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Chapter 1
General introduction

Imagine   you  have   just   relocated  and  you  wake  up  during   the  night   in   your  new
bedroom. You decide to  get  a  glass  of  water   from the kitchen.  To do so,  you first
have to navigate to reach the door of your bedroom in complete darkness. In your
mind, you have a rough idea about the distance from your bed to the door, but you
are not very certain about this  estimate.  As you carefully  start  walking,  the motor
system   generates  movement   which   is   sensed   by  multiple   sensory   systems.   For
example, the otoliths in your inner ear relay information about your linear motion.
Furthermore, you are using your hands to feel around, gathering more information
about  where   you   are   and  how   close   you   are   to   the  door.   Suddenly,   your   hands
touch the bedroom door, revealing it to be much closer than anticipated based on
the layout of your old bedroom. The memory of your old room has interfered with
estimating   the   distance   to   the   new   door.   This   example   illustrates   the   central
question  of   this   thesis:   how  does  our  memory  of  past   experiences   influence  our
spatial perception? 

Spatial perception refers to the ability to perceive our own orientation and position
in space as well as the orientation and position of objects around us, which enables
us   to   successfully   interpret   and   navigate   our   surroundings.   In   this   thesis,   I
investigate   how   spatial   perception,   specifically   the   perception  of   our   orientation
(Chapter 2) and self-motion (Chapters 3 and 4) in space, is affected by the memory
of past experiences. In the remainder of this chapter, I  first discuss the functioning
of   the   sensory   systems   involved   in   spatial   perception.   Second,   I   describe   how
different   types  of   sensory   information  might  be   integrated  with  memorized  prior
knowledge to form a percept. Finally, spatial perception experiments are described,
as  well   as   systematic   trial-to-trial   errors   in   the  behavior   of   participants   that   are
often observed in these experiments.



1.1 Sensory signals in spatial perception

We   experience   the   world   through   our   sensors.   Each   sensory   system   contains
specialized   receptors   that   convert   properties   of   the   environment   into   neural
activity.  Sensory  information in the form of  action potentials  then travels  through
afferent neurons in peripheral nerves to the central nervous system. The combined
firing   pattern   of   groups   of   sensory   neurons   encodes   different   features   of   the
sensory input, such as stimulus intensity or duration. To determine our orientation
and position  in  space,   the  brain  appears  to  utilize  and combine  information  from
multiple   sensory   systems   (Angelaki   &   Cullen,   2008;   Clemens   et   al.,   2011).   The
sensory signals involved in spatial perception are primarily provided by the visual,
vestibular, somatosensory and motor systems.

The visual  system plays  an   important   role   in  spatial  perception as   it  allows us   to
perceive   different   features   of   objects   in   the   environment.   This   includes   the
orientation   of   static   objects,   such   as   buildings   or   trees,   which   can   provide
information   about   the   direction   of   gravity   and   help   us   form   an   internal   self-
orientation  estimate   (Li  &  Matin,  2005).  Static  monocular  and binocular  cues  also
transmit   information   about   where   objects   are   positioned   in   space   relative   to
ourselves (Brenner & Smeets,  2018).  When we move through the environment,  the
apparent  motion  of  objects  across  our   retinae,   referred   to  as  optic   flow   (Gibson,
1950), generates dynamic information about our orientation and position in space.
In  darkness  or   in   the  case  of  an   impaired  visual   system,   these  visual   signals  are
completely  absent  or   less  available,   forcing us  to  rely  on other  senses  to   form an
orientation or  position estimate.   In  this  thesis,   I   investigate how humans perceive
their orientation or self-motion when visual signals are unavailable.

1.1.1 Vestibular receptors
Together   with   the   auditory   cochlea,   the   peripheral   vestibular   system   is   located
inside the labyrinth of the inner ear. This labyrinth lies within the head’s temporal
bone   and   contains   ducts   (the   semicircular   canals)   and   chambers   (the   ampullae,
utricle and saccule) filled with endolymph (see Figure 1.1A).  

Semicircular canals
The   three   semicircular   canals   measure   angular   velocity   of   the   head   in   space
brought   about   by   angular   movements   (i.e.,   rotations).   The   canals   are   roughly
arranged  in   three  orthogonal  planes:   the   lateral  canal   is  positioned   in   the  head’s
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yaw axis,   the  posterior  canal   in   the  head’s   roll  axis  and   the  anterior  canal   in   the
pitch   axis,   tilted   approximately   30°   upward   from   the   head’s   horizontal   plane
(Blanks   et   al.,   1975).   At   the  base  of   each   canal   lies   a   chamber   (ampulla),  which
contains   hair   cells.   The   hair   cell   endings   (cilia)   are   embedded   in   a   gelatinous
membrane (cupula),  through which the endolymph cannot pass.  When the head is
rotated relative to the body, or in the case of a full-body rotation, the canal rotates
but   the   endolymph   lags   behind   due   to   the   fluid’s   inertia.   This   lag   causes   the
endolymph   to  press  against   the  elastic   cupula  within   the  ampulla,  which   in   turn
bends the embedded cilia. The flow of the endolymph is proportional to the head’s
angular acceleration,  whereas the cupula deflection is  roughly proportional  to the
head’s   angular   velocity   (Obrist,   2011).   The   afferent   neurons  have   a   spontaneous
firing rate, which increases or decreases depending on how the cilia are deflected.
The   cilia   consist   of   one   long   kinocilium   and   shorter   stereocilia.   Bending   the
stereocilia   towards   the   kinocilium  opens  mechanically-gated   ion   channels   at   the
tips of the stereocilia,  allowing the influx of potassium, which depolarizes the hair
cell’s  membrane.  This  depolarization opens voltage-gated calcium channels at  the
base   of   the   hair   cell.   The   subsequent   influx   of   calcium   results   in   the   increased
release of neurotransmitters that bind to receptors of the afferent neurons, causing
increased neural firing. Bending the stereocilia away from the kinocilium causes the
mechanically-gated channels to close, which hyperpolarizes the hair cell,  resulting
in a decrease in neurotransmitter release and afferent firing. The canals in one ear
form  pairs  with   the   canals   in   the  other   ear,  with   their   cilia   oriented   in  opposite
directions. The same head rotation therefore causes the corresponding hair cells to
produce excitatory signals   in  one ear  and  inhibitory  signals   in  the other  ear,   from
which   the  direction  of   the  head  movement   can  be  deduced   (Purves  et  al.,   2001;
Kolb & Whishaw, 2014; Niehof, 2020; Kirby et al., 2024).  

Otolith organs
In   addition   to   the   semicircular   canals,   the   vestibular   system  contains   the  utricle
and the saccule, referred to as the otolith organs. The otolith organs measure both
static   head   orientation   (i.e.,   head   tilt   relative   to   gravity)   and   dynamic   head
displacements   (i.e.,   linear  acceleration  of   the  head).  The  utricle   is  oriented  along
the head’s  horizontal  plane and the  saccule  along the  head’s  vertical  plane.  Both
otolith  organs consist  of  macula  tissue made up from hair  cells  and support  cells
(see   Figure   1.1A,   inset).   The   cilia   of   the   hair   cells   extend   into   the   otolithic
membrane, a gelatinous layer on top of the macula. The top surface of the otolithic
membrane is embedded with calcium carbonate crystals (otoconia), adding weight
to   the  membrane.  When   the   head   is   roll-tilted   rightward   relative   to   gravity,   the
otolithic  membrane   and   therefore   the   cilia   are   displaced   relative   to   the  macula
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with gravitational acceleration  -a  (see Figure 1.1B). This results in depolarization of
some  hair   cells   and  hyperpolarization  of   others,   encoding   the  orientation  of   the
head.   However,  when   the   head   is   upright   and   laterally   translated   leftward  with
linear   acceleration  a,   the   cilia   are   similarly   displaced   due   to   the   membrane’s
inertia,   thus   resulting   in   the   same   neural   signal   (see   Figure   1.1C;   Purves   et   al.,
2001;   Kolb   &   Whishaw,   2014;   Niehof,   2020;   Kirby   et   al.,   2024).   In   real-world
conditions,  both forces act upon the head. To disambiguate between these forces,
it is thought that the brain relies on signals from the semicircular canals and visual
system   (Laurens   &   Angelaki,   2011).   In   the   more   controlled   spatial   perception
experiments  presented   in   this   thesis,  participants  are  either   roll-tilted  or   laterally
translated  with   the  head   fixed  upright,   such   that   the  otoliths  either  encode  head
tilt or linear acceleration. 

Vestibular   afferents   can   be   categorized   as   regular   or   irregular   in   terms   of   their
resting discharge variability (Cullen, 2019). In macaque monkeys, it has been found
that   regular   otolith   afferents   transmit   more   information   about   static   head   tilt
relative   to   gravity   than   irregular   otolith   afferents,   whereas   irregular   afferents
provide more information about translational motion than regular afferents (Jamali
et al., 2019).  

Figure  1.1.  A:  Anatomy of   the  vestibular  system,   illustrating   the  semicircular  canals  and   the   two
otolith organs, the utricle and the saccule. Inset: A simplified schematic of the utricle when the head
is upright. The macula tissue consists of hair cells surrounded by support cells. The cilia of the hair
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cells are encapsulated in the otolithic membrane, a gelatinous layer on top of the macula. Embedded
in the top surface of this membrane are calcium carbonate crystals, the otoconia.  B: When the head
is  roll-tilted rightward relative to gravity,   the otolithic  membrane  is  shifted relative to the macula
with gravitational acceleration -a  in the axis of the macula, displacing the cilia of the hair cells.  C:
The cilia are displaced in the same manner, and thus the same neural signal is generated, when the
head   is  upright  and   laterally   translated   leftward  with   linear  acceleration  a,   causing   the  otolithic
membrane to move with inertial acceleration -a. Figure adapted from images published under the CC
BY 4.0 license (Kirby et al., 2024).

1.1.2 Somatosensory receptors
Nerve  endings   in   the  muscles,   tendons  and   joints,   referred   to  as  proprioceptors,
provide information about the orientation and displacement of the body in space.
Movement   stretches   the   muscle   spindles   and   Golgi   tendon   organs,   which   are
sensory   receptors   that   detect   muscle   stretch   and   tension,   respectively.
Mechanoreceptors   in   musculoskeletal   joints   are   thought   to   function   as   ‘limit
detectors’,   providing   information   about   extreme   joint   positions   to   prevent   injury
(Tuthill  & Azim, 2018).  The somatosensory system also contains receptors for  pain
(nociceptors)   and   temperature   (thermoreceptors),   as   well   as   mechanoreceptors
(corpuscles) that measure pressure,  touch, and vibration (Purves et al.,  2001; Kolb
& Whishaw,  2014).  These   receptors  are   found  in   the  skin  as  well  as   in   the  body’s
interior.   Studies   on   postural   perception   have   suggested   that   the   trunk   contains
somatic ‘graviceptors’, pointing to pressure receptors around the kidneys and in the
cardiovascular system. When the body is tilted, the kidney slightly shifts within its
surrounding capsule and blood shifts within the cardiovascular system, stimulating
pressure receptors which in turn signal information about the body’s orientation in
space (Mittelstaedt, 1997, 1998; Vaitl et al., 1997, 2002).

1.1.3 Sensorineural processing

Brainstem and cerebellum
The   signals   from   the   semicircular   canals   and   otolith   organs   are   transmitted   by
afferent neurons in the vestibulocochlear nerve (cranial nerve VIII) to the vestibular
nuclei in the brainstem (Khan & Chang, 2013). Proprioceptive information travels to
the dorsal column nuclei in the brainstem, via the spinal cord (Delhaye et al., 2018).
From   the   brainstem,   both   types   of   sensory   information   are   relayed   via   the
thalamus to the cortex as well as to the cerebellum. 

Within   the   cerebellum,   the   fastigial   nucleus   (rFN)   is   suggested   to  be   involved   in
reference   frame   transformations   (Cullen,   2019,   2023).   Because   of   the   vestibular
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labyrinth’s location, which is fixed to the head, vestibular information is encoded in
a   head-centered   reference   frame.   However,   to   keep   our   balance   (e.g.,   through
vestibulo-spinal   reflexes),   this   information   has   to   be   transformed   into   a   body-
centered reference  frame,  which  involves  the   integration of  vestibular  signals  and
neck   proprioceptive   signals.   Experiments   in   rhesus   monkeys   indicate   that   this
integration takes place in the rFN (Brooks & Cullen, 2009).  Similarly,  the vestibular
cerebellum  in  monkeys   is   suggested   to  be   involved   in   the   transformation   from a
head-centered into a head-in-space reference frame by integrating otolith and canal
information (Laurens et al., 2013).  

There is  also evidence that the rFN plays a role in distinguishing between sensory
signals  that  are the result  of  our own movements (reafferent signals)  and sensory
signals that are generated by externally imposed passive motion (exafferent signals;
Brooks  et  al.,   2015).  The  cerebellum  is  believed   to  encode  a   forward  model   that
computes   the   expected   reafferent   signal   brought   about   by   our  motor   command
(von Holst & Mittelstaedt, 1950; Mittelstaedt, 1997). If the expected reafferent signal
matches the actual sensory signal (i.e.,   if  there is no sensory prediction error),  the
sensory   signal   is   considered   a   result   of   our   own  movement   and   the   cerebellum
sends  a   reafference   cancellation   signal   to   the   vestibular  nuclei   in   the  brainstem,
suppressing   the   sensory   signal   (Brooks   et   al.,   2015;   Cullen,   2019,   2023).   In   the
situation  where   there  is  a   sensory  prediction  error,   the  sensory  signal  must  have
been   (partially)   generated  by   external  motion   and   the   neurons   in   the   vestibular
nuclei are not suppressed. 

Thalamus and cortex
Neural  signals   from the  vestibular,  dorsal  column,  and  deep  cerebellar  nuclei  are
relayed   to   the   ventral   posterior   lateral   nucleus   (VPL)   in   the   thalamus   (Lopez   &
Blanke, 2011; Cullen, 2019). The thalamus in turn projects to cortical areas such as
the   temporo-parietal   junction   (TPJ),   the   anterior   parietal   cortex   (APC),   and   the
posterior   parietal   cortex   (PPC)   (Hitier   et   al.,   2014;   Ventre-Dominey,   2014;
Orban et al.,   2021),  which   are   thought   to   be   homologues   of   the   parieto-insular
vestibular cortex (PIVC), area 2v, area 3a, and the ventral intraparietal area (VIP) in
monkeys   (Lopez  &  Blanke,   2011;   Cullen,   2019;   see   Figure   1.2).   Both   human   and
animal  studies  suggest   that   these  cortical  areas  are   involved  in   the  processing  of
vestibular, visual, and somatosensory signals, and multisensory integration of these
signals (see Section 1.2).  

Chapter 114



Figure 1.2. (Part of the) cortical projections of sensory afferents relevant for spatial perception. The
ventral  posterior   lateral  nucleus   (VPL)   in   the   thalamus  projects   to   the   temporo-parietal   junction
(TPJ), the anterior parietal cortex (APC), and the posterior parietal cortex (PPC). These cortical areas
may be homologous to multisensory areas found in monkeys, shown in italics (PIVC: parieto-insular
vestibular cortex, VIP: ventral intraparietal area). Figure adapted from image published under the CC
BY-SA 3.0 license (NEUROtiker, 2007).

1.2 Integration of sensory and prior information

As   discussed   in   the   previous   section,   multiple   sensory   systems   can   provide
information about   the  same stimulus.  For  example,  when crossing  the  street,  our
visual   and   vestibular   systems   generate   self-motion   cues,   which   in   turn   provide
information   about   the   remaining   distance   to   the   opposite   sidewalk.   The   brain
might use the sensory signals in isolation to estimate the distance. However,  each
individual   sensory   signal   is   a   noisy   representation   of   the   true   distance.   A
statistically   optimal   approach  would   be   to  weigh   the   sensory   signals   relative   to
their  precision  and   to  also   incorporate  any  prior   information   that  we  have  about
the distance (Landy et al., 1995; Jacobs, 1999; Ernst & Banks, 2002; Clemens, 2015).
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This   idea   is   referred   to   as   Bayesian   inference   and   will   be   discussed   in   more
detail below. 

1.2.1 Accuracy and precision
Before   introducing  Bayesian   inference  models,   it   is  useful   to  discuss   two  distinct
concepts that can be used to describe a distribution of data points: accuracy (with
bias as its opposite) and precision (with variability as its opposite). These concepts
are   illustrated   in   Figure   1.3,   which   shows   different   distributions   of   shots   on
a target.  

Figure 1.3.  Targets with example shots (black points), illustrating different aspects of a distribution
of data points.  A: Shots that are close to each other, i.e., relatively precise/with a low variability, but
systematically   biased   to   the  upper   left.  B:   Shots   that   are   on   average   close   to   the  bullseye,   i.e.,
relatively accurate/unbiased, with a similar precision as in A. C: Shots that are more variable than in
A,  with a similarly sized bias toward the upper right.  D:  Shots with a similar accuracy, but a higher
variability than in B. Figure adapted from Sutter (2023).
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Accuracy is high when shots are on average close to the bullseye, i.e., when there is
no systematic deviation (bias).   In Figure 1.3,  this   is  true for  panels  B  and  D,  while
panels  A  and  C  show  biases  with   similar  magnitudes   in   two  different  directions.
Precision  is  high  when shots  have  only  a  small  spread,  as   is   the  case   in  panels  A
and B; panels C and D show more variability.

1.2.2 Bayesian inference
Imagine observing an unknown stimulus,     (e.g., the head tilted at an unknown roll
angle),  resulting in a sensory measurement of this quantity,   ,  provided by one of
our  sensory  systems.  We typically  assume that   the  measurements  of   this  sensory
system are on average unbiased but contaminated by independent Gaussian noise,

.  The probability  distribution of  the measurement     given stimulus value
 is then: 

Equation 1.1  is  also referred to as the measurement distribution.  From the brain’s
perspective,   the  sensory  measurement   is  known,  but   the   true  stimulus  has   to  be
inferred.   In other words,  we want to compute the likelihood of  the stimulus given
the   measurement,   ,   for   all   possible   stimuli   .   We   assume   that   the
measurement   distribution   is   used   as   the   likelihood   function,   but   instead   of
interpreting   it   as   a   probability   distribution   across   measurements,   it   is   now
interpreted as a function of the stimulus (Girshick et al., 2011). Generally, we might
receive   measurements   from     sensory   systems,   ,   possibly   with  
different variances,   . On the condition that the sensory measurements
are independent, we can compute the likelihood of each stimulus   as:

Using   Bayes’   rule   (Bayes,   1763),   it   is   now   possible   to   compute   the   probability
distribution of the stimulus given the measurements:

In   this  equation,     is   the  prior  distribution  of   the   stimulus.  This  distribution
expresses   for   every   possible   head   roll-tilt   angle   how   probable   it   is   for   that
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orientation   to   occur,   before   observing   any   sensory   measurements.   The
denominator,   independent  of  stimulus   ,   is   referred to  as  the marginal   likelihood
and normalizes the integration of the prior and likelihood, resulting in the posterior
distribution,   . If the prior distribution and all sensory likelihoods
are Gaussian, then the posterior distribution will also be Gaussian. In this situation,
the prior  and  likelihoods can be regarded as  similar  signals,  each transmitting an
estimate of   the  stimulus,  which are  then combined  into  the posterior  distribution
(Ernst & Banks, 2002; Körding & Wolpert, 2004; Clemens, 2015).  

How   should   we   select   a   single   estimate   of   the   unknown   stimulus     from   the
posterior  distribution?  We  generally  select   the  stimulus  with   the   largest  posterior
probability, referred to as the maximum a posteriori (MAP) estimate:

It  can be shown that the solution for     is a weighted sum of the peak of the prior
and the peaks of the sensory likelihoods (Landy et al.,  1995; Jacobs, 1999; Ernst &
Banks, 2002; Bays & Wolpert, 2007; Clemens et al., 2011):

with each weight equal to the signal’s normalized precision, defined as the inverse
of its variance ( ):

From this follows that signals with a higher precision have a larger influence on the
posterior estimate.  Since the weights add up to 1,  each weight can be interpreted
as the relative contribution of its corresponding signal to the overall estimate.

The  variance  of   the  posterior  distribution  can be   interpreted as  a  measure  of   the
brain’s uncertainty in the posterior estimate:
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From Equation 1.8 follows that the posterior provides a more precise estimate than
we   would   obtain   from   the   individual   signals.   The   same   solution   arises   when
minimizing the posterior variance (Ghahramani et  al.,  1997;  Cooke,  2019).   In other
words,   the   estimate   is   statistically   optimal   in   terms   of   acquiring   the  minimum
possible   variance   given   the   individual   signals   (Ernst   &   Banks,   2002).   This   is
illustrated   in   Figure   1.4,   which   shows   the   posterior   distribution   for   different
variances of  the prior  and likelihood.   In  all  panels,  the posterior  variance  is   lower
than   the   variances   of   the   prior   and   likelihood.   However,   optimal   integration   in
terms   of   a   lower-variance   posterior   also   results   in   a   bias   toward   the   prior
distribution   (see   Figure   1.4A).   This   is   sometimes   referred   to   as   an   accuracy-
precision   trade-off :   an   upright   head-orientation   prior   will   reduce   perceptual
uncertainty  at   the  expense  of   a  bias   toward   the  upright  head  orientation,  which
becomes   more   pronounced   at   larger   tilt   angles   (de   Vrijer   et   al.,   2009).   In
Section 1.3.1, this bias is discussed in more detail.  

Figure  1.4.  Bayesian   integration  of  prior  and   sensory   signals   representing   information  about  an
unknown head roll-tilt angle. In all panels, the prior distribution (blue) is centered on 0°, which can
be interpreted as the most probable head orientation before observing any sensory measurements.
The sensory  likelihood (red)   is  centered on 90°.  The posterior  distribution (yellow)  is  the result  of
integrating   the  prior  and   likelihood,  and   the  peak  of   this  distribution  depends  on   the   individual
signals’   respective   precisions.  A:   The   posterior   is   shifted   towards   the  more   precise,   i.e.,   lower-
variance,   prior.  B:   The  prior   and   likelihood  have   equal   variances,   and   the  posterior   peak   is   the
average of the individual peaks. C: The posterior is shifted towards the more precise likelihood. In all
panels, the posterior distribution has a lower variance than the individual signals.

1

Note   that   on   average   the   posterior  mean,  which   coincides  with   the   posterior  mode   (Equation   1.4)   and
median when the distributions are Gaussian,  is  an optimal estimate as it  minimizes the expected squared
error.   In   other   words,   where   on   a   single   trial   (or   in   this   case   in   a   specific   part   of   the   tilt   range)   the
estimate may be off,   the estimate  is  still   the overall  best  possible  estimate given the sensory  uncertainty
and the prior.

1.
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If all stimuli are equally likely to occur, a flat prior can be used in the integration. In
this   case,   the  MAP   estimate   in   Equation   1.4   reduces   to   the  maximum   likelihood
estimate (MLE):

Parameter estimation
To   compute   the   posterior   distribution,   we   need   to   know   the   variances   of   the
individual   signals,   .   As   our   best   guess   for   the   value   of   these
model   parameters,   we   generally   use   the  maximum   likelihood   estimate   of   these
parameters given the data:

where     and     are   the   data   from    different
trials.   For   some   problems,   Equation   1.10   has   a   closed-form   solution.   However,
generally, no closed-form solution exists, leaving us to numerically approximate the
solution.   Instead   of   maximizing   the   likelihood,   most   optimization   algorithms
equivalently minimize the negative log-likelihood for numerical stability:

To find the numerical solution, we first define the likelihood function. This function
compares the model prediction, generated with specific parameter values,   , to the
data and outputs a value indicating how likely it is that the data was generated by
this set of parameter values. The negative log-likelihood function is then minimized
by an optimization algorithm that evaluates the function for   .   Initially,  the values
for    might be a random guess. By comparing the output of the likelihood function
for different     values, the optimization algorithm further refines the estimate for  
until   it   converges   onto   a   ‘good   enough’   guess,   defined   by   a   criterion   that   is
specified before running the optimization algorithm (Taboga, 2021).  

The likelihood value of one converged model,   , can be compared to the likelihood
of   a   different  model   version.  However,   if   the  models   have   different   numbers   of
model   parameters,   ,   the   comparison   should   take   this   difference   into
account.  Two measures   that  are  often  used   for  model  comparison  are   the  Akaike
information   criterion   (AIC;   Akaike,   1974)   and   the   Bayesian   information   criterion
(BIC; Schwarz, 1978):
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where     is the number of explained data points. To increase the model likelihood,
one could add more parameters to the model,  but this could lead to a model that
overfits   the  data  and   therefore  does  not  generalize  well   to  unseen  data.  The  AIC
and BIC scores include a penalty term for the number of model parameters, where
the BIC score penalizes model complexity more than the AIC score (Bishop, 2006).
When comparing the AIC or BIC scores of multiple models, a lower score indicates a
more preferred model.

1.2.3 Sequential Bayesian inference
In Section 1.2.2, I described a general Bayesian inference model that computes the
posterior  distribution of  an unknown stimulus on a  given trial  (or  more generally,
time   point)   based   on   that   trial’s   sensory  measurement.   Assuming   independent
trials,   on   the   next   trial   a   new   posterior   distribution   is   computed   based   on   the
measurement   of   that   trial,   independent   of   the   estimate   on   the   previous   trial.
Instead,   assuming   dependence   between   consecutive   trials,   sequential   Bayesian
inference  models   iteratively   update   over   time   by   computing   the   posterior   on   a
given trial based on that trial’s measurement and the previous trial’s estimate. 

In this context, the unknown stimulus on trial   ,   , that we try to estimate, can be
regarded   as   the   model’s   unobserved   state   that   might   change   over   time.   The
sensory   measurement,   ,   is   an   observation   of   this   hidden   state.   How   the
measurement relates to the state and how the state evolves over time is  captured
by   the  measurement  and  state   transition  equations,   respectively.  As  an  example,
we will define these equations as follows: 

where     and     refer to the measurement and process noise, respectively. Here, the
sensory measurement is assumed to be a noisy readout of the state, and the state
is assumed to depend only on the previous state, with random variation introduced
by process noise. 

As  before,  we can compute the posterior  distribution of  the stimulus on trial     by
applying Bayes’ rule:

AIC = −2ln( ) + 2K ,L̂

BIC = −2ln( ) +K ln T ,L̂ ( )

(1.12)
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Contrary   to   the   static   Bayesian   inference   model   outlined   in   Section   1.2.2,   a
sequence  of   sensory  measurements  up   to  and   including   the  current   trial,   ,   is
now   available.   Here,     can   be   interpreted   as   the   likelihood   of   the
measurement,   which   is   a   Gaussian   distribution   defined   by   the   measurement
equation   (see   Equation   1.14).     can   be   seen   as   the   prior   for   the
current state, before observing measurement  , and is referred to as the predictive
distribution (Ho & Lee, 1964; Cooke, 2019).

If  we  assume the  measurement  and  state   transition  models   to  be   linear,  and   the
measurement  and process  noise  to  be  normally  distributed,  say     and

,   the   derivations   of   the   posterior   mean   and   variance   are
mathematically equivalent to the so-called Kalman filter equations (Kalman, 1960).
The Kalman filter model consists of two steps. The first step is the prediction step
in  which   the  predictive  distribution     is   computed.   In  our   example,

  is Gaussian with the following mean   and variance  :

Here,   the   prediction   of   the   state   for   the   current   trial,   ,   is   equal   to   the
posterior  state  estimate   from the  previous   trial,   ,  and   the  variance  of   the
predictive distribution,   ,   is equal to the posterior variance from the previous
trial,   , increased with process noise variance  .  

The   prediction   step   is   followed   by   the   update   step,   in   which   the   posterior
distribution   is   computed  by   refining   the  prediction  of   the   state,   ,  by   taking
into account the new measurement,   . The posterior distribution is again Gaussian
with mean   and variance  :
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In Equation 1.19,     is  referred to as the Kalman gain, which is essentially a ratio
between the process noise and measurement noise that determines how much the
prediction of the state is shifted towards the measurement (see Equation 1.20).  By
observing   a   new   measurement,   the   variance   of   the   predictive   distribution   is
reduced   (see  Equation   1.21).   The  posterior   state   estimate   and   variance,     and

, become   and   on the next trial.

In a behavioral experiment, during which stimuli are typically randomly presented,
the  participant  may   (implicitly)  assume   that   the   stimuli   come   from a  static  prior
distribution,   i.e.,   a   distribution   of   probable   stimuli   that   does   not   change   across
trials.  However,   in  more  naturalistic   scenarios,   stimuli   often  do  not   succeed  one
another   randomly.   For   example,  when   estimating   tomorrow’s   stock   value,   rather
than  assuming   that   the  values  are   randomly  sampled   from a   fixed  distribution,  a
more   useful,  iterative  assumption   would   be   that   tomorrow’s   value   is   equal   to
today’s   value  with   a   small,   random   variation.   A   third,   intermediate   assumption
would be to assume that the stimulus comes from a stimulus distribution of which
the  mean   can   change   across   time.  Whereas   the   static   Bayesian   inference  model
only  allows   the   incorporation  of   a   static  prior  distribution,   the   sequential  model
enables us to also test the iterative assumptions. To do so, the Kalman filter model
is extended to estimate two states, the stimulus     and the mean of the estimated
stimulus distribution  , referred to as the two-state model (Glasauer & Shi, 2022):

In   this   model,   variance  v  determines   the   width   of   the   estimated   stimulus
distribution   and   variance  q  determines   how  much   the  mean   of   this   distribution
changes   across   trials.   This   model   encompasses   the   static   and   iterative
assumptions. The  static  variant is obtained by fixing     at 0,  such that the mean of
the   stimulus   distribution   does   not   change   across   trials.   By   fixing     at   0,   the
estimated   stimulus   is   always   equal   to   the   estimated   stimulus  distribution  mean,
resulting   in   a   model   where   the   estimated   stimulus   distribution   is   iteratively
updated on each trial   (the  iterative  variant).   In  Chapter 3,   I  estimate the variance
parameters   ,     and/or     from data gathered  in  a  path  integration experiment,   in
order   to   evaluate  whether   different   assumptions   about   the   stimulus   distribution
can explain the observed biases in this experiment (see Section 1.3.2).
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1.3 Studying spatial perception

A variety of  experimental  paradigms have been developed to study human spatial
orientation  and  self-motion  perception.   In  Chapter  2,   I   study  whether,   instead  of
using   a   Gaussian-distributed   prior,   spatial   orientation   estimates   from   two
laboratory-based   psychophysical   tasks   can   be   better   explained   by   a   prior
distribution   that   matches   the   natural   statistics   of   head   orientations   measured
outside   the   laboratory.   In  Chapters  3  and 4,   I   study  how  estimates   of   travelled
distance in a laboratory-based path integration task are affected by the distribution
and   the   presentation   order   of   the   experimental   stimuli.   These   experimental
paradigms   as   well   as   typical   perceptual   biases   that   are   often   found   in   these
experiments are explained below in more detail.

