleaved.

The experimental session started with 20 training trials to familiarize the
participant with the task. The stimulus distances in the training trials were drawn
from a uniform distribution on linear scale, covering all possible distances (17 to
60 cm). The training trials took place in the dark and followed the same paradigm
as the test trials. Contrary to the test trials, the training trials ended with visual
feedback on the reproduction error: after the reproduction movement ended, the
signed reproduction error in centimeters was presented on the screen. The training
trials were not analyzed.
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3.3.5 Data analysis

Data from the test trials were processed offline in MATLAB (v.R2019a; MathWorks).
The recorded sled position profiles showed that in some trials the movement speed
plateaued at a low but nonzero value before the movement was terminated. We
therefore corrected the movement end to the first time point with sled speed
<8 cm/s (instead of the online threshold of 6 cm/s) when the steering wheel angle
remained constant for at least 100 ms or the steering direction changed. This
resulted in an average of 20 corrected trials per participant (mean + SD: 20 + 18
trials). The reproduced distance was taken as the distance between the end and
start point of the reproduction movement in centimeters. The reproduction error
was defined as the difference between the reproduced and stimulus distance in
centimeters, where negative and positive values represent an undershoot and
overshoot, respectively. Trials in which the reproduction movement started too
soon, with reproduction movements in the wrong direction, or with reproduced
distances of < 1 cm were excluded (mean + SD: 4 + 4 trials). Because there was no
effect of movement direction on the mean unsigned reproduction error across trials
(Wilcoxon rank-sum test: p = 0.300, r = 0.19), we regarded all participants as
one group.

Central tendency was defined as 1 minus the slope of the linear least-squares
regression of the reproduced distance on the stimulus distance on logarithmic
scale. In other words, a slope closer to 0 corresponds to a higher central tendency
value and reproduced distances that tend more toward the mean of the stimulus
distribution. We computed the central tendency of the short and long distances
separately within each presentation context. We tested whether there was an effect
of distance type (short/long) and context (mixed/blocked) on the central tendency
values with a repeated-measures ANOVA. Because we found no significant effects
(see Results), we averaged the central tendency values for every participant. A one-
sample t-test was used to analyze whether central tendencies differed from 0.
Partial eta-squared (7712,) (Cohen, 1973) and Cohen’s d (Cohen, 1988) are reported for
the ANOVA and t-test, respectively.

To study whether the perception of the short and long stimulus distances was
affected by the context in which they were presented, we used the same linear
regressions to extrapolate how participants would have reproduced the median
distance of the entire distance range (on logarithmic scale, which corresponds to a
distance of 31.9 cm on linear scale). We tested the effect of distance type and
context on these estimated reproductions with a repeated-measures ANOVA,
followed by simple effect tests of the interaction effect levels with Bonferroni
correction. Partial eta-squared (nf,) is reported for the ANOVA.
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We calculated serial dependence, defined as the slope of the linear least-squares
regression of the reproduction error on trial n on the stimulus distance on trial n - 1
on logarithmic scale (Glasauer & Shi, 2022). The reproduction error was computed
by subtracting the reproduced distance on logarithmic scale from the stimulus
distance on logarithmic scale. We computed the serial dependence of the short and
long distances separately within each presentation context. Because not all of the
difference scores were normally distributed, we performed Wilcoxon signed-rank
tests to analyze whether there were differences in serial dependence values
between distance types and contexts. As in the central tendency analysis, we found
no significant differences (see Results) and averaged the serial dependence values
for every participant. A one-sample t-test was performed to test whether serial
dependencies differed from 0. Effect size r (Rosenthal et al., 1994) and Cohen’s d
are reported for the Wilcoxon test and t-test, respectively.

3.3.6 Modeling

The two-state model and special cases

We implemented a Bayesian model, similar to the “two-state” model developed by
Glasauer & Shi (2022) for visual path integration, to evaluate whether it could also
explain the central tendency and serial dependence biases in vestibular path
integration. The model first transforms the sensory input d; to logarithmic scale
with z; = In(d;), to which the following three generative assumptions are applied:

z; = x; + nwithn ~ N(0,r), (3.1)
x; = mi_1 + e, withe, ~ N(0,v), (3.2)
m; = m;_1 + €, withe,, ~ N(0,q). (3.3)

The model thus assumes 1) that the sensory measurement on trial ¢, z;, is drawn
from a normal distribution centered on the log-transformed stimulus distance z;
with a fixed variance r (Equation 3.1); 2) that the stimulus distance x; is drawn from
a normal distribution with mean m;_; and fixed variance v (Equation 3.2); and
3) that the mean of this distribution m; varies over trials following a random walk
with a fixed variance ¢ (Equation 3.3). The stimulus distance x; and the mean of
the stimulus distribution m; are the two states of the two-state model, which are
estimated on every trial by a time-discrete Kalman filter. Here, the Kalman filter
estimates of the two states on trial ¢, Z; and m;, are based on the sensory
measurement z; and the estimated mean of the stimulus distribution on the
previous trial m7;_1, which are weighted by the Kalman gain (see Appendix for the
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equations). The final estimated reproduced distance on trial ¢ on logarithmic scale
is computed as §; = T; + Az, where Az is a shift term that accounts for global
under- or overestimation. In total, the model has four free parameters that are
fitted to the reproduction data: the variances r, v, and g and the shift term Az.

Identical to Glasauer & Shi (2022), we considered two special cases of the two-state
model based on the assumed stimulus distribution. The “static” variant is obtained
by fixing variance g at 0, corresponding to a stimulus distribution with a fixed

mean. This results in distance estimates that are independent across trials and thus
show no serial dependence. In the other special case, the “iterative” variant,
variance v is set to 0, causing the stimulus distribution to depend on the distance
estimate in the previous trial and the estimates to show maximal serial
dependence. Both variants, with only three free parameters, were fitted to the
present data.

Sensitivity of the two-state model to different stimulus distributions

The v and ¢ parameters of the two-state model capture assumptions about the
stimulus distribution. To explore to what extent the observed differences in
reproduction behavior between presentation contexts can be explained by different
assumptions, we adapted the two-state model by introducing separate v and ¢
parameters for the mixed, short, and long blocks. The resulting model has eight

free parameters (7, Umixed, Ushort> Vlongs Gmixed> Gshort> Jlong Az).

We also tested whether the context-dependent differences in the reproduction data
are better explained by a block-dependent shift parameter Ax rather than block-
dependent variances. We therefore adapted the two-state model by allowing
different shift parameters in the three blocks, while keeping the other parameters
constant across blocks, resulting in a model with six free parameters (r, v, q,
AZmixed, Ashort, AZlong). Both adapted versions of the two-state model contain
only one measurement variance parameter r because we assumed that the
measurement noise would not change over the course of the experiment.

Model fitting and comparison

We determined the log-likelihood of the data given the model parameters across all
trials. On every trial, we computed the probability density of the participant’s
reproduced distance, given the model’s distribution of possible reproduced
distances (equations are included in the Appendix). The free parameters of the
models were fitted to the data of each participant individually with the MATLAB
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function fmincon, which minimized the total negative log-likelihood summed over
trials. Lower bounds were set to 0 for the variance parameters r, v, and q. Start
values were set to 1 for the variance parameters and to 0 for the Ax parameter(s)
to initialize the GlobalSearch algorithm [MATLAB function GlobalSearch
(Ugray et al., 2007)], which iteratively executed the fmincon function with different
start values.

For comparison, we computed the Bayesian information criterion (BIC) score of
each model variant. The BIC is based on the log-likelihood, while taking into
account the number of free parameters of the model. A lower BIC score indicates a
better description of the data. We computed the BIC scores of the model variants
relative to the two-state model for every participant separately, which are
graphically presented in violin plots showing the median, interquartile range (IQR),
and 1.5x IQR of the relative BIC scores across participants. Median values and IQRs
of the fitted parameters across participants are reported because of outliers in the
fitted values. To visualize the model predictions, stimulus distances as well as
actual and predicted reproduced distances were binned into 10 bins per distance
type and per context, separately for each participant. Of these variables, we
subsequently computed the means and standard errors across participants per bin.

3.4 Results

We studied vestibular path integration by measuring participants’ performance in a
distance reproduction task in the dark and analyzing central tendency and serial
dependence biases in the reproduced distances. The stimulus distances were
sampled from either a short-distance or a long-distance probability distribution,
and different presentation contexts were created by varying the order in which
these distances were presented. In the mixed context the short and long distances
were randomly interleaved, whereas in the blocked context the same short and
long distances were presented in separate blocks.

3.4.1 Central tendency bias

Figure 3.3, A and B, show the raw reproduction data of a representative
participant, measured in the mixed and blocked contexts respectively, plotted as a
function of the stimulus distance. The regression lines indicate the central
tendency. All slopes are smaller than 1, which corresponds to a positive central
tendency. A repeated-measures ANOVA on the central tendency values of all
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participants indicates that there were no significant differences between distance
types (short / long, p = 0.105, 7712, = 0.09) or contexts (mixed/blocked, p = 0.245,
n5 = 0.05) as well as no interaction effect (p = 0.091, n2 = 0.10). We therefore
averaged the central tendency values for every participant and performed a one-
sample t-test to study whether the resulting central tendency values differed from
0. On average, we found a positive central tendency effect of 0.39 (SD = 0.21,
p < 0.0001, Cohen’s d = 1.86), which corresponds to a regression line with a
slope of 0.61.
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Figure 3.3. Reproduced distance as a function of stimulus distance in the mixed (A) and blocked (B)
contexts of a representative participant. Regression lines show the central tendency bias. Within
each presentation context, separate regressions were performed on the short (blue) and long
(orange) distances. Central tendency values (1 - slope of the regression line) are reported in the key.

We performed an additional analysis to study how the short and long stimulus
distances were perceived depending on the context in which they were presented.
Based on the same linear regressions, we estimated how the median distance of the
entire stimulus distance range would have been reproduced in the two presentation
contexts (see Figure 3.4, A and B). A repeated-measures ANOVA with factors distance
type and presentation context on these estimates yielded a main effect of distance
type, indicating larger estimated reproductions of the median stimulus distance
based on the long-distance regression lines than on the short-distance regression
lines (p = 0.032, 7712, = 0.15). In other words, the median stimulus distance would
have been reproduced longer if it had been part of the long as compared to the
short stimulus distance range. There was no main effect of presentation context
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(p = 0.563, 17120 = 0.01), but, crucially, there was a significant interaction between
distance type and presentation context (p = 0.005, 172 = 0.24; see Figure 3.4C).
Follow-up tests showed that the abovementioned effect of distance type was only
present in the blocked context (mean reproduction based on short-distance
regression line = 26.5 cm and long-distance regression line = 29.8 cm, p = 0.004),
whereas the mixed context showed no difference (mean reproduction based on
short-distance regression line = 29.1 cm and long-distance regression line = 28.4
cm, p = 0.318). This indicates that reproduction behavior depends on the context
in which the stimuli were presented.
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Figure 3.4. A, B: Regression lines based on the stimulus and reproduced distances for short (blue)
and long (orange) distances in the mixed (A) and blocked (B) contexts for all participants (transparent
lines) as well as the mean (bold lines) on logarithmic scale. The dots represent the estimated
reproduced distance at the median of the entire distance range. C: Distance type-by-context
interaction effect on the estimated reproductions of the median stimulus distance.

3.4.2 Serial dependence bias

As an illustration of serial dependence, Figure 3.5 shows the reproduction error on
trial n plotted against the stimulus distance on trial n — 1 for the same participant
as in Figure 3.3. The regression lines of the illustrated participant show a slight
positive serial dependence, except for the short distances in the mixed context. We
performed Wilcoxon signed-rank tests on the serial dependence values of all
participants and found no significant main or interaction effects for distance type
and context (all p values > 0.185, all r values < 0.24). After averaging the serial
dependence values for every participant, a one-sample t-test revealed a positive
serial dependence of 0.13 (SD = 0.15, p < 0.0001, Cohen’s d = 0.87). This
suggests that the reproduced distance on trial n is attracted toward the stimulus
distance on trial n — 1.
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Figure 3.5. Reproduction error on the current trial as a function of stimulus distance on the previous
trial in the mixed (A) and blocked (B) contexts of the same participant as in Figure 3.3. Reproduction
errors were computed on logarithmic scale. Regression lines show the serial dependence bias and
were computed for the short (blue) and long (orange) distances separately. Serial dependence values
(slope of the regression line) are reported in the key.

3.4.3 Both the static and two-state models can explain vestibular path
integration behavior

We fitted the static, iterative, and two-state model variants to all trials of a
participant, examining a computational, i.e., Bayesian, explanation of these
findings. The model variants differ in their assumptions about how the stimulus
distances are generated. As explained in detail in the Methods, the static model
variant assumes that the stimulus distances are independent draws from a static,
trial-independent stimulus distribution. This predicts no serial dependence in the
participant’s reproductions. The iterative model variant instead assumes a stimulus
distribution shifting from trial to trial, the distribution on a specific trial being
centered on the stimulus distance of the previous trial. This clearly results in serial
dependence in the model predictions. The two-state model variant represents the
more general case, where the mean of the stimulus distribution on a specific trial is
close but not identical to the stimulus distance on the previous trial, still inducing
some level of serial dependence. In all model variants, the variance of the stimulus
distribution is constant across trials. By fitting these different model variants to the
data, we aimed to determine whether these assumptions about how the stimuli are
generated can explain the observed perceptual biases in vestibular path
integration behavior.
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Figure 3.6 shows the mean binned data and model predictions of the three fitted
model variants. In the mixed context, all model predictions are close to the
reproduced distance data. In the blocked context, the static and two-state models
also provide a relatively good explanation of the reproductions. However, the
iterative model underestimates the participants’ reproductions of the short
distances and overestimates those of the long distances.
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Figure 3.6. Binned reproduced distances (black) predicted by the static (blue), iterative (orange),
and two-state (green) model variants as a function of stimulus distance on logarithmic scale for the
mixed (A) and blocked (B) contexts. The stimulus distances and the according actual and predicted
reproduced distances were binned for each participant individually. Symbols represent the mean per
bin, and shaded areas show *SE, both computed across participants. Unity lines (dashed) show
where stimulus and (predicted) reproduced distances are equal.

