
LO
N

G
ITU

D
IN

A
L R

E
LATIO

N
S

 B
E

TW
E

E
N

 E
A

R
LY LIFE

 S
TR

E
S

S
, G

U
T M

IC
R

O
B

IO
TA

, A
N

D
 E

X
E

C
U

TIV
E

 FU
N

C
TIO

N
IN

G
  

FR
O

M
 P

R
E

G
N

A
N

C
 TO

 C
H

ILD
H

O
O

D
S

 
H

E
N

R
IK

 E
C

K
E

R
M

A
N

N

Longitudinal Relations Between Early Life Stress, 
Gut Microbiota, and Executive Functioning from 

Pregnancy to Childhood

Henrik Eckermann Radboud
Dissertation
Series





Longitudinal Relations Between Early Life Stress, Gut 
Microbiota, and Executive Functioning from Pregnancy 

to Childhood 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Henrik Eckermann 
 
 



Author: Henrik Andreas Eckermann 
Title: Longitudinal Relations Between Early Life Stress, Gut Microbiota, and Executive 
Functioning from Pregnancy to Childhood 

Radboud Dissertations Series 
ISSN: 2950-2772 (Online); 2950-2780 (Print) 

Published by RADBOUD UNIVERSITY PRESS  
Postbus 9100, 6500 HA Nijmegen, The Netherlands 
www.radbouduniversitypress.nl  

Design: Proefschrift AIO |  
Cover: DALL·E 2 
Printing: DPN Rikken/Pumbo 

ISBN: 9789465150147 
DOI: 10.54195/9789465150147 
Free download at: www.boekenbestellen.nl/radboud-university-press/dissertations 

© 2025 Henrik Andreas Eckermann 

This is an Open Access book published under the terms of Creative Commons Attribution-
Noncommercial-NoDerivatives International license (CC BY-NC-ND 4.0). This license allows 
reusers to copy and distribute the material in any medium or format in unadapted form only, 
for noncommercial purposes only, and only so long as attribution is given to the creator, see 
http://creativecommons.org/licenses/by-nc-nd/4.0/.  



Longitudinal Relations Between Early Life Stress, Gut 

Microbiota, and Executive Functioning from Pregnancy 

to Childhood 

 
 

 

 

Proefschrift ter verkrijging van de graad van doctor 

aan de Radboud Universiteit Nijmegen 

op gezag van de rector magnificus prof. dr. J.M. Sanders, 

volgens besluit van het college voor promoties 

in het openbaar te verdedigen op  

 

donderdag 9 januari 2025 

om 14.30 uur precies 

 

door 

 

Henrik Andreas Eckermann 

geboren op 4 december 1987 

te Kevelaer (Duitsland) 

 

 

 

  



Promotoren:  

Prof. dr. C. de Weerth 

Prof. dr. L. Lahti (Turun Yliopisto, Finland) 

 

   

 

Manuscriptcommissie: 

Prof. dr. K. Roelofs (voorzitter)  

Prof. dr. H. Smidt (Wageningen University & Research) 

Prof. dr. J. Penders (Maastricht University) 

 



Contents

1 General Introduction 7
1.1 Stress and the gut microbiota . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 The gut microbiota and the brain . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Studies utilized in this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Maternal Pre- and Postnatal Stress and Maternal and Infant Gut Microbiota
Features 23
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.6 Supplemental Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3 Does Entry to Center-Based Childcare Affect Gut Microbial Colonization in
Young Infants? 75
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.7 Supplementary Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5



6 Contents

4 Daily Skin-to-Skin Contact Alters Microbiota Development in Healthy Full-
Term Infants 103
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.6 Supplementary Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5 Can Gut Microbiota Throughout the First 10 Years of Life Predict Executive
Functioning in Childhood? 143
5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.3 Methods and Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.7 Supplementary Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6 General Discussion 189
6.1 Main conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.2 Challenges and future directions: Towards a gold standard in microbiota-gut-

brain-axis research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.3 Thesis reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7 Appendices 203
7.1 Nederlandse samenvatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.2 Research Data Management Statement . . . . . . . . . . . . . . . . . . . . . . . 205
7.3 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
7.4 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
7.5 Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
7.6 PhD portfolio of Henrik Eckermann . . . . . . . . . . . . . . . . . . . . . . . . . 210

6



Chapter 1

General Introduction



8 General Introduction

In 2004, Sudo et al. documented aberrant activation of the hypothalamus–pituitary–adrenal
(HPA) axis in mice bred and raised entirely devoid of microorganisms (germ-free mice) (Sudo
et al., 2004). When subjected to stress-inducing physical restraint, these germ-free mice exhib-
ited heightened endocrine responsiveness, as evidenced by increased levels of stress biomarkers
such as plasma adrenocorticotropic hormone and corticosterone, compared to conventionally
colonized mice. Furthermore, the germ-free mice exhibited diminished levels of hippocampal
and cortical brain-derived neurotrophic factor (BDNF), a protein intimately linked with neu-
roplasticity, learning, and memory. Remarkably, the reintroduction of specific microbes to the
germ-free mice mitigated hyperactivity of the HPA axis at six weeks of age, but less effectively
so at 14 weeks of age (corresponds to human ages of approximately 11.5 and 22 years, respec-
tively (Dutta & Sengupta, 2016)). The findings by Sudo et al. point at the existence of critical
periods during which specific bacteria are required for normal neurodevelopment.
These findings sparked broader interest in the role of bacteria for neurodevelopment and many
experimental animal studies have since followed. Collectively, they added evidence for a causal
effect of bacteria on brain development and functioning as well as the presence of neurode-
velopmental time windows (Borre, O’Keeffe, et al., 2014). However, a notable gap remains
when translating these findings from animal models to human studies. This has prompted calls
by leading researchers for the greater involvement of psychologists and behavioral scientists in
bridging this divide (Sarkar et al., 2018).
In response to this call and the growing recognition of the critical role played by the gut
microbiota in neurodevelopmental processes, the overarching goal of this thesis is to help bridge
the translational gap between animal models and human studies. Our objective is to integrate
insights garnered from three themes of experimental animal research with human research.
These themes are the influence of maternal prenatal stress (Theme 1) and early-life stress
in offspring (Theme 2) on offspring microbiota development. The third theme looks at the
microbiota composition in infancy and early childhood in relation to learning and memory later
in life (Theme 3). In the following sections of this introductory chapter, we briefly delve into
the relation between stress and the gut microbiota, providing context for themes 1 and 2, before
examining how the gut microbiota may modulate brain function, as addressed in Theme 3. The
last sections of this chapter list the studies utilized for this thesis as well as its general outline.

8



Stress and the gut microbiota 9

Table 1.1: Content of this thesis.

Theme
No

Theme Title Chapter Title Study
Sample

Chapter
No

1 Maternal stress
and offspring
microbiota
development

Maternal Pre- and
Postnatal Stress and
Maternal and Infant
Gut Microbiota
Features

SMILEY 2

2 Early life stress
and microbiota
development

Does entry to
center-based childcare
affect gut microbial
colonization in young
infants?

BIBO 3

Daily skin-to-skin
contact alters
microbiota
development in healthy
full-term infants

SKIPPY 4

3 Early microbiota
development and
learning and
memory

Can gut microbiota
throughout the first 10
years of life predict
executive functioning
in childhood?

BIBO 5

1.1 Stress and the gut microbiota

Stress denotes a condition wherein the typical physiological equilibrium of an organism is dis-
rupted by a real or perceived challenge (Salomon, 2013). Acute stress triggers the activation of
the HPA axis, leading to a release of corticotropin-releasing hormone (CRH) from the hypotha-
lamus. This stimulates the pituitary gland to release adrenocorticotropic hormone (ACTH),
which in turn stimulates the adrenal glands to produce cortisol (or corticosterone in rodents)
(Karin et al., 2020). Elevated cortisol levels negatively feedback on the secretion of CRH and
ACTH. This response is evolutionarily preserved, priming the individual for defense or escape
from the perceived threat. Upon cessation of the threat, normal physiological balance should
be restored. However, prolonged activation of the stress response can cause the HPA axis to
become dysregulated (Salomon, 2013). A dysregulation can manifest as abnormal secretion of
cortisol and ACTH, impacting the metabolism, immunity, behavior as well as gut physiology
and functioning (Karin et al., 2020; Leigh et al., 2023).

Both HPA-axis activation or dysregulation can influence gut physiology and functioning (Leigh
et al., 2023), for instance by impacting the function of the intestinal barrier. The intestinal
barrier refers to the complex system of epithelial cells, mucus layers, and immune cells that

9



10 General Introduction

regulate the selective permeability of the intestinal mucosa. Selective permeability is crucial
for maintaining gut homeostasis and preventing the translocation of harmful pathogens and
antigens into the bloodstream. Dysfunction of this barrier is associated with many chronic
illnesses such as Alzheimer’s disease, inflammatory bowel diseases, food allergy, irritable bowel
syndrome, rheumatic diseases and other autoimmune conditions such as type-1 diabetis mellitus
(Horowitz et al., 2023).

Studies have evidenced a relation between chronic stress and heightened permeability of the
intestinal barrier in humans and animals (Li et al., 2013; Vanuytsel et al., 2014). In humans,
stress-induced hyperpermeability affects both the small and large intestine, with mast cells
suggested as potential mediators (Vanuytsel et al., 2014; Wallon et al., 2007). These findings
are congruent with pharmacological investigations demonstrating that prolonged exposure to
glucocorticoids or corticotrophin-releasing factor can disrupt gut barrier integrity (Meena et
al., 2023; Shukla et al., 2021; Teitelbaum et al., 2008; Zheng et al., 2013). Chronic stress or
administration of corticotrophin-releasing factor have been observed to impact the colonic gut
barrier by perturbing tight junction proteins, augmenting paracellular permeability, elevating
levels of proinflammatory cytokines (Machorro-Rojas et al., 2019; Nozu et al., 2017), increasing
infiltration of mast cells (Lauffer et al., 2016) and mononuclear cells (Vicario et al., 2012),
and upregulating toll-like receptor 4 expression (Yu et al., 2013). These changes, observed in
both murine models and human subjects, are linked to local and systemic inflammation and
alterations in microbiota composition (Karl et al., 2017).

The previous description of the effects of stress on intestinal barrier function merely serves
as one example of how stress can influence gut physiology and function. Stress furthermore
affects gut motility, visceral sensitivity, gastrointestinal hormone secretion, bile acid synthesis
and secretion, and mucosal immune function as was recently extensively reviewed by Leigh and
colleagues (Leigh et al., 2023). Unsurprisingly, by changing the living environment of intestinal
bacteria, stress indirectly affects the gut microbiota composition. In the following, we will briefly
elaborate on the effect of stress on gut bacteria and how these bacteria can also influence the
mammalian body’s response to stress.

In 1974, researchers found decreased levels of lactobacilli in stressed mice (Tannock & Savage,
1974). This finding has since been confirmed in rhesus monkeys and in rodent pups subjected
to early life maternal separation stress (Bailey & Coe, 1999; De Palma et al., 2015; De Santa
et al., 2024). Subsequent animal studies found that stress can affect the gut microbiata in
various hosts, including cattle (Czech et al., 2022), horses (Glimstedt, 1959), pigs (Tang et al.,
2022), non-human primates (Bailey & Coe, 1999; Bailey et al., 2004) and rodents (Desbonnet
et al., 2010; Foster et al., 2017; S. M. O’Mahony et al., 2009, 2011) and across different stress
models including acoustic stress, heat, water avoidance, overcrowding and maternal separation
(Czech et al., 2022; De Santa et al., 2024; Delaroque et al., 2021; Lee et al., 2017; Z. Zhang
et al., 2023). Collectively, these studies provide evidence that moderate to severe physical and
psychological stressors can impact the gut microbiota composition in mammals.

Moreover, the rodent research underlying the first theme of this thesis (maternal stress and
offspring microbiota development) indicates that stress even impacts the microbiota of offspring
from stressed dams with potentially generational consequences (Brawner et al., 2020; Gur et al.,
2019; Hantsoo et al., 2019; Jašarević et al., 2017, 2018; Yeramilli et al., 2023). Interestingly,

10



Stress and the gut microbiota 11

transferring the vaginal microbiota from stressed mother rats to non-stressed pups has been
found to be sufficient to significantly change the pups’ microbiota and modify their stress re-
sponse later in life (Jašarević et al., 2018). This suggests that the effects of stress are mediated
by transferring microbes from the dam to the offspring. As we elaborate in Chapter 2 as part of
Theme 1, human studies are yet inconclusive about how maternal stress affects the infant mi-
crobiota. Our study analyzed three maternal stool samples obtained during and after pregnancy
as well as four infant stool samples obtained at two, six and 12 weeks as well as eight months
postpartum. In addition, we measured prenatal and postnatal maternal stress using diverse
questionnaires and hair cortisol and cortisone to investigate the relations between maternal pre-
natal and postnatal stress and the maternal and infant microbiota. Hence, our study provides
important evidence to shed light on the question whether and how prenatal (and postnatal)
maternal stress is related to infant microbiota development in humans.

Lastly, it is important to highlight that microbes are not just influenced by stress. They may
moderate or mediate the effects of stress on the mammalian body. For example, maternal
separation is a commonly used stressor in rodents where the offspring is separated from the
dam early in life. If separation occurs long enough, maternal stress leads to activation of the
HPA axis in the offspring with subsequent alternations in microbiota composition, increased gut
permeability and systemic inflammation, which results in an adult depressive and anxiety-like
phenotype (Bailey & Coe, 1999; Desbonnet et al., 2010; Foster et al., 2017; S. M. O’Mahony
et al., 2009, 2011). De Palma et al. reported that bacteria are required to induce the altered
phenotype (De Palma et al., 2015). Comparing germ-free mice with specific pathogen free
mice, they showed that stress leads to activation of the HPA-axis in both types of mice but
the depressive and anxiety-like phenotype only occurs in mice that have gut bacteria. When
colonizing germ-free mice that underwent maternal separation stress as well as a non-stressed
control group of germ-free mice, they found that stressed mice have different gut microbiota
composition and expressed the depressive and anxiety-like phenotype. Interestingly, the admin-
istration of specific bacteria can prevent this cascade by preventing increased gut permeability,
systemic inflammation and thereby the depressive and anxiety-like phenotype (Abildgaard et
al., 2017; Ait-Belgnaoui et al., 2014; Ait-Belgnaoui et al., 2012; Bravo et al., 2011; De Palma
et al., 2015; Gareau et al., 2007; Lew et al., 2019; Messaoudi et al., 2011). Thus, animal studies
suggest that bacteria mediate some of the negative effects of stress and that certain beneficial
bacteria can protect the host from these negative effects.

Due to ethical considerations, demonstrating the effects of early life stress on the gut microbiota
in humans poses challenges. Therefore, in Theme 2, we aim to explore if a naturally occurring
stressor affects infant microbiota development in healthy human infants (Chapter 3). Specif-
ically, we look at the effects of the entrance into center-based childcare at 10 weeks of age.
Entering center-based childcare involves relatively early maternal separation and changes in
environments and caregivers. As we summarize in Chapter 3, previous evidence found that the
entrance can lead to the activation of the HPA-axis in young infants as evidenced by increased
cortisol levels. Furthermore, in Chapter 4 we investigate whether a destressing intervention
implemented during the first five postnatal weeks influences microbiota development. The first
five weeks are crucial for both the microbiota and neurodevelopement (Borre, O’Keeffe, et al.,
2014). Our studies were the first studies that investigated whether each of these early life factors
was associated with alternations in gut microbiota composition and development.

11



12 General Introduction

1.2 The gut microbiota and the brain

Contemporary challenges persist among psychologists, behavioral scientists, and psychiatrists in
effectively diagnosing, treating, and comprehensively understanding the pathogenesis of chronic
conditions including bipolar disorder, major depressive disorder, schizophrenia, ADHD, and
autism. Recent research exploring the interaction between intestinal microorganisms and the
human body suggests a promising avenue for improving our understanding of the underly-
ing mechanisms of these conditions and others (Alam et al., 2017; Dinan et al., 2014). For
example, bacteria play a critical role in the metabolism of the amino acid tryptophan, with
the most important genera being Clostridium, Burkholderia, Streptomyces, Pseudomonas, and
Bacillus (Kaur et al., 2019). Tryptophan serves as the only precursor for serotonin, an impor-
tant monoamine neurotransmitter involved in regulating central nervous system transmission
and gastrointestinal functions (K. Gao et al., 2020). Additionally, tryptophan can be broken
down into kynurenine, tryptamine, and indole, which play roles in influencing neuroendocrine
activities and immune responses in the gut (K. Gao et al., 2020). Furthermore, serotonin syn-
thesized in the gut can impact the permeability of the vagus nerve and the blood-brain-barrier
(Alam et al., 2017), modulate gastrointestinal inflammation (De Vadder et al., 2018), secretion
and peristalsis as well as other physiological functions (Strandwitz, 2018). Lastly, intestinal
production of serotonin can influence central serotoninergic pathways by altering tryptamine
and tryptophan supply.

The documented influence of gut bacteria on the tryptophan metabolism alone illustrates how
this research can add explanatory potential to existing pathophysiologic models. However, it is
only one of numerous established pathways that all add to this explanatory potential. Together
these pathways are referred to as the microbiota-gut-brain-axis. Communication along this axis
is bidirectional, meaning that the central nervous system also influences intestinal functioning
and the gut microbiota. The pathways have been summarized extensively (Cryan et al., 2019)
and describing all of them goes beyond the scope of this introduction. However, it is important
to note that gut microbes can influence the brain via the immune system, the vagus nerve and
the enteric nervous system as well as by producing metabolites such as branched chain amino
acids and short-chain fatty acids (Cryan et al., 2019).

These insights are not only relevant for enhancing existing disease models but also for elucidating
the development of fundamental cognitive functions related to learning and memory (Theme
3). Several factors are known to influence cognitive development including genetics and early
caregiving and environment (Bouchard & McGue, 2003; Han et al., 2023). Microbiota-gut-
brain-axis research has the potential to further improve our understanding. Animal studies
have demonstrated that gut bacteria can influence cognitive functions related to learning and
memory. (Alemohammad et al., 2022; Sarkar et al., 2018).

An initial study exploring the connection between bacteria and cognition revealed memory
deficits and decreased levels of hippocampal BDNF in germ-free mice when contrasted with mice
colonized under normal conditions (Gareau et al., 2011). Other studies found that mice and
rats administered human milk oligosaccharides exhibited improved performance across various
cognitive assessments, encompassing working memory, spatial learning and reinforcement-based
learning when compared to rodents treated with a vehicle (Vázquez et al., 2015). Human

12



Studies utilized in this thesis 13

milk oligosaccharides are non-digestible compounds found in milk that promote the growth and
activity of beneficial bacteria in the gut. These and similar compounds that can be found
in food (e.g. fructo-oligosaccharides) are referred to as a prebiotic. Studies conducted in rats
yielded similar results, demonstrating the positive effects of human milk oligosaccharides on
novel object recognition, spatial memory, and long-term potentiation, which persisted even a
year after initial exposure to the prebiotic (Oliveros et al., 2016).
Also, the administration of beneficial bacteria showed effects on cognitive functioning. For
example, in a study by Wu et al., mice were given an Akkermansia muciniphila subtype with
a high-fat diet for 10 months, leading to significantly enhanced spatial memory functioning
(Wu et al., 2020). In line with these results, Yang et al. found that increased gut permeability
and pro-inflammatory cytokines as well as impaired spatial learning and memory functioning
induced by a high-fat diet were ameliorated by administration of Akkermansia muciniphila (Y.
Yang et al., 2019). Also, other bacteria such as Bifidobacterium and Lactobacillus have been
shown to cause improvement of depression, mood, and cognitive function and memory in animal
models (Davari et al., 2013; Desbonnet et al., 2010; O’Hagan et al., 2017).
While evidence from animal models is rapidly accumulating, human studies remain limited
(Alemohammad et al., 2022; Cooke et al., 2022), as summarized in Chapter 5. Specifically, no
human study had yet explored the association between the gut microbiota from infancy to early
childhood and childhood cognition. In Chapter 5, as part of Theme 3, our study was the first
to investigate the relation between gut microbiota during the first 10 years of life and executive
functioning at ages eight and 10 years.

1.3 Studies utilized in this thesis

1.3.1 SMILEY study

The SMILEY study (Study of MIcrobiota and Lifestyle in the Early Years) is a longitudinal
investigation focusing on the lifestyle and well-being of pregnant women and their infants.
Participants were recruited through the Baby & Child Research Center’s (BRC) network of
midwifery practices in the Nijmegen region in the Netherlands and through social media between
December 2019 and April 2021. A total of 160 participants provided written informed consent.
Data utilized for this thesis include measurements during pregnancy (at 18 and 32 weeks of
gestation) and at four postnatal assessment moments (at two, six, and 12 weeks, and eight
months postpartum).

1.3.2 BIBO study

The BIBO (Basal Influences on Baby Development) study is a prospective longitudinal cohort
study focusing on the associations between prenatal and early-life environmental factors and
the psychobiological development of children (see (Beijers et al., 2010, 2013)). A total of 193
healthy mother-offspring dyads were recruited in pregnancy. Data utilized for this thesis include
multiple assessments spanning the first 10 postnatal years, including fecal samples collected at

13



14 General Introduction

ages one, three, and four months, six years, and 10 years, as well as information on relevant
covariates obtained through questionnaires and a logbook.

1.3.3 SKIPPY study

The SKIPPY study represents the first preregistered and adequately powered randomized con-
trolled trial aimed at assessing the efficacy of daily Skin-to-Skin Contact (SSC), in comparison
to care-as-usual (CAU), across a broad spectrum of outcomes in healthy mothers and their
full-term infants. The study was originally designed to partially replicate findings related to
maternal postnatal depressive symptoms observed in a prior long-term SSC intervention involv-
ing healthy full-term infants (A. Bigelow et al., 2012). In the SKIPPY study, 127 mothers were
randomly assigned to the treatment (SSC) and the control group (CAU). Mothers in treatment
group were instructed to provide a specific SSC intervention in the first five postnatal weeks
whereas mothers in the control group received no specific instructions. Infant fecal samples
were obtained as a secondary outcome measure at two and five weeks as well as at one year
postpartum. For the purposes of this dissertation, these samples and data spanning the first
year after birth were utilized.

1.4 Thesis outline

In addition to this general introduction (Chapter 1), the thesis comprises four empirical studies
organized into three themes, as outlined in Table 1.1. Chapter 2 investigates the association
between prenatal and postnatal maternal stress and infant microbiota development using data
from the SMILEY study. Chapter 3 examines the influence of early life stress (entrance to
center-based childcare) on gut microbial colonization in healthy Dutch infants, drawing on data
from the BIBO study. Chapter 4 explores the impact of a destressing intervention early in
life on gut microbiota development in healthy Dutch infants, using data from the SKIPPY
study. Finally, Chapter 5 investigates whether microbiota composition in the first 10 years of
life predicts executive functioning measured at age eight and 10 using data from the BIBO
study. Chapter 6 provides a summary and discussion of findings from all studies.

14



15

References

Abildgaard, A., Elfving, B., Hokland, M., Wegener, G., & Lund, S. (2017). Probiotic treatment
reduces depressive-like behaviour in rats independently of diet. Psychoneuroendocrinol-
ogy, 79, 40–48. https://doi.org/10.1016/j.psyneuen.2017.02.014

Ait-Belgnaoui, A., Colom, A., Braniste, V., Ramalho, L., Marrot, A., Cartier, C., Houdeau,
E., Theodorou, V., & Tompkins, T. (2014). Probiotic gut effect prevents the chronic
psychological stress-induced brain activity abnormality in mice. Neurogastroenterology &
Motility, 26(4), 510–520. https://doi.org/10.1111/nmo.12295

Ait-Belgnaoui, A., Durand, H., Cartier, C., Chaumaz, G., Eutamene, H., Ferrier, L., Houdeau,
E., Fioramonti, J., Bueno, L., & Theodorou, V. (2012). Prevention of gut leakiness by a
probiotic treatment leads to attenuated HPA response to an acute psychological stress in
rats. Psychoneuroendocrinology, 37(11), 1885–1895. https://doi.org/10.1016/j.psyneuen.
2012.03.024

Alam, R., Abdolmaleky, H. M., & Zhou, J.-R. (2017). Microbiome, inflammation, epigenetic
alterations, and mental diseases. American Journal of Medical Genetics Part B: Neu-
ropsychiatric Genetics, 174(6), 651–660. https://doi.org/10.1002/ajmg.b.32567

Alemohammad, S. M. A., Noori, S. M. R., Samarbafzadeh, E., & Noori, S. M. A. (2022).
The role of the gut microbiota and nutrition on spatial learning and spatial memory:
A mini review based on animal studies. Molecular Biology Reports, 49(2), 1551–1563.
https://doi.org/10.1007/s11033-021-07078-2

Bailey, M. T., & Coe, C. L. (1999). Maternal separation disrupts the integrity of the intestinal
microflora in infant rhesus monkeys. Developmental Psychobiology, 35(2), 146–155.

Bailey, M. T., Lubach, G. R., & Coe, C. L. (2004). Prenatal Stress Alters Bacterial Colonization
of the Gut in Infant Monkeys: Journal of Pediatric Gastroenterology and Nutrition, 38(4),
414–421. https://doi.org/10.1097/00005176-200404000-00009

Beijers, R., Jansen, J., Riksen-Walraven, M., & De Weerth, C. (2010). Maternal Prenatal Anxi-
ety and Stress Predict Infant Illnesses and Health Complaints. Pediatrics, 126(2), e401–
e409. https://doi.org/10.1542/peds.2009-3226

Beijers, R., Riksen-Walraven, M., Putnam, S., De Jong, M., & De Weerth, C. (2013). Early
non-parental care and toddler behaviour problems: Links with temperamental negative
affectivity and inhibitory control. Early Childhood Research Quarterly, 28(4), 714–722.
https://doi.org/10.1016/j.ecresq.2013.06.002

Bigelow, A., Power, M., MacLellan-Peters, J., Alex, M., & McDonald, C. (2012). Effect of
Mother/Infant Skin-to-Skin Contact on Postpartum Depressive Symptoms and Maternal
Physiological Stress. Journal of Obstetric, Gynecologic & Neonatal Nursing, 41(3), 369–
382. https://doi.org/10.1111/j.1552-6909.2012.01350.x

Borre, Y. E., O’Keeffe, G. W., Clarke, G., Stanton, C., Dinan, T. G., & Cryan, J. F. (2014).
Microbiota and neurodevelopmental windows: Implications for brain disorders. Trends
in Molecular Medicine, 20(9), 509–518. https://doi.org/10.1016/j.molmed.2014.05.002

15



16 General Introduction

Bouchard, T. J., & McGue, M. (2003). Genetic and environmental influences on human psy-
chological differences. Journal of Neurobiology, 54(1), 4–45. https://doi.org/10.1002/
neu.10160

Bravo, J. A., Forsythe, P., Chew, M. V., Escaravage, E., Savignac, H. M., Dinan, T. G., Bi-
enenstock, J., & Cryan, J. F. (2011). Ingestion of Lactobacillus strain regulates emotional
behavior and central GABA receptor expression in a mouse via the vagus nerve. Pro-
ceedings of the National Academy of Sciences, 108(38), 16050–16055. https://doi.org/
10.1073/pnas.1102999108

Brawner, K. M., Yeramilli, V. A., Kennedy, B. A., Patel, R. K., & Martin, C. A. (2020).
Prenatal stress increases IgA coating of offspring microbiota and exacerbates necrotizing
enterocolitis-like injury in a sex-dependent manner. Brain, Behavior, and Immunity, 89,
291–299. https://doi.org/10.1016/j.bbi.2020.07.008

Cooke, M. B., Catchlove, S., & Tooley, K. L. (2022). Examining the Influence of the Human Gut
Microbiota on Cognition and Stress: A Systematic Review of the Literature. Nutrients,
14(21), 4623. https://doi.org/10.3390/nu14214623

Cryan, J. F., O’Riordan, K. J., Cowan, C. S. M., Sandhu, K. V., Bastiaanssen, T. F. S., Boehme,
M., Codagnone, M. G., Cussotto, S., Fulling, C., Golubeva, A. V., Guzzetta, K. E.,
Jaggar, M., Long-Smith, C. M., Lyte, J. M., Martin, J. A., Molinero-Perez, A., Moloney,
G., Morelli, E., Morillas, E., … Dinan, T. G. (2019). The Microbiota-Gut-Brain Axis.
Physiological Reviews, 99(4), 1877–2013. https://doi.org/10.1152/physrev.00018.2018

Czech, B., Szyda, J., Wang, K., Luo, H., & Wang, Y. (2022). Fecal microbiota and their asso-
ciation with heat stress in Bos taurus. BMC Microbiology, 22(1), 171. https://doi.org/
10.1186/s12866-022-02576-0

Davari, S., Talaei, S., Alaei, H., & Salami, M. (2013). Probiotics treatment improves diabetes-
induced impairment of synaptic activity and cognitive function: Behavioral and electro-
physiological proofs for microbiome–gut–brain axis. Neuroscience, 240, 287–296. https:
//doi.org/10.1016/j.neuroscience.2013.02.055

De Palma, G., Blennerhassett, P., Lu, J., Deng, Y., Park, A. J., Green, W., Denou, E., Silva,
M. A., Santacruz, A., Sanz, Y., Surette, M. G., Verdu, E. F., Collins, S. M., & Bercik,
P. (2015). Microbiota and host determinants of behavioural phenotype in maternally
separated mice. Nature Communications, 6(1). https://doi.org/10.1038/ncomms8735

De Santa, F., Strimpakos, G., Marchetti, N., Gargari, G., Torcinaro, A., Arioli, S., Mora, D.,
Petrella, C., & Farioli-Vecchioli, S. (2024). Effect of a multi-strain probiotic mixture
consumption on anxiety and depression symptoms induced in adult mice by postnatal
maternal separation. Microbiome, 12(1), 29. https://doi.org/10.1186/s40168-024-01752-
w

De Vadder, F., Grasset, E., Mannerås Holm, L., Karsenty, G., Macpherson, A. J., Olofsson,
L. E., & Bäckhed, F. (2018). Gut microbiota regulates maturation of the adult enteric
nervous system via enteric serotonin networks. Proceedings of the National Academy of
Sciences, 115(25), 6458–6463. https://doi.org/10.1073/pnas.1720017115

16



References 17

Delaroque, C., Chervy, M., Gewirtz, A. T., & Chassaing, B. (2021). Social overcrowding impacts
gut microbiota, promoting stress, inflammation, and dysglycemia. Gut Microbes, 13(1),
2000275. https://doi.org/10.1080/19490976.2021.2000275

Desbonnet, L., Garrett, L., Clarke, G., Kiely, B., Cryan, J., & Dinan, T. (2010). Effects of
the probiotic Bifidobacterium infantis in the maternal separation model of depression.
Neuroscience, 170(4), 1179–1188. https://doi.org/10.1016/j.neuroscience.2010.08.005

Dinan, T. G., Borre, Y. E., & Cryan, J. F. (2014). Genomics of schizophrenia: Time to consider
the gut microbiome? Molecular Psychiatry, 19(12), 1252–1257. https://doi.org/10.1038/
mp.2014.93

Dutta, S., & Sengupta, P. (2016). Men and mice: Relating their ages. Life Sciences, 152, 244–
248. https://doi.org/10.1016/j.lfs.2015.10.025

Foster, J. A., Rinaman, L., & Cryan, J. F. (2017). Stress & the gut-brain axis: Regulation by
the microbiome. Neurobiology of Stress, 7, 124–136. https://doi.org/10.1016/j.ynstr.
2017.03.001

Gao, K., Mu, C.-l., Farzi, A., & Zhu, W.-y. (2020). Tryptophan Metabolism: A Link Between
the Gut Microbiota and Brain. Advances in Nutrition, 11(3), 709–723. https://doi.org/
10.1093/advances/nmz127

Gareau, M. G., Jury, J., MacQueen, G., Sherman, P. M., & Perdue, M. H. (2007). Probiotic
treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunc-
tion induced by maternal separation. Gut, 56(11), 1522–1528. https://doi.org/10.1136/
gut.2006.117176

Gareau, M. G., Wine, E., Rodrigues, D. M., Cho, J. H., Whary, M. T., Philpott, D. J., Mac-
Queen, G., & Sherman, P. M. (2011). Bacterial infection causes stress-induced memory
dysfunction in mice. Gut, 60(3), 307–317. https://doi.org/10.1136/gut.2009.202515

Glimstedt, G. (1959). The germfree animal as a research tool. Annals of the New York Academy
of Sciences, 78(1), 281–284. https://doi.org/10.1111/j.1749-6632.1959.tb53112.x

Gur, T. L., Palkar, A. V., Rajasekera, T., Allen, J., Niraula, A., Godbout, J., & Bailey, M. T.
(2019). Prenatal stress disrupts social behavior, cortical neurobiology and commensal
microbes in adult male offspring. Behavioural Brain Research, 359, 886–894. https://
doi.org/10.1016/j.bbr.2018.06.025

Han, J., Cui, N., Lyu, P., & Li, Y. (2023). Early-life home environment and child cognitive
function: A meta-analysis. Personality and Individual Differences, 200, 111905. https:
//doi.org/10.1016/j.paid.2022.111905

Hantsoo, L., Jašarević, E., Criniti, S., McGeehan, B., Tanes, C., Sammel, M. D., Elovitz, M. A.,
Compher, C., Wu, G., & Epperson, C. N. (2019). Childhood adversity impact on gut
microbiota and inflammatory response to stress during pregnancy. Brain, Behavior, and
Immunity, 75, 240–250. https://doi.org/10.1016/j.bbi.2018.11.005

17



18 General Introduction

Horowitz, A., Chanez-Paredes, S. D., Haest, X., & Turner, J. R. (2023). Paracellular permeabil-
ity and tight junction regulation in gut health and disease. Nature Reviews Gastroen-
terology & Hepatology, 20(7), 417–432. https://doi.org/10.1038/s41575-023-00766-3

Jašarević, E., Howard, C. D., Misic, A. M., Beiting, D. P., & Bale, T. L. (2017). Stress during
pregnancy alters temporal and spatial dynamics of the maternal and offspring micro-
biome in a sex-specific manner. Scientific Reports, 7(1), 44182. https://doi.org/10.1038/
srep44182

Jašarević, E., Howard, C. D., Morrison, K., Misic, A., Weinkopff, T., Scott, P., Hunter, C.,
Beiting, D., & Bale, T. L. (2018). The maternal vaginal microbiome partially mediates
the effects of prenatal stress on offspring gut and hypothalamus. Nature Neuroscience,
21(8), 1061–1071. https://doi.org/10.1038/s41593-018-0182-5

Karin, O., Raz, M., Tendler, A., Bar, A., Korem Kohanim, Y., Milo, T., & Alon, U. (2020). A
new model for the HPA axis explains dysregulation of stress hormones on the timescale of
weeks. Molecular Systems Biology, 16(7), e9510. https://doi.org/10.15252/msb.20209510

Karl, J. P., Margolis, L. M., Madslien, E. H., Murphy, N. E., Castellani, J. W., Gundersen,
Y., Hoke, A. V., Levangie, M. W., Kumar, R., Chakraborty, N., Gautam, A., Ham-
mamieh, R., Martini, S., Montain, S. J., & Pasiakos, S. M. (2017). Changes in intestinal
microbiota composition and metabolism coincide with increased intestinal permeability
in young adults under prolonged physiological stress. American Journal of Physiology-
Gastrointestinal and Liver Physiology, 312(6), G559–G571. https://doi.org/10.1152/
ajpgi.00066.2017

Kaur, H., Bose, C., & Mande, S. S. (2019). Tryptophan Metabolism by Gut Microbiome and
Gut-Brain-Axis: An in silico Analysis. Frontiers in Neuroscience, 13, 1365. https://doi.
org/10.3389/fnins.2019.01365

Lauffer, A., Vanuytsel, T., Vanormelingen, C., Vanheel, H., Salim Rasoel, S., Tóth, J., Tack, J.,
Fornari, F., & Farré, R. (2016). Subacute stress and chronic stress interact to decrease
intestinal barrier function in rats. Stress, 19(2), 225–234. https ://doi .org/10 .3109/
10253890.2016.1154527

Lee, J. Y., Kim, N., Nam, R. H., Sohn, S. H., Lee, S. M., Choi, D., Yoon, H., Kim, Y. S., Lee,
H. S., & Lee, D. H. (2017). Probiotics reduce repeated water avoidance stress-induced
colonic microinflammation in Wistar rats in a sex-specific manner (S. Ro, Ed.). PLOS
ONE, 12(12), e0188992. https://doi.org/10.1371/journal.pone.0188992

