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Learning is a fundamental aspect of our life. It enables us to develop and enhance 
our internal representations of the world. A crucial element of learning is the ability 
to form associations between events that are systematically related across space 
or time (Gershman, 2017). Our environment is full of such regularities. Therefore, it 
is essential for us to form associations between repetitive structures to predict the 
upcoming input, to prepare adequate responses and to adapt to the environment 
flexibly. For example, books are arranged based on a regular classification system 
in libraries, enabling to find them easily (see Figure 1.1a), and the color of traffic 
lights follow a regular sequence to guide drivers and pedestrians to pass the road 
safely (see Figure 1.1b). Observers can automatically extract these regularities from 
the environment over multiple exposures, even without the intention or effort to 
learn and often without being aware of the learning process. This form of learning 
is known as statistical learning (Batterink et al., 2019; Frost et al., 2019; Saffran et 
al., 1996; Sherman et al., 2020; Turk-Browne et al., 2010). Statistical learning shapes 
the information processing of observers. In classical spatial and temporal statistical 
learning paradigms, participants are exposed to a stream of stimuli and later asked 
to discriminate structured and expected from random and unexpected shape 
stimuli sets (see Figure 1.1c-d). Statistical learning mostly results in facilitated 
behavioral responses such as faster and more accurate responses to structured and 
expected relative to unexpected stimuli (Fiser & Lengyel, 2019, 2022; Hunt & Aslin, 
2001; Richter & de Lange, 2019; Turk-Browne et al., 2005). The neural consequences 
of statistical learning frequently involve suppressed neural responses for stimuli 
that are expected given the previous context (He et al., 2022; Richter et al., 2018; 
Richter & de Lange, 2019). 
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What learning mechanism underlies 
statistical learning?

At the core of learning is the formation of associations between events. Once the 
separate events are connected, our brain can make inferences about an upcoming 
output given an input. The question is how our brain connects separate events 
and forms associations between them. This can be achieved by simply being 
exposed to relevant events. Simple contiguity-dependent Hebbian associative 
learning suggests that learning is the strengthening of associations following the 
co-occurrence of the relevant events systematically across time (Hebb, 1949). For 
example, simple Pavlovian learning or classical conditioning can be explained by 
Hebbian associative learning (Agliari et al., 2023; Pavlov, 1927). A dog automatically 
salivates in response to food. During conditioning, the sound of a bell is repeatedly 
paired with the food. Once learning is accomplished, the bell itself elicits salivation. 

Although Hebbian associative learning can explain simple classical conditioning, 
it fails to explain more complex situations. Turning back to the example of Pavlov’s 
dog, let’s imagine that the food remains paired with the same bell but now also 
with a light. In this case, the light may fail to elicit salivation even if it is repeatedly 
paired with the food whereas the bell still can. This situation shows that learning 
does not only depends on the mere observation of input and output together 
across time. Instead, learning is moderated by the predictive power of an input over 
an output (Boddez et al., 2014; De Houwer et al., 2005; Luque et al., 2018; Schmidt 
& De Houwer, 2019). Recently it has been put forward that a primary function of the 
brain is to predict future states of the environment (Clark, 2013).The environment 
is continuously changing, which may lead to a mismatch between our prior 
expectations and observed reality. This discrepancy between the expected and 
the observed outcome is known as prediction error and it needs to be minimized 
to adapt to the changes in the environment and to interact with it (Clark, 2013; 
Friston, 2005). In this example above where the food is paired later with the light, 
the food is not unexpected given the bell, and thus the relationship between the 
food and the light may not be learned. 

Many models of learning suggest that the occurrence of learning relies on 
prediction error. These models posit that the changes in associative strength 
between input and output are determined by the amount of discrepancy between 
the expected and the observed outcome, a.k.a. the prediction error, and the 
associative strength is only updated when the observed outcome is unexpected  
(Pearce & Hall, 1980; Rescorla & Wagner, 1972). Despite the necessity of prediction 
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1
error in learning, its function differs across different models (Roesch et al., 2012). In 
the Rescorla – Wagner model, the associative strength between events is directly 
modulated by prediction errors and it is primarily driven by the output. When the 
error is large, the change in the associative strength is also large, and when the 
error is zero, the associative strength is not updated. On the other hand, the Pearce 
– Hall model extends the prediction error account of learning to selective attention. 
The magnitude of the attention paid to the input is modulated by prediction 
errors, which in turn determines the associative strength. When the error is large, 
the attention devoted to the input is increased, which strengthens the association 
between events. 

A key concept in these learning models is that prediction error modulates learning 
the relationship between reward-predictive cue and rewarding outcome, i.e. 
reinforcement learning. As opposed to statistical learning explained above, in 
reinforcement learning, observers typically learn the regularities intentionally 
and are aware of what has been learned. A deviation from the explicitly expected 
outcome, such as unexpected (omission of ) reward or feedback, serves as an 
explicit reward prediction error in reinforcement learning (Gershman & Daw, 
2017). Here, the central question is whether removing rewarding outcome from 
the association completely changes the dynamics. Despite the absence of explicit 
reward in statistical learning, the sensory prediction error between the observed 
(non-rewarding/punishing) and the expected outcome is strong enough for 
observers to update the association strength between events. Also, observers are 
intrinsically motivated for information search to build an accurate internal model 
of world, which guides learning (Gottlieb et al., 2013; Gottlieb & Oudeyer, 2018). 
This intrinsic motivation for information gain might be seen as an implicit reward 
prediction error involved in statistical learning. Therefore, considering both sensory 
prediction error and implicit-reward prediction error, we may ask more broadly: Is 
statistical learning driven by prediction error?

Several studies suggest that statistical learning may indeed similarly rely on 
prediction errors. It is well known that striatal dopaminergic neurons respond 
to reward prediction errors (Corlett et al., 2004; McClure et al., 2003; O’Doherty 
et al., 2004; Schultz et al., 1997). Interestingly, it is also found that dopaminergic 
activity in the ventral tegmental area of rats is important for the formation of an 
association between two non-rewarding stimuli (Keiflin et al., 2019; Sharpe et al., 
2017). Similarly, in humans, statistical learning of stimulus-stimulus associations 
involves the striatum (den Ouden et al., 2009; Klein-Flügge et al., 2019). Despite the 
neural evidence, behavioral evidence is controversial. Cue competition is a crucial 
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category of phenomena in associative learning and generally taken as evidence 
that reinforcement learning is error-driven (Boddez et al., 2014). The most famous 
example of cue competition is Kamin or forward blocking (Kamin, 1969). In a typical 
blocking paradigm, first the cue A is paired with the outcome X (i.e., A→X). Later 
a new cue B is presented together with the cue A, and they are followed by the 
same outcome X (i.e., AB→X). As a result of blocking, the previously learned A→X 
association prevents the formation of an association between the second cue 
B and the outcome X. According to Rescorla – Wagner model, this is because the 
cue A already minimizes the prediction error during the exposure to the A→X. 
Few studies using variants of blocking did not find clear evidence for error-driven 
statistical learning. Beeslay and Shanks (2012) did not observe any blocking effect 
in a contextual cueing experiment. Notably, the learned associations in their study 
were based on the spatial relationship among distracters and targets in a visual 
search task. However, blocking typically involves a temporal prediction between 
a cue and a future outcome (Aggarwal et al., 2020; Aggarwal & Wickens, 2020; 
Blanco et al., 2014; De Houwer et al., 2005; De Houwer & Beckers, 2003; Kruschke 
& Blair, 2000; Le Pelley et al., 2005, 2007; Luque et al., 2018; Mitchell et al., 2006; 
Steinberg et al., 2013; Vandorpe et al., 2005). Similarly, Schmidt and de Houwer 
(2019) observed blocking in a series of color-word contingency learning studies 
only when participants were explicitly instructed to learn. Critically, they presented 
specific color-word associations more frequently, hence it is not clear whether 
learning in the blocked condition emerged because of cue predictability or, 
instead, because of mere increased familiarity with the more frequent associations. 
Importantly, predictability should determine associative learning according to 
error-driven accounts (Kamin, 1969, Rescorla & Wagner, 1972) rather than mere 
familiarity or co-occurrence (Hebb, 1949). Last, Moris et.al., (2014) found blocking 
effect in a repetition priming task. Critically, participants were explicitly informed 
about the presence of regularities among the stimuli and set out to learn them 
intentionally and explicitly. Such learning conditions substantially deviate from 
a typical statistical learning scenario, where observers automatically extract 
regularities without intention nor awareness (Batterink et.al., 2019; Frost et.al., 
2019; Sherman et.al., 2020; Turk-Browne et.al., 2010). On the other hand, there is 
evidence for blocking in children (Griffiths et al., 2011; McCormack et al., 2009, 
2013; Sobel et al., 2004) and in 8-month-old infants (Sobel & Kirkham, 2006, 2007) 
who clearly did not follow any explicit task instructions. This suggests that cue 
competition may be observable after statistical learning. I will explore the question 
of error-driven statistical learning in Chapter 2 by borrowing the famous blocking 
paradigms of reinforcement learning to see whether and how they generalize to 
statistical learning.
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What type of relationship is learned during 
statistical learning?

Statistical learning is often defined as the automatic extraction of statistical 
regularities from the environment (Batterink et al., 2019; Frost et al., 2019; Saffran 
et al., 1996; Sherman et al., 2020; Turk-Browne et al., 2010). This definition brings 
the main question to the forefront: What types of statistical regularities are 
extracted, and which metrics govern their extraction? Two metrics that have been 
extensively examined in the prior statistical learning research are joint probability 
and conditional probability. The joint probability is the total number of occurrences 
of stimulus pairs among other stimulus pairs. The conditional probability is the 
probability of an event occurring in a specific condition, reflecting how strongly a 
stimulus occurs given another stimulus. The prominent statistical learning study of 
Fiser and Aslin (2002) found that observers learned the relationship between events 
based on the conditional probability rather than the joint probability. Tracking 
conditional probability of an object given another object allows observers to make 
predictions about the future. Until now, conditional probability is considered as 
the main metric to determine statistical learning: observers better track strong 
relationships with high conditional probability between events. 

The literature on intentional learning demonstrates that observers not only track the 
strength with which a stimulus follows another, but also track whether a stimulus 
uniquely predicts the other. Suppose that in most instances where A occurs, X follows 
A (i.e., A→X). This results in a high conditional probability of X given A, indicating a 
strong relationship between A and X. Consequently, we would expect observers to 
strongly learn the A→X association. However, if X also frequently appears without 
A, such as following a different stimulus B, then X is not uniquely predicted by A. 
Therefore, the A→X association may not be learned as strongly by observers. This is 
captured by a metric called ∆Ρ (Allan & Jenkins, 1980). According to ∆Ρ, learning is 
based not only on how often X follows A but also on how often X appears in the 
absence of A (i.e., ∆Ρ=P(X|A)-P(X|~A)). Therefore, in the example above where both A 
and B are predictive of X, ∆Ρ of X given A is low, potentially leading to a weak A→X 
association. To the best of our knowledge, there is only one study testing if statistical 
learning is sensitive to ∆Ρ rather than the conditional probability. Using a classical 
visual statistical learning task, Leshinskaya and Thompson-Schill (2021) found that 
participants failed to learn the relationship between events that had high conditional 
probabilities when the ∆P between them was low. This implies that statistical learning 
may be governed by unique predictive relationships rather than strong relationships, 
contrary to assumptions made in prior work.
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The literature on uniqueness suggest that there are two types of unique 
relationships: ∆Ρ (Allan & Jenkins, 1980) and Dual Factor Heuristic (DFH, Hattori & 
Oaksford, 2007). They describe the relationship between two events based on a 2×2  
matrix as shown in Figure 1.2. This table summarizes the association between A 
and X: A is followed by X. A and -A respectively represent the occurrence and non-
occurrence of leading stimulus A; X and -X respectively represent the occurrence and 
non-occurrence of trailing stimulus X. The letters in the cells (i.e., a, b, c, d) represent 
the relative frequencies of the presence and absence of A and X: a cell shows the 
number of ‘A is followed by X (A→X)’ observations, b cell shows the number of ‘A 
is followed by a different trailing stimulus (A→Y)’ observations, c cell shows the 
number of ‘X follows a different leading stimulus (B→X)’  observations and d cell 
shows the occurrence of neither A nor X (B→Y). Observers using the ∆P strategy 
to form associations focus equally on both the occurrence and non-occurrence of 
events and systematically and rationally process all four cells (Béghin et al., 2021; 
Hattori et al., 2017; Hattori & Oaksford, 2007; Markovits et al., 2012; Verschueren 
et al., 2005). However, it has been stated that observers focus on these four cells 
differentially (Béghin et al., 2021; Matute et al., 2015) , primarily concentrating on 
the occurrence of events while disregarding the d cell (Béghin et al., 2021; I. Hattori 
et al., 2017). To capture this, Hattori and Oaksford (2007) proposed a different index 
called the Dual Factor Heuristic (𝐷𝐷𝐷𝐷𝐷𝐷 =	&𝑃𝑃(𝑋𝑋|𝐴𝐴) × 𝑃𝑃(𝐴𝐴|𝑋𝑋) 

 
𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)=1 and 𝑃𝑃(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)=1 
 
𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)=1 
 
𝑃𝑃(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)=0.5 
 
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)=0.5 
 
𝑃𝑃(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)=1 
 
 
 
 

. Unlike the rational and 
analytic ∆P, observers using the DFH tend to focus on the occurrence of events, 
disregard the d cell, and process the relative frequencies of the presence and 
absence of A and X rapidly and with low effort (Béghin et al., 2021; Hattori et al., 
2017; Hattori & Oaksford, 2007; Markovits et al., 2012; Verschueren et al., 2005). 

Figure 1.2. A matrix representing the relationship between event A and event X. A and -A respectively 
represent the occurrence and non-occurrence of leading stimulus A; X and -X respectively represent 
the occurrence and non-occurrence of trailing stimulus X.  
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The formulas of ∆P and DFH mostly share the same components. Therefore, 
strengthening or weakening one of them makes the other parameter weaker or 
stronger. The study of Leshinskaya and Thompson-Schill (2021) suggests that not 
strong but unique predictive relations govern statistical learning by means of . 
Unfortunately, we cannot compute DFH using the limited information related 
to the relationship between events provided in their paper. On the other hand, 
we can compute DFH values using the design matrix of Ramachandran et.al.  
(2016). In their study, two macaque monkeys engaged in passive viewing of pairs 
of images in which a leading image was followed by a trailing image based on a 
certain conditional probability (see Figure 1.3a-b). In the 1:1 conditional probability 
condition, the leading image was perfectly predictive of one single trailing image 
(i.e., 

𝐷𝐷𝐷𝐷𝐷𝐷 =	&𝑃𝑃(𝑋𝑋|𝐴𝐴) × 𝑃𝑃(𝐴𝐴|𝑋𝑋) 
 
𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)=1 and 𝑃𝑃(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)=1 
 
𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)=1 
 
𝑃𝑃(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)=0.5 
 
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)=0.5 
 
𝑃𝑃(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)=1 
 
 
 
 

). In the 2:1 conditional 
probability condition, the leading image was perfectly predictive of the trailing 
image (i.e., 

𝐷𝐷𝐷𝐷𝐷𝐷 =	&𝑃𝑃(𝑋𝑋|𝐴𝐴) × 𝑃𝑃(𝐴𝐴|𝑋𝑋) 
 
𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)=1 and 𝑃𝑃(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)=1 
 
𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)=1 
 
𝑃𝑃(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)=0.5 
 
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)=0.5 
 
𝑃𝑃(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)=1 
 
 
 
 

), yet the trailing image was also predicted 
by a different leading image (i.e., 

𝐷𝐷𝐷𝐷𝐷𝐷 =	&𝑃𝑃(𝑋𝑋|𝐴𝐴) × 𝑃𝑃(𝐴𝐴|𝑋𝑋) 
 
𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)=1 and 𝑃𝑃(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)=1 
 
𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)=1 
 
𝑃𝑃(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)=0.5 
 
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)=0.5 
 
𝑃𝑃(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)=1 
 
 
 
 

). And, in the 1:2 
conditional probability condition, the leading image was equally predictive of two 
different trailing images (i.e., 

𝐷𝐷𝐷𝐷𝐷𝐷 =	&𝑃𝑃(𝑋𝑋|𝐴𝐴) × 𝑃𝑃(𝐴𝐴|𝑋𝑋) 
 
𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)=1 and 𝑃𝑃(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)=1 
 
𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)=1 
 
𝑃𝑃(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)=0.5 
 
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)=0.5 
 
𝑃𝑃(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)=1 
 
 
 
 

 and 

𝐷𝐷𝐷𝐷𝐷𝐷 =	&𝑃𝑃(𝑋𝑋|𝐴𝐴) × 𝑃𝑃(𝐴𝐴|𝑋𝑋) 
 
𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)=1 and 𝑃𝑃(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)=1 
 
𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)=1 
 
𝑃𝑃(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)=0.5 
 
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)=0.5 
 
𝑃𝑃(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)=1 
 
 
 
 

).  
They found strong expectation suppression in monkey inferotemporal cortex 
for 1:1 condition compared to 1:2 and 2:1 conditions, but these two latter 
were not differrent from each other.  Richter et.al. (2018) replicated the study of 
Ramachandran et.al. (2016) with human participants using the similar experimental 
paradigm and the same design matrix. In their study, participants were exposed to 
pairs of object images in a statistical learning paradigm, in which the first object 
predicted the identity of the second object (see Figure 1.3c). Similarly, they found 
that, there was no behavioral or neural difference between 1:2 and 2:1 conditions. 
The findings of these studies cannot be explained by conditional probability 
because in the 2:1 condition, the leading image was strong predictive of the trailing 
image with a conditional probability of 1. On the other hand, these results can be 
captured by uniqueness. In the 1:2 condition, ∆P is 0.5 and DFH is 0.7 whereas in 
the 2:1 condition, ∆P is 0.9 and DFH is 0.7. Although the value of ∆P is different 
in two conditions, the value of DFH is the same, implying that statistical learning 
may be governed by DFH. Thus, these studies suggest that statistical learning is 
more sensitive to uniqueness rather than conditional probability: however, it is not 
clear which forms of uniqueness determines statistical learning. This question will 
be explored in chapter 3 and chapter 4. 
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Figure 1.3. (a) Statistical regularities depicted as image transition matrix with stimuli pairs in training 
phase in the Ramachandran et.al. (2016) and Richter et.al. (2018). Ls represent leading stimuli, and Ts 
represent trailing stimuli. (b) The timing of single trial during data training and data collection in the 
study of Ramachandran et.al. (2016). (c) The timing of single trial during data training and data 
collection in the study of Richter et.al. (2018).

Overview of this thesis

In sum, at the core of this thesis is the question of how and what type of statistical 
regularities are extracted. Chapter 2 aims to assess whether statistical learning 
is based on error-driven learning. For this, we borrowed the famous forward and 
backward blocking paradigms of reinforcement learning. Chapter 3 and Chapter 4  
are devoted to exploring if statistical learning is more sensitive to uniqueness 
rather than conditional probability and which forms of uniqueness (i.e., ∆P or DFH 
governs statistical learning using online studies and fMRI. Chapter 5 summarizes 
and integrates the results presented in chapters 2-4. Importantly, I will highlight 
the core conclusions we can draw from the work presented in this thesis and 
the literature.
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Chapter 2
Forward and backward blocking in 
statistical learning
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Abstract

Prediction errors have a prominent role in many forms of learning. For example, in 
reinforcement learning, agents learn by updating the association between states 
and outcomes as a function of the prediction error elicited by the event. One 
paradigm often used to study error-driven learning is blocking. In forward blocking, 
participants are first presented with stimulus A, followed by outcome X (A→X). In 
the second phase, A and B are presented together, followed by X (AB→X). Here, 
A→X blocks the formation of B→X, given that X is already fully predicted by A. In 
backward blocking, the order of phases is reversed. Here, the association between 
B and X that is formed during the first learning phase of AB→X is weakened when 
participants learn exclusively A→X in the second phase. The present study asked 
the question whether forward and backward blocking occur during visual statistical 
learning, i.e., the incidental learning of the statistical structure of the environment. 
In a series of studies, using both forward and backward blocking, we observed 
statistical learning of temporal associations among pairs of images. While we 
found no forward blocking, we observed backward blocking, thereby suggesting a 
retrospective revaluation process in statistical learning and supporting a functional 
similarity between statistical learning and reinforcement learning. 

This chapter has been published as:
Nazlı, İ., Ferrari, A., Huber-Huber, C., & De Lange, F. P. (2024). Forward and backward 
blocking in statistical learning. PloS one, 19(8), e0306797.
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Introduction

Learning is an essential feat of animal cognition. It allows us to build and refine our 
internal models of the world, so that we predict and flexibly adapt to our dynamic 
environment. A key feature of learning is the ability to form associations between 
events that take place in a systematic relationship across space or time (Gershman, 
2017). For example, in a typical classical conditioning experiment (Pavlov, 1927), a 
dog automatically salivates (i.e., unconditioned response) in response to food (i.e., 
outcome or unconditioned stimulus). During conditioning, the sound of a bell (i.e., 
cue or conditioned stimulus) is repeatedly paired with the food. Once conditioning 
is accomplished, the bell itself elicits salivation (i.e., conditioned response).