Next, we computed the central tendency and serial dependence biases as predicted
by the three model variants. As illustrated in Figure 3.7, the predictions of all model
variants show relatively similar central tendency values as found in the data. The
serial dependence on the other hand is less well predicted by the models. In
general, the iterative model overestimates the serial dependence in the
reproduction data except for the participants who show a high serial dependence
(> 0.30). The static and two-state models tend to underestimate the serial
dependence in the data, with the two-state model more often predicting values
closer to those found in the actual reproductions than the static model. The figure
also shows that the best models in terms of BIC score are also close to the unity
line for the central tendency but that this is not the case for the serial dependence.
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Figure 3.7. Central tendency (A) and serial dependence (B) values for the static (blue), iterative
(orange), and two-state (green) model predictions as a function of their measured values. Within a
color group, each point represents a participant. Black open circles indicate the models with the
lowest Bayesian information criterion (BIC) score per participant, and dashed lines show where the
biases in the data and model predictions are equal.

The differences in predicted serial dependence between models are reflected by
the fitted model parameter values (see Table 3.1). The median value of the variance
parameter g, which determines how much the mean of the assumed stimulus
distribution varies over trials, is 0.14 for the iterative model, resulting in serial
dependence in the model predictions. The same parameter has a value close to 0
for the two-state model for most participants, predicting virtually no serial
dependence and essentially causing the two-state model to behave as the static
model. The fitted models show similar measurement variances (r) and shift terms
(Ax), whereas fitting the static model to the reproduction data resulted in larger
values for the stimulus distribution variance (v) than in the case of the two-state
model. Notably, the fitted parameters show large intersubject variability.
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Table 3.1. Median (first - third quartiles) of the fitted parameter values across participants for the
static, iterative and two-state model variants. The parameters r, v, and q refer respectively to the
measurement variance, the variance of the assumed stimulus distribution and the variance with
which the mean of this distribution varies. The Az parameter is a shift term that represents global
under- or overestimation of the reproduced distances.

Median fitted parameter values (Q1 - Q3)

Models r v q Az

Static 0.17 (0.09 - 0.22) 0.26 (0.17 - 0.66) -0.06 (-0.22 - 0.01)
Iterative 0.15(0.09 - 0.31) 0.14 (0.06 - 0.38) -0.06 (-0.21 - -0.01)
Two-state 0.17 (0.10 - 0.30) 0.17 (0.12 - 0.25) 0.001 (5.38 x 10711 - 0.05) -0.06 (-0.21 - 0.01)

As a final comparison, Figure 3.8 shows the BIC scores of the static and iterative
models relative to the BIC scores of the two-state model, where a relative BIC score
> 6 is interpreted as strong evidence in favor of the two-state model (Kass &
Raftery, 1995). Despite substantial interindividual variability, the static and two-
state models have similar median BIC scores. The static model has a median
relative BIC score of —3.16, describing the data equally well with one less free
parameter than the two-state model. The iterative model is outperformed by the
two-state model, indicated by a median relative BIC score of 14.16.

To summarize, the reproduction behavior is best explained by the static and two-
state models and less so by the iterative model (see Figure 3.8), especially in the
blocked context (see Figure 3.6). All models are able to capture the central
tendency effects in the data relatively well but perform worse in explaining the
serial dependence (see Figure 3.7).
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Figure 3.8. Model Bayesian information criterion (BIC) scores relative to the BIC scores of the two-
state model. Colored data points represent individual participants. White data points show the
median relative BIC scores and bold and thin gray lines the interquartile range (IQR) and 1.5x IQR
across participants. Dashed lines represent a BIC score difference of —6 and 6, where relative BIC
scores smaller than —6 or larger than 6 provide strong evidence against or in favor of the two-state
model, respectively.

3.4.4 The shift parameter of the two-state model can capture context-
dependent differences

Can the difference in reproduction behavior across contexts be explained by
different assumptions about the experimental stimulus distributions in the different
blocks? To examine this, we adapted the two-state model by including separate v
(representing the variance of the assumed stimulus distribution) and gq
(representing the variance with which the mean of the assumed stimulus
distribution changes across trials) parameters for the mixed, short, and long blocks
(see Methods). The yellow symbols in Figure 3.9A show the resulting BIC scores
relative to the BIC scores of the original two-state model with one v and one gq
parameter across all blocks. As in the previous BIC score comparison, there is
considerable spread in the relative BIC scores. The adapted model had a median
relative BIC score of 3.98, thus performing similarly as the original two-state
model. In other words, allowing different assumptions about the underlying
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stimulus distribution between the blocks at the cost of more free parameters does
not result in a better description of the vestibular path integration data.

Next, we explored whether allowing separate shift parameters for each of the
blocks (AZmixeds ATshort, ATiong) could explain the differences in the
reproductions across contexts. The median relative BIC score of this model with
respect to the original two-state model is —16.64 (see Figure 3.9A in purple),
showing that the additional parameters do improve model performance over the
original two-state model. This improvement is not directly apparent in the mean
model predictions (see Figure 3.9, B and C) or the predicted perceptual biases (see
Figure 3.9, D and E) but is visible on the level of the individual participant (see
Figure 3.9, B and C, insets). The medians (Q1 - Q3) of the fitted Axmpixed, ATshort,
and Az, parameter values across participants are —0.08 (—0.21 - 0.05),
—0.03 (—0.37 - 0.05), and —0.12 (—0.29 — 0.06), respectively. Taken together,
these findings suggest that the differences in reproduction behavior across the
contexts are explained by block-dependent global underestimations rather than by
block-dependent assumptions about the experimental stimulus distributions.
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Figure 3.9. Comparison between original and block-dependent two-state models. A: Bayesian
information criterion (BIC) scores of the adapted two-state models with either free v and g
parameters (yellow) or a free Az parameter for the mixed, short, and long blocks (purple), relative to
the BIC scores of the original two-state model. B, C: Binned reproduced distances predicted by the
original two-state model (green) and the adapted two-state model with a block-specific Az
parameter as a function of stimulus distance for the mixed (B) and blocked (C) contexts. D, E: Central
tendency (D) and serial dependence (E) values for the same models as a function of their measured
values. A, B-C, and D-E are in the same format as in Figure 3.8, Figure 3.6, and Figure 3.7, respectively.
Black open circles in A, D-E, and insets in B-C show an individual participant for whom the adapted
two-state model with block-dependent Az parameters has the largest decrease in BIC score relative
to the original two-state model.

3.5 Discussion

In this study, we measured human path integration behavior based on vestibular
signals and investigated the extent to which distance reproductions show central
tendency and serial dependence effects. Participants were seated in a vestibular
sled and performed a distance reproduction task in the dark. The sled passively
moved the participant with a predefined stimulus distance, which they actively
reproduced by steering the sled back to the location from which the stimulus
movement started. Stimulus distances were drawn from short- and long-distance
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probability distributions and presented in either a randomized order (the mixed
context) or in two separate blocks (the blocked context).

We found a positive central tendency effect that was not affected by distance type
(whether the distance was sampled from the short- or long-distance probability
distribution) or presentation context (mixed or blocked). The positive central
tendency effect indicates that reproductions were drawn toward the mean of the
underlying stimulus distribution. This effect has the same direction as the central
tendency effects found in visual path integration (Riecke et al., 2002; Petzschner &
Glasauer, 2011; Petzschner et al., 2012; Glasauer & Shi, 2022) and other nonvisual
path integration (Loomis et al., 1993; Israél et al., 1997; Philbeck & Loomis, 1997;
Grasso et al., 1999; Bergmann et al., 2011) studies. This suggests that this bias does
not originate within a single sensory modality but might be better understood as
the explicit learning of the statistical structure of multimodal motion information.

In addition to a central tendency bias, we found a positive serial dependence bias,
again irrespective of distance type or presentation context. This indicates that the
reproduced distance on a trial is attracted toward the stimulus distance on the
previous trial. This is in line with positive serial dependence effects found in
reproductions based on visual information (Glasauer & Shi, 2022). Functionally,
positive serial dependence could help to maintain the continuity of the context and
promote stable representations for path integration (Sun et al., 2020; Manassi &
Whitney, 2024).

We implemented a Bayesian model, originally proposed by Glasauer & Shi (2022) to
explain perceptual biases in visual path integration, to evaluate whether it could
also explain vestibular path integration. The model contains three variants based
on different assumptions about the stimulus distribution (the static, iterative, and
two-state variants). On every trial, the model estimates the stimulus distance with a
Kalman filter that weighs the sensory measurement on the trial with the mean of
the stimulus distribution estimated on the previous trial.

We found that the static and two-state model variants provided comparable fits to
the vestibular path integration data (see Figure 3.8). A similar finding was reported
by Glasauer & Shi (2022), where the two-state model provided the best fit to
duration reproduction data for 8 of 14 participants, whereas for the remaining
participants the static model was sufficient. It is important to point out, however,
that the model captured the central tendency effect relatively well (see Figure 3.7)
but performed worse in explaining the serial dependence effect. Hence, although
the model by Glasauer & Shi (2022) provided a joint explanation for the central
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tendency and serial dependence effects in visual path integration, the present
results do not validate this unification in vestibular path integration. Could this be
taken to suggest that these biases in vestibular path integration occur because of
separate mechanisms?

We prefer to be careful with this conclusion. There are a few differences that should
be noted. First, the present data may be noisier, causing the model to not
accurately capture all aspects of the reproduction data. Furthermore, the present

task was not purely perceptual but also involved a motor component. Compared to
a passive reproduction task, in which both the stimulus and reproduction
movements are experienced passively and the reproduced distance is indicated by
a button press, additional motor-based self-motion signals could contribute to
distance estimates and perhaps trial-to-trial correlations (Medendorp, 2011; Carriot
et al., 2013; Laurens & Angelaki, 2017; Brooks & Cullen, 2019; van Helvert et al.,
2022). In support, it has been shown that reproducing perceived angular
displacements actively reduces the variability compared to passive reproduction
(Becker et al., 2002; Jiirgens & Becker, 2006). The active steering movement in the
present task therefore could have introduced nonperceptual effects (i.e., motor
biases) in the reproductions. For example, larger distances might have been
underestimated more because larger reproduction movements require more effort.
In this study, we opted for a more naturalistic, active reproduction task, but in a
future experiment it would be interesting to compare central tendency and serial
dependence in active versus passive reproduction tasks of vestibular
path integration.

We also studied the effect of different presentation orders on the reproduced
distances by presenting the stimulus distances in a mixed and a blocked context
(see Figure 3.2). As indicated by the central tendency analysis, the short- and long-
distance regression lines have similar slopes in both presentation contexts.
However, the estimated reproductions of the median stimulus distance differ in the
blocked context, indicating that presentation context affects vestibular distance
reproductions (see Figure 3.4). A similar interaction between distance type and
presentation context was reported in Petzschner et al. (2012) for visual path
integration, as well as in other magnitude estimation tasks [e.g., Roach et al. (2017)
for duration reproduction]. Although the interaction effect is significant on the
group level, the individual participants show a large spread in the estimated
reproductions of the median stimulus distance (see Figure 3.4C). This variation
seems mostly caused by interindividual differences in the size of the estimated
reproductions, where some participants generally produce larger reproductions
than others, irrespective of the context. Visual inspection of the individual
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interaction plots shows that the estimated reproductions of the median stimulus
distance are in the same direction as the mean effect for 17 participants, in a
different direction for 6 participants, and suggests no interaction for 7 participants.

To investigate the origin of the mean interaction effect, we modified the two-state
model by incorporating information about the block (mixed, short, or long) in
which the stimulus distance was presented. We first ruled out as a cause of this
interaction that participants have different assumptions about the stimulus
distribution in the different presentation contexts. More specifically, allowing block-
specific parameters for the assumed stimulus distribution (v and q) did not result
in a better description of the reproduced distances (see Figure 3.9A). Rather, we
found that the model variant with block-specific Az parameters, allowing different
global under- or overestimations across blocks, provided a better explanation than
the original two-state model. We can only speculate about the functional meaning
of this parameter. The global undershooting of reproductions might be caused by
increasing uncertainty in the position estimate as more distance is covered
(Lakshminarasimhan et al.,, 2018). Indeed, the observed pattern in the fitted
AZghort, AZmixed, and Aziong parameter values decreasing with longer distances
(—0.03, —0.08, and —0.12, respectively) is consistent with Az varying linearly
with distance, as internally represented on a logarithmic scale. Future studies are
needed to examine this potential interpretation.