1.3.1 Spatial orientation perception
In  Chapter 2,   I  reanalyze previously gathered data (Clemens et al.,  2011) from two
psychophysical   tasks   that  measure   how   humans   perceive   body   orientation   and
visual   vertical   orientation   in   space:   the   subjective  body   tilt   (SBT)   and   subjective
visual vertical (SVV) task, respectively (see Box 1). Clemens et al. (2011) found that
in   the  SBT task,  participants  accurately  estimated their  body  orientation   in  space
across the measured tilt range. On the contrary, at large tilt angles in the SVV task,
the   line   orientation   estimates  were   biased   away   from   vertical   toward   the   body
midline.  This  bias   is   referred   to  as   the  Aubert  effect   (Aubert,   1861).  The   findings
from   both   tasks   were   well   explained   by   a   Bayesian   inference   model   (see
Section 1.2.2).   This   model   provided   an   explanation   for   the   Aubert   effect   by
including  a  Gaussian  prior  distribution  of  head  orientation   that  was   centered  on
upright.   In other words,  the most probable head orientation before observing any
sensory  measurements   is   the  upright  orientation,   reflecting   the  observation   that
our head is usually in an upright position during everyday behavior and that large
head roll-tilts  are less common. The idea that orientation perception is   influenced
by the statistics  of  natural  stimuli  has  been substantiated by studies   in  the visual
domain. Examples of such visual scene statistics are light that usually comes from
above   (Adams   et   al.,   2004),   and   the   predominance   of   horizontal   and   vertical
orientations (Girshick et al., 2011).  
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Box 1. Psychophysical tasks

Psychophysical   tasks  measure   the  relationship  between a  physical  stimulus
(e.g.,  the orientation of the body or the orientation of a visual  line) and the
participant’s   perception   of   this   stimulus.   A   readout   of   this   relationship   is
obtained   by   systematically   varying   the   stimulus   value   around   a   reference
value.   On   each   trial,   the   participant   indicates   whether   the   stimulus
orientation   is   clockwise   (CW)   or   counterclockwise   (CCW)   relative   to   the
reference orientation. The responses are used to estimate the parameters of
a  psychometric   function.  A  psychometric   function   that   is  often  used   is   the
cumulative   Gaussian   function   including   a   lapse   parameter
(Clemens et al., 2011):

The mean of the curve    reflects the point of subjective equality (PSE) where
the   participant   perceives   the   stimulus   orientation   to   be   equal   to   the
reference orientation.  A  difference between     and the reference orientation
indicates a  systematic  perceptual  bias.  The variance of  the curve     can be
interpreted as a measure of perceptual uncertainty and is inversely related to
the   precision   (see   Section   1.2.1).   The   lapse   parameter     is   included   to
account for participant errors that are not related to the stimulus. To obtain
psychometric   measures   of   spatial   orientation   perception,   Clemens   et   al.
(2011)   roll-tilted   the   participant   using   a   vestibular   chair   (see   Figure   1.5A).
Participants  performed two psychophysical   tasks   in  complete  darkness:   the
subjective body tilt (SBT) task (see Figure 1.5B), which provides a measure of
perceived body orientation in space,  and the subjective visual  vertical  (SVV)
task   (see   Figure   1.5C),   which   provides   a   measure   of   perceived   earth-
vertical orientation.
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Figure 1.5.  A:  Vestibular chair  setup consisting of  a computer-controlled chair  that rotates
the participant   in  the roll  axis.  B:  SBT task.  On each trial,   the participant   is  roll-tilted at  a
given stimulus orientation and asked to indicate whether they perceive their orientation to
be CW or CCW relative to the reference orientation (dashed line).  C:  SVV task. On each trial,
the  participant   is   roll-tilted  at  a  given stimulus  orientation and asked to   indicate  whether
they perceive the visual line orientation to be CW or CCW relative to gravity. Panel B and C are
adapted from Alberts et al. (2015).

To   what   extent   does   the   assumed   Gaussian   prior   distribution   in   the   Bayesian
inference   model   of   Clemens   et   al.   (2011)   match   the   distribution   of   head
orientations  measured  outside   the   laboratory?  To  answer   this  question,   I  analyze
previously   gathered   (but   unpublished)  data   (Pomante,   2019)   from   five  out-of-lab
tasks (see Box 2).  The probability  density   function that  best  describes the natural
out-of-lab head orientations is subsequently incorporated as a prior distribution of
head   orientation   in   the   Clemens   et   al.   (2011)  model   to   evaluate   to  what   extent
natural head statistics influence orientation perception.
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Box 2. Out-of-lab tasks

To   measure   natural   motion   statistics,   we   can   make   use   of   inertial
measurement units (IMUs). Each IMU contains an accelerometer, a gyroscope,
and   a   magnetometer.   Using   a   Kalman   filter   model,   the   different   sensor
measurements   are   combined   to   provide   a   measurement   of   the   device’s
orientation   with   respect   to   a   fixed   reference   frame   (Xsens,   2018).   By
attaching   the   IMUs   to   body   segments,   we   can   obtain   a   readout   of   the
segment’s  orientation across  time.  Participants  wore 11  IMUs placed on the
upper body (see Figure 1.6A) and performed 5 out-of-lab tasks in and around
the  university:  walking,   running,   sitting,   standing,   and  going  up  and  down
the stairs.  Figure 1.6B shows example traces of  head orientations in the roll
axis for one of the participants in the out-of-lab experiment. Pooling the data
of   all   tasks   results   in   a   distribution   of   natural   head   orientations   (see
Figure 1.6C).   Using   maximum   likelihood   estimation,   I   identified   the
probability   density   function   (PDF)   that   best   describes   the   head
orientation data.

Figure  1.6.  A:   Placement   of   the   IMUs   on   the   upper   body.   Figure   adapted   from   image
published under the CC BY 4.0 license (Servier, 2016). B: Example 60-s traces of the measured
head roll-tilt data in the five tasks for one participant. C: The best-fitting Gaussian (solid line)
and t-location-scale (dashed line) PDFs plotted on top of all head roll-tilt data, pooled across
tasks, for the same participant as in panel B.
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1.3.2 Self-motion perception
When we move along a path  in space,  we continuously keep track of  our position
by integration of successive self-motion signals.  This process is referred to as path
integration   (Darwin,   1873;   Mittelstaedt   &   Mittelstaedt,   1980;   Etienne   &   Jeffery,
2004).  Path integration is often studied using distance reproduction tasks: on each
trial, the participant is presented with a stimulus distance which they subsequently
try   to   reproduce.  The   reproduction   task   can  be  virtual,  providing   the  participant
with   only   visual   signals   (Petzschner   &   Glasauer,   2011).   Reproducing   physical
distances,  e.g.,  by walking (Lappe & Frenz,  2009)  or  driving a vehicle (Israël  et  al.,
1997),   additionally   generates   vestibular,   somatosensory,   and   reafferent   sensory
signals. In  Chapters 3  and 4, I study how the distribution and presentation order of
experimental stimuli  affect vestibular self-motion perception using a physical  path
integration task (see Box 3).  
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Box 3. Path integration task

To   study   self-motion  perception,  we   test  participants   in   a  path   integration
task that makes use of a vestibular sled (see Figure 1.7).  The vestibular sled
setup consists of a chair on top of a linear motion platform that can produce
lateral   translations.  A   steering  wheel   is  mounted  on  a   table   in   front  of   the
chair.   The   sled   can   be   passively   moved   by   the   experimenter   or   actively
controlled   by   the   participant   through   rotation   of   the   steering  wheel.   The
angle  of   the   steering  wheel   relative   to   the  upright   steering  wheel  position
encodes the linear velocity of the sled. This means that the further CW/CCW
the   steering  wheel   is   rotated   from   its   neutral   position,   the   faster   the   sled
moves   to   the   right/left.   The   sled   can   be   stopped   by   rotating   the   steering
wheel   back   to   the   upright   neutral   position.   During   a   trial   of   the   path
integration task,  the sled first  passively moves the participant a pre-defined
stimulus   distance.   Subsequently,   the   participant   is   tasked   with   actively
reproducing this distance. By comparing the measured reproduced distances
to   the   stimulus   distances,   the   participant’s   reproduction   behavior   can
be quantified.

The   task   is   performed   in   complete   darkness   and   the   participant   wears
headphones that play white noise to mask the sound that is generated by the
sled.   The   head   is   fixated   upright   using   ear   cups   such   that   the   vestibular
signals   encode   lateral   head   movement.   During   the   passive   stimulus
movement,   the  participant   receives  no   reafferent   sensory   signals,   ensuring
that the sensory signals that are available during the stimulus movement are
limited   to   inertial   (vestibular   and   somatosensory)   signals.   Somatosensory
signals  (e.g.,  generated by the pressure of  the chair  against  the body)  seem
to play a minor role in self-motion perception compared to vestibular signals
(Walsh,  1961;  Harris  et  al.,  2002).  Given that  the stimulus movement mostly
activates the vestibular system, this task is therefore referred to in this thesis
as a vestibular path integration task. 
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Figure 1.7. The vestibular sled setup, consisting of a chair on top of a linear motion platform.
Image reproduced (with permission) from van Helvert (2025).

Central tendency and serial dependence
It   has   often   been   observed   that   reproductions   are   not   veridical   but   biased   by
previously  experienced stimuli.  Two biases  that  are  prevalent  across  reproduction
tasks   are   referred   to   as   the   central   tendency   effect   and   the   serial   dependence
effect. Central tendency describes the observation that reproductions are generally
biased   toward   the   center   value   of   the   experimental   stimulus   distribution,
characterized   by   overestimations   of   short   stimuli   and   underestimations   of   long
stimuli   (Hollingworth,   1910).   This   effect   has   been   observed   in   a   wide   range   of
perceptual   tasks,   including   the   perception   of   distances   (Loomis   et   al.,   1993;
Philbeck & Loomis, 1997; Israël et al.,  1997; Grasso et al.,  1999; Riecke et al.,  2002;
Bergmann   et   al.,   2011;   Petzschner   &   Glasauer,   2011;   Petzschner   et   al.,   2012;
Prsa et al.,  2015),  heading   (Warren  &  Saunders,  1995;  Sun  et  al.,  2020),  durations
(Jazayeri & Shadlen, 2010; Cicchini et al.,  2012; Murai & Yotsumoto, 2016; Roach et
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al.,   2017),   line   lengths   (Duffy   et   al.,   2010;   Ashourian   &   Loewenstein,   2011),   and
colors (Olkkonen & Allred, 2014; Olkkonen et al., 2014).  

Serial dependence refers to the finding that the reproduction on the current trial is
affected  by   the   stimulus  on   the  previous   trial   (Holland  &  Lockhead,   1968;  Cross,
1973).  Attractive   serial  dependence   reflects   reproductions   that  are  biased   toward
the previous stimulus (Fischer & Whitney, 2014; Liberman et al., 2014; Motala et al.,
2020;  Manassi  &  Whitney,   2022,   2024;  Guan  &  Goettker,   2024),  whereas   repulsive
serial  dependence indicates reproductions that are biased away from the previous
stimulus   (Fritsche   et   al.,   2017;   Sun   et   al.,   2020).   Both   the   central   tendency   and
serial   dependence   biases   reflect   an   effect   of   stimulus   history   but   on   different
timescales:  central  tendency can be seen as  the  long-term effect  of  the measured
stimuli  across the experiment,  whereas serial  dependence captures the short-term
effect of the previous stimulus (Saarela et al., 2023).  

In  Chapter  3,   I  study whether  central   tendency and serial  dependence effects  are
present in vestibular path integration behavior. Furthermore, I examine whether the
experimental stimulus distribution from which the stimulus distances are sampled,
as  well  as   the  presentation order  of   the  stimulus  distances,  affect   these  biases   in
vestibular  path   integration.  Stimulus  distances  are   sampled   from   two  probability
distributions,  covering  a   range  of  short  and  long  distances,  and presented  in   two
experimental   conditions   with   different   presentation   orders.   In   the   blocked
condition,   the   short   and   long   distances   are   presented   in   two   separate   blocks,
whereas   in   the  mixed condition,   the  same short  and  long distances  are  randomly
interleaved. The effects of stimulus distribution (short/long) and presentation order
(mixed/blocked)   on   the   central   tendency   and   serial   dependence  biases   are   then
evaluated.  Finally,   I   test  to what extent the biases can be explained by sequential
Bayesian   inference   models   with   different   assumptions   about   the   experimental
stimulus distribution (see Section 1.2.3; Glasauer & Shi, 2022).  

In  Chapter 4,   I  examine a different  aspect  of  the stimulus presentation order:  the
amount of autocorrelation in the stimulus sequence. Autocorrelation measures the
similarity   between   values   in   a   sequence.   More   specifically,   it   quantifies   the
correlation   of   a   sequence   with   a   lagged   version   of   itself,   where   the   lag-1
autocorrelation   indicates   how   similar   each   value   in   the   sequence   is   to   the
immediately   preceding   value.   When   stimuli   are   randomly   sampled   from   the
stimulus distribution (as in  Chapter 3), the autocorrelation is (close to) 0. However,
a value in a time series (e.g., today’s stock value or temperature) is often similar to
the   previous   value,   resulting   in   an   autocorrelated   sequence.   We   can   create   a
stimulus sequence with a high autocorrelation by simulating a random walk, where
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the next stimulus is equal to the current stimulus plus a small normally-distributed
random shift.

Studies on duration reproduction indicate that the autocorrelation of  the stimulus
sequence could  cause  a  central   tendency  bias   (Glasauer  &  Shi,  2021).  The  central
tendency effect was present in reproduced durations when stimulus durations were
presented in a randomized order (i.e.,  with no autocorrelation), whereas the effect
was   diminished  when   the   same   stimuli  were   presented   in   a   random-walk   order
(i.e.,  with a high autocorrelation).  The autocorrelation of the stimuli  also seems to
affect   the   serial   dependence   bias   in   duration   reproductions:   in   the   randomized
order, the reproductions showed attractive serial dependence while in the random-
walk   order,   the   reproductions   reflected   repulsive   serial   dependence   (Glasauer   &
Shi,  2022).   In  Chapter  4,   I   explore  whether   the  amount  of  autocorrelation   in   the
stimulus  sequence  could  similarly  affect   the  biases   in  vestibular  path   integration.
To   do   so,   stimulus   distances   are   presented   in   a   no-   and   high-autocorrelation
condition,   and   the   biases   in   the  measured   reproduced   distances   are   compared
across  conditions.  Central   tendency  and serial  dependence are  computed using  a
multiple linear regression model that controls for a potential   indirect effect of  the
serial  dependence bias  on the  central   tendency  bias   (and vice  versa)   through the
autocorrelated stimulus sequence (see Box 4).  

Box 4. Central tendency and serial dependence computation

Central   tendency   is   quantified   as   the   slope   of   the   linear   least-squares
regression of the reproduction error on the current trial,   ,  on the stimulus
distance  on   the  current   trial,   .  Here,   the   reproduction  error   refers   to   the
difference between the reproduced and stimulus distance. A central tendency
effect   is   indicated   by   a   negative   slope:   shorter   distances   result   in   a  more
positive   reproduction   error   than   longer   distances.   Serial   dependence   is
expressed  as   the  slope  of   the   linear   regression  of   the  current   reproduction
error,   , on the stimulus distance on the previous trial,   . The two biases
are presented in a graph in Figure 1.8A. This figure illustrates the situation in
which there is autocorrelation in the stimulus sequence, i.e., the value for  
depends  on the  value  of   .  When computing  the  central   tendency  effect
(i.e.,  the direct effect of     on   ),  we see that there may also be an indirect
effect of     on     via   .  Here,     is  a common cause of  both     and   ,
and   to   isolate   the  direct   effect   of     on   ,   the   values   for     should  be
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adjusted   for   in   the  central   tendency   regression.  Similarly,  when  computing
the serial dependence effect (i.e.,  the direct effect of     on   ),  there is an
indirect effect through   .  Here,   , ,  and     form a causal chain, and to
isolate   the   direct   effect   of     on     we   should   again   control   for   the
intermediate variable in the serial dependence computation. By adjusting for
, we can test whether   and   are conditionally independent. 

This   idea   is   formalized  by   the  graphical  d-separation   criterion   for  directed
acyclic graphs (DAGs; Pearl, 2009). The criterion states that if two variables  
and     form a  causal  chain   (see  Figure  1.8B)  or  have a  common cause  (see
Figure 1.8C),  the variables are conditionally   independent  if  we condition on
intermediate   variable   .   If   two   variables   have   a   common   effect   (see
Figure 1.8D), they are conditionally independent, unless we condition on  .  

Figure  1.8.  A:  Graph   illustrating   the   relationship  between   the  central   tendency  and  serial
dependence effects when there is autocorrelation in the stimulus sequence. Nodes   ,
and     represent   the   stimulus  distance  on   the  current   trial,   the   stimulus  distance  on   the
previous trial, and the reproduction error on the current trial, respectively. B, C: Causal chain
and  common cause  structures,   respectively.  Conditioning   (in  gray)  on  variable     renders
variables   and   conditionally independent. D: Common effect structure, in which   and 
are conditionally independent unless   is conditioned on.
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1.4 Thesis outline

In   this   thesis,   I   investigate   the   effect   of   prior   information   about   previously
experienced   stimuli   on   spatial   perception.   I   focus   on   two   aspects   of   spatial
perception: spatial orientation (Chapter 2) and self-motion perception (Chapters 3
and 4).  

In  Chapter  2,   I   examine   to  what   extent   different   Bayesian   prior   distributions   of
head orientation can explain spatial orientation behavior. More specifically, I  study
whether   spatial   orientation   estimates  measured   in   two  psychophysical   tasks   are
better  explained by  a  prior  distribution that  matches  head orientations  measured
outside the laboratory, than by the previously assumed Gaussian prior distribution.

In Chapter 3, I examine whether central tendency and serial dependence biases are
present   in   vestibular   path   integration   behavior,   and   to   what   extent   sequential
Bayesian   inference   models   can   explain   these   biases.   Additionally,   I   study   how
different   experimental   stimulus   distributions   (covering   a   range   of   short/long
distances)   and   stimulus   presentation   orders   (mixed/blocked)   affect   the   central
tendency and serial dependence biases.

In  Chapter 4,  I  examine whether central tendency and serial dependence biases in
vestibular   path   integration   can   be   explained   by   different   amounts   of
autocorrelation in the stimulus sequence.  More specifically,  stimulus distances are
presented  in  a   randomized order   (with  no  autocorrelation)  and  in  a   random-walk
order   (with   a   high   amount   of   autocorrelation),   and   the   measured   biases   are
compared across conditions.

In Chapter 5, I summarize and discuss the main findings of this thesis. Additionally,
I identify limitations and propose ideas for future research.
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Chapter 2
Natural statistics of head roll:
Implications for Bayesian inference in
spatial orientation

This chapter has been adapted from:

Willemsen,   S.   C.   M.   J.,   Oostwoud  Wijdenes,   L.,   van   Beers,   R.   J.,   Koppen,   M.,   &
Medendorp,  W.  P.   (2022).  Natural   statistics  of  head   roll:   Implications   for  Bayesian
inference in spatial orientation.  Journal of Neurophysiology,  128(6), 1409-1420, with
corrections incorporated from the published corrigendum.



2.1 Abstract

We  previously   proposed   a  Bayesian  model   of  multisensory   integration   in   spatial
orientation (Clemens et  al.,  2011).  Using a  Gaussian prior,  centered on an upright
head orientation, this model could explain various perceptual observations in roll-
tilted  participants,   such  as   the   subjective   visual   vertical,   the   subjective  body   tilt
(Clemens   et   al.,   2011),   the   rod-and-frame  effect   (Alberts   et   al.,   2016),   as  well   as
their   clinical   (Alberts   et   al.,   2015)   and   age-related   deficits   (Alberts   et   al.,   2019).
Because   it   is  generally  assumed that   the  prior   reflects  an  accumulated  history  of
previous head orientations, and recent work on natural head motion suggests non-
Gaussian   statistics,   we   examined   how   the   model   would   perform   with   a   non-
Gaussian   prior.   In   the   present   study,   we   first   experimentally   generalized   the
previous observations in showing that also the natural statistics of head orientation
are   characterized  by   long   tails,   best   quantified   as   a  t-location-scale  distribution.
Next,   we   compared   the   performance   of   the   Bayesian  model   and   various  model
variants  using   such  a  t-distributed  prior   to   the  original  model  with   the  Gaussian
prior on their accounts of previously published data of the subjective visual vertical
and subjective  body tilt   tasks.  All  of   these variants  performed substantially  worse
than   the   original   model,   suggesting   a   special   value   of   the   Gaussian   prior.   We
provide  computational  and  neurophysiological   reasons   for   the   implementation  of
such   a   prior,   in   terms   of   its   associated   precision-accuracy   trade-off   in   vertical
perception across the tilt range.
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2.2 Introduction

Sensory   systems   are   thought   to   be   optimized   for   processing   naturalistic   stimuli
(Attneave,  1954;  Simoncelli  &  Olshausen,  2001;  Carriot  et  al.,  2014;  Mitchell  et  al.,
2018).  Given   the  uncertainty   in   the  moment-to-moment   sensory   information,   the
statistical  regularities within the sensory environment,  which can be inferred from
an accumulated history of the system’s previous sensory states,  add informational
value to creating perception. For example, it has been shown that the “light-comes-
from-above”  experience   is  used   to   interpret  complex  and  ambiguous  visual   input
(Adams   et   al.,   2004)   and   that   the   predominance   of   horizontal   and   vertical
orientations   in  natural  scenes   is  used  in  visual  orientation perception (Girshick  et
al., 2011).

Bayesian theory provides a formal framework to describe sensory processing under
uncertainty. According to this theory, next to the available sensory evidence also a
default assumption about the state, expressed in the form of a prior distribution, is
taken into account. Bayes’ rule is the statistically optimal way to combine this prior
with   noisy   sensory   information.   In   laboratory-based   paradigms,   the   prior   often
accounts   for   otherwise   unexplainable   biases   (Mamassian   &   Goutcher,   2001;   de
Vrijer  et  al.,   2008).  Although   the  prior  distribution  can  be  of  any   type   (Stocker  &
Simoncelli,   2006;   Girshick   et   al.,   2011),   it   is   often   assumed   to   be   a   Gaussian
distribution   for   reasons   of   computational   convenience   (Bishop,   2006;   Parise   et
al., 2014).

Earlier  work   from our   laboratory  has  proposed a  Bayesian  model  of  multisensory
integration for spatial orientation (Clemens et al., 2011). In this model, we assumed
that,   to   process   vestibular   and   other   sensory   information,   the   brain   uses   a
Gaussian  prior  centered  on  upright.  Based  on   this  prior,   the  model  could  explain
the  well-known Aubert  effect,   the  underestimation  of  head   tilt,  when   the  head   is
roll-oriented   using   a   vestibular   chair   (Aubert,   1861;   Udo   De   Haes,   1970;
Mittelstaedt,  1983;   van  Beuzekom &  van  Gisbergen,  2000).   In   subsequent   studies,
we showed that   this  model  could  also  explain  age-related sensory  reweighting   in
spatial orientation (Alberts et al., 2019), certain behavioral observations in patients
(Alberts et al., 2015), and visual contextual effects on spatial orientation (Alberts et
al.,   2016).   The   model   could   also   explain   vertical   perception   in   monkeys   and
proprioceptive reweighting following complete vestibular loss (Angelaki & Laurens,
2020).  However,  whether  the Gaussian prior   in  this  model  reflects  the statistics  of
head orientation during natural activities is unclear.
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There   are   studies   that   suggest   that   natural   motion   statistics   are   typically
described   by   non-Gaussian   distributions   (Schwabe   &   Blanke,   2008;   Carriot   et
al.,   2014;  Hausamann  et  al.,   2019).   For  example,  Carriot   et   al.   (2014)   recorded
the   head’s   angular   velocity   and   linear   acceleration   while   participants
performed   everyday   movements   such   as   walking,   running,   or   riding   a   bus.
Measured   probability   distributions   of   the   head’s   angular   velocity   and   linear
acceleration   were   not   Gaussian   but   had   long   tails   as   quantified   by   large
positive   excess   kurtosis   values.   Hausamann   et   al.   (2019)  measured   head   and
trunk  movements   for   long   durations   (>10   h)  without   explicit   instructions   and
reported skewed acceleration distributions.

Building further on this work, in the present study, we test the hypothesis that the
Aubert  effect   in spatial  orientation is  explained by a prior  that corresponds to the
statistics  of  head  orientation  during  natural  activities.  Adding   to  and  generalizing
the existing literature about the statistics of natural head motion, we first recorded
head orientation in human participants while they performed everyday movements
and  calculated  probability  density  distributions  of  head  orientation   in  space.  The
kurtosis   values   obtained   generally   indicated   clearly   non-Gaussian   distributions.
Next,   the   original   Gaussian  model   by   Clemens   et   al.   (2011)   with   a   closed-form
solution was converted into a numerical  model  to enable computations with non-
Gaussian   priors.   This   numerical   model   was   fit   to   the   previously   obtained
psychometric   data   on   spatial   orientation   to   test   whether   alternative   real-world
priors   account   for   laboratory-derived   Aubert   effects.   As   all   data   are   interpreted
within the general structure of the model by Clemens et al. (2011), we begin with a
short modeling background.

2.2.1 Modeling background
Clemens   et   al.   (2011)   proposed   a   Bayesian   model   of   the   transformation   and
integration of various sensory signals (from body, head, and neck) into two spatial
orientation  estimates:   the  subjective  body   tilt   (SBT)  and  subjective  visual  vertical
(SVV) (see Figure 2.1). The sensory signals considered are body orientation in space
from tactile  receptors   in  the  skin,  head orientation  in  space as  being provided by
the   otoliths,   and   head   orientation   relative   to   the   body   by   neck   proprioception.
These  sensory  signals  are   represented  by  Gaussian  distributions.  The  neck  signal
provides   a   transformation   between   body   orientation   and   head   orientation,   thus
creating indirect sources of information for both estimates. Final optimal estimates
involve   the   integration   of   direct   and   indirect   information   as   well   as
prior information.
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Figure  2.1.  Schematic   representation  of   the  sensory   integration  model  by  Clemens  et  al.   (2011).
Body somatosensors, neck proprioceptors, and otoliths measure the orientation of the body in space
( ), the head on the body ( ), and the head in space ( ), respectively. The neck signal enables
a   reference   frame   transformation  of   the  body-tilt   signal   into  a  head-in-space  signal   ( )   and  a
transformation  of   the  head-tilt   signal   into  a  body-in-space  signal   ( ).  To  compute   the  optimal
estimate of  body orientation ( ),  the body-tilt  signal   is  combined with the transformed head-tilt
signal, assuming a uniform body-in-space prior. The optimal estimate of head-in-space orientation
( ) is determined by integration of the otolith signal, the transformed body-in-space signal and a
head-in-space prior. The original model by Clemens et al. (2011) represents the head-in-space prior
as a Gaussian distribution with a mean fixed at 0 and standard deviation  . In the current study,
we consider a t-location-scale distribution with a location parameter fixed at 0, scale parameter

, and shape parameter   as head-in-space prior. To acquire an estimate of the line-in-space
orientation,     is   combined   with   estimates   of   the   eye-in-head   ( )   and   line-on-eye   ( )
orientation. SBT, subjective body tilt; SVV, subjective visual vertical.

Clemens et al. (2011) took all three sensory distributions to be unbiased Gaussians,
i.e., with a mean equal to the actual tilt angle. The standard deviations of the body
sensor and neck sensor constitute two free parameters     and   , respectively,
whereas the standard deviation of the otolith signal is assumed to increase linearly
with   absolute   tilt   angle   (de   Vrijer   et   al.,   2008,   2009),   requiring   another   two   free
parameters   and  , with  .

Because   the   SBT   data   were   virtually   unbiased   across   the   tilt   range,   an
uninformative,   flat   body-in-space   prior   was   used,   but   Clemens   et   al.   (2011)
included   a   head-in-space   prior   centered   on   zero   to   account   for   the   systematic
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underestimation at large tilt angles as observed in the SVV data – the Aubert effect.
This  prior  distribution  was  also  assumed to  be  Gaussian,  with  standard  deviation

 as another free parameter.

As the SVV pertains to the perceived orientation of a visual  line,  the final  head-in-
space estimate is to be supplemented with an eye-in-head estimate ( ), involving
the   amplitude   of   the   uncompensated   ocular   counterroll   ( )   as   a   free
parameter,  and  a   retinal   line  orientation  estimate   ( ),   assumed   to  be  accurate.
Both     and     have small noise levels (<1°),  which were ignored. In addition to
the six parameters mentioned, the model has a seventh parameter     to account for
lapses with an upper bound of 0.06.