Leigh, S.-J., Uhlig, F., Wilmes, L., Sanchez-Diaz, P., Gheorghe, C. E., Goodson, M. S., Kelley-
Loughnane, N., Hyland, N. P., Cryan, J. F., & Clarke, G. (2023). The impact of acute
and chronic stress on gastrointestinal physiology and function: A microbiota–gut–brain
axis perspective. The Journal of Physiology, 601(20), 4491–4538. https://doi.org/10.
1113/JP281951

Lew, L.-C., Hor, Y.-Y., Yusoff, N. A. A., Choi, S.-B., Yusoff, M. S., Roslan, N. S., Ahmad, A.,
Mohammad, J. A., Abdullah, M. F. I., Zakaria, N., Wahid, N., Sun, Z., Kwok, L.-Y.,
Zhang, H., & Liong, M.-T. (2019). Probiotic Lactobacillus plantarum P8 alleviated stress

18



References 19

and anxiety while enhancing memory and cognition in stressed adults: A randomised,
double-blind, placebo-controlled study. Clinical Nutrition, 38(5), 2053–2064. https://
doi.org/10.1016/j.clnu.2018.09.010

Li, X., Kan, E. M., Lu, J., Cao, Y., Wong, R. K., Keshavarzian, A., & Wilder-Smith, C. H.
(2013). Combat-training increases intestinal permeability, immune activation and gas-
trointestinal symptoms in soldiers. Alimentary Pharmacology & Therapeutics, 37(8),
799–809. https://doi.org/10.1111/apt.12269

Machorro-Rojas, N., Sainz-Espunes, T., Godinez-Victoria, M., Castaneda-Sanchez, J., Campos-
Rodriguez, R., Pacheco-Yepez, J., & Drago-Serrano, M. (2019). Impact of chronic im-
mobilization stress on parameters of colonic homeostasis in BALB/c mice. Molecular
Medicine Reports. https://doi.org/10.3892/mmr.2019.10437

Meena, A. S., Shukla, P. K., Rao, R., Canelas, C., Pierre, J. F., & Rao, R. (2023). TRPV6 defi-
ciency attenuates stress and corticosterone-mediated exacerbation of alcohol-induced gut
barrier dysfunction and systemic inflammation. Frontiers in Immunology, 14, 1093584.
https://doi.org/10.3389/fimmu.2023.1093584

Messaoudi, M., Lalonde, R., Violle, N., Javelot, H., Desor, D., Nejdi, A., Bisson, J.-F., Rougeot,
C., Pichelin, M., Cazaubiel, M., & Cazaubiel, J.-M. (2011). Assessment of psychotropic-
like properties of a probiotic formulation ( Lactobacillus helveticus R0052 and Bifidobac-
terium longum R0175) in rats and human subjects. British Journal of Nutrition, 105(5),
755–764. https://doi.org/10.1017/S0007114510004319

Nozu, T., Miyagishi, S., Nozu, R., Takakusaki, K., & Okumura, T. (2017). Repeated water
avoidance stress induces visceral hypersensitivity: Role of interleukin-1, interleukin-6,
and peripheral corticotropin-releasing factor. Journal of Gastroenterology and Hepatology,
32(12), 1958–1965. https://doi.org/10.1111/jgh.13787

O’Hagan, C., Li, J. V., Marchesi, J. R., Plummer, S., Garaiova, I., & Good, M. A. (2017).
Long-term multi-species Lactobacillus and Bifidobacterium dietary supplement enhances
memory and changes regional brain metabolites in middle-aged rats. Neurobiology of
Learning and Memory, 144, 36–47. https://doi.org/10.1016/j.nlm.2017.05.015

Oliveros, E., Ramirez, M., Vazquez, E., Barranco, A., Gruart, A., Delgado-Garcia, J. M., Buck,
R., Rueda, R., & Martin, M. J. (2016). Oral supplementation of 2-fucosyllactose during
lactation improves memory and learning in rats. The Journal of Nutritional Biochemistry,
31, 20–27. https://doi.org/10.1016/j.jnutbio.2015.12.014

O’Mahony, S. M., Hyland, N. P., Dinan, T. G., & Cryan, J. F. (2011). Maternal separation
as a model of brain–gut axis dysfunction. Psychopharmacology, 214(1), 71–88. https :
//doi.org/10.1007/s00213-010-2010-9

O’Mahony, S. M., Marchesi, J. R., Scully, P., Codling, C., Ceolho, A.-M., Quigley, E. M., Cryan,
J. F., & Dinan, T. G. (2009). Early Life Stress Alters Behavior, Immunity, and Microbiota
in Rats: Implications for Irritable Bowel Syndrome and Psychiatric Illnesses. Biological
Psychiatry, 65(3), 263–267. https://doi.org/10.1016/j.biopsych.2008.06.026

19



20 General Introduction

Salomon, K. (2013). Stress. In M. D. Gellman & J. R. Turner (Eds.), Encyclopedia of Behavioral
Medicine (pp. 1886–1886). Springer New York. https://doi.org/10.1007/978-1-4419-
1005-9_285

Sarkar, A., Harty, S., Lehto, S. M., Moeller, A. H., Dinan, T. G., Dunbar, R. I., Cryan, J. F.,
& Burnet, P. W. (2018). The Microbiome in Psychology and Cognitive Neuroscience.
Trends in Cognitive Sciences, 22(7), 611–636. https://doi.org/10.1016/j.tics.2018.04.006

Shukla, P. K., Meena, A. S., Dalal, K., Canelas, C., Samak, G., Pierre, J. F., & Rao, R. (2021).
Chronic stress and corticosterone exacerbate alcohol-induced tissue injury in the gut-
liver-brain axis. Scientific Reports, 11(1), 826. https://doi.org/10.1038/s41598-020-
80637-y

Strandwitz, P. (2018). Neurotransmitter modulation by the gut microbiota. Brain Research,
1693, 128–133. https://doi.org/10.1016/j.brainres.2018.03.015

Sudo, N., Chida, Y., Aiba, Y., Sonoda, J., Oyama, N., Yu, X.-N., Kubo, C., & Koga, Y. (2004).
Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system
for stress response in mice: Commensal microbiota and stress response. The Journal of
Physiology, 558(1), 263–275. https://doi.org/10.1113/jphysiol.2004.063388

Tang, X., Xiong, K., Fang, R., & Li, M. (2022). Weaning stress and intestinal health of piglets:
A review. Frontiers in Immunology, 13, 1042778. https://doi.org/10.3389/fimmu.2022.
1042778

Tannock, G. W., & Savage, D. C. (1974). Influences of Dietary and Environmental Stress on
Microbial Populations in the Murine Gastrointestinal Tract. Infection and Immunity,
9(3), 591–598. https://doi.org/10.1128/iai.9.3.591-598.1974

Teitelbaum, A. A., Gareau, M. G., Jury, J., Yang, P. C., & Perdue, M. H. (2008). Chronic
peripheral administration of corticotropin-releasing factor causes colonic barrier dys-
function similar to psychological stress. American Journal of Physiology-Gastrointestinal
and Liver Physiology, 295(3), G452–G459. https://doi.org/10.1152/ajpgi.90210.2008

Vanuytsel, T., Van Wanrooy, S., Vanheel, H., Vanormelingen, C., Verschueren, S., Houben, E.,
Salim Rasoel, S., Túndefinedth, J., Holvoet, L., Farré, R., Van Oudenhove, L., Boeckxs-
taens, G., Verbeke, K., & Tack, J. (2014). Psychological stress and corticotropin-releasing
hormone increase intestinal permeability in humans by a mast cell-dependent mechanism.
Gut, 63(8), 1293–1299. https://doi.org/10.1136/gutjnl-2013-305690

Vázquez, E., Barranco, A., Ramírez, M., Gruart, A., Delgado-García, J. M., Martínez-Lara, E.,
Blanco, S., Martín, M. J., Castanys, E., Buck, R., Prieto, P., & Rueda, R. (2015). Effects
of a human milk oligosaccharide, 2′-fucosyllactose, on hippocampal long-term potentia-
tion and learning capabilities in rodents. The Journal of Nutritional Biochemistry, 26(5),
455–465. https://doi.org/10.1016/j.jnutbio.2014.11.016

Vicario, M., Alonso, C., Guilarte, M., Serra, J., Martínez, C., González-Castro, A. M., Lobo,
B., Antolín, M., Andreu, A. L., García-Arumí, E., Casellas, M., Saperas, E., Malagelada,
J. R., Azpiroz, F., & Santos, J. (2012). Chronic psychosocial stress induces reversible
mitochondrial damage and corticotropin-releasing factor receptor type-1 upregulation in

20



References 21

the rat intestine and IBS-like gut dysfunction. Psychoneuroendocrinology, 37(1), 65–77.
https://doi.org/10.1016/j.psyneuen.2011.05.005

Wallon, C., Yang, P.-C., Keita, A. V., Ericson, A.-C., McKay, D. M., Sherman, P. M., Perdue,
M. H., & Soderholm, J. D. (2007). Corticotropin-releasing hormone (CRH) regulates
macromolecular permeability via mast cells in normal human colonic biopsies in vitro.
Gut, 57(1), 50–58. https://doi.org/10.1136/gut.2006.117549

Wu, F., Guo, X., Zhang, M., Ou, Z., Wu, D., Deng, L., Lu, Z., Zhang, J., Deng, G., Chen, S.,
Li, S., Yi, J., & Peng, Y. (2020). An Akkermansia muciniphila subtype alleviates high-
fat diet-induced metabolic disorders and inhibits the neurodegenerative process in mice.
Anaerobe, 61, 102138. https://doi.org/10.1016/j.anaerobe.2019.102138

Yang, Y., Zhong, Z., Wang, B., Xia, X., Yao, W., Huang, L., Wang, Y., & Ding, W. (2019).
Early-life high-fat diet-induced obesity programs hippocampal development and cog-
nitive functions via regulation of gut commensal Akkermansia muciniphila. Neuropsy-
chopharmacology, 44(12), 2054–2064. https://doi.org/10.1038/s41386-019-0437-1

Yeramilli, V., Cheddadi, R., Shah, J., Brawner, K., & Martin, C. (2023). A Review of the Impact
of Maternal Prenatal Stress on Offspring Microbiota and Metabolites. Metabolites, 13(4),
535. https://doi.org/10.3390/metabo13040535

Yu, Y., Liu, Z.-Q., Liu, X.-Y., Yang, L., Geng, X.-R., Yang, G., Liu, Z.-G., Zheng, P.-Y., &
Yang, P.-C. (2013). Stress-Derived Corticotropin Releasing Factor Breaches Epithelial
Endotoxin Tolerance (J. Sun, Ed.). PLoS ONE, 8(6), e65760. https://doi.org/10.1371/
journal.pone.0065760

Zhang, Z., Wu, Y., Zhou, S., Fu, P., & Yan, H. (2023). Effects of Music and White Noise Exposure
on the Gut Microbiota, Oxidative Stress, and Immune-Related Gene Expression of Mice.
Microorganisms, 11(9), 2272. https://doi.org/10.3390/microorganisms11092272

Zheng, G., Wu, S.-P., Hu, Y., Smith, D. E., Wiley, J. W., & Hong, S. (2013). Corticosterone
mediates stress-related increased intestinal permeability in a region-specific manner. Neu-
rogastroenterology & Motility, 25(2). https://doi.org/10.1111/nmo.12066

21



22 General Introduction

22



Chapter 2

Maternal Pre- and Postnatal Stress
and Maternal and Infant Gut
Microbiota Features

Eckermann, H. A., Lustermans, H., Parnanen, K. Lahti, L., & de Weerth, C. (2024). Maternal
Pre- and Postnatal Stress and Maternal and Infant Gut Microbiota Features.



24 Maternal Stress and Maternal and Infant Microbiota

2.1 Abstract

Maternal stress can have short and long term adverse (mental) health effects for the mother
and her child. Previous evidence suggests that the gut microbiota may be a potential medi-
ator and moderator for the effects of stress via various pathways. This study explored the
maternal microbiota trajectory during pregnancy as well as the association between pre- and
postnatal maternal stress and features of the maternal and infant gut microbiota during and
after pregnancy. In line with previous research, we hypothesized that maternal stress would
be positively related to maternal and infant microbiota volatility and that infants of highly
stressed mothers would show a relative increase in Proteobacteria and a relative decrease in
Bifidobacterium. We collected maternal stool samples at 18 and 32 weeks of pregnancy and 8
months postpartum. Infant stools samples were obtained at 2, 6 and 12 weeks and 8 months
postpartum. All samples were analyzed using shotgun metagenome sequencing. We also col-
lected several measures of maternal stress (self-reported depression, anxiety, and stress, and
hair cortisol and cortisone), most at the same time points as the microbiota samples. Our data
indicated that the maternal microbiota does not undergo drastic changes from the second to the
third trimester of pregnancy but that the postpartum microbiota differs significantly from the
prenatal microbiota. Furthermore, we identified associations between several stress measures
and the maternal and infant gut microbiota features at different time points including positive
and negative associations with alpha diversity, beta diversity and individual microbial phyla
and species relative abundances. Also, the maternal stress composite score, the perceived stress
score and the log-ratio of hair cortisol and cortisone were all positively associated with infant
microbiota volatility. Our study provides evidence that maternal prenatal and postnatal stress
is related to both the maternal and the infant microbiota. Collectively, this and previous stud-
ies indicate that maternal stress does not uniformly associate with most gut microbial features.
Instead, the associations are highly time point specific. Regarding infant microbiota volatility,
we have consistently found a positive association between stress and infant microbiota volatility.
This warrants future research investigating this link in more depth.

2.2 Introduction

A growing body of research indicates that an allostatic overload caused by acute or chronic stress
during pregnancy and postpartum can raise the risk of short and long term adverse (mental)
health outcomes for the mother and her child (Beydoun & Saftlas, 2008; Bussières et al., 2015;
Egmose et al., 2022; Graignic-Philippe et al., 2014; Hsu & Wickrama, 2018; Van den Bergh
et al., 2020; Walker et al., 2020). Animal studies showed that the gut microbiota may be a
potential mediator and moderator for the effects of stress (Bailey et al., 2004; De Palma et al.,
2015; Desbonnet et al., 2010; Golubeva et al., 2015; Jašarević et al., 2015, 2017; S. M. O’Mahony
et al., 2009) via various pathways (Cryan et al., 2019; Kimmel et al., 2023). However, human
studies investigating these associations remain scarce and limited. In this study, we explore the
associations between pre- and postnatal maternal stress and features of the human maternal
and infant gut microbiota during and after pregnancy.
The gut microbiota can influence host-health for instance via the gut brain axis (Cryan et
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al., 2019). The maternal microbiota plays a special role. Prenatally, it informs the fetus
(Kaisanlahti et al., 2023) and programs the functioning of the fetal intestine (Husso et al.,
2023). Postnatally, it is the most important source of microbes for the initial colonization of the
infant gut by microbes through vertical transmission (H. P. Browne et al., 2022; Valles-Colomer
et al., 2022, 2023; Van Daele et al., 2019; S. Wang et al., 2020). Accordingly, variables that
affect the maternal microbiota, such as prenatal stress, may also directly or indirectly affect
the health of the offspring (Kimmel et al., 2023) and should be explored and defined. In the
following, we briefly summarize the status of the literature on maternal microbiota studies in
relation to pregnancy and then maternal and infant microbiota studies in relation to prenatal
and postnatal stress.
Previous literature indicates that the maternal gut microbiota does not undergo significant
changes during pregnancy (DiGiulio et al., 2015; H. Yang et al., 2020), although one study
reported drastic changes (Koren et al., 2012). A recent study suggests that changes may depend
on host factors such as pre-pregnancy BMI (pBMI) and parity (Kennedy et al., 2022); more
specifically, the gut microbiota would change more in primiparous women with low pBMI,
and less in multiparous women or women who have a high pBMI. Altogether, these studies
leave remaining uncertainty as to whether the maternal gut microbiota changes because of
pregnancy, whether it returns to its pre-pregnancy state afterwards and whether this depends
on host characteristics. Addressing this uncertainty may help shed light for understanding the
short- and long-term implications of pregnancy for maternal health.
Although a link between stress and the gut microbiota has been established in non-pregnant
individuals (Leigh et al., 2023), prenatal stress has barely been explored as a factor that may
potentially influence the maternal gut microbiota during pregnancy. To our knowledge, there
are only two previous human studies that investigated associations between prenatal stress
and the maternal gut microbiota during pregnancy (Hechler et al., 2019; Naudé et al., 2020).
These studies were limited to one stool sample per mother in late pregnancy. Furthermore,
they had relatively low sample sizes (N = 70; N = 84) and a limited taxonomic resolution at
genus level (based on 16S rRNA sequencing), as well as measures of stress exclusively based
on self-report. Nonetheless, these studies found that fecal specimens from mothers exposed
to intimate partner violence had higher proportions of the family Lactobacillaceae and lower
proportions of Peptostreptococcaceae at birth (Naudé et al., 2020) and that maternal general
anxiety (State-Trait-Anxiety Inventory; STAI (Spielberger, 1989)) was related to overall mi-
crobiota composition, mainly driven by differences in Parasutterella, Staphylococcus, Rothia,
Oxalobacter and several bacteria belonging to the class of Clostridia (Hechler et al., 2019).
More studies examined the associations between maternal prenatal stress and the infant gut mi-
crobiota (Dutton et al., 2023; Galley et al., 2023; Mepham et al., 2023; Weiss & Hamidi, 2023;
Zijlmans et al., 2015). Collectively, they identified associations between prenatal stress and
infant microbiota features including alpha- and beta diversity, as well as relative abundances
of individual genera. Besides several unique findings, five out of 10 studies found a positive
association between prenatal stress and Proteobacteria (one study found the opposite; reviewed
in Mepham et al. (2023)). Also, four out of 10 studies found a negative association with Bifi-
dobacterium (Dutton et al., 2023; Galley et al., 2023; Jahnke et al., 2021; Zijlmans et al., 2015),
while one found the opposite (Weiss & Hamidi, 2023). Studies found both positive (Dutton
et al., 2023; Rojas et al., 2023; Zijlmans et al., 2015) and negative (Galley et al., 2023; Jahnke
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et al., 2021) associations with alpha diversity. Prenatal stress was defined heterogeneously be-
tween studies and time points of stress measurement and stool sampling varied considerably,
although most studies included an infant stool sample taken at around two to three months of
age. These differences impede reproducibility of findings. Moreover, Rojas et al. (2023) and
Van den Bergh et al. (2020) report measurement- and trimester-specific associations between
prenatal stress and the infant gut microbiota and other outcome measures, respectively. This
implies that reproducibility of findings may have been further hampered by the possibility that
the effects of prenatal stress may be trimester specific. Lastly, most of these studies (nine out
of 10) were limited to a taxonomic resolution at the genus level (due to the use of 16S rRNA
sequencing) and only two out of 10 studies collected more than one infant stool sample (Dutton
et al., 2023; Zijlmans et al., 2015).

In sum, there is a lack of studies focusing on the association between prenatal stress and the
maternal microbiota during pregnancy. Across mother and infant microbiota studies, differences
between studies related to the stress measurements utilized and the time points of stress and
microbiota sampling necessitate a larger number of studies and standardization of research
methodology to disentangle the association between prenatal stress and the maternal and infant
gut microbiota. Moreover, studies are yet to investigate the magnitude of intra-individual
shifts, referred to as microbiota volatility (T. Bastiaanssen et al., 2021), even if repeated stool
sampling was performed. Microbiota volatility has recently been positively linked to stress
(T. Bastiaanssen et al., 2021). While it remains unclear whether stress causes a more volatile
microbiota or vice versa, a recently published randomized controlled trial found that a de-
stressing intervention reduced microbiota volatility in infants (Eckermann et al., 2024). More
research is needed to determine whether volatility is a biomarker of stress, which factors influence
it and how it relates to other health outcome measures. The present study on healthy low-risk
mothers and their infants used shotgun metagenomic sequencing to analyze three stool samples
of the mother, at 18 and 32 weeks of gestation and at eight months postpartum, and four infant
stool samples in the first eight months of life. Maternal stress was measured at all these time
points using different self-report questionnaires. Additionally, maternal stress was objectively
assessed by means of two hair cortisol samples reflecting chronic stress pre- and postnatally.

Our data allow an in-depth exploration of the associations between pre- and postnatal stress and
the maternal and infant gut microbiota by addressing the following research questions: 1) Can
we observe changes in the microbiota from the second to the third trimester of pregnancy and
does the microbiota at eight months postpartum differ from the microbiota during pregnancy?
2) How is maternal prenatal and postnatal stress related to the maternal gut microbiota during
and after pregnancy? We explore how our results compare to previously published findings
by investigating alpha diversity, beta diversity and phylum and species level abundances. We
furthermore hypothesize that prenatal stress is positively related to maternal gut microbiota
volatility based on previous findings (T. Bastiaanssen et al., 2021; Eckermann et al., 2024). 3)
Does maternal pre- and postnatal stress associate with the infant gut microbiota development?
Our results will add to the existing evidence and help to disentangle the association between
prenatal stress and infant gut microbiota development. We hypothesize that prenatal maternal
stress will be positively related to Proteobacteria and negatively related to Lactobacilli and
Actinobacteria, specifically Bifidobacterium based on previous research. Furthermore, we hy-
pothesize that infants of mothers who experience more stress pre- and postnatally have a more
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volatile gut microbiota.

2.3 Methods

2.3.1 Participants

Participants are mother-infant dyads from the ongoing longitudinal SMILEY study (Study of
MIcrobiota and Lifestyle in the Early Years), which investigates lifestyle and well-being of preg-
nant women in relation to infant development (Epstein et al., 2024; Lustermans et al., 2024).
Pregnant women were recruited through the Baby & Child Research Center’s network of mid-
wifery practices in the Netherlands and via social media, between December 2019 and April
2021. Inclusion criteria were ≥ 18 years of age, mastery of the Dutch language, singleton preg-
nancy, and pre-pregnancy BMI ≤ 30, and exclusion criteria were severe obstetric complications,
and (severe) mental or physical health issues (i.e. mental health problems that require psychi-
atric treatment and/or medication). Inclusion criteria for the infant were born at ≥ 37 weeks of
pregnancy, birth weight of ≥ 2500 g, and a 5-min Apgar score of ≥ 7. The study was approved
by the Ethics Committee of the Faculty of Social Sciences of the Radboud University under the
blanket research line ‘pregnancy-4years Developmental Psychobiology Lab’ (SW2017-1303-497),
including two amendments (ECSW-2019-051 and ECSW2020-021). In total, 160 participants
enrolled in the study by providing written informed consent. The current study contains data
from both measurements in pregnancy (18 and 32 weeks of gestation) and four measurements
after birth (2, 6 and 12 weeks and 8 months postpartum). Supplementary Figure 2.6 shows
a flow-chart of participant numbers at each assessment moment. Note that some participants
were excluded after completing one or more measurement rounds. Table 2.1 shows demographic
data for all infant-mother dyads that were included in the current study (i.e. that provided at
least one maternal or infant stool sample).

Table 2.1: Descriptives of demographics, maternal stress
variables and covariates (N=151)

Mean (SD)/ N (%) Median [Min, Max] Missing
Demographics

M. age (in years) 32.0 (3.60) 32.0 [22.4, 41.7] 0 (0.0 %)
M. education

High 130 (86.1%) 0 (0.0 %)
Low/medium 21 (13.9%)

Parity
First born 74 (49.0%) 0 (0.0 %)

I. sex
Boy 71 (47.0%) 9 (6.0%)
Girl 71 (47.0%)

I. birthweight (in grams) 3540 (414) 3530 [2570, 4840] 9 (6.0%)
I. gestational age at birth (w) 40.1 (1.09) 40.0 [37.9, 42.7] 9 (6.0%)
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I. age 2 w postpartum (d) 15.6 (7.06) 14.0 [10.0, 70.0] 34 (22.5%)
I. age 6 w postpartum (d) 46.3 (7.11) 45.0 [14.0, 84.0] 32 (21.2%)
I. age 12 w postpartum (d) 86.7 (10.8) 87.0 [14.0, 150] 17 (11.3%)
I. age 32 w postpartum (d) 248 (23.7) 242 [204, 320] 42 (27.8%)
M. gestational week 18 w gestation 19.5 (1.43) 18.7 [17.3, 24.6] 0 (0%)
M. gestational week 32 w gestation 31.3 (1.19) 31.3 [29.1, 35] 1 (0.7%)

Maternal Stress Variables
EPDS 18 w gestation 4.52 (4.09) 3.00 [0, 21.0] 0 (0.0 %)
EPDS 32 w gestation 5.31 (4.38) 5.00 [0, 24.0] 1 (0.7%)
EPDS 32 w postpartum 4.64 (4.67) 4.00 [0, 29.0] 44 (29.1%)
STAI 18 w gestation 32.5 (8.86) 31.0 [20.0, 57.0] 0 (0.0 %)
STAI 32 w gestation 32.9 (8.80) 32.0 [20.0, 75.0] 1 (0.7%)
STAI 32 w postpartum 31.8 (9.50) 31.0 [20.0, 80.0] 44 (29.1%)
PSS-10 18 w gestation 11.0 (5.51) 11.0 [2.00, 28.0] 0 (0.0 %)
PSS-10 32 w gestation 11.9 (5.42) 11.0 [0, 27.0] 1 (0.7%)
PSS-10 32 w postpartum 11.0 (5.84) 10.0 [0, 33.0] 45 (29.8%)
PRAQR2-B 18 w gestation 5.91 (2.68) 5.00 [3.00, 15.0] 0 (0.0 %)
PRAQR2-B 32 w gestation 6.09 (2.51) 6.00 [3.00, 14.0] 1 (0.7%)
PRAQR2-H 18 w gestation 8.56 (3.07) 8.00 [4.00, 15.0] 0 (0.0 %)
PRAQR2-H 32 w gestation 7.95 (2.91) 8.00 [4.00, 19.0] 1 (0.7%)
PSAS-RSF-C 2 w postpartum 19.6 (4.28) 19.0 [12.0, 35.0] 10 (6.6%)
PSAS 6 w postpartum 80.7 (17.5) 78.0 [53.0, 157] 10 (6.6%)
PSAS-RSF-C 12 w postpartum 19.2 (4.55) 18.0 [11.0, 39.0] 12 (7.9%)
Cortisol (log) 6-15 w gestation 0.120 (1.11) 0.250 [-3.48, 4.02] 43 (28.5%)
Cortisol (log) 15-23 w gestation 0.628 (0.944) 0.645 [-2.39, 5.18] 40 (26.5%)
Cortisol (log) 23-32 w gestation 1.23 (0.630) 1.21 [-0.863, 4.12] 40 (26.5%)
Cortisol (log) 4-8 w postpartum 0.977 (0.971) 1.15 [-2.41, 2.72] 64 (42.4%)
Cortisone (log) 6-15 w gestation 0.918 (0.946) 1.01 [-2.03, 2.49] 40 (26.5%)
Cortisone (log) 15-23 w gestation 1.69 (0.836) 1.83 [-1.27, 3.02] 40 (26.5%)
Cortisone (log) 23-32 w gestation 2.64 (0.502) 2.65 [-0.232, 3.67] 40 (26.5%)
Cortisone (log) 4-8 w postpartum 2.04 (0.818) 2.16 [-0.412, 3.67] 60 (39.7%)
Log-ratio HCS/HCN 6-15 w gestation -0.842 (1.06) -0.892 [-5.59, 2.70] 43 (28.5%)
Log-ratio HCS/HCN 15-23 w gestation -1.06 (0.739) -1.16 [-2.76, 2.93] 40 (26.5%)
Log-ratio HCS/HCN 23-32 w gestation -1.41 (0.510) -1.39 [-4.20, 1.37] 40 (26.5%)
Log-ratio HCS/HCN 4-8 w postpartum -1.14 (0.615) -1.10 [-3.19, 0.171] 64 (42.4%)

Other Variables
Pre-pregnancy BMI 23.0 (2.75) 22.5 [17.3, 30.4] 1 (0.7%)
Physical activity 18 w gestation 4.09 (2.03) 4.00 [0, 11.0] 0 (0.0 %)
Physical activity 32 w gestation 3.79 (2.06) 4.00 [0, 14.0] 1 (0.7%)
Dutch Healthy Diet index 18 w gestation 89.5 (16.7) 90.4 [47.3, 127] 0 (0.0 %)
Dutch Healthy Diet index 32 w gestation 87.3 (17.6) 90.1 [38.8, 122] 1 (0.7%)
Presence of pet(s)

No 76 (50.3%) 0 (0.0 %)
Yes 75 (49.7%)
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M. antibiotics use sample M1
No 130 (86.1%) 19 (12.6%)
Yes 2 (1.3%)

M. antibiotics use sample M2
No 144 (95.4%) 6 (4.0%)
Yes 1 (0.7%)

M. antibiotics use sample M3
No 95 (62.9%) 56 (37.1%)
Yes 0 (0.0%)

Delivery mode
vaginal 125 (82.8%) 9 (6.0%)
c-section 17 (11.3%)

I. antibiotics use sample I1
No 138 (91.4%) 10 (6.6%)
Yes 3 (2.0%)

I. antibiotics use sample I2
No 134 (88.7%) 16 (10.6%)
Yes 1 (0.7%)

I. antibiotics use sample I3
No 139 (92.1%) 10 (6.6%)
Yes 2 (1.3%)

I. antibiotics use sample I4
No 137 (90.7%) 14 (9.3%)
Yes 0 (0%)

I. feeding sample I1
Breastmilk 91 (60.3%) 10 (6.6%)
Formula 6 (4.0%)
Mixed 44 (29.1%)

I. feeding sample I2
Breastmilk 103 (68.2%) 10 (6.6%)
Formula 13 (8.6%)
Mixed 25 (16.6%)

I. feeding sample I3
Breastmilk 96 (63.6%) 10 (6.6%)
Formula 20 (13.2%)
Mixed 25 (16.6%)

I. feeding sample I4
Breastmilk 28 (18.5%) 43 (28.5%)
Formula 27 (17.9%)
Mixed 53 (35.1%)
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Note:
M. = Maternal. I. = Infant. w = weeks. d = days. HCS = Hair cortisol. HCN = Hair cortisone.
Samples M1-M3 = Time point of maternal microbiota sampling in chronological order (18 and 32
weeks of gestation and 8 months postpartum). Samples I1 - I4 = Time point of infant microbiota
sampling in chronological order (2, 6 and 12 weeks and 8 months). PRAQR2-B = Fear of giving
birth. PRAQR2-H = fear of a handicapped child. Missing information on infant sex can be ex-
plained by the fact that some participants only completed the first two measurement rounds (see
supplementary Figure 2.6).

2.3.2 Procedure

This study is based on multiple assessments that took place at 18 and 32 weeks of gestation and
2, 6 and 12 weeks and 8 months postpartum. At each wave, participants were asked to complete
online questionnaires measuring maternal stress and potential covariates (e.g. demographics,
maternal diet, antibiotic use). Also, at 18 and 32 weeks of gestation and 8 months postpartum,
mothers collected a fecal sample of themselves. At 2, 6 and 12 weeks and 8 months postpartum,
mothers collected a fecal sample of their infant. For each fecal sample, a paper questionnaire
was completed by the mother to assess maternal and/or infant health and medication use. In
addition, around 32 weeks of gestation and 8 weeks postpartum a researcher collected a maternal
hair sample for hormone assessments during a laboratory visit.

2.3.3 Measures

2.3.3.1 Fecal samples

Mothers were instructed to collect a stool sample of themselves and their infant at different
time points at home. After collection, they were instructed to store the sample immediately in
their own freezer, at ± -20 °C. Participants brought the samples to the lab in a cool box with
ice when visiting our lab or a researcher picked up the samples at home with a mobile ± -18
°C freezer. In the lab, the samples were first stored in a -20 °C freezer and within a few weeks
switched to a -80 °C freezer, where they were kept until being sent to Baseclear (BaseClear
BV, The Netherlands) for analysis (see supplementary methods for microbial DNA extraction
and taxonomic profiling). The number of collected stool samples per time point are shown in
supplementary Table 2.2. Among the infants, their mothers collected all four samples for 92
infants, three samples for 43 infants, two samples for eight infants, and one sample for one
infant. Among the mothers, 97 provided all samples followed by 50 who provided two and four
who provided only one sample.

2.3.3.2 Hair cortisol

Maternal hair cortisol and cortisone was used as a biomarker of physiological stress, capturing
cortisol and cortisone secretion over longer periods of months. During the laboratory visit, a
trained researcher cut a hair sample of around 100-150 hairs from the posterior vertex of the
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Table 2.2: Number of stool samples per time point.

Origin Stage Week n Abbreviation
Mother Prenatal 18 150 M1
Mother Prenatal 32 147 M2
Mother Postnatal 32 98 M3
Infant Postnatal 2 139 I1
Infant Postnatal 6 136 I2
Infant Postnatal 12 139 I3
Infant Postnatal 32 100 I4

Table 2.3: Number of hair cortisol samples, corresponding period of cortisol and cortisone
production and abbreviations used throughout the manuscript for these samples.

Stage Collection week (M ± SD) Measured period (weeks) n Cortisol Cortisone Log-ratio
Prenatal 32.28 ± 1.52 6 - 15 108 HCS1 HCN1 HCR1
Prenatal 32.28 ± 1.52 15 - 23 111 HCS2 HCN2 HCR2
Prenatal 32.28 ± 1.52 23 - 32 111 HCS3 HCN3 HCR3
Postpartum 8.19 ± 1.17 4 - 8 87 HCS4 HCN4 HCR4

head of the mothers, as close as possible to the scalp. From the sample taken at 32 weeks
pregnancy we analyzed three segments of two centimeters as measured from the scalp. From
the sample taken at 8 weeks postpartum we used a 1 cm segment. On average hair grows
one centimeter a month. Accordingly, the different segments reflect different periods of the
hormones exposure prenatally and postnatally as shown in Table 2.3. Table 2.3 furthermore
introduces abbreviations that represent these different periods for simplicity. The samples were
packed individually in aluminum in an envelope and stored until all samples were collected.
Thereafter, they were sent out for analysis to the Dresden LAB Service, Germany. The hormone
concentrations of the samples were assayed using a column-switching Liquid Chromatography
Tandem Mass Spectrometry (LC-MS/MS). Due to the COVID-19 measures that were being
applied at the moment of data collection, several lab visits had to be cancelled. This resulted
in a relatively high number of missing data for the hair samples (Table 2.1).

2.3.3.3 Stress questionnaires

2.3.3.3.1 EPDS The Edinburgh Postnatal Depression Scale (EPDS, McDonald’s 𝜔𝜔 ranged
between .88 - .94) (Cox et al., 1987)) was used to measure depressive symptoms over de last
seven days. It consists of 10 items, reported on a four-point scale, translating to a score of zero
to three points. Total scores can range from zero to 30, with a higher score indicating more
depressive symptoms. A score of 14 and higher is considered “probable depression”. An example
item of the EPDS is: “I have been able to laugh and see the funny side of things” (reversed
item).
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2.3.3.3.2 STAI-state The State-Trait Anxiety Inventory (STAI, McDonald’s 𝜔𝜔 ranged be-
tween .93-.96) was used to measure how anxious the participant was feeling at the moment.
This subscale consists of 20 items, reported on 4-point scales ranging from one to four. Total
scores can range from 20 to 80, with a higher score indicating more experienced anxiety. A
score of 45 or higher is considered “high anxiety”. An example item of the STAI-state is: “I feel
calm” (reversed item).

2.3.3.3.3 PSS-10 The Perceived Stress Scale-10 (PSS-10, McDonald’s 𝜔𝜔 ranged between
.89-.93) was used to measure how stressful certain situations were perceived over the previous
month. It consists of 10 items, reported on a five-point scale, with answers ranging from “never”
(zero) to “often” (four). Total scores can range from zero to 40, with a higher score indicating
more experienced stress. A score of 27 or higher is considered “high perceived stress”. An
example item of the PSS-10 is: “In the last month, how often have you felt confident about
your ability to handle your personal problems?” (reversed item).

2.3.3.3.4 PRAQR2 Two subscales of the Pregnancy Related Anxiety Questionnaire-
Revised (PRAQR2; McDonald’s 𝜔𝜔 ranged between .80-.85) namely ‘Fear of giving birth’ (three
items; PRAQR2-B) and ‘Worries about bearing a handicapped child’ (four items; PRAQR2-H),
were used to measure pregnancy specific anxiety symptoms. The items were answered on a
five-point Likert scale, with a range from one (definitely not true) to five (definitely true),
reflecting how the participant felt during that pregnancy. Sum scores on the two scales
ranged from three to 15 and four to 20, respectively. A higher score was an indication of
more pregnancy-specific anxiety. An example item of the subscale ‘Fear of giving birth’ is
“I am anxious about the delivery” and an example of the subscale ‘Worries about bearing a
handicapped child’ is “I am afraid the baby will be mentally handicapped or will suffer from
brain damage”.