Furthermore, within this perspective, we emphasize that we studied different
presentation contexts, and drew stimuli from a normal distribution rather than a
uniform distribution, but we did not vary how we selected the stimuli in each
specific block of trials. That is, for each trial we randomly selected the stimulus
distance from the defined stimulus distribution (mixed, short, or long). Recently,
Glasauer & Shi (2021) argued that the central tendency is the result of an unnatural
experimental randomization protocol: randomly presenting stimulus distances with
large trial-to-trial variability. In many natural circumstances, successive stimuli
typically vary only in a small range, not randomly jumping from one magnitude to
another. Using a duration production-reproduction task, Glasauer & Shi (2021)
showed that the central tendency was greatly reduced if the sequence of the
stimulus durations mimicked a random walk compared to that of a randomized
sequence. It would therefore be interesting to test how the central tendency effect
in vestibular path integration depends on the randomization protocol.

Recent neurophysiological work suggests that the posterior parietal cortex might be
involved in producing the perceptual biases affecting path integration. Using a
parametric working memory task in rats, Akrami et al. (2018) found that the
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posterior parietal cortex plays a key role in modulating the central tendency bias.
When the region was optogenetically inactivated, not only was this bias attenuated
but there was also a suppression of serial dependence, suggesting that the two
phenomena may be interrelated. In subsequent neural network modeling work, the
same authors explain the two biases through a single mechanism (Boboeva et al.,
2024). Sensory inputs relayed from the posterior parietal cortex can lead to serial
dependence in working memory, from which central tendency naturally emerges.

In conclusion, our results show that distance reproductions based on vestibular
signals exhibit positive central tendency and attractive serial dependence, as has
been found in visual path integration, suggesting that the biases might arise on a
multimodal processing level. Furthermore, reproduced distances were affected by
the presentation context of the stimulus distances. The modeling approach
suggested that different distance-dependent global underestimations could best
account for this contextual effect.
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3.6 Appendix

In this Appendix, we provide the equations of the two-state model proposed by
Glasauer & Shi (2022) and the equations used in the maximum likelihood
estimation. The static and iterative model variants are special cases of this model
by fixing ¢ = 0 or v = 0, respectively. (For the definition of parameters v and g,
see Methods, Modeling and below.) Equations 3.1-3.3 in Modeling can be rewritten
in matrix notation as follows:

zi=HX;+n

X, =FX; 1+¢

whereX,-:[:;' ],5:[6“” ],F:[g i},andH:[l 0].Thestate
1 m

estimate X\i on trial ¢ is determined using a time-discrete Kalman filter:
X\i\ifl =FX;
Py 1 =FP,F' +Q
K; =Py, H'(HP;; H  +7) "'
X; = X\iu—l + K; (Zz' - Hfi\i—l)
P,=(I-K;H) Py 4

v 0

with covariance matrix Q = { 0

} and measurement noise variance r. The

steady state can be written as
X\i = FX\1;1 + Kz (Zi — HFX\Z,1> .

Contrary to Glasauer & Shi (2022), we fitted the model’s predictions to the data in
logarithmic space using maximum likelihood estimation. Given that there is
uncertainty in the measurement z; on trial ¢, represented by measurement variance
r, it is possible to compute a distribution of possible reproductions on trial 7. We

— —_—

computed the expected value E[X;] and covariance matrix cov[X;| of the
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estimated stimulus distribution on trial ¢ by rewriting the steady-state equation
as follows:

X\i == Ffi_l -+ Kz(zz - HFX\Z_l)
—FX, 1+ K;(HX; +n) - K;HFX,; ,

—

E[X;)|=(F - K,HF)E[X; 1|+ K;HE[X;] + K; - 0

cov[X;] = (F — K;HF) cov[X,; 1|(F — K;HF)"
+ K;Hcov[X;|H' KT + K;cov[n| KT
= (F — K;HF)cov[X;_1](F — K;HF)"
+K;-0-KF' +K;-r-KT
= (F — K;HF)cov[X;_1](F — K;HF)"
+K;-r-KT

The first element of the resulting expected value vector and covariance matrix
correspond to the mean Z; and variance o2 of the estimated stimulus distribution.
The model’s prediction of the reproduction on trial ¢ is then determined by adding
the shift term Az to the mean of this distribution: g, = Z; + Ax. Finally, the
negative log-likelihood on trial ¢ (NLL;) is computed based on the probability that
the participant’s reproduction on that trial, y;, came from the (normal) estimated
response distribution, i.e., the estimated stimulus distribution of which the mean is
shifted by Ax:

NLL; = —In (N (y; | i, 02)) -
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4.1 Abstract

The reproduction of a perceived stimulus, such as a distance or a duration, is often
influenced by two biases. Central tendency indicates that reproductions are biased
toward the mean of the stimulus distribution. Serial dependence reflects that the
reproduction of the current stimulus is influenced by the previous stimulus.
Although these biases are well-documented, their origins remain to be determined.
Studies on duration reproduction suggest that autocorrelation within a stimulus
sequence may play a role. In this study, we explored whether the level of
autocorrelation in a stimulus sequence affects central tendency and serial
dependence in vestibular path integration. Participants (n = 24) performed a
vestibular distance reproduction task in total darkness by actively replicating a
passively moved stimulus distance with a linear motion platform. We compared two
conditions: a high-autocorrelation condition, where stimulus distances followed a
random walk, and a no-autocorrelation condition, where the same distances were
presented in a randomly shuffled order. We quantified both biases using two
approaches: separate simple linear regressions and a joint multiple linear
regression model that accounts for the autocorrelation in the stimulus sequence.
Simple linear regressions revealed that central tendency was weaker and serial
dependence reversed in the high-autocorrelation condition compared to the no-
autocorrelation condition. However, these differences were no longer observed in
the multiple linear regression analysis, indicating that these biases were
independent of the specific stimulus sequence protocol. We conclude that these
perceptual biases in vestibular path integration persist regardless of stimulus
autocorrelation, suggesting that they reflect robust strategies of the brain to
process vestibular information in self-motion perception.



Does stimulus order affect central tendency and serial dependence in vestibular path integration?

4.2 Introduction

Two perceptual biases that are often observed in reproduction tasks are central
tendency and serial dependence. Central tendency is the notion that the
participant’s reproductions tend to be biased toward the mean of the underlying
stimulus distribution (Hollingworth, 1910). This bias typically leads to an
overestimation of smaller stimuli and an underestimation of larger stimuli (Loomis
et al., 1993; Israél et al., 1997; Philbeck & Loomis, 1997; Grasso et al., 1999; Riecke
et al., 2002; Jazayeri & Shadlen, 2010; Bergmann et al., 2011; Petzschner &
Glasauer, 2011; Cicchini et al., 2012; Prsa et al., 2015; Murai & Yotsumoto, 2016;
Roach et al., 2017; Sun et al., 2020; Willemsen et al., 2024). Serial dependence
reflects that reproductions depend on the stimulus presented on the preceding trial
(Holland & Lockhead, 1968; Cross, 1973). Most studies have identified attractive
serial dependence, where the reproduction on the current trial is biased towards
the stimulus on the previous trial (Fischer & Whitney, 2014; Liberman et al., 2014;
Motala et al.,, 2020; Manassi & Whitney, 2022, 2024; Guan & Goettker, 2024,
Willemsen et al.,, 2024). However, other research has reported repulsive serial
dependence, indicating that the reproduction of the current stimulus is biased
away from the previous stimulus (Fritsche et al., 2017; Sun et al., 2020).

Central tendency and serial dependence have been found to affect the perception
of various stimuli, such as time durations, heading directions, and distances.
Veridical distance perception is essential for path integration, a process in which
one uses self-motion signals to continuously estimate one’s position relative to a
starting point (Mittelstaedt & Mittelstaedt, 1980; Etienne & Jeffery, 2004). These
signals can be derived from our sensory systems, including the visual and
vestibular systems (ter Horst et al., 2015), as well as the motor system (Laurens &
Angelaki, 2017; van Helvert et al., 2022; Cullen, 2023). In previous work on path
integration, where participants had to mainly rely on the vestibular sense, we
found central tendency and attractive serial dependence effects (Willemsen et al.,
2024). However, what causes these perceptual biases in vestibular path integration
is not yet understood.

Recently, Glasauer & Shi (2021, 2022) have shown that the extent to which central
tendency and serial dependence effects are present in duration reproduction tasks
is affected by the autocorrelation in the stimulus sequence. When durations were
presented randomly shuffled, without autocorrelation, reproductions showed
central tendency and attractive serial dependence. However, when the same
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durations were presented in a random-walk sequence with high autocorrelation,
central tendency nearly disappeared and serial dependence became repulsive.

The origin of the different results between protocols remains unclear. Are these
differences caused by participants responding differently in each condition, or are
they byproducts of the different levels of stimulus autocorrelation? To address this
question, it is important to note that central tendency and serial dependence are
statistical concepts, usually defined as linear least-squares regression slopes. As
such, their values can vary significantly based on the specific regression model
employed and the selection of covariates included in the model. Central tendency
is often characterized as 1 minus the regression slope of reproduced distance 7; on
stimulus distance s; (Glasauer & Shi, 2022; Willemsen et al., 2024) or, equivalently,
as the negative of the regression slope of reproduction error e; (r; - s;) on stimulus
distance s; (see Figure 4.1A; Sun et al., 2020). Serial dependence has been defined
as the regression slope of reproduction error e; on the previous stimulus s;_1 (see
Figure 4.1B; Glasauer & Shi, 2022; Willemsen et al., 2024). However, as illustrated in
Figure 4.1C, central tendency and serial dependence are not independent if there is
autocorrelation in the stimulus sequence (i.e., when s;_; affects s;; see Appendix
for more details). Similarly, there could be other dependencies that affect the
central tendency and serial dependence coefficients (for instance, a potential effect
of s;—1 on e; through e;_1; see Figure 4.4).

Here, we use causal graphs and the d-separation criterion (Pearl, 2009), to
disentangle central tendency and serial dependence in vestibular path integration
under conditions with and without stimulus sequence autocorrelation. Specifically,
we ask which part of the differences in central tendency and serial dependence
between the autocorrelation conditions can be attributed to a statistical
explanation and which part requires an explanation in terms of different stimulus
processing in the brain.
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Figure 4.1. A: Reproduction error (reproduced distance - stimulus distance) as a function of stimulus
distance. The shown line has a slope of -1, indicating a central tendency effect of 1. A regression line
with a slope of 0 implies that there is no central tendency, and if also on top of the dashed line, that
performance is veridical. B: Reproduction error against the stimulus distance on the previous trial.
The solid line indicates an attractive serial dependence effect of 0.5, where the reproduction error on
the current trial is generally more positive when there was a longer stimulus distance on the previous
trial. The dotted line indicates a repulsive serial dependence effect of -0.5, where the reproduction
error on the current trial is generally more negative when there was a longer stimulus distance on the
previous trial. A regression line with a slope of 0 implies that there is no serial dependence. C:
Central tendency (the effect of the stimulus distance on the current trial s; on the reproduction error
on the current trial e;) and serial dependence (the effect of the stimulus distance on the previous
trial s;_1 on the reproduction error on the current trial e;) are not independent if there is
autocorrelation in the stimulus sequence (i.e., when s;_ affects s;).

4.3 Methods

4.3.1 Participants

Twenty-five participants, naive to the purpose of the study, took part in the
experiment. All participants had normal or corrected-to-normal vision, no hearing
impairments, and no history of motion sickness. The study was approved by the
ethics committee of the Faculty of Social Sciences at Radboud University Nijmegen
and all participants gave written informed consent prior to the start of the
experiment. Each participant completed a single experimental session of ~90
minutes and was compensated with course credits or €22.50. Although 24
participants were required for complete counterbalancing, one participant was
excluded due to misunderstanding the task and producing reproduction
movements in the wrong direction. This participant was therefore replaced by
collecting data from an additional participant, resulting in a data set of 24
participants (19 women, 4 men, 1 non-binary person, aged 17-26 yr).
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4.3.2 Setup

Participants were seated in a chair mounted on top of a linear motion platform,
called a vestibular sled, that could be moved passively by the experimenter or
actively by the participant using a steering wheel (see Figure 4.2). The sled was
powered by a linear motor (TB15N; Tecnotion, Almelo, The Netherlands) and
controlled by a servo drive (Kollmorgen S700; Danaher, Washington, DC), allowing it
to move along the participant’s interaural axis on a 93-cm-long track. The steering
wheel (G27 Racing Wheel; Logitech, Lausanne, Switzerland) was attached to a table
at chest level in front of the participant and had a rotation range of -450° to +450°
with a resolution of 0.0549°. Throughout the experiment, the mapping between the
steering wheel angle and the sled’s linear velocity was set at 1 cm/s per degree.
The task was performed in total darkness without any visual stimuli. Instruction
messages prior to the task, as well as occasional messages throughout the
experiment (e.g., to indicate breaks) were shown on an OLED screen
(OLED77C3PUA; LG, Seoul, South Korea) placed in front of the sled. Participants
wore in-ear headphones with active noise cancellation (QuietComfort 20; Bose,
Framingham, MA) that played white noise to mask sound from the sled’s motion,
alternated by single-tone beeps to signal the different stages of each trial. In
addition to the in-ear headphones, participants wore over-ear headphones with
active noise cancellation (WH-1000XM5; Sony, Tokyo, Japan) to further block out
the sound produced by the sled. The participant’s head was fixated using cups
placed against the top of the head. The participant also wore a five-point seat belt
and could press one of the emergency buttons at the side of the chair to stop the
sled at any time during the experiment. The experiment code was written in Python
(v.3.10; Python Software Foundation).