In   the   current   study,  we   focused  on   the  assumption   that  prior   knowledge  about
head orientation is  represented as a Gaussian distribution,  and we wanted to test
whether the Clemens et al.   (2011) model can better explain the data using a prior
distribution   corresponding  more   closely   to   the   statistics   of   head   orientation   in
everyday   life.  Based  on  previous   results   (Schwabe  &  Blanke,   2008;  Carriot   et   al.,
2014;  Hausamann  et  al.,   2019)  as  well  as  newly   recorded  data   (see  Methods  and
Results),   we   considered   the  t-location-scale   distribution   as   an   alternative
distribution   for   the   head-in-space   prior.   The  t-location-scale   distribution   is
symmetric and unimodal (bell-shaped), like the Gaussian, but it has heavier tails. It
has   one   more   parameter   than   the   Gaussian   distribution,   which   influences   the
shape   of   the   distribution.   The  t-location-scale   probability   density   function   is
given by

where     is   the   gamma   function,     the   location   parameter,     the   scale
parameter,  and     the  shape  parameter   ( ).  Smaller  values  of     yield  heavier
tails;   as     increases   towards   infinity,   the  t-location-scale  distribution  approaches
the Gaussian distribution.  A direct consequence of  this  adaptation to the Clemens
et al.  (2011) model is that closed-form expressions for the posterior distribution in
terms  of   the   likelihood   and  prior   distributions   no   longer   exist.   All   computations
were therefore done numerically.  
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2.3 Methods

2.3.1 Data sets
Two data sets were used to test the model predictions. The first data set, collected
previously,   is   extensively  described   in  Clemens  et   al.   (2011).   This  data   collection
tabulates  psychometric  data  of   seven  participants   (6  males,   1   female),   aged  23–
65 yr,   each   performing   the   SBT   and   SVV   task   at   different   tilt   angles,   passively
imposed by a vestibular chair. Each participant performed 20 experimental sessions
of   45 min   each,   yielding   over   15   h   of   recording   time.   In   short,   in   the   SBT   task,
participants  were   first   rotated   to  a   randomly  chosen  tilt  angle  and then  asked  to
indicate  whether   their   body   orientation  was   clockwise   (CW)   or   counterclockwise
(CCW)  from an  instructed reference orientation [i.e.,  either  upright   (0°),  45°  or  90°
right side down, or 45° or 90° left  side down].  Responses were collected using the
method of  constant  stimuli,  yielding 140 data points  for  each instructed reference
orientation. The SVV was tested at nine roll-tilt angles, ranging from -120° to 120° at
30°   intervals.   At   each   tilt   angle,   a   luminous   line   was   briefly   flashed,   and   the
participant   indicated  whether   its   orientation   in   space  was   CW  or   CCW   from   the
perceived  direction  of  gravity.  The   line  orientation  was  selected   randomly   from a
set  of  11   line  orientations.  Each  set  was   tested  12   times,   thus  yielding  a   total  of
132 data  points   for   each   tilt   angle.   The  original  model  by  Clemens  et   al.   (2011),
which  assumed  a  Gaussian  head-in-space  prior,  provided  a  very  good  account  of
these data.

The second data set was collected anew as a supplement to the existing literature
about the statistics of natural head motion (Carriot et al.,  2014; Hausamann et al.,
2019; MacNeilage, 2020). Six participants (3 males, 3 females) aged 23–28 yr, free of
any known neurological or movement disorders,  gave written informed consent to
track   their   unconstrained   naturalistic   motion   using   inertial   measurement   units
(Xsens   MTw   Awinda),   placed   on   the   pelvis,   shoulders,   sternum,   upper   arms,
forearms,  hands,  and  head.  The   system was  calibrated  while   the  participant  was
standing   in  a   relaxed,  upright  position,  with   their   feet  parallel   to  each  other  and
their arms flat against their body, while looking straight ahead with a natural head
position.   Analogous   to  Carriot   et   al.   (2014),   participants  performed   five  different
naturalistic  tasks  in and around our university,  each one to three times,   for  2  min
each:  walking,   running,  going  up  and  down  the  stairs,   sitting,  and  standing.  This
study  was  approved  by   the  ethics  committee  of   the  Faculty  of  Social  Sciences  of
Radboud  University  Nijmegen,   the  Netherlands.  To  bring   this  data  set   to  bear  on
the  Clemens   et   al.   (2011)  model,  we   analyzed   the   roll-tilt   angles   of   the   head   in
space,   in degrees.  The preprocessing of  the raw head orientation data (which was
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measured in quaternion form) consisted of transforming the raw data to Euler roll-
tilt angles in degrees. Head orientation distributions are described in terms of four
statistical   moments:   mean,   standard   deviation,   skewness,   and   kurtosis.   To
determine which probability  distribution best  captured the natural  head statistics,
theoretical   distributions  were   fitted   to   the   head   orientation   data   using  Matlab’s
built-in   maximum   likelihood   estimation   function.   We   considered   the   following
probability   distributions:   the   Gaussian,   logistic,  t-location-scale   (McDonald   &
Newey,   1988),   extreme   value   (Gumbel,   1985),   and   generalized   extreme   value
distributions   (Jenkinson,   1955).   The   resulting   fits   were   ranked   using   the   Akaike
information criterion (AIC).

2.3.2 Modeling

Model implementation
The   model   was   implemented   in   Matlab   (R2019a,   RRID:   SCR_001622)   and
numerically   simulated   under   different   assumptions   of   the   prior   distribution.
Incorporating   a   non-Gaussian   prior   into   the   model   caused   the   closed-form
expressions   in   the   original  model   to   no   longer   exist.   Therefore,   the   probability
distributions in the new model implementation were numerically approximated in a
circular   plane  with   a   resolution   of   0.1°.   A   smaller   step   size   did   not   impact   the
model predictions but increased the duration of the fitting procedure considerably.

The model  was evaluated 500 times for  each tilt  angle  tested  in  the SBT and SVV
tasks.  On  each  of   these   500   replications,   the  mean  of   each   sensory   signal   ( ,  

,  and   )  was randomly drawn from a circular normal distribution, using the
actual tilt angle on that trial ( ,   , or   ) as mean and the standard deviation
of the sensory signal ( ,   , or   ) as standard deviation. The distributions of
the   indirect   signals   (   and   )  were   computed   following   the  expressions   in
Clemens et al. (2011) (Equations 2, 4, 6, and 8) as circular normal distributions with
means     and     and   standard   deviations     and

, respectively.  The body-in-space posterior distribution consists of an
integration   of   the   directly   and   indirectly   measured   body-in-space   information.
Similarly, the head-in-space posterior distribution was computed by integrating the
(direct   and   indirect)   sensory   information   and   the   prior   distribution.   Taking   the
mode  of   the  posterior  distributions   then   resulted   in   the   final,   optimal   estimates
(denoted by     and     in  Figure  2.1).  Note  that  with  the  prior   in   the   form of  a
t-location-scale distribution, the resulting posterior is no longer symmetric. Finally,
we averaged the modes across the 500 model simulations to determine   and

  for   each   tilt   angle   tested   in   the   two   tasks.   Similarly,   the   variance  of   the
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modes represents     and   . We verified our numerical implementation
by fitting the model with a Gaussian prior and found similar model likelihoods and
fitted parameter values via the original estimation procedure used in Clemens et al.
(2011), validating the new implementation.

Model variants and their evaluation
The numerical  model  version  allows  to   test   the  model  architecture  under  various
assumptions.   Models  were   fitted   to   the   data   set   from   Clemens   et   al.   (2011)   by
minimizing the negative  log-likelihood function using the Matlab function  fmincon
[see  Clemens  et  al.   (2011)   for  a  detailed  description  of   the   fitting  procedure].  We
tested   various   variants   of   the   model   with   a   Gaussian   prior   (GP   models)   or   a
t-location-scale   prior   (TP   models),   which   are   summarized   in   Figure   2.4.   We
computed   AIC   scores   to   evaluate   their   performance   by   accounting   for   different
numbers of free parameters. A lower AIC score indicates a better description of the
data by a model variant.

Model  variant  1:  m1-GP.   This   GP  model   is   the   numerical   version   of   the   original
model  by  Clemens et  al.   (2011)   (from here on denoted as  the m1-GP model).  The
original model contains seven free parameters:   ,   ,   ,   ,   ,   ,  and

  as   the  standard  deviation  of   the  Gaussian  prior.  Per  participant,   this  model
was fitted 100 times. For half of the fitting runs, random values within fixed bounds
( : [0, 0.5]°/°,   ,   ,   ,   : [1e-05, 50]°,   : [0, 30]°,   : [0, 0.06]) were
used   as   start   values   for   the   free   parameters   to   maximize   the   possibility   of
convergence   to   the   global  minimum.   The   remaining   runs  were   started  with   the
fitted values from the Clemens et al.  (2011) study. Note, allowing a free parameter
for the mean of the prior led to a fitted value close to 0. Therefore, this parameter
was fixed at 0 during fitting.

Model variant 2: m2-TP. This TP model fitted the Clemens et al. (2011) data set with
the   same   free   parameters   but   under   the   assumption   of   a  t-location-scale   prior
(from   here   on   denoted   as   the  m2-TP  model),   which   turned   out   to   be   the   best
description   of   the   naturalistic   head   orientations   in   our   data   (see   Figure   2.2B),
corroborating previous literature (Carriot et al.,  2014).  The shape parameter of the
t-location-scale-prior distribution ( )  was fixed at  the average parameter value
of   the   best-fitting   distribution   on   the   naturalistic   head   orientation   data   (see
Supplemental Table 2.S2 in the Supplemental material).  The fitting procedure was
as   for  model   1.   In   further   analyses,   we   also   fitted   this  model   using   the   shape
parameter   fixed   at   either   6,   10,   25,   50,   100,   or   300   (resembling   a   Gaussian
distribution), each fitted 50 times.
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Model  variant  3:  m3-GP,  m3-TP.   In  models  1  and  2,   the   standard  deviation  of   the
otolith noise depends linearly on the absolute head tilt. Instead, in model variant 3,
we  fitted  a  TP model  without  an   imposed relationship  between otolith  noise  and
tilt  angle,   i.e.,  we allowed the standard deviation of  the otolith noise to be a   free
parameter for each absolute tilt angle (from here on denoted as the m3-TP model).
We used the fitted intercept and slope values of the Clemens et al.  (2011) study to
compute a  standard deviation for  each tilt  angle.  These values were then used as
the   initial  values   for   the   free  parameters   in   the   fitting  procedure,  after  which   the
parameters could take on any value within [1e-05, 50]°. We also repeated the fitting
procedure  with  random start  values   for   the   free  parameters.  For  comparison,   this
assumption was also tested for  a  Gaussian prior   (the m3-GP model).  Each version
was fitted 100 times.

Model  variant  4.  This  model   variant   involved   a   Gaussian-mixture   distribution   as
head-in-space prior.  A mixture of two Gaussians with the same mean but different
SDs yields a distribution with heavier tails (to approximate the measured prior). We
tested   a   prior   distribution   characterized   by   three   parameters:   the   standard
deviations of  the two Gaussians,     and   ,  and their  mixing coefficient
c, defined between 0 and 1, which weighs the two distributions. The means of both
Gaussians were fixed at 0. The fitted values from Clemens et al. (2011) were used as
start   values   for   the   fitting   procedure,   where   the   fitted   value   for   the   standard
deviation of   the  prior,   ,  served as  start  value  for   .  The start  value  for

  was  50°  and   the   initial   value  of   the  mixing  coefficient  was  valued  either
0.25,  0.5,  0.75,  or  1.  The  model  was   fitted  50  times   for  each of   the  different  start
values for the mixing coefficient.

Model variant 5: m5-GP, m5-TP. In the original model, the sensory measurements at
a  particular   tilt   angle  are  assumed   to  be  unbiased  on  average  but   contaminated
with   independent   Gaussian   noise.   This   is   referred   to   as   a   measurement
distribution,   i.e.,  the distribution of  sensory tilt  signals that  is  produced when the
head   is   tilted   at   a   specific   angle.   However,   the   brain  must   perform   the   inverse
approach to   find out  which tilt  angle  has  been responsible   for   the  sensory  signal
that   it   receives.   Hence,   it   must   compute   the   sensory   likelihoods.   If   the
measurement distribution of a sensory signal is Gaussian with a constant standard
deviation,   irrespective   of   tilt,   the   likelihoods   will   be   Gaussian   as   well.   For   the
otoliths,   however,   the   standard   deviation   of   the   noise   was   assumed   to   be
increasing with tilt angle, which formally results in a skewed otolith likelihood [see
Girshick   et   al.   (2011)   for   a   more   detailed   explanation].   This   nonlinear
transformation  was   neglected   in   the   original  model   –  we   assumed   a   symmetric
otolith   likelihood –  but  was put  to  test   in  variant  5.  This  model  variant  contained
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the same free parameters as m1-GP and m2-TP and was again fitted 100 times per
prior form (from here on denoted as the m5-GP and m5-TP models).

2.4 Results

We   investigated   the   role   of   the   prior’s   form   in   a   Bayesian   model   of   spatial
orientation,  as  assessed  by   the   subjective  visual   vertical  and   subjective  body   tilt
tasks   at   tilt   angles   between   -120°   to   120°   using   non-naturalistic   stimuli   in   a
laboratory-based environment. Data from these tasks were previously collected and
extensively  described and modeled using a  Gaussian head-tilt  prior   in  Clemens et
al.   (2011).   However,  more   recent   work   on   head  motion   statistics   reported   that
probability distributions of angular velocity and linear acceleration averaged across
natural  activities  were not  Gaussian,  showing large positive excess kurtosis  values
(Carriot et al., 2014). We first examined whether this observation can be generalized
to   head   tilt   distributions   by  measuring   the   head   orientation   statistics   of   human
participants   during   typical   everyday   activities,   and   subsequently   tested  whether
the model   fit  of   the Clemens et  al.   (2011)  data  can be  improved by canceling the
restriction to a Gaussian prior  and allowing prior  distributions more akin to these
naturalistic head orientation distributions.

2.4.1 Natural head orientation statistics
Figure 2.2A shows head orientation as a  function of  time for  the various activities
(i.e.,   walking,   running,   going   up   and   down   the   stairs,   sitting,   and   standing),
separately   for   each   participant.   We   found   that   the   recorded   head   orientations
varied across the activities. For example, over consecutive samples, the changes in
head tilt  were smaller during sitting and standing than during the other activities.
Furthermore,  we   found   that   probability   distributions   of   head   orientation   pooled
across activities were not Gaussian (Figure 2.2B) as quantified by large (between 5
and 142) kurtosis values across participants (Figure 2.2B, insets). This indicates that
head tilt distributions have longer tails and a higher peak than would be expected
from  normally   distributed   data.   Across   participants   the   ranges   of   the   first   three
statistical   moments   of   the   head   orientation   data   were   ,  

  and   , indicating that the head tilt distribution
centers on upright and shows no systematic skewness.

We next tested for each participant which of several probability distributions – the
Gaussian,   logistic,  t-location-scale,   extreme  value,   and  generalized  extreme  value

M = −2.9° − 1.0°
SD = 6.3° − 10.3° S = −2.1 − 3.2
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distributions   –   best   accounted   for   the  measured   head   orientation   statistics.  We
found   that,   pooled   across   activities,   a  t-location-scale   distribution   provided   the
best   fit   for   five  of   the  six  participants,  outperforming the Gaussian distribution  in
all   cases   (compare   solid   and  dashed   lines   in   Figure   2.2B).   The   relatively   skewed
data of participant 2 are described best by the extreme value distribution, followed
by   the  t-location-scale   distribution.  We   refer   to   Supplemental   Table   2.S1   in   the
Supplemental material for a comparison of the AIC scores of all fitted distributions.
The   parameters   of   the   fitted  t-location-scale   distribution   are   consistent   across
participants   (see   Supplemental   Table   2.S2);   the   location  parameter   is   close   to   0
(range:   -1.9°   to   1.1°),   indicating   that   participants   held   their   head   on   average
upright,   the   scale   parameter   ranged   between   3.9°   and   6.8°,   and   the   shape
parameter was small (range: 2.2 – 4.3), corresponding to a characterization in terms
of   long   tails.   The   results   are   consistent  with  previously   reported  distributions  of
head velocity and acceleration (Carriot et al., 2014; Hausamann et al., 2019).
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Figure  2.2.  A:  Representative  60-s   traces  of   the  measured  head  orientations  during   the  different
activities,   for   each   participant.  B:   Fitted   normal   (solid   line)   and  t-location-scale   (dashed   line)
probability   density   distributions   (PDFs),   plotted   on   top   of   all   head   roll-tilt   data,   pooled   across
activities for  each participant  in the naturalistic  motion tracking experiment.   Insets show the four
statistical   moments   (mean   ,   standard   deviation   ,   skewness     and   kurtosis   )   of   the
pooled data.

M SD S K
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2.4.2 Bayesian modeling of spatial orientation

Model variants 1 and 2
We   subsequently   tested   the   assumption   that   these   natural   statistics   of   head
orientation   are   used   as   a   prior   in   spatial   orientation   and   can   account   for   the
observations in the SVV and SBT tasks reported by Clemens et al. (2011). Within the
structure of  their  Bayesian model  of  spatial  orientation (Figure 2.1),  we compared
the  predicted  performance   in   the  SBT  and  SVV   tasks  under   the  assumption  of   a
Gaussian-head-tilt   prior   (m1-GP)   and   a  t-location-scale   prior   [m2-TP,   shape
parameter   fixed  at  3.4,  which  was   the  average  best-fitting  shape  parameter  value
on the naturalistic head orientation data (see Supplemental Table 2.S2)].

Figure 2.3 shows these predictions as the average (±SD) of  the  individual  best   fits
superimposed on the mean data across participants.  The prediction of  the m1-GP
model   replicates   well   the   closed-form  model   fit.   In   contrast,   the  m2-TP  model
provides  a  poor   fit,  both  with  regard to   the  observed bias   in   the  SVV  (the  Aubert
effect) and, more prominently, its variance. Also, the variance of the SBT seems not
well accounted for by this TP model.
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Figure  2.3.  Predictions  of   the  m1-GP (orange)  and m2-TP models   ( ,  blue)  of   the  SBT (left
column) and SVV (right column), generated with the best-fitting parameter values per participant and
then averaged across participants, plotted on top of the mean parameters from the psychometric fits
(•). Shaded areas and error bars show one standard deviation above and below the participant mean.
SBT, subjective body tilt; SVV, subjective visual vertical.

To compare   the  quality  of  various  model  variants,  we  computed their  AIC  scores,
averaged across participants. The baseline in this comparison is the mean AIC score
of   the  m1-GP  model,   set   to   zero   at   the   left   in   Figure   2.4.   As   shown,   the  m2-TP
model ( ) performs substantially worse than the m1-GP model.

ν = 3.4

ν = 3.4
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Figure 2.4.  Comparison of the mean best Akaike information criterion (AIC) scores over participants
of the different model variants, relative to the mean AIC score (439.2) of the Gaussian-prior model
(m1-GP). A lower value indicates a better fit to the data. The different model variants are explained
above (see Methods, Modeling, Model variants and their evaluation).

Table 2.1 illustrates the best-fit parameter values for each participant for the m1-GP
and m2-TP ( )  models  as  well  as  the fit  parameters  reported  in Clemens et
al. (2011) based on the original closed-form implementation. Comparing the m1-GP
model with the closed-form implementation reveals similar fitted parameter values,
confirming the numerical   implementation of  the Clemens et al.   (2011)  model.  The
best-fitting  m2-TP  model   yields   large   interparticipant   variability   for  most   of   the
parameters, suggesting that this TP variant does not capture the data very well.

ν = 3.4
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Table 2.1. (continued)

Parameter  (°/°)  (°)  (°)

Model version O m1-GP m2-TP O m1-GP m2-TP O m1-GP m2-TP

Participant

1 0.23  0.23 0.23 1.2  1.4 5.5 12.3  12.4 8.2

2 0.12  0.12 0.24 1.2  1.2 0.8 8.4  8.3 9.8

3 0.20  0.21 0.32 1.1  1.1 0.5 6.7  6.4 3.1

4 0.07  0.07 0.30 3.9  3.9 30.7 12.6 12.6 9.9

5 0.11  0.11 0.49 3.3  3.4 22.7 15.0  15.1 9.9

6 0.23  0.23 0.18 3.0  3.2 3.1 8.0  8.2 6.1

7 0.20  0.20 0.18 3.2  3.4 2.5 12.7  12.6 40.8

Mean ±
SD

0.16 ±
0.06

0.17 ± 
0.06

0.28 ±
0.11

2.4 ±
1.2

2.5 ±
1.2

9.4 ±
12.2

10.8 ±
3.1

10.8 ±
3.2

12.5 ±
12.7

Parameter  (°)  (°)  (°)

Model version O m1-GP m2-TP O m1-GP m2-TP O m1-GP m2-TP

Participant

1 3.3 3.3 47.5 27.0  26.9 7.0 11.6 11.5 38.8

2 6.4 6.7 49.9 17.0  17.1 11.5 9.4  9.7 18.0

3 9.3 10.4 30.4 17.5  17.6 10.0 14.4 15.3 30.4

4 7.1 7.1 38.3 0.0  0.0 30.0 11.2 11.2 15.5

5 3.6 3.6 38.9 1.0  1.0 29.7 18.7  18.8 17.6

6 1.8 2.0 35.9 18.8  18.8 2.4 9.5  9.6 35.5

7 3.0 3.0 1.5 20.8  20.7 1.8 12.8  12.9 21.2

Mean ±
SD

4.9 ±
2.7

5.2 ± 
3.0

34.6 ±
16.1

14.6 ±
10.2

14.6 ±
10.1

13.2 ±
11.9

12.5 ±
3.2

12.7 ±
3.3

25.3 ±
9.5

Within  the context  of   the m2-TP model,   the decay rate  of   the prior  distribution  is
captured by the shape parameter. The larger the value of this parameter, the closer

aHS bHS σBS

σHB AOCR σHSP

Table 2.1. Best-fitting parameter values for the original implementation of the model as presented in
Clemens  et  al.   (2011)   (O),   the  numerical  model  with  a  Gaussian  prior   (m1-GP)  and the  numerical
model   with   the  t-location-scale   prior   (m2-TP,   ).   The   mean   parameter   values   and   their
respective standard deviations are computed by averaging across  participants.  The fit  parameters
had the following lower and upper bounds:  : [0, 0.5]°/°,  ,  ,  ,  : [1e-50, 50]°,

: [0, 30]°,  : [0, 0.06] (fitted lapse rates not presented).

ν = 3.4

aHS bHS σBS σHB σHSP

AOCR λ
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the   distribution   approximates   a   Gaussian   distribution.   Figure   2.5   illustrates   the
predictions of the m2-TP model with the shape parameter fixed at 6, 10, 25, 50, 100,
and 300 and averaged across  participants,  superimposed on the prediction of  the
m1-GP model. The model fit clearly improves with a larger shape parameter, which
is   confirmed  by   the  corresponding  ΔAIC   scores   in  Figure   2.4,   suggesting   that   the
model better operates as the t-location-scale prior approximates a Gaussian. This is
in stark contrast with the shape parameter values of 2.2 – 4.3 that we observed in
the natural head orientations.

Figure 2.5. Predictions of the m2-TP model with different shape parameters (  = 6, 10, 25, 50, 100, or
300) and the m1-GP model,  plotted on top of the mean parameters from the psychometric fits  (•).
Data are in the same format as in Figure 2.3.

Model variant 3
We next  examined if   releasing other  model  constraints  can redeem the TP model.
One  constraint  of   the  original  model   is   that   the  standard  deviation  of   the  otolith
noise depends linearly on the (absolute) tilt angle. In model variant 3, we lifted this
constraint   and   fitted   the  GP   and   TP  models  with   the   standard   deviation   of   the
otolith  noise as  a   free parameter   for  each absolute tilt  angle.  With this  additional

ν
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flexibility, the m3-GP model still performed very well, but the m3-TP model did not
improve, showing a higher ΔAIC score than without this flexibility (see Figure 2.4).

Figure   2.6   shows   for  both  models   the  best-fitting  values  of  otolith  noise  SD  as  a
function of   tilt  angle,  averaged across  participants.  For  both models,   there  seems
to be a linear relationship with absolute tilt angle, validating this constraint within
the original model.  

Figure 2.6.  Best-fitting otolith noise values of the Gaussian-prior (orange) and t-location-scale-prior
(blue)  models   as   a   function   of   tilt   angle,   averaged   across   participants.   Shaded   areas   show  one
standard deviation above and below the participant mean.

Model variant 4
In  model  variant  4,  we tested  if  a  head-tilt  prior  that  consists  of  a  mixture of   two
Gaussians,  which   compared  with   a  t-location-scale   distribution,   can   result   in   an
alternative prior distribution with longer tails than a single Gaussian, fitted the data
of  Clemens  et   al.   (2011).   The  AIC   score  of   the  best-fitting  Gaussian-mixture-prior
model is comparable to the m1-GP model AIC score [but slightly higher, caused by
the extra free parameters of the Gaussian-mixture prior (see Figure 2.4)].  However,
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we   found   the  mixing   coefficients   to  be   exactly   1,   reducing   the  Gaussian-mixture
distribution  in   fact   to   the  single  Gaussian distribution of   the  m1-GP model.  Thus,
the m1-GP model holds as the most parsimonious explanation of the data.

Model variant 5
Finally, we fitted a model variant that contains a skewed distribution for the otolith
likelihood   instead   of   the   symmetric,   Gaussian   otolith   likelihood   in   the   original
model.  Again,   the  GP version of   this  model  outperformed the same model  with  a
t-location-scale   prior.   Furthermore,   the  m5-GP  model   performed  worse   than   the
original model in terms of AIC score (see Figure 2.4) and the m5-TP variant did not
lead   to   an   improved   fit,   showing   a   similar   ΔAIC   score   as   the   m2-TP
( ) model.

2.5 Discussion

The starting point of the present study is the Bayesian model of spatial orientation
that we first proposed in 2011 based on recordings in a non-naturalistic laboratory-
based environment (Clemens et al., 2011). Specifically, a Gaussian-prior probability
distribution of head roll  was imposed to explain biases in the subjective vertical  –
known as the Aubert effect (see Figure 2.1).  This prior probability distribution was
regarded   as   a   Bayesian   observer’s   assumption   that   the   head   is   usually   nearly
upright   (Eggert,   1998;   de   Vrijer   et   al.,   2008).   Under   the   assumption   that   human
observers  are  performing Bayesian  inference  for  spatial  orientation,  we asked the
question  whether   this   form of   the  prior  probability  distribution   is  consistent  with
the natural  statistics  of  head orientation,  generated by human participants  during
everyday activities.  

The   answer   is   no.  We   found   that   the   natural   statistics   of   head  orientation  were
poorly represented by Gaussian probability distributions but were characterized by
long   tails,   as   quantified   by   large   kurtosis   values.   This   observation   extends
observations   by   Carriot   et   al.   (2014)   on   head   velocity   and   acceleration
distributions.   Their   kurtosis   values   (>10)   are   similar   to   the   range   we   found
(between   5   and   14,   with   the   exception   of   the   much   larger   kurtosis   value   of
participant   6).   In   both   studies,   these   statistics   are   based   on   the   combined
distribution   of   all   activities   tested,   even   though   the   range   of   head   orientations
varied across the activities. Also, separate analyses of the activities within subjects
revealed  distributions  with   excess   kurtosis   in   nearly   all   cases   (see  Supplemental
Table   2.S3),   suggesting   that   the   kurtosis   does   not   originate   from   sampling   from
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different   Gaussian   distributions.   This   does   not   seem   a   divergent   finding,   as
Schwabe & Blanke (2008)  also reported deviations of  normality  of  measured head
pitch of  human participants when they were standing,  walking around,  or  moving
as   if   they   were   playing   tennis.   Similar   observations   were   made   in   visual   and
auditory  modalities   (Ruderman  &   Bialek,   1994;   Attias   &   Schreiner,   1996;   Geisler,
2008;  Pavão et  al.,  2020).  Also in songbirds,  the distribution of  the sung pitches  is
observed to have long, non-Gaussian tails (Zhou et al., 2018).

To   model   the   naturalistic   head   orientation   data,   we   fitted   several   probability
distributions   –   the   Gaussian,   logistic,  t-location-scale,   extreme   value,   and
generalized   extreme   value   distributions   –   to   the   head   orientation   data   of   each
participant.   A   Gaussian   distribution  was   never   the   best-fitting   function   but  was
always   outperformed   by   a  t-location-scale   distribution.   The  t-location-scale
distribution approaches the Gaussian distribution as the shape parameter tends to
infinity,   whereas   smaller   values   of   the   shape   parameter   yield   heavier   tails.   The
latter   is  what  we  observed.  The  best-fitting  shape  parameter   ranged  between  2.2
and 4.3 across our participants.  

We   further   performed   a   Bayesian   modeling   analysis   using   the  t-location-scale
distribution of head roll as the prior. To this end, the original closed-form Bayesian
model by Clemens et al.  (2011) was turned into a numerical  version. Although the
numerical  model could equally well  account for response bias and variance in the
subjective visual  vertical  and subjective body tilt  tasks under the assumption of  a
Gaussian prior  as  the original  model   (see Figure 2.3),   it   failed dramatically  with  a
t-location-scale prior (see ΔAIC scores in Figure 2.4). Indeed, the larger we allowed
the   shape   parameter   of   the  t-location-scale   prior   to   be,   i.e.,   the   better   it
approximated   a   Gaussian,   the   better   the   model   accounted   for   SVV   and   SBT
performance.  Adding more flexibility  to  the model  by releasing constraints  on the
otolith   likelihood did  not   improve  the  model  with   the  t-location-scale  prior   form.
Fitting   the  model  with  a  Gaussian-mixture  prior   (an  alternative  prior  distribution
allowing   long   tails)   returned   a   single  Gaussian   distribution   as   the   best   account.
Also  extending   the  model  by   including   the  nonlinear   transformation  between   the
otolith  measurement  distribution  and   likelihood   failed   to   improve   the  t-location-
scale prior fit (see Figure 2.4).  