Cue competition is a crucial category of phenomena in associative learning. It refers 
to the observation that learning which cues predict an outcome not only depends 
on the presence of the cues before the outcome. Rather, cues compete with each 
other to gain predictive power over the outcome, and this moderates the learning 
process (Boddez et al., 2014; De Houwer et al., 2005; Luque et al., 2018; Schmidt & 
De Houwer, 2019). 

One key example of cue competition is Kamin blocking, also known as forward 
blocking  (Kamin, 1969). In a typical forward blocking paradigm (see Table 2.1), 
observers first learn the association between cue A and outcome X (A→X), and 
later they are trained with the association between cues A + B and outcome X 
(AB→X). As a result of forward blocking, observers learn the association between 
cue B and outcome X less strongly, because X is already completely predicted by 
cue A. In other words, the previously learned A-X association blocks learning the 
association between cue B and outcome X. Forward blocking cannot be explained 
by simple contiguity-dependent Hebbian associative learning (Hebb, 1949). 
Thereby, it suggests that the simple temporal co-occurrence of different stimuli 
is not sufficient for learning to occur. Instead, the model developed by Rescorla 
and Wagner (1972) provides an explanation for blocking (though see Spicer et 
al., 2021 for a modification of the traditional model). According to the Rescorla-
Wagner model, changes in associative strength are determined by the amount of 
discrepancy between the expected and the observed outcome, i.e. the prediction 
error. In the forward blocking procedure, the previously learned A→X association 
prevents the formation of an associative link between the second cue B and the 
outcome X, because the cue A already minimizes the prediction error during the 
exposure to the A→X pairs in the first training phase.
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Table 2.1. General experimental design. Letters denote conditions (i.e., A for Antedating, B for Blocked, 
C-D for Control).

Training phase 1 Training phase 2 Test phase

Forward A → X AB → X A → X

blocking CD → Y B → X
D → Y

Backward
blocking

AB → X
CD → Y

A → X A → X
B → X
D → Y

A similar, but distinct form of cue competition is backward blocking, which is an 
example of retrospective revaluation: a change in the associative strength occurs 
because the association between the companion cue (i.e., the cue that is previously 
associated with the target cue and outcome) and the outcome is revaluated. In the 
backward blocking paradigm (Shanks, 1985), observers are first trained with AB→X 
association, and subsequently with A→X association. In spite of the reversed order 
of training phases compared to forward blocking, backward blocking leads to a 
similar outcome as forward blocking: a lack of association between blocked cue B 
and outcome X. Here, in the first training phase, both A-X and B-X associations are 
formed equally (i.e., depending on the saliency of cues). However, in the second 
training phase, as observers are trained with A→X association, the associative 
strength between cue A and outcome X becomes stronger, which in turn weakens 
the association between cue B and outcome X. While this form of retrospective 
revaluation cannot be explained by the traditional Rescorla – Wagner model, as 
this model assumes that the relevant cue must be present in order to change the 
associative strength (Kruschke, 2008; Miller & Witnauer, 2016; Rescorla & Wagner, 
1972), backward blocking can be successfully modeled by a slightly revised version 
of the traditional model. For example, backward blocking can be explained by a 
Rescorla-Wagner learning model that assigns non-zero salience to non-presented 
blocked stimuli whose memories or representations are retrieved by competing 
stimuli that had previously been paired with those blocked stimuli (Van Hamme & 
Wasserman, 1994) or by a Bayesian generalization of the Rescorla – Wagner model, 
the Kalman filter (Gershman, 2015; Kalman, 1960; Kruschke, 2008), where the 
weights of all possible cues are updated simultaneously, and the sum of all possible 
weights equals to 1. 

In typical blocking experiments, associations are learned either when the outcome 
is a reward (Aggarwal et al., 2020; Aggarwal & Wickens, 2020; Sharpe et al., 2017; 
Steinberg et al., 2013) or when performance-related feedback is provided (Blanco 
et al., 2014; Kruschke & Blair, 2000; Le Pelley et al., 2005, 2007; Luque et al., 2018; 
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Mitchell et al., 2005, 2006). This provides support that reinforcement learning (i.e., 
learning associations between events via trial and error) relies on an error-driven 
learning algorithm (Gershman & Daw, 2017). Another powerful form of learning 
is known as statistical learning, often defined as the incidental extraction of 
regularities from the environment without intention (Batterink et al., 2019; Frost et 
al., 2019; Saffran et al., 1996; Sherman et al., 2020; Turk-Browne et al., 2010). In the 
context of statistical learning, we have limited information about how the learning 
process itself occurs. Several studies suggest that statistical learning may indeed 
similarly rely on prediction errors. In rats, dopaminergic activity in the ventral 
tegmental area is important for the formation of an association between two non-
rewarding stimuli (Keiflin et al., 2019; Sharpe et al., 2017). In humans, statistical 
learning involves the ventral striatum (Klein-Flügge et al., 2019), which has been 
hypothesized to signal prediction errors (Klein-Flügge et al., 2019; McClure et al., 
2003; O’Doherty et al., 2004). However, other researchers, using variants of forward 
blocking, did not find clear-cut evidence for error-driven statistical learning. Beesley 
and Shanks (2012) did not observe any forward blocking in contextual cueing 
experiments, where participants incidentally learnt the spatial relationship among 
distractors and targets in a visual search task. This procedure however deviates from 
classic forward blocking paradigms, which rely on a temporal prediction between 
a cue and a future outcome (Aggarwal et al., 2020; Aggarwal & Wickens, 2020; 
Blanco et al., 2014; De Houwer et al., 2005; De Houwer & Beckers, 2003; Kruschke 
& Blair, 2000; Le Pelley et al., 2005, 2007; Luque et al., 2018; Mitchell et al., 2006; 
Steinberg et al., 2013; Vandorpe et al., 2005). Two subsequent experiments (Morís 
et al., 2014; Schmidt & De Houwer, 2019) observed forward blocking of temporal 
associations only for material that was intentionally learnt, but not for incidentally 
learnt stimulus associations. Such learning conditions substantially deviate from a 
typical statistical learning scenario, where observers extract regularities without 
intention (Batterink et al., 2019; Frost et al., 2019; Sherman et al., 2020; Turk-Browne 
et al., 2010). While few studies investigated forward blocking in incidental learning, 
less is known about backward blocking in incidental learning. Importantly, there is 
evidence of retrospective revaluation (of which backward blocking is an instance) 
not only in adults and children (Griffiths et al., 2011; McCormack et al., 2009, 
2013; Sobel et al., 2004) but also in 8-month-old infants (Sobel & Kirkham, 2006, 
2007), who clearly did not follow any explicit task instructions. This suggests that 
backward blocking may be present even in incidental learning, where observers 
attune themselves to statistical regularities by simple passive exposure.

We set out to examine forward and backward blocking during statistical learning 
in a series of experiments. In some statistical learning experiments, participants 
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are exposed to a continuous stream of stimuli containing statistical regularities 
(Batterink et al., 2019; Batterink & Paller, 2017; Henin et al., 2021; Saffran et al., 1996; 
Turk-Browne et al., 2005, 2009). Other studies have instead presented two successive 
stimuli on each trial, with conditional probabilities controlling their pairing (Richter 
et al., 2018; Richter & de Lange, 2019). In terms of neural processing, both continuous 
streams (Kaposvari et al., 2018) and pairs (Meyer & Olson, 2011) show identical 
modulations of sensory responses after statistical learning, suggesting that both 
paradigms elicit similar learning processes. We opted for pairs of stimuli in order to 
connect our study to the classic forward and backward blocking paradigms (Kamin, 
1969; Shanks, 1985). On every trial, we presented participants with two consecutive 
visual object stimuli and asked them to categorize the trailing object as either 
electronic or non-electronic. Unbeknownst to participants, we manipulated the 
conditional probabilities between the leading and trailing stimuli, such that each 
trailing image could be predicted on the basis of its preceding, leading image. After 
learning, we evaluated statistical learning by presenting participants with expected 
and unexpected image pairs and measuring their reaction time for categorization 
judgments of the trailing image. Successful learning was indexed by faster reaction 
times to expected relative to unexpected trailing stimuli (Hunt & Aslin, 2001; Richter 
& de Lange, 2019; Turk-Browne et al., 2005).

Experiment 1

Method

Preregistration and data availability
All experiments were preregistered on the Open Science Framework (https://osf.
io/r243e for Experiment 1; https://osf.io/7kmtv for Experiment 2). All data and code 
used for the analyses are freely available on the Donders Repository (https://doi.
org/10.34973/pwza-qh43). Deviations from the preregistration are mentioned as 
such and justified in the corresponding sections below.

Participants
The experiment was performed online by using the Gorilla platform (Anwyl-Irvine 
et al., 2020), and participants were recruited through the Prolific platform (https://
www.prolific.co/). 92 participants performed the experiment. 42 of them were 
excluded based on a priori exclusion criteria (see section ‘Exclusion and inclusion 
criteria’ below) before they started the second training phase (i.e. before the 
relevant data for the analysis was collected). Importantly, our selection criteria 
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applied to a very simple task where the general population is expected to score 
at ceiling (Ferrari et al., 2022; Richter et al., 2018; Richter & de Lange, 2019). Thus, 
our criteria (i.e. accuracy below 80%) allowed us to exclude outliers who clearly 
underperformed either because they did not read the instructions carefully, or did 
not understand the requirements of the task, or did not pay enough attention to 
stimuli; accordingly, it is common in online experiments that approximately half 
of the participants shows careless and inattentive behavior (Al-Salom & Miller, 
2019; Brühlmann et al., 2020). Consequently, we carried out our analyses on a 
subset of the population who showed high motivation and adequate attention to 
the stimuli, as required to support statistical learning (Richter & de Lange, 2019). 
50 participants (18 females; mean age 25.80, range 18-40 years) were included in 
the final data analysis. In Supplementary Forward Blocking Experiment 1 with 100 
participants (see Supplementary information 2), we found successful learning of 
stimulus transition probabilities (b = 11.23, CI = [6.80, 15.59], Cohen’s dz = 0.54). 
From this observation, we concluded that 50 participants were an adequate sample 
size for Experiment 1.

All participants had normal or corrected to normal vision, normal hearing and 
no history of neurological or psychiatric conditions. They provided written 
informed consent and received financial reimbursement (8 euro per hour) for 
their participation in the experiment. The study followed the guidelines for ethical 
treatment of research participants by CMO 2014/288 region Arnhem-Nijmegen, 
The Netherlands.

Experimental design
In each experimental trial, participants were exposed to two images presented 
on the left or right side of the central fixation point in quick succession: a leading 
stimulus was followed by a trailing stimulus. For each participant, there were  
4 leading objects and 4 trailing stimuli objects. Everyday objects were randomly 
chosen from a pool of 64 stimuli derived from Brady et al. (2008) per participant, 
thereby eliminating potential effects induced by individual image features at the 
group level. In each stimulus set, 50% of objects were electronic (consisting of 
electronic components and/or requiring electricity to function) and 50% were non-
electronic. The expectation manipulation consisted of a repeated pairing of objects 
in which the leading object predicted the identity of the trailing object, thus over 
time making the trailing object expected given the leading object. Importantly, 
each trailing object was only (un)expected depending on which leading object 
it was preceded by. Thus, each trailing object served both as an expected and 
unexpected object depending on the leading object at test phase. In addition, trial 
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order was pseudo-randomized, with the pairs distributed equally over time. In sum, 
any difference between expected and unexpected occurrences cannot be explained 
in terms of familiarity, adaptation, or trial history. In addition, object position (left /  
right) was counterbalanced with respect to Expectation (expected / unexpected) 
and Condition (antedating / blocked / control). In other words, leading and trailing 
objects appeared equally often on the left or right side of the central fixation 
point across trials. As a result, the expectation manipulation did not depend on 
spatial position. Also, both hemi-fields were equally task-relevant, which fostered 
participants' attention to both sides. Throughout the experiment, participants 
needed to categorize the trailing object as electronic or non-electronic as fast as 
possible. This task was aimed at assessing any implicit reaction time (RT) benefits 
due to incidental learning of the temporal statistical regularities: upon learning, 
leading object could be used to predict the correct categorization response 
before the trailing object appeared. In addition to the main object categorization 
task, there was an oddball detection task involving the leading stimuli in the 
training phases (16% of all trials per participant): participants were required to 
press a specific button as soon as they saw an animate leading stimulus. The aim 
of the animate detection task was to ensure that participants also paid attention 
to the leading stimuli, such that the association would be better learnt. For each 
participant, 4 animate leading stimuli (i.e., 2 for antedating leading stimulus and 2 
for blocked leading stimulus) were randomly chosen from a pool of 8 stimuli (Brady 
et al., 2008). Finally, there were attention check trials where participants were 
simply asked to press a specific key based on a message on screen (e.g., "Press left-
arrow key"). The aim of these trials (7% of all trials per participant) was to monitor 
participants’ vigilance (see ‘Exclusion and inclusion criteria’). A fixation bull’s-eye 
was presented in the center of the screen throughout the experiment.

The blocking paradigm comprised two consecutive training phases, followed by one 
test phase (see Figure 2.1a). During the two training phases, leading objects were 
perfectly predictive of their respective trailing objects (i.e. P(trailing | leading = 1) ; 
see Figure 2.1b). Participants were not informed about this deterministic 
association, nor were they instructed to learn this association at the beginning of 
the experiment. Therefore, the pair associations were likely learned incidentally. 
Note that the participants may, however, still develop explicit knowledge of 
the associations over the course of the experiment, which we tested in a final 
recognition task. In training phase 1, the leading object (A) was always followed by 
the same trailing object (X). In training phase 2, a novel leading object (blocked [B] 
leading object) was presented along with the leading object presented in training 
phase 1 (antedating [A] leading stimulus), hence creating a compound stimulus (AB).  
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This was followed by the same trailing object (X) as in training phase 1. In addition, 
two novel leading (object + object [CD]) and a trailing (object [Y]) objects were 
presented as a control condition. In the test phase, the leading stimulus of each 
condition (antedating [A] / blocked [B] / control [D]) was presented alone, followed 
by either the expected trailing object (based on the training phases), or an 
unexpected trailing object. Expected and unexpected object pairs were presented 
equally often to prevent any learning at this final test stage (see Figure 2.1c). In the 
test phase, control (D) trials were compared to blocked (B) trials to assess blocking 
while controlling for the amount of exposure. It should be noted that the amount 
of exposure to trailing object X and trailing object Y are not the same, given that 
trailing object Y was only introduced in the second learning phase. This difference 
is an inevitable feature in classic blocking paradigms. If we would have presented 
trailing object Y in isolation in an additional experimental phase or if we would have 
paired Y with another leading stimulus in training phase 1, this could have elicited 
latent inhibition (i.e., difficulty in learning associations as a result of pre-exposure, 
McLaren & Mackintosh, 2000). Thus, we opted for the classic blocking paradigm. 
Furthermore, the control trials in the test phase allowed us to assess whether new 
associations were learned during training phase 2. 
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Figure 2.1. Experimental procedure and results of Experiment 1. (a) Experiment 1 comprised two 
training phases (training phase 1 and training phase 2) and a test phase. On every trial throughout the 
experiment, participants saw a pair of consecutively presented stimuli, i.e., a leading object followed 
by a trailing object. In training phase 1, the antedating leading object (i.e., A) was followed by a specific 
trailing object. In training phase 2, a novel blocked leading object (i.e., B) was presented in compound, 
along with the antedating (A) leading object (i.e., AB), and followed by the same trailing object from 
the antedating stimulus in training phase 1. In addition, we introduced novel control compound 
leading (i.e., CD) and trailing (i.e., Y) objects. In the test phase, antedating, blocked or control leading 
stimuli were followed by the associated (expected) or not associated (unexpected) trailing object. 
There were four different object pairs for ABX and CDY. Throughout the experiment, participants 
performed a categorization task on the trailing object. They reported, as fast as possible, whether the 
trailing object was electronic or non-electronic. (b) Statistical regularities depicted as image transition 
matrix with stimuli pairs in training phase 1 and training phase 2. Ls represent leading stimuli, and Ts 
represent trailing stimuli. There were 16 different leading objects and 8 different trailing objects 
coming from four different ABX and CDY pairs. (c) Statistical regularities depicted as image transition 
matrix with stimuli pairs in test phase. Green cells represent expected pairs, and red cells represent 
unexpected pairs. (d) Across participants' mean reaction times as a function of Expectation (expected / 
unexpected) and Condition (antedating / blocked / control). Reaction times were faster to expected 
than unexpected trailing objects in each condition. The reaction time difference between expected 
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and unexpected trials was greater in blocked than control trials, providing evidence for the absence of 
blocking effect and the augmentation of learning. (e) Across participants' mean reaction time 
difference between expected and unexpected trials as a function of time. Please note that we split 
data into successive runs for visualization purposes only; data analysis was performed with number of 
trials as a continuous fixed factor (Exposure). The decrease in reaction time difference between 
expected and unexpected trials over exposure showed rapid extinction in learning antedating 
condition. (f) Posterior coefficient estimates of effects of the model jointly analyzing blocked and 
control conditions with error bars representing 95% confidence intervals. Estimates indicate significant 
results when they do not overlap with zero. (g) Across participants' proportion correct responses in 
pair recognition test. Participants showed slightly above chance-level performance in all conditions 
indicating whether the trailing object was likely or unlikely given the leading object.

Data was collected during one single session per participant. Firstly, participants 
familiarized themselves with all trailing objects (both X and Y). In each trial, 
an object image was presented for 3500 ms, and participants had 1500 ms to 
categorize the object image as electronic or non-electronic (via a keyboard key 
press, keys counterbalanced across participants). Then, written feedback indicated 
the true category and the name of the object for 2000 ms (8 pairs × 2 trials / pairs = 
16 trials in total). Afterwards, participants performed the experiment (i.e., training 
phase 1, training phase 2 and test phase). In each trial, the leading and trailing 
objects were presented for 500 ms successively with no inter-stimulus interval, 
followed by a 1500 ms inter-trial interval. Participants categorized the trailing 
object as electronic or non-electronic as fast as possible (via keyboard key press, 
keys counterbalanced across participants). Training phase 1 and training phase 2 
started with a short practice period (practice training phase 1: 4 pairs × 4 trials / 
pairs = 16 trials in total; practice training phase 2: 8 pairs × 4 trials / pairs = 32 
trials in total). After each practice, participants completed the training phases 
(training phase 1: 4 object pairs × 30 trials = 120 trials in total; training phase 2: 
8 object pairs × 30 trials = 240 trials in total). In addition, animate detection and 
attention check trials (see above) were pseudo-randomly interspersed throughout 
the training phases without repetitions in successive trials. Afterwards, participants 
completed the test phase (12 pairs × 16 trials = 192 trials in total). Crucially, for each 
leading object, both expected and unexpected trailing objects belonged to the 
same category (electronic or non-electronic). This ensured that differences in RTs 
during object categorization would not arise by mere response adjustments costs, 
but instead reflected perceptual surprise to unexpected trailing objects.

Finally, at the end of the experiment participants performed a pair recognition 
task to probe their explicit knowledge of the statistical regularities. Before starting 
the recognition task, participants were informed about the presence of statistical 
regularities among leading and trailing images in the previous experimental 
phases (i.e., training phases 1 and 2), and they were asked to indicate whether the 
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trailing object was likely or unlikely given the leading stimulus according to what 
they saw during these previous phases. Participants familiarized themselves with 
the procedure via a brief practice (12 pairs × 2 trials / pairs = 24 trials in total) before 
completing the recognition task (12 pairs × 8 trials / pairs = 96 trials in total).

Exclusion and inclusion criteria
The online experiment was terminated if the percentage of correct responses 
during object categorization was below 80% (threshold was defined based on a 
preliminary pilot study) in any training or test phase (see ‘Experimental design’ and 
Figure 2.1a) or if the percentage of correct responses in attention check trials was 
below 80% in any of the experimental phases (see section ‘Experimental design’).

Prior to the main data analysis, we discarded trials with no responses, wrong 
responses, or anticipated responses (i.e., response time < 200 ms). We also rejected 
trial outliers (response times exceeding 3 MAD from mean RT of each participant) 
and subject outliers (participants whose RTs exceeded 3 MAD from the group 
mean). For the accuracy analysis of the pair recognition task, we rejected trial 
outliers in terms of response speed (response times exceeding 3 MAD from mean 
RT of each participant).

Data analysis
We analyzed the RT data in the test phase in order to test for incidental learning 
of predictable stimulus transitions: upon learning, participants were hypothesized 
to react faster to expected relative to unexpected trailing stimuli (Richter et al., 
2018, Richter & de Lange, 2019). We did not statistically analyze the accuracy data 
in the test phase, given that the categorization task was not challenging, and 
performance was near ceiling levels (97% in Experiment 1 and 97% in Experiment 2).  
Furthermore, we analyzed the accuracy data in the pair recognition test to assess 
participants’ explicit knowledge about learnt statistical regularities. For both 
analyses, we used a Bayesian mixed effect model approach. Data were analyzed 
using the brm function of the BRMS package (Bürkner, 2017) in R. Furthermore, 
in supplementary tables (see Supplementary information 1) we provide post-hoc 
Bayesian mixed effect models that follow significant interaction effects.