4.3.3 Reproduction task

While seated on the vestibular sled, participants performed a distance reproduction
task. During the stimulus movement, the sled passively moved the participant a
predefined distance (see Figure 4.2A). This was succeeded by the reproduction
movement, during which the participant actively tried to replicate the passively
moved distance by steering the sled into the opposite direction (see Figure 4.2B). In
other words, the participant aimed to return to the start position of the
stimulus movement.
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Figure 4.2. Vestibular distance reproduction task. A: The participant was seated on a vestibular sled,
consisting of a chair placed on top of a linear motion platform. On every trial, a low-tone beep
alerted the participant to the upcoming passive movement that would move them by an unknown
stimulus distance. B: Afterwards, the second, high-tone beep prompted the participant to use the
steering wheel and reproduce the stimulus distance by steering the sled back in the opposite
direction. Trials were separated by two random detour movements that returned the sled to the
start position.

Detour

In each trial, a low-tone beep (347 ms) indicated the upcoming stimulus movement.
The duration of the stimulus movement varied randomly between 1.3 s and 1.6 s.
We defined the lower bound such that all stimulus movements had a peak absolute
acceleration below 980 cm/s? and a peak speed below 100 cm/s. The upper bound
resulted in the shortest stimulus movement to have a peak absolute acceleration of
~38 c¢cm/s? and a peak speed of ~20 cm/s, which well surpassed the vestibular
thresholds (Kingma, 2005). For each participant, the stimulus movements were
consistently in one direction, with the leftward and rightward directions
counterbalanced across participants. Per participant, all stimulus movements
started from the same start position, which was on the right side of the track for
leftward stimulus movements and on the left side of the track for rightward
stimulus movements, ensuring enough space on the track for all potential stimulus
movements. The start position was determined for every participant individually
depending on their largest stimulus distance. In the case of leftward stimulus
movements, the start position was determined by adding the largest stimulus
distance to the leftmost position on the sled track plus an additional small margin
of 4 cm. For rightward stimulus movements, the start position was computed by
subtracting the largest stimulus distance and the margin from the rightmost
position on the track.

The stimulus movement was followed by a random waiting time between 0.5 s and
1 s, after which a high-tone beep (110 ms) cued the start of the reproduction
movement. If the participant rotated the steering wheel before the beep, the trial
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was aborted. Participants were instructed to make one smooth reproduction
movement (without steering back or resuming steering after stopping) and were
free to choose the duration of the movement. The sled could be steered up to a
maximum speed of 100 cm/s and could be stopped by returning the steering wheel
back to the upright position. The movement was terminated when the speed fell
below 2 cm/s. The sled also stopped moving when the speed fell below 6 cm/s
while the steering angle remained unchanged for 100 ms or the steering changed
direction (mean * SD across participants: 71 + 59 trials out of a total of 260 trials).
This second stopping criterion was added to prevent the case where the participant
intended to stop the movement but did not fully return the steering wheel to the
upright position. When one of these stopping criteria was met, the sled would not
stop abruptly but would decelerate in 1 s to a speed of 0 cm/s. The sled also
stopped moving when the end of the sled track was reached (mean +
SD: 2 2 trials).

Participants received no feedback about their reproduction performance during the
experiment (except during the training block, see below). To prevent the
participant from obtaining implicit feedback about their reproduced distance, the
sled was brought back to the start position for the next stimulus movement
through two random detour movements. The first detour relocated the sled to a
random position within +30 cm from the middle of the track with a random
duration between 1.8 s and 2.3 s. The second detour moved the sled to the start
position in 1.3 s. All detour and stimulus movements followed a minimum-
jerk profile.

4.3.4 Paradigm

To study how the amount of autocorrelation between the stimulus distances across
trials affects central tendency and serial dependence biases in vestibular path
integration, we created two experimental conditions per participant presenting the
same stimulus distances with different stimulus orders. In the high-autocorrelation
condition, stimulus distances followed a random walk while in the no-
autocorrelation condition, the same distances were randomly shuffled (see
Figure 4.3).
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Figure 4.3. Example sequence of stimulus distances throughout the entire experimental session for a
participant starting with the high-autocorrelation condition. During the first 130 test trials, the
stimulus distances followed a random walk on logarithmic scale (orange). In the second half of the
experiment, the same distances were presented in a randomly shuffled order (blue). The dashed
lines indicate the minimum and maximum possible stimulus distance.

For each participant, we first generated 130 stimulus distances following a random
walk. In line with our previous study (Willemsen et al., 2024), the random walk was
generated on logarithmic scale such that the resulting stimulus distances were
approximately normally distributed on this scale. For this transform, distances were
made dimensionless by dividing by a reference distance (1 cm). On a linear scale,
the distances varied between 17 cm and 60 cm, and the first distance of the
random-walk sequence was set to the median of this distance range on logarithmic
scale, which corresponds to 31.9 cm on linear scale. To create the remainder of the
sequence, 129 random shifts were drawn from a normal distribution with a mean of
0 and SD of 0.08, and these were cumulatively summed to the first distance. Across
participants, the stimulus distances on logarithmic scale varied between 2.83 and
4.05, the mean of the sequence between 3.37 and 3.50, the SD of the sequence
between 0.20 and 0.27, and the lag-1 autocorrelation was larger than 0.9. We
computed the lag-1 autocorrelation r; (Box et al., 2015) using

N-1 _ _
% thl (e =¥ )(yer1 — )
€o

T =

(4.1)

Here, the numerator is the autocovariance of the sequence which is divided by the
sample variance of the sequence ¢y, resulting in an autocorrelation value between
-1 and 1. Furthermore, N denotes the total number of samples in the sequence
and y the sample mean of the sequence. To create the no-autocorrelation
condition, the same 130 stimulus distances were shuffled until the autocorrelation
of the sequences was between -0.001 and 0.001.



102 | Chapter 4

Participants experienced both conditions in a single experimental session of 260
test trials (see Figure 4.3 for an example sequence of stimulus distances) without
being informed about the presence of the two conditions. The order of the
conditions was counterbalanced across participants. There was a short break (~2
min) after every 52 trials (~10 min) with the room lights turned on to prevent
dark adaptation.

Prior to the test trials, participants completed 20 training trials to get acquainted
with the task. The stimulus distances on the training trials were drawn from a
uniform distribution between 17 cm and 60 cm on linear scale. The training trials
were performed in darkness and differed from the test trials in two respects. During
the first 10 training trials, instruction texts were displayed on the screen alongside
the beeps to indicate the various trial phases. Four instruction texts were shown for
each trial, preceding the first detour, the second detour, the stimulus movement,
and the reproduction movement, respectively. In the second half of the training
trials, these instruction texts were not shown such that only the beeps indicated
the different trial phases. The second difference with the test trials was that
participants received feedback about their performance, displayed as the signed
reproduction error in centimeters at the end of each training trial. We did not
analyze the training trials.

4.3.5 Data analysis

Pre-processing

We analyzed data from the test trials offline in MATLAB (v.R2019a, MathWorks). The
end position of the reproduction movement was defined as the sled position at the
moment when the participant moved the steering wheel upright. We chose this
position as opposed to the sled position after the slow-down period, as it more
accurately reflects the participant’s intended end position. Some of the recorded
sled position profiles indicated that movement speed plateaued at a low but
nonzero value before the slow-down period was initiated. The movement end was
therefore corrected to the first time point where sled speed was < 8 cm/s (instead
of the online threshold of 6 cm/s) while the steering angle remained constant for at
least 100 ms or the steering direction changed. On average, the end position of 20
trials per participant were determined in this way (mean + SD: 20 + 15 trials). The
reproduction error was computed as reproduced distance minus stimulus distance
on logarithmic scale, with negative values indicating an undershoot and positive
values an overshoot. We excluded trials if the participant initiated the reproduction
movement too early, if reproduction movements were in the wrong direction, or if
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the reproduced distance was less than 1 cm (mean + SD: 5 + 6 trials). There was no
effect of movement direction on the mean unsigned reproduction error across trials
(Wilcoxon rank-sum test, p = 0.624, rank-biserial correlation = 0.13), so
participants were analyzed as a single group, disregarding this factor.

Central tendency and serial dependence computation

Figure 4.4A illustrates a causal diagram G (Pearl, 2009) of the high-autocorrelation
condition. Variables are represented as nodes and possible causal relationships
between the variables as directed edges. A path between two variables consists of a
set of edges that connects the two variables (irrespective of the direction of the
edges). In this diagram, the s-nodes represent the stimulus distances and the
e-nodes the reproduction errors at different trials ¢. As the stimulus distances in
this condition are presented in a random-walk sequence, we know that the current
stimulus s; depends on the previous stimulus s;_1 which in turn depends on s; o
and so forth (the top row in Figure 4.4A). Furthermore, the current reproduction
error may be affected by the current and previous stimulus distances (the vertical
and diagonal edges in Figure 4.4A), and the previous reproduction error (the
bottom row in Figure 4.4A).

The edge between the current stimulus s; and the current reproduction error e;
represents the central tendency effect, whose coefficient C'T we want to estimate.
A negative coefficient suggests a central tendency effect, where the longer the
stimulus distance is, the more it is underestimated (i.e., the more negative the
reproduction error becomes). Finding a coefficient of 0 implies that there is no
central tendency effect (i.e., the reproduction error is constant across stimulus
distances) and a positive coefficient implies that there is anti-central tendency in
the reproductions.

Similarly, the edge from the stimulus distance on the previous trial s;_; to the
reproduction error on the current trial e; captures the serial dependence effect at
lag 1. Here, we express serial dependence as the dependence of the current error
on the previous stimulus distance (‘absolute’ serial dependence; e.g., Holland &
Lockhead, 1968) instead of the dependence of the current error on the difference
between the previous stimulus and the current stimulus (‘relative’ serial
dependence; e.g., Fischer & Whitney, 2014). The latter metric can erroneously result
in a serial dependence effect if stimuli are defined on an open scale (such as
distances or durations) and the reproductions are constant across stimuli [see
Appendix A in Glasauer & Shi (2022)]. A positive (attractive) serial dependence
coefficient SD; indicates that if the participant experienced a longer stimulus
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distance on the previous trial, they tend to show a larger overestimation (i.e., a
more positive reproduction error) on the current trial. A coefficient of 0 implies that
there is no serial dependence and a negative (repulsive) coefficient reflects that a
longer stimulus distance on the previous trial tends to be followed by a larger
underestimation (i.e., a more negative reproduction error) on the current trial.

As becomes apparent from the graph in Figure 4.4A, beside the direct path CT
there are indirect paths through which s; can affect e;. For example, there exists an
indirect path from s; to e; via common cause s;_1. In order to accurately estimate
the coefficient of the direct path CT, this indirect path should be ‘blocked’ by
adding variable s;_1 to the adjustment set Z, i.e., by adding this variable as a
regressor to the multiple linear regression model (e, = CT - s+ B - 841+ €).
More generally, all indirect paths that connect s; and e; should be blocked, in
which case s; is said to be d-separated from e;. The coefficient CT is said to be
identifiable when there exists an adjustment set Z that d-separates s; from e; and
when Z contains no descendants of e; [Theorem 5.3.1., the single-door criterion
for direct effects, Pearl (2009)]. If these conditions are not satisfied, this may lead
to a biased estimate of CT.

Beside the direct path C'T', we can see that all indirect paths between s; and e;
contain s;_1, so by adding this variable to the adjustment set, all indirect paths
between s; and e; are blocked (see Figure 4.4B). Similarly, to d-separate s;_1 and
e; (beside the direct path SD;), s; and e; ;1 should be adjusted for, blocking all
indirect paths between s;_; and e; (see Figure 4.4C). Thus, to estimate the direct
CT effect, the regression of e; on s; also has to include the regressor s; 1, and to
estimate the direct SD; effect, the regression of e; on s; 1 also has to include the
regressors s; and e;_1. As the latter regression model contains the first (and adding
the e; 1 regressor to the C'T" regression model does not open up paths between s;
and e;), we combine the two multiple linear regression models. This results in one
model that can be used to estimate both the central tendency effect CT and the
serial dependence effect SD;:

etzﬂo—i-CT'St—i-SDl 'St_l—i-ﬂl-et_l—{—&‘. (42)

A similar causal graph can be drawn for the no-autocorrelation condition, but
without edges between the stimulus distances. From this graph follows that to
estimate CT', no variables have to be adjusted for, and to estimate SDq, e; 1
should be adjusted for. The same regression model as above can also be used to
estimate the central tendency and serial dependence effects in the no-
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autocorrelation condition, because indirect paths between s; and e; remain
blocked when also adjusting for s;_; and e;_1, and indirect paths between s; 1
and e; remain blocked when also adjusting for s;.
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Figure 4.4. A: Causal diagram G representing the assumed causal relationships between the
stimulus distances (s) and reproduction errors (e) across trials (¢) in the high-autocorrelation
condition. Variables are presented by nodes and possible causal relationships between the variables
by directed edges. A path between two variables denotes a set of edges that connects the two
variables (irrespective of the direction of the edges). The upper row of nodes represents the random-
walk sequence, in which the previous stimulus affects the current stimulus. The edge CT between
the current stimulus s; and the current reproduction error e; reflects the possible central tendency
effect. Similarly, the edge SD; between the previous stimulus s;—; and the current reproduction
error e; represents the possible serial dependence effect at lag 1. B: Application of the single-door
criterion to determine which variables to include as regressors in a multiple linear regression model
such that central tendency coefficient CT is identifiable. Graph G¢r is equal to graph G with edge
CT removed. Dashed arrows indicate (parts of) blocked paths between s; and e;, and gray nodes
represent the variables to add as regressors. By adding s;_1 as a regressor, all biasing paths between
s¢ and e; are blocked, and CT can be estimated. C: Application of the single-door criterion to serial
dependence coefficient SD;. By adding s; and e;_; as regressors, all biasing paths between s;_; and
e; are blocked, and SD{ becomes identifiable.