2.3.3.3.5 PSAS The Postpartum Specific Anxiety Scale (PSAS, McDonald’s 𝜔𝜔 = .95) was
used to measure specific anxiety symptoms during the postpartum period. It consists of 51
items, reported on a four or five-point scale. The total score can range from 51 to 204, with
a higher score indicating more postpartum anxiety. A score of 112 or higher is considered “a
clinical level of anxiety”. In addition, to reduce participant burden, the 12-item PSAS-Research
Short Form – Crisis (RSF-C, McDonald’s 𝜔𝜔 ranged from .81-.83) was used as well (Silverio
et al., 2021). Total scores range from 12 to 48, and a score of 26 and higher is proposed to
be the cut-off score for a clinical level of anxiety. An example item of both the PSAS and the
PSAS-RSF-C is: “I have worried more about my relationship with my partner than before my
baby was born”. At two and 12 weeks postpartum, the PSAS-RSF-C was completed, while at
six weeks postpartum the PSAS was completed.

2.3.3.3.6 Maternal stress composite We created a composite stress score (maternal
stress; MS) from three highly correlated (supplementary figures 2.7-2.8) questionnaires (EPDS,
PSS-10, STAI) to reduce the complexity of the analysis and reporting. However, to alleviate
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the issue of reproducibility due to the use of different stress measurements, we also ran all anal-
yses with the single stress measurements and reported if results differed meaningfully from the
composite score. The PRAQR2 (prenatal) and the PSAS (postnatal) were left out of the MS
variable because otherwise the composite score would represent a different measure pre- and
postnatally.

2.3.3.4 Potential Covariates

All the following covariates were obtained via questionnaires during the measurement rounds as
described in the Procedures section. Maternal age was calculated in years, based on the age at
the measurement at 18 weeks of pregnancy. Maternal education included seven categories (one
to seven), with categories ≥ 6 reflecting high education (degree of applied sciences or university)
and categories ≤ 5 reflecting low/medium education. Maternal pre-pregnancy body mass index
(pBMI) was based on the self-reported weight and length prior to the current pregnancy. A
score for maternal diet quality was available at 18 weeks and 32 weeks of gestation. Specifically,
a food frequency questionnaire (Looman et al., 2017; Siebelink et al., 2011; Streppel et al., 2013)
was obtained and used to calculate the total score of the Dutch Healthy Diet index (Looman
et al., 2017). A higher score reflected a higher total diet quality. A maternal activity score
was available at 18 weeks and 32 weeks of gestation. This score was based on the total score
of the Pregnancy Physical Activity Questionnaire (Chasan-Taber et al., 2004). A higher score
indicated more physical activity. Antibiotic use was included as a dichotomous variable and
reflected whether the mother or infant had used any antibiotics at the day or the week before
taking the stool sample. Furthermore, parity, infant sex, gestational age, delivery mode and
feeding mode (i.e. exclusively breastfed, formula fed or mixed) were available to include as
covariate. Covariate selection is further explained in the Statistical analysis section.

2.3.4 Statistical analysis

The statistical analyses were performed in R (version 4.3.1) (R Core Team, 2022). All analyses
were preregistered (https://doi.org/10.17605/OSF.IO/CKE84) and the code is openly available
with a permanent DOI (https://doi.org/10.5281/zenodo.11611111). Missing covariates were
imputed using predictive mean matching (m = 50) (Kleinke, 2017) using the mice (v3.16.0)
package (van Buuren & Groothuis-Oudshoorn, 2011). Deviations of results from complete case
analyses are reported. Several features of the gut microbiome were examined, including alpha
diversity, beta diversity, species and phylum level relative abundances and volatility. For alpha
diversity, we calculated Faith and Shannon diversity indices using the mia (v1.11.4) package
(Ernst et al., 2022). For beta diversity, we used Aitchison distance (Euclidean distances of
centered-log-ratio transformed abundances) and we report if results deviate if Bray-Curtis is
used instead. Volatility was calculated as described by Bastiaanssen et al. (T. Bastiaanssen et
al., 2021). For differential abundance analyses we used MaAsLin2 (Mallick et al., 2020), which
has performed well according to multilple benchmark studies (Nearing et al., 2022; Pelto et al.,
2024). Results were corrected for multiple testing using the Benjamini–Hochberg procedure
(Benjamini & Hochberg, 1995). All adjusted p-values can be found in the column q in the
supplementary tables.
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We used Bayesian robust linear models to investigate associations between the maternal stress
variables and alpha diversity and volatility using the brms (v2.21.0) package (Bürkner, 2018)
with default priors and a student t distribution for the response variable. In these Bayesian
models we reject the null hypothesis if the 95% highest probability density interval (HDI)
excludes zero for non-directional hypotheses or if more than 95% of the posterior distribution
is larger or smaller than zero, respectively, for directional hypotheses (indicated by 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃
in text). For beta diversity analyses we applied PERMANOVA with the adonis2 function from
the vegan (v2.6.4) package (Oksanen et al., 2022). We accounted for non-independence by
specifying random intercepts in models that included repeated samples of an individual and
additionally performed analyses per time point. To determine the model structure, we created
directed acyclic graphs (DAG) for the infant and mother samples separately (supplementary
figures 2.9-2.10). We tested conditional independence and adjusted the DAG if necessary. DAGs
graphically represent the knowledge and assumptions of the analyst. Some of the assumptions
can be tested (testing conditional independence). Given these assumptions, the DAG dictates
which covariates must be included to answer the research questions of interest (Cinelli et al.,
2020). While some covariates need to be included to reduce bias (i.e. physical activity, parity
and maternal age and education for the maternal samples and delivery mode, gestational age
and parity for the infant samples), others can optionally be included (in this case pBMI for the
maternal samples and maternal education, feeding mode, gestational age, and child sex for the
infant samples). We used leave-one-out cross-validation (Vehtari et al., 2017) to decide whether
such optional covariates should be included to improve model fit.

2.4 Results

2.4.1 1) Can we observe changes in the microbiota from the second
to the third trimester and does the microbiota at 8 months
postpartum differ from the microbiota during pregnancy?

2.4.1.1 Alpha diversity

We did not detect changes in the alpha diversity during pregnancy. However, we observed that
Faith diversity decreased 8 months postpartum compared to at 18 (𝛽𝛽 = -1.851, 95% HDI =
[-2.387; -1.337], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 𝑃 0) and 32 (𝛽𝛽 = -1.562, 95% HDI = [-2.073; -1.043], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 𝑃
0) weeks of gestation on average. A similar trend was observed when looking at the difference
in Shannon diversity between 8 months postpartum and 18 (𝛽𝛽 = -0.081, 95% HDI = [-0.162;
0.008], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 𝑃 0.03) and 32 (𝛽𝛽 = -0.055, 95% HDI = [-0.14; 0.032], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 𝑃 0.104)
weeks of gestation (Figure 2.1).

2.4.1.2 Beta diversity and differential abundance analysis

Similarly, we did not find evidence that beta diversity is different between 18 weeks and 32
weeks of gestation. Beta diversity at eight months postpartum differs significantly compared to
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Figure 2.1: Shannon and Faith alpha diversity across time points for maternal microbiota
samples. Samples were taken at 18 (M1) and 32 (M2) weeks of pregnancy and at 8 months
postpartum (M3). Alpha diversity dropped significantly from M1 and M2 to M3 for both
indices.

18 weeks (p = 0.008) and the 32 weeks (p = 0.035) of gestation. However, effect sizes were very
small (𝑅𝑅2 ≤ .01) and there is no visible separation from maternal samples within pregnancy and
postpartum (supplementary Figure 2.11). Looking at individual species, we only found a small
increase in Bifidobacterium pseudocatenulatum between 18 and 32 weeks of gestation (FDR =
.039). We found many individual species to be differentially abundant (FDR ≤ 0.1) between
32 weeks of pregnancy and eight months postpartum (supplementary Table 2.4). Mainly we
observed a decrease in Akkermansia muciniphila and Anaerostipes hadrus as well as an increase
in Fusicatenibacter saccharivorans and an unclassified species of Ruminococcaceae. Lastly, in the
beta diversity models, we observed an interaction between parity and pBMI, such that pBMI
was only associated with microbiota composition in multiparous mothers.

2.4.2 2) How is maternal prenatal and postnatal stress related to the
maternal gut microbiota during and after pregnancy?

2.4.2.1 Alpha diversity

Prenatally, our data indicated no or only a weak association between MS and the alpha diversity
measures (supplementary Table 2.5). However, we found a negative association between the
PRAQR2-B (fear of giving birth) with both the Shannon (𝛽𝛽 = -0.251, 95% HDI = [-0.388;
-0.112], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 𝑃 0) and Faith index (𝛽𝛽 = -0.125, 95% HDI = [-0.239; -0.009], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 𝑃
0.018) at 18 weeks but not 32 weeks of pregnancy (Figure 2.2A).
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Postnatally, we only detected an association between the maternal stress composite (MS) and
alpha diversity when exploring non-linear associations by segmenting the predictor variable
into low, medium and high stress. Specifically, we found that the difference in alpha diversity
between the medium and high stress group varied closely around zero, indicating that these
groups do not differ in alpha diversity. However, the low stress group had consistently lower
alpha diversity than the medium and high stress groups. While the HDIs for most contrasts
overlapped slightly with zero, the model indicated that Shannon index in low stress mothers
is lower at 8 months postpartum (𝛽𝛽 = -0.487, 95% HDI = [-0.888; -0.065], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 𝑃 0.01)
compared to the medium stress group (Figure 2.B). The effect size for the contrast with the
high stress group is similar but the HDI is wider due to the smaller group sizes of low and high
stress (𝛽𝛽 = -0.459, 95% HDI = [-1.05; 0.126], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 𝑃 0.063)

For the time point at 8 months postpartum we also investigated whether the PSAS was related
to alpha diversity and found that the directions of the estimates were in line with the association
reported for the prenatal PRAQR2-B (fear of giving birth) for Shannon (𝛽𝛽 = -0.097, 95% HDI
= [-0.318; 0.123], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 𝑃 0.188) and Faith diversity (𝛽𝛽 = -0.155, 95% HDI = [-0.36; 0.047],𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 𝑃 0.068). However, we could not reject the null hypothesis for the PSAS.

Looking at the hair cortisol and cortisone concentrations, our models indicate no, or a weak
association between most hormone measures and alpha diversity (supplementary Table 2.5).
However, the log-ratio of cortisol and cortisone (HCR2) was positively related to both alpha
diversity measures at 18 weeks of gestation (𝛽𝛽 = 0.234, 95% HDI = [0.029; 0.436], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 𝑃
0.987; Figure 2.2C; 𝛽𝛽 = 0.192, 95% HDI = [0.024; 0.358], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 𝑃 0.988; Figure 2.2D).

2.4.2.2 Beta diversity and differential abundance analysis

We did not find evidence that any of the stress variables was associated with beta diversity. In
addition, there were only a few associations between the stress variables and individual species,
including Blautia for the PSS-10 and Bacteroides cellulosilyticus for hair cortisone (HCN3).
Supplementary tables 2.6-2.7 list the coefficients of all the single species that were associated
with any of the stress variables (𝐹𝐹𝐹𝐹𝐹𝐹 𝐹 𝐹𝐹𝐹) across all time points (supplementary Table 2.6)
and per time point (supplementary Table 2.7).

2.4.2.3 Volatility

Lastly, MS was not associated with the maternal microbiota volatility between 18 and 32 weeks
of pregnancy and 32 weeks of pregnancy and 8 months postpartum (𝛽𝛽 = -0.018, 95% HDI =
[-0.128; 0.1], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 𝑃 0.381), also not for any of the separate questionnaires (including
PRAQR2 and PSAS) or hair cortisol/cortisone. The microbiota volatility from 32 weeks of
pregnancy to 8 months postpartum was significantly higher than the volatility between the
second and the third trimester (𝛽𝛽 = 0.722, 95% HDI = [0.532; 0.905], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 𝑃 1) as would
be expected due to the longer time interval between taking the samples.
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Figure 2.2: Shannon alpha diversity for maternal microbiota samples obtained at 18 weeks
of pregnancy (M1) and at 8 months postpartum (M3) plotted with the PRAQR2-B (fear of
giving birth; A) and the MS (i.e. composite score based on EPDS, STAI, PSS-10; B). For the
plot with PRAQR2-B, we added random noise to avoid overplotting of the data points. The
regression line and the colored shaded region illustrate our slope estimate including the 95%
credible interval. We used the median for all covariates to generate the posterior distribution
for the slope parameter.
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2.4.3 3) Does maternal pre- and postnatal stress associate with the
infant gut microbiota development?

2.4.3.1 Alpha diversity

While we did not find a significant association between the MS composite score measured at 18
weeks of pregnancy, the STAI was negatively associated with infant Shannon diversity at 2 weeks
postpartum (𝛽𝛽 = -0.169, 95% HDI = [-0.331; -0.007], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 𝑃 0.022). Also, the PRAQR2-H
(fear of a handicapped child) at 32 weeks of pregnancy was positively associated with Shannon
diversity at 2 weeks postpartum (𝛽𝛽 = -0.184, 95% HDI = [-0.34; -0.03], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 𝑃 0.011),
see also supplementary Table 2.8. In contrast, we found a positive association between MS (𝛽𝛽
= 0.054, 95% HDI = [0.001; 0.11], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 𝑃 0.974) and specifically the EPDS (𝛽𝛽 = 0.144,
95% HDI = [0.001; 0.281], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 𝑃 0.978) measured at 32 weeks of pregnancy and Faith
diversity at 6 weeks postpartum and between PRAQR2-B (fear of giving birth) measured at
18 and 32 weeks of pregnancy and Shannon diversity at 12 weeks postpartum (𝛽𝛽 = 0.185, 95%
HDI = [0.033; 0.339], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 𝑃 0.99).
Furthermore, we identified a negative association between hair cortisone (HCN1) and Faith
diversity at eight months postpartum (𝛽𝛽 = -0.349, 95% HDI = [-0.612; -0.091], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 𝑃
0.004), with similar trends seen also for hair cortisone (HCN2) as well as when using Shannon
diversity (see supplementary Table 2.8). Also, the log-ratio of hair cortisol and cortisone (HCR2)
was positively related to Shannon diversity at 8 months postpartum (𝛽𝛽 = 0.387, 95% HDI =
[0.022; 0.749], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 𝑃 0.982). Figure 2.3 shows all associations where we rejected the null
hypothesis.
Our data further indicated that there is no or only a weak association between postnatal ma-
ternal stress variables and alpha diversity at most time points in the infant samples (see supple-
mentary Table 2.9 for the corresponding 𝛽𝛽 coefficients of all time points and stress measures).
However, we found negative associations between Shannon diversity and EPDS (𝛽𝛽 = -0.247,
95% HDI = [-0.458; -0.036], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 𝑃 0.011) and PSS-10 (𝛽𝛽 = -0.221, 95% HDI = [-0.429;
-0.006], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 𝑃 0.021) at 8 months postpartum. In line with that, comparing the groups
of low and high MS we found that at 8 months postpartum, infants of low stress mothers had
higher Shannon alpha diversity than infants of high stress mothers (𝛽𝛽 = 0.961, 95% HDI =
[0.143; 1.737], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 𝑃 0.99), see Figure 2.4.

2.4.3.2 Beta diversity and differential abundance analysis

The MS or its individual stress variables were not significantly associated with beta diversity.
However, we observed that the PRAQR2-B (fear of giving birth) at 18 weeks of pregnancy
was associated with beta diversity in infants sampled at 12 weeks (𝑅𝑅2 = .011, p = .023) and
8 months (𝑅𝑅2 = .015, p = .040) postpartum. Hair cortisol (HCS3) was associated with beta
diversity at 2 (𝑅𝑅2 = .017, p = .006) and 12 weeks (𝑅𝑅2 = .015, p = .022) postpartum and
hair cortisone (HCN3) was associated with beta diversity at 2 (𝑅𝑅2 = .016, p = .004) and 8
months (𝑅𝑅2 = .022, p = .025) postpartum. Neither the questionnaires, nor the hair cortisol and
cortisone concentrations obtained postnatally were associated with beta diversity of the infant
samples.
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Figure 2.3: Alpha diversity at different time points (indicated in the y-axis label by shade
coloring from light to dark green) plotted against different stress measures (indicated in the
x-axis label). The time point of the maternal stress measurement is indicated in the box above
the plot. The regression lines and the colored shaded regions illustrate our slope estimates
including their 95% credible interval. We used the median for all covariates to generate the
posterior distribution for the slope parameters. HCN1 = Hair cortisol reflecting maternal stress
between week 6 and 15 of gestation, HCR2 = log-ratio of hair cortisol and cortisone reflecting
stress between 15 and 23 weeks of gestation.

39



40 Maternal Stress and Maternal and Infant Microbiota

EPDS 8 months postpartum

0 2 4

−2

0

2

EPDS

Sh
an

no
n 

in
de

x 
8 

m
on

th
s 

po
st

pa
rtu

m

A
PSS−10 8 months postpartum

−2 0 2 4

−2

0

2

PSS−10

B
MS 8 months postpartum

low medium high

0

2

4

MS

C

Figure 2.4: Shannon alpha diversity of infant microbiota samples collected at 8 months post-
partum plotted against different stress measures (indicated in the x-axis label). The time point
of the maternal stress measurement is indicated in the box above the plot. The regression lines
and the colored shaded regions illustrate our slope estimates including their 95% credible inter-
val. We used the median for all covariates to generate the posterior distribution for the slope
parameters. MS = Maternal stress composite score.
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Several bacterial species were associated with the postnatal stress variables (supplementary
Tables 2.10-2.12 list all species and phyla related to any of the stress variables across time
and at the separate time points (FDR ≤ 0.1)). Among other associations, we found positive
associations between Bacteroides fragilis and hair cortisol (HCS3 and HCS2). This association
was present across all samples and at several stool sampling time points individually. It became
particularly strong when looking at the log-ratio of hair cortisol and cortisone (HCR3) and
the infant sample at 6 weeks postpartum. Furthermore, we observed negative associations
between Flavonifractor plautii and Bacteroides ylanisolvens and hair cortisol (HCS3) as well as
Bacteroides thetaiotaomicron and hair cortisol (HCS2). We did not find evidence for a positive
association between any of the stress variables and Proteobacteria or for a negative association
with Lactobacilli or Bifidobacterium. Instead, the postnatal stress measures MS, EPDS and
PSS-10 were positively associated with Firmicutes across all time points.

2.4.3.3 Volatility

We found a positive association between MS at two weeks postpartum and volatility between
2 and 6 weeks postpartum (𝛽𝛽 = 0.178, 95% HDI = [0.046; 0.311], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 𝑃 0.996), see
Figure 2.5A. We found the same for all questionnaires individually. Also, the PSS-10 at 6 weeks
postpartum was positively associated with volatility between 6 and 12 weeks postpartum, see
Figure 2.5B. Lastly, we found that the log-ratio of hair cortisol and cortisone (HCR2) was
positively related to volatility between 12 weeks and eight months postpartum (𝛽𝛽 = 0.287, 95%
HDI = [-0.007; 0.573], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 𝑃 0.974), see Figure 2.5C.

2.5 Discussion

We investigated whether we could detect changes in the maternal microbiota from the second to
the third trimester and whether the maternal microbiota at eight months postpartum differed
from the prenatal microbiota. Furthermore, we examined how prenatal and postnatal maternal
stress were related to the maternal and infant microbiota. We hypothesized that prenatal stress
would be positively associated to maternal microbiota volatility and that pre- and postnatal
maternal stress would be negatively related with the abundance of Bifidobacterium and posi-
tively associated with the abundance of Proteobacteria and with infant microbiota volatility in
early life. In the following we will summarize and discuss the results.

2.5.1 1) Maternal microbiota during and after pregnancy

Our data supports previous findings indicating that the maternal microbiota does not undergo
major changes between the second and the third trimester (DiGiulio et al., 2015; H. Yang et al.,
2020). However, we did observe changes from pregnancy to eight months postpartum. Specif-
ically, we detected a significant decrease in Faith alpha diversity at eight months postpartum
as compared to the first and the second trimester. While we also observed that beta diversity
was significantly different at eight months postpartum compared to the second trimester of
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Figure 2.5: Volatility at different time point intervals (indicated by shade color from light green
to dark green) of the infant stool samples and the postnatal maternal stress composite score
(MS) (A), PSS-10 (B) and log-ratio of hair cortisol and cortisone (HCR2) (C). The time points
used to calculate volatility are indicated in the box at the top of each plot. The regression
line and the colored shaded region illustrate our slope estimate including the 95% credible
interval. We used the median for all covariates to generate the posterior distribution for the
slope parameter. HCR2 = log-ratio of hair cortisol and cortisone reflecting maternal stress
between 15 and 23 weeks of gestation.
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pregnancy, the effect size of this finding does not warrant interpreting it as a major change.
Nevertheless, the decrease in Faith alpha diversity as well as observed decreases in, for example,
Akkermansia muciniphila, Anaerostipes hadrus, Streptococcus thermophilus and Streptococcus
salivarius as well as increases in, for example, Fusicatenibacter saccharivorans, Ruminococcaceae
and Clostridiales bacterium indicate that the microbiota postpartum differs significantly from
the prenatal microbiota. The observed changes could be due to physiological changes induced
by shifting from the pregnant to the non-pregnant state and to the induction of breastfeeding
but could also be due to lifestyle changes related to the postpartum period, which is charac-
terized by alterations in sleep, activity, diet, and other behavioral changes. While we collected
prenatal data on lifestyle factors such as diet, physical activity, and sleep, we did not collect
these variables at eight months postpartum, limiting our analysis in that regard. To further
study the potential changes induced by pregnancy or the shift into the non-pregnant state, it
would be interesting to include more follow up samples as well as samples from before concep-
tion and to collect data about lifestyle changes associated with the pregnancy and postpartum
period. Moreover, we observed that pre-pregnancy body mass index (pBMI) was associated
with microbiota composition in multiparous but not primiparous women across time. This is in
contrast with previous research that found an association between pBMI and changes in the gut
microbiota throughout pregnancy only in primiparous women (Kennedy et al., 2022). However,
our data and analyses are not comparable to those of the previous study as they collected sam-
ples also in the first trimester and included gestational weight gain in their statistical models.
The potential interaction between parity and pBMI in relation to gut microbiota trajectories in
the perinatal period warrants further research.

2.5.2 2) Maternal prenatal and postnatal stress and the maternal
microbiota

We found limited evidence for an association between MS and alpha diversity. Namely, when
comparing the low MS group with the medium or high MS group we found that only at eight
months postpartum mothers reporting low levels of stress had slightly lower Shannon diversity
than mothers reporting medium or high levels of stress. Interestingly, we did find that the
PRAQR2-B (fear of giving birth) measured at 18 weeks pregnancy was negatively associated
with alpha diversity at 18 weeks of pregnancy with both Shannon and Faith diversity. Similar
results were observed at 32 weeks of pregnancy and therefore this association appeared to be
more robust compared to the findings related to MS. The fact that we find different associations
for MS and PRAQR2-B can be explained because of the limited overlap between those vari-
ables (supplementary figures 2.7-2.8) and the different time points the microbiota samples were
obtained. Indeed, the PRAQR2-B (fear of giving birth) subscale assesses very specific prenatal
anxieties whereas the MS assesses stress in general. Furthermore, we detected two associations
between measures of maternal stress with individual microbial species. First, we found a posi-
tive association between the PSS-10 and Blautia throughout all time points. Second, we found
a negative association between hair cortisone (HCN3) and Bacteroides cellulosilyticus at 32
weeks of pregnancy. Lastly, we could not reject our null hypothesis that maternal stress is not
related to maternal microbiota volatility. Possible explanations include that there is indeed no
association between maternal stress and microbiota volatility during pregnancy. Alternatively,
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it is possible that the stress experienced in our sample of highly educated women, was not
severe enough to induce significant changes in the more stable adult maternal microbiota. It is
also possible that increased volatility could be observed at earlier stages of pregnancy such as
from the first to the second trimester. Altogether these findings provide evidence that maternal
stress, specifically fear of giving birth, is associated with the the maternal gut microbiota at
different time points in the perinatal period.

2.5.3 3) Maternal prenatal and postnatal stress and the infant mi-
crobiota

Depending on the type of stress measurement and the time of maternal stress and infant micro-
biota sampling, we found contrasting associations between maternal stress and features of the
infant gut microbiota. For example, we found negative associations between the STAI measured
at 18 weeks of pregnancy as well as the PRAQR2-H (fear of a handicapped child) measured at
32 weeks of pregnancy and infant Shannon diversity at two weeks postpartum. Also, hair corti-
sone (HCN1) and MS at eight months postpartum were negatively related to alpha diversity at
eight months postpartum. In line with this, the log-ratio of hair cortisol and cortisone (HCR2)
was positively related to infant Shannon diversity at eight months postpartum. In contrast, the
EPDS measured at 32 weeks and the PRAQR2-B (fear of giving birth) measured at 18 and 32
weeks of pregnancy were positively related to Shannon diversity at six and 12 weeks postpar-
tum, respectively. While these findings provide strong evidence that prenatal maternal stress is
related to infant microbiota alpha diversity, they also show that the association is not uniform
across time or between different measures of stress. This is in line with Rojas et al. (Rojas et al.,
2023) and van den Bergh et al. (Van den Bergh et al., 2020), who reported measurement- and
trimester-specific associations between prenatal stress and the infant gut microbiota or other
outcome measures, respectively. Our data indicate that, in addition, the potential effect of
maternal stress also differs depending on time of measurement of the infant gut microbiota. We
will touch upon a possible explanation when discussing our findings on volatility further below.
Next to the associations with alpha diversity, we found that the PRAQR2-B (fear of giving
birth), hair cortisol (HCS3) and hair cortisone (HCN3) were related to infant beta diversity at
different time points. We also identified many individual species related to our stress measure-
ments across time and at the individual time points (supplementary Tables 2.10-2.12). Most
notably, we found a positive association between infant Bacteroides fragilis and maternal hair
cortisol in the second and third trimester (HCS2 and HCS3) that was present across time and
at the individual time points. Bacteroides fragilis has been associated with reduced levels of
aggressive behavior, emotional reactivity, externalizing behavior, sadness, and impulsivity as
well as an increase in inhibitory control and lower reported incidents of family turmoil (Flannery
et al., 2020). Next to that it was associated with lower reported incidents of family turmoil
(Flannery et al., 2020). Also, animal studies found that Bacteroides fragilis has protective ef-
fects against pathogen-induced gut inflammation and an autism-spectrum-disorder phenotype
induced by maternal immune activation (Hsiao et al., 2013). This means that our results are
either in contrast with previous findings or, possibly, that the association between stress and
Bacteroides fragilis is not linear, such that, e.g., while moderate levels of stress may be positively
associated with it, more extreme levels of stress may lead to a relative decrease of this bacterium.
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Furthermore, we found a negative association between Flavonifractor plautii at week six and
maternal stress as measured by hair cortisol in the third trimester (HCS3). Flavonifractor plau-
tii has been negatively associated with the development of asthma later in life (Stokholm et al.,
2018a) and was able to strongly suppress Th2 immune responses in mice (Ogita et al., 2020).
Furthermore, in line with our findings, Flavonifractor plautii has been previously reported to be
negatively associated with a maternal stress composite score at six weeks postpartum (Dutton
et al., 2023) (which was based on STAI, EPDS, PSS and scales assessing several types of trauma
and PTSD). We also reported previously that Flavonifractor was increased in a group of infants
that received a destressing skin-to-skin contact intervention in the first five weeks of their lives
(Eckermann et al., 2024). Thus, our findings are in line with the literature and suggest that
maternal physiological stress is related to a relative decrease in infant Flavonifractor at around
six weeks postpartum. Lastly, in contrast to previous literature (Dutton et al., 2023; Galley
et al., 2023; Jahnke et al., 2021; Mepham et al., 2023; Zijlmans et al., 2015), we did not find
evidence for a positive association between prenatal stress and Proteobacteria or for a negative
association with Bifidobacteroium.
Given the complexity of the microbial ecosystem and its diversity between different geographic
regions and cultures, it may be challenging to find uniform associations between maternal stress
with many of the microbiota features such as alpha diversity and relative abundances. However,
in line with our hypothesis, we found that postnatal MS, PSS-10, and the log-ratio of hair cortisol
and cortisone (HCR2) were associated with microbiota volatility between week two and six, week
six and 12 and week 12 and eight months, respectively. With this study and previous studies,
more research is accumulating that infant microbiota volatility is positively related to maternal
stress. Namely, volatility has been reported to be increased in humans reporting higher levels
of stress during exam periods, experimentally stressed mice, patients with inflammatory bowel
disease and decreased in infants who received a destressing intervention in the first five weeks
of their life (T. Bastiaanssen et al., 2021; Clooney et al., 2021; Eckermann et al., 2024). In
addition, a similar metric indicated higher volatility (lower stability) over nine samples taken in
the first 100 days of life in infants with colic (de Weerth et al., 2013). Furthermore, in line with
our previous study of another group of Dutch infants (Eckermann et al., 2024), we found again
that gestational age was negatively related to microbiota volatility, especially with volatility
between week six and week 12 postpartum.
There are many potential mechanisms through which maternal stress could induce volatility
in the infant gut microbiota. For example, maternal stress may induce physiological changes
in the mother that ultimately lead to a different composition and quality of breastmilk or
changes in breastfeeding frequency and overall duration. We included feeding mode into the
volatility models and found that between two and six weeks postpartum, mixed feeding was
negatively associated with volatility compared to exclusive breastfeeding, whereas exclusively
formula fed infants tended to have highest volatility in that period. However, between week six
and 12 as well as between week 12 and eight months postpartum, exclusively breastfed infants
had significantly lower microbiota volatility than mixed or fomula fed infants. This could be
explained by the fact that as the diversity in diet increases (from exclusively breastfeeding to
the introduction of increasingly complex solid food), the microbiota changes drastically initially.
It will be interesting to see if future studies on maternal stress and the infant microbiota can
consistently identify an association between stress and volatility. Then, the question remains
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whether volatility is a direct consequence of stress or whether people with higher microbiota
volatility are more susceptible to experiencing stress. A study that tracks a few individuals
with daily high frequency sampling of stress (e.g., with ecological momentary sampling) and
the gut microbiota may be able to provide evidence about the timeline of this association. But
the question would remain whether volatility has any negative or positive effects on health by
itself or whether what causes volatility simultaneously causes alternations in health.

2.5.4 Strengths and limitations

Strengths include the many microbiota sampling time points of both mothers during pregnancy
and at eight months postpartum and infants in the first year of life. These allowed us to evaluate
our research questions on microbiota volatility. Also, our microbiota samples, in conjunction
with measurements of maternal stress via reported stress as well as objectively measured stress
(hair cortisol/cortisone), provided data covering many time points sampled individually in pre-
vious studies researching the association between maternal stress and the maternal and infant
gut microbiota. This, and analyzing questionnaires that measure perinatal specific and general
stress, helped to shed light on the consistency and reproducibility of findings across studies. To
analyze our microbiota samples, we used shotgun metagenomic sequencing, allowing us to work
with higher taxonomic resolutions compared to previous studies. Limitations include that we
did not measure potentially relevant covariates at eight months postpartum such as physical
activity, sleep, and diet. This limited our analyses on factors contributing to the changes in the
maternal microbiota from 32 weeks of pregnancy to eight months postpartum. Also, we studied
a healthy, highly educated sample in a developed country. In other settings maternal stress
levels can be substantially higher and more variable, potentially leading to different results
than in our study. Lastly, including analyses on functional profiling of the gut microbiota was
beyond the scope of this study, but is a logical next step in this area of research.

2.5.5 Conclusion

Our study provides evidence that maternal prenatal and postnatal stress is related to both the
maternal and the infant microbiota. Collectively, our and previous studies indicate that, apart
from a positive association with microbiota volatility in infants, maternal perinatal stress is not
uniformly associated with most microbiota features and that the associations are highly time
point specific (i.e. sensitive to when both the stress and the microbiota assessments are made).
The consistent findings on volatility warrant future research investigating these associations
further and in more depth.
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2.6 Supplemental Material

2.6.1 Supplementary Methods

2.6.1.1 Microbial DNA extraction

DNA was extracted from feces using the ZymoBIOMICS DNA 96 Magbead kit (ZY-D4302,
Zymo Research) and an automated extraction robot, the Kingfisher Flex Purification System.
DNA concentration was assessed using a fluorometer (Infinite F200, Tecan) with the Quant-
iT™ dsDNA Broad-Range Assay Kit (VXQ33130, Invitrogen). A liquid handler (Biomek i7
Automated Workstation) was used to perform the in-house optimized Nextera XT Library
preparation (FC-131-1096, Illumina). In summary, 0.25 ng of genomic DNA was used as a
template for the library preparation. A tagmentation step was carried out at 55 degrees Celsius
for 5 minutes using a transposome to add Illumina adapters, creating fragments of approximately
300 bp. The tagmented DNA with the Illumina adapter was then employed as a template for
PCR amplification and to add unique index primers. The PCR protocol included 72°C for 3
minutes, 95°C for 30 seconds and 12 cycles ofthe following: 95°C for 10 seconds, 55°C for 30
seconds, 72°C for 30 seconds, 72°C for 5 minutes and hold at 10°C.
The PCR products were purified using Agencourt© AMPure® XP (A63882 Becker Coulter).
DNA was measured using the fluorometer ( Infinite F200 Pro Tecan) and fluorometric analysis
(Quant-iT™ dsDNA High Sensitivity, Invitrogen). The purified PCR products were equimo-
larly pooled, followed by sequencing on the Novaseq 6000 (Illumina) for a minimum of 1500
Mb per sample. FASTQ read sequence files were generated using bcl2fastq version 2.20 (Il-
lumina). Initial quality assessment was based on data passing the Illumina Chastity filtering.
Subsequently, reads containing PhiX control signal were removed using by aligning to the PhiX
reference sequence (Bowtie2.2.6) and taking the unaligned reads. In addition, reads containing
(partial) adapters were clipped (up to a minimum read length of 50bp) by using fastq-mcf from
the ea-utils package v1.04.807. The second quality assessment was based on the remaining reads
using the FASTQC quality control tool version 0.11.8.

2.6.1.2 Microbial taxonomic profiling

MetaPhlAn (Truong et al., 2015) v4.0 was used to conduct taxonomic profiling of the metage-
nomic samples. This tool uses a library of clade-specific markers to provide quantification at
species level for microbial entities, including bacteria, archaea, viruses, and eukaryotes. The
default settings were applied when running MetaPhlAn. HUMAnN3 (Abubucker et al., 2012)
v3.0 was used to perform functional profiling. When provided with an input metagenome, HU-
MAnN3 generates a sample-specific reference database, which is constructed by concatenating
and indexing the pangenomes of species identified by MetaPhlAn in the sample. Pangenomes
refer to pre-clustered and pre-annotated catalogues of open reading frames that are found
across isolated genomes from a particular species (K. Huang et al., 2014). Subsequently,
using HUMAnN3, sample reads were mapped against this database to quantify the presence
and abundance of genes in a species-stratified manner. Unmapped reads were further used
in a translated search against UniRef90 (Suzek et al., 2015) to include abundances of gene
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families that are taxonomically unclassified but functionally distinct. Lastly, HUMAnN3
reconstructed metabolic pathway abundance, to determine community-total, species-stratified,
and unclassified gene family abundance. This reconstruction was based on the subset of gene
families annotated to metabolic reactions, based on reaction and pathway definitions from
MetaCyc (Caspi et al., 2016). Enzyme abundances at the level-4 Enzyme Commission (EC)
categories were further computed by summing the abundances of individual gene families
annotated to each EC number. The annotations were based on UniRef90-EC annotations
obtained from UniProt (The UniProt Consortium et al., 2023). A phylogenetic tree was
obtained using the chocophlan database mpa_vJan21_CHOCOPhlAnSGB_202103 (ob-
tained from https://github.com/biobakery/MetaPhlAn/blob/master/metaphlan/utils/mpa_
vJan21_CHOCOPhlAnSGB_202103.nwk).
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2.6.2 Supplementary Tables

Table 2.4: Bacterial species differentially abundant be-
tween maternal samples collected at 32 weeks of preg-
nancy and 8 months postpartum.