Analysis of RT data in test phase. Firstly, we modeled the behavioral data of the 
antedating condition, where one leading stimulus was followed by one trailing 
stimulus. This served as a sanity check to verify the baseline assumption that 
participants were able to learn the temporal association between the leading and 
trailing stimuli. The model of the antedating (A) condition included reaction time 
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as dependent variable and Expectation (unexpected / expected) as a fixed factor. 
To model the overall effect of time on task, we included Exposure as a continuous 
numeric predictor. Exposure was scaled between -1 and 1 to be numerically in 
the same range as the other factors, which aids model convergence. For the 
interpretation of the results, the model coefficient for Exposure represents the 
increase in RT from the first to the last exposure. Finally, we included the interaction 
between Exposure and Expectation in the model, to probe extinction of the learnt 
associations. Namely, during the test phase participants were exposed equally often 
to expected and unexpected stimulus pairs, potentially resulting in extinction of 
the RT advantage for expected stimuli over time. The model included a full random 
effect structure (i.e., a random intercept and slopes for all within-participant effects) 
to account for individual variance.

Secondly, we determined whether there was blocking by jointly modeling the 
blocked (B) and control (D) conditions. The model of blocked and control conditions 
included reaction time as a dependent variable and Expectation (unexpected /  
 expected), Condition (control / blocked) and Exposure as fixed independent 
variables. We included the interaction between Expectation and Condition to test 
for the blocking effect. The contrasts of the factors Expectation and Condition were 
coded as successive difference contrasts. Exposure was a continuous predictor 
scaled between -1 and 1, as in the antedating condition analysis. Again, we also 
modeled extinction (Expectation × Exposure interaction) and its interaction with 
Condition to probe for potential differences in extinction between conditions. 
We adjusted the priors of the main effect of Expectation and Exposure and the 
prior of their interaction based on the posteriors of pilot experiments. Each prior 
was centered according to the median of the respective posterior estimate, 
and its standard deviation equated to the posterior estimate error times two 
to make the priors less informative. The prior for the Condition effect and its 
interaction with Expectation, i.e., blocking effect, was centered at zero. Note that 
specifying the priors in this way turns the estimates of Expectation and Exposure 
effects of Experiment 1 into the combined evidence from pilot experiments and  
Experiment 1. Crucially, the pattern of results from Experiment 1 was exactly the 
same when not only the priors for the Condition effect but also for Expectation 
and Exposure were centered at zero. Further details and the complete model 
parametrization can be found in the R codes provided on the Donders Repository. 
The response time data was modelled using the ex-gaussian family and four chains 
with 25,000 iterations each (12,500 warm up) per chain and inspected for chain 
convergence. We report posterior fixed effects model coefficients. Coefficients were 
accepted as convincing statistical evidence, analogously to statistically significant 
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in a frequentist framework, if the associated 95% posterior credible intervals were 
non-overlapping with zero. 

Analyses of accuracy data in pair recognition test. Firstly, we determined whether 
accuracy was above chance level within each condition (antedating / blocked /  
control). Hence, we created three separate binomial mixed-effects models with 
response error as dependent variable. If accuracy was above chance level within 
each condition, we then determined whether there was a blocking effect in 
the explicit knowledge of implicitly learned associations. To do so, we created a 
binomial mixed-effects model with response error as binary dependent variable 
and Condition (blocked / control) as fixed factor. The models included a full random 
effect structure (i.e., a random intercept and slopes for the within-participant 
effects). The models were constructed using weakly informative priors centered at 
zero. All accuracy models were fit using Bernoulli family and four chains with 25,000 
iterations each (12,500 warm up) per chain and inspected for chain convergence. 
With respect to significance and amount of evidence we used the same criteria as 
for the RT data. 

Results

Analyses of RT data in test phase. Firstly, we compared the reaction times of expected 
and unexpected trials in the antedating condition (see Table 2.2). We observed 
faster reaction times in expected (460 ms) than in unexpected (477 ms) trials  
(b = 10.81, CI = [5.04, 16.16], Cohen’s dz = 0.61, see Figure 2.1d), indicating 
successful learning of conditional probabilities and the consequent behavioral 
benefit of expectation in terms of response speed. In addition, we evaluated how 
this learning effect changed across exposure. Again, we observed an interaction 
effect between expectation and exposure (b = -9.01, CI = [-16.83, -1.18]), indicating 
that learning showed rapid extinction (expectation effect for run 1: 26 ms, run 2: 11 
ms; see Figure 2.1e). 
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Table 2.2. Posterior fixed effects of the model of antedating condition on reaction times in Experiment 1.  
Estimate, estimation error, lower/upper limit of 95% profile credible intervals.

Predictors Estimate Est. Error CI (95%)

Intercept 474.88 10.37 454.81 – 495.21

Expectation 10.81 2.83 5.04 – 16.16

Exposure -23.39 3.70 -30.63 – -16.08

Expectation × Exposure -9.01 4.00 -16.83 – -1.18

Next, we modeled the blocked and control conditions to test whether we found 
blocking (see Table 2.3 and Figure 2.1f ). There was an interaction effect between 
expectation and condition (b = -9.48, CI = [-18.26, -0.45], Cohen’s dz= -0.26, see  
Figure 2.1b. We performed separate analyses for the blocked and control conditions 
to test for the presence of an expectation effect in each condition respectively. The 
reaction times in expected (481 ms) and unexpected (489) trials were not different 
from each other in the control condition (b = 4.36, CI = [-0.73, 9.51], Cohen’s dz= 0.20,  
see Table 2.S1). On the other hand, reaction times were clearly faster in expected 
(469 ms) than in unexpected (488 ms) trials of the blocked condition (b = 10.11, 
CI = [4.82, 15.16], Cohen’s dz= 0.65, see Table S2). Interestingly, this is exactly the 
opposite pattern of what would be expected under blocking, and rather supports 
better learning of the associations among blocked stimuli than control stimuli. 
Extinction was not different between blocked and control conditions (b = -1.63,  
CI = [-14.19, 11.00]; expectation effect in blocked condition for run 1: 13 ms, run 2: 
18 ms; expectation effect in control condition for run 1: 6 ms, run 2: 3 ms; see 
Figure 2.1c).

Table 2.3. Posterior fixed effects of the model of blocked and control conditions on reaction times in 
Experiment 1. Estimate, estimation error, lower/upper limit of 95% profile credible intervals.

Predictors Estimate Est. Error CI (95%)

Intercept 487.75 9.52 469.42 – 506.90

Expectation 7.92 2.18 3.57 – 12.23

Condition 5.87 3.71 -1.38 – 13.26

Exposure -29.01 4.09 -36.93 – -20.88

Expectation × Condition -9.48 4.49 -18.26 – -0.45

Expectation × Exposure -1.05 2.92 -6.78 – 4.67

Condition × Exposure -3.33 3.20 -9.63 – 2.97

Expectation × Condition × Exposure -1.63 6.45 -14.19 – 11.00
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Analysis of accuracy data in pair recognition test. Participants showed slightly above-
chance level performance in indicating whether the trailing object was likely or 
unlikely given the leading object in the antedating (proportion correct = 59%;  
b = 0.39, CI = [0.26, 0.51]), blocked (proportion correct = 57%; b = 0.29, CI = [0.17, 
0.42]) and control (proportion correct = 59%; b = 0.39, CI = [0.24, 0.54]) conditions 
(see Figure 2.1g). Response errors did not differ between the blocked and control 
conditions (b = -0.1, CI = [-0.08, 0.29]), indicating the absence of blocking effect for 
the explicit knowledge of incidentally learned associations.

Experiment 2
In Experiment 1, we observed a stronger reaction time benefit for B→X compared 
to control, indicating successful learning and the absence of forward blocking. We 
speculated that this pattern of results may be explained by the following process: 
upon learning the A→X association in the first training phase, attention may 
have shifted to the novel (and therefore potentially more salient) leading image 
B during the second training phase, thereby enhancing the learning of the B→X 
association. Importantly, this attentional mechanism is not at play in the related, 
but distinct paradigm of backward blocking (Shanks, 1985). Here, the order of 
training phases is reversed compared to forward blocking. Observers are first 
trained with AB→X association and presented in a subsequent training phase 
with the A→X association. As a result, both leading objects A and B are equally 
novel and salient during the first training phase and therefore should be learnt 
equally well. Therefore, we reasoned that backward blocking may allow us to 
study blocking without the potentially confounding factors related to novelty and 
salience. Crucially, this paradigm also allowed us to test for the first time whether 
retrospective revaluation takes place during incidental statistical learning.

Method

Participants
The experiment was performed online by using the Gorilla platform (Anwyl-Irvine 
et al., 2020), and participants were recruited through the Prolific platform (https://
www.prolific.co/). Eighty-four participants performed the experiment. Thirty-
three of them were excluded before they finished the experiment based on a 
priori exclusion criteria (see section ‘Exclusion and inclusion criteria’ below). One 
participant was excluded from the final data analysis due to overall excessively fast 
responses (i.e., 93% of responses being less than 200 ms). As a result, 50 participants 
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were included in the data analysis, as preregistered. This final number of included 
participants was based on the same sample size approach explained above.

All participants had normal or corrected to normal vision, normal hearing and no 
history of neurological or psychiatric conditions. They provided written informed 
consent and received financial reimbursement (8 euro per hour) for their participation 
in the experiment. The study followed the guidelines for ethical treatment of research 
participants by CMO 2014/288 region Arnhem-Nijmegen, The Netherlands.

Experimental design
The design and procedure of Experiment 2 was identical in all respects to 
Experiment 1, apart from the fact that the order of elemental and compound 
training phases was reversed (see Table 2.1 and Figure 2.2a). 

Data analysis
The data analysis of Experiment 2 was the same as for Experiment 1. Also here, 
we adjusted the priors of the main effect of Expectation and Exposure and the 
prior of their interaction based on the posteriors of the previous experiment, i.e., 
Experiment 1, because the stimuli and procedure regarding effects of Expectation 
and Exposure were exactly the same. Note that specifying the priors in this way 
turns the results of Experiment 2 with respect to Expectation and Exposure effects 
into the combined evidence from Experiments 1 and 2. Crucially, the pattern of 
results from Experiment 2 was exactly the same when the priors for Expectation 
and Exposure were also centered at zero.

Results 
Analysis of RT data in test phase. First, we compared the reaction times of expected and 
unexpected trials in the companion condition to test whether repeated exposure to 
the pairs of the companion leading object A and trailing object X led to learning their 
temporal association (see Table 2.4). We observed faster reaction times in expected 
(477 ms) than unexpected (487 ms) trials (b = 8.90, CI = [3.53, 14.27], Cohen’s dz= 0.35, 
see Figure 2.2b), indicating successful learning of stimulus transition probabilities 
and the consequent behavioral benefit of expectation in terms of response speed. 
In addition, we tested whether this behavioral benefit remained stable during the 
test phase or tended to decrease as the exposure increased (i.e., extinction). We did 
not observe any interaction effect between Expectation and Exposure (b = 4.63,  
CI = [-12.41, 3.04]), indicating that learning did not show reliable extinction over time 
(expectation effect for run 1: 13 ms, run 2: 4 ms; see Figure 2.2c).
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Figure 2.2. Experimental procedure and results of Experiment 2. (a) The design and procedure of 
Experiment 2 was identical in all respects to Experiment 1, apart from the order of training phases.  
(b) Across participants' mean reaction times as a function of Expectation (expected / unexpected) and 
Condition (companion / blocked / control). Reaction times were faster to expected than unexpected 
trailing objects in companion and control conditions but not in blocked condition, providing evidence 
for the presence of backward blocking in statistical learning. (c) Across participants' mean reaction 
time difference between expected and unexpected trials as a function of time. There was no extinction 
in learning in any conditions. (d) Posterior coefficient estimates of effects of the model jointly 
analyzing blocked and control conditions with error bars representing 95% confidence intervals. 
Estimates indicate significant results when they do not overlap with zero. (e) Across participants' 
proportion correct responses in pair recognition test. Participants showed slightly above chance-level 
performance in companion condition indicating whether the trailing object was likely or unlikely 
given the leading object.
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Table 2.4. Posterior fixed effects of the model of companion condition on reaction times in Experiment 
2. Estimate, estimation error, lower/upper limit of 95% profile credible intervals.

Predictors Estimate Est. Error CI (95%)

Intercept 483.97 11.08 462.31 – 505.62

Expectation 8.90 2.75 3.53 – 14.27

Exposure -14.12 4.38 -22.81 – -5.66

Expectation × Exposure -4.63 3.93 -12.41 – 3.04

Next, we moved to our main question and tested for the presence of backward 
blocking (see Table 2.5 and Figure 2.2d). There was an interaction effect between 
expectation and condition (b = 9.45, CI = [1.34, 17.63], Cohen’s dz= 0.32, see  
Figure 2.2b). We performed separate analyses for the blocked and control conditions 
to test for the presence of an expectation effect in each condition respectively. The 
reaction times were faster in expected (491 ms) than in unexpected (501 ms) trials 
of the control condition (b = 8.44, CI = [3.60, 13.29], Cohen’s dz= 0.39, see Table S3). 
On the other hand, there was no evidence that reaction times in expected (496 ms) 
and unexpected (496) trials were different from each other in the blocked condition 
(b = 2.69, CI = [-2.08, 7.44], Cohen’s dz= -0.01, see Table S4). This pattern of results 
supports the presence of backward blocking. There was no extinction in blocked 
and control conditions (b = -6.22, CI = [-18.63, 6.38]; expectation effect in blocked 
condition for run 1: 0 ms, run 2: 6 ms; expectation effect in control condition for run 
1: 9 ms, run 2: 15 ms; see Figure 2.2c).

Table 2.5. Posterior fixed effects of the model of blocked and control conditions on reaction times in 
Experiment 2. Estimate, estimation error, lower/upper limit of 95% profile credible intervals.

Predictors Estimate Est. Error CI (95%)

Intercept 497.47 9.40 478.97 – 515.83 

Expectation 6.81 1.98 2.94 – 10.65

Condition 2.86 2.54 -2.11 – 7.87

Exposure -25.51 4.63 -34.68 – -16.49

Expectation × Condition 9.45 4.16 1.34 – 17.63

Expectation × Exposure 3.53 2.83 -1.95 – 9.11

Condition × Exposure 0.54 3.17 -5.57 – 6.80

Expectation × Condition × Exposure -6.22 6.29 -18.63 – 6.38
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Analyses of accuracy data in pair recognition test. Participants showed slightly above 
chance-level performance in indicating whether the trailing object was likely or 
unlikely given the leading stimulus in the companion (proportion correct = 56%; 
b = 0.25, CI = [0.10, 0.40]), but not in blocked (proportion correct = 50%; b = 0,  
CI = [-0.11, 0.11]) and control (proportion correct = 53%; b = 0.09, CI = [-0.04, 0.22]) 
conditions (see Figure 2.2e). 

Discussion

Statistical learning allows us to detect and learn structure in the environment, with 
direct benefits for directing our limited processing resources more efficiently to 
optimize behavior. This results, for example, in more efficient behavioral processing 
(Fiser & Aslin, 2001, 2002; Hunt & Aslin, 2001; Saffran et al., 1996, 1999) and more 
efficient neural processing (Batterink & Paller, 2017; Henin et al., 2021; Richter et 
al., 2018; Richter & de Lange, 2019; Turk-Browne et al., 2009) for predictable than 
unpredictable events. While the benefits of statistical learning are obvious, the 
mechanisms of statistical learning itself are less clear. In separate experiments, we 
used respectively forward and backward blocking (Kamin, 1969; Shanks, 1985) to 
examine whether cue competition and retrospective revaluation, which have been 
observed during reinforcement learning, also apply to statistical learning. We found 
backward blocking, suggesting a retrospective revaluation process during the 
incidental extraction of statistical regularities.

In Experiment 1, participants learned the associations for the blocked (B) stimulus 
condition; in fact, learning was even stronger for B stimuli compared to control (D) 
condition, a phenomenon which is sometimes referred to as ‘augmentation’ (Batson 
& Batsell Jr., 2000; Beesley & Shanks, 2012; Vadillo & Matute, 2010). This pattern of 
results is opposite to the predictions of forward blocking and suggests the absence 
of forward blocking in statistical learning. One might argue that overall learning 
in the antedating and blocked conditions may not have been strong enough to 
generate forward blocking, given that the reduction in response speed was less 
than 20 ms. Such a small reaction time difference is, however, common in statistical 
learning (Richter et. al. 2018; Richter, & de Lange, 2019; Turk-Browne et. al., 2005) 
and similar in magnitude to RT benefits elicited by other cognitive factors such as 
probabilistic attentional cues (Posner, 1980). 

We speculate that selective attention may provide a parsimonious explanation 
for the observed augmented learning in the blocked condition in Experiment 1. 
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Pearce-Hall model is one of the traditional models explaining forward blocking 
based on attention and prediction error. According to the model, during the second 
training phase, attention is divided equally to both antedating (A) and blocked 
(B) leading objects, and the outcome of blocked leading object is less surprising 
because the antedating leading object (A) already predicts the outcome (X). Thus, 
the association between B and X cannot be formed. On the other hand, in learning, 
stimuli whose consequences are initially unexpected may attract more attention 
(Holland & Schiffino, 2016; Pearce & Hall, 1980b), leaving open the possibility of 
the associability of B and X. Similarly, several recent studies show that attentional 
allocation may proceed in order to maximize learning. For example, observers 
preferentially attend to stimuli that are not completely predictable or unpredictable 
(Gottlieb et al., 2013; Kidd et al., 2012; Poli et al., 2020). In other words, their attention 
is drawn to stimuli that offer maximum information gain. In our experiment, the 
association between the antedating leading object (A) and the trailing object was 
learnt during the first training phase. Therefore, participants’ attention may have 
shifted to the novel blocked (B) leading object during the second training phase, 
enhancing learning of the association between the blocked leading image and the 
trailing image. On the other hand, in the control (D) condition, two novel leading 
objects were presented in the second training phase. In line with overshadowing, 
these two leading objects may have competed for associative strength with the 
trailing object and hence their individual predictive power was reduced (Rescorla & 
Wagner, 1972). In Experiment 2, we aimed to eliminate this potentially attentional 
effect by applying a backward blocking procedure. Given that the blocked leading 
object (B) was presented together with a companion leading object (A) in training 
phase 1, both the companion leading object (A) and blocked leading object (B) 
were equally familiar and salient in the first phase of the study. As a result, we 
removed the potentially confounding factors related to novelty and salience, and 
crucially our results suggested that backward blocking occurs in statistical learning.

One may wonder whether the present forward and backward blocking experiments 
provide contradictory results regarding the presence of blocking in statistical 
learning. Here, it is worth noting that it is more difficult to obtain backward 
blocking than forward blocking, because more criteria need to be met to observe 
backward blocking (Van Hamme & Wasserman, 1994). Forward blocking only 
requires a strong A→X association, which is learned in the elemental training 
phase, to prevent learning the relationship between cue B and outcome X during 
the compound training phase. On the other hand, in backward blocking, a strong 
A→X association learned in the elemental training phase is not enough to observe 
blocking. In addition to that, the second important condition of backward blocking 
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is that cue A needs to be associated with cue B in order to decrease the associability 
of cue B in its absence, which is supported by previous studies (Luque et al., 2013; 
Melchers et al., 2006; Melchers et al., 2004). 

By showing backward blocking in Experiment 2, our results suggest the presence 
of retrospective revaluation in statistical learning. Such retrospective revaluation 
cannot be explained by the traditional Rescorla – Wagner model, which assumes 
that the relevant cue must be present in order to change the associative strength 
(Kruschke, 2008; Miller & Witnauer, 2016; Rescorla & Wagner, 1972). However, a 
number of alternative models are able to explain this observation. Van Hamme and 
Wasserman (1994) proposed a modification of the traditional Rescorla – Wagner 
model, by allowing an update in the weight of an absent cue if the cue that is 
associated with the absent cue is present in that trial. Backward blocking can also 
be explained by a Bayesian generalization of the Rescorla – Wagner model, the 
Kalman filter (Gershman, 2015; Kruschke, 2008). In sum, our results in Experiment 2  
can be explained by both the Van Hamme – Wasserman model and the Kalman 
filter, both of which claim that learning is based on prediction errors (Kruschke, 
2008). At the computational level, this implies that statistical learning may be error-
driven. At the implementation level, it supports the view that statistical learning 
may follow the principles of predictive coding (Hasson, 2017).

Critically, retrospective revaluation may be explained also by the probabilistic 
contrast model, which does not rely on prediction error (P. Cheng, 1997; P. W. 
Cheng & Novick, 1992). This model simply calculates how frequently events occur 
during learning. That is, X appears after either AB or A during training phases, 
and the probability of X increases after A and in the absence of B. As a result, 
observers associate A with X. Given that the probabilistic contrast model disregards 
the order of elemental (i.e., A->X) and compound (i.e., AB->X) training phases  
(De Houwer & Beckers, 2002), it explains both forward and backward blocking using 
the same approach. Although our backward blocking results can be explained by 
the probabilistic contrast model, the model fails to explain our forward blocking 
results. This supports the importance of the order of training phases in blocking  
(De Houwer & Beckers, 2002). 

Furthermore, it is important to acknowledge that blocking may not arise due to 
learning deficits, as explained by the models reviewed above, but instead may 
depend on the failure to express cue – outcome associations at test, as explained 
by the so-called comparator hypothesis (Miller & Matzel, 1988; Miller & Witnauer, 
2016). In other words, retrospective revaluation would not occur because of the 
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increase or decrease in the associative strength between cue and outcome, 
but rather because of a change in its expression at test. Although we observed 
backward blocking in statistical learning in Experiment 2, we do not know whether 
it is because of a learning deficit during training or because of a performance deficit 
observed at test. Thus, further studies are required to better understand the cause 
underlying backward blocking in statistical learning. 