Given   that  natural   statistics  of  head  orientation  are  best   characterized  by  a  non-
Gaussian distribution, why is SVV and SBT performance so much better accounted
for by a Bayesian observer assuming a Gaussian head-in-space prior? We can only
speculate  about   the  answers   to   this  question.  First,   the  statistics  of  natural  head
motion may simply not be incorporated as a prior in such perceptual computations.
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Carriot   et   al.   (2014)  have   shown   that   the   statistics  of   signals   experienced  during
active  movements  differed  from those experienced during  passive  movement.  For
instance,   their   participants   experienced   greater   translational   accelerations   and
angular   velocities   during   active   motion   than   passive   motion.   Typically,   during
active   exploitation,   the   system   relies  heavily  on   sensory   feedback   to   control   our
body to remain within limits of stability and to prevent falling. A  t-distribution prior
could   define   a   “zone   of   stability”   –   a   movement-relevant   prior   distribution   to
control   the   deliberate   exploration   of   plausible  motor   commands   that   keeps   the
body within the borders of postural stability [cf. Zhou et al. (2018)].  

A  more  theoretical  explanation arises   if  one realizes   that  observing  new evidence
not   always   reduces   uncertainty   under   Bayes’   rule.   In   other   words,   a   posterior
distribution does not necessarily have a lower variance than the prior or likelihood
distributions it is based upon. It can be shown that this holds in the case when the
prior   and   likelihoods   are   Gaussian,   but   not   in   all   other   cases   (Petty,   2018).
Figure 2.7   illustrates   this   point.   The   posterior   that   follows   from   a   Gaussian
likelihood and  t-location-scale prior can have a larger variance than either prior or
likelihood,  consistent  with   the  predictions   in  Figure  2.3,  where   the  SD of   the  SVV
posterior   is  much   larger  with  a  t-location-scale  prior   than  with  a  Gaussian  prior.
This increase in width (or decrease in precision) occurs when the distance between
the  prior   and   likelihood  means  becomes   large   enough.  Hence,   a  t-location-scale
prior can lead to a negative information gain (Petty, 2018), which is a situation that
the brain may want to prevent. Instead, the posterior yields a smaller variance if it
follows   from   a   Gaussian   prior.   Gaussian   priors   will   reduce   the   variance   of   the
posterior   across   all   Gaussian   sensory   likelihoods,   thus   creating   a   positive
information   gain   (irrespective   of   the   distance   between   the   prior   and   likelihood
distribution).   New   sensory   evidence  will   thus   decrease   the   system’s   uncertainty
about   the   state   it   has   adopted.   In   functional   terms,   for   vertical   perception,   a
Gaussian   prior   therefore   amounts   to   a   particular   precision-accuracy   trade-off
across the tilt  range; it  suppresses uncertainty at the expense of a systematic bias
at larger tilt angles (de Vrijer et al., 2008). This cannot generally be achieved with a
t-location-scale prior in the context of the structure of the model by Clemens et al.
(2011). We do not argue that no other model structures can be conceived that deal
with   this   notion,   but   such   conceptual   analysis   goes   beyond   the
present investigation. 
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Figure  2.7.  A:   Integrating  a  t-location-scale  prior   (blue),  which  resembles   the  natural  statistics  of
head orientations, with a Gaussian likelihood distribution (black) can lead to a posterior distribution
(red) with a larger variance than the variances of the individual signals in the integration. B: Instead,
the   integration   of   a  Gaussian  prior   (orange)   and  Gaussian   likelihood   (black)   always   results   in   a
Gaussian posterior (red) with a lower variance than the variances of the individual signals.

The subsequent  question then  is,  how can the  brain  develop a  Gaussian head-in-
space  prior,  while   the  natural  head  motion   statistics  are  best  approximated  by  a
t-location-scale distribution? As in any biological  system, neural  variability plays a
role   in   vestibular   processing   and   determines   the   neural   code   at   central   levels
(Sadeghi et al.,  2007). Therefore, the signals at the level of the vestibular afferents
will be noisier than the signals measured by the inertial measurement units, which
will   be   close   to   the   actual   physical   orientations.   In   other   words,   vestibular
processing  of  head  orientation  signals   is  corrupted  by  additive   (or  multiplicative)
noise (Mallery et al.,  2010). Based on the central limit theorem, this could, over an
extended exposure to natural  stimuli  and daily   life  tasks,  convert  the heavy-tailed
distribution of measured head orientations into a more Gaussian distribution at the
central   level.   If   so,  our   results   suggest   that   the  brain  stores   this   information  and
uses it as a prior in sensory processing for vertical perception.

At the neural level, vestibular afferents transmit data to the brain in trains of action
potentials,   and   the  brain  needs   to  decode   this   information   in   terms  of   the  head
orientation,   as   well   as   other   kinematic   variables   of   head   motion.   It   has   been
suggested that regular afferents transmit more information about changes in static
head orientations than irregular afferents (Sadeghi et al., 2007; Jamali et al., 2019).
The likelihood distribution of the head’s kinematic state at the time of a spike of a
given neuron differs from the prior distribution of states (Paulin & Hoffman, 2019).
Because a single spike transmits only a small amount of information, the observer’s
uncertainty  about  the head’s  kinematic  state  will  be  reduced (i.e.,   the variance of
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the  posterior  distribution  will  be   smaller)   if   the  prior  distribution  of   states  has  a
Gaussian form.  More generally,   it  has been suggested that  Bayesian computations
with   prior   probabilities   can   rely   on   population   vector   decoding   of   neural
populations  with  nonuniform  preferred  directions   (Girshick   et   al.,   2011;  Cuturi  &
MacNeilage, 2013).

As a final note,  the considerations above assume the notion of a stable real-world
prior, derived from the statistics of movements during natural activities over a long
time.   Stable   priors   have   also   been   suggested   for   processing   in   other   sensory
modalities,   e.g.,   predominance   of   horizontal   and   vertical   orientations   in   natural
scenes   for   visual  orientation  perception   (Attneave,  1954;  Simoncelli  &  Olshausen,
2001;   Vinje  &  Gallant,   2002;  Girshick   et   al.,   2011).  However,   priors   could  also  be
more   flexible,   or   context-dependent,   and   adapt   over   a   short   time   scale,   as   for
example   has   been   shown   in   perceptual   (Roach   et   al.,   2017),  motor   (Körding   &
Wolpert,   2004),   or   language-learning   experiments   (Griffiths   &   Kalish,   2005).   It
remains   to  be   tested  how  participants   can  develop  a   context-  or   task-dependent
prior  based  on   the  orientations   experienced  during   the   experiment.   The  optimal
strategy,   in   this   case,   is   called   dynamic   or   sequential   Bayesian   inference,  which
assumes conditionally independent measurements and Markovian dynamics. Under
a recursive structure, it minimizes uncertainty in task outcome or state by using the
posterior distribution given all previous measurements as the prior distribution for
inferring   the  posterior   on   the  next   trial   (Doucet   et   al.,   2001;   Verstynen  &  Sabes,
2011;  Petzschner et  al.,  2015;  Zhou et  al.,  2018).  More specifically,  a  prior  belief   is
computed   by   prediction,   requiring   a   kinematic   forward   model,   and   then   the
posterior is updated by combining the likelihood with the prior (Laurens & Droulez,
2007;   Ellis   &  Mast,   2017).   It   would   be   an   interesting   avenue   for   future  work   to
embed the spatial  orientation model of  Clemens et al.  (2011) in this framework to
find out which specific kinematic model could explain the dynamic SVV and SBT.
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2.6 Supplemental material

Table 2.S1. (continued)

Participant Fitted probability distribution AIC

1 t-location-scale
logistic
extreme value
normal
generalized extreme value

0
5338.41
18082.09
24217.90
44213.82

2 extreme value
t-location-scale
logistic
generalized extreme value
normal

0
11050.19
15751.84
32034.44
33534.12

3 t-location-scale
logistic
normal
extreme value
generalized extreme value

0
5968.01
29410.35
32701.38
51737.02

4 t-location-scale
logistic
normal
generalized extreme value
extreme value

0
2560.41
13790.25
29936.73
44681.60

5 t-location-scale
logistic
normal
generalized extreme value
extreme value

0
11048.67
31269.14
47624.77
66517.03

6 t-location-scale
logistic
normal
generalized extreme value
extreme value

0
12507.65
92083.58
250067.32
373372.50

Table  2.S1.  Best-fitting   distributions   on   the   head   roll-tilt   data   pooled   across   activities,   per
participant, and their respective AIC scores, relative to best fitting distribution.
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Table 2.S2. (continued)

Participant Probability
distributions

Location
parameter (°)

Scale 
parameter (°)

Shape
parameter

1 t-location-scale
normal

-1.91
-2.86

6.77
10.32

3.28

2 t-location-scale
normal

-0.79
-2.27

5.57
8.48

3.33

3 t-location-scale
normal

0.95
0.25

4.81
7.23

3.55

4 t-location-scale
normal

1.11
0.86

4.39
6.29

3.52

5 t-location-scale
normal

1.05
1.04

3.93
7.37

2.23

6 t-location-scale
normal

-0.11
0.00

4.91
8.69

4.28

Mean t-location-scale
normal

0.05
-0.50

5.06
8.06

3.36

Table 2.S3. (continued)

Participant Walking Running Standing Sitting Stairs

1 7.24 11.27 7.23 2.83 6.68

2 8.95 3.99 12.89 26.80 2.46

3 13.70 9.26 23.85 7.11 5.36

4 5.31 4.37 4.48 5.20 3.79

5 15.86 4.17 14.07 57.37 3.51

6 5.59 4.16 83.99 3.56 5.50

Table  2.S2.  Location,  scale  and  (in   the  case  of   the  t-location-scale  distribution)  shape parameter
values of  the  t-location-scale  and normal  distributions that  were fitted on the data pooled across
activities for each participant. The bottom row shows the mean location, scale and shape parameters
of the distributions, averaged across participants. The mean value of the shape parameter is used in
the model fitting (see Methods, Modeling, Model variants and their evaluation, Model variant 2).

Table 2.S3. Kurtosis values of the data of each activity of each participant.
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Chapter 3
Central tendency and serial dependence
in vestibular path integration

This chapter has been adapted from:

Willemsen,   S.   C.   M.   J.,   Oostwoud  Wijdenes,   L.,   van   Beers,   R.   J.,   Koppen,   M.,   &
Medendorp, W. P. (2024). Central tendency and serial dependence in vestibular path
integration. Journal of Neurophysiology,  132(5), 1481-1493. 



3.1 Abstract

Path   integration,   the   process   of   updating   one’s   position   using   successive   self-
motion signals, has previously been studied with visual distance reproduction tasks
in  which   optic   flow  patterns   provide   information   about   traveled  distance.   These
studies   have   reported   that   reproduced   distances   show   two   types   of   systematic
biases:   central   tendency   and   serial   dependence.   In   the   present   study,   we
investigated  whether   these  biases  are  also  present   in  vestibular  path   integration.
Participants  were   seated   on   a   linear  motion   platform   and   performed   a   distance
reproduction   task   in   total   darkness.   The   platform   first   passively   moved   the
participant a predefined stimulus distance, which they then actively reproduced by
steering   the   platform  back   the   same  distance.   Stimulus   distances  were   sampled
from short-   and   long-distance  probability  distributions  and  presented  either   in  a
randomized order or in separate blocks to study the effect of presentation context.
Similar to the effects observed in visual path integration, we found that reproduced
distances showed an overall  positive central  tendency effect  as  well  as  a  positive,
attractive   serial   dependence   effect.   Furthermore,   reproduction   behavior   was
affected   by   presentation   context.   These   results   were   mostly   consistent   with
predictions   of   a   Bayesian   Kalman   filter   model,   originally   proposed   for   visual
path integration.

Chapter 366



3.2 Introduction

How   do   we   keep   track   of   our   position   when   navigating   our   surroundings?   An
important   aspect   of   human   spatial   navigation   is   path   integration,   which   is   the
process   of   continuously   updating   one’s   position   using   successive   self-motion
signals   (Mittelstaedt   &   Mittelstaedt,   1980;   Etienne   &   Jeffery,   2004).   These   self-
motion   signals   can   come   from  various   senses,   such   as   the   visual   and   vestibular
systems   (ter   Horst   et   al.,   2015),   and   can   also   be   derived   from   motor   signals
(Laurens & Angelaki, 2017; van Helvert et al., 2022; Cullen, 2023).

To investigate the mechanisms underlying path integration, studies often make use
of distance reproduction tasks (Israël et al.,  1997; Lappe & Frenz, 2009; Petzschner
&  Glasauer,   2011).   Typically,   in   such   tasks,   a  participant   is   virtually  or  physically
moved  an  unspecified  distance  and   then  asked   to   reproduce   that   same distance.
Generally, participants show systematic biases in their reproductions. Some studies
show an overall overestimation (Redlick et al., 2001; Lappe & Frenz, 2009), whereas
others report an underestimation of the reproduced distance (Frenz & Lappe, 2005;
Lappe   et   al.,   2011).   There   is   also   work   that   reports   that   shorter   distances   are
overestimated   while   longer   distances   are   underestimated   (Loomis   et   al.,   1993;
Israël et al.,  1997; Philbeck & Loomis, 1997; Grasso et al.,  1999; Riecke et al.,  2002;
Bergmann et al., 2011; Petzschner & Glasauer, 2011; Prsa et al., 2015).

The underestimation of  traveled distance has been modeled by assuming that the
integration of self-motion information is leaky (Mittelstaedt & Glasauer, 1991; Lappe
et al., 2007). This model can also predict an overestimation if instead of the already
traveled   distance,   the   remaining   distance   to   a   target   position   must   be   judged
(Lappe et al., 2007). However, these types of models cannot explain the observation
that reproduced distances are also affected by the history of experienced distances
(Petzschner   &   Glasauer,   2011).   Indeed,   several   studies   have   shown   that   path
integration   is   biased   by   the   distribution   of   distances   a   participant   encounters
during   an   experiment   as   well   as   the   sequence   in   which   these   distances   are
presented (Sun et al.,  2020; Glasauer & Shi,  2022).  The former is referred to as the
central   tendency   bias   (Hollingworth,   1910)   and   the   latter   as   serial   dependence
(Holland   &   Lockhead,   1968;   Cross,   1973),   both   well-known   observations   across
perceptual   domains   (Saarela   et   al.,   2023).  What   is   the   origin   of   these   biases   in
path integration?

Recent   studies   suggest   that   the   observed   biases   do   not   reflect   a   distorted
integration  process  but   rather  arise   from probabilistic  computations   that  perform
near-optimal Bayesian inference on noisy but unbiased self-motion velocity signals
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(Jürgens & Becker, 2006; Petzschner & Glasauer, 2011; Petzschner et al.,  2012; Prsa
et   al.,   2015;   Lakshminarasimhan   et   al.,   2018).   In  more   detail,   because   sensory
information   and  motor   commands,   as   well   as   the   neural   processing   itself,   are
endowed with   intrinsic   random noise,   the  self-motion cues  should  not  be  treated
as point estimates but rather be approached as probability distributions.  For path
integration,   the  Bayesian   framework   states   that   the  observer  estimates   the  most
probable   distance   (the   posterior)   by   integrating   noisy   sensory   signals   (the
likelihood)  with   prior   expectations   (as   derived   from  past   experiences),   following
Bayes’ rule.

In   support,   Lakshminarasimhan   et   al.   (2018)   found   that   the   bias   in   visual   path
integration  was  better  explained by  a  Bayesian  prior   favoring  slower  speeds   than
by leaky integration of unbiased self-motion velocity. Glasauer & Shi (2022) showed
that   a   static  Bayesian  prior,   i.e.,   a   distribution  with   a   fixed   variance  and  a   fixed
mean,   could   account   for   central   tendency   biases   in   visual   path   integration   but
could   not   explain   the   serial   dependence   effects   showing   that   responses   were
attracted   toward   the  previously  presented  distance.  To  account   for  both   types  of
biases,   they   proposed   instead   a   Bayesian  model   that   assumes   that   stimuli   are
drawn from a distribution with a fixed variance but whose mean changes from trial
to trial (Glasauer & Shi,  2022). Can this model also explain the biases in vestibular
(or more generally, idiothetic) path integration?

In the present study, we first   investigated whether the central  tendency and serial
dependence   effects   are   also   observed   in   vestibular   path   integration.   If   path
integration   relies   on   a   single   multimodal   representation   of   estimated   distance
irrespective   of   the   type  of   sensory   input,   then  we   expect   to   find   similar   central
tendency   and   attractive   serial   dependence   biases   as   observed   in   visual   path
integration (Glasauer & Shi, 2022). However, it is also possible that the reproduced
distances   show no  or  even   repulsive   serial  dependence,  biasing  perception  away
from  the  previously  presented  distance   to   increase  overall   sensitivity   to  different
distances   instead  of  keeping   the  continuity  of  vestibular  path   integration   (Sun  et
al.,  2020). To obtain more insight into the origin of the biases, we studied whether
these   biases   are   affected   by   the   presentation   context   in   which   the   stimulus
distances are  experienced.  To do this,  we sampled distances  from two probability
distributions   covering   a   range   of   “short”   and   “long”   distances   and   created   two
different   contexts   by   changing   the   order   in   which   the   stimuli   were   presented.
Second,  we   tested  whether   the   reproduced   distances   and   observed   biases,   and
their   potential   dependence   on   presentation   context,   could   be   explained   by   the
model proposed by Glasauer & Shi (2022) for visual path integration.
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3.3 Methods

3.3.1 Participants
Thirty-one participants took part   in the experiment.  All  participants were naive as
to the purpose of  the study and had normal or  corrected-to-normal vision as well
as  no hearing  issues or  history  of  motion sickness.  The experiment  took ~90 min,
and participants received course credits or €15 as reimbursement. One participant
was  excluded  because  of  problems  with   sound  masking  during   the   task,   so   that
data of 30 participants (11 men and 19 women, aged 18 – 31 yr) are reported. The
study  was  approved  by   the  ethics  committee  of   the  Faculty  of  Social  Sciences  of
Radboud University Nijmegen, and all participants gave written informed consent.

3.3.2 Setup
We implemented a distance reproduction task using a vestibular sled, consisting of
a   chair   mounted   on   top   of   a   linear   motion   platform,   that   moved   along   the
participant’s interaural axis on an ~95-cm-long track (see Figure 3.1). A linear motor
(TB15N;   Tecnotion,   Almelo,   The  Netherlands)   and   servo   drive   (Kollmorgen   S700;
Danaher,   Washington,   DC)   were   used   to   power   and   control   the   platform.
Participants wore a five-point  seat  belt,  and their  head was fixated with ear  cups.
The chair  contained emergency buttons that  could be pressed at  any time during
the   experiment   to   stop   the   motion   of   the   platform.   The   platform   could   move
passively,   i.e.,   outside  of   the  participant’s   control,   or   actively,   by   the  participant
rotating a steering wheel (G27 Racing Wheel; Logitech, Lausanne, Switzerland) that
was mounted on a table at  chest   level   in front of  them. The steering wheel  had a
range of rotation from -450° to +450° with a resolution of 0.0549° and encoded the
linear velocity of  the sled (1 cm/s per degree).  The mapping between the steering
wheel  angle  and sled  velocity  was  kept  constant   throughout   the  experiment.  The
task   took  place   in   total  darkness  and  did  not  contain  visual   stimuli.  We  used  an
OLED screen (55EA8809-ZC;  LG,  Seoul,  South Korea)  placed  in   front  of   the  sled to
present instruction messages that explained the task before data collection started.
The   participant   wore   in-ear   headphones   with   active   noise   canceling
(QuietComfort 20; Bose, Framingham, MA) that played a white noise sound to mask
noise produced by the motion platform, alternated by single-tone beeps indicating
the   different   stages   of   each   trial.   The   experiment   code   was   written   in   Python
(v.3.6.9; Python Software Foundation).
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3.3.3 Reproduction task
Participants   performed   a   vestibular   distance   reproduction   task   (see   Figure   3.1).
Every trial started with a  stimulus movement, where the chair was passively moved
by a predefined distance. The participant’s task was then to actively reproduce the
distance by steering the sled in the opposite direction: the reproduction movement.
In essence, the participant always had to move the chair back to the location from
which the stimulus movement started. The direction of the stimulus movement was
the   same   across   the   trials   of   one   participant.   Half   of   the   participants   were
randomly assigned to leftward stimulus movements and the other half to rightward
stimulus movements.

Figure  3.1.  Distance   reproduction   task   in   a   vestibular   sled.   Participants  were   seated   in   a   chair
mounted on top of a linear motion platform. At the start of each trial, participants were moved to a
new start position via two detour movements (A).  Then, a low-tone beep cued that the participant
would be moved over the stimulus distance (B). Finally, a high-tone beep instructed the participant
to  use  the steering wheel   to  move the sled over  the same distance  in  the opposite  direction:   the
reproduced distance (C).

Before   the   stimulus  movement,   the   chair  was   passively  moved   via   two   random
detour  movements   to  one  of   two  start   locations,   to  ensure  enough  space  on   the
track   for   the   upcoming   stimulus   movement.   Detours   were   used   to   prevent
participants   from   receiving   feedback  about   their  previously   reproduced  distance.
The   first   detour  moved   the   chair   to   a   random   location  within   ±30   cm   from   the
middle  of   the  track  with  a   random duration  between 1.8  s  and 2.3  s.  The  second
detour movement subsequently brought the chair to the start location in 1.3 s. This
start   location was  on the   left  side  of   the  track   for   rightward stimulus  movements
and on the right side of the track for leftward stimulus movements.

Subsequently, a low-tone beep was played to alert the participant to the upcoming
stimulus  movement.   This  movement   had   a   random  duration   between   1.3 s   and
1.6 s. The lower bound was determined such that none of the stimulus movements
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had a peak acceleration exceeding 1 G and a peak absolute velocity exceeding 100
cm/s. The upper bound resulted in the shortest stimulus movement having a peak
acceleration of  ~38 cm/s   and a peak absolute velocity of  ~20 cm/s,  such that the
vestibular thresholds for perceiving the direction of linear lateral movements were
well   exceeded   (Kingma,   2005).   All   passive   movements,   i.e.,   the   detours   and
stimulus movement, followed a minimum-jerk profile.

After   the   stimulus  movement   finished  and  a   random waiting   time  between  0.5   s
and   1   s   had   passed,   a   high-tone   beep   cued   the   participant   to   make   the
reproduction movement by steering the sled in the opposite direction for the same
distance as the stimulus movement. If the participant moved the steering wheel too
soon (i.e., before the beep), the trial was aborted. Participants could steer the sled
up to a maximum absolute velocity of  100 cm/s and could stop the movement by
rotating the steering wheel back to the upright position. The chair stopped moving
when the absolute velocity became lower than 2 cm/s, after which the trial ended.
To cover the case that the participant intends to stop the sled movement but fails
to   rotate   the   wheel   completely   upright,   the   movement   also   ended   when   the
absolute velocity fell below 6 cm/s while the steering wheel angle was constant for
100 ms or  the steering changed direction (mean ± SD:  87 ±  78 trials).  Participants
were   instructed  to  make one  smooth  movement,   i.e.,   it  was  not  possible   to  steer
back or resume steering after the chair had come to a stop. Participants were free
to  choose   the  duration  of   their   reproduction  and  did  not   receive   feedback  about
their reproduction performance (except in the training block, see below).

3.3.4 Paradigm
We sampled   the   stimulus  distances   from  two  probability  distributions  covering  a
range of  short  and  long distances   (see  Figure  3.2A).  Because magnitudes  seem to
be internally represented on a logarithmic scale (Dehaene, 2003; Jürgens & Becker,
2006; Stocker & Simoncelli,  2006; Durgin et al.,  2009; Petzschner & Glasauer, 2011),
we sampled the stimulus distances from log-normal distributions. Log-transforming
these distances yielded equal-variance normal distributions (see Figure 3.2A, inset).
Before log-transforming, we divide the distances by a reference distance (1 cm) so
all log-transformed distances are dimensionless. Stimulus distances on linear scale
varied   overall   between   17   cm   and   60   cm.   The  medians   of   the   short   and   long
stimulus  distributions  were  24.6   cm  and  45   cm,   respectively,  where   the  distance
between   the  medians  of   the  distributions  was  determined  such   that   there  was  a
negligible probability of 0.0001 for a random draw from the long distribution to be
shorter than a random draw from the short distribution. The variances of the short
and long log-normal distributions were 8.2 cm  and 27.4 cm , respectively.
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Per participant, we randomly sampled 65 distances from each distribution and used
these   to   generate   two   presentation   contexts   (see   Figure   3.2B).   In   the   “blocked”
context   the   short   and   long   distances   were   presented   in   separate   blocks   and
therefore   separated   in   time,  whereas   in   the   “mixed”  context   the   same  short  and
long distances  were  randomly   interleaved.  Participants  experienced both  contexts
during one experimental session of 260 test trials,  where the order of the contexts
(including   the   order   of   the   short   and   long   blocks   in   the   blocked   context)   was
counterbalanced across participants. There was no instruction about the existence
of the two types of distances and contexts. After every 52 trials (i.e., ~10 min), there
was   a   short   break   (~2  min)   during  which   the   lights  were   turned   on   to   prevent
dark adaptation.

Figure  3.2.  A:   Distributions  of   stimulus  distances.  Distances  were   sampled   from   two   log-normal
probability  distributions  on   linear   scale  covering  a   “short”   (blue)  and  a   “long”   (orange)   range  of
distances.  Dashed lines  indicate the median distance.  Inset:  The same probability  distributions on
logarithmic scale. B: Example presentation order of stimulus distances. In the blocked context, short
and   long   distances   were   presented   in   blocks;   in   the  mixed   context,   the   same   distances   were
randomly interleaved.

The   experimental   session   started   with   20   training   trials   to   familiarize   the
participant with the task.  The stimulus distances  in  the training trials  were drawn
from a  uniform distribution  on   linear  scale,  covering  all  possible  distances   (17   to
60 cm). The training trials took place in the dark and followed the same paradigm
as   the   test   trials.  Contrary   to   the   test   trials,   the   training   trials  ended  with  visual
feedback on the  reproduction error:  after   the  reproduction movement  ended,   the
signed reproduction error in centimeters was presented on the screen. The training
trials were not analyzed.

Chapter 372



3.3.5 Data analysis
Data from the test  trials  were processed offline in MATLAB (v.R2019a;  MathWorks).
The recorded sled position profiles showed that in some trials the movement speed
plateaued  at  a   low  but  nonzero  value  before   the  movement  was   terminated.  We
therefore   corrected   the  movement   end   to   the   first   time   point   with   sled   speed
< 8 cm/s (instead of the online threshold of 6 cm/s) when the steering wheel angle
remained   constant   for   at   least   100  ms   or   the   steering   direction   changed.   This
resulted   in  an  average  of  20  corrected   trials  per  participant   (mean  ±  SD:  20  ±  18
trials).  The   reproduced  distance  was   taken  as   the  distance  between   the  end  and
start  point  of   the   reproduction  movement   in  centimeters.  The   reproduction  error
was  defined   as   the  difference  between   the   reproduced   and   stimulus   distance   in
centimeters,   where   negative   and   positive   values   represent   an   undershoot   and
overshoot,   respectively.   Trials   in   which   the   reproduction  movement   started   too
soon,  with   reproduction  movements   in   the  wrong   direction,   or  with   reproduced
distances of < 1 cm were excluded (mean ± SD: 4 ± 4 trials).  Because there was no
effect of movement direction on the mean unsigned reproduction error across trials
(Wilcoxon   rank-sum   test:  p  =   0.300,  r  =   0.19),   we   regarded   all   participants   as
one group.

Central   tendency   was   defined   as   1  minus   the   slope   of   the   linear   least-squares
regression   of   the   reproduced   distance   on   the   stimulus   distance   on   logarithmic
scale. In other words, a slope closer to 0 corresponds to a higher central tendency
value  and reproduced distances   that   tend more  toward  the  mean of   the  stimulus
distribution.  We   computed   the   central   tendency  of   the   short   and   long  distances
separately within each presentation context. We tested whether there was an effect
of distance type (short/long) and context (mixed/blocked) on the central  tendency
values  with  a   repeated-measures  ANOVA.  Because  we   found no  significant  effects
(see Results), we averaged the central tendency values for every participant. A one-
sample  t-test   was   used   to   analyze   whether   central   tendencies   differed   from   0.
Partial eta-squared ( ) (Cohen, 1973) and Cohen’s  d  (Cohen, 1988) are reported for
the ANOVA and t-test, respectively.

To   study  whether   the   perception   of   the   short   and   long   stimulus   distances  was
affected  by   the   context   in  which   they  were  presented,  we  used   the   same   linear
regressions   to   extrapolate   how   participants  would   have   reproduced   the  median
distance of the entire distance range (on logarithmic scale, which corresponds to a
distance   of   31.9   cm   on   linear   scale).  We   tested   the   effect   of   distance   type   and
context   on   these   estimated   reproductions   with   a   repeated-measures   ANOVA,
followed   by   simple   effect   tests   of   the   interaction   effect   levels   with   Bonferroni
correction. Partial eta-squared ( ) is reported for the ANOVA.
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We calculated  serial  dependence,  defined  as   the  slope  of   the   linear   least-squares
regression of the reproduction error on trial  n on the stimulus distance on trial  n  - 1
on logarithmic scale (Glasauer & Shi,  2022).  The reproduction error was computed
by   subtracting   the   reproduced   distance   on   logarithmic   scale   from   the   stimulus
distance on logarithmic scale. We computed the serial dependence of the short and
long distances separately  within each presentation context.  Because not all  of  the
difference   scores  were   normally   distributed,  we   performed  Wilcoxon   signed-rank
tests   to   analyze   whether   there   were   differences   in   serial   dependence   values
between distance types and contexts. As in the central tendency analysis, we found
no significant differences (see Results)  and averaged the serial  dependence values
for   every   participant.   A   one-sample  t-test  was   performed   to   test  whether   serial
dependencies  differed  from 0.  Effect  size  r  (Rosenthal  et  al.,  1994)  and Cohen’s  d
are reported for the Wilcoxon test and t-test, respectively.