Feature Coefficient q
s__Actinomyces_oris -0.002 0.022
s__Actinomyces_SGB17168 0.002 0.051
s__GGB3510_SGB4687 -0.002 0.062
s__Clostridia_bacterium_UC5_1_1D1 0.003 0.047
s__Clostridia_unclassified_SGB66170 -0.003 0.051
s__GGB3571_SGB4778 0.003 0.051
s__Rothia_mucilaginosa -0.004 0.005
s__Faecalibacillus_faecis -0.004 0.040
s__Clostridia_unclassified_SGB6276 -0.004 0.041
s__Clostridia_unclassified_SGB4121 0.005 0.001
s__Eubacterium_ventriosum -0.005 0.071
s__Streptococcus_parasanguinis -0.006 0.001
s__GGB9522_SGB14921 0.006 0.001
s__Lachnospiraceae_unclassified_SGB4894 -0.006 0.027
s__Romboutsia_timonensis -0.006 0.062
s__Phocaeicola_massiliensis -0.006 0.082
s__GGB3570_SGB4777 0.007 0.000
s__Methanobrevibacter_smithii -0.007 0.061
s__Odoribacter_splanchnicus -0.008 0.015
s__Parabacteroides_distasonis -0.008 0.019
s__GGB9627_SGB15081 0.009 0.001
s__GGB9699_SGB15216 0.009 0.019
s__Turicibacter_sanguinis -0.010 0.001
s__Clostridiales_bacterium_KLE1615 0.011 0.027
s__Agathobaculum_butyriciproducens 0.011 0.039
s__Barnesiella_intestinihominis -0.011 0.057
s__Streptococcus_salivarius -0.016 0.000
s__GGB9632_SGB15089 0.016 0.007
s__Lachnospiraceae_bacterium_WCA3_601_WT_6H -0.016 0.025
s__Streptococcus_thermophilus -0.018 0.080
s__Ruminococcaceae_unclassified_SGB15265 0.020 0.010
s__Fusicatenibacter_saccharivorans 0.030 0.011
s__Anaerostipes_hadrus -0.031 0.005
s__Akkermansia_muciniphila -0.042 0.039
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Note:
The leading ”s” indicates phylogenetic Species level.

Table 2.5: Posterior distribution of the beta coefficients
corresponding to the different prenatal and postnatal
stress measures per time point and alpha diversity index
per maternal sample.

Stress Variable Sample Index M SD 95% HDI P(𝛽𝛽 𝛽 𝛽)
MS M1 shannon 0.050 0.076 [-0.096;0.201] 0.739
MS M2 shannon -0.037 0.085 [-0.204;0.129] 0.328
MS M3 shannon 0.053 0.092 [-0.125;0.237] 0.718
MS M1 faith 0.016 0.059 [-0.099;0.133] 0.605
MS M2 faith 0.032 0.061 [-0.087;0.15] 0.706
MS M3 faith 0.043 0.066 [-0.082;0.179] 0.743
STAI M1 shannon 0.070 0.073 [-0.075;0.211] 0.834
STAI M2 shannon -0.052 0.086 [-0.229;0.111] 0.270
STAI M3 shannon 0.036 0.094 [-0.148;0.222] 0.646
STAI M1 faith 0.033 0.057 [-0.078;0.144] 0.720
STAI M2 faith 0.022 0.062 [-0.1;0.141] 0.634
STAI M3 faith 0.031 0.069 [-0.101;0.166] 0.675
EPDS M1 shannon 0.032 0.076 [-0.116;0.183] 0.671
EPDS M2 shannon -0.017 0.086 [-0.178;0.157] 0.423
EPDS M3 shannon 0.049 0.094 [-0.13;0.237] 0.700
EPDS M1 faith 0.023 0.060 [-0.098;0.137] 0.645
EPDS M2 faith 0.042 0.064 [-0.083;0.166] 0.749
EPDS M3 faith 0.042 0.070 [-0.086;0.187] 0.729
PSS M1 shannon 0.016 0.073 [-0.128;0.159] 0.583
PSS M2 shannon -0.038 0.084 [-0.205;0.125] 0.330
PSS M3 shannon 0.064 0.095 [-0.121;0.248] 0.753
PSS M1 faith -0.035 0.058 [-0.15;0.077] 0.273
PSS M2 faith 0.018 0.062 [-0.098;0.143] 0.618
PSS M3 faith 0.049 0.070 [-0.085;0.187] 0.762
PRAQR2-H M1 shannon 0.015 0.071 [-0.121;0.158] 0.581
PRAQR2-H M2 shannon 0.019 0.076 [-0.128;0.171] 0.603
PRAQR2-H M1 faith 0.014 0.055 [-0.091;0.124] 0.597
PRAQR2-H M2 faith -0.012 0.052 [-0.114;0.087] 0.408
PRAQR2-B M1 shannon -0.251 0.071 [-0.388;-0.112] 0.000
PRAQR2-B M2 shannon 0.210 0.073 [0.067;0.353] 0.998
PRAQR2-B M1 faith -0.125 0.059 [-0.239;-0.009] 0.018
PRAQR2-B M2 faith 0.066 0.052 [-0.034;0.168] 0.900
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HCS2 M1 shannon -0.063 0.074 [-0.21;0.077] 0.196
HCS3 M2 shannon 0.002 0.107 [-0.207;0.211] 0.506
HCS2 M1 faith 0.070 0.056 [-0.044;0.177] 0.892
HCS3 M2 faith 0.068 0.082 [-0.094;0.23] 0.798
HCN2 M1 shannon -0.120 0.082 [-0.267;0.054] 0.087
HCN3 M2 shannon -0.168 0.177 [-0.498;0.122] 0.213
HCN2 M1 faith -0.012 0.069 [-0.135;0.139] 0.434
HCN3 M2 faith -0.039 0.086 [-0.213;0.137] 0.309
HCR2 M1 shannon 0.234 0.104 [0.029;0.436] 0.987
HCR3 M2 shannon 0.187 0.154 [-0.104;0.496] 0.892
HCR2 M1 faith 0.192 0.085 [0.024;0.358] 0.988
HCR3 M2 faith 0.097 0.127 [-0.156;0.348] 0.780
PSAS M1 shannon -0.097 0.112 [-0.318;0.123] 0.188
PSAS M1 faith -0.155 0.104 [-0.36;0.047] 0.068

Note:
M = median of the posterior distribution. HCS = hair cortisol, HCN = hair
cortisone, HCR = log-ratio of hair cortisol and cortisone and the measured
times include 23-32 (1), 15-23 (2) and 6-15 weeks of gestation as well as 4-
8 weeks postpartum (4). M1 - M3 = Time point of maternal microbiota
sampling in chronological order (18 and 32 weeks of gestation and 8 months
postpartum). PRAQR2-B = Fear of giving birth. PRAQR2-H = Fear of a
handicapped child. MS = maternal stress composite score.

Table 2.6: Bacterial species identified in the maternal microbiota samples associated with any
of the maternal stress variables. Results are based on a multilevel model fit to all time points.

Stress Variable Feature Coefficient q
PSS-10 s__Blautia_sp_MSK_20_85 0.009 0.078

Note:
The leading ”s” indicates phylogenetic Species level.
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Table 2.7: Bacterial species identified in the maternal microbiota samples associated with any of
the maternal stress variables. Results are based on models fit per maternal microbiota sampling
time point.

Stress Variable Sample Feature Coefficient q
HCN3 M2 s__Bacteroides_cellulosilyticus -0.024 0.068

Note:
The leading ”s” indicates phylogenetic Species level. HCN3 = Hair cortisone
reflecting cortisone levels between 23 and 32 weeks of pregnancy.

Table 2.8: Posterior distribution of the beta coefficients
corresponding to the different prenatal stress measures
per time point and alpha diversity index per infant sam-
ple.

Time Sample Stress Variable Index M SD 95% HDI P(𝛽𝛽 𝛽 𝛽)
18 I1 MS shannon -0.054 0.031 [-0.116;0.006] 0.041
18 I1 MS faith 0.017 0.026 [-0.034;0.066] 0.746
18 I1 STAI shannon -0.169 0.083 [-0.331;-0.007] 0.022
18 I1 STAI faith 0.042 0.069 [-0.1;0.171] 0.728
18 I1 EPDS shannon -0.131 0.088 [-0.299;0.046] 0.069
18 I1 EPDS faith 0.037 0.074 [-0.107;0.181] 0.691
18 I1 PSS-10 shannon -0.108 0.082 [-0.268;0.056] 0.093
18 I1 PSS-10 faith 0.050 0.068 [-0.084;0.181] 0.770
18 I1 PRAQR2-B shannon -0.023 0.082 [-0.187;0.135] 0.386
18 I1 PRAQR2-B faith 0.036 0.066 [-0.093;0.167] 0.707
18 I1 PRAQR2-H shannon -0.121 0.079 [-0.272;0.038] 0.062
18 I1 PRAQR2-H faith 0.029 0.063 [-0.093;0.154] 0.676
18 I2 MS shannon -0.038 0.029 [-0.094;0.018] 0.092
18 I2 MS faith 0.027 0.027 [-0.024;0.079] 0.845
18 I2 STAI shannon -0.132 0.076 [-0.283;0.017] 0.041
18 I2 STAI faith 0.079 0.071 [-0.058;0.217] 0.869
18 I2 EPDS shannon -0.096 0.083 [-0.258;0.065] 0.120
18 I2 EPDS faith 0.053 0.078 [-0.096;0.213] 0.751
18 I2 PSS-10 shannon -0.057 0.078 [-0.212;0.092] 0.229
18 I2 PSS-10 faith 0.068 0.071 [-0.069;0.209] 0.830
18 I2 PRAQR2-B shannon 0.032 0.082 [-0.128;0.195] 0.652
18 I2 PRAQR2-B faith 0.087 0.074 [-0.057;0.234] 0.881
18 I2 PRAQR2-H shannon -0.019 0.073 [-0.164;0.122] 0.398
18 I2 PRAQR2-H faith 0.033 0.069 [-0.101;0.168] 0.689
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18 I3 MS shannon 0.016 0.030 [-0.044;0.075] 0.697
18 I3 MS faith 0.019 0.028 [-0.037;0.072] 0.756
18 I3 STAI shannon 0.054 0.080 [-0.097;0.213] 0.753
18 I3 STAI faith 0.082 0.073 [-0.061;0.225] 0.868
18 I3 EPDS shannon 0.058 0.087 [-0.112;0.229] 0.749
18 I3 EPDS faith 0.065 0.080 [-0.092;0.222] 0.797
18 I3 PSS-10 shannon 0.010 0.082 [-0.155;0.168] 0.548
18 I3 PSS-10 faith -0.001 0.074 [-0.144;0.145] 0.495
18 I3 PRAQR2-B shannon 0.185 0.079 [0.033;0.339] 0.990
18 I3 PRAQR2-B faith 0.100 0.071 [-0.044;0.231] 0.919
18 I3 PRAQR2-H shannon 0.057 0.075 [-0.088;0.207] 0.778
18 I3 PRAQR2-H faith 0.062 0.069 [-0.071;0.198] 0.819
18 I4 MS shannon -0.055 0.045 [-0.14;0.037] 0.112
18 I4 MS faith -0.002 0.047 [-0.096;0.09] 0.481
18 I4 STAI shannon -0.042 0.116 [-0.271;0.182] 0.358
18 I4 STAI faith 0.081 0.118 [-0.157;0.305] 0.752
18 I4 EPDS shannon -0.165 0.132 [-0.422;0.097] 0.104
18 I4 EPDS faith -0.073 0.136 [-0.34;0.196] 0.291
18 I4 PSS-10 shannon -0.218 0.125 [-0.463;0.031] 0.042
18 I4 PSS-10 faith -0.046 0.129 [-0.299;0.206] 0.362
18 I4 PRAQR2-B shannon -0.125 0.109 [-0.34;0.085] 0.125
18 I4 PRAQR2-B faith -0.092 0.113 [-0.317;0.124] 0.204
18 I4 PRAQR2-H shannon 0.038 0.117 [-0.196;0.263] 0.621
18 I4 PRAQR2-H faith 0.163 0.113 [-0.058;0.386] 0.926
32 I1 MS shannon -0.040 0.033 [-0.105;0.022] 0.112
32 I1 MS faith 0.025 0.026 [-0.025;0.076] 0.833
32 I1 STAI shannon -0.125 0.085 [-0.293;0.041] 0.074
32 I1 STAI faith 0.031 0.068 [-0.106;0.162] 0.672
32 I1 EPDS shannon -0.109 0.086 [-0.273;0.068] 0.104
32 I1 EPDS faith 0.045 0.069 [-0.088;0.18] 0.746
32 I1 PSS-10 shannon -0.051 0.087 [-0.216;0.124] 0.277
32 I1 PSS-10 faith 0.103 0.069 [-0.033;0.236] 0.936
32 I1 PRAQR2-B shannon -0.021 0.090 [-0.194;0.156] 0.407
32 I1 PRAQR2-B faith 0.056 0.071 [-0.081;0.199] 0.789
32 I1 PRAQR2-H shannon -0.184 0.079 [-0.34;-0.03] 0.011
32 I1 PRAQR2-H faith -0.046 0.066 [-0.176;0.082] 0.244
32 I2 MS shannon 0.002 0.031 [-0.06;0.065] 0.527
32 I2 MS faith 0.054 0.028 [0.001;0.11] 0.974
32 I2 STAI shannon -0.039 0.086 [-0.202;0.132] 0.326
32 I2 STAI faith 0.123 0.076 [-0.024;0.272] 0.948
32 I2 EPDS shannon 0.014 0.081 [-0.148;0.172] 0.565
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32 I2 EPDS faith 0.144 0.071 [0.001;0.281] 0.978
32 I2 PSS-10 shannon 0.037 0.080 [-0.124;0.189] 0.679
32 I2 PSS-10 faith 0.101 0.073 [-0.04;0.243] 0.916
32 I2 PRAQR2-B shannon 0.044 0.086 [-0.124;0.209] 0.696
32 I2 PRAQR2-B faith 0.098 0.078 [-0.056;0.248] 0.896
32 I2 PRAQR2-H shannon -0.122 0.076 [-0.272;0.024] 0.051
32 I2 PRAQR2-H faith -0.016 0.070 [-0.152;0.121] 0.411
32 I3 MS shannon 0.042 0.031 [-0.018;0.102] 0.915
32 I3 MS faith 0.023 0.028 [-0.032;0.079] 0.795
32 I3 STAI shannon 0.143 0.081 [-0.019;0.3] 0.960
32 I3 STAI faith 0.056 0.075 [-0.088;0.205] 0.776
32 I3 EPDS shannon 0.124 0.084 [-0.036;0.296] 0.931
32 I3 EPDS faith 0.085 0.078 [-0.07;0.233] 0.864
32 I3 PSS-10 shannon 0.032 0.083 [-0.133;0.191] 0.650
32 I3 PSS-10 faith 0.026 0.074 [-0.121;0.171] 0.632
32 I3 PRAQR2-B shannon 0.172 0.087 [0.003;0.341] 0.977
32 I3 PRAQR2-B faith 0.118 0.076 [-0.031;0.269] 0.940
32 I3 PRAQR2-H shannon 0.032 0.078 [-0.123;0.183] 0.665
32 I3 PRAQR2-H faith 0.026 0.071 [-0.111;0.162] 0.646
32 I4 MS shannon -0.050 0.043 [-0.132;0.037] 0.125
32 I4 MS faith -0.014 0.045 [-0.101;0.075] 0.381
32 I4 STAI shannon -0.018 0.117 [-0.248;0.207] 0.441
32 I4 STAI faith 0.051 0.118 [-0.174;0.29] 0.673
32 I4 EPDS shannon -0.133 0.119 [-0.355;0.111] 0.132
32 I4 EPDS faith -0.032 0.123 [-0.276;0.209] 0.395
32 I4 PSS-10 shannon -0.218 0.118 [-0.444;0.015] 0.032
32 I4 PSS-10 faith -0.127 0.123 [-0.369;0.115] 0.150
32 I4 PRAQR2-B shannon -0.005 0.119 [-0.238;0.225] 0.483
32 I4 PRAQR2-B faith 0.028 0.119 [-0.21;0.26] 0.597
32 I4 PRAQR2-H shannon -0.049 0.120 [-0.292;0.18] 0.337
32 I4 PRAQR2-H faith 0.073 0.121 [-0.178;0.298] 0.720
HCN1 I1 HCN1 shannon -0.037 0.099 [-0.23;0.159] 0.352
HCN1 I1 HCN1 faith -0.041 0.075 [-0.19;0.102] 0.292
HCN1 I2 HCN1 shannon -0.045 0.098 [-0.238;0.151] 0.321
HCN1 I2 HCN1 faith 0.034 0.082 [-0.128;0.193] 0.663
HCN1 I3 HCN1 shannon -0.045 0.100 [-0.245;0.147] 0.328
HCN1 I3 HCN1 faith -0.108 0.086 [-0.283;0.056] 0.102
HCN1 I4 HCN1 shannon -0.255 0.142 [-0.53;0.03] 0.037
HCN1 I4 HCN1 faith -0.349 0.134 [-0.612;-0.091] 0.004
HCN2 I1 HCN2 shannon 0.027 0.099 [-0.175;0.214] 0.606
HCN2 I1 HCN2 faith 0.020 0.075 [-0.132;0.163] 0.605
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HCN2 I2 HCN2 shannon 0.002 0.097 [-0.187;0.195] 0.510
HCN2 I2 HCN2 faith 0.043 0.081 [-0.121;0.197] 0.702
HCN2 I3 HCN2 shannon -0.011 0.099 [-0.203;0.184] 0.454
HCN2 I3 HCN2 faith -0.079 0.088 [-0.25;0.093] 0.180
HCN2 I4 HCN2 shannon -0.111 0.156 [-0.429;0.184] 0.235
HCN2 I4 HCN2 faith -0.282 0.148 [-0.574;0.004] 0.027
HCN3 I1 HCN3 shannon 0.008 0.102 [-0.193;0.207] 0.533
HCN3 I1 HCN3 faith -0.118 0.078 [-0.27;0.038] 0.068
HCN3 I2 HCN3 shannon -0.152 0.096 [-0.343;0.035] 0.059
HCN3 I2 HCN3 faith -0.067 0.087 [-0.24;0.1] 0.217
HCN3 I3 HCN3 shannon 0.024 0.100 [-0.169;0.222] 0.595
HCN3 I3 HCN3 faith -0.086 0.090 [-0.256;0.093] 0.170
HCN3 I4 HCN3 shannon -0.098 0.134 [-0.36;0.163] 0.233
HCN3 I4 HCN3 faith -0.106 0.130 [-0.366;0.145] 0.192
HCN4 I1 HCN4 shannon 0.015 0.114 [-0.2;0.246] 0.556
HCN4 I1 HCN4 faith -0.100 0.087 [-0.275;0.065] 0.123
HCN4 I2 HCN4 shannon -0.153 0.103 [-0.349;0.05] 0.070
HCN4 I2 HCN4 faith -0.049 0.094 [-0.231;0.139] 0.297
HCN4 I3 HCN4 shannon 0.068 0.100 [-0.127;0.261] 0.753
HCN4 I3 HCN4 faith 0.030 0.089 [-0.138;0.212] 0.635
HCN4 I4 HCN4 shannon -0.117 0.148 [-0.395;0.189] 0.210
HCN4 I4 HCN4 faith -0.103 0.138 [-0.376;0.163] 0.222
HCR1 I1 HCR1 shannon 0.067 0.101 [-0.133;0.266] 0.751
HCR1 I1 HCR1 faith 0.101 0.074 [-0.045;0.244] 0.914
HCR1 I2 HCR1 shannon 0.004 0.102 [-0.195;0.206] 0.514
HCR1 I2 HCR1 faith 0.059 0.083 [-0.106;0.219] 0.761
HCR1 I3 HCR1 shannon -0.053 0.102 [-0.255;0.143] 0.300
HCR1 I3 HCR1 faith 0.043 0.089 [-0.133;0.215] 0.690
HCR1 I4 HCR1 shannon 0.209 0.165 [-0.113;0.539] 0.898
HCR1 I4 HCR1 faith 0.238 0.177 [-0.101;0.594] 0.919
HCR2 I1 HCR2 shannon -0.110 0.093 [-0.286;0.078] 0.116
HCR2 I1 HCR2 faith -0.018 0.069 [-0.152;0.119] 0.395
HCR2 I2 HCR2 shannon -0.070 0.090 [-0.248;0.104] 0.218
HCR2 I2 HCR2 faith 0.011 0.084 [-0.156;0.171] 0.549
HCR2 I3 HCR2 shannon -0.013 0.092 [-0.192;0.169] 0.443
HCR2 I3 HCR2 faith 0.085 0.082 [-0.075;0.244] 0.854
HCR2 I4 HCR2 shannon 0.387 0.184 [0.022;0.749] 0.982
HCR2 I4 HCR2 faith 0.256 0.176 [-0.102;0.592] 0.929
HCR3 I1 HCR3 shannon 0.056 0.096 [-0.138;0.238] 0.719
HCR3 I1 HCR3 faith 0.035 0.070 [-0.103;0.171] 0.698
HCR3 I2 HCR3 shannon 0.070 0.091 [-0.103;0.252] 0.785
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HCR3 I2 HCR3 faith 0.046 0.079 [-0.11;0.203] 0.719
HCR3 I3 HCR3 shannon 0.008 0.092 [-0.173;0.188] 0.532
HCR3 I3 HCR3 faith 0.046 0.082 [-0.113;0.21] 0.715
HCR3 I4 HCR3 shannon 0.066 0.153 [-0.221;0.376] 0.673
HCR3 I4 HCR3 faith 0.041 0.150 [-0.245;0.347] 0.614
HCR4 I1 HCR4 shannon 0.150 0.112 [-0.072;0.369] 0.912
HCR4 I1 HCR4 faith 0.054 0.086 [-0.113;0.223] 0.736
HCR4 I2 HCR4 shannon 0.117 0.104 [-0.087;0.32] 0.870
HCR4 I2 HCR4 faith 0.146 0.088 [-0.024;0.319] 0.952
HCR4 I3 HCR4 shannon 0.121 0.101 [-0.084;0.312] 0.885
HCR4 I3 HCR4 faith 0.082 0.090 [-0.099;0.256] 0.820
HCR4 I4 HCR4 shannon 0.172 0.159 [-0.148;0.478] 0.866
HCR4 I4 HCR4 faith 0.124 0.150 [-0.166;0.418] 0.797
HCS1 I1 HCS1 shannon 0.028 0.098 [-0.157;0.23] 0.618
HCS1 I1 HCS1 faith 0.044 0.073 [-0.101;0.188] 0.729
HCS1 I2 HCS1 shannon -0.019 0.097 [-0.217;0.165] 0.423
HCS1 I2 HCS1 faith 0.092 0.086 [-0.075;0.26] 0.850
HCS1 I3 HCS1 shannon -0.060 0.095 [-0.249;0.12] 0.263
HCS1 I3 HCS1 faith -0.030 0.085 [-0.202;0.133] 0.357
HCS1 I4 HCS1 shannon -0.084 0.153 [-0.381;0.216] 0.292
HCS1 I4 HCS1 faith -0.156 0.153 [-0.453;0.148] 0.156
HCS2 I1 HCS2 shannon -0.067 0.093 [-0.247;0.118] 0.235
HCS2 I1 HCS2 faith 0.001 0.070 [-0.14;0.137] 0.504
HCS2 I2 HCS2 shannon -0.050 0.089 [-0.224;0.126] 0.284
HCS2 I2 HCS2 faith 0.048 0.080 [-0.107;0.203] 0.725
HCS2 I3 HCS2 shannon -0.020 0.094 [-0.212;0.158] 0.417
HCS2 I3 HCS2 faith 0.003 0.084 [-0.165;0.165] 0.516
HCS2 I4 HCS2 shannon 0.120 0.170 [-0.212;0.455] 0.756
HCS2 I4 HCS2 faith -0.141 0.169 [-0.487;0.179] 0.195
HCS3 I1 HCS3 shannon 0.051 0.096 [-0.14;0.237] 0.706
HCS3 I1 HCS3 faith -0.050 0.072 [-0.192;0.09] 0.243
HCS3 I2 HCS3 shannon -0.047 0.092 [-0.225;0.14] 0.299
HCS3 I2 HCS3 faith -0.011 0.083 [-0.167;0.154] 0.446
HCS3 I3 HCS3 shannon 0.024 0.095 [-0.165;0.204] 0.601
HCS3 I3 HCS3 faith -0.026 0.086 [-0.193;0.146] 0.381
HCS3 I4 HCS3 shannon -0.059 0.155 [-0.36;0.248] 0.348
HCS3 I4 HCS3 faith -0.092 0.150 [-0.389;0.203] 0.264
HCS4 I1 HCS4 shannon 0.081 0.112 [-0.134;0.304] 0.769
HCS4 I1 HCS4 faith -0.059 0.085 [-0.231;0.104] 0.243
HCS4 I2 HCS4 shannon -0.059 0.101 [-0.265;0.131] 0.276
HCS4 I2 HCS4 faith 0.044 0.086 [-0.121;0.213] 0.697
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HCS4 I3 HCS4 shannon 0.110 0.100 [-0.092;0.301] 0.865
HCS4 I3 HCS4 faith 0.046 0.089 [-0.125;0.225] 0.699
HCS4 I4 HCS4 shannon -0.016 0.157 [-0.317;0.298] 0.460
HCS4 I4 HCS4 faith -0.049 0.145 [-0.335;0.233] 0.369

Note:
M = median of the posterior distribution. p = proportion of the posterior distribution
larger than zero. The column ’Time’ indicates when the stress variable was measured
during pregnancy or which period cortisol and cortisone were measured in, whereby
HCS = hair cortisol, HCN = hair cortisone, HCR = log-ratio of hair cortisol and corti-
sone and the measured times include 23-32 (1), 15-23 (2) and 6-15 weeks of gestation as
well as 4-8 weeks postpartum (4). I1 - I4 = Time point of infant microbiota sampling
in chronological order (2, 6 and 12 weeks and 8 months). PRAQR2-B = Fear of giving
birth. PRAQR2-H = Fear of a handicapped child. MS = maternal stress composite
score.

Table 2.9: Posterior distribution of the beta coefficients
corresponding to the different postnatal stress measures
per time point of infant microbiota sampling and alpha
diversity index.

Stress Variable Sample Index M SD 95% HDI P(𝛽𝛽 𝛽 𝛽)
MS I1 shannon -0.006 0.092 [-0.186;0.171] 0.474
MS I1 faith 0.078 0.075 [-0.065;0.229] 0.850
STAI I1 shannon -0.061 0.094 [-0.237;0.132] 0.261
STAI I1 faith 0.064 0.076 [-0.084;0.213] 0.801
EPDS I1 shannon 0.011 0.090 [-0.169;0.186] 0.548
EPDS I1 faith 0.078 0.079 [-0.082;0.225] 0.838
PSS-10 I1 shannon 0.026 0.085 [-0.136;0.2] 0.619
PSS-10 I1 faith 0.065 0.069 [-0.075;0.197] 0.828
PSAS I1 shannon -0.759 0.639 [-1.98;0.529] 0.116
PSAS I1 faith -0.313 0.516 [-1.318;0.704] 0.270
HCS4 I1 shannon 0.081 0.111 [-0.151;0.288] 0.771
HCS4 I1 faith -0.058 0.084 [-0.228;0.103] 0.242
HCN4 I1 shannon 0.018 0.113 [-0.202;0.24] 0.562
HCN4 I1 faith -0.100 0.087 [-0.275;0.066] 0.125
HCR4 I1 shannon 0.150 0.113 [-0.069;0.373] 0.911
HCR4 I1 faith 0.054 0.087 [-0.115;0.225] 0.734
MS I2 shannon -0.040 0.086 [-0.206;0.129] 0.320
MS I2 faith -0.011 0.077 [-0.162;0.14] 0.444
STAI I2 shannon -0.112 0.086 [-0.277;0.057] 0.092
STAI I2 faith -0.028 0.079 [-0.186;0.126] 0.352
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EPDS I2 shannon -0.037 0.083 [-0.194;0.13] 0.324
EPDS I2 faith -0.072 0.074 [-0.218;0.074] 0.164
PSS-10 I2 shannon 0.031 0.077 [-0.122;0.181] 0.656
PSS-10 I2 faith 0.060 0.071 [-0.082;0.196] 0.808
PSAS I2 shannon -0.229 0.159 [-0.535;0.085] 0.076
PSAS I2 faith -0.047 0.144 [-0.324;0.237] 0.371
HCS4 I2 shannon -0.058 0.101 [-0.258;0.137] 0.281
HCS4 I2 faith 0.046 0.087 [-0.122;0.219] 0.697
HCN4 I2 shannon -0.154 0.103 [-0.356;0.048] 0.068
HCN4 I2 faith -0.048 0.093 [-0.231;0.133] 0.302
HCR4 I2 shannon 0.116 0.104 [-0.092;0.316] 0.869
HCR4 I2 faith 0.146 0.087 [-0.025;0.317] 0.952
MS I3 shannon 0.058 0.071 [-0.083;0.195] 0.797
MS I3 faith -0.015 0.065 [-0.138;0.115] 0.404
STAI I3 shannon 0.050 0.069 [-0.085;0.186] 0.765
STAI I3 faith -0.004 0.065 [-0.132;0.119] 0.474
EPDS I3 shannon 0.047 0.073 [-0.095;0.19] 0.744
EPDS I3 faith -0.028 0.067 [-0.158;0.105] 0.334
PSS-10 I3 shannon 0.069 0.076 [-0.079;0.221] 0.820
PSS-10 I3 faith -0.014 0.069 [-0.147;0.123] 0.423
PSAS I3 shannon -0.167 0.573 [-1.272;0.95] 0.388
PSAS I3 faith 0.022 0.526 [-1.034;1.028] 0.517
HCS4 I3 shannon 0.110 0.100 [-0.09;0.299] 0.864
HCS4 I3 faith 0.046 0.088 [-0.131;0.214] 0.703
HCN4 I3 shannon 0.070 0.099 [-0.137;0.253] 0.760
HCN4 I3 faith 0.032 0.090 [-0.149;0.204] 0.641
HCR4 I3 shannon 0.120 0.100 [-0.076;0.316] 0.882
HCR4 I3 faith 0.081 0.090 [-0.096;0.257] 0.822
MS I4 shannon -0.202 0.107 [-0.414;0.004] 0.028
MS I4 faith -0.124 0.107 [-0.334;0.087] 0.123
STAI I4 shannon -0.102 0.107 [-0.311;0.107] 0.170
STAI I4 faith -0.059 0.108 [-0.265;0.161] 0.296
EPDS I4 shannon -0.247 0.107 [-0.458;-0.036] 0.011
EPDS I4 faith -0.177 0.111 [-0.391;0.045] 0.054
PSS-10 I4 shannon -0.221 0.109 [-0.429;-0.006] 0.021
PSS-10 I4 faith -0.114 0.112 [-0.331;0.112] 0.152
PSAS I4 shannon -0.148 0.103 [-0.351;0.051] 0.076
PSAS I4 faith -0.121 0.104 [-0.327;0.082] 0.123
HCS4 I4 shannon -0.014 0.158 [-0.319;0.304] 0.462
HCS4 I4 faith -0.051 0.144 [-0.335;0.231] 0.359
HCN4 I4 shannon -0.118 0.147 [-0.416;0.164] 0.205
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HCN4 I4 faith -0.102 0.138 [-0.368;0.177] 0.226
HCR4 I4 shannon 0.173 0.158 [-0.13;0.482] 0.865
HCR4 I4 faith 0.122 0.148 [-0.159;0.42] 0.796

Note:
The stress measurement took place at the time of microbiota sampling (except
for the hair derived measures). M = median of the posterior distribution. p
= proportion of the distribution larger than zero. HCS = hair cortisol, HCN
= hair cortisone, HCR = log-ratio of hair cortisol and cortisone. The number
behind the abbreviation indicates that the hair sample reflects the time period
of 4-8 weeks postpartum. I1 - I4 = Time point of infant microbiota sampling
in chronological order (2, 6 and 12 weeks and 8 months). MS = maternal
stress composite score.

Table 2.10: Bacterial species identified in the infant mi-
crobiota samples associated with any of the maternal
stress variables. Results are based on a multilevel model
that was fit to all time points.

Stress Variable Feature Coefficient q
EPDS s__Clostridium_fessum 0.000 0.002
EPDS s__GGB9627_SGB15081 0.000 0.041
EPDS s__Blautia_SGB4805 0.000 0.061
EPDS s__Intestinimonas_butyriciproducens 0.001 0.001
EPDS s__Actinomyces_graevenitzii 0.001 0.034
EPDS s__Gemmiger_SGB15299 -0.003 0.041
EPDS s__Senegalimassilia_anaerobia 0.003 0.061
EPDS s__Streptococcus_parasanguinis 0.005 0.047
EPDS s__Ruminococcus_gnavus 0.019 0.027
HCN1 s__Blautia_glucerasea 0.000 0.095
HCN3 s__Blautia_sp_AF19_10LB -0.002 0.000
HCN3 s__Flavonifractor_plautii -0.020 0.014
HCR1 s__Alistipes_finegoldii -0.002 0.010
HCR2 s__Bacteroides_fragilis 0.044 0.010
HCR3 s__Bacteroides_fragilis 0.068 0.003
HCS2 s__Bacteroides_fragilis 0.031 0.028
HCS3 s__Bacteroides_fragilis 0.049 0.024
HCS4 s__Streptococcus_parasanguinis -0.009 0.083
MS s__Clostridium_fessum 0.000 0.085
MS s__Intestinimonas_butyriciproducens 0.001 0.002
MS s__Actinomyces_graevenitzii 0.001 0.058
MS s__Senegalimassilia_anaerobia 0.003 0.051
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MS s__Bacteroides_xylanisolvens 0.005 0.057
MS s__Streptococcus_parasanguinis 0.005 0.058
PRAQR2-B s__Phocaeicola_vulgatus 0.004 0.092
PRAQR2-H s__Prevotella_copri_clade_A 0.001 0.052
PSS-10 s__Actinomyces_graevenitzii 0.001 0.048
PSS-10 s__Intestinimonas_butyriciproducens 0.001 0.089
PSS-10 s__Bacteroides_xylanisolvens 0.006 0.007
STAI s__Intestinimonas_butyriciproducens 0.001 0.002
STAI s__Senegalimassilia_anaerobia 0.003 0.031

Note:
The leading ”s” indicated phylogenetic Species level. HCS = hair cortisol,
HCN = hair cortisone, HCR = log-ratio of hair cortisol and cortisone. The
number behind the abbreviation indicated the measured time interval in-
cluding 23-32 (1), 15-23 (2) and 6-15 weeks of gestation as well as 4-8 weeks
postpartum (4). PRAQR2-B = Fear of giving birth. PRAQR2-H = Fear of
a handicapped child. MS = maternal stress composite score.

Table 2.11: Bacterial phyla identified in the infant microbiota samples associated with any of
the maternal stress variables. Results are based on a multilevel model that was fit to all time
points.

Stress Variable Feature Coefficient q
EPDS p__Firmicutes 0.032 0.032
MS p__Firmicutes 0.029 0.081
PSS-10 p__Firmicutes 0.031 0.050
Note:
MS = maternal stress composite score.

Table 2.12: Bacterial species identified in the infant mi-
crobiota samples associated with any of the maternal
stress variables. Results are based on models that were fit
per time point as indicated by the ”Sample” and ”Time”
columns.