Crucially, learning regularities is usually thought to be incidental rather than 
intentional in statistical learning paradigms (Batterink et al., 2019; Batterink & 
Paller, 2017; Henin et al., 2021; Turk-Browne et al., 2005, 2009). However, this can 
nevertheless result in the development of explicit knowledge of the regularities 
(Batterink & Paller, 2017; Fiser & Aslin, 2002; Turk-Browne et al., 2005). Indeed, testing 
for explicit knowledge is often used to assess the development of explicit knowledge 
(Fiser & Aslin, 2002; Turk-Browne et al., 2005). In Experiment 1 and Experiment 2, we 
observed that people developed some minimal amount of explicit knowledge (on 
average 56% correct, with chance level of 50%) in the pair recognition test (i.e., how 
likely the trailing object was given the leading object). The temporal association 
between leading and trailing object was unknown to participants at the beginning 
of the experiment and participants were not instructed to learn these associations. 
Also, participants performed the categorization task at ceiling level (overall 
above 97%), suggesting that their categorization judgments were not affected 
by knowledge of the statistical structure between stimuli. Therefore, it appears 
likely that learning occurred incidentally, without strong explicit knowledge of the 
associations that were learnt. This is a clear difference between our studies and 
previous ‘classic’ blocking paradigms where learning occurs intentionally and in the 
presence of reinforcement (Aggarwal et al., 2020; De Houwer et al., 2002; Kruschke 
& Blair, 2000; Le Pelley et al., 2005, 2007; Mitchell et al., 2006).

Further, in the context of reinforcement learning, some highlight the key role of 
inferential reasoning for blocking to occur. Accordingly, learning associations 
between events does not depend on transitional probabilities but, instead, 
depends on the observers’ belief about the nature of the relationship between cue 
and outcome (De Houwer & Beckers, 2002; Waldmann, 2000; Waldmann & Holyoak, 
1992). Specifically, the intentional evaluation of causal associations between cues 
and outcomes (e.g., cue A is the cause of outcome X) appears necessary for forward 
blocking (De Houwer et al., 2005; De Houwer & Beckers, 2003; Vandorpe et al., 2005) 
and backward blocking (De Houwer & Beckers, 2002; Waldmann, 2000; Waldmann 
& Holyoak, 1992). As a result, there is so far evidence that conscious inferential 
reasoning contributes to backward blocking. To the best of our knowledge, the 
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present study is the first to examine backward blocking in incidental statistical 
learning. In our experiment, participants were not instructed about any possible 
relationship between leading and trailing objects, and they learned the associative 
relationship incidentally. Therefore, our finding supports that conscious inferential 
reasoning is not required for backward blocking to occur; instead, retrospective 
revaluation can happen during incidental statistical learning.

To sum up, while we did not find forward blocking, our results are compatible with 
the presence of backward blocking in statistical learning, a form of learning that 
develops incidentally and in the absence of rewarding outcomes or feedback. 
Our results are compatible with the Van Hamme – Wasserman model and Kalman 
filter, and thus support the idea that statistical learning may be error-driven, 
similar to reinforcement learning (though see the comparator hypothesis). Most 
importantly, our results suggest a retrospective revaluation process in statistical 
learning and thus support a functional similarity between statistical learning and 
reinforcement learning.
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Supplementary information 1

Supplementary tables

Table S1. Posterior fixed effects of the post-hoc model of control condition on reaction times in 
Experiment 1. Estimate, estimation error, lower/upper limit of 95% profile credible intervals.

Predictors Estimate Est. Error CI (95%)

Intercept 491.09 9.73 472.16 – 510.23

Expectation 4.36 2.59 -0.73 – 9.51

Exposure -30.03 4.33 -38.34 – -21.45

Expectation × Exposure -2.02 3.71 -9.26 – 5.21

Table S2. Posterior fixed effects of the post-hoc model of blocked condition on reaction times in 
Experiment 1. Estimate, estimation error, lower/upper limit of 95% profile credible intervals.

Predictors Estimate Est. Error CI (95%)

Intercept 485.56 9.70 466.60 – 504.68

Expectation 10.11 2.65 4.82 – 15.16

Exposure -27.38 3.94 -35.05 – -19.58

Expectation × Exposure -0.95 3.68 -8.26 – 6.25

Table S3. Posterior fixed effects of the post-hoc model of control condition on reaction times in 
Experiment 2. Estimate, estimation error, lower/upper limit of 95% profile credible intervals.

Predictors Estimate Est. Error CI (95%)

Intercept 500.48 9.47 481.97 – 519.28

Expectation 8.44 2.46 3.60 – 13.29

Exposure -22.24 4.70 -31.37 – -12.93

Expectation × Exposure 0.38 3.57 -6.43 – 7.36

Table S4. Posterior fixed effects of the post-hoc model of blocked condition on reaction times in 
Experiment 2. Estimate, estimation error, lower/upper limit of 95% profile credible intervals.

Predictors Estimate Est. Error CI (95%)

Intercept 499.01 9.42 480.60 – 517.78

Expectation 2.69 2.41 -2.08 – 7.44

Exposure -22.72 4.38 -31.25 – -13.85

Expectation × Exposure 3.40 3.79 -4.11 – 10.83
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Supplementary information 2

Supplementary Experiment 1

Method

Participants
The experiment was performed online using the Gorilla platform (Anwyl-Irvine et 
al., 2020), and participants were recruited through the Prolific platform (https://
www.prolific.co/). 148 participants performed the experiment. 47 of them were 
excluded before they finished the experiment based on a priori exclusion criteria 
(see section ‘Exclusion and inclusion criteria’), and one participant was excluded 
from the final data analysis due to excessively slow responses (RTs above 3 times 
the mean absolute deviation [MAD] from the group mean). As a result, one hundred 
participants (37 females; mean age 24.49, range 18-40 years) were included in the 
data analysis. This final number of included participants was preregistered based 
on previous research (Richter & de Lange, 2019; Schmidt & De Houwer, 2019) 
considering that online data would be noisier and, therefore, a larger number of 
participants would be required to maintain the same statistical power. The pre-
selected sample size yielded 84% power to detect a small sized (Cohen’s dz= 0.3) 
effect (α = 0.05). 

All participants had normal or corrected to normal vision, normal hearing and 
no history of neurological or psychiatric conditions. They provided written 
informed consent and received financial reimbursement (8 euro per hour) for 
their participation in the experiment. The study followed the guidelines for ethical 
treatment of research participants by CMO 2014/288 region Arnhem-Nijmegen, 
The Netherlands.

Experimental design
The design and procedure of Supplementary Experiment 1 was identical in all 
respects to Experiment 1 (see Figure S1a). In line with the traditional blocking 
paradigm Supplementary Experiment 1 comprised two training phases (training 
phase 1 and training phase 2) and a test phase. During the two training phases, 
leading object were perfectly predictive of their respective trailing object (i.e. 
P(trailing | leading = 1) ; see Figure S1b). Yet during the final test stage Expected 
and unexpected object pairs were presented equally often to prevent any learning 
(see Figure S1c). The main difference between Supplementary Experiment 1 and 
Experiment 1 is related to the type of leading stimuli and stimulus location. Leading 
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stimulus was either a geometric shape or an everyday object. If the antedating 
leading stimulus was an object, then the blocked leading stimulus was a shape 
or vice versa. Both leading and trailing stimuli were presented at the center of 
the screen.

Figure S1. Experimental procedure and results of Experiment S1. (a) Experiment 1 comprised two 
training phases (training phase 1 and training phase 2) and a test phase. On every trial throughout the 
experiment, participants saw a pair of consecutively presented stimuli, i.e., a leading image followed 
by a trailing image. In training phase 1, the antedating leading stimulus (i.e., A), which could be either 
a shape or object, was followed by a specific trailing object. In training phase 2, a novel blocked 
leading stimulus (i.e., B) was presented in compound, along with the antedating (A) leading stimulus 
(i.e., AB), and followed by the same trailing object from the antedating stimulus in training phase 1. In 
addition, we introduced novel control compound leading (i.e., CD) and trailing (i.e., Y) stimuli. In the 
test phase, antedating, blocked or control leading stimuli were followed by the associated (expected) 
or not associated (unexpected) trailing object. Throughout the experiment, participants performed a 
categorization task on the trailing object. They reported, as fast as possible, whether the trailing object 
was electronic or non-electronic. (b) Statistical regularities depicted as image transition matrix with 
stimuli pairs in training phase 1 and training phase 2. Ls represent leading stimuli, and Ts represent 
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trailing stimuli. (c) Statistical regularities depicted as image transition matrix with stimuli pairs in test 
phase. Green cells represent expected pairs, and red cells represent unexpected pairs. (d) Across 
participants' mean reaction times as a function of Expectation (expected / unexpected) and Condition 
(antedating / blocked / control). Participants responded faster to expected than unexpected trailing 
objects in each condition. There was no difference between blocked and control conditions. (e) Across 
participants' mean reaction time difference between expected and unexpected trials as a function of 
time. Please note that we split data into successive runs for visualization purposes only; data analysis 
was performed with number of trials as a continuous fixed factor (Exposure). Associations were rapidly 
extinguished during the test phase. Extinction was not different between conditions. (f) Posterior 
coefficient estimates of effects of the model jointly analyzing blocked and control conditions with 
error bars representing 95% confidence intervals. Estimates indicate significant results when they do 
not overlap with zero. (g) Across participants' proportion correct responses in pair recognition test. 
Participants showed slightly above chance-level performance in indicating whether the trailing object 
was likely or unlikely given the leading stimulus in all conditions.

Data analysis
The data analysis of Supplementary Experiment 1 was identical in all respects to 
Experiment 1, except for the priors and the additional analysis of RT data split by 
stimulus type in test phase. The models were constructed using weakly informative 
priors. The prior distributions for the effects of interest were Gaussian distributions 
with zero mean and standard deviation adjusted to expected effect sizes: 50 for 
Expectation, 70 for Condition and 30 for Exposure, 70 for the interaction between 
Expectation and Condition. Further details and the complete model parametrization 
can be found in the R codes provided on the Donders Repository.

Analysis of RT data split by stimulus type in test phase. We conducted a follow-up analysis 
that tested for the effect of the type of leading stimulus (shape / object). We reasoned 
that leading object stimuli may have attracted more attention than leading shape 
stimuli, given that they were visually more salient than the surrounding grey shapes, 
and their category was task-relevant, as the task required object categorization on 
the trailing image. Given that associative learning depends on attention (Kruschke, 
2001; Pacton & Perruchet, 2008), it was therefore conceivable that leading objects, 
rather than shapes, developed a stronger temporal association with trailing objects. 
We fit the model of antedating condition and the model of blocked and control 
conditions as described above, but with the inclusion of leading Stimulus Type 
(shape / object) as additional fixed factor. The model included a full random effect 
structure (i.e., a random intercept and slopes for all within-participant effects). If 
the posterior credible intervals of the interaction effects between Expectation and 
leading Stimulus Type did not overlap with zero, we run separate models for shapes 
and objects respectively, in order to test for the blocking effect for each stimulus 



2

49|Forward and backward blocking in statistical learning

type. The models were constructed using weakly informative priors centered at zero. 
All other analysis settings were as specified above. 

Results
Analysis of RT data in test phase. First, we compared the reaction times of expected 
and unexpected trials in the antedating condition to test whether repeated 
exposure to leading-trailing pairs led to learning their temporal association 
(see Table S1). We observed faster reaction times in expected (493 ms) than 
unexpected (508 ms) trials (b = 11.23, CI = [6.80, 15.59], Cohen’s dz= 0.54, see 
Figure S1d), indicating successful learning of stimulus transition probabilities and 
the consequent behavioral benefit of expectation in terms of response speed. In 
addition, we tested whether this behavioral benefit remained stable during the 
test phase or dwindled, as would be expected by extinction. In line with the latter, 
we observed an interaction effect between Expectation and Exposure (b = -9.28,  
CI = [-15.26, -3.38]), indicating that learning showed rapid extinction (expectation 
effect for run 1: 22 ms, run 2: 9 ms, run 3: 6 ms; see Figure S1e).

Next, we moved to our main question and tested for the presence of blocking 
(see Table S2 and Figure S1f ). The reaction time difference between unexpected 
and expected trials was not different between control (11 ms) and blocked (12 ms)  
conditions (b = 1.85, CI = [-3.95, 7.51], Cohen’s dz= -0.04, see Figure S1d). This 
pattern of results presents suggest for the absence of blocking. There was also no 
difference in how the reaction time benefit for expected items behaved over time  
(b = -2.29, CI = [-11.17, 6.13]; expectation effect in blocked condition for run 1: 13 ms,  
run 2: 4 ms, run 3: 12 ms; expectation effect in control condition for run 1: 18 ms, 
run 2: 10 ms, run 3: 7 ms; see Figure S1e).

Analyses of RT data split by stimulus type in test phase. In a follow-up analysis, we 
tested whether the type of leading stimulus (shape / object) affected statistical 
learning. In the antedating condition (see Table S3), the reaction time difference 
between unexpected and expected trials was larger for leading object (20 ms) 
compared to leading shape (9 ms) trials according to the posterior CI (b = -10.00,  
CI = [-18.57, -1.48]), which indicated that object-object associations were somewhat 
stronger than shape-object associations. While the difference in RT was larger for 
object-object associations than shape-object associations, separate follow-up 
models showed that the reaction time difference was significant when the leading 
stimulus was an object (b = 15.19, CI = [7.98, 22.46], see Table S1 and Figure S2a-e), 
and it was still significant (b = 5.44, CI = [0.83, 10.05], Table S2 and see Figure S2b-f ).
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Figure S2. Results of Experiment S1 as a function of Stimulus Type. (a-b) Across participants' mean 
reaction times as a function of Expectation (expected / unexpected) and Condition (antedating / blocked 
/ control) in leading objects (a) and leading shapes (b). The difference between expected and unexpected 
reaction times was larger for stimulus pairs with leading objects, compared to leading shapes.  
(c-d) Across participants' mean reaction time difference between expected and unexpected trials as a 
function of time in leading objects (c) and leading shapes (d). The decrease in reaction time difference 
between expected and unexpected trials over exposure showed rapid extinction in learning only in 
leading objects. (e-f) Posterior coefficient estimates of effects of the model jointly analyzing blocked and 
control conditions with error bars representing 95% confidence intervals in leading objects (e) and 
leading shapes (f). Estimates indicate significant results when they do not overlap with zero. 
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Across blocked and control conditions (see Table S4), the reaction time difference 
between unexpected and expected trials was also larger when the leading 
stimulus was an object (18 ms for B, 27 ms for D) compared to a shape (0 ms for 
B, 1 ms for D) (b = 18.40, CI = [11.52, 25.41]). Separate follow-up models showed 
that reaction times were faster in expected trials than in unexpected trials when 
the leading stimulus was an object (RT difference = 18 ms in blocked condition 
and 27 ms in control condition; b = 18.73, CI = [12.83, 24.5], see Table S3 and 
Figure S2a-e). This was not the case when the leading stimulus was a shape (RT 
difference = 0 ms in blocked condition and 1 ms in control condition; b = 0.11,  
CI = [-3.27, 3.44], Table S4 and see Figure S2b-f ). Overall, the data suggest that 
shape – object associations could be learnt, but to a lesser extent than object – 
object associations. In particular, shape – object associations could be learnt only if 
a leading shape in isolation was followed by a trailing object (i.e., in the antedating 
condition), but not when the leading shape was concurrently paired with a leading 
object (in a compound stimulus) and then followed by the trailing object (i.e., in 
the blocked and control conditions). This pattern of results fits our prediction that 
leading objects attract more attention than shapes, given that they were visually 
more salient, and their category was task-relevant. As associative learning depends 
on attention (Kruschke, 2001; Pacton & Perruchet, 2008), this may have hampered 
associative learning between leading shapes and trailing objects. In other words, 
we found cue competition among the leading shape and object in the forms of 
overshadowing (Boddez et al., 2014; Pavlov, 1927; Schmidt & De Houwer, 2019), 
with the leading shape being overshadowed by the leading object. Finally, there 
was an interaction between Expectation, Condition and leading Stimulus Type  
(b = 4.09, CI = [-6.18, 15.80]), suggesting that the absence of blocking did not 
depend on leading Stimulus Type.

Analyses of accuracy data in pair recognition test. Participants showed slightly above 
chance-level performance in indicating whether the trailing object was likely or 
unlikely given the leading stimulus in the antedating (proportion correct = 58%; 
b = 0.32, CI = [0.23, 0.42]), blocked (proportion correct = 54%; b = 0.16, CI = [0.09, 
0.24]) and control (proportion correct = 53%; b = 0.12, CI = [0.04, 0.19]) conditions 
(see Figure S1g). Response errors did not differ between the blocked and control 
conditions (b = -0.05, CI = [-0.15, 0.05]), indicating no blocking for the explicit 
knowledge of incidentally learned associations.
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Supplementary Experiment 2

Supplementary Experiment 1 showed that the type of leading stimulus critically 
influenced statistical learning. Antedating and control leading shapes got less 
strongly associated with the trailing object than antedating and control leading 
objects. Moreover, blocked and control leading shapes could not compete with 
the concurrent leading objects for associative strength because they attracted 
less attention. This imbalance between shapes and objects may provide an 
alternative explanation for the lack of blocking that we observed. Therefore, in 
Supplementary Experiment 2 we made one modification to our paradigm and only 
presented objects as leading and trailing stimuli to remove any potential difference 
in attention between different leading stimuli, which might finally result in a 
blocking effect.

Method

Participants
The experiment was performed online by using the Gorilla platform (Anwyl-Irvine 
et al., 2020), and participants were recruited through the Prolific platform (https://
www.prolific.co/). 81 participants performed the experiment. 27 of them were 
excluded before they finished the experiment based on a priori exclusion criteria 
(see section ‘Exclusion and inclusion criteria’ above). Four extra participants were 
excluded from the final data analysis: two showed accuracy below 50% chance 
level in test phase; two showed overall excessively slow responses (RTs above  
3 MAD from the group mean). As a result, fifty participants (16 females; mean age 
23.90, range 18-34 years) were included in the data analysis, as preregistered. This 
final number of included participants was derived from the following a priori power 
calculation: we aimed for 90% power to detect the effect size of Cohen’s dz= 0.5 
derived in the antedating leading object condition of Experiment 1 (α = 0.05).

All participants had normal or corrected to normal vision, normal hearing and no 
history of neurological or psychiatric conditions. They provided written informed 
consent and received financial reimbursement (8 euros per hour) for their 
participation in the experiment. The study followed the guidelines for ethical 
treatment of research participants by CMO 2014/288 region Arnhem-Nijmegen, 
The Netherlands.
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Figure S3. Experimental procedure and results of Experiment S. (a) The design and procedure of 
experiment 2 was identical in all respects to experiment 1, apart from the fact that the leading 
stimulus was an object presented in the left or right side of the fixation point, and it was followed 
by the trailing object presented in the left or right side of the fixation point. (b) Across participants' 
mean reaction times as a function of Expectation (expected / unexpected) and Condition (antedating / 
blocked / control). Reaction times were faster to expected than unexpected trailing objects in blocked 
and control conditions. There was no difference between blocked and control condition in terms of 
reaction time difference between expected and unexpected trials, providing evidence for the absence 
of blocking effect. (c) Across participants' mean reaction time difference between expected and 
unexpected trials as a function of time. The decrease in reaction time difference between expected 
and unexpected trials over exposure showed rapid extinction in learning antedating condition.  
(d) Posterior coefficient estimates of effects of the model jointly analyzing blocked and control 
conditions with error bars representing 95% confidence intervals. Estimates indicate significant results 
when they do not overlap with zero. (e) Across participants' proportion correct responses in pair 
recognition test. Participants were not able to indicate above chance level whether the trailing object 
was likely or unlikely given the leading object in all conditions.
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Experimental design
The design and procedure of Supplementary Experiment 2 was identical in all 
respects to Supplementary Experiment 1, apart from the type of leading stimuli 
and their location. Both leading and trailing stimuli were everyday objects. Leading 
and trailing objects were randomly presented on the left or right side of the central 
fixation point. Stimuli position (left / right) was counterbalanced with respect 
to Expectation (expected / unexpected) and Condition (antedating / blocked / 
control). In other words, leading and trailing objects appeared equally often on the 
left or right side of the central fixation point across trials. As a result, the expectation 
manipulation did not depend on spatial position. In addition, both hemi-fields were 
equally task-relevant, which fostered participants' attention to both sides.

Data analysis
The data analysis of Supplementary Experiment 2 was identical in all respects to 
Supplementary Experiment 1, except for omitting the factor Stimulus Type because 
this experiment featured only object stimuli (see Figure S3a).

Results
Analyses of RT data in test phase. First, we compared the reaction times of expected 
and unexpected trials in the antedating condition (see Table S5). We observed that 
reaction times for expected (503 ms) and unexpected (510 ms) trials, although 
showing a qualitative pattern similar to Experiment 1, were not significantly 
different from each other (b = 4.95, CI = [-0.07, 9.96], Cohen’s dz= 0.31, see  
Figure S3b). Therefore, unlike Experiment 1, our data do not provide robust support 
for learning of the conditional probabilities in condition A. There was however 
some statistical support for extinction, as the reaction time difference between 
expected and unexpected trials tended to decrease as the exposure increased  
(b = -8.17, CI = [-15.39, -0.91]) (expectation effect for run 1: 17 ms, run 2: 6 ms, run 3: 
0 ms; see Figure S3c).