To compare the central tendency and serial dependence across the autocorrelation
conditions, we fitted this model to the data of each participant and each condition
separately, on a logarithmic scale. Partial regression plots of the current
reproduction error on the current stimulus distance, and of the current
reproduction error on the previous stimulus distance are used to visualize the
central tendency and serial dependence effects, respectively. These plots were
created using the MATLAB function plotAdded and illustrate the effect of one
regressor on the response variable while keeping the other regressors constant. The
slope of the fitted line corresponds to the fitted partial regression coefficient (CT'
and S D, respectively).

To illustrate how accounting for the biasing paths affects the central tendency and
serial dependence coefficients, we also computed the same coefficients by fitting
two separate simple linear regressions to the data of each participant and
condition. The models used to estimate the central tendency effect C'T' and the
serial dependence effect SD; were ¢, = 8o+ CT - s; +¢€ and e; = 8o+ SD; -
st—1 + €, respectively. The Appendix provides a comparison of the different central
tendency and serial dependence metrics based on simulated data.

Statistical tests

To further analyze the central tendency and serial dependence coefficients, we
used the following statistical tests. We first tested whether there was an effect of
condition (no/high-autocorrelation) on the central tendency/serial dependence
coefficients with paired-samples t-tests. One-sample t-tests were used to assess
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whether the central tendency/serial dependence coefficients significantly differed
from 0. Cohen’s d (Cohen, 1988) and 95% confidence intervals are reported.

4.4 Results

Participants performed a vestibular distance reproduction task in the dark where
they actively reproduced a stimulus movement that they had passively
experienced. To manipulate the level of autocorrelation of the stimulus distances,
we established a high-autocorrelation condition characterized by a random walk of

stimuli, alongside a no-autocorrelation condition where the same stimuli were
randomly shuffled. We examined the central tendency and serial dependence
effects on the reproductions in these conditions.

4.4.1 Central tendency

Figure 4.5, A and B, present the simple linear regressions of reproduction error
versus stimulus distance on the current trial, without adjusting for covariates, for a
single participant in the no- and high-autocorrelation conditions, respectively. The
slope of the fitted regression line corresponds to the central tendency coefficient
CT. In both conditions, CT is negative indicating central tendency, with the high-
autocorrelation condition showing less central tendency than the no-
autocorrelation condition. For comparison, Figure 4.5, C and D, show the partial
regression plots of the same participant based on the multiple linear regression
model (see Equation 4.2), with adjustment for covariates. These adjusted values
indicate that the effective variance in the stimulus distances is lower in the high-
autocorrelation than the no-autocorrelation condition. In contrast to the analysis
presented in Figure 4.5, A and B, the partial regression coefficients suggest that
central tendency remains fairly consistent across conditions.

Figure 4.5, E and F, illustrate the regression lines for all participants, as estimated
by the multiple linear regression model, which reveal no significant difference in
central tendency between the conditions (paired-samples t-test: p = 0.550, Cohen’s
d =0.12, 95% CI = [—0.07,0.14]). As visualized in Figure 4.6A, the CT values
exhibit considerable variability between participants. Yet, they are on average
negative across conditions (M = —0.38, SD = 0.29), indicating a substantial level
of central tendency (one-sample t-test: p < 0.001, Cohen’s d = 1.35, 95% CI =
[—0.46, —0.31]).
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Figure 4.5. Regression plots of the reproduction error on the current trial as a function of stimulus
distance on the current trial in the no-autocorrelation (blue) and high-autocorrelation (orange)
conditions on logarithmic scale for an individual participant (A-D) and all participants (E-F).
Regression lines illustrate the central tendency, with the regression slope corresponding to the
regression coefficient CT'. A-B: Simple linear regression lines, with the CT value reported in the key.
C-D: Partial regression lines based on the multiple linear regression model. E-F: Partial regression
lines with the mean fitted CT coefficient across participants indicated.

For comparison, Figure 4.6B presents the CT values, as calculated with the
simple linear regression. In both conditions, the mean CT coefficient across
participants is significantly smaller than zero (no-autocorrelation: M = —0.36,
SD =0.21, p<0.001, Cohen’s d=1.70, 95%CI=[-0.45,—0.28], high-
autocorrelation: M = —0.26, SD = 0.27, p < 0.001, Cohen’s d = 0.98, 95% CI =
[-0.37,—0.16]). More strikingly, the average CT values differed significantly
between the two conditions (paired-samples t-test: p = 0.016, Cohen’s d = 0.53,
95% CI = [—0.18,—0.03]), demonstrating that not accounting for the
autocorrelation in the stimulus sequence can result in different central
tendency coefficients.
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Figure 4.6. Central tendency (A, B) and serial dependence (C, D) regression coefficients in the no-
autocorrelation (blue) and high-autocorrelation (orange) conditions. Panels A and C show the partial
regression coefficients computed with the multiple linear regression model, and panels B and D
show the regression coefficients computed with the two separate simple linear regression models.
Bold data points and error bars represent the mean + SE across participants. Transparent data points
and their connecting lines show individual participants.

4.4.2 Serial dependence

Figure 4.7, A and B, show simple regression plots of the same exemplary
participant as in Figure 4.5, but now with reproduction error on the current trial
plotted against stimulus distance on the previous trial. The regression line
illustrates the serial dependence, of which the slope corresponds to the fitted
regression coefficient SD;. In the no-autocorrelation condition, the positive SD;
indicates that there is attractive serial dependence, whereas this coefficient is
negative in the high-autocorrelation condition, representing repulsive serial
dependence. Figure 4.7, C and D, display regression plots of the same data set
adjusted for the other regressors in the multiple linear regression model (see
Equation 4.2). Compared to the simple regression analysis, SD; remains positive
in the no-autocorrelation, but shifts from negative to positive in the high-
autocorrelation condition.

Figure 4.7, E and F, display the serial dependence lines for all participants, as
determined by the multiple linear regression model. A paired-samples t-test
indicated no significant difference between the average SD; coefficients of the no-
and high-autocorrelation conditions (p = 0.180, Cohen’s d = 0.28, 95% CI =
[-0.17,0.03]). Despite substantial intersubject variability (see Figure 4.6C), SD;
was on average positive across conditions (M = 0.19, SD = 0.21), suggesting
attractive serial dependence (one-sample t-test: p < 0.001, Cohen’s d = 0.93,
95% CI = [0.14, 0.25]).

For comparison, Figure 4.6D shows these coefficients, as determined from fitting
the simple linear regression. In this case, a paired-samples t-test revealed a
significant difference between the two conditions (p < 0.001, Cohen’s d = 1.10,
95% CI = [0.19,0.41]), with attractive serial dependence in the no-
autocorrelation condition (M = 0.07, SD = 0.08, one-sample t-test: p < 0.001,
Cohen’s d = 0.82, 95% CI = [0.04, 0.10]) and repulsive serial dependence in the
high-autocorrelation condition (M = —0.23, SD = 0.25, one-sample t-test:
p < 0.001, Cohen’s d =0.92, 95% CI = [—0.33, —0.13]). Again, this highlights
that the two analysis methods can lead to different results and therefore different
interpretations of the data.
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Figure 4.7. Regression plots of the reproduction error on the current trial as a function of stimulus
distance on the previous trial in the no-autocorrelation (blue) and high-autocorrelation (orange)
conditions on logarithmic scale. Regression lines illustrate the serial dependence, with the
regression slope corresponding to the regression coefficient SD;. The figure is in the same format as
Figure 4.5, with the same individual participant.

4.5 Discussion

In this study, we investigated the effect of the autocorrelation in the stimulus
sequence on central tendency and serial dependence in vestibular path integration.
Participants performed a distance reproduction task using a vestibular sled in total
darkness. On each trial, the participant was passively moved over a stimulus
distance, which they actively reproduced by steering the sled back to the start
position. Each participant completed two experimental conditions during which the
same stimulus distances were presented but in different orders. In the high-
autocorrelation condition, the stimuli followed a random walk, whereas in the no-
autocorrelation condition, the stimulus distances were randomly shuffled. Central
tendency and serial dependence were assessed either by conducting two separate
simple linear regressions or by employing a single multiple linear regression model.
The latter approach was derived from a causal diagram (see Figure 4.4; cf. Pearl,
2009), taking into account that the two perceptual biases may covary due to
autocorrelated stimuli. We found that applying the two analytical methods to the
vestibular path integration data set yielded different results regarding how
autocorrelation influences both central tendency and serial dependence.

The simple linear regressions suggest that central tendency was weaker in the high-
autocorrelation than in the no-autocorrelation condition. This approach also
indicates that the level of stimulus autocorrelation can make the serial dependence
coefficient flip sign: the high-autocorrelation condition demonstrated repulsive
serial dependence, while the no-autocorrelation condition demonstrated attractive
serial dependence. However, when we used multiple linear regression to jointly
quantify both central tendency and serial dependence, thus accounting for their
covariation as well as the effect of the previous reproduction error, we observed no
significant differences in either perceptual bias between the two autocorrelation
conditions. In both conditions, we found similar central tendency and attractive
serial dependence effects, suggesting that these biases are independent of the
specific stimulus sequence protocol that was used. Can we reconcile these different
outcomes with findings from previous literature?
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Our simple linear regression results align with the findings of Glasauer & Shi (2022),
who reported that both central tendency and serial dependence in reproduced
durations, estimated using separate simple linear regressions, depended on the
sequence of the presented stimuli. The multiple linear regression coefficients of
this study are consistent with the central tendency and serial dependence biases
found in our previous study on vestibular path integration (Willemsen et al., 2024).
In this earlier study, stimulus distances were randomly sampled from either a short-
or long-distance distribution and presented in a mixed or blocked order, with
stimulus autocorrelations (per distance and order type) that were on average close
to 0 across participants (mean + SD: -0.03 + 0.13). The reproduced distances
showed a similar amount of central tendency and attractive serial dependence as
in the present study, for both distance types (short/long) and presentation
contexts (mixed/blocked).

The novelty of the present study is that we found central tendency and serial
dependence in vestibular path integration to be independent of stimulus
autocorrelation, if these biases are estimated by a multiple linear regression model
that accounts for their covariation. Thus, the differences in central tendency and
serial dependence identified through the separate simple linear regressions are due
to the different levels of autocorrelation that were not accounted for in the
regressions, rather than due to differences in brain processing across the two
conditions. As shown in the Appendix, separately estimating the biases in
simulated reproductions that show central tendency but no serial dependence, can
falsely result in a repulsive serial dependence coefficient when stimuli are
autocorrelated. The autocorrelation in the stimuli makes that a short stimulus is
likely to follow another short stimulus. If we tend to overestimate short stimuli
irrespective of the previous stimulus (the central tendency effect), this will also
show up as repulsive serial dependence, i.e., an overestimation that occurs if the
previous stimulus was short.

Here, we show that central tendency and serial dependence in vestibular path
integration persist regardless of stimulus autocorrelation, which suggests that they
reflect robust neural processes that affect the estimation of self-motion, even when
the stimulus changes predictably over time. Specifically, we found that
reproductions showed central tendency: shorter stimulus distances were generally
overestimated, while longer distances tended to be underestimated. This pattern
aligns with previous findings in distance and heading perception, where central
tendency has been consistently reported (Loomis et al., 1993; Warren & Saunders,
1995; Philbeck & Loomis, 1997; Israél et al., 1997; Grasso et al., 1999; Riecke et al.,
2002; Bergmann et al., 2011; Petzschner & Glasauer, 2011; Petzschner et al., 2012;
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Prsa et al., 2015; Sun et al., 2020). Furthermore, the reproduction errors showed
attractive serial dependence, which indicates that self-motion perception of
participants is also biased toward the stimulus distance of the immediately
preceding trial. Attractive serial dependence effects have been widely reported in
the perception literature (Fischer & Whitney, 2014; Liberman et al., 2014,
Motala et al., 2020; Manassi & Whitney, 2022, 2024; Guan & Goettker, 2024). While
attractive serial dependence in vestibular path integration may help to stabilize
self-motion perception from trial to trial, it would reduce sensitivity to small
changes between trials (Sun et al., 2020; Manassi & Whitney, 2024).

To computationally understand the underlying neurocognitive processes, numerous
studies have adopted a Bayesian framework to explain central tendency and serial
dependence. In this approach, the brain is thought to encode information about
previous stimuli as a prior distribution, which is optimally combined with the
sensory likelihood, using Bayes’ rule (Jirgens & Becker, 2006; Petzschner &
Glasauer, 2011; Petzschner et al., 2012; Prsa et al., 2015; Lakshminarasimhan et al.,
2018). It can be shown that if the prior and likelihood are modeled as Gaussian
distributions, their combination will result in a posterior distribution with a lower
variance, reflecting more precise but potentially biased estimates. Research
indicates that the posterior parietal cortex may play a role in these computations
(Akrami et al., 2018).