Time Sample Stress Variable Feature Coefficient q
32 I3 HCS3 s__Bacteroides_fragilis 0.056 0.062
32 I2 HCS3 s__Bacteroides_fragilis 0.096 0.041
32 I2 HCS2 s__Bacteroides_thetaiotaomicron -0.034 0.074
32 I3 HCS2 s__Bacteroides_fragilis 0.037 0.075
32 I2 HCS2 s__Bacteroides_fragilis 0.068 0.013
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32 I3 HCN3 s__Faecalicatena_contorta -0.002 0.000
32 I2 HCN3 s__Odoribacter_splanchnicus -0.007 0.094
32 I4 HCN3 s__Blautia_sp_AF19_10LB -0.010 0.000
32 I2 HCN3 s__Bacteroides_xylanisolvens -0.038 0.022
32 I2 HCN3 s__Flavonifractor_plautii -0.039 0.022
32 I4 HCN1 s__Sutterella_wadsworthensis -0.023 0.096
32 I3 EPDS s__Intestinimonas_butyriciproducens 0.000 0.013
32 I3 EPDS s__Roseburia_intestinalis 0.002 0.013
32 I3 EPDS s__Actinomyces_graevenitzii 0.002 0.047
32 I4 EPDS s__Parabacteroides_merdae 0.002 0.080
32 I3 MS s__Intestinimonas_butyriciproducens 0.000 0.013
32 I3 MS s__Roseburia_intestinalis 0.001 0.013
32 I3 MS s__Actinomyces_graevenitzii 0.001 0.020
32 I4 MS s__Parabacteroides_merdae 0.001 0.095
18 I3 PRAQR2-B s__Intestinimonas_butyriciproducens 0.000 0.059
18 I3 PRAQR2-B s__Clostridia_unclassified_SGB4121 0.001 0.059
18 I3 PRAQR2-B s__Roseburia_intestinalis 0.001 0.059
32 I3 PRAQR2-B s__Actinomyces_graevenitzii 0.002 0.067
18 I3 PRAQR2-B s__Actinomyces_graevenitzii 0.003 0.000
32 I4 HCR3 s__Intestinibacter_bartlettii -0.003 0.001
32 I4 HCR3 s__Cutibacterium_avidum -0.006 0.000
32 I3 HCR3 s__Bacteroides_fragilis 0.069 0.044
32 I2 HCR3 s__Bacteroides_fragilis 0.138 0.004
32 I3 HCR2 s__Bacteroides_fragilis 0.051 0.023
32 I2 HCR2 s__Bacteroides_fragilis 0.093 0.005
32 I4 HCR1 s__Alistipes_finegoldii -0.010 0.011
32 I3 STAI s__Intestinimonas_butyriciproducens 0.000 0.003
32 I3 STAI s__Roseburia_intestinalis 0.002 0.003
32 I4 STAI s__Parabacteroides_merdae 0.002 0.038
32 I3 STAI s__Actinomyces_graevenitzii 0.003 0.005

Note:
The column ’Time’ indicates when the stress variable was measured during pregnancy. HCS
= hair cortisol, HCN = hair cortisone, HCR = log-ratio of hair cortisol and cortisone. The
number behind the abbreviation indicates the measured times including 23-32 (1), 15-23
(2) and 6-15 weeks of gestation. I1 - I4 = Time point of infant microbiota sampling in
chronological order (2, 6 and 12 weeks and 8 months). PRAQR2-B = Fear of giving birth.
MS = maternal stress composite score. The leading ’s’ indicates phylogenetic Species level.
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2.6.3 Supplementary Figures

 

Screening of women 
(n=246) 

Participants started 
study (n=160) 

Women not included (n=86), with reasons: 
• Ineligible for study (n=47) 
• Decided not to participate (n=22) 
• Unable to reach (n=17) 

Participants included 
after birth 

(n=151) 

Participants included 
at 2 weeks postpartum 

(n=143) 

Participants excluded before ‘32weeks’ 
measurement round (n=6), with reasons: 

• Unable to reach (n=2) 
• Obstetric complications (n=2) 
• Stillbirth (n=1) 
• Medication (n=1) 

Participants excluded after birth (n=7), 
with reasons: 

• Birthweight < 2500 (n=1) 
• Delivery < 37 wks gestation (n=3) 
• Apgar 5min < 7 (n=2) 
• Health issues infant (n=1) 

Record excluded during the first two 
weeks postpartum (n=1), with reason: 

• Medication  

Participants included 
at 6 weeks postpartum 

(n=142) 

Participant excluded before ‘6 weeks 
measurement round’ (n=1), with reasons: 

• Withdrawn because of personal 
reasons 

Participant excluded before ’12 weeks 
measurement round’ (n=1), with reasons: 

• Withdrawn because of personal 
reasons 

  
Participants included 

at 12 weeks 
postpartum 

(n=141) 

Flow chart SMILEY participants 

Participant excluded (n=1), with reasons: 
• No interest in follow-up 

measurement rounds  

Participants included 
at 8 months follow-up 

(n=140) 

Participants included 
at 32 weeks pregnancy 

(n=154) 

Participant excluded before birth, with 
reason: 

• Obstetric complications (n=2) 
• Medication (n=1) 
•  

Figure 2.6: Flow chart SMILEY participants.
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Figure 2.7: Pearson correlations between the stress variables at the time points of maternal
microbiota sampling. If the corelation was significant, the coefficient estimate is shown in the
tile, otherwise not. PRAQR2-H = fear of a handicapped child. PRAQR2-B = fear of giving
birth. HCS = hair cortisol, HCN = hair cortisone, HCR = log-ratio of hair cortisol and cortisone.
The measured times of hair cortisol and cortisone include 6-15 (1), 15-23 (2) and 23-32 (3) weeks
of gestation as well as 4-8 weeks postpartum (4).
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Figure 2.8: Pearson correlations between the stress variables at the time points of infant micro-
biota sampling. If the corelation was significant, the coefficient estimate is shown in the tile,
otherwise not. PRAQR2-H = fear of a handicapped child. PRAQR2-B = fear of giving birth.
HCS = hair cortisol, HCN = hair cortisone, HCR = log-ratio of hair cortisol and cortisone. The
measured times of hair cortisol and cortisone include 6-15 (1), 15-23 (2) and 23-32 (3) weeks of
gestation as well as 4-8 weeks postpartum (4).
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Figure 2.9: Directed acyclic graph depicting the assumptions underlying the analyses for the
maternal microbiota samples. pBMI = pre-pregnancy BMI. Activity = Pregnancy Physical
Activity Questionnaire. Diet = Dutch Healthy Diet index.

Figure 2.10: Directed acyclic graph depicting the assumptions underlying the analyses for the
infant microbiota samples. Note that for analyses that use prenatal stress the direction of the
arrow between gestational age and maternal stress reverses.
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Figure 2.11: Visualization of beta diversity of all maternal samples using either Aitchison dis-
tance (A) or Bray-Curtis similarity (B). Samples were taken at 18 (M1) and 32 (M2) weeks of
pregnancy as well as 8 months postpartum (M3).
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3.1 Abstract

Entry to center-based childcare (CC) at three months of life can be an important challenge
for infants as it includes major stressors such as long maternal separations and frequently
changing caregivers. Stress and the new environment may in turn alter the composition of the
gut microbiota with possible implications for future health outcomes. As part of an ongoing
longitudinal study, we investigated whether CC, as compared to being cared for by the parents
at home, alters the composition of the gut microbiota, while accounting for known covariates of
the infant gut microbiota. Stool samples of infants who entered CC (n=49) and control infants
(n=49) were obtained before and four weeks after CC entrance. Using Redundancy analysis,
Random Forests and Bayesian linear models we found that infant gut microbiota was not affected
in a uniform way by entry to CC. In line with the literature, breastfeeding, birth mode, age,
and the presence of siblings were shown to significantly impact the microbial composition.

3.2 Introduction

The human gut microbiota refers to a complex and dynamic population of microorganisms that
resides in the human gastrointestinal tract and has recently become object of much scientific
endeavors. Intestinal bacteria as part of this ecosystem play central roles in human health and
disease (Cryan et al., 2019; Marchesi et al., 2016). They are essential for nutrition, intestinal
function, the education of the developing immune system and the protection of the host from
invading microbial pathogens (Adlerberth & Wold, 2009; Gonzalez et al., 2011; Leslie et al.,
2019). Via a bi-directional communication system, intestinal bacteria may even influence brain
development and behavior (Cryan et al., 2019; de Weerth, 2017; Derrien et al., 2019; Mayer,
2011).

Multiple factors contribute to the development of the human gut microbiota in infancy and the
microbial composition becomes relatively stable within the first 3–5 years of life, although some
reports describe a longer development phase (Robertson et al., 2019; Rodríguez et al., 2015).
Because intestinal bacteria influence the development of important host physiological systems
within this early and critical developmental time period (Borre, Moloney, et al., 2014) it is crucial
to understand the factors that influence the establishment of the early gut microbiota. In the
present study we will concentrate on an early life factor that can potentially disrupt healthy gut
microbial colonization and negatively affect microbial composition: entry into childcare at the
age of 3 months. In the following paragraphs, we will outline how gut microbial colonization
occurs and why entering childcare at that young age may disrupt this process.

Gut microbiota development is a highly dynamic and individual process. The current consensus
is that the first major exposure to microbes happens during the birthing process and is highly
dependent on mode of delivery (Dominguez-Bello et al., 2010; Dominguez-Bello et al., 2016;
Korpela & De Vos, 2018). The first inoculation during natural childbirth clearly resembles the
maternal fecal microbiota, with potential input from the vagina and other parts of the urogenital
tract (Korpela & De Vos, 2018). In contrast, infants delivered through a Caesarean section (C-
section) are colonized with common skin and environmental microbes (Dominguez-Bello et al.,
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2010). Nevertheless, this difference in microbiota composition between children born vaginally
or by C-section seems to gradually decrease, although some later life impact has been reported
(Sevelsted et al., 2015; Tamburini et al., 2016).

The initial inoculum initiates a succession of events leading to the development of a child’s own
microbiome. In this dynamic process the microbial abundance increases over time, with large
fluctuations in the microorganisms present and their relative abundance (Koenig et al., 2011).
Diversity generally increases, aerobes are succeeded by facultative and then strict anaerobes and,
roughly up until the introduction of the first solid foods, a well-constrained range of stereotypical
bacteria emerge in the faeces. Exclusive breast-feeding generally selects for genera specialized
in the utilization of complex human milk oligosaccharides, such as Bifidobacterium (Sela et
al., 2008) and to a lesser extent Bacteroides spp, as they can compete for the same ecological
niche (Marcobal et al., 2010). By studying both Western and non-Western populations it has
been shown that differences exist with regards to community membership, but that the overall
temporal dynamics are similar over populations, with aberrant development after C-section
delivery, use of antibiotics or early termination of breast-feeding (Blanton et al., 2016; Korpela
& De Vos, 2018; Planer et al., 2016; Smith et al., 2013; Subramanian et al., 2014).

Microbial colonization is characterized by large inter- and intra-individual variability, with large,
abrupt, community shifts with interludes of relative stability of varying lengths of time (Favier
et al., 2002; Koenig et al., 2011; Palmer et al., 2007; Trosvik et al., 2010). Sometimes these
shifts occur together with life events that likely instigate considerable environmental pressure,
such as antibiotics use, fever, and introduction of formula feeding (Palmer et al., 2007). Animal
models that use maternal separation (MS) to induce early life stress, suggest that early life stress
is another such environmental pressure that can induce shifts in the microbiota. MS provokes
an adult depressive and anxiety-like phenotype, along with altered immune function, activation
of the hypothalamic-pituitary-adrenal (HPA) axis and disruption of the offspring’s microbiota
(Bailey & Coe, 1999; Desbonnet et al., 2010; Foster et al., 2017; S. M. O’Mahony et al., 2009,
2011). De Palma et al. (2015) demonstrated the importance of the microbiota to induce these
behavioral changes in animals. In germ free mice HPA axis regulation was altered by early life
stress, but for the actual induction of the behavioral changes the microbiota was required. This
indicated that MS-induced changes in host physiology led to intestinal dysbiosis, which in turn
was needed for behavioral changes to occur (De Palma et al., 2015).

The entrance into center-based childcare (CC) typically starts at three months of life in the
Netherlands and includes early life stressors such as long maternal separations, new and fre-
quently changing caregivers and peers, and exposure as well as adaption to a new physical
environment. Entering CC produces significant increases in cortisol levels as compared to being
cared for in the home environment. Cortisol levels continue to increase until at least a month
after entering (Ahnert et al., 2004; Albers et al., 2016; Watamura et al., 2010; Waynforth,
2007). CC has also been related to other symptoms and illnesses including diarrhea, respiratory
illnesses, otitis media, and skin complaints (Beijers et al., 2011a). These findings indicate that
entering CC at this young age can be an early life stressor for infants.

This study explores the effects of the entrance to CC on the developing microbiota of 3-month-
old infants by comparing infants attending CC to infants being cared for at home. In line
with the above-mentioned animal studies, we expected CC to be associated with changes in
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microbial composition. Specifically, we tested for differences in the relative abundances at a
genus-like level (see Methods) as well as differences in alpha diversity by combining univariate
Bayesian approaches with multivariate methods including the Random Forests machine learning
algorithm that has previously been shown to be useful in microbiome data analyses (Blanton et
al., 2016). We included breastfeeding as a potential protective factor for microbial development,
and accounted for known confounders, namely birth mode, antibiotics, age, and the presence of
siblings (Stewart et al., 2018).

3.3 Methods

3.3.1 Participants

As part of a larger and ongoing longitudinal study (BIBO), 220 mothers were followed since the
third trimester of pregnancy, to investigate the influences of early environmental and caregiving
factors on child development. Uncomplicated singleton pregnancy, proficiency in the Dutch
language, no drug use, and the absence of physical and mental health problems were criteria
for initial inclusion. Eight of the 220 women were excluded due to preterm birth or for other
medical reasons. In addition, 19 mothers discontinued participation in the study during the first
three postpartum months because of personal circumstances. All remaining infants (N=193)
were healthy and born at full term (37 weeks). Infants who had used antibiotics (n=4) were
excluded from the current study. In the first four months of life, mothers collected 9 fecal samples
from their infants. Two samples were available for use in this study: Ten weeks post-partum,
before entrance to CC (PRE), and 4 weeks after the PRE sample (POST). After eliminating
infants who did not provide stool samples for both time points, the final sample size consisted
of 49 infants who entered CC (group CC) and 49 infants who were cared for at home (group
HOME). Table 3.1 shows demographic variables for both groups. The age of the HOME group
infants was slightly lower than that of the CC group, both for sample PRE (p<0.001) as for
sample POST (p<0.001), using Welch’s t-test. There were no significant differences between
groups for any other of the shown variables. Within the CC group, infants varied in the
number of half-days of childcare per week (Mdn=4, IQR=3-4). We tested in a separate analysis
whether the number of half-days was associated with gut microbiota composition beyond just
the grouping variable, but this effect did not modify the conclusions (Supplementary Table 3.4).
This study and all its experimental protocols were approved by and carried out in accordance
with the Ethical Committee of the Faculty of Social Sciences, Radboud University Nijmegen
(ECG/AvdK/07.563). Informed consent was obtained from each mother.
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Table 3.1: Descriptive statistics for demographic vari-
ables of infants and mothers included in the present
study.

CC (n = 49) HOME (n = 49) p-value
Sex

Male 29 25 0.417
Female 20 24

Age (days) PRE
mean (sd) 87.8 (±) 16.0 76.7 (±) 6.3 <0.001
Min 58 68
Max 123 90

Age (days) POST
mean (sd) 118.4 (±) 16.1 106.5 (±) 5.9 <0.001
Min 90 97
Max 154 116

Maternal Age (years)
mean (sd) 32.9 (±) 3.0 32.2 (±) 3.6 0.306
Min 25.1 24.9
Max 42.0 40.1

Birthweight (grams)
mean (sd) 3630.4 (±) 508.9 3636.0 (±) 438.4 0.955
Min 2708 2810
Max 4600 4700

Breastfeeding (Birth - PRE)
mean (sd) 5.4 (±) 2.9 5.7 (±) 2.3 0.558
Min 0 0
Max 11.4 8.9

Breastfeeding (PRE - POST)
mean (sd) 4.0 (±) 2.9 3.8 (±) 2.8 0.832
Min 0 0
Max 8.5 8.2

Formula-feeding (Birth - PRE)
mean (sd) 1.5 (±) 2.4 1.4 (±) 2.1 0.558
Min 0 0
Max 7.7 7.0

Formula-feeding (PRE - POST)
mean (sd) 1.8 (±) 2.4 2.0 (±) 2.3 0.832
Min 0 0
Max 5.9 6.0

Proportion breastfeeding (Birth - PRE)
mean (sd) 0.8 (±) 0.4 0.8 (±) 0.3 0.558
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Min 0 0
Max 1 1

Proportion breastfeeding (PRE - POST)
mean (sd) 0.7 (±) 0.5 0.6 (±) 0.5 0.832
Min 0 0
Max 1 1

Siblings
Yes 25 32 0.186
No 23 17

C-Section
Yes 6 3 0.294
No 42 45

3.3.2 Microbiota covariates

The mothers received diaries towards the end of their pregnancy with instructions to take
weekly notes about breastfeeding and formula-feeding from week 1 until week 27 after birth.
For each week, the average number of breast- and/or formula-feedings per day were noted. To
determine the effect of breastfeeding we defined two breastfeeding variables: the average number
of feedings per day before and during the investigative period (i.e. birth to when the PRE-
sample was obtained and PRE to when the POST-sample was obtained). The average number
of breastfeedings included the feeding of expressed breastmilk through a bottle. We included
the breastfeeding variables, age, siblings and C-section as covariates in all linear models. For 5
infants (4 in CC (8%), 1 in HOME (2%)) breastfeeding data was missing completely. For the
univariate analyses the missing values were imputed using multiple imputation (see methods).
For the multivariate analysis and visualization the original data was used.

3.3.3 Feces collection, DNA isolation and microbiota profiling

The parents were instructed to collect the fecal samples at home and to store them at -20 de-
grees Celsius. For transportation, samples were kept in coolers and then stored at -20 and later
at -80 degrees Celsius before being processed at the Laboratory of Microbiology at Wageningen
University. DNA isolation from fecal samples has been described elsewhere in detail (Salo-
nen et al., 2010). In brief, DNA was isolated using a combination of column purification and
Repeated-Bead-Beating. Purity and concentration of DNA were assessed with a Nanodrop 1000
spectrophotometer (Thermo Fisher Scientific, Wilmington, USA). The analysis was then per-
formed utilizing a previously benchmarked custom made, phylogenetic microarray, the Human
Intestinal Tract Chip (HITChip) (Claesson et al., 2009; Rajilić-Stojanović et al., 2009). The
HITChip contains a duplicated set of 3,631 probes, which target the V1 and V6 hypervariable
regions of the 16 S rRNA gene of 1140 intestinal bacterial phylotypes. After extraction of DNA,
the full-length 16S rRNA gene was amplified by PCR using primers T7prom-Bact-27-for and
Uni-1492-rev41. This was followed by in vitro transcription and labelling of the resulting RNA
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with Cy3/Cy5 before hybridization to the array. The signal intensity data from the microarray
hybridizations were collected from the Agilent G2505C scanner (Agilent Technologies) using
the Agilent Feature Extraction software, version 10.7.3.1 and pre-processed using an in-house
MySQL database and custom R scripts. Each scanner channel from the array was spatially
normalized separately using polynomial regression, followed by outlier detection and filtering in
each set of probes with a 𝜒𝜒2 test. Each sample was hybridized at least twice to ensure repro-
ducibility. Duplicate hybridizations with a Pearson correlation <0.95 were not considered for
further analysis. Microbiota profiles were summarized to genus-like 16S rRNA gene sequence
groups with a sequence similarity >90% referred to as species and relatives (‘et rel.’). Measure-
ments of probes that belong to the same phylotype were normalized with Robust Probabilistic
Averaging (Lahti et al., 2011, 2013). Log10-transformed hybridization signals were used as a
proxy for bacterial abundance.

3.3.4 Statistical analyses

3.3.4.1 Microbiota analysis

All analyses were performed in R version 3.5. Bacterial richness was calculated at the probe level
by using an 80% quantile threshold for detection of each individual probe. Diversity within a
sample is termed alpha diversity and was calculated using the Shannon metric. HITChip signals
were transformed to relative abundance. To determine the dynamics of microbial groups we
calculated their coefficient of variation (CoV). CoV is a standardized measure of dispersion
defined as the ratio of the standard deviation (𝜎𝜎) to the mean (𝜇𝜇). For the redundancy analysis
(RDA) and the Bayesian robust linear models we applied centered-log-ratio (clr) transformation
(Aitchison, 1986). The clr-transformation of relative abundances allows for the application of
statistical methods that have been developed for real random variables, such as RDA and
the Bayesian models (Gloor et al., 2017). To determine the multivariate effects of CC and the
number of half-days in CC on overall microbiota composition, we performed redundancy analysis
(RDA) while accounting for the following variables that are known to influence microbiota
composition: breastfeeding (average number of feedings during and before the investigative
period), birth mode (C-section vs natural birth), age in days, and the presence of siblings using
the function rda from the vegan package (Oksanen et al., 2020).
To determine the univariate effects of CC entry on alpha diversity and each bacterial group
individually, we performed Bayesian hierarchical robust linear models as described by Krushke
et al.(Kruschke, 2013). Bayesian data analysis provides several advantages over classical null
hypothesis group comparison methods. These include richer information about parameter esti-
mates, as the method provides complete distributional information about model parameters such
as means and standard deviations, including credibility intervals of all possible combinations
of these parameters. Furthermore, Bayesian data analysis delivers more precise information
about the uncertainty when estimating group differences. The robust linear model presented
by Krushke et al. in particular has advantages over standard linear models: The model is able
to accurately estimate the mean (𝜇𝜇) and standard deviation (𝜎𝜎) when outliers are present as it
utilizes the student t-distribution instead of the gaussian distribution. Furthermore, standard
linear models assume homogeneity of variance between groups while this assumption is often
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violated in the context of differential abundance testing (Kruschke, 2013). In addition, an en-
vironmental factor could lead to a change in the variance of a distribution rather than (only) a
change in the mean. This possibility is not considered in standard models. Our model allows
the standard deviationto vary between the groups by modeling it as a linear function of the
grouping variables CC, time, siblings and birth mode. The model can be written as:𝑦𝑦𝑖𝑖 ∼ 𝑇𝑇 𝑇𝑇𝑇𝑇 𝑇𝑇𝑇 𝑇𝑇𝑇
where

𝜇𝜇 𝜇 𝜇𝜇0𝑖𝑖𝑖𝑖𝑖𝑖+𝛽𝛽1×𝐶𝐶𝐶𝐶𝐶𝐶𝐶2×𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡3×𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶4×𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎5×𝑏𝑏𝑏𝑏𝑏𝑏𝑏6×𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠7×𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐8×𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
and

𝜎𝜎𝜎𝜎𝜎  𝜎𝜎𝜎 + 𝛽𝛽𝜎𝜎𝜎 × 𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝜎𝜎𝜎 ×𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝜎𝜎𝜎 ×𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝜎𝜎𝜎 ×𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜎𝜎𝜎 ×𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝜎𝜎𝜎 ×𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠
Besides 𝜇𝜇 (mean) and 𝜎𝜎 (standard deviation (SD)), the model consists of the parameter 𝜈𝜈,
which represents the normality parameter (low values lead to long and heavy tails, whereas as𝜈𝜈 increases, the distribution approaches the gaussian distribution). The j in 𝛽𝛽0𝑖𝑖𝑖𝑖𝑖𝑖 indicates that
each subject can deviate from the overall mean (often referred to as partial pooling or mixed
effects modeling).
The goal is to infer differences in 𝜇𝜇 and 𝜎𝜎 of the assumed distribution of relative bacterial abun-
dances between the subgroups (CC PRE, CC POST, HOME PRE and HOME POST), while
accounting for the effects of the other environmental variables. This implies multiple compar-
isons of model parameters. In the Bayesian framework we can use a normal prior centered at
0 with a standard deviation of 1 for each comparison of interest across all the models so that
the Bayesian 95% credible interval (CI) of the effect size is always more likely to include zero
compared to the classical confidence interval, which makes Bayesian inference a more conser-
vative approach (Gelman et al., 2012). The robust linear models were fitted using the package
brms, which uses the probabilistic programming language Stan (Bürkner, 2017; Carpenter et
al., 2017). Stan utilizes Hamilton Monte Carlo (HMC), a Markov chain Monte Carlo (MCMC)
method, to estimate parameters. To ensure proper convergence of the chains, we investigated
individual chains using Shinystan and screened diagnostic parameters (divergent transitions and
rhat values) (Gabry & Veen, 2020). To visualize the posterior predictive intervals we utilized the
tidybayes package (Kay, 2020). Brms allows multiple data sets as input, which enables the use
of multiple imputation. We used predictive mean matching (PMM) as implemented in the mice
package (van Buuren & Groothuis-Oudshoorn, 2011) to impute the missing data points within
the breastfeeding variable. PMM is robust against misspecification of the imputation model
while performing as well or better than common parametric imputation models under various
missingness conditions with up to 20–30% missing values (Kleinke, 2017; Marshall et al., 2010).
In contrast, the variable breastfeeding had 10% missing. The multiple imputation resulted in
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10 new datasets that were used to fit the Bayesian models. We also explored the same models
using listwise deletion.

Finally, to evaluate whether we could predict childcare entrance based on microbiota compo-
sition after one month, we used the Random Forests machine learning algorithm (RF) with
relative abundance data. RF is a tree-based ensemble learning method that is well suited for
classification based on microbial abundances (Knights et al., 2011). We performed repeated 10-
fold cross-validation (10 × 10) to estimate the classification accuracy using the caret package
(Kuhn, 2008).

3.4 Results

3.4.1 Infant microbiota composition and dynamics

Overall, the infant microbiota was dominated by only a few genera from four Phyla; Actinobacte-
ria, Firmicutes (specifically members from the Class Bacilli), Bacteroidetes and Proteobacteria.
At the genus level, these were Bifidobacterium spp. with a mean relative abundance of 51%,
followed by facultative anaerobes from the Bacilli (bacteria related to Streptococcus (16.8%),
Enterococcus (3.4%), Lactobacillus plantarum et rel (2.9%) and Granulicatella (1.0%)). The
cumulative mean relative abundance of these groups was more than 75%. Additionally, the
variation in relative abundance of these taxa at the population level was very high. For in-
stance, the relative abundance of Bifidobacterium spp. ranged from completely dominating
(89%) to almost absent (0.2%) (Fig. 3.1A,B). Apart from being the most dominant taxa at the
population level these were also among the most variable within subjects as determined by their
CoV (Fig. 3.1C). The fact that the most abundant taxa display the highest variability implies
a highly variable microbiota.

3.4.2 Effects of childcare entry on infant microbiota

3.4.2.1 Redundancy analysis of the effects of childcare entry on infant gut micro-
biota composition

We determined whether childcare (CC) entry affected overall microbiota community composi-
tion using Redundancy Analysis (RDA). RDA is a direct gradient analysis technique which sum-
marizes linear relationships between components of response variables (microbiota) explained
by a set of explanatory variables (CC and covariates) by multiple linear regression of the mul-
tiple response variables on the multiple explanatory variables. To determine how the different
environmental variables interact with and impact the microbiota, we calculated their simple
effects (i.e. the effect of the environmental variable on the microbiota without any other co-
variates) as well as the conditional effects (the impact on the microbiota when the effect of the
other variables are partialled out). This allowed us to determine the effect of each variable on
its own, but also their combined effects.
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Figure 3.1: Infant microbiota composition and dynamics. (A,B) Relative abundance of major
genus-like groups and their Phyla with mean abundance of >1% at the population level. (C)
Coefficient of Variation (CoV) of all genus-like groups. The infant microbiota is highly variable
as it is dominated by only a few taxa, which are also among the most variable. GREEN -
Actinobacteria; BLUE - Firmicutes, Class Bacilli; BLACK - Firmicutes excluding Class Bacilli;
RED - Bacteroidetes; ORANGE - Proteobacteria.
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Table 3.2: RDA models output.

Df Variance F Pr (>F) R2
Simple effects

Time 1 0.317 1.4265 0.129 0.008
CC 1 0.274 1.2314 0.256 0.007
Age 1 0.436 1.9677 0.028∗ 0.011
Sibling 1 0.456 2.0602 0.019∗ 0.011
Birth-mode 1 0.559 2.5288 0.015∗∗ 0.014
Breastfeeding 2 1.605 3.7085 0.001∗ ∗ ∗ 0.032
CC × Time 3 0.781 1.172 0.226 0.019

Conditional effects
Age 1 0.436 2.0652 0.018∗ 0.004
Sibling 1 0.598 2.8338 0.003∗∗ 0.010
Birth-mode 1 0.609 2.8843 0.002∗∗ 0.010
Breastfeeding 2 1.663 3.9364 0.001∗ ∗ ∗ 0.027

We did not find a significant effect of CC entry or the number of half-days in CC (Supplemen-
tary Table 3.1), compared to staying at home, on the microbiota. Neither in separation nor
combined with other environmental variables. Nevertheless, birth mode, feeding mode, age, and
siblings, were significantly correlated to the microbiota in concordance with literature (Stewart
et al., 2018). The strongest effect was from breastfeeding, with decreasing effect sizes for birth
mode, siblings and age. All simple and conditional effects and corresponding p-values and their
respective effect sizes (𝑅𝑅2) are shown in Table 3.2. 𝑅𝑅2 reflects the percentage of variation ex-
plained out of the total microbiota variation; i.e. a higher 𝑅𝑅2 implies a stronger effect. All these
findings are combined in a tri-plot visualizing the relation of the environmental variables with
each other and their resulting effect on the microbiota (Fig. 3.2A). The relation between the
variation explained by the environmental variables and their overlapping conditional effects is
visualized in a Venn diagram (Fig. 3.2B).

3.4.2.2 Bayesian group comparisons of effects of entry on individual microbial
groups and microbiota diversity

To gain more insight on the association of CC entry and other environmental variables with
individual bacterial groups and microbiota diversity, we performed Bayesian hierarchical robust
linear models. Bayesian approaches provide more detailed information about the uncertainty
when estimating parameters such as group differences or slope parameters in linear models.
The robust linear model as described by Kruschke et al. is particularly well suited to model
distributions when outliers are present and to address common model violations in standard
linear models such as heterogeneity of variance (Kruschke, 2013). In the following, for covariates,
effect refers to the magnitude of the slopes whereas for the group comparisons effect refers to the
difference in the means. To compute the difference in means between two groups (e.g. CC-PRE
- CC-POST) the calculated posterior distributions of their means are subtracted. We make a
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Figure 3.2: The impact of birth mode, breastfeeding, siblings and age on the infant gut micro-
biota. (A) Redundancy analysis (RDA) visualizing microbiota composition of all fecal samples
(n = 196) colored by the number of breast-feedings and the size of the points scaled by age
in days. Individuals born by C-section are represented as triangles. RDA displays and ex-
plains the variation explained in the microbiota, constrained by the predictor variables. Blue
arrows depict the significant environmental variables and grey arrows the abundance of bac-
terial groups. Length of the arrows is a measure of fit. The longer the arrow the higher the
association. (B) Venn diagram visualizing the partitioning of the variation explained by the
significant predictors. P< 0.001, P < 0.01, P < 0.05.

86



Results 87

statement with confidence about the effect size being larger than zero when 95% of the posterior
distribution excludes zero. The use of listwise deletion instead of multiple imputation led to
similar results.

Figure 3.3 shows the posterior distributions of interest whereby red coloring indicates that we can
make a claim with confidence. Within the CC or HOME group (Fig. 3.3A), temporal effects
were as follows. Within CC, bacteria related to Streptococcus bovis and Staphylococcus were
lower after one month, whereas within HOME bacteria related to Granulicatella and Aerococcus
were higher, while those related to Enterobacter aerogenes and Oxalobacter formigenes were
lower. We did not detect differences in relative bacterial abundances between the two groups
(Fig. 3.3B, right graph) before CC entry, while after one month the relative abundance of the
Proteobacteria related to Enterobacter aerogenes and Klebsiella pneumoniae was lower in the
HOME group, while that of Streptococcus intermedius was higher (Fig. 3.3B, left graph).

Figure 3.3C shows that infants born via C-section showed higher relative abundances of bacteria
related to Granulicatella, Aerococcus and Micrococcaceae, but lower relative abundances of
Bifidobacterium. Infants with siblings were found to have lower levels of Staphylococcus and also
a lower SD of this taxon. A lower SD was also confirmed for Enterococcus, without differences
in the mean. Finally, as can be seen in Fig. 3.3D, a higher number of daily breast-feedings was
associated with more bacteria related to Staphylococcus and less to Enterococcus, Collinsella,
Eggerthella lenta and Oxalobacter formigenes. A higher age was positively associated with
bacteria related to Streptococcus mitis, Streptococcus intermedius and Gemella.

We used the same approach to compare microbiota diversity between groups. Table 3.3 shows
the estimated difference in the means and standard deviations between the groups as well as
the magnitude of the slopes for the covariates. Within the CC or HOME groups our model
estimates that there is no temporal effect on diversity as well as between the two groups before
CC entrance. However, when comparing HOME and CC one month after entrance, the average
diversity was estimated to be lower in the CC group. Figure 3.4 shows the means of the Shannon
diversity index per group with 95% CI (black point range) as well as the observed values (black
points) and the posterior predictive interval (blue bar). To calculate the predictive interval,
we used the median for the average number of breast-feedings and the median age at PRE
and POST, respectively. The Bayesian predictive intervals illustrate the uncertainty of the
predictions: the estimated distributions for the CC/HOME groups are very much overlapping
despite the mean difference, whereas C-Section seems to have a stronger impact on diversity. Age
and breastfeeding did not reach our predefined threshold to make a statement with confidence
about the effect being > 0 and there was no difference in the estimated standard deviations
between groups.

3.4.2.3 Random Forest analysis of non-linear relationships between childcare entry
and microbiota composition

Finally, we used the random forests (RF) algorithm to determine if we could accurately classify
whether an infant belonged to the HOME or CC group after one month. The latter would
indicate a characteristic effect of CC on the infant gut microbiota. The benefit RF has over
the linear models is its ability to detect non-linear associations. The prediction accuracy using
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Figure 3.3: Bayesian hierarchical robust linear model posterior distributions for individual bac-
terial group differences. (A) within group effects, (B) between group effects and (C) C-section
and siblings (D) age and breastfeeding. For the covariates (D) the x-axis refers to the magnitude
of the slopes whereas for the group comparisons (A–C) it refers to the difference in the means.
Taxa are shown in red when the probability that the absolute effect size is >0 exceeds 0.95,
given our model and the data. 88
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Figure 3.4: Bayesian hierarchical robust linear model group posteriors for microbiota alpha
diversity. Means of Shannon diversity per group with 95% CI are shown with the black point
range. The observed values are shown as black points within the blue bar. The Bayesian
posterior predictive intervals are shown in blue. The predictions were made using the median
for average number of breast-feedings and median age at PRE and POST.
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Table 3.3: Estimated model parameters for microbiota diversity (Shannon).

Comparison Median 95% CI
Difference in means

CC PRE - HOME PRE 0.01 [-0.18, 0.19]
HOME POST – HOME PRE 0.11 [-0.01, 0.23]
CC POST – CC PRE -0.12 [-0.26, 0.03]
CC POST – HOME POST -0.22 [-0.41, -0.03]

Covariates
C-section:yes – C-section:no 0.43 [0.15, 0.70]
Sibling:yes – Sibling:no -0.11 [-0.27, 0.06]
Age 0.06 [-0.07, 0.20]
Breastfeeding -0.06 [-0.13, 0.01]

Difference in SD
CC PRE – HOME PRE 0.07 [-0.02, 0.17]
HOME POST – HOME PRE 0.01 [-0.09, 0.10]
CC POST – CC PRE 0.02 [-0.13, 0.19]
CC POST – HOME POST 0.08 [-0.04, 0.22]
C-section:yes – C-section:no 0.06 [-0.06, 0.24]
Sibling:yes – Sibling:no -0.02 [-0.12, 0.07]

repeated cross validation was close to random classification with 53.5%, suggesting that CC did
not produce a strong uniform shift in microbiota composition.

3.5 Discussion

This study examined the effect of entry into center-based childcare (CC) on gut microbial com-
position of 3-4-month-old infants by comparing the microbial composition between infants that
entered CC at 3 months and infants that were cared for at home (HOME) at that age. For all
infants, we assessed microbial composition at two time points: At 10 weeks of age (PRE), which
was before CC entrance for the CC group, and 4 weeks later, or 4 weeks after entrance for the
CC group (POST). We accounted for known covariates including age, presence of siblings (yes
vs no), delivery mode (natural vs C-section) and the average number of breast-feedings per day
in the period before measurement of the microbiota. We combined multivariate (Redundancy
analysis and Random Forest algorithm) with Bayesian univariate statistical methods to test our
hypothesis that CC entrance is associated with changes in microbial composition over time.
The microbiota of all the infants exhibited a low microbial diversity as it was dominated by
only a few typical bacterial groups from the phylum Actinobacteria (Bifidobacterium spp and
Collinsella), facultative anaerobes from the Firmicutes (such as Streptococcus spp, Lactobacillus
spp and Enterococcus spp), Proteobacteria (E.coli and bacteria related to Enterobacter aero-
genes) and Bacteroidetes (Bacteroides spp). These findings are in line with findings from previ-
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ous studies in the US and Europe (Germany, Finland, Sweden and the Netherlands) (Borewicz
et al., 2019; Stewart et al., 2018; Yatsunenko et al., 2012).

In contrast to breastfeeding, birth mode, age, and the presence of siblings, CC was not associated
with gut microbiota composition according to Redundancy analysis (RDA). In line with that,
we could not achieve higher accuracy than by chance using the Random Forest algorithm to
classify CC vs HOME using the POST samples. Bayesian univariate analyses, that also take
the individuality of the starting microbiota into account, did show a few taxa to be differently
distributed between the two groups in the POST samples. In the HOME group the relative
abundances of Proteobacteria related to Enterobacter aerogenes and Klebsiella pneumoniae were
lower while that of Streptococcus intermedius was higher compared to the CC group at time
POST. Except for bacteria related to Streptococcus intermedius, these bacterial groups were
also heavily influenced by other environmental variables. Using the same Bayesian approach,
we observed a lower Shannon alpha diversity in the CC group compared to the HOME group
at time POST. All in all, our results show that entrance to CC does not result in a complete
and homogeneous ‘disruption’ or ‘dysbiosis’ of the microbiota as reported for rodents subjected
to early life stress.