3.3.6 Modeling

The two-state model and special cases
We implemented a Bayesian model, similar to the “two-state” model developed by
Glasauer & Shi (2022) for visual path integration, to evaluate whether it  could also
explain   the   central   tendency   and   serial   dependence   biases   in   vestibular   path
integration.  The  model   first   transforms   the   sensory   input     to   logarithmic   scale
with  , to which the following three generative assumptions are applied:

The model  thus assumes  1) that  the sensory measurement on trial   ,   ,   is  drawn
from a  normal  distribution  centered  on   the   log-transformed  stimulus  distance  
with a fixed variance r  (Equation 3.1);  2) that the stimulus distance    is drawn from
a  normal   distribution  with  mean     and   fixed   variance     (Equation   3.2);   and
3) that the mean of this distribution     varies over trials following a random walk
with  a   fixed  variance     (Equation  3.3).  The  stimulus  distance     and  the  mean of
the stimulus distribution     are the two states of  the two-state model,  which are
estimated  on  every   trial  by  a   time-discrete  Kalman   filter.  Here,   the  Kalman   filter
estimates   of   the   two   states   on   trial   ,     and   ,   are   based   on   the   sensory
measurement     and   the   estimated   mean   of   the   stimulus   distribution   on   the
previous trial   ,  which are weighted by the Kalman gain (see Appendix for the
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equations). The final estimated reproduced distance on trial     on logarithmic scale
is  computed as   ,  where     is  a  shift   term that  accounts   for  global
under-   or   overestimation.   In   total,   the  model   has   four   free   parameters   that   are
fitted to the reproduction data: the variances  ,   , and   and the shift term .

Identical to Glasauer & Shi (2022), we considered two special cases of the two-state
model based on the assumed stimulus distribution. The “static” variant is obtained
by   fixing   variance     at   0,   corresponding   to   a   stimulus   distribution  with   a   fixed
mean. This results in distance estimates that are independent across trials and thus
show   no   serial   dependence.   In   the   other   special   case,   the   “iterative”   variant,
variance     is  set to 0,  causing the stimulus distribution to depend on the distance
estimate   in   the   previous   trial   and   the   estimates   to   show   maximal   serial
dependence.   Both   variants,   with   only   three   free   parameters,   were   fitted   to   the
present data.

Sensitivity of the two-state model to different stimulus distributions
The     and     parameters   of   the   two-state  model   capture   assumptions   about   the
stimulus   distribution.   To   explore   to   what   extent   the   observed   differences   in
reproduction behavior between presentation contexts can be explained by different
assumptions,  we   adapted   the   two-state  model   by   introducing   separate     and  
parameters   for   the  mixed,   short,   and   long  blocks.  The   resulting  model  has  eight
free parameters ( ,   ,   ,   ,   ,   ,   ,   ).

We also tested whether the context-dependent differences in the reproduction data
are  better  explained by  a  block-dependent  shift  parameter     rather  than block-
dependent   variances.   We   therefore   adapted   the   two-state   model   by   allowing
different shift  parameters  in the three blocks,  while keeping the other parameters
constant   across   blocks,   resulting   in   a  model   with   six   free   parameters   ( ,   ,   ,  

,   ,   ).  Both adapted versions of   the two-state  model  contain
only   one   measurement   variance   parameter     because   we   assumed   that   the
measurement noise would not change over the course of the experiment.

Model fitting and comparison
We determined the log-likelihood of the data given the model parameters across all
trials.   On   every   trial,   we   computed   the   probability   density   of   the   participant’s
reproduced   distance,   given   the   model’s   distribution   of   possible   reproduced
distances   (equations   are   included   in   the   Appendix).   The   free   parameters   of   the
models  were   fitted   to   the  data  of   each  participant   individually  with   the  MATLAB
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function  fmincon,  which minimized the total  negative   log-likelihood summed over
trials.  Lower  bounds  were  set   to  0   for   the  variance  parameters   ,   ,  and   .  Start
values were set to 1 for the variance parameters and to 0 for the     parameter(s)
to   initialize   the   GlobalSearch   algorithm   [MATLAB   function  GlobalSearch
(Ugray et al.,  2007)],  which iteratively executed the  fmincon  function with different
start values.

For   comparison,  we   computed   the   Bayesian   information   criterion   (BIC)   score   of
each   model   variant.   The   BIC   is   based   on   the   log-likelihood,   while   taking   into
account the number of free parameters of the model. A lower BIC score indicates a
better  description of  the data.  We computed the BIC scores of  the model  variants
relative   to   the   two-state   model   for   every   participant   separately,   which   are
graphically presented in violin plots showing the median, interquartile range (IQR),
and 1.5x IQR of the relative BIC scores across participants. Median values and IQRs
of the fitted parameters across participants are reported because of outliers in the
fitted   values.   To   visualize   the  model   predictions,   stimulus   distances   as   well   as
actual  and predicted  reproduced distances  were  binned  into  10  bins  per  distance
type   and   per   context,   separately   for   each   participant.   Of   these   variables,   we
subsequently computed the means and standard errors across participants per bin.

3.4 Results

We studied vestibular path integration by measuring participants’ performance in a
distance   reproduction   task   in   the  dark  and  analyzing  central   tendency  and  serial
dependence   biases   in   the   reproduced   distances.   The   stimulus   distances   were
sampled   from  either   a   short-distance   or   a   long-distance   probability   distribution,
and   different   presentation   contexts  were   created   by   varying   the   order   in  which
these distances were presented. In the mixed context the short and long distances
were   randomly   interleaved,  whereas   in   the   blocked   context   the   same   short   and
long distances were presented in separate blocks.

3.4.1 Central tendency bias
Figure   3.3,   A   and   B,   show   the   raw   reproduction   data   of   a   representative
participant, measured in the mixed and blocked contexts respectively, plotted as a
function   of   the   stimulus   distance.   The   regression   lines   indicate   the   central
tendency.  All   slopes  are   smaller   than   ,  which  corresponds   to  a  positive  central
tendency.   A   repeated-measures   ANOVA   on   the   central   tendency   values   of   all
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participants   indicates that  there were no significant  differences between distance
types (short / long,   ,   ) or contexts (mixed/blocked,   ,

)  as  well  as  no   interaction  effect   ( ,   ).  We   therefore
averaged the central   tendency values   for  every  participant  and performed a  one-
sample  t-test to study whether the resulting central tendency values differed from
0.  On  average,  we   found  a  positive   central   tendency  effect  of     ( ,  

,   Cohen’s   ),   which   corresponds   to   a   regression   line   with   a
slope of   .

Figure 3.3.  Reproduced distance as a function of stimulus distance in the mixed (A) and blocked (B)
contexts  of  a   representative  participant.  Regression   lines   show  the  central   tendency  bias.  Within
each   presentation   context,   separate   regressions   were   performed   on   the   short   (blue)   and   long
(orange) distances. Central tendency values (1 - slope of the regression line) are reported in the key.

We  performed   an   additional   analysis   to   study   how   the   short   and   long   stimulus
distances were perceived depending on the context  in which they were presented.
Based on the same linear regressions, we estimated how the median distance of the
entire stimulus distance range would have been reproduced in the two presentation
contexts (see Figure 3.4, A and B). A repeated-measures ANOVA with factors distance
type and presentation context on these estimates yielded a main effect of distance
type,   indicating   larger   estimated   reproductions   of   the  median   stimulus   distance
based  on   the   long-distance   regression   lines   than  on   the  short-distance   regression
lines ( ,   ).   In  other  words,  the median stimulus distance would
have  been   reproduced   longer   if   it  had  been  part  of   the   long  as  compared   to   the
short   stimulus  distance   range.   There  was  no  main   effect   of   presentation   context
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( ,   ),  but,  crucially,   there  was a  significant   interaction between
distance   type   and   presentation   context   ( ,   ;   see   Figure   3.4C).
Follow-up tests  showed that  the abovementioned effect  of  distance type was only
present   in   the   blocked   context   (mean   reproduction   based   on   short-distance
regression line   cm and long-distance regression line  cm,  ),
whereas   the  mixed   context   showed   no   difference   (mean   reproduction   based   on
short-distance regression line   cm and long-distance regression line  
cm,   ).  This  indicates that reproduction behavior depends on the context
in which the stimuli were presented.

Figure 3.4.  A,  B:  Regression lines based on the stimulus and reproduced distances for short (blue)
and long (orange) distances in the mixed (A) and blocked (B) contexts for all participants (transparent
lines)   as  well   as   the  mean   (bold   lines)   on   logarithmic   scale.   The   dots   represent   the   estimated
reproduced   distance   at   the   median   of   the   entire   distance   range.  C:   Distance   type-by-context
interaction effect on the estimated reproductions of the median stimulus distance.

3.4.2 Serial dependence bias
As an illustration of serial dependence, Figure 3.5 shows the reproduction error on
trial    plotted against the stimulus distance on trial     for the same participant
as   in   Figure   3.3.   The   regression   lines  of   the   illustrated  participant   show  a   slight
positive serial dependence, except for the short distances in the mixed context. We
performed   Wilcoxon   signed-rank   tests   on   the   serial   dependence   values   of   all
participants  and found no significant  main or   interaction effects   for  distance type
and context   (all     values   ,  all     values   ).  After  averaging the serial
dependence  values   for   every  participant,   a  one-sample  t-test   revealed  a  positive
serial   dependence   of     ( ,   ,   Cohen’s   ).   This
suggests   that   the   reproduced  distance  on   trial  n  is  attracted   toward   the  stimulus
distance on trial   .

p = 0.563 η =p
2 0.01

p = 0.005 η =p
2 0.24

= 26.5 = 29.8 p = 0.004

= 29.1 = 28.4
p = 0.318

n n − 1

p ≥ 0.185 r ≤ 0.24

0.13 SD = 0.15 p < 0.0001 d = 0.87

n − 1
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Figure 3.5. Reproduction error on the current trial as a function of stimulus distance on the previous
trial in the mixed (A) and blocked (B) contexts of the same participant as in Figure 3.3. Reproduction
errors were computed on logarithmic scale.  Regression lines show the serial  dependence bias and
were computed for the short (blue) and long (orange) distances separately. Serial dependence values
(slope of the regression line) are reported in the key.

3.4.3 Both the static and two-state models can explain vestibular path
integration behavior
We   fitted   the   static,   iterative,   and   two-state   model   variants   to   all   trials   of   a
participant,   examining   a   computational,   i.e.,   Bayesian,   explanation   of   these
findings.   The  model   variants  differ   in   their   assumptions  about  how   the   stimulus
distances   are   generated.   As   explained   in  detail   in   the  Methods,   the   static  model
variant  assumes that   the  stimulus  distances  are   independent  draws from a  static,
trial-independent  stimulus  distribution.  This  predicts  no  serial  dependence   in   the
participant’s reproductions. The iterative model variant instead assumes a stimulus
distribution   shifting   from   trial   to   trial,   the   distribution   on   a   specific   trial   being
centered on the stimulus distance of the previous trial. This clearly results in serial
dependence in the model  predictions.  The two-state model  variant represents the
more general case, where the mean of the stimulus distribution on a specific trial is
close but not identical to the stimulus distance on the previous trial,  still   inducing
some level of serial dependence. In all model variants, the variance of the stimulus
distribution is constant across trials. By fitting these different model variants to the
data, we aimed to determine whether these assumptions about how the stimuli are
generated   can   explain   the   observed   perceptual   biases   in   vestibular   path
integration behavior.
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Figure 3.6  shows the mean binned data and model  predictions of   the three  fitted
model   variants.   In   the   mixed   context,   all   model   predictions   are   close   to   the
reproduced distance data.   In the blocked context,  the static  and two-state models
also   provide   a   relatively   good   explanation   of   the   reproductions.   However,   the
iterative   model   underestimates   the   participants’   reproductions   of   the   short
distances and overestimates those of the long distances.

Figure  3.6.  Binned reproduced distances   (black)  predicted by   the  static   (blue),   iterative   (orange),
and two-state (green) model variants as a function of stimulus distance on logarithmic scale for the
mixed (A) and blocked (B) contexts. The stimulus distances and the according actual and predicted
reproduced distances were binned for each participant individually. Symbols represent the mean per
bin,   and   shaded  areas   show  ±SE,  both   computed  across  participants.  Unity   lines   (dashed)   show
where stimulus and (predicted) reproduced distances are equal.

Next, we computed the central tendency and serial dependence biases as predicted
by the three model variants. As illustrated in Figure 3.7, the predictions of all model
variants  show relatively  similar  central   tendency values  as   found  in  the  data.  The
serial   dependence   on   the   other   hand   is   less   well   predicted   by   the  models.   In
general,   the   iterative   model   overestimates   the   serial   dependence   in   the
reproduction data except   for  the participants  who show a high serial  dependence
( ).   The   static   and   two-state   models   tend   to   underestimate   the   serial
dependence   in   the  data,  with   the   two-state  model  more  often  predicting   values
closer to those found in the actual reproductions than the static model. The figure
also shows that  the best  models   in  terms of  BIC score are  also close to  the unity
line for the central tendency but that this is not the case for the serial dependence.
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Figure  3.7.  Central   tendency   (A)   and   serial  dependence   (B)   values   for   the   static   (blue),   iterative
(orange), and two-state (green) model predictions as a function of their measured values. Within a
color  group,  each point   represents  a  participant.  Black  open circles   indicate   the  models  with  the
lowest Bayesian information criterion (BIC) score per participant, and dashed lines show where the
biases in the data and model predictions are equal.

The  differences   in  predicted   serial   dependence  between  models   are   reflected  by
the fitted model parameter values (see Table 3.1). The median value of the variance
parameter   ,   which   determines   how  much   the  mean   of   the   assumed   stimulus
distribution   varies   over   trials,   is     for   the   iterative  model,   resulting   in   serial
dependence in the model  predictions.  The same parameter has a value close to 0
for   the   two-state   model   for   most   participants,   predicting   virtually   no   serial
dependence  and  essentially   causing   the   two-state  model   to  behave  as   the   static
model.  The fitted models show similar  measurement variances ( )  and shift  terms
( ),  whereas   fitting  the  static  model   to   the  reproduction data  resulted  in   larger
values   for   the  stimulus  distribution  variance   ( )   than  in   the  case  of   the  two-state
model. Notably, the fitted parameters show large intersubject variability.

q

0.14

r

Δx
v

Central tendency and serial dependence in vestibular path integration

3

81



Table 3.1. (continued)

Median fitted parameter values (Q1 – Q3)

Models

Static 0.17 (0.09 – 0.22) 0.26 (0.17 – 0.66) -0.06 (-0.22 – 0.01)

Iterative 0.15 (0.09 – 0.31) 0.14 (0.06 – 0.38) -0.06 (-0.21 – -0.01)

Two-state 0.17 (0.10 – 0.30) 0.17 (0.12 – 0.25) 0.001 (5.38 x 10  – 0.05) -0.06 (-0.21 – 0.01)

As  a   final  comparison,  Figure   3.8  shows   the  BIC  scores  of   the  static  and   iterative
models relative to the BIC scores of the two-state model, where a relative BIC score

  is   interpreted   as   strong   evidence   in   favor   of   the   two-state  model   (Kass   &
Raftery,   1995).   Despite   substantial   interindividual   variability,   the   static   and   two-
state   models   have   similar   median   BIC   scores.   The   static   model   has   a   median
relative  BIC   score   of   ,   describing   the  data   equally  well  with   one   less   free
parameter   than   the   two-state  model.  The   iterative  model   is  outperformed by   the
two-state model, indicated by a median relative BIC score of  .

To summarize,  the reproduction behavior   is  best  explained by the static  and two-
state  models  and  less  so  by  the  iterative  model   (see  Figure  3.8),  especially   in  the
blocked   context   (see   Figure   3.6).   All   models   are   able   to   capture   the   central
tendency   effects   in   the   data   relatively  well   but   perform  worse   in   explaining   the
serial dependence (see Figure 3.7).

r v q Δx
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Table 3.1.  Median (first – third quartiles) of the fitted parameter values across participants for the
static,   iterative and two-state model  variants.  The parameters   ,   ,  and     refer  respectively to the
measurement   variance,   the  variance  of   the  assumed  stimulus  distribution  and   the  variance  with
which the mean of this distribution varies. The    parameter is a shift term that represents global
under- or overestimation of the reproduced distances.
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Figure 3.8.  Model Bayesian information criterion (BIC) scores relative to the BIC scores of the two-
state  model.   Colored   data   points   represent   individual   participants.  White   data   points   show   the
median relative BIC scores and bold and thin gray lines the interquartile range (IQR) and 1.5x IQR
across participants.  Dashed lines represent a BIC score difference of     and   ,  where relative BIC
scores smaller than   or larger than   provide strong evidence against or in favor of the two-state
model, respectively.

3.4.4 The shift parameter of the two-state model can capture context-
dependent differences
Can   the   difference   in   reproduction   behavior   across   contexts   be   explained   by
different assumptions about the experimental stimulus distributions in the different
blocks? To examine this,  we adapted the two-state model  by  including separate  
(representing   the   variance   of   the   assumed   stimulus   distribution)   and  
(representing   the   variance   with   which   the   mean   of   the   assumed   stimulus
distribution changes across trials) parameters for the mixed, short, and long blocks
(see  Methods).   The   yellow   symbols   in   Figure   3.9A   show   the   resulting  BIC   scores
relative   to   the  BIC   scores  of   the  original   two-state  model  with  one     and  one  
parameter   across   all   blocks.   As   in   the   previous   BIC   score   comparison,   there   is
considerable  spread   in   the   relative  BIC  scores.  The  adapted  model  had  a  median
relative   BIC   score   of   ,   thus   performing   similarly   as   the   original   two-state
model.   In   other   words,   allowing   different   assumptions   about   the   underlying
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stimulus distribution between the blocks at the cost of more free parameters does
not result in a better description of the vestibular path integration data.

Next,   we   explored   whether   allowing   separate   shift   parameters   for   each   of   the
blocks   ( ,   ,   )   could   explain   the   differences   in   the
reproductions  across   contexts.   The  median   relative  BIC   score  of   this  model  with
respect   to   the   original   two-state  model   is     (see   Figure   3.9A   in   purple),
showing   that   the  additional  parameters  do   improve  model  performance  over   the
original   two-state  model.  This   improvement   is  not  directly  apparent   in   the  mean
model predictions (see Figure 3.9, B and C) or the predicted perceptual biases (see
Figure   3.9,  D  and  E)  but   is   visible  on   the   level  of   the   individual  participant   (see
Figure 3.9, B and C, insets).  The medians (Q1 – Q3) of the fitted   ,   ,
and     parameter   values   across   participants   are   ,  

,   and   ,   respectively.   Taken   together,
these   findings   suggest   that   the   differences   in   reproduction   behavior   across   the
contexts are explained by block-dependent global underestimations rather than by
block-dependent assumptions about the experimental stimulus distributions.

Δxmixed Δxshort Δxlong

−16.64

Δxmixed Δxshort
Δxlong −0.08 (−0.21 – 0.05)

−0.03 (−0.37 – 0.05) −0.12 (−0.29 – 0.06)
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Figure  3.9.  Comparison   between   original   and   block-dependent   two-state   models.  A:   Bayesian
information   criterion   (BIC)   scores   of   the   adapted   two-state   models   with   either   free  v  and  q
parameters (yellow) or a free   parameter for the mixed, short, and long blocks (purple), relative to
the BIC scores of the original two-state model.  B,  C:  Binned reproduced distances predicted by the
original   two-state   model   (green)   and   the   adapted   two-state   model   with   a   block-specific  
parameter as a function of stimulus distance for the mixed (B) and blocked (C) contexts. D, E: Central
tendency (D) and serial dependence (E) values for the same models as a function of their measured
values. A, B-C, and D-E are in the same format as in Figure 3.8, Figure 3.6, and Figure 3.7, respectively.
Black open circles in  A,  D-E, and insets in  B-C  show an individual participant for whom the adapted
two-state model with block-dependent   parameters has the largest decrease in BIC score relative
to the original two-state model.

3.5 Discussion

In   this   study,  we  measured  human path   integration  behavior  based  on  vestibular
signals  and   investigated   the  extent   to  which  distance   reproductions  show central
tendency  and   serial  dependence  effects.  Participants  were   seated   in  a   vestibular
sled  and  performed  a  distance   reproduction   task   in   the  dark.  The   sled  passively
moved   the   participant  with   a   predefined   stimulus   distance,  which   they   actively
reproduced   by   steering   the   sled   back   to   the   location   from  which   the   stimulus
movement   started.  Stimulus  distances  were  drawn   from short-   and   long-distance
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probability   distributions   and  presented   in   either   a   randomized  order   (the  mixed
context) or in two separate blocks (the blocked context).

We found a positive central tendency effect that was not affected by distance type
(whether   the   distance  was   sampled   from   the   short-   or   long-distance   probability
distribution)   or   presentation   context   (mixed   or   blocked).   The   positive   central
tendency  effect   indicates   that   reproductions  were  drawn toward   the  mean of   the
underlying stimulus  distribution.  This  effect  has  the same direction as  the central
tendency effects found in visual path integration (Riecke et al.,  2002; Petzschner &
Glasauer,  2011;  Petzschner et  al.,  2012;  Glasauer  & Shi,  2022)  and other  nonvisual
path   integration  (Loomis  et  al.,  1993;   Israël  et  al.,  1997;  Philbeck  &  Loomis,  1997;
Grasso et al., 1999; Bergmann et al., 2011) studies. This suggests that this bias does
not  originate  within  a  single  sensory  modality  but  might  be  better  understood as
the explicit learning of the statistical structure of multimodal motion information.

In addition to a central tendency bias, we found a positive serial dependence bias,
again  irrespective of  distance type or presentation context.  This   indicates that the
reproduced   distance   on   a   trial   is   attracted   toward   the   stimulus   distance   on   the
previous   trial.   This   is   in   line   with   positive   serial   dependence   effects   found   in
reproductions   based   on   visual   information   (Glasauer   &   Shi,   2022).   Functionally,
positive serial dependence could help to maintain the continuity of the context and
promote   stable   representations   for   path   integration   (Sun   et   al.,   2020;  Manassi  &
Whitney, 2024).

We implemented a Bayesian model, originally proposed by Glasauer & Shi (2022) to
explain  perceptual  biases   in  visual  path   integration,   to  evaluate  whether   it   could
also  explain  vestibular  path   integration.  The  model  contains   three  variants  based
on different assumptions about the stimulus distribution (the static,   iterative,  and
two-state variants). On every trial, the model estimates the stimulus distance with a
Kalman filter  that  weighs the sensory measurement on the trial  with the mean of
the stimulus distribution estimated on the previous trial.

We found that the static and two-state model variants provided comparable fits to
the vestibular path integration data (see Figure 3.8). A similar finding was reported
by   Glasauer   &   Shi   (2022),   where   the   two-state  model   provided   the   best   fit   to
duration   reproduction   data   for   8   of   14   participants,   whereas   for   the   remaining
participants the static  model  was sufficient.   It   is   important to point  out,  however,
that the model captured the central tendency effect relatively well (see Figure 3.7)
but  performed worse   in  explaining   the  serial  dependence  effect.  Hence,  although
the  model  by  Glasauer  &  Shi   (2022)  provided  a   joint   explanation   for   the   central
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tendency   and   serial   dependence   effects   in   visual   path   integration,   the   present
results do not validate this unification in vestibular path integration. Could this be
taken to suggest  that  these biases  in  vestibular  path  integration occur  because of
separate mechanisms?

We prefer to be careful with this conclusion. There are a few differences that should
be   noted.   First,   the   present   data   may   be   noisier,   causing   the   model   to   not
accurately  capture  all  aspects  of   the   reproduction  data.  Furthermore,   the  present
task was not purely perceptual but also involved a motor component. Compared to
a   passive   reproduction   task,   in   which   both   the   stimulus   and   reproduction
movements are experienced passively and the reproduced distance is indicated by
a   button   press,   additional   motor-based   self-motion   signals   could   contribute   to
distance estimates and perhaps trial-to-trial correlations (Medendorp, 2011; Carriot
et  al.,   2013;   Laurens  &  Angelaki,   2017;  Brooks  &  Cullen,   2019;   van  Helvert   et   al.,
2022).   In   support,   it   has   been   shown   that   reproducing   perceived   angular
displacements   actively   reduces   the   variability   compared   to   passive   reproduction
(Becker et al.,  2002; Jürgens & Becker, 2006).  The active steering movement in the
present   task   therefore   could   have   introduced   nonperceptual   effects   (i.e.,  motor
biases)   in   the   reproductions.   For   example,   larger   distances   might   have   been
underestimated more because larger reproduction movements require more effort.
In   this  study,  we  opted   for  a  more  naturalistic,  active   reproduction   task,  but   in  a
future  experiment   it  would  be   interesting  to  compare  central   tendency  and serial
dependence   in   active   versus   passive   reproduction   tasks   of   vestibular
path integration.

We   also   studied   the   effect   of   different   presentation   orders   on   the   reproduced
distances  by  presenting   the  stimulus  distances   in  a  mixed  and  a  blocked  context
(see Figure 3.2). As indicated by the central tendency analysis, the short- and long-
distance   regression   lines   have   similar   slopes   in   both   presentation   contexts.
However, the estimated reproductions of the median stimulus distance differ in the
blocked   context,   indicating   that   presentation   context   affects   vestibular   distance
reproductions   (see   Figure   3.4).   A   similar   interaction   between   distance   type   and
presentation   context   was   reported   in   Petzschner   et   al.   (2012)   for   visual   path
integration, as well as in other magnitude estimation tasks [e.g., Roach et al. (2017)
for   duration   reproduction].   Although   the   interaction   effect   is   significant   on   the
group   level,   the   individual   participants   show   a   large   spread   in   the   estimated
reproductions   of   the  median   stimulus   distance   (see   Figure   3.4C).   This   variation
seems  mostly   caused   by   interindividual   differences   in   the   size   of   the   estimated
reproductions,   where   some   participants   generally   produce   larger   reproductions
than   others,   irrespective   of   the   context.   Visual   inspection   of   the   individual
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interaction  plots   shows   that   the  estimated   reproductions  of   the  median  stimulus
distance   are   in   the   same   direction   as   the  mean   effect   for   17   participants,   in   a
different direction for 6 participants, and suggests no interaction for 7 participants.

To investigate the origin of the mean interaction effect,  we modified the two-state
model   by   incorporating   information   about   the   block   (mixed,   short,   or   long)   in
which   the   stimulus  distance  was  presented.  We   first   ruled  out  as  a   cause  of   this
interaction   that   participants   have   different   assumptions   about   the   stimulus
distribution in the different presentation contexts. More specifically, allowing block-
specific  parameters for  the assumed stimulus distribution (   and   )  did not result
in  a  better  description  of   the   reproduced  distances   (see  Figure   3.9A).  Rather,  we
found that the model variant with block-specific    parameters, allowing different
global under- or overestimations across blocks, provided a better explanation than
the original two-state model.  We can only speculate about the functional meaning
of  this  parameter.  The global  undershooting of  reproductions might  be caused by
increasing   uncertainty   in   the   position   estimate   as   more   distance   is   covered
(Lakshminarasimhan   et   al.,   2018).   Indeed,   the   observed   pattern   in   the   fitted

,   ,  and     parameter  values  decreasing  with   longer  distances
( ,   ,   and   ,   respectively)   is   consistent  with     varying   linearly
with distance,  as   internally  represented on a   logarithmic scale.  Future studies  are
needed to examine this potential interpretation.

Furthermore,   within   this   perspective,   we   emphasize   that   we   studied   different
presentation  contexts,  and  drew stimuli   from a  normal  distribution   rather   than  a
uniform   distribution,   but  we   did   not   vary   how  we   selected   the   stimuli   in   each
specific  block  of   trials.   That   is,   for   each   trial  we   randomly   selected   the   stimulus
distance   from   the  defined   stimulus  distribution   (mixed,   short,   or   long).  Recently,
Glasauer & Shi (2021) argued that the central tendency is the result of an unnatural
experimental randomization protocol: randomly presenting stimulus distances with
large   trial-to-trial   variability.   In   many   natural   circumstances,   successive   stimuli
typically vary only in a small range, not randomly jumping from one magnitude to
another.   Using   a   duration   production-reproduction   task,   Glasauer   &   Shi   (2021)
showed   that   the   central   tendency   was   greatly   reduced   if   the   sequence   of   the
stimulus   durations  mimicked   a   random  walk   compared   to   that   of   a   randomized
sequence. It would therefore be interesting to test how the central tendency effect
in vestibular path integration depends on the randomization protocol.

Recent neurophysiological work suggests that the posterior parietal cortex might be
involved   in   producing   the   perceptual   biases   affecting   path   integration.   Using   a
parametric   working   memory   task   in   rats,   Akrami   et   al.   (2018)   found   that   the

v q

Δx
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posterior  parietal  cortex plays a  key role  in  modulating the central  tendency bias.
When the region was optogenetically inactivated, not only was this bias attenuated
but   there  was   also   a   suppression  of   serial   dependence,   suggesting   that   the   two
phenomena may be interrelated. In subsequent neural network modeling work, the
same authors explain the two biases through a single mechanism (Boboeva et al.,
2024).  Sensory  inputs  relayed from the posterior  parietal  cortex  can  lead to serial
dependence in working memory, from which central tendency naturally emerges.