Next, we moved to our main question and compared reaction time differences 
between expected and unexpected stimulus pairs between B and C (see Table S6  
and Figure S3d). The reaction time difference between unexpected and expected 
trials was not statistically different between control (8 ms) and blocked (1 ms) 
conditions (b = 3.34, CI = [-3.11, 9.85], Cohen’s dz= 0.24, see Figure S3b). Moreover, 
extinction was not different between B and C (b = 0.37, CI = [-9.60, 10.22]; 
expectation effect in blocked condition for run 1: 6 ms, run 2: -2, run 3: 0 ms; 
expectation effect in control condition for run 1: 11 ms, run 2: 4 ms, run 3: 5 ms; see 
Figure S3c).
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Analysis of accuracy data in pair recognition test. Participants were not able to 
indicate above chance level whether the trailing object was likely or unlikely given 
the leading object in the antedating (proportion correct = 50%; b = 0, CI = [-0.15, 
0.14]), blocked (proportion correct = 49%; b = -0.05, CI = [-0.17, 0.07]) or control 
(proportion correct = 50%; b = 0, CI = [-0.13, 0.14]) conditions (see Figure S3e).

Supplementary tables

Table S1. Posterior fixed effects of the model of antedating condition on reaction times in Experiment 1.  
Estimate, estimation error, lower/upper limit of 95% profile credible intervals.

Predictors Estimate Est. Error CI (95%)

Intercept 502.44 8.42 485.21 – 518.66

Expectation 11.23 2.25 6.80 – 15.59

Exposure -15.14 3.51 -22.08 – -8.19

Expectation × Exposure -9.28 3.01 -15.26 – -3.38

Table S2. Posterior fixed effects of the model of blocked and control conditions on reaction times in 
Experiment 1. Estimate, estimation error, lower/upper limit of 95% profile credible intervals.

Predictors Estimate Est. Error CI (95%)

Intercept 494.45 8.34 478.02 – 510.93 

Expectation 10.88 1.6 7.76 – 13.98

Condition 4.30 1.95 0.38 – 8.10

Exposure -19.10 3.08 -25.19 – -13.08

Expectation × Condition 1.85 2.91 -3.95 – 7.51

Expectation × Exposure -7.19 2.24 -11.61 – -2.87

Condition × Exposure -3.00 2.26 -7.49 – 1.40

Expectation × Condition × Exposure -2.29 4.48 -11.17 – 6.13
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Table S3. Posterior fixed effects of the model of antedating condition on reaction times split 
by stimulus type in Experiment 1. Estimate, estimation error, lower/upper limit of 95% profile 
credible intervals.

Predictors Estimate Est. Error CI (95%)

Intercept 502.27 8.42 485.68 – 518.72

Expectation 10.37 2.18 6.15 – 14.62

Leading stimulus type 56.95 5.6 46.13 – 67.99

Exposure -15.35 3.52 -22.36 – -8.31

Expectation × Leading stimulus type -10.00 4.37 -18.57 – -1.48

Expectation × Exposure -7.26 2.61 -12.36 – -2.18

Leading stimulus type × Exposure 10.55 3.81 3.02 – 18.15

Expectation × Leading stimulus type × Exposure 1.12 5.38 -9.32 – 11.81

Table S4. Posterior fixed effects of the model of blocked and control conditions on reaction times 
split by stimulus type in Experiment 1. Estimate, estimation error, lower/upper limit of 95% profile 
credible intervals.

Predictors Estimate Est. Error CI (95%)

Intercept 494.13 8.29 477.45 – 510.54

Expectation 9.30 1.65 6.05 – 12.49

Condition 4.58 1.96 0.71 – 8.47

Leading stimulus type -79.57 6.11 -91.88 – -67.48

Exposure -19.54 3.03 -25.49 – -13.66

Expectation × Condition 1.97 2.60 -3.13 – 7.09

Expectation × Leading stimulus type 18.40 3.62 11.52 – 25.41

Condition × Leading stimulus type -6.78 3.88 -14.36 – 0.89

Expectation × Exposure -5.79 1.90 -9.53 – -2.06

Condition × Exposure -3.45 1.98 -7.35 – 0.37

Leading stimulus type × Exposure -8.64 2.93 -14.29 – -2.90

Expectation × Condition × Leading stimulus type 4.90 5.55 -6.18 – 15.80

Expectation × Condition × Exposure -3.96 3.77 -11.36 – 3.41

Expectation × Leading stimulus type × Exposure -17.54 3.70 -24.82 – -10.32

Condition × Leading stimulus type × Exposure -0.21 3.74 -7.41 – 7.13

Expectation × Condition x Leading 
stimulus type × Exposure

14.37 7.56 -0.59 – 28.99
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Table S5. Posterior fixed effects of the model of antedating condition on reaction times in Experiment 2.  
Estimate, estimation error, lower/upper limit of 95% profile credible intervals.

Predictors Estimate Est. Error CI (95%)

Intercept 512.83 18.97 475.52 – 549.47

Expectation 4.95 2.51 -0.07 – 9.96

Exposure -18.40 4.29 -26.74 – -10.02

Expectation × Exposure -8.17 3.70 -15.39 – -0.91

Table S6. Posterior fixed effects of the model of blocked and control conditions on reaction times in 
Experiment 2. Estimate, estimation error, lower/upper limit of 95% profile credible intervals.

Predictors Estimate Est. Error CI (95%)

Intercept 515.30 19.42 476.89 – 533.55

Expectation 3.82 1.61 0.64 – 6.90

Condition -1.68 2.33 -6.23 – 2.94

Exposure -21.29 4.38 -29.92 – 12.70

Expectation × Condition 3.34 3.28 -3.11 – 9.85

Expectation × Exposure -3.47 2.51 -8.35 – 1.42

Condition × Exposure 1.12 2.58 -3.86 – 6.15

Expectation × Condition × Exposure 0.37 5.08 -9.60 – 10.22
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What type of associations modulates 
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Abstract

Statistical learning refers to the acquisition of statistical regularities without an 
intention or an instruction to learn. Previous studies in statistical learning show 
that observer learn the relationship between events based on the strong predictive 
relationship or conditional probability (i.e.,𝐶𝐶𝐶𝐶 = 𝑃𝑃(𝑋𝑋|𝐴𝐴) = 	

𝑃𝑃(𝑋𝑋&𝐴𝐴)
𝑃𝑃(𝐴𝐴)  

 
 
∆𝑃𝑃 (i.e., ∆P = P(X|A) − P(X|~A)) 
 
 
𝐷𝐷𝐷𝐷𝐷𝐷 =	4𝑃𝑃(𝑋𝑋|𝐴𝐴) × 𝑃𝑃(𝐴𝐴|𝑋𝑋)). 
 
(i.e., 𝑃𝑃(𝑋𝑋|𝐴𝐴) = 	 !(#&%)

!(%)
= 	 '

'()
). 

 
(i.e., ∆P = P(X|A) − P(X|~A) = 	 '

'()
−	 *

*(+
). 

 
(i.e., 𝐷𝐷𝐷𝐷𝐷𝐷 =	4𝑃𝑃(𝑋𝑋|𝐴𝐴) × 𝑃𝑃(𝐴𝐴|𝑋𝑋) = 	 '

,('())×('(.)
). 

 
 

). However, the 
studies on more deliberative forms of learning state that learning is based on the 
unique predictive relationship by means of either ∆P (i.e., ∆P=P(X│A)-P(X│~A)) 
or Dual Factor Heuristic (i.e.,

𝐶𝐶𝐶𝐶 = 𝑃𝑃(𝑋𝑋|𝐴𝐴) = 	
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). In this study, we want to 
better understand what type of relationship governs statistical learning. Across 
three consecutive experiments, we found that participants learned the relationship 
between object images based on their unique predictive relationship rather than 
their strong predictive relationship; however, we could not reach a conclusion 
about which type of unique predictive relationship determines statistical learning.

Contributing authorsz
Ilayda Nazli, Floris P. de Lange 



3

61|What type of associations modulates statistical learning?

Introduction

The world is full of repetitive structures. Therefore, agents can form associations 
between events to make predictions about the future, facilitating perception 
and decision-making. Observers can detect and acquire the regularities from the 
environment automatically and incidentally in the absence of rewarding/punishing 
outcome or feedback. This form of learning is known as statistical learning (Batterink 
et al., 2019; Frost et al., 2019; Saffran et al., 1996; Sherman et al., 2020; Turk-Browne 
et al., 2010). Previous studies in statistical learning show that observers can learn 
associations between events, i.e. how often X appears with or following A (i.e., 
conditional probability). On the other hand, studies on contingency learning and 
causal reasoning, which involve recognizing the regularities and cause-and-effect 
relationship (Shanks, 2010), suggest that rather than associations between events, 
observers learn the unique predictive association or how often X appears with A 
as well as how often X appears without A. According to the study of Leshinskaya 
and Thompson-Schill (2021), during incidental statistical learning participants 
learned associations between events not based on their conditional probability 
but rather on their unique predictive relations by means of ∆P. Unfortunately, their 
study did not tell us anything about the role of DFH in statistical learning. Here 
we extend their study to better understand how unique predictiveness of stimuli 
influence statistical learning by focusing on which forms of uniqueness influence 
statistical learning.

The association between two events can be represented by 2×2 matrix as shown in 
Figure 1.2. This figure shows the association between A and X: A is followed by X. 
A and -A respectively represent the occurrence and non-occurrence of leading 
stimulus A, and X and -X respectively represent the occurrence and non-occurrence 
of trailing stimulus X. The letters in the cells (i.e., a, b, c, d) represent the relative 
frequencies of the presence and absence of A and X: a cell shows the number of 
‘A is followed by X (A → X)’ observations, b cell shows the number of ‘A is followed 
by a different trailing stimulus (A → Y)’ observations, c cell shows the number 
of ‘X follows a different leading stimulus (B → X)’  observations and d cell shows 
the occurrence of neither A nor X (B → Y). These four cells together determine 
the association strength, but differently for different metrics. One commonly 
used index is conditional probability which relies only on the a and b cells  
(i.e.,
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). Suppose that in most occurrences of A, X appears 
following A. This makes P(X│A) at high rate representing a strong relationship 
between A and X. In this case we expect observers to learn the A → X association 
strongly. However, imagine that X also appears in the absence of A, for example 
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following a different leading stimulus B quite often. In this case X is not unique 
given A; hence, it is not ideal for observers to learn the A → X association strongly. 
Given that conditional probability relies on a and b cells only, it cannot capture this 
type of relationship. To do this, c and d cells need to be included in the association 
index. One of the most well-known index capturing uniqueness is ∆P (Allan  
& Jenkins, 1980). According to ∆P, learning is based not only on how often X  
follows A but also on how often X appears in the absence of A  
(i.e., 

𝐶𝐶𝐶𝐶 = 𝑃𝑃(𝑋𝑋|𝐴𝐴) = 	
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). Therefore, in the example above where 
both A and B are the strong predictive of X, ∆P of X given A is low leading to weak 
A → X association. 

Observers using  strategy to form associations focus equally on the occurrence 
and non-occurrence of events and process the relative frequencies of the presence 
and absence of A and X systematically and rationally (Béghin et al., 2021; Hattori et 
al., 2017; Hattori & Oaksford, 2007; Markovits et al., 2012; Verschueren et al., 2005). 
However, it may be that observers focus on these four cells differentially (Béghin et 
al., 2021; Matute et al., 2015). They may mainly focus on the occurrence of events 
and disregard the d cell (Béghin et al., 2021; I. Hattori et al., 2017). For this reason 
Hattori and Oaksford (2007) proposed a different index called Dual Factor Heuristic 
(i.e., 

𝐶𝐶𝐶𝐶 = 𝑃𝑃(𝑋𝑋|𝐴𝐴) = 	
𝑃𝑃(𝑋𝑋&𝐴𝐴)
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). As opposed to the rational and 
analytic ∆P, observers using DFH tend to focus on the occurrence of events while 
disregarding the d cell and tend to process the relative frequencies of the presence 
and absence of A and X rapidly and with low effort (Béghin et al., 2021; Hattori et 
al., 2017; Hattori & Oaksford, 2007; Markovits et al., 2012; Verschueren et al., 2005).

In the current study, we aimed to understand whether statistical learning is more 
sensitive to uniqueness rather than conditional probability (Experiment 1) and 
which forms of uniqueness (i.e., ∆P or DFH governs statistical learning (Experiment 2  
and 3). On every trial, we presented participants with two consecutive visual 
objects and asked them to categorize the trailing object as either electronic or non-
electronic. Unbeknownst to participants, we manipulated the unique prediction of 
trailing object from leading object such that the trailing object follows a certain 
leading object mostly and a different leading object or objects occasionally. After 
learning, we evaluated statistical learning by presenting participants with expected 
and unexpected object pairs and measuring how fast they categorized the trailing 
object. Successful learning was indexed by faster reaction times to expected 
relative to unexpected trailing object (Hunt & Aslin, 2001; Richter & de Lange, 2019; 
Turk-Browne et al., 2005). In Experiment 1, we showed that participants learned 
high unique pairs stronger than low unique pairs although both had conditional 
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probability of 1. In Experiment 2 and 3, we could not reach a conclusion about 
whether ∆P or DFH governs statistical learning. Yet, we showed that participants 
learned unique pairs strongly although they had conditional probability of 0.5. 
This suggest that although previous studies assume that conditional probability 
governs statistical learning, the uniqueness of association between events may be 
more important for statistical learning.

Experiment 1

Method

Preregistration 
All experiments were preregistered on the Open Science Framework (“https://osf.
io/jaubr” for Experiment 1; “https://osf.io/gcrjk” for Experiment 2; “https://osf.io/
e6gck” for Experiment 3). 

Participants
The experiment was performed online by using the Gorilla platform (Anwyl-
Irvine et al., 2020), and participants were recruited through the Prolific platform  
(https://www.prolific.co/). 77 participants performed the experiment. 27 of 
them were excluded before they finished the experiment based on a priori 
exclusion criteria (see section ‘Exclusion and inclusion criteria’ below). As a result,  
50 participants were included in the data analysis, as preregistered. This final 
number of included participants was derived from the following a priori power 
calculation: we aimed for 90% power to detect a medium effect size (Cohen’s  
dz = 0.5), as derived from a Supplementary Experiment 1 (N=100).

All participants had normal or corrected to normal vision, normal hearing and no 
history of neurological or psychiatric conditions. They provided written informed 
consent and received financial reimbursement (10 euro per hour) for their 
participation in the experiment. The study followed the guidelines for ethical 
treatment of research participants by CMO 2014/288 region Arnhem-Nijmegen, 
The Netherlands.

Experimental design
The experimental procedure consisted of one training phase followed by one test 
phase (see Figure 3.1a). In training phase, leading objects L1 and L2 were always 
followed by trailing object T1, and leading object L3 was followed by trailing object T2.  
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There were 2 sets of these pairs and they were repeated 28 times. The problem here 
was that T1 appeared more often than T2 due to the nature of the experimental 
manipulation. Therefore, we had another set of leading – trailing object pairs with 
the same relationship pattern (i.e., L4→T3, L5→T3, L6→T4) but presented twice 
more often (i.e., the pairs were repeated 56 times). The amount of pair repetition in 
T1 and T2 were the same, but only T3 was unique to its preceding leading object. 
On the other hand, although L4→T3 was not unique as opposed to L3→T2, the 
amount of exposure to L4→T3 was higher. This allowed us to compare the effect 
of exposure and uniqueness leading to four different conditions: low uniqueness-
low exposure (i.e., two sets of L1→T1 pairs), high uniqueness-low exposure (i.e., 
two sets of L3→T2 pairs), low uniqueness-high exposure (i.e., two sets of L4→T3 
pairs) and high uniqueness-high exposure (i.e., two sets of L6→T4 pairs, see  
Figure 3.1b). In the test phase, the leading object of each condition was followed 
by either the expected or unexpected trailing objects. Crucially, for each leading 
object, both expected and unexpected trailing objects belonged to the same 
category (electronic or non-electronic). This ensured that differences in RTs during 
object categorization would not arise due to response adjustments costs, but 
instead reflected perceptual surprise to unexpected trailing objects. 

In each experimental trial, participants were exposed to a pair of objects presented 
in quick succession: a leading image was followed by a trailing image. There were 
20 everyday objects and 4 animals which were randomly chosen from a pool of 
80 stimuli (Brady et al., 2008) per participant in order to eliminate the potential 
effects induced by individual image features at the group level. A fixation point was 
presented in the center of the screen throughout the experiment. 50% of objects 
were electronic (consisting of electronic components and/or requiring electricity 
to function), and 50% were non-electronic. There were 18 pairs of objects in total. 
Object pairs were repeated in order to manipulate expectation. In other words, 
during the training phase, leading objects were followed by the same trailing 
object (i.e. P(trailing | leading = 1)), thus making the identity of the trailing object 
expected given the leading object over exposure in training phase. 
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Figure 3.1. Experimental procedure and results of Experiment 1. (a) Experiment 1 comprised one 
training phase and a test phase. On every trial throughout the experiment, participants saw a pair of 
consecutively presented stimuli, i.e., a leading object followed by a trailing object. Throughout the 
experiment, participants performed a categorization task on the trailing object. They reported, as fast as 
possible, whether the trailing object was electronic or non-electronic. (b) Statistical regularities depicted 
as image transition matrix with stimuli pairs in training phase. Ls represent leading stimuli, and Ts 
represent trailing stimuli. (c) Across participants' mean reaction times as a function of Expectation and 
Condition. The reaction time difference between expected and unexpected trials was greater in high 
unique object pairs (i.e., L3T2 and L6T4) than low unique object pairs (i.e., L1T1 and L4T3). 

In addition to this deterministic association between each leading and trailing 
objects, we manipulated uniqueness such that half of the trailing objects followed 
one single leading object making the relevant pair high unique whereas the other 
half followed two different leading objects making the relevant pair low unique. 
Participants were not informed about this deterministic association, and they 
were not instructed to learn this association at the beginning of the experiment. 
Therefore, the pair associations were likely learned incidentally. In test phase, 
expected and unexpected object pairs were presented equally often to prevent any 
learning at this final test stage. Throughout the experiment, the task of participants 
was to categorize the trailing object as electronic or non-electronic as fast and 
accurate as possible. We concentrated on the reaction time (RT) data from this task: 
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once temporal statistical regularities were learned incidentally, leading objects 
could be used to predict the correct categorization response before the trailing 
object appeared, which typically leads to implicit RT benefits (i.e., faster response 
to expected trailing object). In addition to the categorization task, in certain trials 
of training phases (20% of categorization-task trials per participant), animals 
were presented as leading images and followed by trailing objects randomly, 
thus preventing participants to develop predictive relationship between leading 
and trailing images. In these trials, the task of participants was to press a specific 
button as soon as they saw a leading animal. The aim of this animate detection 
task was to ensure that participants paid attention to the leading stimuli, such that 
the association would be learnt better. Leading and trailing images were randomly 
presented on the left and right side of the central fixation point. The position (left 
/ right) of images were counterbalanced across trials in each experimental phase, 
such that the same image appeared equally often on the left and right side. This 
makes the expectation manipulation independent from the spatial position 
of objects. In addition, both hemi-fields were equally relevant, which fostered 
participants' paying attention to both sides. Lastly, there were attention check trials 
where participants were simply asked to press a specific key based on a message 
on screen (e.g., "Press left-arrow key"). The aim of these trials (20% of all trials per 
participant) was to monitor participants’ vigilance (see ‘Exclusion and inclusion 
criteria’). The trial order was pseudo-randomized. That is, the pairs were distributed 
equally over time, and the successive pairs were not identical. Therefore, any 
difference between expected and unexpected occurrences cannot be explained in 
terms of familiarity, adaptation, or trial history. 

Data was collected during one single session per participant. Firstly, participants 
familiarized themselves with all objects and animals. In each trial, an image was 
presented for 2200 ms in the center of the screen, and participants had 1000 ms 
to categorize the image as electronic, non-electronic or animal via a key press. 
Then, written feedback indicated the true category and the name of the object for 
1200 ms. All images were presented 2 times. Afterwards, participants performed 
the experiment (i.e., training phase and test phase). In each trial, the leading and 
trailing stimuli were presented for 500 ms successively with no inter-stimulus 
interval, followed by a 1500 ms inter-trial interval. Training phase with a short 
practice period with the pairs that were not presented in the main phase. After the 
practice, participants completed the training phases. There were 504 categorization 
task trials and 80 animate detection task trials in training phase. Afterwards, 
participants completed the test phase. There were 128 categorization task trials 
(i.e., each pair was repeated 16 times). 
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Exclusion and inclusion criteria
The online experiment was terminated if the percentage of correct responses 
during object categorization was below 80% (threshold was defined based on a 
preliminary pilot study) in any training or test phase (see ‘Experimental design’ and 
Figure 3.1a) or if the percentage of correct responses in attention check trials was 
below 80% in any of the experimental phases (see section ‘Experimental design’).

Prior to the main data analysis, we discarded trials with no responses, wrong 
responses, or anticipated responses (i.e., response time < 200 ms). We also rejected 
trial outliers (response times exceeding 2 SD from mean RT of each participant) 
and subject outliers (participants whose RTs exceeded 2 SD from the group mean). 
For the accuracy analysis of the pair recognition task, we rejected trial outliers 
in terms of response speed (response times exceeding 2 SD from mean RT of 
each participant).