Within the Bayesian framework, Glasauer & Shi (2022) proposed a Kalman filter
model that iteratively combines the sensory measurement from the current trial
with the stimulus estimate from the previous trial. It can be shown that the steady
state of this model is similar to an ARX model on logarithmic scale
(Shirzhiyan et al., 2023). By varying the Kalman filter’s assumptions about the
estimated stimulus distribution, the authors assessed how various beliefs about the
generation of stimuli in the environment could explain the central tendency and
serial dependence biases. Both central tendency and serial dependence effects, in
duration perception as well as in visual path integration, were well explained by a
model that assumes that the stimuli are drawn from a stimulus distribution of
which the mean can fluctuate across trials (Glasauer & Shi, 2022). Additionally, this
model demonstrated a reasonably good fit to the vestibular distance reproductions
in our previous study, successfully capturing the central tendency effects in the
data, although it was less effective in explaining the serial dependence effects
(Willemsen et al., 2024). As the focus of the current study was on the computation
of central tendency and serial dependence across different levels of stimulus
autocorrelation, evaluating the fit of the Kalman filter model to the current data set
was outside the scope of this study.
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As a final consideration regarding the multiple linear regression analysis, it is
important to note that the causal diagram from which it is derived represents an
assumed causal structure underlying the high-autocorrelation condition. If relevant
variables or connections are missing, there is a risk that direct effects may be
misidentified. For example, earlier stimulus distances (see s; o, S; 3, etc. in
Figure 4.4A) might also influence the current reproduction error. The causal graph
in Figure 4.4A implies that e; and s;_» are conditionally independent given s;_;
and e;_1; an assumption that we tested using the high-autocorrelation data set. We
fitted the multiple linear regression model e; = 8o + B1 -8t 2+ B2 - 8.1+ B3 -
e;_1 + € and inspected the 81 coefficient. Across participants, the mean + SD of 3
was 0.12 + 0.26 but only significantly different from 0 for one participant. As a
further check, we assumed that there was an effect of s;_o (i.e., an edge between
s¢—2 and e; in the causal graph), and added this variable as a regressor to the
multiple linear regression model such that e; and s;_; were d-separated. We found
similar mean coefficients for the central tendency and serial dependence effects. As
adding this regressor would introduce more multicollinearity in the regression
model, we decided to not include the regressor in the final model. The high
amount of autocorrelation in the stimulus sequence comes with the disadvantage
of a reduced effective variance in the stimulus distances (see Figure 4.5 and
Figure 4.7), and therefore a reduced precision in the estimated regression
coefficients. A possible solution could be to test an experimental condition with a
medium amount of autocorrelation.

In conclusion, our findings indicate that the reproduced distances in the vestibular
path integration task generally showed central tendency and attractive serial
dependence. These perceptual biases were not affected by the level of stimulus
autocorrelation, given that covariation of these biases through the stimulus
autocorrelation as well as other covariates were taken into account in the model.
This suggests that central tendency and serial dependence in vestibular path
integration have a neurocognitive rather than a statistical origin.
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4.6 Appendix

To compare different central tendency and serial dependence metrics, we
simulated reproductions that show central tendency but no serial dependence, i.e.,
reproductions that tend towards the mean of the underlying stimulus distribution
but that are independent of the stimulus distance presented on the previous trial.
Such reproductions can be generated for a trial t using the following ‘static’
Bayesian model (Glasauer & Shi, 2022):

N
D ie1 Si

re=w-8+(1—-w)- N

+ €ty

where r refers to the reproduced distance, s to the stimulus distance, N to the
total number of trials, and € to a small amount of normally distributed random
noise centered on 0. Parameter w reflects the weighting between the stimulus on
the current trial and the constant mean of all stimuli. The amount of central
tendency in the reproductions is defined as ¢ = 1 — w, and the serial dependence
is always 0 as the current reproduction does not depend on the previous stimulus
irrespective of the amount of central tendency. One simulation for a given w
consisted of generating reproductions with the static model for a random-walk
sequence of 130 stimulus distances (the high-autocorrelation condition), and then
shuffling the resulting stimulus-reproduction pairs to create the no-autocorrelation
condition. Next, the amount of central tendency and serial dependence in the
simulated reproductions was computed using two different methods. First, we used
two separate linear least-squares regressions. Central tendency was defined as the
slope of the linear regression of the reproduction error (reproduced - stimulus
distance) on the stimulus distance. Serial dependence was defined as the slope of
the linear regression of the reproduction error of the current trial on the stimulus
distance of the previous trial. Second, we computed central tendency and serial
dependence as the partial regression coefficients C'T" and SD; in the multiple
linear regression model described in the Methods. We performed 1000 simulations
for w =0, w = 0.5, and w = 1, and we report the mean of the central tendency
and serial dependence values across simulations for both methods.

The results are presented in Table 4.Al. Both the simple and multiple linear
regression methods compute the correct amount of central tendency (i.e., ¢) in
both conditions. Note that the central tendency values are negative as central
tendency is defined in terms of the effect of the stimulus distance on the
reproduction error (see Figure 4.1A). Both methods also result in the correct
amount of serial dependence (i.e.,, 0) in the no-autocorrelation condition (see

117




118 | Chapter 4

Figure 4.A1, A-C). However, in the high-autocorrelation condition, the central
tendency in the reproductions manifests as repulsive serial dependence when
computed using the simple linear regression method. This is illustrated in
Figure 4.A1, D-F, for three example simulations with increasing amounts of central
tendency. If we instead compute serial dependence using the multiple linear
regression method in which we control for the current stimulus as well as other
variables (see Methods), the resulting value is on average close to 0 across
simulations (see Table 4.A1).

Table 4.A1. Central tendency and serial dependence in simulated reproductions of a no- or high-
autocorrelation stimulus sequence, computed with two separate linear regressions (SLR) or one
multiple linear regression model (MLR, see Methods). Cells show the mean bias across 1000
simulations with different amounts of introduced central tendency (c), controlled by model
parameter w (wherec =1 — w).

=1, w = 0.5, w =0,
c=10 c=0.5 c=1
Bias Autocorrelation SLR MLR SLR MLR SLR MLR
None 0.00 0.00 -0.50 -0.50 -1.00 -1.00
Central tendency
High 0.00 0.00 -0.50 -0.50 -1.00 -1.00
None 0.00 0.00 0.00 0.00 0.00 -0.01

Serial dependence
High 0.00 0.00 -0.48 -0.01 -0.95 -0.02
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Figure 4.Al. The serial dependence in the no- (blue) and high-autocorrelation (orange) conditions of
three example simulations with different amounts of introduced central tendency (c), controlled by
model parameter w (where ¢ = 1 — w). Serial dependence is plotted as reproduction error (e; =
ry — §¢) against previous stimulus distance s;_; on logarithmic scale. The slope of the simple linear
regression (SLR) between these two variables is reported in the key. The corresponding serial
dependence value as computed with the multiple linear regression (MLR) method (the partial
regression coefficient SD1, see Methods) is reported in each panel (but not plotted as this coefficient
can only be correctly shown in a partial regression plot, see Methods).







Chapter 5

General discussion

How are we able to form coherent percepts from the vast amount of information
available in the world around us? As we navigate our surroundings, our brain does
not just receive information from our sensory organs, but importantly, also draws
on memorized prior knowledge. In this thesis, | studied how prior experience
influences spatial orientation and self-motion perception. In Chapter 2, |
investigated to what extent the distribution of naturalistic head orientations could
explain the Aubert effect in spatial orientation perception. In Chapters 3 and 4, |
examined the effect of different stimulus distributions and presentation orders on
central tendency and serial dependence biases in self-motion perception. In the
first two sections of this chapter, | summarize and discuss the main findings of
Chapter 2, and Chapters 3 and 4, respectively. In these sections | furthermore
identify limitations and suggest ideas for future studies. Finally, | will explore the
possible implementation and creation of Bayesian priors and end with a
short conclusion.
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5.1 Non-Gaussian natural head orientation statistics in
spatial orientation perception

Spatial orientation perception has previously been studied in our lab by roll-tilting
participants using a vestibular chair and subsequently quantifying the participant’s
perception of vertical (the subjective visual vertical task) and their body orientation
in space (the subjective body tilt task). Findings show that when the head is tilted
at large tilt angles, the perception of vertical is biased toward the tilt direction,
called the Aubert effect (Aubert, 1861), whereas the perception of body orientation
remains relatively accurate. Clemens et al. (2011) proposed a Bayesian inference
model to explain the observations in these tasks. To model the Aubert effect, a
Gaussian prior distribution of head roll centered on the upright orientation was
included. This prior represented the idea that we usually keep our head upright
and that extreme head tilts occur less frequently.

5.1.1 Natural statistics of head orientation

In Chapter 2, | asked whether head orientations measured outside the laboratory
reflect the assumed Gaussian prior distribution. To answer this question, |
evaluated which probability density function could best capture the distribution of
head roll-tilt angles, measured across a set of naturalistic, unconstrained tasks. |
found that the measured distributions were indeed centered on the upright head
orientation and showed no systematic skewness. However, the participants’
distributions consistently showed longer tails and higher peaks than predicted by a
Gaussian distribution, best quantified by the more flexible t-location-scale
distribution which includes a shape parameter to control the distribution’s kurtosis.
I conclude that head orientations measured outside the laboratory are
symmetrically centered around the upright head orientation and follow a non-
Gaussian distribution.

The data set of head roll tilts measured in everyday behaviors has been collected to
supplement the growing literature on the natural statistics of head motion
(Schwabe & Blanke, 2008; Carriot et al., 2014; Hausamann et al., 2019; Sinnott et al.,
2023). The finding that the empirical head roll distributions were generally non-
Gaussian extends earlier reports of the head’s angular velocity and linear
acceleration in naturalistic tasks, which showed comparable excess kurtosis
(Carriot et al., 2014).
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It could be considered a limitation of the out-of-laboratory experiment that it
consisted of a set of relatively short tasks (walking, running, going up and down the
stairs, sitting, and standing, resulting in approximately 30 min of recorded
activities). To what extent do the head roll distributions from this experiment
generalize to more natural, uninstructed behavior? Recently, Sinnott et al. (2023)
recorded head orientations over a continuous 5-hour period, without any
prescribed activities. The resulting head roll distribution across participants was
centered on upright (0.58°) with a standard deviation of 6.21°, little skewness
(0.12), and excess kurtosis (7.26, i.e., a kurtosis of 10.26). These values closely
resemble the statistical moments that | found in Chapter 2, which suggests that the
head roll measured in the relatively short tasks generalizes to more naturalistic,
uninstructed behavior.

5.1.2 Bayesian inference models of spatial orientation perception

As priors in visual perception seem to reflect natural scene statistics (Adams et al.,
2004; Girshick et al., 2011), | subsequently asked whether this is also the case for
the perception of our head’s orientation in space. More specifically, | studied
whether the Clemens et al. (2011) model of spatial orientation perception could be
improved by incorporating the empirical t-location-scale distribution, with its
shape parameter estimated from head orientations measured outside the
laboratory, as the head-in-space prior (model m2-TP, v = 3.4 in Chapter 2).
Surprisingly, | found that the t-location-scale prior performed substantially worse
than the previously assumed Gaussian prior (model m1-GP) in explaining the
spatial orientation data set from Clemens et al. (2011), and that this finding was
consistent across various model variants. | conclude that incorporating the
empirical, non-Gaussian distribution in the model by Clemens et al. (2011) does not
provide a better explanation of spatial orientation perception than the original
model with a Gaussian prior.

The new model (m2-TP, v = 3.4) performed worse in capturing the Aubert effect,
predicting smaller SVV biases at larger tilt angles than seen in the data. Replicating
this finding, Sinnott et al. (2023) found that implementing their empirical head roll
distribution as the prior in a static Bayesian inference model resulted in a worse fit
to the SVV bias data of de Vrijer et al. (2009) than a Gaussian-prior model. In the
same study, Sinnott et al. (2023) tested whether a non-linear relationship between
otolith noise and absolute head tilt angle could redeem the empirical prior model.
This model variant was again outperformed by the corresponding Gaussian-prior
model, reflecting my finding that allowing the standard deviation of otolith noise to
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be a free parameter for each absolute tilt angle did not improve the t-location-scale
prior model (m3-TP).

The most striking difference between the Gaussian prior (m1-GP) and t-location-
scale prior (m2-TP, v = 3.4) model variants is that the latter variant predicts a
much higher perceptual uncertainty across the tilt range. Gradually increasing the
shape parameter of the t-location-scale distribution such that the distribution
became more Gaussian (m2-TP models), resulted in a consistent decrease in
predicted perceptual variance and a corresponding increase in model performance.
A theoretical reason for this finding is that the posterior variance is not necessarily
lower than the variances of the prior and likelihood, if these two individual signals
are not both represented as Gaussian distributions (Petty, 2018). If the prior is non-
Gaussian, this could result in a high perceptual uncertainty at large tilt angles as
predicted by the t-location-scale prior model - a situation the brain may want to
prevent. If spatial orientation perception indeed follows Bayesian principles, the
non-Gaussian distribution of everyday head tilts might be transformed into a
Gaussian internal representation of probable head orientations, by means of
additive Gaussian noise, introduced during transmission of head tilt information
along vestibular afferents (Sadeghi et al., 2007; Mallery et al., 2010).