In   conclusion,   our   results   show   that   distance   reproductions   based   on   vestibular
signals  exhibit  positive  central   tendency  and  attractive  serial  dependence,  as  has
been found in visual  path  integration,  suggesting that  the biases might arise on a
multimodal  processing   level.  Furthermore,   reproduced distances  were  affected  by
the   presentation   context   of   the   stimulus   distances.   The   modeling   approach
suggested   that   different   distance-dependent   global   underestimations   could   best
account for this contextual effect.
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3.6 Appendix

In   this   Appendix,  we  provide   the   equations  of   the   two-state  model  proposed  by
Glasauer   &   Shi   (2022)   and   the   equations   used   in   the   maximum   likelihood
estimation.  The static  and iterative model  variants are special  cases of  this  model
by   fixing     or   ,   respectively.   (For   the  definition  of  parameters     and   ,
see Methods,  Modeling  and below.)  Equations 3.1-3.3 in  Modeling  can be rewritten
in matrix notation as follows:

where   ,   ,   ,  and   . The state

estimate   on trial     is determined using a time-discrete Kalman filter:

with   covariance  matrix     and  measurement   noise   variance   .   The

steady state can be written as

Contrary to Glasauer & Shi (2022),  we fitted the model’s predictions to the data in
logarithmic   space   using   maximum   likelihood   estimation.   Given   that   there   is
uncertainty in the measurement   on trial   , represented by measurement variance
,   it   is  possible to compute a  distribution of  possible reproductions on trial   .  We

computed   the   expected   value     and   covariance   matrix     of   the
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estimated   stimulus   distribution   on   trial     by   rewriting   the   steady-state   equation
as follows:

The   first   element   of   the   resulting   expected   value   vector   and   covariance  matrix
correspond to the mean     and variance     of the estimated stimulus distribution.
The model’s prediction of the reproduction on trial     is then determined by adding
the   shift   term     to   the  mean   of   this   distribution:   .   Finally,   the
negative log-likelihood on trial     ( ) is computed based on the probability that
the participant’s  reproduction on that  trial,   ,  came from the (normal)  estimated
response distribution, i.e., the estimated stimulus distribution of which the mean is
shifted by  :

i
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Chapter 4
Does stimulus order affect central
tendency and serial dependence in
vestibular path integration?

This chapter has been adapted from:

Willemsen,   S.   C.   M.   J.,   Oostwoud  Wijdenes,   L.,   van   Beers,   R.   J.,   Koppen,   M.,   &
Medendorp,  W.   P.   (2025).   Does   stimulus   order   affect   central   tendency   and   serial
dependence in vestibular path integration? In revision.  



4.1 Abstract

The reproduction of a perceived stimulus, such as a distance or a duration, is often
influenced by two biases. Central tendency indicates that reproductions are biased
toward the mean of   the  stimulus  distribution.  Serial  dependence reflects   that   the
reproduction   of   the   current   stimulus   is   influenced   by   the   previous   stimulus.
Although these biases are well-documented, their origins remain to be determined.
Studies   on   duration   reproduction   suggest   that   autocorrelation  within   a   stimulus
sequence   may   play   a   role.   In   this   study,   we   explored   whether   the   level   of
autocorrelation   in   a   stimulus   sequence   affects   central   tendency   and   serial
dependence   in   vestibular   path   integration.   Participants   (n  =   24)   performed   a
vestibular   distance   reproduction   task   in   total   darkness   by   actively   replicating   a
passively moved stimulus distance with a linear motion platform. We compared two
conditions:  a  high-autocorrelation  condition,  where  stimulus  distances   followed a
random walk,  and a no-autocorrelation condition,  where the same distances were
presented   in   a   randomly   shuffled   order.   We   quantified   both   biases   using   two
approaches:   separate   simple   linear   regressions   and   a   joint   multiple   linear
regression  model   that  accounts   for   the  autocorrelation   in   the  stimulus  sequence.
Simple   linear   regressions   revealed   that   central   tendency  was  weaker   and   serial
dependence   reversed   in   the   high-autocorrelation   condition   compared   to   the   no-
autocorrelation  condition.  However,   these  differences  were  no  longer  observed  in
the   multiple   linear   regression   analysis,   indicating   that   these   biases   were
independent  of   the   specific   stimulus   sequence  protocol.  We   conclude   that   these
perceptual   biases   in   vestibular   path   integration   persist   regardless   of   stimulus
autocorrelation,   suggesting   that   they   reflect   robust   strategies   of   the   brain   to
process vestibular information in self-motion perception. 
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4.2 Introduction

Two  perceptual   biases   that   are  often  observed   in   reproduction   tasks   are   central
tendency   and   serial   dependence.   Central   tendency   is   the   notion   that   the
participant’s   reproductions   tend   to  be  biased   toward   the  mean of   the  underlying
stimulus   distribution   (Hollingworth,   1910).   This   bias   typically   leads   to   an
overestimation of smaller stimuli and an underestimation of larger stimuli (Loomis
et al.,  1993; Israël et al.,  1997; Philbeck & Loomis, 1997; Grasso et al.,  1999; Riecke
et   al.,   2002;   Jazayeri   &   Shadlen,   2010;   Bergmann   et   al.,   2011;   Petzschner   &
Glasauer,   2011;   Cicchini   et   al.,   2012;   Prsa   et   al.,   2015;  Murai  &   Yotsumoto,   2016;
Roach   et   al.,   2017;   Sun   et   al.,   2020;  Willemsen   et   al.,   2024).   Serial   dependence
reflects that reproductions depend on the stimulus presented on the preceding trial
(Holland  &   Lockhead,   1968;   Cross,   1973).  Most   studies   have   identified   attractive
serial  dependence,  where   the   reproduction  on   the  current   trial   is  biased   towards
the stimulus on the previous trial   (Fischer & Whitney,  2014;  Liberman et  al.,  2014;
Motala   et   al.,   2020;   Manassi   &   Whitney,   2022,   2024;   Guan   &   Goettker,   2024;
Willemsen   et   al.,   2024).   However,   other   research   has   reported   repulsive   serial
dependence,   indicating   that   the   reproduction   of   the   current   stimulus   is   biased
away from the previous stimulus (Fritsche et al., 2017; Sun et al., 2020).  

Central  tendency and serial  dependence have been found to affect the perception
of   various   stimuli,   such   as   time   durations,   heading   directions,   and   distances.
Veridical  distance  perception   is  essential   for  path   integration,  a  process   in  which
one uses  self-motion  signals   to  continuously  estimate  one’s  position  relative   to  a
starting   point   (Mittelstaedt   &  Mittelstaedt,   1980;   Etienne   &   Jeffery,   2004).   These
signals   can   be   derived   from   our   sensory   systems,   including   the   visual   and
vestibular systems (ter  Horst  et  al.,  2015),  as well  as the motor system (Laurens &
Angelaki,   2017;   van  Helvert   et   al.,   2022;  Cullen,   2023).   In  previous  work  on  path
integration,   where   participants   had   to  mainly   rely   on   the   vestibular   sense,   we
found central   tendency and attractive  serial  dependence effects   (Willemsen et  al.,
2024). However, what causes these perceptual biases in vestibular path integration
is not yet understood. 

Recently,  Glasauer & Shi  (2021,  2022) have shown that the extent to which central
tendency and serial dependence effects are present in duration reproduction tasks
is  affected by  the  autocorrelation  in  the  stimulus  sequence.  When durations  were
presented   randomly   shuffled,   without   autocorrelation,   reproductions   showed
central   tendency   and   attractive   serial   dependence.   However,   when   the   same
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durations  were  presented   in   a   random-walk   sequence  with  high   autocorrelation,
central tendency nearly disappeared and serial dependence became repulsive. 

The   origin   of   the   different   results   between  protocols   remains   unclear.   Are   these
differences caused by participants responding differently  in each condition,  or  are
they byproducts of the different levels of stimulus autocorrelation? To address this
question,   it   is   important  to  note  that  central   tendency and serial  dependence are
statistical   concepts,   usually   defined   as   linear   least-squares   regression   slopes.   As
such,   their   values   can   vary   significantly   based   on   the   specific   regression  model
employed and the selection of covariates included in the model.  Central  tendency
is often characterized as 1 minus the regression slope of reproduced distance    on
stimulus distance     (Glasauer & Shi, 2022; Willemsen et al.,  2024) or, equivalently,
as the negative of the regression slope of reproduction error     (   -   ) on stimulus
distance     (see Figure 4.1A; Sun et al.,  2020). Serial dependence has been defined
as the regression slope of reproduction error     on the previous stimulus     (see
Figure 4.1B; Glasauer & Shi, 2022; Willemsen et al., 2024). However, as illustrated in
Figure 4.1C, central tendency and serial dependence are not independent if there is
autocorrelation  in  the stimulus  sequence (i.e.,  when     affects   ;  see  Appendix
for   more   details).   Similarly,   there   could   be   other   dependencies   that   affect   the
central tendency and serial dependence coefficients (for instance, a potential effect
of   on   through  ; see Figure 4.4).

Here,   we   use   causal   graphs   and   the  d-separation   criterion   (Pearl,   2009),   to
disentangle central  tendency and serial  dependence  in  vestibular  path  integration
under conditions with and without stimulus sequence autocorrelation. Specifically,
we  ask  which  part   of   the  differences   in   central   tendency  and   serial   dependence
between   the   autocorrelation   conditions   can   be   attributed   to   a   statistical
explanation and which part  requires  an explanation  in  terms of  different  stimulus
processing in the brain.
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Figure 4.1. A: Reproduction error (reproduced distance - stimulus distance) as a function of stimulus
distance. The shown line has a slope of -1, indicating a central tendency effect of 1. A regression line
with a slope of 0 implies that there is no central tendency, and if also on top of the dashed line, that
performance is veridical.  B:  Reproduction error against the stimulus distance on the previous trial.
The solid line indicates an attractive serial dependence effect of 0.5, where the reproduction error on
the current trial is generally more positive when there was a longer stimulus distance on the previous
trial. The dotted line indicates a repulsive serial dependence effect of -0.5, where the reproduction
error on the current trial is generally more negative when there was a longer stimulus distance on the
previous   trial.   A   regression   line  with  a   slope  of   0   implies   that   there   is  no   serial  dependence.  C:
Central tendency (the effect of the stimulus distance on the current trial   on the reproduction error
on the current trial   )  and serial  dependence (the effect of  the stimulus distance on the previous
trial     on   the   reproduction   error   on   the   current   trial   )   are   not   independent   if   there   is
autocorrelation in the stimulus sequence (i.e., when   affects  ).

4.3 Methods

4.3.1 Participants
Twenty-five   participants,   naive   to   the   purpose   of   the   study,   took   part   in   the
experiment.  All  participants  had normal  or  corrected-to-normal  vision,  no hearing
impairments,  and  no  history  of  motion  sickness.  The  study  was  approved  by   the
ethics committee of the Faculty of Social Sciences at Radboud University Nijmegen
and   all   participants   gave   written   informed   consent   prior   to   the   start   of   the
experiment.   Each   participant   completed   a   single   experimental   session   of   ~90
minutes   and   was   compensated   with   course   credits   or   €22.50.   Although   24
participants   were   required   for   complete   counterbalancing,   one   participant   was
excluded   due   to   misunderstanding   the   task   and   producing   reproduction
movements   in   the   wrong   direction.   This   participant   was   therefore   replaced   by
collecting   data   from   an   additional   participant,   resulting   in   a   data   set   of   24
participants (19 women, 4 men, 1 non-binary person, aged 17–26 yr).
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4.3.2 Setup
Participants  were   seated   in  a   chair  mounted  on   top  of  a   linear  motion  platform,
called   a   vestibular   sled,   that   could   be  moved   passively   by   the   experimenter   or
actively  by   the  participant  using  a   steering  wheel   (see  Figure   4.2).   The   sled  was
powered   by   a   linear   motor   (TB15N;   Tecnotion,   Almelo,   The   Netherlands)   and
controlled by a servo drive (Kollmorgen S700; Danaher, Washington, DC), allowing it
to move along the participant’s interaural axis on a 93-cm-long track. The steering
wheel (G27 Racing Wheel; Logitech, Lausanne, Switzerland) was attached to a table
at chest level in front of the participant and had a rotation range of -450° to +450°
with a resolution of 0.0549°. Throughout the experiment, the mapping between the
steering  wheel  angle  and   the  sled’s   linear  velocity  was  set  at  1  cm/s  per  degree.
The   task  was  performed   in   total  darkness  without   any   visual   stimuli.   Instruction
messages   prior   to   the   task,   as   well   as   occasional   messages   throughout   the
experiment   (e.g.,   to   indicate   breaks)   were   shown   on   an   OLED   screen
(OLED77C3PUA;   LG,   Seoul,   South  Korea)   placed   in   front   of   the   sled.   Participants
wore   in-ear   headphones   with   active   noise   cancellation   (QuietComfort   20;   Bose,
Framingham,  MA)   that  played white  noise   to  mask  sound  from the  sled’s  motion,
alternated   by   single-tone   beeps   to   signal   the   different   stages   of   each   trial.   In
addition   to   the   in-ear   headphones,   participants  wore   over-ear   headphones  with
active  noise   cancellation   (WH-1000XM5;  Sony,  Tokyo,   Japan)   to   further  block  out
the   sound   produced   by   the   sled.   The   participant’s   head  was   fixated   using   cups
placed against the top of the head. The participant also wore a five-point seat belt
and could press one of the emergency buttons at the side of the chair to stop the
sled at any time during the experiment. The experiment code was written in Python
(v.3.10; Python Software Foundation).

4.3.3 Reproduction task
While seated on the vestibular sled, participants performed a distance reproduction
task.  During   the   stimulus  movement,   the   sled  passively  moved   the  participant  a
predefined   distance   (see   Figure   4.2A).   This   was   succeeded   by   the   reproduction
movement,   during  which   the   participant   actively   tried   to   replicate   the   passively
moved distance by steering the sled into the opposite direction (see Figure 4.2B). In
other   words,   the   participant   aimed   to   return   to   the   start   position   of   the
stimulus movement. 
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Figure 4.2. Vestibular distance reproduction task. A: The participant was seated on a vestibular sled,
consisting  of  a   chair  placed  on   top  of  a   linear  motion  platform.  On  every   trial,   a   low-tone  beep
alerted the participant to the upcoming passive movement that would move them by an unknown
stimulus distance.  B:  Afterwards,   the second,  high-tone beep prompted the participant  to  use the
steering  wheel   and   reproduce   the   stimulus   distance   by   steering   the   sled   back   in   the   opposite
direction.  Trials  were  separated  by   two   random detour  movements   that   returned   the  sled   to   the
start position.

In each trial, a low-tone beep (347 ms) indicated the upcoming stimulus movement.
The duration of  the stimulus movement varied randomly between 1.3 s  and 1.6 s.
We defined the lower bound such that all stimulus movements had a peak absolute
acceleration below 980 cm/s   and a peak speed below 100 cm/s. The upper bound
resulted in the shortest stimulus movement to have a peak absolute acceleration of
~38   cm/s   and   a   peak   speed   of   ~20   cm/s,   which  well   surpassed   the   vestibular
thresholds   (Kingma,   2005).   For   each   participant,   the   stimulus  movements   were
consistently   in   one   direction,   with   the   leftward   and   rightward   directions
counterbalanced   across   participants.   Per   participant,   all   stimulus   movements
started from the same start  position,  which was on the right  side of   the track  for
leftward   stimulus   movements   and   on   the   left   side   of   the   track   for   rightward
stimulus movements, ensuring enough space on the track for all potential stimulus
movements.   The   start  position  was  determined   for   every  participant   individually
depending   on   their   largest   stimulus   distance.   In   the   case   of   leftward   stimulus
movements,   the   start   position   was   determined   by   adding   the   largest   stimulus
distance to the leftmost position on the sled track plus an additional small margin
of  4  cm.  For   rightward  stimulus  movements,   the  start  position  was  computed  by
subtracting   the   largest   stimulus   distance   and   the   margin   from   the   rightmost
position on the track.

The stimulus movement was followed by a random waiting time between 0.5 s and
1   s,   after   which   a   high-tone   beep   (110  ms)   cued   the   start   of   the   reproduction
movement.   If   the participant  rotated the steering wheel  before the beep,  the trial
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was   aborted.   Participants   were   instructed   to   make   one   smooth   reproduction
movement   (without   steering  back  or   resuming   steering  after   stopping)   and  were
free   to  choose   the  duration  of   the  movement.  The  sled  could  be  steered  up   to  a
maximum speed of 100 cm/s and could be stopped by returning the steering wheel
back   to   the  upright  position.  The  movement  was   terminated  when the  speed  fell
below  2   cm/s.   The   sled  also   stopped  moving  when   the   speed   fell   below  6   cm/s
while  the steering angle  remained unchanged for  100 ms or  the steering changed
direction (mean ± SD across participants: 71 ± 59 trials out of a total of 260 trials).
This second stopping criterion was added to prevent the case where the participant
intended to stop the movement but  did not   fully  return the steering wheel  to the
upright position. When one of these stopping criteria was met, the sled would not
stop   abruptly   but  would   decelerate   in   1   s   to   a   speed   of   0   cm/s.   The   sled   also
stopped   moving   when   the   end   of   the   sled   track   was   reached   (mean   ±
SD: 2 ± 2 trials).

Participants received no feedback about their reproduction performance during the
experiment   (except   during   the   training   block,   see   below).   To   prevent   the
participant   from obtaining   implicit   feedback about   their   reproduced distance,   the
sled   was   brought   back   to   the   start   position   for   the   next   stimulus   movement
through   two   random detour  movements.  The   first  detour   relocated   the   sled   to  a
random   position   within   ±30   cm   from   the   middle   of   the   track   with   a   random
duration between 1.8  s  and 2.3  s.  The second detour  moved the  sled  to  the  start
position   in   1.3   s.   All   detour   and   stimulus   movements   followed   a   minimum-
jerk profile.  

4.3.4 Paradigm
To study how the amount of autocorrelation between the stimulus distances across
trials   affects   central   tendency   and   serial   dependence   biases   in   vestibular   path
integration, we created two experimental conditions per participant presenting the
same stimulus distances with different stimulus orders. In the high-autocorrelation
condition,   stimulus   distances   followed   a   random   walk   while   in   the   no-
autocorrelation   condition,   the   same   distances   were   randomly   shuffled   (see
Figure 4.3).
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Figure 4.3. Example sequence of stimulus distances throughout the entire experimental session for a
participant   starting  with   the   high-autocorrelation   condition.   During   the   first   130   test   trials,   the
stimulus distances followed a random walk on logarithmic scale (orange). In the second half of the
experiment,   the  same distances  were  presented   in  a   randomly  shuffled  order   (blue).  The  dashed
lines indicate the minimum and maximum possible stimulus distance.

For each participant, we first generated 130 stimulus distances following a random
walk. In line with our previous study (Willemsen et al., 2024), the random walk was
generated   on   logarithmic   scale   such   that   the   resulting   stimulus   distances   were
approximately normally distributed on this scale. For this transform, distances were
made dimensionless by dividing by a  reference distance (1  cm).  On a  linear  scale,
the   distances   varied   between   17   cm   and   60   cm,   and   the   first   distance   of   the
random-walk sequence was set to the median of this distance range on logarithmic
scale, which corresponds to 31.9 cm on linear scale. To create the remainder of the
sequence, 129 random shifts were drawn from a normal distribution with a mean of
0 and SD of 0.08, and these were cumulatively summed to the first distance. Across
participants,   the  stimulus  distances  on  logarithmic  scale  varied between 2.83  and
4.05,   the  mean  of   the   sequence  between  3.37  and  3.50,   the  SD  of   the   sequence
between   0.20   and   0.27,   and   the   lag-1   autocorrelation   was   larger   than   0.9.   We
computed the lag-1 autocorrelation   (Box et al., 2015) using

Here, the numerator is the autocovariance of the sequence which is divided by the
sample variance of the sequence   ,  resulting in an autocorrelation value between
-1  and  1.   Furthermore,     denotes   the   total  number  of   samples   in   the   sequence
and     the   sample   mean   of   the   sequence.   To   create   the   no-autocorrelation
condition, the same 130 stimulus distances were shuffled until  the autocorrelation
of the sequences was between -0.001 and 0.001.
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Participants   experienced  both   conditions   in   a   single   experimental   session  of   260
test   trials   (see  Figure  4.3   for  an  example  sequence of  stimulus  distances)  without
being   informed   about   the   presence   of   the   two   conditions.   The   order   of   the
conditions  was  counterbalanced  across  participants.  There  was  a   short  break   (~2
min)   after   every   52   trials   (~10  min)  with   the   room   lights   turned   on   to   prevent
dark adaptation. 

Prior   to  the test   trials,  participants  completed 20 training trials   to  get  acquainted
with   the   task.   The   stimulus   distances   on   the   training   trials  were   drawn   from   a
uniform distribution between 17 cm and 60 cm on linear  scale.  The training trials
were performed in darkness and differed from the test trials in two respects. During
the first 10 training trials, instruction texts were displayed on the screen alongside
the beeps to indicate the various trial phases. Four instruction texts were shown for
each   trial,  preceding   the   first  detour,   the  second detour,   the  stimulus  movement,
and   the   reproduction  movement,   respectively.   In   the   second  half   of   the   training
trials,   these   instruction   texts  were  not   shown such   that  only   the  beeps   indicated
the   different   trial   phases.   The   second   difference   with   the   test   trials   was   that
participants   received   feedback  about   their   performance,  displayed  as   the   signed
reproduction   error   in   centimeters   at   the   end   of   each   training   trial.  We   did   not
analyze the training trials.

4.3.5 Data analysis

Pre-processing
We analyzed data from the test trials offline in MATLAB (v.R2019a, MathWorks). The
end position of the reproduction movement was defined as the sled position at the
moment  when   the   participant  moved   the   steering  wheel   upright.  We   chose   this
position  as  opposed   to   the   sled  position  after   the   slow-down  period,   as   it  more
accurately   reflects   the  participant’s   intended  end  position.  Some  of   the   recorded
sled   position   profiles   indicated   that   movement   speed   plateaued   at   a   low   but
nonzero value before the slow-down period was initiated. The movement end was
therefore corrected to the first  time point where sled speed was < 8 cm/s (instead
of the online threshold of 6 cm/s) while the steering angle remained constant for at
least 100 ms or the steering direction changed. On average, the end position of 20
trials per participant were determined in this way (mean ± SD: 20 ± 15 trials).  The
reproduction error was computed as reproduced distance minus stimulus distance
on   logarithmic   scale,  with  negative  values   indicating  an  undershoot  and  positive
values an overshoot. We excluded trials if the participant initiated the reproduction
movement too early,   if  reproduction movements were in the wrong direction, or if
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the reproduced distance was less than 1 cm (mean ± SD: 5 ± 6 trials). There was no
effect of movement direction on the mean unsigned reproduction error across trials
(Wilcoxon   rank-sum   test,   ,   rank-biserial   correlation   =   0.13),   so
participants were analyzed as a single group, disregarding this factor.  

Central tendency and serial dependence computation
Figure 4.4A illustrates a causal  diagram  G  (Pearl,  2009) of  the high-autocorrelation
condition.   Variables   are   represented   as   nodes   and   possible   causal   relationships
between the variables as directed edges. A path between two variables consists of a
set  of   edges   that   connects   the   two  variables   (irrespective  of   the  direction  of   the
edges).   In   this   diagram,   the  s-nodes   represent   the   stimulus   distances   and   the
e-nodes   the   reproduction  errors  at  different   trials   .  As   the   stimulus  distances   in
this condition are presented in a random-walk sequence, we know that the current
stimulus     depends on the previous stimulus     which in turn depends on  
and  so   forth   (the   top   row   in  Figure   4.4A).   Furthermore,   the  current   reproduction
error may be affected by the current and previous stimulus distances (the vertical
and   diagonal   edges   in   Figure   4.4A),   and   the   previous   reproduction   error   (the
bottom row in Figure 4.4A).  

The  edge  between   the  current   stimulus     and   the  current   reproduction  error  
represents the central tendency effect, whose coefficient    we want to estimate.
A   negative   coefficient   suggests   a   central   tendency   effect,   where   the   longer   the
stimulus   distance   is,   the  more   it   is   underestimated   (i.e.,   the  more   negative   the
reproduction   error   becomes).   Finding   a   coefficient   of   0   implies   that   there   is   no
central   tendency   effect   (i.e.,   the   reproduction   error   is   constant   across   stimulus
distances)  and a  positive  coefficient   implies   that   there   is  anti-central   tendency   in
the reproductions. 

Similarly,   the   edge   from   the   stimulus   distance   on   the   previous   trial     to   the
reproduction error on the current trial     captures the serial  dependence effect at
lag 1.  Here,  we express serial  dependence as the dependence of  the current error
on   the   previous   stimulus   distance   (‘absolute’   serial   dependence;   e.g.,   Holland  &
Lockhead,  1968)   instead of   the  dependence of   the  current  error  on the difference
between   the   previous   stimulus   and   the   current   stimulus   (‘relative’   serial
dependence; e.g., Fischer & Whitney, 2014). The latter metric can erroneously result
in   a   serial   dependence   effect   if   stimuli   are   defined   on   an   open   scale   (such   as
distances   or   durations)   and   the   reproductions   are   constant   across   stimuli   [see
Appendix   A   in   Glasauer   &   Shi   (2022)].   A   positive   (attractive)   serial   dependence
coefficient     indicates   that   if   the   participant   experienced   a   longer   stimulus

p = 0.624

t

st st−1 st−2

st et

CT

st−1

et

SD1

Does stimulus order affect central tendency and serial dependence in vestibular path integration?

4

103



distance  on   the  previous   trial,   they   tend   to   show  a   larger  overestimation   (i.e.,   a
more positive reproduction error) on the current trial. A coefficient of 0 implies that
there  is  no serial  dependence and a negative (repulsive)  coefficient reflects  that  a
longer   stimulus   distance   on   the   previous   trial   tends   to   be   followed   by   a   larger
underestimation (i.e., a more negative reproduction error) on the current trial.

As  becomes  apparent   from the  graph   in  Figure   4.4A,  beside   the  direct  path    
there are indirect paths through which   can affect   . For example, there exists an
indirect path from     to     via common cause   .  In order to accurately estimate
the   coefficient   of   the   direct   path   ,   this   indirect   path   should   be   ‘blocked’   by
adding   variable     to   the   adjustment   set   ,   i.e.,   by   adding   this   variable   as   a
regressor   to   the   multiple   linear   regression   model   ( ).
More   generally,   all   indirect   paths   that   connect     and     should   be   blocked,   in
which  case     is  said   to  be  d-separated  from   .  The  coefficient     is  said   to  be
identifiable when there exists an adjustment set     that  d-separates     from     and
when     contains  no  descendants  of     [Theorem 5.3.1.,   the   single-door  criterion
for direct  effects,  Pearl   (2009)].   If   these conditions are not satisfied,  this  may lead
to a biased estimate of  .

Beside   the  direct  path   ,  we  can  see   that  all   indirect  paths  between     and  
contain   ,   so  by  adding   this   variable   to   the  adjustment   set,   all   indirect  paths
between     and     are blocked (see Figure 4.4B).  Similarly,  to  d-separate     and
  (beside   the  direct  path   ),     and     should  be  adjusted   for,  blocking  all

indirect  paths between     and     (see Figure 4.4C).  Thus,  to  estimate the direct
 effect, the regression of     on     also has to include the regressor   , and to

estimate the direct     effect, the regression of    on    also has to include the
regressors    and  . As the latter regression model contains the first (and adding
the     regressor to the     regression model does not open up paths between  
and   ), we combine the two multiple linear regression models. This results in one
model  that  can be used to estimate both the central   tendency effect     and the
serial dependence effect :

A   similar   causal   graph   can   be   drawn   for   the   no-autocorrelation   condition,   but
without   edges   between   the   stimulus   distances.   From   this   graph   follows   that   to
estimate   ,   no   variables   have   to   be   adjusted   for,   and   to   estimate   , 
should be adjusted  for.  The same regression model  as  above can also  be used to
estimate   the   central   tendency   and   serial   dependence   effects   in   the   no-
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autocorrelation   condition,   because   indirect   paths   between     and     remain
blocked  when  also  adjusting   for     and   ,   and   indirect  paths  between  
and   remain blocked when also adjusting for  .
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Figure  4.4.  A:   Causal   diagram     representing   the   assumed   causal   relationships   between   the
stimulus   distances   ( )   and   reproduction   errors   ( )   across   trials   ( )   in   the   high-autocorrelation
condition. Variables are presented by nodes and possible causal relationships between the variables
by  directed   edges.   A  path  between   two   variables  denotes   a   set   of   edges   that   connects   the   two
variables (irrespective of the direction of the edges). The upper row of nodes represents the random-
walk sequence, in which the previous stimulus affects the current stimulus. The edge     between
the current stimulus     and the current reproduction error     reflects the possible central tendency
effect.  Similarly,   the  edge     between the previous  stimulus     and the  current  reproduction
error     represents the possible serial dependence effect at lag 1.  B:  Application of the single-door
criterion to determine which variables to include as regressors in a multiple linear regression model
such that central tendency coefficient     is identifiable. Graph     is equal to graph    with edge

  removed. Dashed arrows indicate (parts of)  blocked paths between     and   ,  and gray nodes
represent the variables to add as regressors. By adding   as a regressor, all biasing paths between
 and   are blocked, and   can be estimated.  C: Application of the single-door criterion to serial

dependence coefficient  . By adding   and   as regressors, all biasing paths between   and
 are blocked, and   becomes identifiable.

To compare the central tendency and serial dependence across the autocorrelation
conditions, we fitted this model to the data of each participant and each condition
separately,   on   a   logarithmic   scale.   Partial   regression   plots   of   the   current
reproduction   error   on   the   current   stimulus   distance,   and   of   the   current
reproduction   error   on   the   previous   stimulus   distance   are   used   to   visualize   the
central   tendency   and   serial   dependence   effects,   respectively.   These   plots   were
created   using   the   MATLAB   function  plotAdded  and   illustrate   the   effect   of   one
regressor on the response variable while keeping the other regressors constant. The
slope of  the fitted line corresponds to the fitted partial  regression coefficient (
and  , respectively).