Data analysis
We analyzed the RT data in the test phase in order to test for incidental learning 
of predictable stimulus transitions. We hypothesized that once learning occurred, 
participants reacted faster to expected relative to unexpected trailing object in high 
uniqueness. We did not statistically analyze the accuracy data in the test phase. This 
was because the categorization task was not challenging, which was supported 
by the performance near ceiling levels (mean accuracy was 86% in Experiment 1,  
98% in Experiment 2, 97% in Experiment 3). We used a Bayesian mixed effect 
model approach. Data were analyzed using the brm function of the BRMS package 
(Bürkner, 2017) in R. 

Analysis of RT data in test phase. The model included reaction time as dependent 
variable and Expectation (unexpected / expected), Uniqueness (low / high) and 
Exposure (low / high) as a fixed factor. To model the overall effect of time on task, 
we included Pair repetition as a continuous numeric predictor. Pair repetition was 
scaled between -1 and 1 to be numerically in the same range as the other factors, 
which aids model convergence. For the interpretation of the results, the model 
coefficient for Pair repetition represents the increase in RT from the first to the 
last exposure. Finally, we included the interaction between Pair repetition and 
Expectation in the model, to probe extinction of the learnt associations. Namely, 
during the test phase participants were exposed to expected and unexpected 
object pairs equally often, potentially resulting in extinction of the RT advantage 
for expected objects over time. We included the interaction between Expectation 
and Uniqueness to test for the effect of uniqueness. We also modeled the 3-way 
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interaction between Expectation, Uniqueness and Exposure to test whether the 
effect of uniqueness on statistical learning varies with different amount of exposure.

The model included a full random effect structure (i.e., a random intercept and 
slopes for all within-participant effects). The contrasts of the factors Expectation, 
Uniqueness and Exposure were coded as successive difference contrasts. We 
adjusted the priors of the main effect of Expectation and Pair repetition and the 
prior of their interaction based on the posteriors of Experiment 1 of Nazlı et. al. 
(2022). Each prior was centered according to the median of the respective posterior 
estimate, and its standard deviation equated to the posterior estimate error times 
two to make the priors weakly informative. The response time data was modelled 
using the exgaussian family and four chains with 25,000 iterations each (12,500 
warm up) per chain and inspected for chain convergence. Coefficients were 
accepted as statistically significant if the associated 95% posterior credible intervals 
were non-overlapping with zero. 

Results 
Analysis of RT data in test phase. We observed main effect of expectation  
(b = 12.91, CI = [7.99, 17.74]) indicating overall successful learning and the 
consequent behavioral benefit of expectation in terms of response speed. Next, 
we moved to our main question and tested for the effect of uniqueness. There was 
an interaction effect between expectation and uniqueness (b = 11.81, CI = [3.39, 
20.36]) indicating that high unique pairs were learned stronger than low unique 
pairs. We did not observe 3-way interaction between Expectation, Uniqueness 
and Exposure (b = -13.73, CI = [-35.33, 8.2]) although the pattern of reaction time 
benefit (i.e., unexpected RT – expected RT) implied the possibility of the fact that 
the amount of exposure may compensate for low uniqueness (i.e., 6 ms RT benefit in 
low uniqueness-low exposure, 25 ms RT benefit in high uniqueness-low exposure, 
14 ms RT benefit in low uniqueness-high exposure and 22 ms RT benefit in high 
uniqueness- high exposure, see Figure 3.1c). In addition, we tested whether this 
behavioral benefit remained stable during the test phase or tended to decrease as 
the exposure increased (i.e., extinction). We did not observe any interaction effect 
between Expectation and Exposure (b = -5.59, CI = [-11.18, 0.02]), indicating that 
learning did not show extinction over time.

Discussion
Experiment 1 shows that participants learned high unique object pairs stronger 
than low unique object pairs indicated by greater reaction time benefit in high 
uniqueness. This was despite the fact that the conditional probability of both high 
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and low unique object pairs was equivalent to 1. This finding provide additional 
support that observers are more sensitive to unique predictive relations between 
events rather conditional probabilities in visual statistical learning (Leshinskaya & 
Thompson-Schill, 2021). 

Although we showed that uniqueness governs statistical learning, an open 
question is which forms of uniqueness influence statistical learning. For this, we 
computed  and  of each condition: was 0.94 and DFH was 0.71 in low uniqueness-
low exposure, was 0.88 and DFH was 0.71 in low uniqueness-high exposure and 
both and DFH were 1 in high uniqueness-low exposure and high uniqueness- high 
exposure. Given that and DFH were high in the two low uniqueness conditions, it 
was not possible to make a clear interpretation. Therefore, to better understand the 
influence of different forms of uniqueness, we run Experiment 2 in which we kept 
DFH constant while varying .

Experiment 2

Method

Participants
The experiment was performed online by using the Gorilla platform (Anwyl-Irvine 
et al., 2020), and participants were recruited through the Prolific platform (https://
www.prolific.co/). 73 participants performed the experiment. 19 of them were 
excluded before they finished the experiment based on a priori exclusion criteria 
(see section ‘Exclusion and inclusion criteria’ below). 4 participants were excluded 
from the final data analysis due to overall excessively slow or fast responses. As a 
result, 50 participants were included in the data analysis, as preregistered.

All participants had normal or corrected to normal vision, normal hearing and no 
history of neurological or psychiatric conditions. They provided written informed 
consent and received financial reimbursement (10 euros per hour) for their 
participation in the experiment. The study followed the guidelines for ethical 
treatment of research participants by CMO 2014/288 region Arnhem-Nijmegen, 
The Netherlands.

Experimental design
The design and procedure of Experiment 2 was identical in all respects  
to Experiment 1 apart from this critical manipulation in training phase  
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(see Figure 3.2a): Leading object L1 was followed by trailing object T1. Two sets 
of L1→T1 pairs generated control condition (i.e., CP=1, ∆P=1 and DFH=1) which 
was used as a sanity check to see whether participants were able to learn one-to-
one associations. Leading objects L2 and L3 were followed by trailing object T2.  
These pairs generated high ∆P condition (i.e., CP=1, ∆P=0.89 and DFH=0.71). 
Leading object L4 was followed by trailing objects T2 and T3. These pairs generated 
low ∆P condition (i.e., CP=0.50, ∆P=0.50 and DFH=0.71). While keeping DFH constant 
and varying ∆P, we aimed to understand which forms of uniqueness governs visual 
statistical learning. If we observe a stronger RT benefit in high ∆P condition than 
low ∆P condition, we can argue that  drives statistical learning. If we observe similar 
RT benefit in each condition, we can argue that ∆P drives statistical learning.

Figure 3.2. Experimental procedure and results of Experiment 2. (a) Statistical regularities depicted as 
image transition matrix with stimuli pairs in training phase. Ls represent leading stimuli, and Ts 
represent trailing stimuli. (b) Across participants' mean reaction times as a function of Expectation and 
Condition. The reaction time differences between expected and unexpected trials were written in the 
figure. Reaction times were faster to expected than unexpected trailing objects in each condition. 
There was no reaction time benefit difference between high ∆P (i.e., L2T2) and low ∆P (i.e., L4T3) trials.

Data analysis
The data analysis of Experiment 2 was identical in all respects to Experiment 1 apart 
from the following: the model included Expectation (unexpected / expected) and 
Condition (control / high ∆P / low ∆P) as a fixed factor. And we adjusted the priors of 
the main effect of Expectation and Pair repetition and the prior of their interaction 
based on the posteriors of Experiment 1. Each prior was centered according to the 
median of the respective posterior estimate, and its standard deviation equated to 
the posterior estimate error times two to make the priors weakly informative. 
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Results 
Analysis of RT data in test phase. We observed main effect of expectation  
(b = 9.63, CI = [5.58, 13.64]), indicating overall successful learning and the 
consequent behavioral benefit of expectation in terms of response speed. Next, we 
moved to our main question and tested for which forms of uniqueness influence 
statistical learning. There was no difference in RT benefit both high ∆P and low ∆P 
(b = 3.23, CI = [-7.24, 13.73], 13 ms RT benefit in high  and 11 ms RT benefit in 
low ∆P, see Figure 3.2b). And we did not observe any interaction effect between 
Expectation and Pair repetition (b = -3.25, CI = [-9.02, 2.52]), indicating that learning 
did not show extinction over time.

Discussion
In Experiment 2, while keeping DFH constant we varied ∆P to understand 
which forms of uniqueness influence visual statistical learning. We observed 
that participants learned pairs in low ∆P condition (i.e., CP=0.50, ∆P=0.50 and 
DFH=0.71) and in high ∆P condition (i.e., CP=1, ∆P=0.89 and DFH=0.71) equally 
well. This finding provides further support that uniqueness is more important 
than conditional probability for observers to learn regularities in object pairs 
automatically. Accordingly, participants learned pairs with CP of 0.50 as strong as 
pairs with CP of 1. Furthermore, the results imply that DFH may influence visual 
statistical learning rather than ∆P because participants learned pairs with ∆P of 0.50 
as strong as pairs with ∆P of 0.89. To better understand which forms of uniqueness 
influence statistical learning, we sought to replicate the study with a slightly 
different design matrix with conditions in which ∆P and DFH were directly pitted 
against each other, by creating a modulation in opposite directions between the 
two in Experiment 3.

Experiment 3

Method

Participants
The experiment was performed online by using the Gorilla platform (Anwyl-Irvine 
et al., 2020), and participants were recruited through the Prolific platform (https://
www.prolific.co/). 180 participants performed the experiment. 69 of them were 
excluded before they finished the experiment based on a priori exclusion criteria 
(see section ‘Exclusion and inclusion criteria’ below). 11 participants were excluded 
from the final data analysis due to overall excessively slow or fast responses. 
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As a result, 100 participants were included in the data analysis, as preregistered.  
This final number of included participants was derived from the following a priori 
power calculation: we aimed for 90% power to detect a medium effect size (Cohen’s 
dz= 0.28) as derived from the interaction between low uniqueness-low exposure 
and high uniqueness-low exposure conditions of Experiment 1.

All participants had normal or corrected to normal vision, normal hearing and no 
history of neurological or psychiatric conditions. They provided written informed 
consent and received financial reimbursement (10 euros per hour) for their 
participation in the experiment. The study followed the guidelines for ethical 
treatment of research participants by CMO 2014/288 region Arnhem-Nijmegen, 
The Netherlands.

Figure 3.3. Experimental procedure and results of Experiment 3. (a) Statistical regularities depicted 
as image transition matrix with stimuli pairs in training phase. Ls represent leading stimuli, and Ts 
represent trailing stimuli. (b) Across participants' mean reaction times as a function of Expectation 
and Condition. The reaction time differences between expected and unexpected trials were written in 
the figure. Reaction times were faster to expected than unexpected trailing objects in each condition. 
There was no reaction time benefit difference between the three conditions, which varied in partly 
opposite directions in terms of ∆P and DFH (see panel a).

Experimental design
The design and procedure of Experiment 3 was identical in all respects to Experiment 1  
and 2 apart from this critical manipulation in training phase (see Figure 3.3a): Leading 
object L1 was followed by trailing object T1. These pairs generated control condition 
(i.e., CP=1, ∆P=1 and DFH=1) which was used as a sanity check. Leading object L2 was 
followed by trailing objects T2 and T3. These pairs generated high  DFH condition in 
which DFH is greater than ∆P (i.e., CP=0.50, ∆P=0.50 and DFH=0.71). Leading objects 
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L3, L4 and L5 was followed by trailing object T4. These pairs generated high ∆P 
condition in which ∆P is greater than DFH (i.e., CP=0.50, ∆P=0.82 and DFH=0.58). If we 
observe a stronger RT benefit in high DFH condition than high ∆P condition, we can 
argue that DFH drives statistical learning. If we observe a stronger RT benefit in high 
∆P condition than high DFH condition, we can argue that ∆P drives statistical learning. 

Data analysis
The data analysis of Experiment 3 was identical in all respects to Experiment 2 apart 
from the following: We adjusted the priors of the main effect of Expectation and Pair 
repetition and the prior of their interaction based on the posteriors of antedating 
condition in Experiment 2. Each prior was centered according to the median of the 
respective posterior estimate, and its standard deviation equated to the posterior 
estimate error times two to make the priors weakly informative.

Results 
Analysis of RT data in test phase. We observed main effect of expectation  
(b = 9.85, CI = [5.91, 13.77]) indicating overall successful learning and the 
consequent behavioral benefit of expectation in terms of response speed. Next, we 
moved to our main question and tested for which forms of uniqueness influence 
statistical learning. There was no difference in RT benefit both high ∆P and high 
DFH (b = -4.06, CI = [-11.68, 3.56]), 11 ms RT benefit in high ∆P and 12 ms RT benefit 
in high DFH, see Figure 3.3b). Moreover, we observed an interaction effect between 
Expectation and Pair repetition (b = -5.09, CI = [-9.38, -0.25]), indicating that 
learning showed extinction over time.

Discussion
In Experiment 3, we observed that participants learned pairs in high DFH condition 
(i.e., CP=0.50, ∆P=0.50 and DFH=0.71) and in high ∆P condition (i.e., P=0.50, 
∆P=0.82 and DFH=0.58) equally well. First, this finding provides further support that 
visual statistical learning is more sensitive to uniqueness rather than conditional 
probability because again participants learned pairs with CP of 0.50 as strong as 
pairs with CP of 1 Secondly, we observed that participants learned pairs with DFH 
of 0.71 as strong as pairs with ∆P of 0.82. Therefore, we cannot reach a conclusion 
about which forms of uniqueness determines the association strength during 
statistical learning.
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General Discussion

Statistical learning enables us to use our limited processing resources more 
efficiently to optimize behavior by learning the repeated structure in the 
environment. The open question is what kind of structure is learned during 
statistical learning. Previous studies show that observers learn the strong predictive 
relationship between events or conditional probability. Yet, the recent study 
of Leshinskaya and Thompson-Schill (2021) showed that observers learn the 
association between events based on their unique predictive relationship rather 
than their conditional probability. Here, we aimed to better understand how unique 
predictiveness of stimuli influence statistical learning by focusing on which forms 
of uniqueness is used during statistical learning.

In Experiment 1, there were low unique pairs with CP of 1 and high unique pairs 
with CP of 1, and participants learned high unique pairs stronger than low unique 
pairs. In Experiment 2 and 3, there were high unique pairs with CP of 0.5 and CP of 
1, and participants learned these pairs equally well. Thus, our findings imply that 
observers are more sensitive to unique predictive relationship between events 
rather than conditional probabilities during statistical learning. With Experiment 2 
and Experiment 3, we aimed to understand which form of uniqueness (i.e., ∆P or 
DFH) is learned during statistical learning. However, the data remains inconclusive, 
and we cannot reach a conclusion about that. One possible explanation of this 
inconclusive result can be related to individual differences. Previous studies 
on uniqueness state that observers show individual differences in strategy use 
suggesting that some observers tend to rely on ∆P and some on DFH while forming 
associations between events (Béghin et al., 2021; Markovits et al., 2012). Thus, it may 
be possible that we did not observe any RT benefit difference between conditions 
in Experiment 2 and Experiment 3 conditions due to the individual differences 
cancelling each out on average.

Overall, our findings imply that during visual statistical learning observers learn 
the associations between events not based on their conditional probabilities but 
rather on their unique predictive relations. However, it remains an open question 
whether ∆P or DFH governs statistical learning. Future work may address this 
outstanding question by creating a stronger contrast between these different 
forms of uniqueness between stimuli. 
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Chapter 4
Does the uniqueness of visual 
associations modulate visual activity? 
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Abstract

Learning associations between events is crucial for us to make predictions about the 
future. In Chapter 3, we showed that observers learn unique predictive associations 
between events. In the present study, we set out to investigate what type of unique 
relationship (i.e., ∆P or DFH) governs statistical learning, and whether and how this 
modulates neural activity throughout the visual hierarchy, using fMRI in human 
volunteers. Participants were exposed to pairs of object images presented side-by-
side based in a unique spatial arrangement, in which certain objects were presented 
in one spatial configuration mostly (i.e., expected spatial arrangement), while 
occasionally presented in a mirror reversed spatial arrangement (i.e., unexpected 
spatial arrangement). Unfortunately, we failed behavioral and neural evidence 
of statistical learning. Specifically, we did not find faster behavioral responses 
to expected compared with unexpected object pairs. Also, we did not observe 
the well documented suppression of neural responses to expected compared 
with unexpected object pairs within the ventral visual stream. We discuss several 
potential reasons for the lack of statistical learning in our specific paradigm.

Contributing authors 
Ilayda Nazli, Matthias Ekman, Floris P. de Lange
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Introduction

The environment is full of structural regularities and observers can detect and 
acquire these regularities automatically, which is known as statistical learning 
(Batterink et al., 2019; Frost et al., 2019; Saffran et al., 1996; Sherman et al., 2020; 
Turk-Browne et al., 2010). Learning regularities or forming associations between 
events allows us to make predictions about the future. What type of associative 
information is learned can be represented by a 2×2 matrix. Figure 1.2 summarizes 
the relationship between stimulus A and stimulus X. In particular, a cell shows the 
number of times that A and X appear together (i.e., A is followed by X or A→X), 
b cell shows the number of times that A appears without X and with a different 
stimulus (i.e., A→Y), c cell shows the number of times that X appears without  
A and with a different stimulus  (i.e., B→X), and d cell shows the number of times 
that different stimuli other than A and X appear (i.e., B→Y). These four cells play 
roles in different association formulas. The most examined formula in statistical 
learning is conditional probability, which expresses how often X appears given  
A (𝑃𝑃(𝑋𝑋|𝐴𝐴) = 	𝑃𝑃(𝑋𝑋&𝐴𝐴)𝑃𝑃(𝐴𝐴) = 	

𝑎𝑎
𝑎𝑎 + 𝑏𝑏 

 

∆P = P(X|A) − P(X|~A) = 	
a

a + b −	
c

c + d 

 

𝐷𝐷𝐷𝐷𝐷𝐷 =	:𝑃𝑃(𝑋𝑋|𝐴𝐴) × 𝑃𝑃(𝐴𝐴|𝑋𝑋) = 	
𝑎𝑎

:(𝑎𝑎 + 𝑏𝑏) × (𝑎𝑎 + 𝐶𝐶)
 

 
 
 

). However, observers track not only how often X appears 
given A but also if A can predict X uniquely and independently. Suppose that 
A is followed by X at a high rate. According to conditional probability, the 
associative link between A and X is strong. However, X appears following B quite 
often. In this case X is not unique given A; hence, it is not ideal for observers to 
form a strong link between A and X. This unique relationship can be captured 
by the well-known formula of ∆P (

𝑃𝑃(𝑋𝑋|𝐴𝐴) = 	
𝑃𝑃(𝑋𝑋&𝐴𝐴)
𝑃𝑃(𝐴𝐴) = 	
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∆P = P(X|A) − P(X|~A) = 	
a

a + b −	
c

c + d 

 

𝐷𝐷𝐷𝐷𝐷𝐷 =	:𝑃𝑃(𝑋𝑋|𝐴𝐴) × 𝑃𝑃(𝐴𝐴|𝑋𝑋) = 	
𝑎𝑎

:(𝑎𝑎 + 𝑏𝑏) × (𝑎𝑎 + 𝐶𝐶)
 

 
 
 

Allan & Jenkins, 
1980) and also by Dual Factor Heuristic (

𝑃𝑃(𝑋𝑋|𝐴𝐴) = 	
𝑃𝑃(𝑋𝑋&𝐴𝐴)
𝑃𝑃(𝐴𝐴) = 	

𝑎𝑎
𝑎𝑎 + 𝑏𝑏 

 

∆P = P(X|A) − P(X|~A) = 	
a

a + b −	
c
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𝐷𝐷𝐷𝐷𝐷𝐷 =	:𝑃𝑃(𝑋𝑋|𝐴𝐴) × 𝑃𝑃(𝐴𝐴|𝑋𝑋) = 	
𝑎𝑎
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,  
Hattori & Oaksford, 2007). The main difference between ∆P and DFH is based on the 
use of d cell. Observers using ∆P strategy process both the occurrence and non-
occurrence of events systematically and rationally (Béghin et al., 2021; Hattori et 
al., 2017; Hattori & Oaksford, 2007; Markovits et al., 2012; Verschueren et al., 2005) 
whereas observers using DFH strategy process only the occurrence of events rapidly 
and with low effort (Béghin et al., 2021; Hattori et al., 2017; Hattori & Oaksford, 2007; 
Markovits et al., 2012; Verschueren et al., 2005).