Alternatively, the natural statistics of head roll measured during active motion may
be less informative for spatial orientation perception measured in stationary tasks
(Carriot et al., 2014). Instead, there may exist context-dependent priors, encoding
relevant information for different contexts or tasks. During active movements, such
as walking, it is important to remain balanced to prevent falling. This process might
be facilitated by a prior that reflects the natural statistics of head tilt during
walking, informing the brain about probable head tilts that enable
postural stability.

Within each data set in Chapter 2, participants were regarded as one group.
However, the data and fitted parameter values illustrate that there is a degree of
intersubject variability. An interesting future study would be to test whether
individual differences in natural statistics of head roll can predict differences in
spatial orientation perception. To do so, the same group of participants could be
tested in the out-of-laboratory and laboratory-based experiments. For each
participant, the natural statistics of head roll may be quantified by the best-fitting
(Gaussian) distribution to the measured head roll tilts, and the subsequent fitted
(mean and variance) parameter values may be used as the fixed parameters of the
head-in-space prior in the Clemens et al. (2011) model.
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Future studies may also explore sequential Bayesian inference models of spatial
orientation perception, measured in continuous psychophysics paradigms
(Bonnen et al., 2015; Huk et al., 2018; Straub & Rothkopf, 2022; Jorges et al., 2024).
Continuous versions of the SBT and SVV tasks could involve participants rotating
themselves or the visual line toward their estimate of the reference orientation or
the vertical orientation, respectively (as in Tamura et al.,, 2017), resulting in a
continuous instead of a binary response (CW/CCW). Future studies could also
analyze possible short-term effects of previous stimuli on verticality and body
orientation perception (i.e., serial dependence effects).

5.2 Effects of stimulus history on self-motion
perception

Self-motion perception is essential for accurate path integration, a process that
involves integration of successive self-motion signals to track travel distance and
direction (Darwin, 1873; Mittelstaedt & Mittelstaedt, 1980; Etienne & Jeffery, 2004).
To study how memorized information about previously encountered stimuli affects
path integration, distance reproductions tasks are often used. Findings from virtual
reproduction tasks, in which simulated optic flow provides visual self-motion
signals, indicate that reproduced distances are biased by stimulus history (Glasauer
& Shi, 2022): reproductions tend towards the mean of the experimental stimulus
distribution - the central tendency effect (Hollingworth, 1910) - and are also
affected on a shorter timescale by the immediately preceding stimulus - the serial
dependence effect (Holland & Lockhead, 1968; Cross, 1973).

In Chapters 3 and 4, | studied to what extent central tendency and serial
dependence affect vestibular self-motion perception, by testing participants in a
physical distance reproduction task that mainly provided vestibular signals. In this
task, a vestibular sled passively moved the participant over a stimulus distance,
and subsequently, the participant actively reproduced this distance by steering the
sled back to the starting point of the stimulus movement. | conclude that
reproductions generally showed central tendency and attractive serial dependence,
suggesting that vestibular self-motion perception is affected by stimulus history.

5.2.1 Sequential Bayesian inference models of self-motion perception
Magnitude perception has previously been studied with Bayesian models (Jiirgens
& Becker, 2006; Jazayeri & Shadlen, 2010; Petzschner & Glasauer, 2011; Ashourian
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& Loewenstein, 2011; Petzschner et al, 2012; Prsa et al, 2015
Lakshminarasimhan et al., 2018; Glasauer & Shi, 2021, 2022). Some studies have
modeled perception through the combination of incoming sensory signals with
static prior knowledge about the statistics of previously experienced stimuli (e.g.,
Jazayeri & Shadlen, 2010). Other studies employed more iterative models, in
which the estimate of the previous trial is used as prior knowledge for the current
trial (e.g., Petzschner & Glasauer, 2011). Glasauer & Shi (2022) developed a
sequential Bayesian inference (two-state) model that captures an intermediate
assumption: stimuli are sampled from a probability distribution with a mean that
may vary from trial to trial. This model contains the static and iterative
assumptions as special cases which enables to compare how different
assumptions explain magnitude perception.

In Chapter 3, | evaluated whether this model could provide further insights into
how stimulus history influences reproduction behavior. | found that the predictions
of both the static and two-state models matched the measured reproductions
relatively well, suggesting that perception may have been influenced by the
assumption that stimuli come from a relatively stable distribution. This
corresponds to the finding of Glasauer & Shi (2022) that behavior of about half of
their participants in a duration reproduction experiment was best explained by the
two-state model and that for the remaining participants the static model was
sufficient. Also consistent with Glasauer & Shi (2022), | observed that all model
versions correctly predicted similar amounts of central tendency as measured in
the reproduction data, and that the iterative model overestimated serial
dependence whereas the static model underestimated serial dependence. Contrary
to Glasauer & Shi (2022), also the two-state model underestimated the serial
dependence in my data set, predicting similar serial dependence values as the
static model. This was supported by the fitted g parameter values of the two-state
model, which were on average close to 0, predicting a low level of serial
dependence and essentially reducing the model to the static model for
most participants.

It is unclear why the two-state model converged to the static model, resulting in an
underestimation of the serial dependence of the measured reproduced distances. A
potential explanation is that the reproduction data measured in the vestibular path
integration task was too noisy from trial to trial, resulting in the two-state model
not being able to capture the serial dependence at the level of the individual
participant. Part of this noise may have been motor noise introduced during the
active reproduction movement. A future study may test participants in a passive
reproduction task, e.g., a task in which the passive stimulus movement is followed
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by a passive reproduction movement, during which the participant presses a
button when they perceive they have travelled the stimulus distance.

| further investigated whether reproduction behavior was affected by different
experimental stimulus distributions and presentation orders. Stimulus distances
were sampled from two probability distributions, centered on a relatively short and
long distance, and tested in a blocked context, where the short and long distances
were presented in two separate blocks, and a mixed context, where the same
distances were randomly shuffled, resulting in one block. | extrapolated how the
median stimulus distance would have been reproduced if it was part of the short-
or long-distance distribution in the two contexts. | found that the estimated
reproductions did not differ in the mixed context, whereas the estimated
reproduction was generally longer in the long block than in the short block of the
blocked context. Subsequently, | tested whether this finding could be captured by
the two-state model, by extending the model such that it could take on different
assumptions about the stimulus distribution across the mixed, short and long
blocks. | also evaluated a variant of this model that allowed block-dependent
vertical shifts, reflecting global under- or overestimations of the stimulus distances.
I conclude that different levels of global underestimation across the blocks rather
than different stimulus distribution assumptions captured the observed differences
in the data.

A direction for future research could be to further investigate the origin of the
different global underestimations. Interestingly, the average best-fitting Axzgnort,
AZmixed, and Awlong parameter values seemed to decrease linearly with distance,
on logarithmic scale. The shift term may therefore reflect increasing uncertainty in
the position estimate as more distance is covered (Lakshminarasimhan et al., 2018).

5.2.2 Isolating central tendency and serial dependence in self-motion
perception with causal models

In Chapter 4, | studied how stimulus autocorrelation affected central tendency and
serial dependence in distance reproductions based on vestibular self-motion
signals. A new set of participants performed the vestibular path integration
experiment, in which stimulus distances were either presented in a randomized
order (the no-autocorrelation condition) or in a random-walk order (the high-
autocorrelation condition). By simulating reproductions that showed no serial
dependence, and quantifying the central tendency and serial dependence as
separate regression slopes, | observed that central tendency erroneously resulted
in repulsive serial dependence if the stimuli were autocorrelated. To compare the
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central tendency and serial dependence values across the no- and high-
autocorrelation conditions, the different autocorrelation levels should therefore be
controlled for in the regression model. | aimed to isolate the central tendency and
serial dependence effects by representing the causal relations between the stimuli
and reproduction errors in the measured data set in a causal graph (Pearl, 2009). By
applying the graphical d-separation criterionz, variables were identified that should
be adjusted for in the regression, resulting in a multiple linear regression model
that was used to jointly quantify the central tendency and serial
dependence effects.

The central tendency and serial dependence values as estimated with the separate
regressions indicated that the reproductions in the high-autocorrelation condition
showed less central tendency, and more negative serial dependence than in the no-
autocorrelation condition, in line with earlier findings (Glasauer & Shi, 2021, 2022).
However, when quantifying the effects with the multiple linear regression model,
the estimated values were similar across autocorrelation conditions, reflecting the
same level of central tendency and attractive serial dependence, comparable to the
effects | found in Chapter 3. | conclude that central tendency and serial
dependence in distance reproductions based on vestibular self-motion signals were
not affected by stimulus autocorrelation, which suggests that these biases are not
caused by the experimental stimulus randomization protocol but arise from
neurocognitive processes.

In the final causal graph, edges from the stimulus distance on the current trial
(reflecting the central tendency effect) and the previous trial (reflecting the serial
dependence effect), and the previous reproduction error, to the current
reproduction error were included. Earlier stimulus distances (at trial ¢ — 2, ¢t — 3,
etc.) could potentially have also affected the current reproduction error (creating
biasing paths that would affect the serial dependence estimate), but the data did
not reflect such effects. Earlier studies have also pointed out the importance of
isolating central tendency and serial dependence effects (Jesteadt et al., 1977; Tong
& Dubé, 2022; Saarela et al., 2023). To my knowledge, causal modeling has not yet
been applied to disentangle these two effects on magnitude perception but may
guide future development of appropriate regression models for perception
experiments and possibly also other experiments with autocorrelated stimuli.

2. During causal modeling, | analyzed d-separation in the causal graphs using DAGitty (Textor et al., 2016), a
useful browser-based environment (and R package) for the creation and analysis of causal diagrams.
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Incorporating both the stimulus on the current trial and the stimulus on the
previous trial as regressors in the model resulted in multicollinearity in the high-
autocorrelation condition. Multicollinearity reduces the effective variance in the
stimulus distances and therefore also reduces the precision of the estimated
regression coefficients. Reducing the amount of autocorrelation in a replication
study may still allow a comparison to a no-autocorrelation condition, while also
improving the precision of the coefficients.

5.2.3 Serial dependencies in perception

The reproductions measured in the vestibular path integration tasks of Chapters 3
and 4 showed attractive serial dependence, where the reproduction on the current
trial was on average attracted toward the stimulus on the previous trial. Many

studies within the perception literature have found attractive serial dependence
(Fischer & Whitney, 2014; Liberman et al., 2014; Motala et al., 2020; Manassi &
Whitney, 2022, 2024; Guan & Goettker, 2024), but there are also reports of repulsive
serial dependence, where the current reproduction is biased away from the
previous stimulus (Fritsche et al.,, 2017; Sun et al.,, 2020). The attractive serial
dependence effects that | found in this thesis were not well explained by sequential
Bayesian inference models with stable or iterative priors (Chapter 3), and were not
introduced through the experimental stimulus randomization protocol (Chapter 4).

Instead, self-motion perception may be attracted toward the previous stimulus as a
way to make perceptual representations more stable over time. Fischer & Whitney
(2014) proposed perceptual continuity fields as a possible mechanism:
spatiotemporal regions in which visual stimuli are being perceived as more similar
than they actually are. Within these regions, serial dependence is thought to
become higher as subsequent stimuli occur closer in time or space, when features
of the current and past stimuli are more similar, or when more attention is devoted
to the previous stimulus (Manassi & Whitney, 2024). The specific tuning of these
properties may depend on a variety of factors, such as the task the brain tries to
solve, or the degree to which the brain tries to match the serial dependence in
perception to the autocorrelations in the natural stimulus statistics (van Bergen &
Jehee, 2019; Ortega et al., 2023; Manassi & Whitney, 2024). In line with the idea that
attractive serial dependence promotes stable representations, repulsive serial
dependence may be a process through which sensitivity to changes between
subsequent stimuli is increased (Sun et al., 2020).

Fritsche et al. (2017) tested the same group of participants in two visual orientation
perception tasks and found different serial dependence patterns. When participants
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reproduced the orientation of a Gabor stimulus by adjusting a response bar,
responses showed an attractive serial dependence on the previous stimulus
orientation. However, when participants judged which of two stimuli was oriented
more clockwise, the responses showed repulsive serial dependence on the previous
stimulus orientation. The authors reasoned that responses in the first experiment
include both perceptual and post-perceptual decision processes, whereas the
second experiment more directly targets perception of the stimulus orientation.
The distance reproduction task in Chapters 3 and 4 is in essence similar to the first
task in Fritsche et al. (2017), with both tasks resulting in attractive serial
dependence effects. As | only performed an adjustment task, | cannot distinguish
between perceptual and post-perceptual processes. An interesting future study
would be to also test participants in a distance comparison task, in which the
participant judges which of two stimulus distances is shorter (or longer), to
evaluate how this affects serial dependence of reproduced distances.