To illustrate how accounting for the biasing paths affects the central tendency and
serial  dependence  coefficients,  we  also  computed the  same coefficients  by   fitting
two   separate   simple   linear   regressions   to   the   data   of   each   participant   and
condition.  The  models  used   to  estimate   the   central   tendency  effect     and   the
serial  dependence  effect    were     and  

, respectively. The Appendix provides a comparison of the different central
tendency and serial dependence metrics based on simulated data.

Statistical tests
To   further   analyze   the   central   tendency   and   serial   dependence   coefficients,   we
used the   following statistical   tests.  We  first   tested whether   there  was  an  effect  of
condition   (no/high-autocorrelation)   on   the   central   tendency/serial   dependence
coefficients  with   paired-samples  t-tests.   One-sample  t-tests  were   used   to   assess
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whether   the  central   tendency/serial  dependence  coefficients   significantly  differed
from 0. Cohen’s   (Cohen, 1988) and 95% confidence intervals are reported.

4.4 Results

Participants  performed a  vestibular  distance   reproduction   task   in   the  dark  where
they   actively   reproduced   a   stimulus   movement   that   they   had   passively
experienced.  To manipulate the  level  of  autocorrelation of  the stimulus distances,
we established a high-autocorrelation condition characterized by a random walk of
stimuli,   alongside   a   no-autocorrelation   condition   where   the   same   stimuli   were
randomly   shuffled.   We   examined   the   central   tendency   and   serial   dependence
effects on the reproductions in these conditions. 

4.4.1 Central tendency
Figure   4.5,   A   and  B,   present   the   simple   linear   regressions   of   reproduction   error
versus stimulus distance on the current trial, without adjusting for covariates, for a
single participant in the no- and high-autocorrelation conditions, respectively.  The
slope  of   the   fitted  regression   line  corresponds  to   the  central   tendency  coefficient

. In both conditions,     is negative indicating central tendency, with the high-
autocorrelation   condition   showing   less   central   tendency   than   the   no-
autocorrelation   condition.   For   comparison,   Figure   4.5,  C  and  D,   show   the  partial
regression  plots   of   the   same  participant  based  on   the  multiple   linear   regression
model   (see   Equation   4.2),  with   adjustment   for   covariates.   These   adjusted   values
indicate  that   the  effective  variance   in   the  stimulus  distances   is   lower   in   the  high-
autocorrelation   than   the  no-autocorrelation  condition.   In  contrast   to   the  analysis
presented   in   Figure   4.5,   A   and  B,   the  partial   regression   coefficients   suggest   that
central tendency remains fairly consistent across conditions.

Figure 4.5,  E  and F,   illustrate the regression lines for  all  participants,  as  estimated
by   the  multiple   linear   regression  model,  which   reveal  no  significant  difference   in
central tendency between the conditions (paired-samples t-test:  , Cohen’s

,   ).   As   visualized   in   Figure   4.6A,   the     values
exhibit   considerable   variability   between   participants.   Yet,   they   are   on   average
negative across conditions ( ,   ),  indicating a substantial level
of   central   tendency   (one-sample  t-test:   ,  Cohen’s   ,  

).
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Figure 4.5.  Regression plots of the reproduction error on the current trial as a function of stimulus
distance   on   the   current   trial   in   the   no-autocorrelation   (blue)   and   high-autocorrelation   (orange)
conditions   on   logarithmic   scale   for   an   individual   participant   (A-D)   and   all   participants   (E-F).
Regression   lines   illustrate   the   central   tendency,  with   the   regression   slope   corresponding   to   the
regression coefficient  . A-B: Simple linear regression lines, with the   value reported in the key.
C-D:  Partial   regression  lines  based on the multiple   linear  regression model.  E-F:  Partial   regression
lines with the mean fitted   coefficient across participants indicated.

For   comparison,   Figure   4.6B   presents   the     values,   as   calculated   with   the
simple   linear   regression.   In   both   conditions,   the   mean    coefficient   across
participants   is   significantly   smaller   than   zero   (no-autocorrelation:   ,  

,   ,   Cohen’s   ,   ,   high-
autocorrelation:   ,   ,   ,   Cohen’s   ,  

).   More   strikingly,   the   average     values   differed   significantly
between   the   two  conditions   (paired-samples  t-test:   ,   Cohen’s   ,  

),   demonstrating   that   not   accounting   for   the
autocorrelation   in   the   stimulus   sequence   can   result   in   different   central
tendency coefficients.

CT CT

CT

CT

CT

M = −0.36

SD = 0.21 p < 0.001 d = 1.70 95%CI = [−0.45, −0.28]

M = −0.26 SD = 0.27 p < 0.001 d = 0.98 95%CI =

[−0.37, −0.16] CT

p = 0.016 d = 0.53

95%CI = [−0.18, −0.03]
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Figure 4.6.  Central  tendency (A,  B)  and serial  dependence (C,  D)  regression coefficients in the no-
autocorrelation (blue) and high-autocorrelation (orange) conditions. Panels A and C show the partial
regression  coefficients   computed  with   the  multiple   linear   regression  model,   and  panels  B  and  D
show the regression coefficients computed with the two separate simple linear regression models.
Bold data points and error bars represent the mean ± SE across participants. Transparent data points
and their connecting lines show individual participants.

4.4.2 Serial dependence
Figure   4.7,   A   and   B,   show   simple   regression   plots   of   the   same   exemplary
participant  as   in  Figure   4.5,  but  now with   reproduction  error  on   the  current   trial
plotted   against   stimulus   distance   on   the   previous   trial.   The   regression   line
illustrates   the   serial   dependence,   of   which   the   slope   corresponds   to   the   fitted
regression coefficient   .   In  the no-autocorrelation condition,  the positive  
indicates   that   there   is   attractive   serial   dependence,   whereas   this   coefficient   is
negative   in   the   high-autocorrelation   condition,   representing   repulsive   serial
dependence.   Figure   4.7,   C   and  D,   display   regression   plots   of   the   same  data   set
adjusted   for   the   other   regressors   in   the   multiple   linear   regression   model   (see
Equation 4.2).  Compared to  the  simple  regression analysis,     remains  positive
in   the   no-autocorrelation,   but   shifts   from   negative   to   positive   in   the   high-
autocorrelation condition. 

Figure   4.7,   E   and   F,   display   the   serial   dependence   lines   for   all   participants,   as
determined   by   the   multiple   linear   regression   model.   A   paired-samples  t-test
indicated no significant difference between the average   coefficients of the no-
and   high-autocorrelation   conditions   ( ,   Cohen’s   ,  

).  Despite   substantial   intersubject   variability   (see  Figure   4.6C),  
was   on   average   positive   across   conditions   ( ,   ),   suggesting
attractive   serial   dependence   (one-sample  t-test:   ,   Cohen’s   ,  

).

For   comparison,  Figure   4.6D  shows   these  coefficients,   as  determined   from  fitting
the   simple   linear   regression.   In   this   case,   a   paired-samples  t-test   revealed   a
significant  difference  between   the   two   conditions   ( ,   Cohen’s   ,  

),   with   attractive   serial   dependence   in   the   no-
autocorrelation   condition   ( ,   ,   one-sample  t-test:   ,
Cohen’s   ,   )  and repulsive  serial  dependence  in  the
high-autocorrelation   condition   ( ,   ,   one-sample  t-test:  

,   Cohen’s   ,   ).   Again,   this   highlights
that the two analysis methods can lead to different results and therefore different
interpretations of the data.

SD1 SD1

SD1

SD1

p = 0.180 d = 0.28 95%CI =
[−0.17, 0.03] SD1

M = 0.19 SD = 0.21
p < 0.001 d = 0.93

95%CI = [0.14, 0.25]

p < 0.001 d = 1.10
95%CI = [0.19, 0.41]

M = 0.07 SD = 0.08 p < 0.001
d = 0.82 95%CI = [0.04, 0.10]

M = −0.23 SD = 0.25
p < 0.001 d = 0.92 95%CI = [−0.33, −0.13]
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Figure 4.7.  Regression plots of the reproduction error on the current trial as a function of stimulus
distance  on   the  previous   trial   in   the  no-autocorrelation   (blue)   and  high-autocorrelation   (orange)
conditions   on   logarithmic   scale.   Regression   lines   illustrate   the   serial   dependence,   with   the
regression slope corresponding to the regression coefficient  . The figure is in the same format as
Figure 4.5, with the same individual participant.

4.5 Discussion

In   this   study,   we   investigated   the   effect   of   the   autocorrelation   in   the   stimulus
sequence on central tendency and serial dependence in vestibular path integration.
Participants performed a distance reproduction task using a vestibular sled in total
darkness.   On   each   trial,   the   participant   was   passively   moved   over   a   stimulus
distance,  which   they   actively   reproduced   by   steering   the   sled   back   to   the   start
position. Each participant completed two experimental conditions during which the
same   stimulus   distances   were   presented   but   in   different   orders.   In   the   high-
autocorrelation condition, the stimuli  followed a random walk,  whereas in the no-
autocorrelation  condition,   the  stimulus  distances  were  randomly  shuffled.  Central
tendency and serial  dependence were assessed either by conducting two separate
simple linear regressions or by employing a single multiple linear regression model.
The   latter  approach  was  derived   from a  causal  diagram (see  Figure   4.4;  cf.  Pearl,
2009),   taking   into   account   that   the   two   perceptual   biases   may   covary   due   to
autocorrelated stimuli.  We found that  applying the two analytical  methods to  the
vestibular   path   integration   data   set   yielded   different   results   regarding   how
autocorrelation influences both central tendency and serial dependence.

The simple linear regressions suggest that central tendency was weaker in the high-
autocorrelation   than   in   the   no-autocorrelation   condition.   This   approach   also
indicates that the level of stimulus autocorrelation can make the serial dependence
coefficient   flip   sign:   the   high-autocorrelation   condition   demonstrated   repulsive
serial dependence, while the no-autocorrelation condition demonstrated attractive
serial   dependence.  However,  when  we   used  multiple   linear   regression   to   jointly
quantify  both   central   tendency  and   serial   dependence,   thus   accounting   for   their
covariation as well as the effect of the previous reproduction error, we observed no
significant  differences   in   either  perceptual   bias  between   the   two  autocorrelation
conditions.   In   both   conditions,  we   found   similar   central   tendency   and   attractive
serial   dependence   effects,   suggesting   that   these   biases   are   independent   of   the
specific stimulus sequence protocol that was used. Can we reconcile these different
outcomes with findings from previous literature?
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Our simple linear regression results align with the findings of Glasauer & Shi (2022),
who   reported   that   both   central   tendency   and   serial   dependence   in   reproduced
durations,   estimated   using   separate   simple   linear   regressions,   depended   on   the
sequence  of   the   presented   stimuli.   The  multiple   linear   regression   coefficients   of
this  study  are  consistent  with   the  central   tendency  and  serial  dependence  biases
found in our previous study on vestibular path integration (Willemsen et al.,  2024).
In this earlier study, stimulus distances were randomly sampled from either a short-
or   long-distance   distribution   and   presented   in   a   mixed   or   blocked   order,   with
stimulus autocorrelations (per distance and order type) that were on average close
to   0   across   participants   (mean   ±   SD:   -0.03   ±   0.13).   The   reproduced   distances
showed a similar  amount of  central   tendency and attractive serial  dependence as
in   the   present   study,   for   both   distance   types   (short/long)   and   presentation
contexts (mixed/blocked).

The   novelty   of   the   present   study   is   that   we   found   central   tendency   and   serial
dependence   in   vestibular   path   integration   to   be   independent   of   stimulus
autocorrelation, if these biases are estimated by a multiple linear regression model
that  accounts   for   their   covariation.  Thus,   the  differences   in  central   tendency  and
serial dependence identified through the separate simple linear regressions are due
to   the   different   levels   of   autocorrelation   that   were   not   accounted   for   in   the
regressions,   rather   than   due   to   differences   in   brain   processing   across   the   two
conditions.   As   shown   in   the   Appendix,   separately   estimating   the   biases   in
simulated reproductions that show central tendency but no serial dependence, can
falsely   result   in   a   repulsive   serial   dependence   coefficient   when   stimuli   are
autocorrelated.  The  autocorrelation   in   the   stimuli  makes   that  a   short   stimulus   is
likely   to   follow   another   short   stimulus.   If  we   tend   to   overestimate   short   stimuli
irrespective   of   the   previous   stimulus   (the   central   tendency   effect),   this  will   also
show up as  repulsive  serial  dependence,   i.e.,  an  overestimation that  occurs   if   the
previous stimulus was short.

Here,   we   show   that   central   tendency   and   serial   dependence   in   vestibular   path
integration persist regardless of stimulus autocorrelation, which suggests that they
reflect robust neural processes that affect the estimation of self-motion, even when
the   stimulus   changes   predictably   over   time.   Specifically,   we   found   that
reproductions showed central  tendency:  shorter  stimulus distances were generally
overestimated,  while   longer  distances   tended   to  be  underestimated.  This  pattern
aligns  with   previous   findings   in   distance   and   heading   perception,  where   central
tendency has been consistently reported (Loomis et  al.,  1993;  Warren & Saunders,
1995; Philbeck & Loomis, 1997; Israël et al.,  1997; Grasso et al.,  1999; Riecke et al.,
2002;  Bergmann et  al.,  2011;  Petzschner & Glasauer,  2011;  Petzschner et  al.,  2012;
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Prsa  et  al.,   2015;  Sun  et  al.,   2020).   Furthermore,   the   reproduction  errors   showed
attractive   serial   dependence,   which   indicates   that   self-motion   perception   of
participants   is   also   biased   toward   the   stimulus   distance   of   the   immediately
preceding  trial.  Attractive  serial  dependence  effects  have  been widely   reported   in
the   perception   literature   (Fischer   &   Whitney,   2014;   Liberman   et   al.,   2014;
Motala et al.,  2020;  Manassi  &  Whitney,  2022,  2024;  Guan & Goettker,  2024).  While
attractive   serial   dependence   in   vestibular   path   integration  may   help   to   stabilize
self-motion   perception   from   trial   to   trial,   it   would   reduce   sensitivity   to   small
changes between trials (Sun et al., 2020; Manassi & Whitney, 2024).  

To computationally understand the underlying neurocognitive processes, numerous
studies have adopted a Bayesian framework to explain central tendency and serial
dependence.   In   this  approach,   the  brain   is   thought   to  encode   information  about
previous   stimuli   as   a   prior   distribution,   which   is   optimally   combined   with   the
sensory   likelihood,   using   Bayes’   rule   (Jürgens   &   Becker,   2006;   Petzschner   &
Glasauer, 2011; Petzschner et al., 2012; Prsa et al., 2015; Lakshminarasimhan et al.,
2018).   It   can  be   shown   that   if   the  prior  and   likelihood  are  modeled  as  Gaussian
distributions,  their  combination will   result   in  a  posterior  distribution with a   lower
variance,   reflecting   more   precise   but   potentially   biased   estimates.   Research
indicates  that  the posterior  parietal  cortex  may play  a  role   in  these computations
(Akrami et al., 2018).

Within   the  Bayesian   framework,   Glasauer  &   Shi   (2022)   proposed   a   Kalman   filter
model   that   iteratively   combines   the   sensory  measurement   from   the   current   trial
with the stimulus estimate from the previous trial. It can be shown that the steady
state   of   this   model   is   similar   to   an   ARX   model   on   logarithmic   scale
(Shirzhiyan et al.,   2023).   By   varying   the   Kalman   filter’s   assumptions   about   the
estimated stimulus distribution, the authors assessed how various beliefs about the
generation  of   stimuli   in   the  environment   could  explain   the  central   tendency  and
serial  dependence biases.  Both central  tendency and serial  dependence effects,   in
duration perception as well  as in visual path integration, were well  explained by a
model   that   assumes   that   the   stimuli   are   drawn   from   a   stimulus   distribution   of
which the mean can fluctuate across trials (Glasauer & Shi, 2022). Additionally, this
model demonstrated a reasonably good fit to the vestibular distance reproductions
in   our   previous   study,   successfully   capturing   the   central   tendency   effects   in   the
data,   although   it   was   less   effective   in   explaining   the   serial   dependence   effects
(Willemsen et al.,  2024). As the focus of the current study was on the computation
of   central   tendency   and   serial   dependence   across   different   levels   of   stimulus
autocorrelation, evaluating the fit of the Kalman filter model to the current data set
was outside the scope of this study. 
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As   a   final   consideration   regarding   the   multiple   linear   regression   analysis,   it   is
important   to  note  that   the  causal  diagram from which  it   is  derived represents  an
assumed causal structure underlying the high-autocorrelation condition. If relevant
variables   or   connections   are  missing,   there   is   a   risk   that   direct   effects  may   be
misidentified.   For   example,   earlier   stimulus   distances   (see   ,   ,   etc.   in
Figure 4.4A)  might also influence the current reproduction error.  The causal  graph
in  Figure 4.4A   implies   that     and     are   conditionally   independent  given  
and  ; an assumption that we tested using the high-autocorrelation data set. We
fitted   the  multiple   linear   regression  model  

 and inspected the    coefficient. Across participants, the mean ± SD of  
was   0.12   ±   0.26   but   only   significantly   different   from   0   for   one   participant.   As   a
further check, we assumed that there was an effect of     (i.e.,  an edge between

  and     in   the   causal   graph),   and   added   this   variable   as   a   regressor   to   the
multiple linear regression model such that    and    were  d-separated. We found
similar mean coefficients for the central tendency and serial dependence effects. As
adding   this   regressor   would   introduce   more   multicollinearity   in   the   regression
model,   we   decided   to   not   include   the   regressor   in   the   final   model.   The   high
amount of  autocorrelation  in  the stimulus sequence comes with the disadvantage
of   a   reduced   effective   variance   in   the   stimulus   distances   (see   Figure 4.5   and
Figure 4.7),   and   therefore   a   reduced   precision   in   the   estimated   regression
coefficients.  A possible solution could be to test  an experimental  condition with a
medium amount of autocorrelation.

In conclusion, our findings indicate that the reproduced distances in the vestibular
path   integration   task   generally   showed   central   tendency   and   attractive   serial
dependence.   These  perceptual   biases  were  not   affected  by   the   level   of   stimulus
autocorrelation,   given   that   covariation   of   these   biases   through   the   stimulus
autocorrelation as  well  as  other  covariates  were taken  into account   in  the model.
This   suggests   that   central   tendency   and   serial   dependence   in   vestibular   path
integration have a neurocognitive rather than a statistical origin.
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4.6 Appendix

To   compare   different   central   tendency   and   serial   dependence   metrics,   we
simulated reproductions that show central tendency but no serial dependence, i.e.,
reproductions that  tend towards the mean of  the underlying stimulus distribution
but that are independent of the stimulus distance presented on the previous trial.
Such   reproductions   can   be   generated   for   a   trial  t  using   the   following   ‘static’
Bayesian model (Glasauer & Shi, 2022):

where     refers   to   the   reproduced  distance,     to   the   stimulus  distance,     to   the
total  number  of   trials,   and     to   a   small   amount  of  normally  distributed   random
noise centered on 0.  Parameter     reflects  the weighting between the stimulus on
the   current   trial   and   the   constant   mean   of   all   stimuli.   The   amount   of   central
tendency in the reproductions is defined as   , and the serial dependence
is always 0 as the current reproduction does not depend on the previous stimulus
irrespective   of   the   amount   of   central   tendency.   One   simulation   for   a   given  
consisted   of   generating   reproductions  with   the   static  model   for   a   random-walk
sequence of  130 stimulus distances (the high-autocorrelation condition),  and then
shuffling the resulting stimulus-reproduction pairs to create the no-autocorrelation
condition.   Next,   the   amount   of   central   tendency   and   serial   dependence   in   the
simulated reproductions was computed using two different methods. First, we used
two separate linear least-squares regressions. Central tendency was defined as the
slope   of   the   linear   regression   of   the   reproduction   error   (reproduced   -   stimulus
distance) on the stimulus distance. Serial  dependence was defined as the slope of
the linear regression of  the reproduction error of  the current trial  on the stimulus
distance  of   the  previous   trial.   Second,  we   computed   central   tendency  and   serial
dependence   as   the   partial   regression   coefficients     and     in   the  multiple
linear regression model described in the Methods. We performed 1000 simulations
for   ,   ,  and   ,  and we report  the mean of  the central   tendency
and serial dependence values across simulations for both methods.

The   results   are   presented   in   Table   4.A1.   Both   the   simple   and   multiple   linear
regression  methods   compute   the   correct   amount   of   central   tendency   (i.e.,   )   in
both   conditions.   Note   that   the   central   tendency   values   are   negative   as   central
tendency   is   defined   in   terms   of   the   effect   of   the   stimulus   distance   on   the
reproduction   error   (see   Figure   4.1A).   Both   methods   also   result   in   the   correct
amount   of   serial   dependence   (i.e.,   0)   in   the   no-autocorrelation   condition   (see
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Figure   4.A1,   A-C).   However,   in   the   high-autocorrelation   condition,   the   central
tendency   in   the   reproductions   manifests   as   repulsive   serial   dependence   when
computed   using   the   simple   linear   regression   method.   This   is   illustrated   in
Figure 4.A1, D-F,   for  three example simulations with  increasing amounts of  central
tendency.   If   we   instead   compute   serial   dependence   using   the   multiple   linear
regression  method   in  which  we  control   for   the  current   stimulus  as  well   as  other
variables   (see   Methods),   the   resulting   value   is   on   average   close   to   0   across
simulations (see Table 4.A1).  

Table 4.A1. (continued)

Bias Autocorrelation

, , ,

SLR MLR SLR MLR SLR MLR

Central tendency
None 0.00 0.00 -0.50 -0.50 -1.00 -1.00

High 0.00 0.00 -0.50 -0.50 -1.00  -1.00

Serial dependence
None 0.00 0.00 0.00 0.00 0.00 -0.01

High 0.00 0.00 -0.48 -0.01 -0.95 -0.02

w = 1
c = 0

w = 0.5
c = 0.5

w = 0
c = 1

Table 4.A1.  Central  tendency and serial  dependence  in  simulated reproductions of  a  no-  or  high-
autocorrelation   stimulus   sequence,   computed  with   two   separate   linear   regressions   (SLR)   or   one
multiple   linear   regression   model   (MLR,   see   Methods).   Cells   show   the   mean   bias   across   1000
simulations   with   different   amounts   of   introduced   central   tendency   ( ),   controlled   by   model
parameter   (where  ).

c

w c = 1 − w

Chapter 4118



Figure 4.A1. The serial dependence in the no- (blue) and high-autocorrelation (orange) conditions of
three example simulations with different amounts of introduced central tendency ( ), controlled by
model  parameter     (where   ).  Serial  dependence  is  plotted as  reproduction error   (

) against previous stimulus distance   on logarithmic scale. The slope of the simple linear
regression   (SLR)   between   these   two   variables   is   reported   in   the   key.   The   corresponding   serial
dependence   value   as   computed   with   the  multiple   linear   regression   (MLR)   method   (the   partial
regression coefficient  , see Methods) is reported in each panel (but not plotted as this coefficient
can only be correctly shown in a partial regression plot, see Methods). 

c
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Chapter 5
General discussion

How are  we able   to   form coherent  percepts   from the  vast  amount  of   information
available in the world around us? As we navigate our surroundings, our brain does
not  just  receive  information from our sensory organs,  but   importantly,  also draws
on   memorized   prior   knowledge.   In   this   thesis,   I   studied   how   prior   experience
influences   spatial   orientation   and   self-motion   perception.   In  Chapter  2,   I
investigated to what extent the distribution of naturalistic head orientations could
explain  the  Aubert  effect   in  spatial  orientation perception.   In  Chapters  3  and  4,   I
examined the effect  of  different stimulus distributions and presentation orders on
central   tendency   and   serial   dependence  biases   in   self-motion  perception.   In   the
first   two   sections   of   this   chapter,   I   summarize   and  discuss   the  main   findings   of
Chapter   2,   and   Chapters   3   and   4,   respectively.   In   these   sections   I   furthermore
identify   limitations  and suggest   ideas   for   future  studies.  Finally,   I  will  explore  the
possible   implementation   and   creation   of   Bayesian   priors   and   end   with   a
short conclusion. 



5.1 Non-Gaussian natural head orientation statistics in
spatial orientation perception

Spatial orientation perception has previously been studied in our lab by roll-tilting
participants using a vestibular chair and subsequently quantifying the participant’s
perception of vertical (the subjective visual vertical task) and their body orientation
in space (the subjective body tilt  task).  Findings show that when the head is tilted
at   large   tilt   angles,   the  perception  of   vertical   is  biased   toward   the   tilt   direction,
called the Aubert effect (Aubert, 1861), whereas the perception of body orientation
remains   relatively   accurate.  Clemens  et   al.   (2011)  proposed  a  Bayesian   inference
model   to   explain   the  observations   in   these   tasks.   To  model   the  Aubert   effect,   a
Gaussian  prior   distribution  of   head   roll   centered  on   the   upright   orientation  was
included.  This  prior   represented   the   idea   that  we  usually   keep  our  head  upright
and that extreme head tilts occur less frequently.  

5.1.1 Natural statistics of head orientation
In  Chapter 2,   I  asked whether  head orientations measured outside the  laboratory
reflect   the   assumed   Gaussian   prior   distribution.   To   answer   this   question,   I
evaluated which probability density function could best capture the distribution of
head   roll-tilt  angles,  measured  across  a   set  of  naturalistic,  unconstrained   tasks.   I
found that   the  measured distributions  were   indeed centered  on  the  upright  head
orientation   and   showed   no   systematic   skewness.   However,   the   participants’
distributions consistently showed longer tails and higher peaks than predicted by a
Gaussian   distribution,   best   quantified   by   the   more   flexible  t-location-scale
distribution which includes a shape parameter to control the distribution’s kurtosis.
I   conclude   that   head   orientations   measured   outside   the   laboratory   are
symmetrically   centered   around   the   upright   head   orientation   and   follow   a   non-
Gaussian distribution.

The data set of head roll tilts measured in everyday behaviors has been collected to
supplement   the   growing   literature   on   the   natural   statistics   of   head   motion
(Schwabe & Blanke, 2008; Carriot et al., 2014; Hausamann et al., 2019; Sinnott et al.,
2023).   The   finding   that   the   empirical   head   roll   distributions  were   generally   non-
Gaussian   extends   earlier   reports   of   the   head’s   angular   velocity   and   linear
acceleration   in   naturalistic   tasks,   which   showed   comparable   excess   kurtosis
(Carriot et al., 2014).  
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It   could   be   considered   a   limitation   of   the   out-of-laboratory   experiment   that   it
consisted of a set of relatively short tasks (walking, running, going up and down the
stairs,   sitting,   and   standing,   resulting   in   approximately   30   min   of   recorded
activities).   To   what   extent   do   the   head   roll   distributions   from   this   experiment
generalize   to  more  natural,  uninstructed  behavior?  Recently,  Sinnott  et  al.   (2023)
recorded   head   orientations   over   a   continuous   5-hour   period,   without   any
prescribed   activities.   The   resulting  head   roll   distribution   across  participants  was
centered   on   upright   (0.58°)   with   a   standard   deviation   of   6.21°,   little   skewness
(0.12),   and   excess   kurtosis   (7.26,   i.e.,   a   kurtosis   of   10.26).   These   values   closely
resemble the statistical moments that I found in Chapter 2, which suggests that the
head   roll  measured   in   the   relatively   short   tasks   generalizes   to  more  naturalistic,
uninstructed behavior.  

5.1.2 Bayesian inference models of spatial orientation perception
As priors in visual perception seem to reflect natural scene statistics (Adams et al.,
2004;  Girshick et  al.,  2011),   I  subsequently  asked whether  this   is  also the case for
the   perception   of   our   head’s   orientation   in   space.   More   specifically,   I   studied
whether the Clemens et al. (2011) model of spatial orientation perception could be
improved   by   incorporating   the   empirical  t-location-scale   distribution,   with   its
shape   parameter   estimated   from   head   orientations   measured   outside   the
laboratory,   as   the   head-in-space   prior   (model   m2-TP,     =   3.4   in   Chapter   2).
Surprisingly,   I   found that   the  t-location-scale  prior  performed substantially  worse
than   the   previously   assumed   Gaussian   prior   (model   m1-GP)   in   explaining   the
spatial  orientation  data  set   from Clemens  et  al.   (2011),  and   that   this   finding  was
consistent   across   various   model   variants.   I   conclude   that   incorporating   the
empirical, non-Gaussian distribution in the model by Clemens et al. (2011) does not
provide   a   better   explanation   of   spatial   orientation   perception   than   the   original
model with a Gaussian prior.

The  new model   (m2-TP,     =  3.4)  performed worse   in  capturing   the  Aubert  effect,
predicting smaller SVV biases at larger tilt angles than seen in the data. Replicating
this finding, Sinnott et al. (2023) found that implementing their empirical head roll
distribution as the prior in a static Bayesian inference model resulted in a worse fit
to  the SVV bias  data of  de Vrijer  et  al.   (2009)  than a  Gaussian-prior  model.   In  the
same study, Sinnott et al.  (2023) tested whether a non-linear relationship between
otolith noise and absolute head tilt angle could redeem the empirical prior model.
This  model   variant  was  again  outperformed  by   the  corresponding  Gaussian-prior
model, reflecting my finding that allowing the standard deviation of otolith noise to
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be a free parameter for each absolute tilt angle did not improve the t-location-scale
prior model (m3-TP).  