A recent study by Leshinskaya and Thompson-Schill (2021) showed that observers 
learned the unique relationship between events during visual statistical learning. 
In our online experiments in Chapter 3, we found that participants learned the 
unique pairs although their conditional probability was at chance level, implying 
that observers are more sensitive to the unique predictive relationship between 
events during statistical learning. However, the results of the previous online 
experiments remain inconclusive to clarify what type of uniqueness governs 
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statistical learning. This may be explained by the nature of online data collection. 
It is common in online studies that participants showed careless and inattentive 
behavior (Al-Salom & Miller, 2019; Brühlmann et al., 2020). Thus, here we replicated 
the study in a controlled lab environment to better understand which forms of 
uniqueness is learned during statistical learning. To further enhance the effect, we 
also manipulated the expectation in the spatial domain rather than the temporal 
domain because expectation in the former domain yields stronger behavioral 
and neural effects (He et al., 2022). On every trial, we presented participants 
with two colorful objects presented side-by-side. Unbeknownst to participants, 
we manipulated the unique spatial arrangement of objects: left-objects were 
presented on the left and right-objects were presented on the right mostly (i.e., 
expected spatial arrangement) and they were presented in the opposite side 
occasionally (i.e., unexpected spatial arrangement). One drawback of manipulating 
expectations in the spatial domain is the loss of the natural cause-and-effect 
relationship observed in the temporal domain. Uniqueness, particularly ∆P, is 
based on causal relationships and requires a clear temporal sequence. To avoid 
confounding results when shifting from the temporal to the spatial domain, we 
maintained a temporal relationship by presenting one object earlier than the other. 
After learning, we evaluated statistical learning by presenting participants with 
expected and unexpected spatial arrangements. Successful learning was indexed by 
faster reaction times to expected relative to unexpected spatial arrangement (Hunt 
& Aslin, 2001; Richter & de Lange, 2019; Turk-Browne et al., 2005) and by suppressed 
neural response to expected relative to unexpected spatial arrangement (He et al., 
2022; Richter et al., 2018; Richter & de Lange, 2019). In brief, our results show no 
behavioral and neural response benefit to expected rather than unexpected pairs, 
suggesting the absence of statistical learning. We discuss the methodological 
aspects that may have contributed to these results.

Method

Preregistration 
All experiments were preregistered on the Open Science Framework  
(https://osf.io/nczgx/). 

Participants
28 participants were recruited from the Radboud research participation system. All 
participants were right-handed and MRI-compatible, had normal or corrected to 
normal vision, normal hearing and no history of neurological or psychiatric disorder. 
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They provided written informed consent and received financial reimbursement  
(15 euro per hour for fMRI session and 10 euro per hour for behavioral sessions) for 
their participation in the experiment. The study followed the guidelines for ethical 
treatment of research participants by CMO 2014/288 region Arnhem-Nijmegen, 
The Netherlands.

Experimental design
Behavioral Session 1 on Day 1. In each experimental trial, participants were exposed 
to a pair of objects (see Figure 4.1a). A fixation point was presented at the center of 
the screen throughout the experiment. The object on the one side was presented 
for 250 ms throughout the experiment. Then the other object appeared, and two 
objects were presented together for 500 ms, followed by a 1500 ms inter-trial 
interval. The position (left / right) of objects presented earlier were counterbalanced 
across participants. The object on the left was presented earlier for the half of the 
participant while the object on the right was presented earlier for the other half. 
The reason of this difference in stimulus presentation time is that ∆P manipulation 
is directional and requires temporal relationship between events. Presenting one of 
the objects slightly earlier gave that object some cue properties and enables us to 
compute ∆P of that object given the other object. There were 21 everyday objects 
randomly chosen from a pool of 80 stimuli (Brady et al., 2008) per participant in 
order to eliminate the potential effects induced by individual image features at the 
group level. 50% of objects were electronic (consisting of electronic components 
and/or requiring electricity to function), and 50% were non-electronic. Object 
image size was 5° × 5° visual angle, and images were presented 4° visual angle left 
and right from the central fixation dot on a mid-gray background. A 12×9 matrix 
was used to manipulate uniqueness (see Figure 4.1d), with 12 objects presented on 
the left and 9 objects presented on the right or vice versa. L1 was followed by R1 
and R2, L2 was followed by R3 and R4, and L3 was followed by R5 and R6. These pairs 
generated high DFH condition (i.e., CP=0.5, ∆P=0.50 and DFH=0.71). L4, L5 and L6 
were followed by R7, L4, L5 and L6 were followed by R8, and L10, L11 and L12 were 
followed by R9. These pairs generated high ∆P condition (i.e., CP=1, ∆P=0.89 and 
DFH=0.58). On 80% of the trials, left-objects were presented on the left and right-
objects were presented on the right. This was the expected spatial arrangement. 
On 20% of the trials, left-objects were presented on the right and right-objects 
were presented on the left. This was the unexpected spatial arrangement. As a 
result, the expectation manipulation was independent from the response bias and 
ensured that differences in data would not arise due to the response adjustments 
costs, but instead reflected perceptual surprise to unexpected spatial arrangement. 
Throughout the Behavioral Session on Day 1, participants indicated if the category 
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of the objects (i.e., electronic or non-electronic) were the same or not as fast and 
accurately as possible. Each pair was repeated 60 times (i.e., 48 expected spatial 
arrangement and 12 unexpected spatial arrangement). There were 900 trials in total 
(i.e., 288 expected spatial arrangement and 72 unexpected spatial arrangement in 
high DFH condition and 432 expected spatial arrangement and 108 unexpected 
spatial arrangement in high ∆P condition). 

Figure 4.1. Experimental design and procedure. (a) On Behavioral Session 1 on Day 1, left objects was 
presented for 250 ms alone and together with right objects for 500 ms, followed by 1500 ms inter-trial 
interval. Participants were asked to indicate if the category of the two objects were the same or not as 
fast and accurate as possible. (b) On fMRI Session on Day 2, two objects were presented at the same 
time for 500 ms, followed by 1500-9000 ms inter-trial interval. Participants were asked to detect the 
image presented upside-down. (c) On Behavioral Session 3 on Day 2, two objects were presented at 
the same time for 500 ms, followed by a 1500 ms inter-trial interval. Participants were asked to indicate 
if the category of the two objects were the same or not as fast and accurate as possible. (d) Statistical 
regularities depicted as image transition matrix with stimuli pairs in training phase. Ls represent left 
stimuli, and Rs represent right stimuli.

Behavioral Session 2 on Day 2. This was the short reminder task before the fMRI 
session. The design and procedure of Behavioral Session 2 was identical in all 
respects to Behavioral Session 1 apart from the number of trials. Each pair was 
repeated 10 times (i.e., 8 expected spatial arrangement and 2 unexpected spatial 
arrangement). There were 150 trials in total (i.e., 48 expected spatial arrangement 
and 12 unexpected spatial arrangement in high DFH condition and 72 expected 
spatial arrangement and 18 unexpected spatial arrangement in high ∆P condition).

fMRI Session on Day 2. The design and procedure of fMRI Session was identical in 
all respects to Behavioral Session 1 apart from this critical manipulation in design 
and task (see Figure 4.1b): Two objects were presented at the same time for 500 
ms, followed by 1500-9000 ms inter-trial interval. On 16% of the trials, one of the 
two objects was presented upside-down. Participants were instructed to press the 
button as soon as they detected the flipped image.
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Localizer. Following the main task, participants underwent a functional localizer 
to define object-selective regions for each participant. The functional localizer 
involved the same object images as in the previous tasks and their globally phase-
scrambled versions. In a block design, the images were presented on the one side 
for 500 ms, followed by a 500 ms inter-trial interval. Each object was presented  
6 times. Participants were instructed to fixate on the fixation point and press a 
button whenever it turned yellow.

Behavioral Session 3 on Day 2. The design and procedure of Behavioral Session 3 
was identical in all respects to Behavioral Session 1 apart from these critical 
manipulations in design (see Figure 4.1c): Two objects were presented at the same 
time. And on 50% of the trials, expected spatial arrangement was presented.

fMRI Data Acquisition
Functional and anatomical MRI data were acquired on a 3T Prisma and PrismaFit 
scanner (Siemens, Erlangen, Germany) using a 32-channel head coil. The data 
acquisition protocol included a T1-weighted anatomical and five functional runs. 
The anatomical scan was acquired with a Magnetization Prepared Rapid Acquisition 
Gradient Echo sequence (MP-RAGE; TR = 2300 ms, TI = 1100 ms, TE = 3 ms, flip  
angle = 8°, 1 × 1 × 1 mm3 isotropic). The five functional runs comprised of four 
main task runs and one localizer run. Functional images were acquired using a 
whole-brain T2*-weighted multiband-4 sequence (TR = 1000 ms, TE = 34 ms, flip  
angle = 75°, 2 × 2 × 2 mm3, 66 slices).

Data analysis
Behavioral data analysis. Reaction time (RTs) data from the object categorization 
task of Behavioral Session 1 on Day 1 and Behavioral Session 3 on Day 2 were 
analyzed. The data of Behavioral Session 2 on Day 2 was not analyzed due to the 
low number of trials in this short reminder session. The trials with no responses, 
wrong responses, fast responses (i.e., reaction time < 200 ms) and outliers (reaction 
times exceeding 2 SD from mean RT of each participant) were excluded from the 
analysis. Reaction times data of Behavioral Session 1 and 3 were entered into a  
2 Expectation (expected – unexpected) x 2 Condition (DFH - ∆P) repeated measures 
ANOVA using JASP Team (2022, Version 0.16.3). 

fMRI data preprocessing. MRI data were preprocessed using FSL (version 6.00; FMRIB 
Software Library, Smith et al., 2004). We applied brain extraction using BET, motion 
correction using MCFLIRT, spatial smoothing (Gaussian kernel of FWHM = 5 mm) 
and temporal high-pass filtering (120 s). All analyses were carried out in native 
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subject space. We used FSL FLIRT to register functional images to the anatomical 
image and the anatomical image to the MNI152 T1 2 mm template brain using 
linear registration (12 degrees of freedom).

fMRI data analysis. FSL FEAT was used to fit voxel-wise general linear models (GLM) 
to each participants’ run in an event-related approach. The functional localizer 
was modelled with 6 regressors of interest (left/right, scrambled/unscrambled, 
expected/unexpected) and a set of 24 motion regressors. To define ROIs for object-
selective LOC, for each participant, we first contrasted scrambled vs. unscrambled 
object presentations and then selected the 200 most active voxel from that 
contrast and then constrained to anatomic LOC derived from Freesurfer’s Desikan-
Killiany cortical atlas. The runs of the main task were modelled using 4 regressors 
of interest, namely DFH expected, DFH unexpected, ∆P expected, ∆P unexpected 
and 24 additional motion regressors. The contrast of interest for the whole-brain 
analysis compared BOLD activity during unexpected minus expected trials (i.e., 
expectation suppression), DFH minus ∆P, unexpected minus expected DFH trials 
and unexpected minus expected ∆P trials. FSL’s fixed effects analysis was used to 
combine data across all runs. Whole-brain analysis across-participants was carried 
out using FSL’s mixed effect model (FLAME 1). All ROI analyses were conducted in 
participants’ native space. In addition to the functionally defined LOC region, we 
also used two a priori defined ROIs, namely primary visual cortex (V1) and temporal 
occipital fusiform cortex (TOFC) based on a previous study by Richter et. al. (2018).

Results 

Analysis of Reaction Time Data. We analyzed reaction time data during Behavioral 
Session 1 and 3 to evaluate how behavioral benefits of expectations varies by 
the type of uniqueness. During Behavioral Session 1 on Day 1, a two-way within 
subjects ANOVA revealed no significant effect of expectation (F(1, 27) = 1.67,  
p = 0.21), a significant effect of condition (F(1, 27) = 18.00, p < 0.001; participants 
were 39 ms faster in DFH than ∆P) and no significant interaction effect  
(F(1, 27) = 1.50, p = 0.23; 7 ms RT benefit in high DFH and 1 ms RT benefit in high ∆P, 
see Figure 4.2a). During Behavioral Session 3 on Day 2, a two-way within subjects 
ANOVA revealed no significant effect of expectation (F(1, 27) = 1.77, p = 0.19), 
condition (F(1, 27) = 0.32, p = 0.58) and interaction (F(1, 27) = 1.50, p = 0.23, 10 ms 
RT benefit in high DFH and 1 ms RT benefit in high ∆P, see Figure 4.2b). Overall, we 
did not observe any behavioral benefit of expectation effect (i.e., faster response to 
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expected than unexpected pairs), which may imply that participants did not learn 
the most likely spatial arrangement of the object images.

Figure 4.2. Pre- and Post-Scanning Behavioral Results. Across participants' mean reaction times as a 
function of Expectation and Condition. Displayed are parameter estimates + /- within subject SE for 
responses to expected (green) and unexpected (red) object images on Behavioral Session 1  
(see panel a) and Behavioral Session 3 (see panel b). There was no significant reaction time benefit in 
high DFH and high ∆P conditions.

Analysis of fMRI Data. We analyzed BOLD responses within our ROIs (i.e., V1, object-
selective LOC and TOFC) to evaluate how neural benefits of expectations varies 
by the type of uniqueness. In V1, a two-way within subjects ANOVA revealed no 
significant effect of expectation (F(1, 27) = 0.00, p = 0.95), condition (F(1, 27) = 
0.95, p = 0.34) and interaction (F(1, 27) = 0.03, p = 0.88, see Figure 4.3a). In LOC, a  
two-way within subjects ANOVA revealed no significant effect of expectation  
(F(1, 27) = 0.62, p = 0.44), a significant effect of condition (F(1, 27) = 6.21, p = 0.02) 
and no significant interaction effect (F(1, 27) = 0.02, p = 0.90, see Figure 4.3b). In  
TOFC, a two-way within subjects ANOVA revealed no significant effect of 
expectation (F(1, 27) = 0.15, p = 0.71), a significant effect of condition (F(1, 27) = 
8.56, p = 0.01) and no significant interaction effect (F(1, 27) = 0.07, p = 0.80, see 
Figure 4.3c). Overall, we did not observe expectation suppression (i.e., larger 
BOLD response to unexpected than expected pairs) supporting the failure of 
participants’ learning the spatial relationship between objects. We observed larger 
BOLD response to DFH than ∆P. This may be explained by the fact that there were 
more ∆P trials than DFH trials in order to create contrast between ∆P P and DFH 
values for a clear comparison. However, this imbalance in the number of trials 
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made participants more familiar with ∆P P conditions. Increased familiarity with 
a stimulus leads to reduced neural responses (Fritsche et al., 2020; Manahova et 
al., 2020).

Figure 4.3. fMRI Results. Expectation suppression within V1 and object-selective LOC and TOFC. 
Displayed are parameter estimates + /- within-subject SE for responses to expected and unexpected 
object pairs. In all ROIs, BOLD responses to unexpected object pairs were not stronger than to 
expected object pairs.

Discussion

Statistical learning allows us to efficiently utilize our limited resources by extracting 
the repeated structure in the environment. One crucial open question is what kind 
of structure observers learn. Although previous studies show that observers learn 
the strong predictive relationship, recent findings imply that observers learn unique 
predictive relationships between events (Leshinskaya & Thompson-Schill, 2021). 
In this study, we aimed to understand what kind of unique relationship is learned 
during statistical learning. However, our results remain inconclusive to answer this 
question. Potentially, this could be explained by an absence of learning. Successful 
statistical learning is demonstrated by behavioral and neural response benefit. 
Observers are faster to react to expected than unexpected events (Hunt & Aslin, 
2001; Richter & de Lange, 2019; Turk-Browne et al., 2005) and show suppressed 
neural response to expected than unexpected events (He et al., 2022; Richter et al., 
2018; Richter & de Lange, 2019). In our study, there is a trend of faster response to 
expected than unexpected spatial arrangement in high DFH condition; however, 
this difference was numerically very small and statistically non-significant. Similarly, 
there was not any activity modulation in any of our ROIs. These results suggest that 
participants did not learn the most likely spatial arrangement of the object images. 
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We speculate that the lack of learning may be explained by the expectation 
manipulation in the spatial domain. In the unexpected spatial arrangement, we 
swapped the spatial locations of the same object images. Therefore, the correct 
responses for both expected and unexpected spatial arrangements were the same. 
This approach makes the expectation manipulation independent of response 
bias and ensures that differences in reaction time data were due to perceptual 
surprise at unexpected spatial arrangements rather than response adjustment 
costs. Yet, participants may have learned the relationship between objects based 
on the identity of the objects while disregarding their spatial arrangement. Instead 
of swapping the location of objects, we could have replaced one of the objects 
with another object from the same category, which could have also prevented 
the response bias to unexpected pairs. Moreover, this could have enhanced the 
learning effect by better attracting participants’ attention, which is necessary for 
learning to takes place (Richter & de Lange, 2019). Indeed, He et.al. (2022) found 
both behavioral and neural expectation effects when they changed the identity of 
the image in the unexpected spatial arrangement.

Comparing design parameters from the previous chapter with those in the current 
chapter may help us understand why participants did not learn the relationship 
between object images in the current chapter. First, we can consider the amount 
of exposure to object pairs during training. In the previous chapter, each expected 
object pair was repeated 16 times across three online experiments. In the current 
chapter, each expected object pair was repeated 60 times. Although participants 
were exposed to object pairs less frequently in the previous chapter, they still 
showed a behavioural benefit of expectation. Therefore, the lack of expectation 
benefit in the current chapter cannot be explained by the amount of exposure. The 
second difference relates to the nature of the relationship between object images 
during the training phase. In the previous chapter, participants were first exposed 
to deterministic relationships during the training phase, whereas in the current 
chapter, they were exposed to probabilistic relationships. Recent research suggests 
that when participants are exposed to probabilistic rather than deterministic 
relationships, statistical learning becomes weaker (Richter, 2021). This exposure 
to probabilistic relationships during the training phase may have weakened the 
learning effects in the current chapter. Therefore, if participants had been presented 
with deterministic relationships in the first behavioral session on day 1, we might 
have observed a learning effect. 

To conclude, we could not find any behavioral and neural response benefit to 
expected rather than unexpected pairs, suggesting the absence of statistical 
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learning. Therefore, it remains an open question whether ∆P or DFH governs 
statistical learning. To obtain more insightful results, future studies could create 
unexpected spatial arrangements by changing the identity of objects instead 
of swapping their locations. Additionally, participants could be trained on a 
deterministic relationship before introducing violations to that relationship during 
the fMRI session. 
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Throughout this thesis, I have investigated the underlying mechanisms of statistical 
learning and the type of relationship extracted during statistical learning. In several 
experiments, I used incidental statistical learning where the relationship between 
object pairs was learned without intentional effort and explicit instruction and I 
observed behavioral benefits of statistical learning (i.e., faster responses to expected 
objects). In the following discussion, I will attempt to answer the key questions 
raised in the introduction based on the presented data in the previous chapters.

Blocking in statistical learning

Blocking is a crucial phenomenon in reinforcement learning, demonstrating the 
role of prediction error. In forward blocking, the outcome X is first paired with the 
cue A. Subsequently, the outcome X is paired with the compound cues A and B. 
Through repeated exposure to A→X, the relationship between cue A and outcome 
X is learned, minimizing the prediction error. As a result, the association between 
cue B and outcome X cannot be learned (Rescorla & Wagner, 1972). In backward 
blocking, the outcome X is initially paired with the compound cues A and B. Later, 
the outcome X is paired only with cue A. Through repeated exposure to AB→X, the 
prediction error decreases. When cue A alone precedes outcome X, the associative 
relationship between cue A and outcome X is updated, further reducing the 
prediction error. This retrospective update weakens the association between cue 
B and outcome X (Kalman, 1960; Kruschke, 2008; Rescorla & Wagner, 1972; Van 
Hamme & Wasserman, 1994).  

In the introduction of my thesis, I raised the question whether statistical learning 
is based on prediction errors. To answer this question, in chapter 2 I utilized 
both forward and backward blocking paradigms of reinforcement learning in the 
context of statistical learning. In the first experiment, I applied a forward blocking 
paradigm to the classical statistical learning task. While I did not observe forward 
blocking, I instead found augmentation of learning. Specifically, I observed that the 
associative strength between the blocked stimuli and the trailing stimuli (which 
was hypothesized to become weaker) was learned equally well (or even better) 
as the association with the antedating stimuli. I speculate that attention may 
provide a parsimonious explanation for the augmented learning of the blocked 
stimuli. Studies suggest that stimuli whose consequences are initially unexpected 
attract more attention (Holland & Schiffino, 2016; Pearce & Hall, 1980b) and that 
attentional allocation maximizes learning, with observers focusing on stimuli that 
are neither completely predictable nor unpredictable (Gottlieb et al., 2013; Kidd 
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et al., 2012; Poli et al., 2020). In our forward blocking experiment, participants 
learned the association between the antedating leading object and the trailing 
object during the first training phase. Thus, their attention may have shifted to the 
novel and therefore potentially more salient blocked leading object in the second 
phase, thereby enhancing the association between the blocked leading object and 
the trailing object. On the other hand, in the control condition, two novel leading 
objects equally competed for associative strength with the trailing object and 
hence their individual predictive power was reduced (Rescorla & Wagner, 1972). 
In Experiment 2, I used backward blocking to control the novelty and salience 
and thereby eliminate this potential attentional effect. Our results indicated that 
backward blocking occurs in statistical learning, supporting that statistical learning 
may be error-driven and thus suggesting a functional similarity between statistical 
learning and reinforcement learning.