There are several possible explanations for the lack of a general effect of the entrance to childcare
on infants’ gut microbiota. First, although CC entrance may be considered a major stressor in
a young infant’s life that is accompanied by substantial rises in stress hormones (Ahnert et al.,
2004; Albers et al., 2016; Watamura et al., 2010; Waynforth, 2007), it might not be comparable
in severity to maternal separations in rodents. E.g. in our CC sample infants were taken care of
by surrogate caregivers, while in maternal separation paradigms with rodent pups, there is no
surrogate caregiver during the separation (S. M. O’Mahony et al., 2011). Also, Dutch infants
typically attend childcare for around 2 days a week (Beijers et al., 2013); this contrasts with
practices elsewhere in the world and may not be enough exposure to produce major effects on the
microbiota. Second, rodents lack the genotypical variation found in human populations and are
kept and studied in controlled laboratory environments in which the individual variation in gut
microbiota is small (Nguyen et al., 2015; Yates et al., 2016). Hence, in rodent models the effects
of environmental pressures can be studied in complete isolation. This may lead to a much greater
response to an individual stressor than it normally would when other (stronger) environmental
drivers of microbiota composition are present. Finally, the infant gut microbiota at 3–4 months
of age is still in an unstable, dynamic, highly individual developmental stage (Favier et al., 2002;
Koenig et al., 2011; Palmer et al., 2007; Stewart et al., 2018; Trosvik et al., 2010). This was
confirmed by a very large intra and inter-individual microbiota variability in our population.
Microbiota at these young ages appears to show large fluctuations, probably resulting from a
myriad of environmental influences. Additionally, infants of the present study went to different
childcare centers, which exposed them to different built environments, caregivers and other
infants with different microbiomes, thereby increasing the variety of environmental influences
on the microbiota. Nevertheless, a generalizable stress-related effect across centers would most
likely have been detectable, despite these (unknown) and potential center-specific confounding
variables. Other factors than those we controlled for are e.g. fever, contact with animals, and/or
genetics (Palmer et al., 2007; Stewart et al., 2018). The instability of the infant microbiota might
also possibly be an intrinsic property of the dynamics of the gut microbial colonization and
may obscure the effects of individual environmental factors that may each have only a modest
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influence on gut microbiota composition. In other words, an environmental factor would need
to be very strong to generate a universal disruption in the microbial composition that overrides
the normally occurring fluctuations in infant gut microbiota in the first months of life.
The results of our study showed significant associations with known important environmental
factors. Their effects were often partly overlapping and impacted similar bacterial groups (Fig.
3.2A,B), possibly indicating an accelerated colonization process in infants born by C-section.
For instance, being older and being born by C-section were both positively associated with the
abundance of the highly variable facultative anaerobes from the Bacilli and related to S. bovis
and S. mitis L. plantarum and Granulicatella at the expense of Bifidobacterium and several
Proteobacteria. Contrarily, a younger age and being born vaginally were both associated with
higher relative abundances of Bifidobacterium, Collinsella and several Proteobacteria in line
with previous research of (Dutch) infants (Penders et al., 2006; Yatsunenko et al., 2012). The
latter pattern, except for Collinsella, was also associated with having no siblings. C-section
delivery was associated with higher Shannon diversity. This increase in diversity may be the
result of the lower proportions of the generally dominant Bifidobacterium in this group of infants,
as has been previously reported (Jakobsson et al., 2014).
Breastfeeding showed the strongest association with infant gut microbiota composition. How-
ever, surprisingly, breastfeeding was only weakly related to Bifidobacterium, but was rather
more associated with increases in mainly Staphylococcus and to a lesser extent, Proteobacteria
(Serratia, E. coli, Klebsiella pneumoniae and Enterobacter aerogenes et rel) and Bacteroides
vulgatus et rel. Breastfeeding was also strongly associated with a decrease in Enterococcus
and Collinsella. In recent years in European countries, infant formulae have often been sup-
plemented with prebiotics such as short chain galacto-oligosaccharides (scGOS) alone, or in a
mixture with a chicory root derived inulin containing long chain fructo-oligosaccharides (lcFOS)
(Authority, 2014). Prebiotics mimic the bifidogenic effect of oligosaccharides found in human
milk thus preventing the difference in Bifidobacterium abundance that was previously associated
with formula feeding (Borewicz et al., 2019). Furthermore, human milk itself has been found to
contain bacteria, including Proteobacteria, as well as Staphyloccocus, which is generally associ-
ated with the skin (Ward et al., 2013). The latter has also been previously found to be depleted
in formula-fed infants in concordance with our earlier findings (Borewicz et al., 2019). In total,
the environmental variables explained a non-redundant ~5.9% of the microbiota composition.
This is in the same order of magnitude as previously reported in other human studies (Falony
et al., 2016). This means that in infants generally only a relatively small proportion of the gut
microbial composition can be explained by the factors that are most commonly accounted for.
Despite the fact that we did not find an effect of CC entrance on the microbiota at the group
level even after using different statistical approaches, it is not possible to conclude that there was
no disrupting effect on the microbiota at the individual level. Individual infants did show large
changes in the microbiota between the two assessments, but these changes were not uniform
across individuals. Although temporal microbial dynamics at the population level, with regards
to bacterial succession patterns, have been shown to be universal over different cultures and
geography (Yatsunenko et al., 2012) it is known that this process is very variable between
individuals (Favier et al., 2002; Koenig et al., 2011; Palmer et al., 2007; Trosvik et al., 2010).
Future studies including larger populations and especially repeated measurements from before
and after life changing events are necessary to determine whether the resulting bacterial shift
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is typical or deviant for a specific individual. Subsequently, potential sub-groups of infants
displaying specific signatures of dysbiosis can be determined, and their microbial signatures
related to possible adverse health outcomes later in life. However, given the importance of
gut microbial colonization for the development of the microbiota-gut-brain axis and the future
health of the individual (Borre, Moloney, et al., 2014), it is also possible that the colonization
process might be robust against perturbations such as entrance to CC, hence explaining the
lack of microbial change at the group level.
This is the first human study that examined the effect of entrance to center-based childcare
on microbiome development. The strengths are that it included a relatively large population
of healthy infants with a natural variation of environmental variables and an ecologically valid
stressor as opposed to typical rodent studies that generally include low number of individuals
under strictly controlled laboratory conditions. Another strength is that we used a combination
of different multivariate and Bayesian univariate statistical methods to analyze the data. How-
ever, there are also some weaknesses with regards to this study. Our population was ethnically
and socio-economically uniform (Beijers et al., 2010). This can be seen as an advantage, but it
precludes generalization to the larger population. Also, to conclude whether the microbiota is
disrupted at an individual level, more sample time points than just PRE and POST would be
needed. For example, it would be interesting to follow infants entering childcare for a longer
period of time, as elevated infant cortisol has been observed throughout the first months in
childcare (Albers et al., 2016). Larger and more stable differences in the gut microbiota of
infants attending childcare and those being taken care of at home, may only appear after a
longer period of time in childcare.

3.6 Conclusion

Entering center-based childcare has been shown to produce large increases in stress hormones
in infants and can therefore be considered a significant stressor in early life. Childcare includes
maternal separation and in animal models early life maternal separation has been found to
lead to large shifts in gut microbial composition. However, in the present study infant gut
microbiota was not impacted in a uniform way by entering childcare at the age of 3 months.
Large shifts in gut microbiota were observed, but were idiosyncratic to individual infants and
were also observed in infants not attending center-based childcare. In general, the infants’ gut
microbiota was found to be intrinsically very dynamic. Other environmental variables, namely
breastfeeding, birth mode, age, and the presence of siblings, were shown to significantly impact
the microbial composition, with effects that were largely overlapping and typically included
the most abundant and variable taxa. Our results suggest that in infants the stress-inducing
effects of childcare entry might not be as strong as the maternal separation paradigms of animal
models. Alternatively, general effects may potentially only become visible after longer periods
of childcare entry and when infants are older and their gut microbiota has become more stable.
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3.7 Supplementary Tables

Table 3.4: RDA models output with Childcare attendance as half days instead of as a grouping
factor.

Model Parameter Sum of Squares Mean Sum of Squares F Df p R2
Childcare 43.52 43.525 1.096 1.00 0.334 0.006
Time 61.44 61.441 1.548 1.00 0.082 0.008
Breastfeeding 204.80 204.797 5.158 1.00 0.001 0.027
Age 62.19 62.186 1.566 1.00 0.113 0.008
Childcare:Time 29.75 29.751 0.749 1.00 0.691 0.004
Residuals 7,305.03 39.701 - 184.00 - 0.948
Total 7,706.73 - - 189.00 - 1.00
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Chapter 4

Daily Skin-to-Skin Contact Alters
Microbiota Development in Healthy
Full-Term Infants

Based on: Eckermann, H. A., Meijer, J., Cooijmans, K., Lahti, L., & De Weerth, C. (2024).
Daily skin-to-skin contact alters microbiota development in healthy full- term infants. Gut
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4.1 Abstract

The gut microbiota is vital for human body development and function. Its development in
early life is influenced by various environmental factors. In this randomized controlled trial, the
gut microbiota was obtained as a secondary outcome measure in a study on the effects of one
hour of daily skin-to-skin contact (SSC) for five weeks in healthy full-term infants. Specifically,
we studied the effects on alpha/beta diversity, volatility, microbiota maturation, and bacterial
and gut-brain-axis-related functional abundances in microbiota assessed thrice in the first year.
Pregnant Dutch women (n = 116) were randomly assigned to the SSC or care-as-usual groups.
The SSC group participants engaged in one hour of daily SSC from birth to five weeks of
age. Stool samples were collected at two, five, and 52 weeks and the V4 region was sequenced.
We observed significant differences in the microbiota composition, bacterial abundances, and
predicted functional pathways between the groups. The SSC group exhibited lower microbiota
volatility during early infancy. Microbiota maturation was slower in the SSC group during the
first year and our results suggested that breastfeeding duration may have partially mediated
this relation. Our findings provide evidence that postpartum SSC may influence microbiota
development. Replication is necessary to validate and generalize these results. Future studies
should include direct stress measurements and extend microbiota sampling beyond the first
year to investigate stress as a mechanism and research SSC’s impact on long-term microbiota
maturation trajectories.

4.2 Introduction

The human gastrointestinal tract is inhabited by a complex population of bacteria. These bacte-
ria allow the digestion of dietary fibers, providing absorption of nutrients and energy(Cerqueira
et al., 2020). They play an important role in intestinal integrity and immune functioning (Gen-
sollen et al., 2016; Y.-J. Zhang et al., 2015). In addition, gut bacteria can influence the brain
via the gut-brain axis, a bidirectional pathway between the gut and the brain (Cryan & Dinan,
2012; Cryan et al., 2019). The complex mechanisms underlying this bidirectional communica-
tion are still subject of study and have been thoroughly summarized elsewhere (Cryan et al.,
2019). Briefly, the gut microbiota can influence human physical and mental development via the
immune system, tryptophan metabolism, the vagus nerve and the entericnervous system. This
communication involves microbial metabolites such as short-chain fatty acids, branched chain
aminoacids and peptidoglycans. During the early stages of life, the gut microbiota and other
co-evolving systems are particularly sensitive to environmental disturbances. Furthermore, the
establishment of a healthy gut microbiota during early life is important for the functioning of
other systems, such as the immune system(Claesson et al., 2012; Sekirov et al., 2010). Therefore,
it is important to understand how the gut microbiota develops and how it is influenced during
infancy. The present study investigated the potential effects of a randomized controlled trial
(RCT) involving daily skin-to-skin contact (SSC) between mothers and their full-term infants
on the developing gut microbiome.
The fetal gut is thought to be virtually sterile, although the sterility of the intra-uterine envi-
ronment and meconium is still subject of debate (Milani et al., 2017). Starting from birth, the
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mother is the infant’s main source of microbial gut colonization via vaginal delivery, breast-
feeding, and frequent close contact. This transmission of bacteria will remain detectable even
at older ages (Valles-Colomer et al., 2023; Van Daele et al., 2019; L. Yang et al., 2021).Sub-
sequently, other household members, close contacts, as well as pets, may become sources of
bacteria (Hermes et al., 2020; Valles-Colomer et al., 2023). The infant’s gut microbiota starts
to increase in diversity and develops towards an adult-like microbiota as solid foods are in-
troduced and breastfeeding is cessated(Bäckhed et al., 2015), although important changes are
still seen into middle childhood (Ou et al., 2022). Finally, infant health, use of antibiotics,
hygiene and infant genetics are important factors that contribute to the development of the gut
microbiome (Korpela et al., 2017; Van Daele et al., 2019).

During SSC the naked infant, dressed only in a diaper, is placed on the bare chest of the mother
(WHO, 2003). SSC can be considered de-stressing (Beijers et al., 2016; Cristóbal Cañadas
et al., 2022; Ionio et al., 2021) and has been shown to be beneficial for both mother and infant.
In pre-term infants, SSC immediately after birth is associated with improved health outcomes,
as well as a reduced mortality rate for the infant, and improved caregiving behavior and lower
postpartum depression for the mother (Bergman et al., 2004; Conde-Agudelo & Díaz-Rossello,
2016; de Alencar et al., 2007; Dombrowski et al., 2001; Feldman et al., 2002, 2014; Meder
et al., 2021; Moore et al., 2016; Sinha et al., 2021; WHO Immediate KMC Study Group, 2021).
After the first postnatal hours, daily SSC with pre-terms is associated with better physical
outcomes and improved development of the brain and the cardiovascular system (Feldman &
Eidelman, 2003; Feldman et al., 2014; Föhe et al., 2000). Interestingly, the effect of daily SSC
on cognitive function in pre-terms was still seen in young adulthood (Charpak et al., 2017;
Ropars et al., 2018). While the focus of these studies remains on pre-term infants, some studies
have investigated full-term infants, although these studies are mostly limited to SSC in the first
hours after birth. They have indicated several benefits of SSC right after birth, such as improved
cardiovascular health, improved sleep, and weight gain (Ionio et al., 2021; Moore et al., 2016).
Concerning the mother, SSC performed on full-term infants right after birth is associated with
a decrease in anxiety and longer breastfeeding duration (Mehler et al., 2020; Moore et al.,
2016; Walters et al., 2007). Prolonged, daily SSC is associated with a reduction in maternal
depressive symptoms (A. Bigelow et al., 2012), anxiety and stress (A. E. Bigelow & Power, 2020).
The SKIPPY study, of which this current study is part, was the first to perform an RCT to
study an SSC intervention on both maternal and infant outcomes in a healthy, full-term sample
(Cooijmans et al., 2017). The study showed that performing a daily hour of SSC during the
first five prenatal weeks may reduce maternal anxiety and fatigue symptoms, increase infant
sleep and reduce infant crying, and extend exclusive and continued breastfeeding durations
(Cooijmans, Beijers, Brett, & de Weerth, 2022; Cooijmans, Beijers, Brett, & Weerth, 2022;
Cooijmans, Beijers, & De Weerth, 2022). At three years of age, the children that had received
the SSC intervention also showed fewer internalizing and externalizing behavioral problems
(Rheinheimer, Beijers, Bruinhof, et al., 2022). However, the results did not indicate that this
daily hour of SSC influenced mother-infant interaction quality and maternal depressive, stress,
and pain symptoms, as was found in earlier intervention studies (Cooijmans, Beijers, Brett, &
de Weerth, 2022; Rheinheimer, Beijers, Cooijmans, et al., 2022).

There are multiple pathways in which mother-infant SSC could potentially influence the infant
gut microbiome. Firstly, as mentioned before, a daily hour of SSC was associated with fewer
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maternal anxiety and fatigue symptoms (Cooijmans, Beijers, Brett, & de Weerth, 2022). Pre-
vious studies have indicated a link between maternal postnatal distress (including anxiety) and
breast milk microbiota, which in turn could influence the gut microbiome of breastfed infants
(P. D. Browne et al., 2019; Ziomkiewicz et al., 2021). Secondly, breastfeeding shapes the in-
fant gut microbiome (van den Elsen et al., 2019). The extension of exclusive and continued
breastfeeding duration caused by a daily hour of SSC could therefore influence the infant gut
microbiome. Thirdly, SSC itself may also be de-stressing for the infant. Stress during the early
developmental stages has been found to influence the gut microbiota and gut-brain axis in ro-
dents (Bailey et al., 2011; S. O’Mahony et al., 2017). Therefore, a de-stressing practice such as
SSC could potentially alter the colonization of the gut (de Weerth, 2017; Galley et al., 2014;
Xu et al., 2020). Lastly, SSC could also provide an additional opportunity for the exchange of
microbes between mother and child. As previous studies have shown, constant contact between
microbial communities increases their similarity (Dill-McFarland et al., 2019; Drell et al., 2017)
and the maternal skin microbiome has shown to provide a source of bacteria for the infant
(H. P. Browne et al., 2022; Ferretti et al., 2018).
To the best of our knowledge, there are no previous studies on the effects of SSC on the infant
gut microbiome. The current study investigates the effects of a five-week daily hour of SSC
between mothers and full-term infants, compared to care-as-usual (CAU), on the infant gut
microbiome. We hypothesized that the treatment and the control group differ in (1) alpha
diversity, (2) beta diversity, (3) genus level abundances, (4) volatility, (5) microbiota age and
(6) functional pathways related to gut-brain communication. While most hypotheses are non-
directional, we hypothesized that SSC infants have less volatile microbiota, since stress has been
shown to increase gut microbiota volatility (T. Bastiaanssen et al., 2021).

4.3 Methods

4.3.1 Study design

This RCT included two parallel groups: an intervention group and a passive control (Cooijmans
et al., 2017). Ethics approval was granted by the ethics committee of the Social Science Faculty
of Radboud University (ECSW2015-2311-358). This study was registered in the Netherlands
Trial Register (NTR5697). It followed CONSORT guidelines and the protocol was published
(Cooijmans et al., 2017).

4.3.2 Participants

Expectant mothers from the Nijmegen region were recruited between April 2016 and Septem-
ber 2017. Recruitment was performed with the help of a database of pregnant mothers who
expressed interest in participating in scientific research, as well as via promotions at preg-
nancy clubs, baby fairs, and baby shops. Prenatal characteristics were examined during the last
trimester of pregnancy, using an eligibility survey. Expectant women were eligible to participate
when they were at least 18 years old, had good physical and mental health, had a singleton
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pregnancy, were not using drugs during pregnancy, and had sufficient understanding of the
Dutch language. After the birth of their child, mothers were excluded if their child was born
before 37 weeks, had congenital anomalies, a birth weight less than 2500 g, and/or a 5-minutes
Apgar score of < 7.

4.3.3 Procedure

4.3.3.1 Prenatal

Detailed study information was provided to eligible women during a home visit between weeks
34-36 of gestation. After informed consent was obtained, only mothers allocated to the SSC
group were encouraged to engage in at least one uninterrupted daily hour of SSC, starting
immediately after birth until including the fifth postnatal week (Dutch mothers are entitled
to 10 to 12 weeks of paid leave after birth). Detailed written and oral instructions about
the SSC protocol, optimal SSC position and safety were provided. CAU mothers received no
additional information, and all mothers were encouraged to contact the principal investigator
when experiencing any problems during the study by phone, text message or email. Besides
SSC, both conditions underwent the same procedures.

4.3.3.2 Postnatal

All mothers reported daily information on SSC, holding (clothed physical contact), and no-
contact in 15-min intervals every 2-3h in a logbook throughout the 5-week intervention pe-
riod. All mothers were contacted weekly by telephone (postnatal day 5 and 13) or text-
message/email (postnatal day 21 and 28) to remind mothers to complete the logbook, ask
for questions/comments and, for SSC mothers, to discuss SSC obstacles. When their child was
two weeks, five weeks and one year of age, parents were instructed to collect a fecal sample.
The feces were collected directly from the first diaper that day, with the help of a provided
plastic scoop. Parents were instructed to avoid any contact with surfaces or humans and put
two or three scoops into a sterilized plastic tube. In addition to that, a stool questionnaire
was completed, providing information on date of collection and infant health. After being tem-
porarily stored in the home freezer (-20 degrees Celsius), the samples were collected during the
home visits at 5 weeks and 1 year and then stored at -80 degrees Celsius. During the same
home visits, questionnaires were obtained with information on covariates, such as gestational
age, birth mode and feeding patterns.

4.3.4 DNA Extraction and Processing to Microbiota Features

The samples were transported to the Laboratory of Microbiology at Wageningen University
and stored at -80°C until they were processed for DNA extraction as published previously
(Ramiro-Garcia et al., 2018) and described in the following: DNA extraction was carried
out with the Maxwell 16 TOTAL RNA system (Promega, Wisconsin, USA) in conjunction
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with Stool Transport and Recovery Buffer (STAR; Roche Diagnostics Corporation, Indianapo-
lis, IN). The V4 region of the 16S ribosomal RNA (rRNA) gene was amplified in duplica-
tion, generating amplicons of approximately 290bp. PCR reactions comprised 0.5µl Phu-
sion Green Hot Start II High-Fidelity DNA polymerase (Thermo Scientific, US) at 2U/µl,
1µl of 10um barcoded primers 515F-n(5’-GTGYCAGCMGCCGCGGTAA-3’) and 806R-n(5’-
GGACTACNVGGGTWTCTAAT-3’), 10µl 5xPhusion Green HF Buffer (Thermo Scientific,
US), 1µl of 10mM dNTPs mix (Promega Corporation, US), 36.5µl Nuclease-free water, and
1µl of 20ng/µl DNA template. PCR involved an initial denaturation period of 30s at 98°C, fol-
lowed by 25 cycles of denaturation (98°C, 10s), annealing (50°C, 10s), and extension (72°C, 10s),
concluding with a final elongation step (72°C, 7min). PCR products were validated through
gel electrophoresis and purified using the HighPrep® PCR kit (MagBio Genomics, Alphen aan
den Rijn, Netherlands). DNA concentration was assessed using a fluorometer (DS-11; DeNovix)
with the Qubit® dsDNA BR Assay Kit (Life Technologies, Leusden, Netherlands). Barcoded
samples belonging to the same library (200ng) were combined. Each library incorporated 69
unique barcode tags, with 2 specifically designed for artificial control communities representing
human gut microbiota. The mixture underwent purification again to achieve a final volume
of 40µl using the HighPrep® PCR kit. Sequencing was performed on the Illumina platform
at Eurofins Genomics in Germany. Data was pre-processed from raw genetic sequences to
amplicon sequence variants (ASV) tables using the NGTax2 pipeline (version 2.1.74) with the
SILVA database (version 138.1). The sequence data, together with the metadata, were stored
in a TreeSummerizedExperiment (TreeSE) container (R. Huang et al., 2021) for further analy-
sis. To analyze whether the gut microbiota differs between the SSC and the CAU groups, the
different features of the infant gut microbiome were evaluated. For alpha diversity, we calcu-
lated Shannon, inverse Simpson, Faith and Chao1 indices. For beta diversity, we calculated
the Aitchison distance and Bray Curtis similarity. For volatility, we calculated the Aitchison
distance sequentially between intra-individual samples (T. Bastiaanssen et al., 2021). The mi-
crobiota age was determined as described by Subramian et al. (Subramanian et al., 2014) and
we controlled for age in the regression models. We used samples from other longitudinal studies
(BIBO and BINGO) to train the Random Forest model. Functional pathways, specifically,
the gut-brain-module (GBM) were calculated as described by Bastiaanssen et al. (T. F. S.
Bastiaanssen et al., 2022).

4.3.5 Statistical analysis

In the following, we briefly describe the statistical analysis. For a more detailed description
see the preregistration (https://doi.org/10.17605/OSF.IO/S45MU). All analyses were per-
formed in R (version 4.2.1) (R Core Team, 2022) and the code has been published (https:
//doi.org/10.5281/zenodo.8121370). Missing covariates and outcome variables were imputed
using predictive mean matching (m = 50) (Kleinke, 2017) with the package mice in R (van Bu-
uren & Groothuis-Oudshoorn, 2011). Deviations of results from complete case analyses were to
be reported. For each feature of the gut microbiota (alpha diversity, beta diversity, genus level
abundances, volatility, microbiota age and GBM), we performed an intention to treat (ITT)
and a per protocol (PP) analysis. We used Bayesian robust linear models to regress alpha diver-
sity, volatility and microbiota age on SSC and covariates. These models were fit using the brms
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package (Bürkner, 2018) with default priors and a student t distribution for the response vari-
able. For differential abundance analysis (genus level and GBMs), we utilized ANCOMBC,(Lin
& Peddada, 2020) LinDA,(Zhou et al., 2022) and MaAsLin2.(Mallick et al., 2021) The adonis2
function from the vegan package was used for beta diversity analyses (Oksanen et al., 2022).
We accounted for non-independence by specifying random intercepts in models that included
repeated samples of an individual. The different alpha diversity indices were calculated with
the R package miam (Ernst et al., 2022).

4.3.5.1 Covariates

In the ITT analyses, we can assume that randomization prevented confounding of the average
causal effect estimate (supplementary Figure 4.16). Therefore, we only added covariates that
may improve the precision of our estimate of interest in a data-driven manner (Cinelli et al.,
2020). Possible mediators of the effect of SSC, such as breastfeeding, had to be excluded to
estimate the total effect of SSC (Cinelli et al., 2020). Breastfeeding was only added to determine
the magnitude of the direct effect of SSC on the microbiota once an effect of SSC was detected. If
the direct effect is smaller than the total effect upon inclusion, while SSC is positively related to
breastfeeding and breastfeeding is related to the microbiota, this would suggest a mediating role
of breastfeeding under the assumed directed acyclic graph (supplementary Figure 4.16) (Cinelli
et al., 2020). For the Bayesian models, we used leave-one-out cross-validation (Vehtari et al.,
2017) to evaluate whether any of the following variables improved model fit per microbiome
feature: C-section, birth weight, siblings (yes/no), sex, Apgar (at 5 minutes), gestational age
at birth, and education level. To determine whether SSC had an effect across all samples and
over time, we modeled SSC in interaction with age across the models that included the samples
obtained at 2 and 5 weeks. When modeling the samples at 52 weeks, we omitted the interaction
term. For the PP analyses, we did not use the data-driven approach because confounding of
the total effect estimate is possible and we needed to make stronger assumptions (Hernán &
Hernández-Díaz, 2012; Hernán et al., 2013). Measured variables that may influence whether an
individual actually received the treatment (irrespective of assigned treatment), would need to
be included to avoid confounding. Here, we included the following additional covariates in the
models: birth weight, gestational age at birth, education level, C-section and sex. Sensitivity
analyses were performed using complete case analyses as well as leaving out all covariates for
the ITT analyses. Results did not differ meaningfully unless reported otherwise.

4.4 Results

4.4.1 Descriptive statistics

Participation in stool sample collection and eligibility resulted in 116 participants (Figure 4.1).
For one stool sample, PCR amplification did not provide enough material for sequencing. While
there was no loss to follow-up in this RCT, some mothers did not provide stool samples for all
time points leading to a total of 315 analyzed samples: 105 at week two, 107 at week five and
103 at week 52. Across all time points, 11 phylum-level groups and 162 genus-level groups
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were identified. The SSC group provided longer total SSC duration (intention-to-treat (ITT):
2067.67 ± 850.65 min; per-protocol (PP): 2905.90 ± 497.52 min) than the CAU group (ITT:
308.17 ± 442.41; PP: 308.17 ± 442.41) according to independent sample t-tests (p < 0.001).
The average daily SSC duration between groups is furthermore depicted in Figure 4.2. An
overview of the baseline characteristics of the infants and their mothers, including information
on missing data, is presented in Table 4.1. In the following, we present for each preregistered
feature of the microbiota the results of the ITT analysis and in case of meaningful deviation,
the PP analysis. Relevant parameter estimates, such as 𝛽𝛽-coefficients of the Bayesian robust
linear models, are mentioned in the text. To inspect all model coefficients, see supplementary
Figures 4.8-4.13.

Figure 4.1: Participant flow diagram, including the number of participants at each of the trial
stages. SSC = skin-to-skin contact. CAU = care-as-usual.

Table 4.1: Descriptive statistics and group comparisons
for mother–infant dyads of the SKPPY study.

CAU SSC Overall

110



Results 111

(N=60) (N=56) (N=116)
Sex

Male 26 (43.3%) 33 (58.9%) 59 (50.9%)
Female 34 (56.7%) 23 (41.1%) 57 (49.1%)

C-section
No 55 (91.7%) 51 (91.1%) 106 (91.4%)
Yes 3 (5.0%) 4 (7.1%) 7 (6.0%)
Missing 2 (3.3%) 1 (1.8%) 3 (2.6%)

Gestational age (weeks)
Mean (SD) 40.0 (1.10) 40.1 (1.01) 40.0 (1.05)
Median [Min, Max] 40.2 [37.1, 42.1] 40.2 [36.6, 42.1] 40.2 [36.6, 42.1]

Birth weight (grams)
Mean (SD) 3570 (386) 3650 (415) 3610 (401)
Median [Min, Max] 3520 [2880, 4620] 3670 [2740, 4850] 3610 [2740, 4850]

Siblings
No 28 (46.7%) 27 (48.2%) 55 (47.4%)
Yes 32 (53.3%) 29 (51.8%) 61 (52.6%)

Exclusive breasfeeding duration (months)
Mean (SD) 2.78 (1.47) 3.14 (1.86) 2.96 (1.68)
Median [Min, Max] 3.00 [0, 5.00] 3.00 [0, 9.00] 3.00 [0, 9.00]
Missing 9 (15.0%) 7 (12.5%) 16 (13.8%)

Age week 2 (days)
Mean (SD) 14.9 (1.25) 14.1 (1.60) 14.5 (1.49)
Median [Min, Max] 14.0 [14.0, 19.0] 14.0 [8.00, 16.0] 14.0 [8.00, 19.0]
Missing 13 (21.7%) 8 (14.3%) 21 (18.1%)

Age week 5 (days)
Mean (SD) 35.9 (2.33) 35.1 (1.88) 35.5 (2.13)
Median [Min, Max] 35.0 [28.0, 40.0] 35.0 [28.0, 39.0] 35.0 [28.0, 40.0]
Missing 13 (21.7%) 7 (12.5%) 20 (17.2%)

Age week 52 (days)
Mean (SD) 371 (7.56) 370 (7.89) 371 (7.70)
Median [Min, Max] 369 [364, 399] 368 [362, 406] 368 [362, 406]
Missing 9 (15.0%) 9 (16.1%) 18 (15.5%)

Antibiotics week 2
No 47 (78.3%) 43 (76.8%) 90 (77.6%)
Yes 1 (1.7%) 2 (3.6%) 3 (2.6%)
Missing 12 (20.0%) 11 (19.6%) 23 (19.8%)

Antibiotics week 5
No 46 (76.7%) 42 (75.0%) 88 (75.9%)
Yes 2 (3.3%) 1 (1.8%) 3 (2.6%)
Missing 12 (20.0%) 13 (23.2%) 25 (21.6%)

Antibiotics week 52
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No 50 (83.3%) 46 (82.1%) 96 (82.8%)
Yes 1 (1.7%) 1 (1.8%) 2 (1.7%)
Missing 9 (15.0%) 9 (16.1%) 18 (15.5%)

4.4.2 Main Results

4.4.2.1 Alpha Diversity

Our results indicated, across different alpha diversity indeces, time points and ITT and PP
analyses, that SSC had no effect on alpha diversity (Figure 4.3). Infants with siblings had lower
Shannon alpha diversity scores (𝛽𝛽 = -0.31, 95% HDI [-0.52;-0.09], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 = 0.997) in early
infancy (2 and 5 week samples) but no longer in late infancy (1 year samples). Results regarding
siblings were similar for Chao1 and inverse Simpson but the difference disappeared mostly when
the Faith index was used.

4.4.2.2 Beta Diversity

Figure 4.4 shows results of a PCA of the centered-log-ratio transformed abundances (Aitchi-
son distance). Samples obtained at one year (triangles) were clearly separated from samples
obtained at 2 and 5 weeks. There seems to be no apparent separation of SSC and CAU sam-
ples considering all samples, also not when other principal components are inspected (not shown
here). Within the 1-year samples (triangles), the SSC samples (grey) may occur more frequently
closer to the early infancy samples than the CAU samples. Statistically, PERMANOVA identi-
fied that the microbiota composition of CAU and SSC samples differed significantly in the early
infancy samples (p = 0.016) but not in the late infancy samples (p = .087). To derive the direct
(rather than the total) effect of SSC under the assumed directed acyclic graph (supplementary
Figure 4.16), we fitted new models including breastfeeding as a covariate. The effect remained
significant, and the effect size unchanged, suggesting that SSC has an effect on microbiota com-
position independent of its effect on breastfeeding duration. In the PP analyses the effect size
increased slightly, but the standard error increased as well due to the lower sample size, leading
to a non-significant effect (p = .058). Note also that the result was sensitive to the choice of
another distance metric. When using Bray Curtis similarity, the main effect was no longer
significant (p = .377) while the interaction term suggested that SSC may have only had an
effect on the microbiota at 5 weeks (p = .069). Using Bray Curtis similarity, SSC only showed
a significant effect in the PP analyses if fitting a model to all samples (p = .035).

4.4.2.3 Genus Level Abundances

Because recent benchmark studies showed that differential abundance analysis results can de-
pend heavily on the specific method that is applied (Cappellato et al., 2022; Nearing et al.,
2022), we used several methods to evaluate the robustness of findings across methods. While
we focus on the results of MaAsLin2 in this section, Figure 4.5 indicates whether a taxon was
identified by one or more methods (denoted as M (MaAsLin2), L (LinDA) or A (ANCOMBC),
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Figure 4.2: Mean daily skin-to-skin contact (SSC) duration in the SSC and care-as-usual (CAU)
condition based on data derived from the intention-to-treat selection.
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Figure 4.3: Alpha diversity indices between treatment (SSC) and control (CAU) group per
sampling time point.
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Figure 4.4: All samples plotted on the first 2 dimensions of a PCA of Euclidean distances of
CLR transformed abundance values (Aitchison Distance).
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respectively). MaAsLin2 detected lower relative abundance of Faecalibacterium, Eubacterium
hallii, and Rothia and increases in Flavonifractor, Lacticaseibacillus, Bacteroides and Megas-
phaera in the SSC group compared to the CAU group. The top six genera in Figure 4.5 stand
out as they were identified as a driver of differences between groups in at least two methods.
From the heatmap we can further infer that some genera were only differentially abundant in
either early or late infancy. Note that ANCOMBC as the most conservative method did not
detect any genera as differentially abundant.

4.4.2.4 Microbiota Volatility

Microbiota volatility is defined as the intra-individual change in microbiota composition over
time and was calculated as described in Bastiaanssen et al. (T. F. S. Bastiaanssen et al., 2022).
We fitted Bayesian robust linear models to volatility scores in early infancy (2-5 weeks) and
from early to late infancy (5-52 weeks) (Figure 4.6). Volatility was lower in the SSC group in
early infancy than in the CAU group (𝛽𝛽 = -0.31, 95% HDI [-0.62;0], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 = 0.95) rejecting
the null hypothesis that SSC has no influence on microbiota volatility. This effect remained
unchanged after including breastfeeding in the regression model, suggesting that SSC affects
microbiota volatility in early infancy, independent of its effect on breastfeeding. Note that in
the PP analyses for early infancy, the effect size increased slightly, whereas the highest density
interval widened with smaller sample size (𝛽𝛽 = -0.4, 95% HDI [-0.88;0.09], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 = 0.92).
While average volatility was also lower in the SSC group when looking at the distances between
the 5 and 52 weeks samples, the effect did not pass the decision criterion (𝛽𝛽 = -0.16, 95% HDI
[-0.47;0.15], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 = 0.80) to reject the null hypothesis. Breastfeeding (𝛽𝛽 = -0.13, 95% HDI
[-0.22;-0.03], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 = 0.99) and gestational age (𝛽𝛽 = -0.25, 95% HDI [-0.46;-0.04], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃
= 0.99) were negatively related with volatility (breastfeeding only for volatility between 5 and
52 weeks).