The  most   striking  difference  between   the  Gaussian  prior   (m1-GP)  and  t-location-
scale   prior   (m2-TP,   )  model   variants   is   that   the   latter   variant   predicts   a
much higher perceptual  uncertainty across the tilt  range.  Gradually   increasing the
shape   parameter   of   the  t-location-scale   distribution   such   that   the   distribution
became   more   Gaussian   (m2-TP   models),   resulted   in   a   consistent   decrease   in
predicted perceptual variance and a corresponding increase in model performance.
A theoretical reason for this finding is that the posterior variance is not necessarily
lower than the variances of the prior and likelihood, if these two individual signals
are not both represented as Gaussian distributions (Petty, 2018). If the prior is non-
Gaussian,   this  could  result   in  a  high  perceptual  uncertainty  at   large  tilt  angles  as
predicted by  the  t-location-scale  prior  model  –  a  situation the  brain  may want  to
prevent.   If   spatial   orientation  perception   indeed   follows  Bayesian  principles,   the
non-Gaussian   distribution   of   everyday   head   tilts   might   be   transformed   into   a
Gaussian   internal   representation   of   probable   head   orientations,   by   means   of
additive  Gaussian  noise,   introduced  during   transmission  of   head   tilt   information
along vestibular afferents (Sadeghi et al., 2007; Mallery et al., 2010).  

Alternatively, the natural statistics of head roll measured during active motion may
be less  informative for spatial  orientation perception measured in stationary tasks
(Carriot  et  al.,  2014).   Instead,   there  may exist  context-dependent  priors,  encoding
relevant information for different contexts or tasks. During active movements, such
as walking, it is important to remain balanced to prevent falling. This process might
be   facilitated   by   a   prior   that   reflects   the   natural   statistics   of   head   tilt   during
walking,   informing   the   brain   about   probable   head   tilts   that   enable
postural stability.

Within   each   data   set   in   Chapter   2,   participants   were   regarded   as   one   group.
However,   the  data  and  fitted  parameter  values   illustrate   that   there   is  a  degree  of
intersubject   variability.   An   interesting   future   study   would   be   to   test   whether
individual   differences   in   natural   statistics   of   head   roll   can   predict   differences   in
spatial  orientation  perception.  To  do  so,   the  same group of  participants  could  be
tested   in   the   out-of-laboratory   and   laboratory-based   experiments.   For   each
participant,  the natural statistics of head roll  may be quantified by the best-fitting
(Gaussian)  distribution   to   the  measured  head  roll   tilts,  and   the  subsequent   fitted
(mean and variance) parameter values may be used as the fixed parameters of the
head-in-space prior in the Clemens et al. (2011) model.  
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Future   studies  may  also   explore   sequential  Bayesian   inference  models  of   spatial
orientation   perception,   measured   in   continuous   psychophysics   paradigms
(Bonnen et al., 2015; Huk et al., 2018; Straub & Rothkopf, 2022; Jörges et al., 2024).
Continuous  versions  of   the  SBT  and  SVV   tasks  could   involve  participants   rotating
themselves or the visual   line toward their  estimate of  the reference orientation or
the   vertical   orientation,   respectively   (as   in   Tamura   et   al.,   2017),   resulting   in   a
continuous   instead   of   a   binary   response   (CW/CCW).   Future   studies   could   also
analyze   possible   short-term   effects   of   previous   stimuli   on   verticality   and   body
orientation perception (i.e., serial dependence effects).

5.2 Effects of stimulus history on self-motion
perception

Self-motion   perception   is   essential   for   accurate   path   integration,   a   process   that
involves   integration  of   successive  self-motion  signals   to   track   travel  distance  and
direction (Darwin, 1873; Mittelstaedt & Mittelstaedt,  1980; Etienne & Jeffery,  2004).
To study how memorized information about previously encountered stimuli affects
path integration, distance reproductions tasks are often used. Findings from virtual
reproduction   tasks,   in   which   simulated   optic   flow   provides   visual   self-motion
signals, indicate that reproduced distances are biased by stimulus history (Glasauer
&  Shi,   2022):   reproductions   tend   towards   the  mean  of   the  experimental   stimulus
distribution   –   the   central   tendency   effect   (Hollingworth,   1910)   –   and   are   also
affected on a shorter timescale by the immediately preceding stimulus – the serial
dependence effect (Holland & Lockhead, 1968; Cross, 1973).  

In  Chapters  3  and  4,   I   studied   to   what   extent   central   tendency   and   serial
dependence   affect   vestibular   self-motion  perception,   by   testing  participants   in   a
physical distance reproduction task that mainly provided vestibular signals. In this
task,   a   vestibular   sled  passively  moved   the  participant  over   a   stimulus  distance,
and subsequently, the participant actively reproduced this distance by steering the
sled   back   to   the   starting   point   of   the   stimulus   movement.   I   conclude   that
reproductions generally showed central tendency and attractive serial dependence,
suggesting that vestibular self-motion perception is affected by stimulus history.

5.2.1 Sequential Bayesian inference models of self-motion perception
Magnitude perception has previously been studied with Bayesian models (Jürgens
& Becker,  2006;  Jazayeri  & Shadlen, 2010;  Petzschner & Glasauer,  2011;  Ashourian

General discussion

5

125



&   Loewenstein,   2011;   Petzschner   et   al.,   2012;   Prsa   et   al.,   2015;
Lakshminarasimhan et al.,   2018;  Glasauer  &  Shi,   2021,   2022).  Some  studies  have
modeled   perception   through   the   combination   of   incoming   sensory   signals  with
static  prior  knowledge about the statistics  of  previously experienced stimuli   (e.g.,
Jazayeri   &   Shadlen,   2010).   Other   studies   employed   more   iterative   models,   in
which the estimate of the previous trial is used as prior knowledge for the current
trial   (e.g.,   Petzschner   &   Glasauer,   2011).   Glasauer   &   Shi   (2022)   developed   a
sequential   Bayesian   inference   (two-state)   model   that   captures   an   intermediate
assumption:  stimuli  are sampled from a probability  distribution with a mean that
may   vary   from   trial   to   trial.   This   model   contains   the   static   and   iterative
assumptions   as   special   cases   which   enables   to   compare   how   different
assumptions explain magnitude perception.  

In  Chapter  3,   I   evaluated  whether   this  model   could  provide   further   insights   into
how stimulus history influences reproduction behavior. I found that the predictions
of   both   the   static   and   two-state   models   matched   the   measured   reproductions
relatively   well,   suggesting   that   perception   may   have   been   influenced   by   the
assumption   that   stimuli   come   from   a   relatively   stable   distribution.   This
corresponds to the finding of  Glasauer & Shi  (2022) that behavior of  about half  of
their participants in a duration reproduction experiment was best explained by the
two-state   model   and   that   for   the   remaining   participants   the   static   model   was
sufficient.   Also   consistent  with  Glasauer  &   Shi   (2022),   I   observed   that   all  model
versions   correctly  predicted   similar   amounts  of   central   tendency  as  measured   in
the   reproduction   data,   and   that   the   iterative   model   overestimated   serial
dependence whereas the static model underestimated serial dependence. Contrary
to   Glasauer   &   Shi   (2022),   also   the   two-state   model   underestimated   the   serial
dependence   in  my   data   set,   predicting   similar   serial   dependence   values   as   the
static model. This was supported by the fitted     parameter values of the two-state
model,   which   were   on   average   close   to   0,   predicting   a   low   level   of   serial
dependence   and   essentially   reducing   the   model   to   the   static   model   for
most participants.  

It is unclear why the two-state model converged to the static model, resulting in an
underestimation of the serial dependence of the measured reproduced distances. A
potential explanation is that the reproduction data measured in the vestibular path
integration task  was  too noisy   from trial   to  trial,   resulting   in   the  two-state  model
not   being   able   to   capture   the   serial   dependence   at   the   level   of   the   individual
participant.  Part  of   this  noise  may  have  been  motor  noise   introduced  during   the
active   reproduction  movement.  A   future   study  may   test  participants   in  a  passive
reproduction task, e.g., a task in which the passive stimulus movement is followed
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by   a   passive   reproduction   movement,   during   which   the   participant   presses   a
button when they perceive they have travelled the stimulus distance. 

I   further   investigated   whether   reproduction   behavior   was   affected   by   different
experimental   stimulus   distributions   and   presentation   orders.   Stimulus   distances
were sampled from two probability distributions, centered on a relatively short and
long distance, and tested in a blocked context, where the short and long distances
were   presented   in   two   separate   blocks,   and   a  mixed   context,   where   the   same
distances  were   randomly   shuffled,   resulting   in  one  block.   I   extrapolated  how  the
median stimulus distance would have been reproduced if   it  was part  of  the short-
or   long-distance   distribution   in   the   two   contexts.   I   found   that   the   estimated
reproductions   did   not   differ   in   the   mixed   context,   whereas   the   estimated
reproduction was generally longer in the long block than in the short block of the
blocked context.  Subsequently,   I  tested whether this  finding could be captured by
the   two-state  model,  by  extending   the  model  such  that   it  could   take  on  different
assumptions   about   the   stimulus   distribution   across   the   mixed,   short   and   long
blocks.   I   also   evaluated   a   variant   of   this   model   that   allowed   block-dependent
vertical shifts, reflecting global under- or overestimations of the stimulus distances.
I  conclude that  different   levels  of  global  underestimation across the blocks rather
than different stimulus distribution assumptions captured the observed differences
in the data. 

A   direction   for   future   research   could   be   to   further   investigate   the   origin   of   the
different   global   underestimations.   Interestingly,   the   average   best-fitting   ,  

,  and     parameter values seemed to decrease linearly with distance,
on logarithmic scale. The shift term may therefore reflect increasing uncertainty in
the position estimate as more distance is covered (Lakshminarasimhan et al., 2018).

5.2.2 Isolating central tendency and serial dependence in self-motion
perception with causal models
In  Chapter 4, I studied how stimulus autocorrelation affected central tendency and
serial   dependence   in   distance   reproductions   based   on   vestibular   self-motion
signals.   A   new   set   of   participants   performed   the   vestibular   path   integration
experiment,   in  which   stimulus   distances  were   either   presented   in   a   randomized
order   (the   no-autocorrelation   condition)   or   in   a   random-walk   order   (the   high-
autocorrelation   condition).   By   simulating   reproductions   that   showed   no   serial
dependence,   and   quantifying   the   central   tendency   and   serial   dependence   as
separate   regression  slopes,   I  observed  that  central   tendency  erroneously   resulted
in  repulsive  serial  dependence  if   the  stimuli  were  autocorrelated.  To compare the
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central   tendency   and   serial   dependence   values   across   the   no-   and   high-
autocorrelation conditions, the different autocorrelation levels should therefore be
controlled for in the regression model. I  aimed to isolate the central tendency and
serial dependence effects by representing the causal relations between the stimuli
and reproduction errors in the measured data set in a causal graph (Pearl, 2009). By
applying the graphical  d-separation criterion , variables were identified that should
be  adjusted   for   in   the   regression,   resulting   in  a  multiple   linear   regression  model
that   was   used   to   jointly   quantify   the   central   tendency   and   serial
dependence effects.

The central tendency and serial dependence values as estimated with the separate
regressions  indicated that  the reproductions  in  the high-autocorrelation condition
showed less central tendency, and more negative serial dependence than in the no-
autocorrelation condition, in line with earlier findings (Glasauer & Shi, 2021, 2022).
However,  when  quantifying   the  effects  with   the  multiple   linear   regression  model,
the estimated values were similar across autocorrelation conditions,  reflecting the
same level of central tendency and attractive serial dependence, comparable to the
effects   I   found   in   Chapter   3.   I   conclude   that   central   tendency   and   serial
dependence in distance reproductions based on vestibular self-motion signals were
not affected by stimulus autocorrelation,  which suggests that these biases are not
caused   by   the   experimental   stimulus   randomization   protocol   but   arise   from
neurocognitive processes.

In   the   final   causal   graph,   edges   from   the   stimulus   distance   on   the   current   trial
(reflecting the central   tendency effect)  and the previous  trial   (reflecting the serial
dependence   effect),   and   the   previous   reproduction   error,   to   the   current
reproduction  error  were   included.  Earlier  stimulus  distances   (at   trial   ,   ,
etc.)  could  potentially  have  also  affected   the  current   reproduction  error   (creating
biasing paths  that  would affect  the serial  dependence estimate),  but  the data did
not   reflect   such   effects.   Earlier   studies   have   also  pointed  out   the   importance  of
isolating central tendency and serial dependence effects (Jesteadt et al., 1977; Tong
& Dubé, 2022; Saarela et al.,  2023). To my knowledge, causal modeling has not yet
been  applied   to  disentangle   these   two  effects  on  magnitude  perception  but  may
guide   future   development   of   appropriate   regression   models   for   perception
experiments and possibly also other experiments with autocorrelated stimuli.

2
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During causal  modeling,   I  analyzed  d-separation in the causal  graphs using  DAGitty  (Textor et  al.,  2016),  a
useful browser-based environment (and R package) for the creation and analysis of causal diagrams.

2.
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Incorporating   both   the   stimulus   on   the   current   trial   and   the   stimulus   on   the
previous   trial  as   regressors   in   the  model   resulted   in  multicollinearity   in   the  high-
autocorrelation   condition.   Multicollinearity   reduces   the   effective   variance   in   the
stimulus   distances   and   therefore   also   reduces   the   precision   of   the   estimated
regression   coefficients.   Reducing   the   amount   of   autocorrelation   in   a   replication
study  may   still   allow  a   comparison   to  a  no-autocorrelation   condition,  while   also
improving the precision of the coefficients.

5.2.3 Serial dependencies in perception
The reproductions measured in the vestibular path integration tasks of  Chapters 3
and  4  showed attractive serial dependence, where the reproduction on the current
trial   was   on   average   attracted   toward   the   stimulus   on   the   previous   trial.   Many
studies  within   the   perception   literature   have   found   attractive   serial   dependence
(Fischer   &  Whitney,   2014;   Liberman   et   al.,   2014;  Motala   et   al.,   2020;  Manassi   &
Whitney, 2022, 2024; Guan & Goettker, 2024), but there are also reports of repulsive
serial   dependence,   where   the   current   reproduction   is   biased   away   from   the
previous   stimulus   (Fritsche   et   al.,   2017;   Sun   et   al.,   2020).   The   attractive   serial
dependence effects that I found in this thesis were not well explained by sequential
Bayesian inference models with stable or iterative priors (Chapter 3), and were not
introduced through the experimental stimulus randomization protocol (Chapter 4).  

Instead, self-motion perception may be attracted toward the previous stimulus as a
way to make perceptual representations more stable over time. Fischer & Whitney
(2014)   proposed   perceptual   continuity   fields   as   a   possible   mechanism:
spatiotemporal regions in which visual stimuli are being perceived as more similar
than   they   actually   are.   Within   these   regions,   serial   dependence   is   thought   to
become higher as subsequent stimuli  occur closer in time or space, when features
of the current and past stimuli are more similar, or when more attention is devoted
to   the  previous   stimulus   (Manassi  &  Whitney,   2024).  The   specific   tuning  of   these
properties  may depend on a  variety  of   factors,  such as  the task the brain  tries  to
solve,   or   the  degree   to  which   the  brain   tries   to  match   the   serial   dependence   in
perception to the autocorrelations  in  the natural  stimulus statistics   (van Bergen &
Jehee, 2019; Ortega et al., 2023; Manassi & Whitney, 2024). In line with the idea that
attractive   serial   dependence   promotes   stable   representations,   repulsive   serial
dependence   may   be   a   process   through   which   sensitivity   to   changes   between
subsequent stimuli is increased (Sun et al., 2020).

Fritsche et al. (2017) tested the same group of participants in two visual orientation
perception tasks and found different serial dependence patterns. When participants
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reproduced   the   orientation   of   a   Gabor   stimulus   by   adjusting   a   response   bar,
responses   showed   an   attractive   serial   dependence   on   the   previous   stimulus
orientation.  However,  when participants judged which of  two stimuli  was oriented
more clockwise, the responses showed repulsive serial dependence on the previous
stimulus  orientation.  The authors  reasoned that  responses   in   the   first  experiment
include   both   perceptual   and   post-perceptual   decision   processes,   whereas   the
second   experiment  more   directly   targets   perception   of   the   stimulus   orientation.
The distance reproduction task in  Chapters 3 and 4 is in essence similar to the first
task   in   Fritsche   et   al.   (2017),   with   both   tasks   resulting   in   attractive   serial
dependence effects.  As   I  only  performed an adjustment   task,   I  cannot  distinguish
between   perceptual   and   post-perceptual   processes.   An   interesting   future   study
would   be   to   also   test   participants   in   a   distance   comparison   task,   in  which   the
participant   judges   which   of   two   stimulus   distances   is   shorter   (or   longer),   to
evaluate how this affects serial dependence of reproduced distances. 

5.3 Bayesian priors in the brain

Many of the findings presented in this thesis are derived and formulated within the
Bayesian   inference   framework.   The  Bayesian  models   used   in   this   thesis   provide
insights into the possible computations involved in spatial perception, but make no
predictions   about   how   these   computations   are   represented   and   implemented   in
the   brain   (Marr,   1982;   Chater   et   al.,   2006).   How   and   where   could   the   brain
implement  these computations?  One of   the proposed mechanisms  is  probabilistic
population   coding   (Ma   et   al.,   2006;   Funamizu   et   al.,   2016;   Spratling,   2016).   This
mechanism suggests that neuronal populations encode probability distributions as
a   result  of  neuronal  variability   (Ma  et  al.,  2006)  and  may   in   theory  be  capable  of
implementing   a   2-D   Kalman   filter   (Beck   et   al.,   2011).   Funamizu   et   al.   (2016)
provided additional  evidence,  suggesting  that   the  mouse posterior  parietal  cortex
performs   sequential   Bayesian   inference   during   distance   estimation,   using
probabilistic population codes.

The combined results of this thesis suggest that vestibular perception is influenced
by  prior  knowledge  about   task-relevant  stimulus  history,  built  up  across  multiple
timescales.   Prolonged   exposure   to   stable   features   of   natural   stimuli   over   our
lifetime   (i.e.,   through   the  usual  upright  head  orientation)   seems   to   shape  spatial
orientation  perception   (i.e.,   through   the  upright  head-in-space  prior;  Chapter  2).
What we have experienced on a shorter timescale also affects vestibular perception
(Chapters  3  and  4).   Here,   a   distinction   can   be  made   between   central   tendency
effects,   reflecting   a   representation   of   stimulus   statistics   built   up   across  multiple
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trials,   and   serial   dependence   effects   of   immediately   preceding   stimuli.   This
apparent   distinction   is   currently   under   active   investigation,  with   recent   findings
suggesting   that   the   central   tendency   effect   is   not   the   result   of   an   explicit
representation of the stimulus distribution in the posterior parietal cortex, but that
central   tendency   emerges   from   serial   dependence   effects   in   working   memory
(Boboeva et al., 2024). The effects of consolidated long-term (Chapter 2) and more
flexible   short-term   information   about   stimulus   history   (Chapters  3  and  4)   were
separately   studied   in   this   thesis,   but   likely   simultaneously   affect   vestibular
perception (Sun et al., 2024).

The   environmental   context   in   which   someone   finds   themselves   determines   the
distribution  of  sensory  signals   that   they  perceive.  Examples  of  such  contexts   that
have  been  discussed   in   this   thesis   are   active   versus  passive  movement   contexts
(Chapter  2),   as  well   as  mixed   versus  blocked   (Chapter  3),   and  no-   versus   high-
autocorrelation  stimulus  presentation  contexts   (Chapter  4).  Throughout  our   lives,
we   encounter   a   variety   of   different   contexts,   and   our   brain   likely   has   different
memories   that   are   relevant   for   these   contexts.   How   does   the   brain   know   the
context we are in,  and how does it  create and update new memories? Heald et al.
(2021)   proposed   the   idea   of   contextual   inference,  which   suggests   that   the   brain
continuously  computes  a  posterior  distribution,   reflecting   the  probability  of  each
known   context   and   a   novel   context   being   currently   active.   This   posterior
distribution may in turn guide both apparent learning,  the change in how existing
memories   are   expressed,   and   proper   learning,   the   updating   and   creation
of memories.  

While behavior in many perceptual and cognitive experiments seems well explained
within the Bayesian framework,   it  remains relatively unexplored how such models
perform   in   explaining  more   complex   real-world  behavior.   The   spatial   orientation
and   self-motion   perception   experiments   presented   in   this   thesis   constrained
vestibular   perception   to   a   relatively   narrow   set   of   stimuli   while   also   restricting
motion.   It   is   therefore   difficult   to   generalize   these   findings   to   more   complex
everyday perception of orientation and self-motion. Future work may approach this
problem  from two directions:  by  adding  more  degrees  of   freedom to  constrained
laboratory-based   experiments,   or   by   restricting   degrees   of   freedom   in   out-of-
laboratory  behavior.  Experiments   following  the   first   line  of   reasoning  could  try   to
mimic  more   naturalistic   contexts   in   the   laboratory,   e.g.,   by   studying   self-motion
perception while displacing the vestibular sled as if  the participant is  driving on a
slippery   road   (similar   to   the   task   in   Liu   et   al.,   2024).   Alternatively   (or   ideally   in
parallel),   future   studies  may   investigate  out-of-laboratory  perception   in   everyday
tasks (similar to the first experiment in  Chapter 2). Such experiments could involve
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measuring the orientation of  the head and body using inertial  measurement units
(IMUs),   while   the   participant   engages   in   an   everyday   activity   and   continuously
indicates their perceived direction of verticality,  e.g.  by aligning a rod to which an
IMU is  attached,  with their  perceived direction of  verticality.  This  continuous data
set   could   then   be   used   to   verify  whether   sequential   Bayesian   inference  models
generalize to unconstrained everyday behavior.

5.4 Conclusion

In  this  thesis,   I   investigated different  types of  prior  knowledge that  may influence
spatial  orientation  and self-motion  perception.  Prior  knowledge  obtained through
prolonged  experience,   i.e.,   the  natural   statistics  of   head  orientation,  differs   from
the Gaussian head-in-space prior that can successfully explain biases in verticality
perception   (Clemens  et  al.,   2011).  Besides   such  prior  knowledge  acquired  over  a
long   time   span,   short-term   prior   knowledge   of   the   experimental   stimulus
distribution also  affects  perception.  Self-motion perception during vestibular  path
integration   experiments   generally   tends   toward   the   mean   of   the   experimental
stimulus   distribution   and   toward   the   stimulus   presented   on   the   immediately
preceding   trial.   These   findings   give   insight   into  how  previous   experiences   shape
our  perception  and  which  computations  may  underlie  such  perceptual  processes.
Future  work  could   further   investigate  how the   interplay  between  relatively  stable
natural   statistics  and   short-term  sensory   statistics   shapes   spatial  orientation  and
self-motion perception. 
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Nederlandse samenvatting

Veel   aspecten   van   onze   waarneming   en   ons   gedrag   worden   beïnvloed   door
voorkennis.  We zijn ons meestal niet bewust van deze invloed, maar zo nu en dan
merk   je   de   effecten   van   voorkennis,   bijvoorbeeld   wanneer   je   een   mok   optilt
waarvan   je   dacht  dat   er   nog   koffie   in   zat  maar  de  mok  bijna   leeg  blijkt   te   zijn.
Voorkennis   heeft   ook   invloed   op   onze   ruimtelijke   waarneming.   Wanneer   je
bijvoorbeeld   naar   een   nieuwe  bestemming  wandelt,   ervaar   je   de   terugweg   vaak
anders   dan   de   heenweg,   onder   andere   doordat   we   op   de   terugweg   voorkennis
hebben over  de  af   te   leggen afstand.   In  dit  proefschrift  heb   ik  onderzoek  gedaan
naar   hoe   voorkennis   onze   vestibulaire   waarneming   van   ruimtelijke   oriëntatie
(Hoofdstuk 2) en zelfbeweging (Hoofdstukken 3 en 4) beïnvloedt.  

Dit  onderzoek  bestond  uit  het  meten  van  proefpersonen   in  gedragsexperimenten
en   het   modelleren   van   de   verzamelde   data   middels   wiskundige   modellen.   De
modellen   in   dit   proefschrift   vallen   onder   het   Bayesiaanse   raamwerk,   waarin
sensorische   informatie   (de  likelihood)   en   voorkennis   (de  prior)   over   dezelfde
stimulus   (bijvoorbeeld   een   afstand)   worden   gecombineerd   tot   een   statistisch
optimale  schatting   (de  posterior).  Hoe zekerder  het  brein   is  over  een signaal,  hoe
meer  dit   signaal  wordt  meegewogen   in  de  uiteindelijke   schatting,  om zo   tot  een
preciezere schatting te komen dan wanneer het alleen de individuele signalen had
gebruikt.   Eerdere   studies  hebben   laten   zien  dat   systematische  afwijkingen   in  het
gedrag van proefpersonen verklaard kunnen worden door  het  sturende effect  van
voorkennis op waarneming. 

In  Hoofdstuk  2  deed   ik   onderzoek   naar   de   eerder   veronderstelde   aanname  dat
voorkennis  over  de  meest  waarschijnlijke  hoofdoriëntatie   in  alledaags  gedrag,  de
waarneming van ruimtelijke oriëntatie beïnvloedt.  Eerder psychofysisch onderzoek
heeft   aangetoond   dat   wanneer   een   proefpersoon   zijwaarts   is   gekanteld   in   de
ruimte,  de waarneming van verticaliteit  verschuift   in  de richting van de kanteling,
alsof   hoofdoriëntatie   wordt   onderschat.   Deze   onderschatting   kon   goed   worden
verklaard   door   een   Bayesiaans   model   dat   uitgaat   van   een   Gaussische   prior,
gecentreerd   op   de   rechtopstaande   hoofdpositie   (Clemens   et   al.,   2011).   Deze
voorkennis   weerspiegelt   waarschijnlijk   de   verdeling   van   natuurlijke
hoofdoriëntaties   in   het   dagelijks   leven.   Ik   liet   zien   dat   hoofdoriëntaties   tijdens
alledaags   gedrag   inderdaad   gecentreerd   zijn   op  de   rechtopstaande  hoofdpositie,
maar dat de verdeling langere staarten heeft  dan verwacht volgens de Gaussische
aanname. Het opnemen van de gemeten hoofdoriëntatie-verdeling als  prior   in het
Bayesiaanse   model   gaf   modelvoorspellingen   die   niet   de   eerder   gemeten
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psychofysische   data   konden   verklaren.   Dit   suggereert   dat   deze   prior   intern   niet
wordt gerepresenteerd als de empirisch gemeten verdeling van hoofdoriëntaties.  

In  Hoofdstuk  3  onderzocht   ik   hoe   de   waarneming   van   zelfbeweging   wordt
beïnvloed door de verdeling en presentatievolgorde van stimulusafstanden tijdens
een   experiment.   Proefpersonen   voerden   een   afstandsreproductietaak   uit   in   een
bewegende   stoelopstelling.   Gedurende   iedere   trial   werd   de   proefpersoon   eerst
passief   bewogen   over   een   stimulusafstand   waarna   de   proefpersoon   de
waargenomen afstand actief   reproduceerde  door  de  stoel   terug  te  sturen naar  de
startlocatie.   Ik   toonde   aan   dat   er   effecten   zijn   van   de   eerder   ervaren
stimulusafstanden   op   het   reproductiegedrag:   de   gereproduceerde   afstanden
neigden naar het gemiddelde van de experimentele stimulusverdeling (een centrale
tendens)   en   naar   de   stimulus   in   de   direct   voorafgaande   trial   (een   seriële
afhankelijkheid).   Zowel   een   (static)   Bayesiaans   model   dat   aanneemt   dat
stimulusafstanden   worden   getrokken   uit   een   vaste   stimulusverdeling,   als   een
(two-state) Bayesiaans model dat aanneemt dat het gemiddelde van deze verdeling
over trials kan variëren, konden de centrale-tendenseffecten in de gereproduceerde
afstanden   goed   verklaren,   maar   in   mindere   mate   de   seriële-
afhankelijkheidseffecten.   Ik   liet   ook   zien   dat   reproductiegedrag  wordt   beïnvloed
door stimuluscontext en dat dit effect kan worden gemodelleerd door het two-state
model met verschillende blok-afhankelijke globale onderschattingen. 

In  Hoofdstuk  4  deed   ik   onderzoek   naar   hoe   de   waarneming   van   zelfbeweging
wordt   beïnvloed   door   stimulusautocorrelatie.   Een   nieuwe   groep   proefpersonen
voerde   de   afstandsreproductietaak   uit,   ditmaal   in   twee   autocorrelatiecondities:
stimulusafstanden   werden   willekeurig   gepresenteerd   in   de   geen-
autocorrelatieconditie, en in een  random-walk-  (“dronkemanswandeling”) volgorde
in  de  hoge-autocorrelatieconditie.  Middels   simulaties   liet   ik   zien  dat  wanneer  de
stimulusautocorrelatie   hoog   is,   centrale-tendenseffecten   en   seriële-
afhankelijkheidseffecten covariëren. Om deze effecten in beide condities correct te
kunnen  schatten,   representeerde   ik  de  veronderstelde  causale  effecten   tussen  de
stimulusafstanden   en   reproductiefouten   in   een   causaal   diagram   en   paste   ik   het
d-separatieprincipe   toe   om   te   bepalen   welke   variabelen   als   covariaten  moeten
worden  meegenomen  in  een  meervoudig   lineair   regressiemodel.  Op  basis  van  dit
model   concludeerde   ik   dat   de   centrale   tendens   en   seriële   afhankelijkheid   niet
verschilden   tussen   de   twee   autocorrelatiecondities   en   dat   de   gevonden   effecten
overeenkwamen  met  die  uit  Hoofdstuk  3.  Dit   suggereert  dat   centrale   tendens  en
seriële afhankelijkheid niet  ontstaan door het experimentele randomisatieprotocol
maar het gevolg zijn van neurocognitieve processen.
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Ik  concludeer  dat  vestibulaire  waarneming  wordt  beïnvloed door  voorkennis  over
taakrelevante   stimulusgeschiedenis,   opgebouwd   over   meerdere   tijdschalen.
Toekomstige studies zouden verder kunnen onderzoeken hoe het samenspel tussen
relatief  stabiele voorkennis over natuurlijke stimuli  en kortetermijninformatie over
recent   ervaren   stimuli   de   waarneming   van   ruimtelijke   oriëntatie   en
zelfbeweging beïnvloedt.  
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