Exploring the Role of Prediction Error in Statistical 
Learning: Insights from Blocking Phenomena

In typical blocking experiments, associations are learned either when the outcome 
is a reward (Aggarwal et al., 2020; Aggarwal & Wickens, 2020; Sharpe et al., 2017; 
Steinberg et al., 2013) or when performance-related feedback is provided (Blanco 
et al., 2014; Kruschke & Blair, 2000; Le Pelley et al., 2005, 2007; Luque et al., 2018; 
Mitchell et al., 2005, 2006). There are few studies examining forward blocking 
using incidental learning. For instance, Beesley and Shanks (2012) did not observe 
forward blocking in contextual cueing experiments, where participants incidentally 
learned the spatial relationship among distractors and targets in a visual search 
task. However, this procedure deviates from classic forward blocking paradigms 
that requires the temporal relationship between cue and outcome (Aggarwal et al., 
2020; Aggarwal & Wickens, 2020; Blanco et al., 2014; De Houwer et al., 2005; De 
Houwer & Beckers, 2003; Kruschke & Blair, 2000; Le Pelley et al., 2005, 2007; Luque 
et al., 2018; Mitchell et al., 2006; Steinberg et al., 2013; Vandorpe et al., 2005). Two 
subsequent experiments (Morís et al., 2014; Schmidt & De Houwer, 2019) observed 
forward blocking of temporal associations only for material that was intentionally 
learned, but not for incidentally learned stimulus associations. Such learning 
conditions differ significantly from typical statistical learning scenarios, where 
observers extract regularities without intention (Batterink et al., 2019; Frost et al., 
2019; Sherman et al., 2020; Turk-Browne et al., 2010). To address the paradigm-
related issues in these studies, I adapted the classical statistical learning paradigm 
to the forward blocking paradigm. Despite these improvements, I did not observe 
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forward blocking in statistical learning, consistent with previous incidental learning 
studies. While a few studies have investigated forward blocking in incidental 
learning, less is known about backward blocking in incidental learning. There is 
evidence of backward blocking in infants (Sobel & Kirkham, 2006, 2007), who clearly 
did not follow explicit task instructions. To the best of our knowledge, no study has 
examined and found backward blocking in incidental learning with adults.

The traditional Rescorla-Wagner model which highlight the role of prediction 
error in learning, explain forward blocking this way: the previously learned the cue 
A – outcome X association prevents the formation of an associative link between 
the cue B and the outcome X. This happens because the antedating cue already 
minimizes the prediction error during the initial exposure to the cue-outcome pairs. 
However, the Rescorla-Wagner model, which assumes that the relevant cue must 
be present to change its associative strength (Kruschke, 2008; Miller & Witnauer, 
2016; Rescorla & Wagner, 1972), cannot explain backward blocking. However, this 
phenomenon can be explained by the Van Hamme and Wasserman model, which 
assigns non-zero salience to the absent cue by assuming its representation can 
be retrieved by the presentation of a previously competing cue (i.e., the cue A). 
Another explanation is provided by the Kalman filter, which updates the weights of 
all possible cues simultaneously (Gershman, 2015; Kalman, 1960; Kruschke, 2008). 
Thus, these revised models enable to update the associative strength between the 
cue A – outcome X association, thus leading the weakening of the cue B – outcome 
X association retrospectively. By showing backward blocking in statistical learning, 
our results suggest that statistical learning may rely on prediction error as in 
reinforcement learning.

In addition to the Rescorla-Wagner model and its modified versions, which assume 
that the associability of events is directly modulated by prediction errors, attentional 
models also provide an explanation for backward blocking. First, the Pearce-Hall 
model posits that the attention paid to events is directly influenced by prediction 
error. In the second phase of backward blocking, where one cue is presented alone, 
the prediction error is high for this cue because it is now a new predictor of the 
outcome. Consequently, attention is shifted to this cue. Conversely, the absence of 
the blocked cue reduces its prediction error and thus its associability. As a result, 
backward blocking occurs. On the other hand, the Mackintosh model explains 
backward blocking based solely on attention, without requiring prediction error. 
It states that attention paid to events is modulated by their predictiveness. In the 
second phase of backward blocking, the presentation of one cue alone makes it a 
more reliable predictor of the outcome. Thus, attention shifts towards this cue, and 
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the reduced attention to the blocked cue decreases its associative strength with the 
outcome. In both the Pearce-Hall and Mackintosh models, attention plays a crucial 
role in explaining backward blocking. The difference lies in that the Pearce-Hall 
model requires prediction errors to determine how attention is allocated to events. 
Therefore, from the perspective of the Pearce-Hall model but not the Mackintosh 
model, demonstrating backward blocking in statistical learning suggests that 
statistical learning is based on prediction error. 

Further, in the context of reinforcement learning, some researchers emphasize the 
role of inferential reasoning for blocking to occur. They argue that the deliberate 
assessment of causal relationships between cues and outcomes is essential for both 
forward blocking (De Houwer et al., 2005; De Houwer & Beckers, 2003; Vandorpe 
et al., 2005) and backward blocking (De Houwer & Beckers, 2002; Waldmann, 2000; 
Waldmann & Holyoak, 1992). So far, the studies examining blocking in adults clearly 
instruct their participants to learn the relationship between events. However, 
in our experiment, participants were not informed of any potential relationship 
between leading and trailing objects, and they learned the associative relationship 
incidentally. Therefore, our findings suggest that conscious inferential reasoning 
is not necessary for backward blocking to occur; instead, backward blocking can 
occur during incidental statistical learning. 

In sum, while I did not find forward blocking, our results are compatible with 
the presence of backward blocking in statistical learning, a form of learning that 
develops incidentally and in the absence of rewarding outcomes or feedback. 
Based on the Van Hamme – Wasserman model, Kalman filter and Pearce-Hall 
model, our result suggests a functional similarity between statistical learning 
and reinforcement learning and support the idea that statistical learning may 
be error-driven.

Unique associations determine statistical learning

In the introduction of my thesis, I raised the questions whether statistical learning 
is more sensitive to uniqueness rather than conditional probability and which form 
of uniqueness (i.e., ∆P or DFH) is learnt during statistical learning. Our results from 
chapter 3 speak to these questions. In each study I manipulated the relationship 
between object pairs such that CP, ∆P and DFH of object pairs can be compared to 
better understand which one of them governs statistical learning. In Experiment 1,  
both low and high unique pairs had a CP of 1, but participants learned high unique 
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pairs more effectively. In Experiments 2 and 3, high unique pairs with CPs of 0.5 
and 1 were learned equally well. These results suggest that during statistical 
learning, observers learned the relationship between objects based on their unique 
predictive relationships between events rather than conditional probabilities 
(Leshinskaya & Thompson-Schill, 2021). 

In Experiment 2 and 3, I attempted to identify which form of uniqueness (∆P and 
DFH) governs statistical learning. For this, I varied ∆P while keeping DFH constant. 
I found that participants learned pairs with low ∆P and high ∆P equally well, 
suggesting that DFH may influence statistical learning rather than ∆P. To better 
understand and to replicate the findings, in Experiment 3, I directly made a direct 
comparison ∆P and DFH by creating a modulation in opposite directions between 
the two and found that participants learned pairs with high DFH and high ∆P 
equally well. Therefore, our findings remain inconclusive about which forms of 
uniqueness determines statistical learning. 

Therefore, in chapter 4, I specifically focused on better understanding which 
form of uniqueness governs statistical learning. First, I created a stronger contrast 
between different forms of uniqueness to make a clear comparison between them. 
Second, to enhance the learning effect, the expectation manipulation was shifted 
from the temporal to the spatial domain to further enhance the learning effect, as 
spatial expectations yield stronger behavioral and neural effects (He et al., 2022). 
However, this approach loses the natural cause-and-effect relationship seen in the 
temporal domain, which is crucial for uniqueness. To address this, I maintained 
a temporal relationship by presenting one object earlier than the other. Despite 
these improvements in our experimental paradigm, I could not observe any 
learning effect. Although there was a trend of faster responses to expected spatial 
arrangements in the high DFH condition, this was not statistically significant. 
Additionally, I did not observe such trend in activity pattern of any of our ROIs. 
These findings suggest that participants did not learn the most likely spatial 
arrangement of the object images. 

Exploring the Role of Uniqueness in Statistical 
Learning: Insights from ΔP and DFH Metrics

Metrics of uniqueness, particularly ∆P, are often used to examine causal reasoning 
during tasks where participants are explicitly encouraged to learn and make causal 
judgments about relationships between events (Griffiths & Tenenbaum, 2005). For 
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instance, the blicket detector paradigm is frequently used to study how individuals 
intentionally learn relationships to draw accurate causal conclusions (Beckers et al., 
2009; Griffiths et al., 2011; Jiang & Lucas, 2024; McCormack et al., 2009; Sobel et al., 
2004). In this classic experimental setup, participants are introduced to the blicket 
machine and asked to identify the blickets (i.e., causes) that activate the machine. 
Studies using the blicket detector paradigm have shown that causal inferences 
are influenced by ∆P in both children (Sobel et al., 2004) and adults (Griffiths et 
al., 2011; Jiang & Lucas). Contrasting these studies, where participants were 
explicitly encouraged to learn causal relationships, the effects of causal learning 
were observed in infants (Sobel & Kirkham, 2006, 2007), who did not follow explicit 
task instructions but instead attuned themselves to statistical regularities through 
passive exposure. This suggests that statistical learning may be sensitive to unique 
predictive relationships rather than conditional probabilities, as indicated by 
previous studies (Fiser & Aslin, 2002). 

Leshinskaya and Thompson-Schill (2021) demonstrated that participants failed to 
learn the relationship between events with high conditional probabilities when 
the ΔP between them was low. This suggests that statistical learning is governed 
by unique predictive relationships defined by ΔP. Similarly, two subsequent 
experiments found that observers learned relationships between events with high 
conditional probabilities as well as those with low conditional probabilities in both 
monkeys (Ramachandran et al., 2016) and humans (Richter et al., 2018), due to the 
same value of DFH, further supporting the role of unique predictive relationships in 
statistical learning.

In a series of behavioral and fMRI experiments described in chapters 3 and 4, I 
aimed to better understand whether statistical learning is governed by uniqueness 
and which metrics of uniqueness determine statistical learning. Our results provide 
further evidence that unique predictive relationships govern statistical learning. 
However, our findings remain inconclusive about the specific type of unique 
relationship that determines learning. We discuss potential limitations of our 
experimental setups that may have caused these inconclusive results and suggest 
improvements for future research in the following sections.
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Limitations

In chapter 2 and chapter 3, participants performed the experiments online. Due 
to the nature of online data collection where the commitment of participants 
can be lower than in traditional laboratory settings (Al-Salom & Miller, 2019; 
Brühlmann et al., 2020), the rejection rates were high in these experiments. This 
may raise concerns about the generalizability of our results. Based on a simple task 
where the general population is expected to perform at ceiling levels, I excluded 
participates who underperformed, likely due to not reading instructions carefully, 
not understanding the task, or not paying enough attention. Such exclusions are 
common in online experiments, where about half of the participants often exhibit 
careless and inattentive behavior (Al-Salom & Miller, 2019; Brühlmann et al., 2020). 
Therefore, the consequences of statistical learning appear to be limited to a subset 
of participants who demonstrated high motivation and adequate attention to 
the stimuli, which is essential for supporting statistical learning (Richter & de 
Lange, 2019).

There are also limitations related to the uniqueness manipulation in chapter 3  
and chapter 4. First, ∆P and DFH share the same components, meaning that 
strengthening or weakening one affects the other. This prevented us from finding 
optimal conditions with a strong enough contrast between ∆P and DFH to make a 
clear comparison. Second, the amount of exposure to objects differed between the ∆P 
and DFH conditions. There were more trials in the high ∆P conditions than in the high 
DFH conditions, making participants more familiar with ∆P conditions. It is known 
that familiar stimuli lead to stronger and faster processing and improved behavioral 
performance (Fritsche et al., 2020; Manahova et al., 2020). Therefore, this imbalance 
in familiarity may have confounded our results, potentially reducing the observed 
effects due to the overall faster processing of object pairs in the ∆P conditions.

Future directions

The experiments in chapters 3 and 4 demonstrated that statistical learning is 
governed not by the leading object strongly predicting the trailing object, but by the 
leading object uniquely and independently predicting the trailing object. However, 
these experiments did not clarify what type of uniqueness determines learning. 
Future studies could use a modified version of the paradigm from chapters 3 
and 4 to address this question. To obtain more insightful results, future studies 
could improve the design matrix to create a stronger contrast between ∆P and 
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DFH conditions. In experiment 2 of chapter 3, ∆P was varied while DFH was kept 
constant. Reversing this design might show the role of DFH independently from ∆P.

Additionally, to investigate the role of uniqueness in the temporal domain, the 
paradigm from chapter 3 could be improved by changing the location of object 
presentation. In chapter 3, objects were presented on the left or right side of the 
screen for consistency with chapter 2. However, supplementary experiment 1 of 
the blocking project highlighted the importance of stimulus location in learning. 
This experiment presented leading and trailing objects at the center of the screen, 
resulting in stronger associations between objects and a reaction time benefit 
approximately twice as large as in other experiments. Therefore, future studies 
could present leading and trailing objects at the center to boost learning and 
thereby obtain stronger results.

To better understand the role of uniqueness in the spatial domain, the paradigm 
from chapter 4 could also be improved. In chapter 4, I swapped the spatial locations 
of object pairs to create unexpected spatial arrangements. However, participants 
may have focused on the identity of the objects rather than their spatial arrangement 
(He et al., 2022). Future studies could create unexpected spatial arrangements by 
changing the identity of the objects instead of swapping their locations.

Conclusions

In conclusion, throughout this thesis I sought to unravel the mechanisms of statistical 
learning and the types of relationships that influence it. First, I investigated whether 
statistical learning is error-driven by employing both forward and backward blocking 
paradigms. Our forward blocking experiment did not show the expected blocking 
effect but rather an augmentation of learning, likely due to attentional shifts towards 
novel stimuli. However, backward blocking was observed, supporting the idea that 
statistical learning might be error-driven and thus indicating a functional similarity 
between statistical learning and reinforcement learning. Second, I examined whether 
statistical learning is more sensitive to unique predictive relationships rather than 
conditional probabilities. Our results indicated that participants learned object 
pairs based on unique predictive relationships. However, our experiments remain 
inconclusive about which specific form of uniqueness governs statistical learning. 
Our findings contribute to the understanding of statistical learning by suggesting 
that it may be error-driven, akin to reinforcement learning. However, further research 
is needed to clarify the specific metrics of uniqueness that drive statistical learning.
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Nederlandse samenvatting

Leren stelt ons in staat ons begrip van de wereld te ontwikkelen en te verfijnen 
door associaties te vormen tussen systematisch gerelateerde gebeurtenissen in 
onze omgeving. Deze associaties, afgeleid van regelmatigheden in ruimte en tijd, 
helpen ons toekomstige gebeurtenissen te voorspellen, reacties voor te bereiden 
en ons aan te passen aan onze omgeving. Dit automatische en vaak onbewuste 
proces, bekend als statistisch leren, stelt ons in staat deze regelmatigheden te 
herkennen door middel van meerdere blootstellingen zonder de intentie of moeite 
om te leren. Statistisch leren verbetert de informatieverwerking, wat resulteert in 
snellere en nauwkeurigere reacties op verwachte stimuli en omvat onderdrukte 
neurale reacties op verwachte stimuli.

In Hoofdstuk 2 onderzochten we welk leermechanisme ten grondslag ligt aan 
statistisch leren en of statistisch leren foutgestuurd is zoals bekrachtigingsleren. Om 
dit te doen, leende ik de voorwaartse en achterwaartse blokkering paradigma's van 
bekrachtigingsleren. In het voorwaartse blokkering paradigma wordt aanvankelijk 
uitkomst X gekoppeld aan cue A. Later wordt een nieuwe cue B geïntroduceerd 
naast cue A, die beide leiden tot dezelfde uitkomst X. De eerder vastgestelde 
associatie tussen cue A en uitkomst X voorkomt het vormen van een nieuwe 
associatie tussen cue B en uitkomst X omdat cue A de voorspellingsfout tijdens 
de eerste blootstelling al minimaliseert. Het enige verschil in het achterwaartse 
blokkering paradigma is dat uitkomst X eerst wordt gekoppeld aan zowel cue A 
als cue B en later X alleen wordt gekoppeld aan cue A. Het koppelen van cue A met 
uitkomst X vermindert de voorspellingsfout, wat op zijn beurt de associatie tussen 
cue B en uitkomst X verzwakt. We pasten klassieke statistische leertaken aan naar 
blokkering paradigma's in een reeks online experimenten. Bij elke proef kregen de 
deelnemers paren afbeeldingen te zien. Zonder dat zij dit wisten, waren bepaalde 
afbeeldingen voorspellers van andere, zodat elke volgende afbeelding kon worden 
voorspeld op basis van de voorafgaande afbeelding. Na het leren evalueerden we 
statistisch leren door deelnemers verwachte en onverwachte afbeeldingsparen te 
tonen en hun reactietijd te meten voor categorisatiebeoordelingen van de volgende 
afbeelding als elektronisch of niet-elektronisch. In het eerste experiment met een 
voorwaarts blokkering paradigma, observeerden we geen voorwaartse blokkering 
maar eerder een versterking van leren. In tegenstelling tot de verwachtingen 
werden de geblokkeerde stimuli net zo effectief geleerd als de aanvankelijk 
gepresenteerde stimuli. Dit onverwachte resultaat kan worden verklaard door 
aandacht mechanismen. In het voorwaartse blokkering experiment verschoof de 
aandacht van de deelnemers waarschijnlijk naar de nieuwe geblokkeerde stimuli 
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tijdens de tweede fase, wat hun leren verbeterde. Om de nieuwigheid te beheersen 
en dit aandachtseffect te elimineren, werd in het tweede experiment achterwaartse 
blokkering toegepast. De resultaten bevestigden achterwaartse blokkering in 
statistisch leren, wat wijst op een functionele gelijkenis tussen statistisch en 
bekrachtigingsleren en ondersteunt het idee dat statistisch leren kan worden 
aangedreven door voorspellingsfouten.

In Hoofdstuk 3 onderzochten we welke soorten associatieve relaties worden 
geëxtraheerd tijdens statistisch leren en welke metrics hun extractie sturen. In 
statistische leerstudies is de belangrijkste metric die wordt gebruikt om leren te 
moduleren de conditionele waarschijnlijkheid. Echter, causale leerstudies tonen 
aan dat leren plaatsvindt op basis van de unieke voorspellende relatie in plaats van 
conditionele waarschijnlijkheid. Er zijn twee verschillende vormen van uniciteit: 
meer rationeel en analytisch ∆P en sneller en heuristisch DFH. Om te onderzoeken 
of statistisch leren gevoeliger is voor uniciteit of conditionele waarschijnlijkheid 
en welke vormen van uniciteit (∆P of DFH) worden geleerd, voerden we een reeks 
online experimenten uit waarbij paren afbeeldingen werden gepresenteerd 
met een relatie, zodat elke volgende afbeelding kon worden voorspeld op basis 
van de voorafgaande afbeelding. Na het leren evalueerden we statistisch leren 
door deelnemers verwachte en onverwachte afbeeldingsparen te tonen en hun 
reactietijd te meten voor categorisatiebeoordelingen van de volgende afbeelding. 
Experiment 1 toonde aan dat deelnemers hoog unieke paren effectiever leerden 
dan laag unieke paren, ondanks dat beide een conditionele waarschijnlijkheid 
van 1 hadden. Experimenten 2 en 3 vonden dat hoog unieke paren met CP's 
van 0,5 en 1 even goed werden geleerd, wat aangeeft dat unieke voorspellende 
relaties statistisch leren meer aandrijven dan conditionele waarschijnlijkheden. 
In Experiment 2, bij het specifiek onderzoeken van ∆P en DFH, leidde variërende 
∆P terwijl DFH constant bleef tot gelijk leren van lage en hoge ∆P paren, wat 
suggereert dat DFH mogelijk een grotere rol speelt. Echter, een directe vergelijking 
in Experiment 3 toonde aan dat paren met hoge DFH en hoge ∆P even goed werden 
geleerd. Dus, onze bevindingen zijn niet eenduidig over welke vorm van uniciteit 
voornamelijk invloed heeft op statistisch leren.

In Hoofdstuk 4 wilden we de soort uniciteit identificeren die statistisch leren bepaalt. 
Om dit te bereiken, verhoogden we het contrast tussen verschillende vormen van 
uniciteit en verschoven we de verwachting manipulatie van het temporele naar 
het ruimtelijke domein om het leereffect te versterken. Onze aanpak omvatte 
zowel gedrags experimenten uitgevoerd in een gecontroleerde labomgeving als 
fMRI experimenten. Ondanks deze methodologische verbeteringen observeerden 
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we geen significant leereffect. Hoewel er een trend was naar snellere reacties 
op verwachte ruimtelijke rangschikkingen in de hoge DFH conditie, was dit niet 
statistisch significant. Bovendien werden er geen significante trends gevonden 
in de activiteits patronen van onze ROIs. Deze resultaten geven aan dat 
deelnemers niet de meest waarschijnlijke ruimtelijke rangschikking van de object 
afbeeldingen leerden.

In mijn dissertatie onderzocht ik de mechanismen van statistisch leren en 
de relaties die het beïnvloeden. De eerste reeks experimenten onderzocht 
of statistisch leren foutgestuurd is, gebruikmakend van zowel voorwaartse 
als achterwaartse blokkering paradigma's. Hoewel voorwaartse blokkering 
niet het verwachte blokkeringseffect toonde, werd achterwaartse blokkering 
waargenomen, wat wijst op een functionele gelijkenis tussen statistisch leren en 
bekrachtigingsleren, en ondersteunt het idee dat statistisch leren foutgestuurd kan 
zijn. De tweede reeks experimenten onderzocht of statistisch leren gevoeliger is 
voor unieke voorspellende relaties dan voor conditionele waarschijnlijkheden. De 
resultaten gaven aan dat deelnemers object paren leerden op basis van unieke 
voorspellende relaties, hoewel de specifieke vorm van uniciteit onduidelijk blijft. 
Over het algemeen suggereren de bevindingen dat statistisch leren foutgestuurd 
kan zijn, maar verder onderzoek is nodig om de precieze metrics van uniciteit die 
het aandrijven te bepalen.
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