4.4.2.5 Microbiota Age

Microbiota age was estimated as described in Subramanian et al. by training a Random Forest
model using samples from two other Dutch longitudinal studies (BIBO, BINGO) in the age
range of 7-561 days (Figure 4.7A) (Subramanian et al., 2014). The Random Forest model
performance was comparable to that of Subramanian et al. (Subramanian et al., 2014) as 64%
of variance in age could be explained by the microbiota. We evaluated model fit and significance
by computing the correlation of predictions and actual ages using the SKIPPY samples (r
= 0.862, p < 0.001). Besides illustrating the results of the differential abundance analysis,
Figure 4.5 shows the 15 most important features of the RF model with non-zero abundance
in the SKIPPY samples (denoted by R next to the taxon name in Figure 4.5). To predict
microbiota age, Faecalibacterium was the most informative next to other genera that are known
to either dominate early infancy due to breastfeeding (Staphylococcus and Bifidobacterium) or
to only occur with the cessation of breastfeeding and introduction of solid food as dominance
of Bifidobacterium disappears. Note that we have lower coverage of the ages around 1 year in
BIBO and BINGO compared to the coverage of ages in early infancy (Figure 4.7A) resulting in
higher uncertainty in the estimation of the microbiota age reference as compared to the time
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Figure 4.5: Heatmap of clr-transformed bacterial abundances that were either differential abun-
dant between treatment (SSC) and control (CAU) or important for the microbiota age model.
The relative abundance values have been scaled to zero mean and unit variance in order to
highlight differences in the variation relative to the mean level within each taxonomic group.
The color scale has been limited to the interval [-1, 1] (from dark blue to dark red). The letter
behind each genus indicates whether it was important for the microbiota age model (R, see
corresponding section) or identified by any of the differential abundance analysis methods (M
= Maaslin2, L = LinDA).
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Figure 4.6: Volatility (intra-individual Aitchison Distance) between treatment (SSC) and control
(CAU) group for the sample sequence from 2 to 5 weeks and 5 to 52 weeks.
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period early in infancy. Nevertheless, we could compare the microbiota ages of the treatment
and control groups in the SKIPPY cohort. Figure 4.7B depicts the microbiota age scores per
time point between treatment groups in the SKIPPY samples. The samples obtained at one year
show relatively low microbiota age, indicating that the SKIPPY cohort has lower microbiota
ages than the BIBO and BINGO cohorts. The Bayesian robust regression models indicated
that treatment was associated with lower microbiota age with an average decrease of 25.65
days (𝛽𝛽 = -25.65, 95% HDI [-50.37;-1.31], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 = 0.98) at one year of age. After adding
breastfeeding, the effect size shrank (𝛽𝛽 = -19.32, 95% HDI [-47.90;8.01], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 = 0.90))
while breastfeeding was associated with lower microbiota age as expected (𝛽𝛽 = -7.27, 95%
HDI [-13.94;-0.62], 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃 = 0.98). These results indicate that SSC intervention influenced
microbiota development with visible effects at 1 year of age. Breastfeeding duration may have
partially mediated this effect. An exploratory dose-response analysis within only the treatment
group indicated that there was no stronger effect on microbiota age when subjects provided more
hours of SSC. Thus, infants in the treatment group were probably mostly above the minimal
number of hours needed to produce the observed effect on microbiota age (supplementary Figure
4.14).
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Figure 4.7: A. Age of sample collection for the samples used to train the Random Forest model.
B. Predicted microbiota age for the samples analyzed in this study between treatment (SSC)
and control (CAU) per time point.

4.4.2.6 Gut Brain Module Abundances

We estimated 44 metabolic pathways that are related to gut-brain communication (gut brain
modules) (Valles-Colomer et al., 2019). These pathways include, for example, serotonin degra-
dation or histamine production. Using MaAsLin2 (𝐹𝐹𝐹𝐹𝐹𝐹 𝐹 𝐹𝐹𝐹), we found that nitric oxide
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degradation was lower (FDR = 0.166) while butyrate synthesis I (FDR = 0.169) and acetate
synthesis III (FDR = 0.148) were higher in the SSC group compared to the CAU group (sup-
plementary Figure 4.15).

4.5 Discussion

We hypothesized that a skin-to-skin intervention (SSC) applied in the first weeks of life in
full-term infants would influence features of the gut microbiota via several potential mech-
anisms. These include physical transmission (Ferretti et al., 2018), prolonged breastfeeding
(Cooijmans, Beijers, Brett, & Weerth, 2022) and by having a stress-reducing, stabilizing effect
on the developing infant (Beijers et al., 2016). The microbiota features that were investigated
included alpha-diversity, beta-diversity, genus level abundances, volatility, microbiota age and
abundances of selected predicted functional pathways (gut brain modules; GBMs). The results
provide evidence that a postpartum skin-to-skin intervention may influence gut microbiota de-
velopment.

4.5.0.1 Lower Microbiota Volatility in the SSC group

Infants that received the SSC intervention significantly differed in their overal microbiota com-
position and had lower microbiota volatility in early infancy. Volatility has been found to be
higher in stressed mice, in humans reporting higher experienced stress during exam periods, and
in patients with inflammtory bowel disease (T. Bastiaanssen et al., 2021; Clooney et al., 2021).
In addition, a related metric indicated higher volatility (lower stability) in infants with colic (de
Weerth et al., 2013). We furthermore observed that longer gestational age was associated with
lower volatility in both time windows, possibly indicating that infants who are further in their
physical development for their chronological age have more stable gut microbiota.

4.5.0.2 Lower Microbiota Age in the SSC group

Infants in the SSC group had a lower microbiota age at one year of age compared with the
control group. Our results further indicated that breastfeeding may have partially mediated
this effect of SSC on microbiota age, which is in line with previous research showing that
breastfeeding duration is negatively associated with microbiota maturation (Bäckhed et al.,
2015; Depner et al., 2020). However, after controlling for months of exclusive breastfeeding
or alternatively, age of weaning, SSC infants still had on average 19 or 15 days, respectively,
lower microbiota age. In addition to breastfeeding, lower microbiota age has been associated
with exposure to antibiotics, delivery via cesarean section (Bokulich et al., 2016), and asthma
(Depner et al., 2020). We found that siblings and educational level were positively associated
with microbiota age at one year. The former is in line with previous research showing that infants
with older siblings show faster maturation of the microbiota (Baniel et al., 2022) and specifically
earlier colonization with Faecalibacterium prausnitzii (Laursen et al., 2017). Colonization with
Faecalibacterium prausnitzii is a characteristic of microbiota maturation (Roswall et al., 2021)
and this taxon was the most important feature in our microbiota age model.
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It is important to note that environmental factors appear to alter the dynamics of microbiota
maturation rather than the speed of maturation. For example, formula-fed infants or infants
born via cesarean section showed initially higher microbiota ages (in the first 6-12 months) before
they started to show lower or similar microbiota ages compared to breastfed or vaginally born
infants at later developmental stages (Bokulich et al., 2016). A reverse dynamic was observed for
antibiotic exposure with initially lower and later temporarily higher microbiota age compared
to inviduals not exposed to antibiotics (Bokulich et al., 2016). The diverse associations with
microbiota age raise the question of which specific aspects of microbiota maturation at which
specific ages may be beneficial or possibly unfavorable for a healthy development.
To investigate this further, it would be desirable for future research to utilize a common mi-
crobiota age model trained on large samples for the respective geographic region. Combined
with sampling for a longer time span (e.g. the first 3 years), it may be possible to describe
different trajectories of microbiota maturation that may be related to environmental variables,
and in longitudinal follow-ups, to health outcomes in later life. Finally, while increasing alpha
diversity is a characteristic of microbiota maturation, we did not observe differences in alpha
diversity between the groups. Our observation that siblings were associated with lower alpha
diversity and with higher microbiota age might seem contrary, but note that having one or more
siblings was only negatively associated with alpha diversity in early infancy and not at 1 year
of age in line with findings in another Dutch cohort (Hermes et al., 2020) as well as with those
of other studies (Adlerberth et al., 2007; Azad et al., 2013; Christensen et al., 2022; Laursen
et al., 2015).

4.5.0.3 Differential Abundance of Individual Genera between groups

Differential abundance analysis highlighted several genera (Faecalibacterium, Megasphaera, Bac-
teroides, Flavonifractor, Rothia and Eubacterium hallii) as well as predicted functional pathways
(nitric oxide degradation, butyrate synthesis I and acetate synthesis III) as differentially abun-
dant between the groups. Faecalibacterium prausnitzii is well known as a butyrate producer and
because of that, and its negative relationship with inflammatory bowel diseases, it is generally
considered a health promoting species (Laursen et al., 2017; Miquel et al., 2013). Laursen et
al.(Laursen et al., 2017) found that the prevalence was between around 55% and 80% at 9-10
months of age and increased to almost 100% at 16 months of age in three separate infant pop-
ulations. The abundance of Faecalibacterium has been found to further increase substantially
after 1 year of age but not anymore from 3 to 5 years of age (Laursen et al., 2017; Roswall
et al., 2021). In our study sample, the prevalence of Faecalibacterium at 12 months of age was
86.8% for the CAU and 68.0% for the SSC group. This finding, combined with the previously
discussed findings of the microbiota age model, indicate a slower speed of microbiota maturation
in the SSC group along a normal trajectory of microbiota development up until the first year of
life. This is supported by the fact that while the microbiota of infants typically matures along
similar trajectories, differences in speed between individuals have been documented (Roswall
et al., 2021).
In contrast to Faecalibacterium, the abundance of Bacteroides was higher in the SSC group.
Increased abundances at 1 year of age have previously been associated with enhanced neurode-
velopment (Tamana et al., 2021). Megasphaera was more abundant in the SSC group. This
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genus includes butyrate- and proprionate-producing strains (Duncan et al., 2007) and has been
negatively associated with diarrheal cryptosporidiosis (Carey et al., 2021) and maternal stress
(Dutton et al., 2023). However, the relationship with maternal stress was only present at 6
weeks and 3 months of age and reversed at 6 months of age. Flavonifractor, also higher in
the SSC group, has been negatively associated with the development of asthma later in life
(Stokholm et al., 2018b) and was able to strongly suppress Th2 immune responses in mice
(Ogita et al., 2020). Furthermore, Flavonifractor plautii was negatively associated with mater-
nal stress in samples obtained at 6 weeks, 3 months and 6 months (Dutton et al., 2023). Rothia,
with a slightly lower relative abundance in the SSC group, has been reported to be increased in
formula fed infants by two studies (one study found the opposite) (Z. Wang, 2019) and to be
negatively associated with childhood asthma (Arrieta et al., 2015). Lastly, Eubacterium hallii
(reclassified as Anaerobutyricum soehngenii (Shetty et al., 2018)) was lower in the SSC group.
Anaerobutyricum soehngenii can produce butyrate by utilizing the byproducts of other early
colonizers that metabolize human milk oligosaccharides (Chia, 2018; Dedon et al., 2023). It has
been positively associated with infant colic (Pham et al., 2017) and is under investigation for
its benefits related to glucose metabolism (Gilijamse et al., 2020).

4.5.0.4 Summary and Conclusion

In summary, we found evidence that SSC affected microbiota composition in early infancy (2 and
5 weeks) and development in early and late infancy as measured by volatility and microbiota
age. Differential abundance and microbiota age analyses highlighted individual genera that
differed between groups. We proposed three mechanisms of action through which SSC may
affect the microbiota. First, the transmission route appeared least relevant for the observed
effects. Skin bacteria, such as Staphylococcus, were not differentially abundant between groups.
The groups did not yet differ in the number of exclusively breastfed infants at 5 weeks (80.2%
vs 78.4%). Differences in breastfeeding were observed only at later ages. Thus, we can assume
that physical contact, as occurring naturally through maternal caregiving and breastfeeding,
was sufficient to transmit bacteria that were also transmitted through increased direct physical
contact by the SSC intervention. Furthermore, previous research demonstrated that most skin
bacteria obtained from the mother are mainly detectable shortly after delivery but not at later
time points (Ferretti et al., 2018) as they do not colonize the gut. Second, we showed that
breastfeeding is one of the mechanisms via which the SSC intervention altered the microbiota
maturation long after the intervention at 1 year of age. Third, considering prior evidence
(T. Bastiaanssen et al., 2021) and the lack of differences in breastfeeding in early infancy, we
hypothesize that the effect of SSC on volatility in early infancy may be due to its de-stressing
effect. Future longitudinal studies would need to measure stress in addition to the measures we
collected in order to confirm the proposed mechanism of SSC influencing microbiota volatility
by acting as a stress buffer.
This preregistered study is the first RCT assessing effects of SSC on the developing gut micro-
biota. Strengths include the randomized controlled design with blind recruitment and a low
drop-out rate throughout the intervention phase. Also, the microbiota and relevant covariates
were sampled at several time points and included a follow-up microbiota sample long after the
intervention had finalized. This allowed us to estimate the effect of SSC on the microbiota
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development and to test one possible mechanism. Furthermore, we investigated a broad set of
features of the microbiota and took measures to ensure robustness of our results. Our analy-
ses revealed that it is important to look beyond alpha diversity, beta diversity and differential
abundance analysis, and include features that reflect microbiota development (volatility and
microbiota age). Our study also has limitations. Since we did not measure all (time-varying)
variables that influence protocol adherence, we may not exclude potential confounding bias in
the per-protocol analysis estimates (Hernán & Hernández-Díaz, 2012; Hernán et al., 2013). Note
however, this limitation is not relevant for our intention-to-treat analysis, which is regarded as
the preferred analytic approach for RCTs. Finally, the generalizability of the study is limited
given the relatively homogeneous sample with mainly families of highly educated mothers.
In conclusion, we provide evidence that a postpartum skin-to-skin intervention in full-term
infants may influence gut microbiota composition and volatility in early infancy as well as
microbiota age (for chronological age) in late infancy. The effects on microbiota age may have
been partially mediated by SSC prolonging breastfeeding duration. It is highly desirable to
replicate these findings to validate their robustness and establish their generalizability. Future
studies would benefit by extending microbiota sampling beyond the first year of life in order to
investigate the effect of SSC on microbiota maturation at later time points. Including variables
that measure stress would allow for the investigation of whether the intervention has an effect
on microbiota volatility by reducing stress.
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4.6 Supplementary Figures
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Figure 4.8: Posterior distributions (mean, 50% and 95% of the probability mass) of beta coef-
ficients for the alpha diversity models (intention-to-treat analysis) using Shannon (A), Chao1
(B) or Faith (C) index.
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Figure 4.9: Posterior distributions (mean, 50% and 95% of the probability mass) of beta coef-
ficients for the volatility models (intention-to-treat analysis) using volatility between 2 and 5
weeks (A) and 5 and 52 weeks (B) without (1) and with (2) breastfeeding.

124



Supplementary Figures 125

SSC

gestational age

educational level

c−section

birthweight

−1 0 1

A1

−1 0 1

B1

SSC

gestational age

educational level

c−section

breastfeeding

birthweight

−1 0 1

A2

−1 0 1

B1

Figure 4.10: Posterior distributions (mean, 50% and 95% of the probability mass) of beta
coefficients for the volatility models (per-protocol analysis) using volatility between 2 and 5
weeks (A) and 5 and 52 weeks (B) without (1) and with (2) breastfeeding.
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Figure 4.11: Posterior distributions (mean, 50% and 95% of the probability mass) of beta
coefficients for the microbiota age models (intention-to-treat analysis) using microbiota age
scores in early (A) and late infancy (B) without (1) and with (2) breastfeeding.
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Figure 4.12: Posterior distributions (mean, 50% and 95% of the probability mass) of beta
coefficients for the microbiota age models (per-protocol analysis) using microbiota age scores in
early (A) and late infancy (B) without (1) and with (2) breastfeeding.
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Figure 4.13: Posterior distributions (mean, 50% and 95% of the probability mass) of beta
coefficients for the microbiota age models (dose-response analysis) using microbiota age scores
in late infancy without (A1) and with (A2) breastfeeding.
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Figure 4.14: Boxplots of the number of provided skin-to-skin hours between groups.
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Figure 4.15: Boxplots of gut-brain-modules that were differentially abundant between SSC
(blue) and CAU (red).
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Figure 4.16: Directed acyclic graph depicting assumptions for the statistical analyses. U repre-
sents unmeasured variables. Z reflects all the measured variables that are known to influence
the gut microbiota that are added in a data-driven approach in some of our models as they may
improve precision of our estimate of interest (see covariate section in the methods and Cinelli
et al. (2020). Note that we performed sensitivity analysis by leaving out any variables Z. Given
the randomization of participants into skin-to-skin (SSC) or care-as-usual, there are no arrows
pointing towards SSC and the total effect estimate of SSC on the microbiota is assumed to be
unbiased in contrast to any other potential effects that may be confounded by U.
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Chapter 5

Can Gut Microbiota Throughout the
First 10 Years of Life Predict Executive
Functioning in Childhood?

Based on: Eckermann, H. A., Ou, Y., Lahti, L., & Weerth, C. (2022). Can gut microbiota
throughout the first 10 years of life predict executive functioning in childhood? Developmental
Psychobiology, 64(3). https://doi.org/10. 1002/dev.22226



144 Gut Microbiota and Executive Functioning

5.1 Abstract

Animal models suggest that the gut microbiota can influence cognitive development and func-
tioning via various pathways. In line with that, a first human study found associations between
infant fecal microbiota composition and cognition at two years of age. This longitudinal study
investigated whether fecal microbiota composition in infancy and childhood is associated with
executive functioning in childhood. We followed healthy individuals from birth to their 10th
year of life. Executive functioning was assessed using the Digit Span working memory test at
10 years of age and the ecologically valid Behavior Rating Inventory for executive functioning
at 8 and 10 years. Stool samples were collected at month 1, 3 and 4 as well as at 6 and 10 years.
The V4 region of the 16S ribosomal RNA was analyzed to determine microbial composition at
the genus level. Using established statistical techniques for microbiota analysis we did not find
associations between fecal microbiota composition and executive functioning after accounting
for breastfeeding, maternal education, child sex and age. Our study results are most compati-
ble with the absence or only a weak relationship between infant and childhood fecal microbiota
composition and executive functioning in childhood, in healthy community children.

5.2 Introduction

The gut-brain axis is a complex bidirectional network where the gut and the brain are connected
via various pathways (Mayer et al., 2014). The gut microbiota, the ecosystem of microorganisms
in the intestinal lumen, is a critical part of this network. It can generate endocrine-, neurocrine-
and immune-related signals that can shape the development and functioning of the central ner-
vous system (de Weerth, 2017; Mayer, 2011). In the present study we investigated whether
infant and childhood fecal microbiota (FM) composition as a measure of the distal gut micro-
biota, can predict individual variation in executive functioning (EF) in childhood. Identifying
and describing possible relationships between the (early) FM and EF is a necessary first step
towards developing prevention, diagnostic, and intervention strategies targeting the microbial
ecosystem in the gut. The following paragraphs will elucidate the importance of EF and why
the FM is a relevant study variable for psychologists researching child cognitive development
(Sarkar et al., 2018).
EF comprises cognitive functions central to goal-directed, efficient and adaptive behavior
(Huizinga & Smidts, 2010). These include inhibition, shifting, self-monitoring, planning, atten-
tion, and working memory. Proper EF is crucial for every-day-life and academic achievement
(Huizinga & Smidts, 2010; Huizinga et al., 2018). Disruption of EF has negative effects on
health outcomes and is itself part of several psychiatric disorders, such as attention deficit
hyperactivity disorder, bipolar disorder and schizophrenia (Testa & Pantelis, 2009). Thus,
proper development of EF is crucial for the quality of life of the individual. EF emerges as the
output of various neural networks during the first years of life (Goldstein & Naglieri, 2014) and
continues to develop during childhood, adolescence and even adulthood (Best & Miller, 2010).
These neural networks rely on the development of frontal and posterior cerebral cortex and
subcortical regions (Goldstein & Naglieri, 2014). The plasticity of these networks is maximal
early in life (Diamond, 2013). As extensively reviewed (Borre, O’Keeffe, et al., 2014; Varier
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et al., 2020), the colonization of the intestines by microbes occurs simultaneously with and
influences this pivotal period of brain development. E.g., experimental rodent studies revealed
that the gut microbiota affects social behavior, cognitive performance and neurobiology in
brain regions related to learning and memory (Ohland et al., 2013; Savignac et al., 2015;
Vázquez et al., 2015; T. Wang et al., 2015) and that there exists a time window in early life for
such effects to take place (Buffington et al., 2016; Sudo et al., 2004). Therefore, it is necessary
to study the gut microbiota in infancy in relation to EF later in life to disentangle such early
programming effects (Borre, O’Keeffe, et al., 2014). In sum, EF is important for the quality of
life of the individual. It develops early in life and continues to develop throughout adulthood.
The gut microbiota may influence both the early development and current functioning of the
brain.

At present, there is a lack of human developmental studies that focus on the relationship between
the FM and cognitive functioning. Studies that found associations focused on temperament
(Aatsinki et al., 2019), attention to emotional faces (Aatsinki et al., 2020) or social behaviors
related to autism (Laue et al., 2020). One study provided indirect support for a potential
relationship between the early FM and later cognitive functioning as antibiotic treatment in
the first 2 years of life was related to worse cognitive functioning at 11 years (Slykerman et al.,
2019). Earlier, the first human developmental study (Carlson et al., 2018) examined whether
FM around 1 year of age is related with cognitive functioning and global and regional brain
volumes at 1 and 2 years of age in 89 typically developing infants. Cluster analysis of bacterial
abundances identified 3 groups that significantly predicted cognition at 2 but not 1 year of age.
Lower alpha diversity was related to higher cognitive functioning at 2 years of age. Furthermore,
FM was weakly related to regional brain volumes at 1 (N = 46) and 2 (N = 27) years of age,
as well as brain functional connectivity (N = 39) (Carlson et al., 2018; W. Gao et al., 2019).
A limitation of this study was that there was only one measurement of the FM, while infants
show rapid shifts in microbial composition and diversity. Hence, multiple sample time points
are necessary to distinguish temporary shifts in composition from more stable characteristics
((Bäckhed et al., 2015; de Meij et al., 2016; de Muinck & Trosvik, 2018). The finding that higher
alpha diversity was associated with lower cognitive scores (Carlson et al., 2018) might indicate
that low alpha diversity at around 1 year of age is beneficial for infant cognitive development
or that there are underlying environmental factors that cause lower alpha diversity and have a
positive influence on cognitive development. For instance, previous research found that breastfed
infants have a more stable FM composition that is dominated by the genus Bifidobacterium and
is therefore less diverse (Stewart et al., 2018). Breastfeeding also has been positively associated
with cognitive functioning in previous studies (Kim & Choi, 2020).

Based on the outlined preclinical studies and the first human study (Carlson et al., 2018; W. Gao
et al., 2019), we hypothesized (1) that FM composition in infancy and in childhood is associated
with childhood EF, (2) that there is a negative association between alpha diversity in infancy
and childhood EF, and (Kruschke, 2013) that (infant) FM samples can be grouped into clusters
of community similarity that are differentially associated with EF. In the context of hypothesis
2, we also investigated whether alpha diversity in childhood was related to childhood EF. Finally,
we explored whether microbiota compositional change over time (volatility) is associated with
EF in childhood. To investigate our hypotheses, we took the dynamic nature of the FM into
account by analyzing stool samples obtained at 5 different time points, from here on referred to
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as T1-T5. Three stool samples per child were collected in infancy at months 1, 3 and 4 (T1-T3).
Two more samples were collected at 6 and 10 years of age (T4-T5). We furthermore collected
questionnaire and test measurements of EF at 8 and 10 years of age and tested our hypotheses
using diverse complementary statistical and machine learning approaches as described in our
preregistration (https://aspredicted.org/uc98s.pdf). This study represents a further important
step in translating findings from animal studies into human research. It is the first study that
examined the relationship between FM and EF beyond the age of toddlerhood and spanning a
period of 10 years.

5.3 Methods and Materials

5.3.1 Participants

Participants are children from the 193 healthy mother-infant dyads from the ongoing longitudi-
nal BIBO study, that started in the third trimester of pregnancy and is ongoing (Beijers et al.,
2011b). Mothers were recruited on a voluntary basis during late pregnancy as they responded
to flyers that were spread among midwife practices in the cities of Nijmegen, Arnhem, and sur-
rounding areas. Inclusion criteria were an uncomplicated singleton pregnancy, no drug use and
no current physical or mental health problems. Furthermore, all infants were healthy, born at
full term (≥ 37 weeks), and with a 5-min APGAR score ≥ 7. Out of 220 women, 8 were excluded
due to medical reasons such as preterm birth. Another 19 women discontinued the study within
the first 3 postpartum months due to personal circumstances. When the children were 10 years
old, 177 mother-child dyads were still participating. Table 5.1 shows demographic variables for
the 156 study participants that had complete data for this study. Table 5.2 shows participant
numbers at the different time points. All mothers gave written informed consent and the ethical
Committee of the Faculty of Social Sciences, Radboud University Nijmegen approved the study
(ECG/ AvdK/07.563, ECG300107, ECG13012012, SW2017-1303-497, SW2017-1303-498).

5.3.2 Procedure

Mothers completed demographic questionnaires in the third trimester of pregnancy (M = 37.4,
SD = 1.4 weeks) as well as questionnaires about the delivery and the infant immediately after
birth. Information about breastfeeding was obtained weekly through diaries (0-6 months) and
through monthly health interviews (0-12 months). When the children were 8 and 10 years old,
mothers filled in the BRIEF questionnaire. The Digit Span test scores were obtained during a
home visit at 10 years.
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Table 5.1: Demographic characteristics of subjects

Characteristic N = 156
Antibiotics

Birth - T1 1 (1.0%)
Birth - T2 2 (1.8%)
Birth - T3 2 (2.3%)
5 years - T4 22 (17%)
9 years - T5 6 (4.5%)

Child age at EF collection
8 years 8.04 (8.02, 8.11)
10 years 10.15 (10.03, 10.23)

Child age at FM collection
T1 28.00 (27.00, 28.00)
T2 82 (75, 89)
T3 112 (107, 119)
T4 6.06 (6.01, 6.15)
T5 10.11 (9.96, 10.21)

Other
Alcohol during pregnancy 21 (15%)
Birthweight 3,618 (3,233, 3,931)
Child sex

female 71 (46%)
male 85 (54%)

Delivery mode
assisted vaginal 15 (9.9%)
cesarean section 8 (5.3%)
vaginal 128 (85%)

Firstborn 69 (44%)
Gestational length (days) 282 (275, 287)
Maternal education

Secondary education 30 (19%)
College or University 126 (81%)

Smoking during pregnancy 2 (1.5%)
Note. Categorical variables show number of participants per category

(%). Continuous variables show median and interquertile range.
Missing values for any of the listed variables were omitted to
calculate shown descriptive statistics. Abbreviations: EF, executive
functioning; FM, fecal microbiota.
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Table 5.2: Sample size per time point of stool sample collection and outcome variable.

Time DS F DS BW DS LNS BRIEF
T1 135 132 131 144
T2 125 123 122 131
T3 123 121 120 129
T4 139 137 136 144
T5 146 146 145 146
Note. DS F = Digit Span Forwards. DS BW =

Digit Span Backwards. DS LNS = Digit Span
Letter-number sequencing. BRIEF = Behavior
Rating Inventory of Executive Functioning.

5.3.3 Measures

5.3.3.1 Fecal Samples

We instructed parents to collect fecal samples at 9 time points postpartum as well as one
sample at 6 and 10 years of age. Due to financial constraints, we could use only 3 out of 9
samples in infancy. After collection and temporary storage at -20◦C at home, samples were
transported in coolers and later stored at -80◦C. Next, they were processed at the Microbiology
Laboratory at Wageningen University as described in a previously published protocol (Gu et
al., 2018; Ramiro-Garcia et al., 2018) (supplement 1). 16S rRNA sequencing was carried out
on a Illumina HiSeq2000 sequencing platform at Eurofins Genomics, Germany. We utilized
the NG-Tax 2.0 pipeline (Poncheewin et al., 2020) to process to amplicon sequence variants.
Only reads with matching barcodes were kept. Amplicon sequence variants were obtained by
assigning reads to each sample based on distinguishable barcodes. The SILVA_132_SSU 16S
rRNA gene reference database was used for taxonomic assignment (Quast et al., 2012).

5.3.3.2 Digit Span (Forwards, Backwards and Letter-number sequencing)

The Digit Span is part of the Wechsler Intelligence scale for children and measures working
memory (Petrosko, 1975). For the Digit Span tests, a trained instructor reads out numbers and
the child has to repeat these either in the given order (Digit Span forwards) or backwards (Digit
Span backwards). The maximum score for each subtest is 14. For the Digit Span letter-number
sequencing test, the instructor reads out a number of letters and numbers. The child has to
memorize and give back the numbers in ascending order and then the letters in alphabetical
order. The maximum score for Digit Span letter-number sequencing is 30 points. For all Digit
Span tests each level of difficulty consists of 2 trials whereby each correct trial is worth 1 point.
As soon as both trials are answered incorrectly the test is finished. Previous research suggests
that the different Digit Span tests measure different aspects of working memory functioning
(Gerton et al., 2004; Rosenthal et al., 2006; St Clair-Thompson & Allen, 2013). This was also
reflected by low-moderate correlation strength among our Digit span sub-scores (r < 0.41). As
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norms were only available for the total score at the time of our preregistration, we used the raw
sub-scores and corrected for age and gender within the analysis.

5.3.3.3 Behavior Rating Inventory of Executive Function (BRIEF)

Designed to achieve high ecological validity (Gioia & Isquith, 2004), the BRIEF was frequently
utilized in clinical practice and research settings to measure daily life EF in children (Huizinga
& Smidts, 2010). The BRIEF consists of 75 items that measure 8 scales: Inhibition, Shift,
Emotional Control, Initiate, Working Memory, Plan/Organize, Organization of Materials and
Monitor. Based on these scales, the age and gender normed T-scores for the Metacognition-
and Behavior Regulation Indices can be obtained. It is advised to use these sub-scales when the
T-scores between them differ significantly (Huizinga & Smidts, 2010). That was not the case in
our sample. Therefore, we calculated age- and gender normed T-scores for the total score of the
BRIEF as a general indicator of EF. A higher BRIEF score indicates lower EF. Note that we
used the mean of the 8 and 10 year scores for the Random Forest models. In the linear models
that relate alpha diversity or volatility to EF, we applied a multilevel structure for the repeated
measurement.

5.3.3.4 Confounding Variables

Figure 5.1 shows a directed acyclic graph (Williams et al., 2018) based on our literature review.
Directed acyclic graphs graphically depict potentially confounding variables of the association
between an exposure (here FM) and an outcome (EF). They furthermore provide a set of rules
to identify variables that reduce or induce bias when being adjusted for in a statistical model
(Cinelli et al., 2020). The rationale behind our assumed graph (Figure 5.1) is as follows: socio-
economic status, age and sex can influence EF measurements (Cuevas et al., 2014; Grissom &
Reyes, 2019) and FM (Bolnick et al., 2014; Bowyer et al., 2019; de Muinck & Trosvik, 2018). As
we have no direct measurement of socio-economic status, maternal education serves as a proxy
in our study and might itself also influence both FM (e.g. via diet) and EF of the child. Age of
the child during the EF task was included as it is expected to increase the precision of the effect
of interest (Cinelli et al., 2020). Age and child sex were left out for the models that included
the BRIEF scores as these were normed by age and sex. Breastfeeding is a strong driver of the
gut microbiota in infancy while there is contradictory research about a relationship with later
EF (Belfort et al., 2016; Rochat et al., 2016). For the analyses that include the childhood FM,
diet is a confounding factor that we cannot adjust for. We might partially mitigate a potential
bias under the assumption that maternal education has an effect on the child’s diet (Cinelli
et al., 2020). However, confounding effects of diet in childhood cannot be entirely ruled out
given our data. In infancy, variation in diet is reflected in the amount of received breastfeeding.
We considered other variables not shown in the graph: Gestational age and birthweight are not
expected to influence EF unless the infant was born preterm or has low birthweight (<2500g)
(Houdt et al., 2019). To infer the total effect of the FM under the assumed directed acyclic
graph model, all variables shown in the graph have to be included. However, several covariate
structures were explored to also give room to other candidate directed acyclic graphs (e.g. a
graph where breastfeeding is not related to EF). These did not lead to different conclusions.
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Figure 5.1: Directed acyclic graph based on literature review. Grey variables with a leading
U reflect unmeasured variables, for example: SES, unobserved socioeconomic status; FM, fecal
microbiota; EF, executive functioning. The graph applies to each time point of FM measurement
and each EF measurement separately.

5.3.4 Statistical Analysis

We performed our analyses in R (R Core Team, 2020) version 4.0.2 and Stan (Carpenter et al.,
2017) version 2.21.0. We used the packages microbiome (Shetty & Lahti, 2019) and phyloseq
(McMurdie & Holmes, 2014) to process microbiome data in R. Per time point and outcome
variable, data from all mother-infant dyads that provided fecal samples and the outcome variable
were used. Among those subjects there was very little missingness in the covariates (education:
0.7% - 1.7%, age: 0.8% - 2.4%). We performed complete case analyses in these cases.

5.3.4.1 Code availability

The code corresponding to all statistical analyses is publicly available (doi: https://doi.org/10.
5281/zenodo.5026029).

5.3.4.2 Random Forest Regression

The Random Forest algorithm (Breiman, 2001) is invariant to scaling of inputs, computationally
efficient, appropriate for high dimensional data, able to predict non-linear relationships and thus
well suited to analyze microbiome data (Belk et al., 2018; Louppe, 2014; Namkung, 2020). For
each outcome and time point of microbiota determination, we fitted a Random Forest model
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using the ranger package (Wright & Ziegler, 2017) with relative abundances. First, we tuned the
hyperparameters mtry and sample.fraction using the package tuneRanger, which uses the mean
squared error as out of bag error. Next, 10x 4-fold cross-validation was performed to estimate
Pearson correlations of predicted values and leave-out values. To obtain a distribution of Pearson
correlations under the null hypothesis, we performed the same procedure (incl. hyperparameter
tuning) after permutation of the outcome variable (1000 permutations). We used the median
Pearson correlation of the cross-validation procedure to obtain the p-value. Since we tested 20
Random Forest models for significance, we accounted for multiple testing using the Benjamini-
Hochberg procedure (Benjamini & Hochberg, 1995). We also explored the Random Forest
algorithm for feature selection as described in Bommert et al. (2020). Briefly, Random Forest
accuracy was evaluated by the set of top scoring taxa that were identified in a 4-fold cross-
validation and then used to train a new model on the whole data set. This was performed for
each outcome and time point separately.

5.3.4.3 Bayesian Linear Models

We fitted Bayesian robust Linear Models to regress EF on Shannon diversity and volatility, re-
spectively. Shannon diversity is a commonly used measure of alpha diversity. Experiments with
alternative alpha diversity indices (observed richness, Chao1, inverse Simpson) yielded similar
results. For volatility, we calculated intra-subject Aitchison distance sequentially resulting in
four volatility scores for each individual: T1-T2, T2-T3, T3-T4 and T4-T5. This allowed us
to determine whether volatility in infancy, between infancy and childhood and in childhood is
associated with EF. Covariates were included for both Shannon and volatility models as de-
scribed. Maternal education was modeled using an ordinal regression approach as described
by McElreath (2020) to respect the ordinal nature of this variable (Liddell & Kruschke, 2018).
We used cmdstanr (Gabry et al., 202-) to fit the models. The cmdstanr package utilizes the
probabilistic programming language Stan (Carpenter et al., 2017). Stan estimates parameters
using the Hamilton Monte Carlo (HMC) method. All continuous predictors were standardized
to ease interpretability and setting prior distributions for the parameters. Priors were set based
on prior predictive simulations such that the parameter space was only mildly restricted and the
same priors could be used across all models. A Gaussian prior with a mean of 0 and a standard
deviation of 0.5 was used for all 𝛽𝛽 coefficients across all models. Assigning a prior probability to
the effect centered at 0 and constraining the model to not consider highly unrealistic slope sizes
results in a more conservative model compared to the classical approach (Gelman & Tuerlinckx,
2000; Gelman et al., 2012). Note that changing prior distributions to more or less constrictive
priors did not influence the results. Posterior predictive checks and residual plots were used to
evaluate appropriateness of the model. Finally, we evaluated correct functioning of the HMC
method by screening chain plots and diagnostic parameters such as divergent transitions and
rhat4 values (Gabry et al., 2019).

5.3.4.4 Partitioning Around Medoids

We applied the Partitioning around Medoids clustering algorithm to the centered-log-ratio trans-
formed genus level abundances (Aitchison distance) (Gloor et al., 2017) using the R package
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cluster. For each time point we determined whether clustering is present based on Prediction
Strength (Tibshirani & Walther, 2005) and the Silhouette Index utilizing functions from the
packages cluster and fpc. Both measures are absolute measures of cluster strength that indicate
support for clustering when they fall above a predefined threshold. The Calinski-Harabasz index
is a relative measure of cluster strength that reflects which number of clusters is most likely
(assuming that clusters are present). We considered clusters to be valid if either Prediction
Strength is ≥ 0.9 or Silhoutte Index is ≥ 0.5 as recommended by Koren et al. (2013).

5.4 Results

Figure 5.2 shows the distributions for all outcome variables including their means, ranges,
medians and interquartile ranges. In the following sections, we describe the results per analysis
method.

Figure 5.2: For each outcome, a boxplot is shown on the first layer. On a second layer, the
corresponding single data points are shown in light grey as well as a larger black point depicting
the mean. Small random noise is added to the single data points to avoid overplotting. (a)
BRIEF (8 years), (b) BRIEF (10 years), (c) Digit Span forwards, (d) Digit Span backwards and
(e) Digit Span letter-number sequencing.

5.4.1 Predicting EF from Genus Level Abundances - Random Forest
Regression

Table 5.3 shows the median correlation between the Random Forest predictions and the leave-
out values with the corresponding p-values and q-values for each model. If relative abundances
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Table 5.3: Correlation between Random Forest prediction and real data.