5.3 Bayesian priors in the brain

Many of the findings presented in this thesis are derived and formulated within the
Bayesian inference framework. The Bayesian models used in this thesis provide
insights into the possible computations involved in spatial perception, but make no
predictions about how these computations are represented and implemented in
the brain (Marr, 1982; Chater et al.,, 2006). How and where could the brain
implement these computations? One of the proposed mechanisms is probabilistic
population coding (Ma et al., 2006; Funamizu et al., 2016; Spratling, 2016). This
mechanism suggests that neuronal populations encode probability distributions as
a result of neuronal variability (Ma et al., 2006) and may in theory be capable of
implementing a 2-D Kalman filter (Beck et al.,, 2011). Funamizu et al. (2016)
provided additional evidence, suggesting that the mouse posterior parietal cortex
performs sequential Bayesian inference during distance estimation, using
probabilistic population codes.

The combined results of this thesis suggest that vestibular perception is influenced
by prior knowledge about task-relevant stimulus history, built up across multiple
timescales. Prolonged exposure to stable features of natural stimuli over our
lifetime (i.e., through the usual upright head orientation) seems to shape spatial
orientation perception (i.e., through the upright head-in-space prior; Chapter 2).
What we have experienced on a shorter timescale also affects vestibular perception
(Chapters 3 and 4). Here, a distinction can be made between central tendency
effects, reflecting a representation of stimulus statistics built up across multiple
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trials, and serial dependence effects of immediately preceding stimuli. This
apparent distinction is currently under active investigation, with recent findings
suggesting that the central tendency effect is not the result of an explicit
representation of the stimulus distribution in the posterior parietal cortex, but that
central tendency emerges from serial dependence effects in working memory
(Boboeva et al., 2024). The effects of consolidated long-term (Chapter 2) and more
flexible short-term information about stimulus history (Chapters 3 and 4) were
separately studied in this thesis, but likely simultaneously affect vestibular
perception (Sun et al., 2024).

The environmental context in which someone finds themselves determines the
distribution of sensory signals that they perceive. Examples of such contexts that
have been discussed in this thesis are active versus passive movement contexts

(Chapter 2), as well as mixed versus blocked (Chapter 3), and no- versus high-
autocorrelation stimulus presentation contexts (Chapter 4). Throughout our lives,
we encounter a variety of different contexts, and our brain likely has different
memories that are relevant for these contexts. How does the brain know the
context we are in, and how does it create and update new memories? Heald et al.
(2021) proposed the idea of contextual inference, which suggests that the brain
continuously computes a posterior distribution, reflecting the probability of each
known context and a novel context being currently active. This posterior
distribution may in turn guide both apparent learning, the change in how existing
memories are expressed, and proper learning, the updating and creation
of memories.

While behavior in many perceptual and cognitive experiments seems well explained
within the Bayesian framework, it remains relatively unexplored how such models
perform in explaining more complex real-world behavior. The spatial orientation
and self-motion perception experiments presented in this thesis constrained
vestibular perception to a relatively narrow set of stimuli while also restricting
motion. It is therefore difficult to generalize these findings to more complex
everyday perception of orientation and self-motion. Future work may approach this
problem from two directions: by adding more degrees of freedom to constrained
laboratory-based experiments, or by restricting degrees of freedom in out-of-
laboratory behavior. Experiments following the first line of reasoning could try to
mimic more naturalistic contexts in the laboratory, e.g., by studying self-motion
perception while displacing the vestibular sled as if the participant is driving on a
slippery road (similar to the task in Liu et al., 2024). Alternatively (or ideally in
parallel), future studies may investigate out-of-laboratory perception in everyday
tasks (similar to the first experiment in Chapter 2). Such experiments could involve
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measuring the orientation of the head and body using inertial measurement units
(IMUs), while the participant engages in an everyday activity and continuously
indicates their perceived direction of verticality, e.g. by aligning a rod to which an
IMU is attached, with their perceived direction of verticality. This continuous data
set could then be used to verify whether sequential Bayesian inference models
generalize to unconstrained everyday behavior.

5.4 Conclusion

In this thesis, | investigated different types of prior knowledge that may influence
spatial orientation and self-motion perception. Prior knowledge obtained through
prolonged experience, i.e., the natural statistics of head orientation, differs from
the Gaussian head-in-space prior that can successfully explain biases in verticality
perception (Clemens et al., 2011). Besides such prior knowledge acquired over a
long time span, short-term prior knowledge of the experimental stimulus
distribution also affects perception. Self-motion perception during vestibular path
integration experiments generally tends toward the mean of the experimental
stimulus distribution and toward the stimulus presented on the immediately
preceding trial. These findings give insight into how previous experiences shape
our perception and which computations may underlie such perceptual processes.
Future work could further investigate how the interplay between relatively stable
natural statistics and short-term sensory statistics shapes spatial orientation and
self-motion perception.
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Veel aspecten van onze waarneming en ons gedrag worden beinvloed door
voorkennis. We zijn ons meestal niet bewust van deze invloed, maar zo nu en dan
merk je de effecten van voorkennis, bijvoorbeeld wanneer je een mok optilt
waarvan je dacht dat er nog koffie in zat maar de mok bijna leeg blijkt te zijn.
Voorkennis heeft ook invloed op onze ruimtelijke waarneming. Wanneer je
bijvoorbeeld naar een nieuwe bestemming wandelt, ervaar je de terugweg vaak
anders dan de heenweg, onder andere doordat we op de terugweg voorkennis
hebben over de af te leggen afstand. In dit proefschrift heb ik onderzoek gedaan
naar hoe voorkennis onze vestibulaire waarneming van ruimtelijke oriéntatie
(Hoofdstuk 2) en zelfbeweging (Hoofdstukken 3 en 4) beinvloedt.

Dit onderzoek bestond uit het meten van proefpersonen in gedragsexperimenten
en het modelleren van de verzamelde data middels wiskundige modellen. De
modellen in dit proefschrift vallen onder het Bayesiaanse raamwerk, waarin
sensorische informatie (de likelihood) en voorkennis (de prior) over dezelfde
stimulus (bijvoorbeeld een afstand) worden gecombineerd tot een statistisch
optimale schatting (de posterior). Hoe zekerder het brein is over een signaal, hoe
meer dit signaal wordt meegewogen in de uiteindelijke schatting, om zo tot een
preciezere schatting te komen dan wanneer het alleen de individuele signalen had
gebruikt. Eerdere studies hebben laten zien dat systematische afwijkingen in het
gedrag van proefpersonen verklaard kunnen worden door het sturende effect van
voorkennis op waarneming.

In Hoofdstuk 2 deed ik onderzoek naar de eerder veronderstelde aanname dat
voorkennis over de meest waarschijnlijke hoofdoriéntatie in alledaags gedrag, de
waarneming van ruimtelijke oriéntatie beinvloedt. Eerder psychofysisch onderzoek
heeft aangetoond dat wanneer een proefpersoon zijwaarts is gekanteld in de
ruimte, de waarneming van verticaliteit verschuift in de richting van de kanteling,
alsof hoofdoriéntatie wordt onderschat. Deze onderschatting kon goed worden
verklaard door een Bayesiaans model dat uitgaat van een Gaussische prior,
gecentreerd op de rechtopstaande hoofdpositie (Clemens et al., 2011). Deze
voorkennis  weerspiegelt  waarschijnlijk  de verdeling van  natuurlijke
hoofdoriéntaties in het dagelijks leven. Ik liet zien dat hoofdoriéntaties tijdens
alledaags gedrag inderdaad gecentreerd zijn op de rechtopstaande hoofdpositie,
maar dat de verdeling langere staarten heeft dan verwacht volgens de Gaussische
aanname. Het opnemen van de gemeten hoofdoriéntatie-verdeling als prior in het
Bayesiaanse model gaf modelvoorspellingen die niet de eerder gemeten
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psychofysische data konden verklaren. Dit suggereert dat deze prior intern niet
wordt gerepresenteerd als de empirisch gemeten verdeling van hoofdoriéntaties.

In Hoofdstuk 3 onderzocht ik hoe de waarneming van zelfbeweging wordt
beinvloed door de verdeling en presentatievolgorde van stimulusafstanden tijdens
een experiment. Proefpersonen voerden een afstandsreproductietaak uit in een
bewegende stoelopstelling. Gedurende iedere trial werd de proefpersoon eerst
passief bewogen over een stimulusafstand waarna de proefpersoon de
waargenomen afstand actief reproduceerde door de stoel terug te sturen naar de
startlocatie. |k toonde aan dat er effecten zijn van de eerder ervaren
stimulusafstanden op het reproductiegedrag: de gereproduceerde afstanden
neigden naar het gemiddelde van de experimentele stimulusverdeling (een centrale
tendens) en naar de stimulus in de direct voorafgaande trial (een seriéle
afhankelijkheid). Zowel een (static) Bayesiaans model dat aanneemt dat
stimulusafstanden worden getrokken uit een vaste stimulusverdeling, als een
(two-state) Bayesiaans model dat aanneemt dat het gemiddelde van deze verdeling
over trials kan variéren, konden de centrale-tendenseffecten in de gereproduceerde
afstanden  goed  verklaren, maar in mindere mate de seriéle-
afhankelijkheidseffecten. Ik liet ook zien dat reproductiegedrag wordt beinvloed
door stimuluscontext en dat dit effect kan worden gemodelleerd door het two-state
model met verschillende blok-afhankelijke globale onderschattingen.

In Hoofdstuk 4 deed ik onderzoek naar hoe de waarneming van zelfbeweging
wordt beinvloed door stimulusautocorrelatie. Een nieuwe groep proefpersonen
voerde de afstandsreproductietaak uit, ditmaal in twee autocorrelatiecondities:
stimulusafstanden  werden  willekeurig  gepresenteerd in de  geen-
autocorrelatieconditie, en in een random-walk- (“dronkemanswandeling”) volgorde
in de hoge-autocorrelatieconditie. Middels simulaties liet ik zien dat wanneer de
stimulusautocorrelatie  hoog is,  centrale-tendenseffecten  en  seriéle-
afhankelijkheidseffecten covariéren. Om deze effecten in beide condities correct te
kunnen schatten, representeerde ik de veronderstelde causale effecten tussen de
stimulusafstanden en reproductiefouten in een causaal diagram en paste ik het
d-separatieprincipe toe om te bepalen welke variabelen als covariaten moeten
worden meegenomen in een meervoudig lineair regressiemodel. Op basis van dit
model concludeerde ik dat de centrale tendens en seriéle afhankelijkheid niet
verschilden tussen de twee autocorrelatiecondities en dat de gevonden effecten
overeenkwamen met die uit Hoofdstuk 3. Dit suggereert dat centrale tendens en
seriéle afhankelijkheid niet ontstaan door het experimentele randomisatieprotocol
maar het gevolg zijn van neurocognitieve processen.
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Ik concludeer dat vestibulaire waarneming wordt beinvloed door voorkennis over
taakrelevante stimulusgeschiedenis, opgebouwd over meerdere tijdschalen.
Toekomstige studies zouden verder kunnen onderzoeken hoe het samenspel tussen
relatief stabiele voorkennis over natuurlijke stimuli en kortetermijninformatie over
recent ervaren stimuli de waarneming van ruimtelijke oriéntatie en

zelfbeweging beinvloedt.
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Research data management

This research followed the applicable laws and ethical guidelines. Research data
management was conducted according to the FAIR principles. The paragraphs
below specify in detail how this was achieved.

Ethics

This thesis is based on the results of human studies, which were conducted in
accordance with the principles of the Declaration of Helsinki. The Ethical
Committee of the faculty of Social Sciences (ECSS) has given a positive advice to
conduct these studies to the Dean of the faculty, who formally approved the
conduct of these studies (ECSW2017-0805-504, ECSW-2022-082). Data collection was
performed at the Donders Centre for Cognition. Informed consent was obtained on
paper following the Centre procedure. The forms are archived in the central archive
of the Centre for 10 years after the termination of the studies. This research was
funded by an internal grant from the Donders Centre for Cognition.

Findable and accessible

The table below details where the data and research documentation for each
chapter can be found on the Radboud Data Repository. All data archived as a Data
Sharing Collection (DSC) remain available for at least 10 years after termination of
the studies.

Chapter DAC RDC DSC DSC License

2 DAC_2020.00113_740 RDC_2020.00113_885 DSC_2020.00113_493 RU-DI-NH-1.0

3 DAC_2022.00151_785 RDC_2022.00151_271 DSC_2022.00151_092 RU-HD-1.1
DSC_2022.00151_318 GPL-3.0

4 DAC_2024.00135_783 RDC_2024.00135_696 DSC_2024.00135_205

DSC_2024.00135_842

DAC = Data Acquisition Collection, RDC = Research Documentation Collection, DSC = Data
Sharing Collection
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The manuscript of Chapter 4 is in revision. The data and scripts have been shared
with the reviewers in the DSCs and will be made publicly available once the article
has been published. DSC_2024.00135_205 and DSC_2024.00135_842 will then be
shared under the RU-HD-2.0 and GPL-3.0 licenses, respectively.

Interoperable and reusable

The raw data are stored in the Data Acquisition Collection (DAC) in their original
form. For the Research Documentation Collection (RDC) and DSC, long-lived file
formats have been used, ensuring that data remains usable in the future. We
provide a description of the experimental setup, raw data (DAC and DSC), and the
analysis scripts (RDC and DSC) to make sure that the results are reproducible.

Privacy

The privacy of the participants in this thesis has been warranted using random
individual subject codes. A pseudonymization key linked this random code with the
personal data. This pseudonymization key was stored on a network drive that was
only accessible to members of the project who needed access to it because of their
role within the project. The pseudonymization key was stored separately from the
research data. The pseudonymization keys were destroyed within one month after
finalization of these projects.
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