Outcome Median Mean SD p q
T1

DS Forwards -0.14 -0.14 0.14 0.94 0.85
DS Backwards -0.07 -0.09 0.13 0.77 0.83
DS LNS 0.17 0.14 0.17 0.10 0.74
BRIEF 0.20 0.18 0.11 0.04 0.74

T2
DS Forwards 0.03 0.00 0.15 0.46 0.79
DS Backwards 0.25 0.24 0.15 0.01 0.49
DS LNS 0.02 0.00 0.15 0.52 0.79
BRIEF -0.13 -0.11 0.13 0.90 0.83

T3
DS Forwards -0.01 0.02 0.17 0.60 0.83
DS Backwards -0.12 -0.10 0.19 0.87 0.83
DS LNS 0.03 0.04 0.14 0.48 0.79
BRIEF -0.06 -0.06 0.11 0.74 0.83

T4
DS Forwards 0.06 0.06 0.15 0.38 0.79
DS Backwards -0.13 -0.10 0.14 0.88 0.83
DS LNS 0.09 0.09 0.12 0.25 0.75
BRIEF 0.05 0.04 0.14 0.44 0.79

T5
DS Forwards 0.03 0.00 0.14 0.46 0.79
DS Backwards 0.14 0.12 0.12 0.13 0.74
DS LNS 0.05 0.05 0.11 0.39 0.79
BRIEF 0.17 0.17 0.13 0.08 0.74

Note. SD = standard deviation. DS = Digit Span.

at Genus level are associated with EF, we would expect a significant correlation between the
Random Forest predictions and the known outcome. Only two models yielded significant results:
Predicting the combined BRIEF scores and Digit Span Backwards from the samples obtained at
T1 and T2, respectively. However, after applying the Benjamini-Hochberg procedure to correct
for multiple testing they no longer remain significant. In general, the correlation coefficients
vary closely around zero indicating that it was not possible to predict EF scores based on Genus
level relative abundances at any time point. In a separate exploratory analysis, we used feature
selection prior to fitting the final models to avoid potential overfitting to uninformative features.
This approach did not change results meaningfully (see supplementary Table 5.4).

153



154 Gut Microbiota and Executive Functioning

5.4.2 Bayesian Linear Models

5.4.2.1 Associations between Shannon Diversity and EF

Figures 5.3 and 5.4 summarize 20 linear models by showing the posterior distributions of the
slope coefficients for alpha diversity and the covariates, respectively. Figure 5.3 corresponds
to our hypothesis that alpha diversity is associated with EF. For every slope, we evaluate the
proportion of the distribution that lies above or below zero. The higher this proportion, the
more confident we can be that the relationship is positive or negative, respectively. We conclude
that the association is positive or negative with confidence, if the 95% credible interval (CI)
(grey area) excludes zero. Despite 2 sub-figures (Figure 5.3C T1 and Figure 5.3B T5) indicating
otherwise, this was not the case for any slope parameter (see supplementary tables 5.5-5.24 for
exact CIs). In addition to looking at the 95% CI, we can also evaluate consistency in the
most likely direction of the association within infancy or childhood across our EF measures. If
the most likely direction is consistent this could be interpreted as evidence for an association
between alpha diversity and EF. For example, the relationship between alpha diversity and Digit
Span Backwards (B) is consistently estimated to be most likely negative in infancy. However,
we can observe consistency in the opposite direction across the three infant time points for
Digit Span Forwards (C). Thus, the direction is not consistent across EF measures. In sum, we
cannot observe evidence for an association between alpha diversity and EF using linear models.
Among the covariates (Figure 5.4), the model is confident that maternal education is positively
associated with Digit Span letter-number sequencing. Also, for Digit Span Backwards this
relationship is likely (P(𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒 > 0) = 0.95). Sex and breastfeeding were not associated with EF
scores although there is a tendency (P(𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 > 0) = 0.97) for boys to score higher on Digit
Span letter-number sequencing. Note that these results do not differ depending on the alpha
diversity index chosen (supplementary Figures 5.9 - 5.12).

5.4.2.2 Associations between Volatility and EF

Figure 5.5 summarizes our exploratory analyses (not preregistered) that investigate a potential
association between microbiota volatility (supplementary Figure 5.13) and EF in childhood (see
supplementary tables 5.25-5.40 for exact CIs). Each curve depicts a posterior distribution of
a slope corresponding to the association between volatility at the given time point and EF in
childhood. Applying the same criteria as outlined in the former section where we used Bayesian
Linear models, we do not observe a relationship between microbiota volatility and EF. For
time pair T2-T3 the direction of the association is most likely positive for three out of four
EF measures (note that BRIEF must be interpreted inversely). This might indicate a positive
relationship between volatility in that specific infant time window and EF in childhood that
could potentially be identified with higher samples sizes. Similarly, for T4-T5 we observe that
the majority of the posterior distribution indicates a positive slope across the three digit span
measures.
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Figure 5.3: Posterior distributions (x-axis) of the beta coefficients of alpha diversity (Shannon)
for each outcome (a–d) and time point (y-axis) when stool samples were obtained. The grey
areas reflect the 95% credible intervals of the estimates. (a) Digit Span forwards, (b) Digit Span
backwards, (c) Digit Span letter-number sequencing and (d) BRIEF.

Figure 5.4: Posterior distributions of the beta coefficients of the covariates for each outcome
averaged over all time points of microbiota sampling. The grey areas reflect the 95% credible
intervals of the estimates. (a) Digit Span forwards, (b) Digit Span backwards, (c) Digit Span
letter-number sequencing and (d) BRIEF.
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Figure 5.5: Posterior distributions (x-axis) of the beta coefficients of volatility for each outcome
(a–d) and time point pair (y-axis) when stool samples were obtained. Grey areas reflect the
95% credible intervals of the estimates. (a) BRIEF, (b) Digit Span forwards, (c) Digit Span
backwards and (d) Digit Span letter-number sequencing.

5.4.3 Identifying Clusters of FM composition - Partitioning Around
Medoids

Neither Prediction Strength nor Silhouette Index indicated the presence of clustering at any
of the five microbiota assessment moments (Figure 5.6). This was also the case when we
used the cluster algorithm on all infant or childhood samples at once. Therefore, no follow-
up analyses comparing EF between clusters were warranted. Note that we preregistered the
k-means algorithm rather than Partitioning around Medoids. The k-means algorithm led to
similar results. We presented Partitioning Around Medoids here as this makes our analyses
more comparable to previous research (Carlson et al., 2018).

5.5 Discussion

This study examined the relationship between infant and childhood fecal microbiota (FM)
composition and childhood executive functioning (EF). Our results did not reveal any consistent
associations between FM composition and EF. The Random Forests algorithm, that is able to
detect complex non-linear relationships, was unable to predict EF from Genus level relative
abundances at any given time point. In line with that, Bayesian robust linear models found no
association between alpha diversity or volatility and EF. Finally, we did not find that infant
microbiota composition can be described by clusters based on the Partitioning Around Medoids
method.
There are several potential explanations for the absence of statistical associations between FM
composition and EF in our data. Considering that we explored the data using diverse com-
plementary statistical approaches and also used 5 different time points of microbiota sampling
that we could relate to our outcomes, the most likely explanation might be that there is no or
only a weak relationship between the FM composition at the genus level and EF in childhood
as assessed by our methods (parent questionnaires and digit span tests). That does not mean
that gut microbes may not play a role in EF in humans in general. It is possible that effects
of the microbiota on EF become apparent when looking at high-risk populations as opposed to
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Figure 5.6: The y-axis shows absolute (a1–e1) and relative (a2–e2) measures of cluster strength
for the stool samples obtained at T1 (a), T2 (b), T3 (c), T4 (d) and T5 (e). The x-axis shows
the number of clusters the calculation is based on. Silhouette index and prediction strength
are indicated in red and yellow, respectively, including their predefined thresholds. Neither of
these measures exceeds the threshold. Therefore, the Calinski–Harabasz index (a2–e2) will not
be interpreted.
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a low-risk healthy population as in our study. Our hypotheses were mainly based on animal
models that have identified associations between the gut microbiota and cognitive functioning
(Sarkar et al., 2018). In these models, higher risk is induced by an intervention (e.g. stressors
or antibiotics). At the same time, animal models have far less variation in the gut microbiota
(Lagkouvardos et al., 2016). Therefore, animal studies may more easily reveal effects that in the
human population are obscured by the large variability in environments and the more complex
microbial ecosystems. Also, the natural gut microbial ecosystem in infancy is highly variable
even within infants (de Muinck & Trosvik, 2018), as was also observed in our data throughout
the first 10 years of life when looking at volatility (supplementary Figure 5.13) or Shannon
alpha diversity (Figures 5.7 and 5.8). Correlation coefficients between alpha diversity values
over all time points ranged between 0.22 and .29, indicating high intra-individual variability.
To find an association between any individual variable that is highly variable over time might
require very large sample sizes. And indeed, a large-scale study showed that effect sizes of
FM-covariate associations are often surprisingly small, requiring very large sample sizes to be
identified (Falony et al., 2016).

The absence of clustering in our data (determined with Partitioning around Medoids) as opposed
to the data of e.g., Carlson et al. (2018) illustrates other important challenges in microbiome
studies regarding cross-study comparisons, some of which have been discussed recently (Moreno-
Indias et al., 2021). These challenges can include different choices regarding the sequenced region
of the 16S gene or the pipeline used to process the sequencing data. For example, the V2 region
has been shown to have higher resolution for lower-rank genera than the V4 region (Bukin et al.,
2019). Other challenges arise because researchers choose different statistical methods or apply
them differently. For instance, we applied thresholds to define the presence of clustering based
on Koren et al. (2013). According to these thresholds, there would have been no clustering in
the data of Carlson et al. (2018) either. As a final example, a Dirichlet Multinomial Mixture
Model (Holmes et al., 2012), that we fitted as part of another project on the data of this study
(Ou et al., 2022), can identify 3 clusters in infancy and 4 clusters in childhood (exploratory
pairwise comparisons between these clusters can be found in the supplement). These examples
illustrate that a lack of standardization of the many necessary analysis choices in microbiome
studies makes a cross-study comparison difficult and in many cases impossible (Moreno-Indias
et al., 2021).

Limitations of our study are that we could not take into account the functionality of the gut
microbial ecosystem or look at species or even strain level. Relating (predicted) microbial neu-
roactive metabolites directly to EF was beyond the scope of this study but would be informative
as the metabolites reflect an important pathway through which bacteria exert effects on the host.
Also, it is possible that only single species or strains of a genus are associated with EF while
the genus is not. Furthermore, given the high variability of the FM, partially caused by known
uncontrolled variables such as diet (childhood), time of defecation, stool consistency and others,
our sample size is too small to be confident that there is not a weak association between genus
level FM and EF. Note, however, that the sample size is large compared to the earlier human
studies (Carlson et al., 2018; W. Gao et al., 2019). Lastly, our study sample consisted of highly
educated women with uncomplicated pregnancies and giving birth to healthy, full-term infants.
This limits the generalizability of our findings. Strengths of the current study include using a
longitudinal design over a long time span. This allowed us to determine FM at 3 distinct time
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points in infancy and at 6 and 10 years of age in childhood. Repeated microbiota sampling
makes our findings more robust compared to studies that analyzed a single sample. Further-
more, we used the Digit Span memory task in combination with the ecologically valid BRIEF
questionnaire to measure different aspects of EF. The repeated measurement of the BRIEF re-
sulted in a more robust estimation of daily life EF. Finally, we utilized different complimentary
and sophisticated statistical methods to evaluate our hypotheses while accounting for important
confounding variables.

5.6 Conclusions

In conclusion, we did not find a relationship between infant or childhood fecal microbiota com-
position and executive functioning in childhood. Future studies might benefit from a higher
taxonomic resolution than the genus level, repeated assessments, and larger sample sizes, as
well as the addition of the (predicted) functional assessment of the gut microbial ecosystem.
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Figure 5.7: Alpha diversity (Shannon) for each sample in infancy. On each plot maximal eight
infants (maximum eight colors) are shown to enable tracking the paths of the individuals without
cluttering. The three dashed lines represent the 25%, 50% and 75% quantiles of all Shannon
values in infancy. The violin plot in the background shows the corresponding whole distribution
of Shannon diversity of our infant samples.
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Figure 5.8: Alpha diversity (Shannon) for each sample in childhood. On each plot maximal
eight children (maximum eight colors) are shown to enable tracking the paths of the individuals
without cluttering. The three dashed lines represent the 25%, 50% and 75% quantiles of all
Shannon values in childhood. The violin plot in the background shows the corresponding whole
distribution of Shannon diversity of our childhood samples.
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5.7 Supplementary Materials

5.7.1 Supplementary Methods

5.7.1.1 DNA Extraction

DNA extraction was performed via Maxwell 16 TOTAL RNA system (Promega, Wisconsin,
USA) with Stool Transport and Recovery Buffer (STAR; Roche Diagnostics Corporation, In-
dianapolis, IN). We amplified the V4 region of the 16S ribosomal RNA (rRNA) gene in du-
plication, generating amplicons with length of around 290bp. Each PCR reaction consisted
of 0.5µl 2U/µl Phusion Green Hot Start II High-Fidelity DNA polymerase (Thermo Scientific,
US), 1µl 10um barcoded primers 515F-n(5’-GTGYCAGCMGCCGCGGTAA-3’) and 806R-n(5’-
GGACTACNVGGGTWTCTAAT-3’) (Apprill et al., 2015), 10µl 5xPhusion Green HF Buffer
(Thermo Scientific, US), 1µl 10mM dNTPs mix (Promega Corporation, US), 36.5µl Nuclease-
free water and 1µl 20ng/µl DNA template. PCR was performed with 30s initial denaturation
period at 98°C followed by 25 cycles of denaturation (98°C, 10s), annealing (50°C, 10s) and
extension (72°C, 10s) and a final elongation (72°C, 7min). We verified PCR products by gel
electrophoresis and purified them by the HighPrep® PCR kit (MagBio Genomics, Alphen aan
den Rijn, Netherlands). DNA concentration was determined by fluorometer (DS-11; DeNovix)
with Qubit® dsDNA BR Assay Kit (Life Technologies, Leusden, Netherlands). Barcoded sam-
ple belonging to the same library (200ng) was pooled together. Each library included 69 unique
barcode tags, whereby 2 of them were specially designed for artificial control communities repre-
sentative of human gut microbiota (Ramiro-Garcia et al., 2018). The mixture was again purified
to a final volume of 40µl using HighPrep® PCR kit.

5.7.2 Supplementary Results

5.7.2.1 Alternative Alpha diversity Indices yield similar results

Figure 5.9: Posterior distributions (x-axis) of the beta coefficients of alpha diversity (richness)
for each outcome (A-D) and time point (y-axis) when stool samples were obtained. The grey
areas reflect the 95% credible intervals of the estimates. A = BRIEF. B = Digit Span Forwards.
C = Digit Span Backwards. D = Digit Span Letter Number Sequencing.
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Figure 5.10: Posterior distributions (x-axis) of the beta coefficients of alpha diversity (inverse
Simpson) for each outcome (A-D) and time point (y-axis) when stool samples were obtained.
The grey areas reflect the 95% credible intervals of the estimates. A = BRIEF. B = Digit Span
Forwards. C = Digit Span Backwards. D = Digit Span Letter Number Sequencing.

Figure 5.11: Posterior distributions (x-axis) of the beta coefficients of alpha diversity (Fisher)
for each outcome (A-D) and time point (y-axis) when stool samples were obtained. The grey
areas reflect the 95% credible intervals of the estimates. A = BRIEF. B = Digit Span Forwards.
C = Digit Span Backwards. D = Digit Span Letter Number Sequencing.

Figure 5.12: Posterior distributions (x-axis) of the beta coefficients of alpha diversity (Chao 1)
for each outcome (A-D) and time point (y-axis) when stool samples were obtained. The grey
areas reflect the 95% credible intervals of the estimates. A = BRIEF. B = Digit Span Forwards.
C = Digit Span Backwards. D = Digit Span Letter Number Sequencing.
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5.7.2.2 Microbiota Volatility

Figure 5.13: Distributions of microbiota volatility for each sequential time point pair (indicated
on x-axis). Grey points show single data points plotted over boxplots. The larger black dot
represents the mean.
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5.7.2.3 Dirichlet Multinomial Mixture Clusters

Figure 5.14: Laplace approximation for the Dirichlet Multinomial Mixture Models for infancy
(A) and childhood (B). The lowest value indicates which number of cluster results in the best
model fit.

Figure 5.15: Pairwise comparisons of outcome variables between Dirichlet Multinomial Mixture
Model clusters. A = Digit Span Forwards. B = Digit Span Backwards. C = Digit Span Letter
Number Sequencing. D = BRIEF. The top row (1) refers to the clusters in infancy. The bottom
row (2) refers to clusters in childhood.
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Figure 5.16: Principal Component Analysis (Aitchison distance metric) of all fecal samples
graphically split by infancy (A) vs childhood (B) showing the clustering according to the Dirich-
let Multinomial Mixture Models approach. Note that graphical representation of beta diversity
differs depending on which distance metric is used.
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Figure 5.17: Scaled centered-log-ratio transformed abundances of the 50 most discriminating
genera between clusters for each subject. The values have been scaled to zero mean and unit
variance in order to highlight differences in the variation relative to the mean level within each
taxonomic group. The horizontal bars at the top indicate the cluster assignment and volunteer
age at the sample collection. The color scale has been limited to the interval [-1, 1].

167



168 Gut Microbiota and Executive Functioning

5.7.3 Supplementary Tables

Table 5.4: Correlation between Random Forest prediction and real leave-out data.

Outcome Time Point Median Mean SD
DS Forwards T1 -0.06 -0.07 0.06
DS Backwards T1 0.00 0.01 0.09
DS LNS T1 0.04 0.03 0.09
BRIEF T1 0.09 0.08 0.08
DS Forwards T2 0.00 -0.01 0.09
DS Backwards T2 0.12 0.12 0.07
DS LNS T2 -0.01 -0.01 0.09
BRIEF T2 0.04 0.04 0.11
DS Forwards T3 0.00 -0.02 0.12
DS Backwards T3 -0.11 -0.11 0.09
DS LNS T3 -0.10 -0.10 0.08
BRIEF T3 0.07 0.05 0.12
DS Forwards T4 0.08 0. 09 0.09
DS Backwards T4 -0.19 -0.20 0.09
DS LNS T4 -0.09 -0.07 0.09
BRIEF T4 0.06 0.05 0.09
DS Forwards T5 0.00 -0.02 0.10
DS Backwards T5 0.02 0.03 0.07
DS LNS T5 -0.10 -0.11 0.08
BRIEF T5 0.10 0.09 0.11

Table 5.5: Parameter estimates for the model using Shannon diversity calculated from samples
collected at T1 as predictor and Digit Span Forwards as outcome variable.

Parameter Estimate SD 95% CI
intercept_female -0.200 0.207 -0.600 : 0.214
intercept_male -0.074 0.206 -0.496 : 0.328
age -0.044 0.080 -0.211 : 0.106
breastfeeding -0.102 0.076 -0.248 : 0.048
education 0.106 0.244 -0.360 : 0.594
shannon 0.083 0.077 -0.070 : 0.238
sigma 0.737 0.060 0.629 : 0.866
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Table 5.6: Parameter estimates for the model using Shannon diversity calculated from samples
collected at T1 as predictor and Digit Span Backwards as outcome variable.

Parameter Estimate SD 95% CI
intercept_female -0.413 0.215 -0.837 : 0.001
intercept_male -0.491 0.208 -0.900 : -0.083
age -0.073 0.078 -0.230 : 0.079
breastfeeding 0.020 0.079 -0.136 : 0.170
education 0.475 0.241 0.006 : 0.949
shannon -0.150 0.080 -0.303 : 0.007
sigma 0.772 0.066 0.656 : 0.911

Table 5.7: Parameter estimates for the model using Shannon diversity calculated from samples
collected at T1 as predictor and Digit Span Letter Number Sequencing as outcome variable.

Parameter Estimate SD 95% CI
intercept_female -0.495 0.213 -0.919 : -0.077
intercept_male -0.244 0.211 -0.664 : 0.158
age 0.027 0.073 -0.120 : 0.170
breastfeeding 0.034 0.076 -0.110 : 0.184
education 0.503 0.247 0.016 : 0.995
shannon 0.059 0.084 -0.108 : 0.225
sigma 0.763 0.064 0.649 : 0.897

Table 5.8: Parameter estimates for the model using Shannon diversity calculated from samples
collected at T1 as predictor and BRIEF as outcome variable.

Parameter Estimate SD 95% CI
intercept 0.025 0.218 -0.405 : 0.455
breastfeeding 0.044 0.086 -0.123 : 0.212
education -0.059 0.268 -0.582 : 0.467
shannon 0.066 0.084 -0.098 : 0.230
sigma 0.716 0.065 0.599 : 0.856

169



170 Gut Microbiota and Executive Functioning

Table 5.9: Parameter estimates for the model using Shannon diversity calculated from samples
collected at T2 as predictor and Digit Span Forwards as outcome variable.

Parameter Estimate SD 95% CI
intercept_female -0.265 0.213 -0.686 : 0.161
intercept_male -0.037 0.206 -0.441 : 0.393
age -0.027 0.082 -0.190 : 0.131
breastfeeding -0.070 0.076 -0.223 : 0.079
education 0.102 0.247 -0.391 : 0.579
shannon 0.032 0.080 -0.128 : 0.186
sigma 0.729 0.066 0.615 : 0.872

Table 5.10: Parameter estimates for the model using Shannon diversity calculated from samples
collected at T2 as predictor and Digit Span Backwards as outcome variable.

Parameter Estimate SD 95% CI
intercept_female -0.479 0.212 -0.887 : -0.058
intercept_male -0.307 0.197 -0.685 : 0.081
age -0.068 0.079 -0.226 : 0.087
breastfeeding -0.038 0.081 -0.196 : 0.117
education 0.397 0.238 -0.085 : 0.860
shannon -0.118 0.083 -0.280 : 0.044
sigma 0.767 0.068 0.646 : 0.912

Table 5.11: Parameter estimates for the model using Shannon diversity calculated from samples
collected at T2 as predictor and Digit Span Letter Number Sequencing as outcome variable.

Parameter Estimate SD 95% CI
intercept_female -0.556 0.220 -1.011 : -0.152
intercept_male -0.152 0.218 -0.599 : 0.257
age 0.027 0.073 -0.119 : 0.172
breastfeeding 0.033 0.077 -0.117 : 0.185
education 0.496 0.245 0.027 : 0.976
shannon -0.075 0.080 -0.241 : 0.085
sigma 0.713 0.062 0.602 : 0.847
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Table 5.12: Parameter estimates for the model using Shannon diversity calculated from samples
collected at T2 as predictor and BRIEF as outcome variable.

Parameter Estimate SD 95% CI
intercept -0.058 0.215 -0.494 : 0.361
breastfeeding 0.092 0.084 -0.076 : 0.257
education 0.042 0.259 -0.466 : 0.545
shannon 0.133 0.082 -0.023 : 0.297
sigma 0.716 0.068 0.593 : 0.858

Table 5.13: Parameter estimates for the model using Shannon diversity calculated from samples
collected at T3 as predictor and Digit Span Forwards as outcome variable.

Parameter Estimate SD 95% CI
intercept_female -0.395 0.232 -0.843 : 0.057
intercept_male -0.180 0.224 -0.624 : 0.268
age 0.011 0.083 -0.153 : 0.168
breastfeeding -0.081 0.084 -0.248 : 0.075
education 0.228 0.259 -0.300 : 0.734
shannon 0.083 0.080 -0.074 : 0.244
sigma 0.758 0.066 0.641 : 0.903

Table 5.14: Parameter estimates for the model using Shannon diversity calculated from samples
collected at T3 as predictor and Digit Span Backwards as outcome variable.

Parameter Estimate SD 95% CI
intercept_female -0.366 0.233 -0.826 : 0.080
intercept_male -0.311 0.213 -0.730 : 0.125
age -0.076 0.082 -0.235 : 0.089
breastfeeding -0.068 0.086 -0.229 : 0.101
education 0.323 0.255 -0.175 : 0.827
shannon -0.079 0.087 -0.250 : 0.094
sigma 0.795 0.069 0.674 : 0.945
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Table 5.15: Parameter estimates for the model using Shannon diversity calculated from samples
collected at T3 as predictor and Digit Span Letter Number Sequencing as outcome variable.

Parameter Estimate SD 95% CI
intercept_female -0.456 0.220 -0.906 : -0.038
intercept_male -0.159 0.216 -0.606 : 0.267
age 0.041 0.074 -0.105 : 0.184
breastfeeding 0.012 0.079 -0.147 : 0.170
education 0.430 0.249 -0.057 : 0.929
shannon -0.019 0.085 -0.186 : 0.143
sigma 0.727 0.063 0.614 : 0.864

Table 5.16: Parameter estimates for the model using Shannon diversity calculated from samples
collected at T3 as predictor and BRIEF as outcome variable.

Parameter Estimate SD 95% CI
intercept -0.162 0.223 -0.614 : 0.286
breastfeeding 0.125 0.087 -0.046 : 0.296
education 0.151 0.268 -0.376 : 0.686
shannon -0.098 0.085 -0.266 : 0.068
sigma 0.702 0.069 0.581 : 0.849

Table 5.17: Parameter estimates for the model using Shannon diversity calculated from samples
collected at T4 as predictor and Digit Span Forwards as outcome variable.

Parameter Estimate SD 95% CI
intercept_female -0.222 0.204 -0.625 : 0.175
intercept_male -0.139 0.195 -0.517 : 0.253
age -0.061 0.079 -0.226 : 0.083
breastfeeding -0.143 0.073 -0.289 : 0.002
education 0.159 0.231 -0.293 : 0.609
shannon -0.113 0.072 -0.254 : 0.027
sigma 0.717 0.062 0.611 : 0.849
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Table 5.18: Parameter estimates for the model using Shannon diversity calculated from samples
collected at T4 as predictor and Digit Span Backwards as outcome variable.

Parameter Estimate SD 95% CI
intercept_female -0.365 0.221 -0.802 : 0.071
intercept_male -0.425 0.207 -0.838 : -0.019
age -0.053 0.076 -0.202 : 0.101
breastfeeding -0.056 0.077 -0.207 : 0.099
education 0.388 0.240 -0.096 : 0.851
shannon 0.019 0.083 -0.148 : 0.176
sigma 0.784 0.064 0.670 : 0.920

Table 5.19: Parameter estimates for the model using Shannon diversity calculated from samples
collected at T4 as predictor and Digit Span Letter Number Sequencing as outcome variable.

Parameter Estimate SD 95% CI
intercept_female -0.487 0.216 -0.920 : -0.069
intercept_male -0.243 0.215 -0.680 : 0.164
age 0.030 0.068 -0.106 : 0.167
breastfeeding -0.021 0.075 -0.166 : 0.139
education 0.501 0.239 0.037 : 0.971
shannon 0.086 0.081 -0.071 : 0.248
sigma 0.721 0.059 0.618 : 0.854

Table 5.20: Parameter estimates for the model using Shannon diversity calculated from samples
collected at T4 as predictor and BRIEF as outcome variable.

Parameter Estimate SD 95% CI
intercept -0.080 0.225 -0.515 : 0.377
breastfeeding 0.055 0.085 -0.112 : 0.223
education 0.079 0.266 -0.465 : 0.575
shannon -0.006 0.080 -0.161 : 0.153
sigma 0.724 0.066 0.607 : 0.861
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Table 5.21: Parameter estimates for the model using Shannon diversity calculated from samples
collected at T5 as predictor and Digit Span Forwards as outcome variable.

Parameter Estimate SD 95% CI
intercept_female -0.138 0.217 -0.565 : 0.294
intercept_male -0.125 0.211 -0.539 : 0.303
age -0.054 0.080 -0.212 : 0.098
breastfeeding -0.125 0.077 -0.277 : 0.021
education 0.067 0.245 -0.405 : 0.551
shannon -0.152 0.078 -0.309 : 0.002
sigma 0.773 0.061 0.666 : 0.903

Table 5.22: Parameter estimates for the model using Shannon diversity calculated from samples
collected at T5 as predictor and Digit Span Backwards as outcome variable.

Parameter Estimate SD 95% CI
intercept_female -0.440 0.216 -0.874 : -0.021
intercept_male -0.446 0.196 -0.840 : -0.076
age -0.018 0.075 -0.166 : 0.129
breastfeeding -0.047 0.080 -0.206 : 0.106
education 0.487 0.242 0.031 : 0.974
shannon -0.050 0.081 -0.216 : 0.105
sigma 0.800 0.063 0.693 : 0.933

Table 5.23: Parameter estimates for the model using Shannon diversity calculated from samples
collected at T5 as predictor and Digit Span Letter Number Sequencing as outcome variable.

Parameter Estimate SD 95% CI
intercept_female -0.485 0.216 -0.931 : -0.085
intercept_male -0.184 0.198 -0.572 : 0.192
age 0.040 0.070 -0.097 : 0.181
breastfeeding 0.044 0.074 -0.103 : 0.193
education 0.478 0.237 0.019 : 0.955
shannon -0.013 0.073 -0.165 : 0.130
sigma 0.743 0.059 0.636 : 0.869
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Table 5.24: Parameter estimates for the model using Shannon diversity calculated from samples
collected at T5 as predictor and BRIEF as outcome variable.

Parameter Estimate SD 95% CI
intercept -0.019 0.214 -0.451 : 0.381
breastfeeding 0.023 0.081 -0.138 : 0.184
education -0.006 0.258 -0.498 : 0.517
shannon 0.043 0.081 -0.117 : 0.200
sigma 0.717 0.063 0.601 : 0.851

Table 5.25: Parameter estimates for the model using volatility calculated between samples 1-2
as predictor and Digit Span Forwards as outcome variable.

Parameter Estimate SD 95% CI
intercept_female -0.320 0.220 -0.756 : 0.105
intercept_male -0.123 0.220 -0.561 : 0.321
age -0.036 0.089 -0.212 : 0.135
breastfeeding -0.081 0.087 -0.253 : 0.093
education 0.208 0.260 -0.293 : 0.727
volatility -0.090 0.092 -0.273 : 0.086
sigma 0.732 0.070 0.605 : 0.884

Table 5.26: Parameter estimates for the model using volatility calculated between samples 1-2
as predictor and Digit Span Backwards as outcome variable.

Parameter Estimate SD 95% CI
intercept_female -0.357 0.218 -0.790 : 0.062
intercept_male -0.344 0.211 -0.746 : 0.081
age -0.102 0.086 -0.281 : 0.056
breastfeeding -0.002 0.090 -0.172 : 0.174
education 0.357 0.253 -0.133 : 0.849
volatility -0.034 0.094 -0.213 : 0.156
sigma 0.780 0.074 0.644 : 0.941
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Table 5.27: Parameter estimates for the model using volatility calculated between samples 1-2
as predictor and Digit Span Letter Number Sequencing as outcome variable.

Parameter Estimate SD 95% CI
intercept_female -0.536 0.225 -0.998 : -0.108
intercept_male -0.240 0.219 -0.666 : 0.195
age 0.020 0.081 -0.144 : 0.175
breastfeeding 0.050 0.089 -0.126 : 0.227
education 0.504 0.255 -0.012 : 1.014
volatility 0.015 0.089 -0.158 : 0.189
sigma 0.751 0.072 0.624 : 0.906

Table 5.28: Parameter estimates for the model using volatility calculated between samples 1-2
as predictor and BRIEF as outcome variable.

Parameter Estimate SD 95% CI
intercept -0.081 0.228 -0.533 : 0.363
breastfeeding 0.057 0.093 -0.123 : 0.246
education 0.086 0.281 -0.474 : 0.634
volatility 0.072 0.089 -0.101 : 0.249
sigma 0.695 0.074 0.567 : 0.856

Table 5.29: Parameter estimates for the model using volatility calculated between samples 2-3
as predictor and Digit Span Forwards as outcome variable.

Parameter Estimate SD 95% CI
intercept_female -0.504 0.229 -0.967 : -0.076
intercept_male -0.231 0.231 -0.668 : 0.238
age -0.028 0.096 -0.221 : 0.157
breastfeeding -0.016 0.090 -0.191 : 0.156
education 0.323 0.267 -0.206 : 0.858
volatility 0.083 0.097 -0.119 : 0.264
sigma 0.749 0.077 0.620 : 0.922
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Table 5.30: Parameter estimates for the model using volatility calculated between samples 2-3
as predictor and Digit Span Backwards as outcome variable.

Parameter Estimate SD 95% CI
intercept_female -0.287 0.241 -0.753 : 0.197
intercept_male -0.290 0.221 -0.719 : 0.153
age -0.123 0.089 -0.304 : 0.055
breastfeeding -0.046 0.091 -0.229 : 0.131
education 0.270 0.265 -0.253 : 0.773
volatility 0.137 0.095 -0.046 : 0.328
sigma 0.771 0.077 0.638 : 0.943

Table 5.31: Parameter estimates for the model using volatility calculated between samples 2-3
as predictor and Digit Span Letter Number Sequencing as outcome variable.

Parameter Estimate SD 95% CI
intercept_female -0.491 0.240 -0.994 : -0.046
intercept_male -0.180 0.237 -0.640 : 0.292
age 0.033 0.084 -0.126 : 0.199
breastfeeding 0.014 0.089 -0.157 : 0.193
education 0.400 0.268 -0.133 : 0.924
volatility -0.035 0.089 -0.209 : 0.142
sigma 0.749 0.074 0.618 : 0.911

Table 5.32: Parameter estimates for the model using volatility calculated between samples 2-3
as predictor and BRIEF as outcome variable.

Parameter Estimate SD 95% CI
intercept -0.132 0.226 -0.570 : 0.333
breastfeeding 0.036 0.095 -0.152 : 0.222
education 0.157 0.278 -0.424 : 0.689
volatility -0.142 0.091 -0.321 : 0.041
sigma 0.677 0.076 0.545 : 0.844
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Table 5.33: Parameter estimates for the model using volatility calculated between samples 3-4
as predictor and Digit Span Forwards as outcome variable.

Parameter Estimate SD 95% CI
intercept_female -0.478 0.233 -0.919 : -0.015
intercept_male -0.243 0.240 -0.721 : 0.230
age -0.059 0.099 -0.260 : 0.124
breastfeeding -0.099 0.089 -0.275 : 0.080
education 0.323 0.277 -0.212 : 0.887
volatility -0.031 0.084 -0.200 : 0.131
sigma 0.741 0.078 0.605 : 0.916

Table 5.34: Parameter estimates for the model using volatility calculated between samples 3-4
as predictor and Digit Span Backwards as outcome variable.

Parameter Estimate SD 95% CI
intercept_female -0.212 0.253 -0.708 : 0.272
intercept_male -0.329 0.239 -0.808 : 0.141
age -0.129 0.092 -0.314 : 0.046
breastfeeding -0.049 0.090 -0.220 : 0.134
education 0.263 0.281 -0.280 : 0.816
volatility 0.019 0.096 -0.168 : 0.209
sigma 0.768 0.079 0.632 : 0.950

Table 5.35: Parameter estimates for the model using volatility calculated between samples 3-4
as predictor and Digit Span Letter Number Sequencing as outcome variable.

Parameter Estimate SD 95% CI
intercept_female -0.404 0.245 -0.896 : 0.066
intercept_male -0.163 0.253 -0.656 : 0.342
age 0.047 0.088 -0.130 : 0.225
breastfeeding -0.035 0.092 -0.217 : 0.148
education 0.342 0.279 -0.198 : 0.888
volatility -0.033 0.104 -0.225 : 0.183
sigma 0.751 0.078 0.616 : 0.921
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Table 5.36: Parameter estimates for the model using volatility calculated between samples 3-4
as predictor and BRIEF as outcome variable.

Parameter Estimate SD 95% CI
intercept -0.202 0.242 -0.680 : 0.271
breastfeeding 0.082 0.102 -0.118 : 0.275
education 0.221 0.294 -0.363 : 0.794
volatility -0.018 0.091 -0.197 : 0.151
sigma 0.698 0.079 0.561 : 0.864

Table 5.37: Parameter estimates for the model using volatility calculated between samples 4-5
as predictor and Digit Span Forwards as outcome variable.

Parameter Estimate SD 95% CI
intercept_female -0.249 0.240 -0.732 : 0.211
intercept_male -0.129 0.231 -0.572 : 0.337
age -0.080 0.096 -0.279 : 0.093
breastfeeding -0.102 0.089 -0.281 : 0.068
education 0.140 0.270 -0.389 : 0.690
volatility 0.108 0.094 -0.072 : 0.291
sigma 0.764 0.068 0.644 : 0.908

Table 5.38: Parameter estimates for the model using volatility calculated between samples 4-5
as predictor and Digit Span Backwards as outcome variable.

Parameter Estimate SD 95% CI
intercept_female -0.314 0.249 -0.831 : 0.164
intercept_male -0.449 0.235 -0.939 : 0.004
age -0.077 0.083 -0.248 : 0.079
breastfeeding -0.057 0.086 -0.224 : 0.112
education 0.410 0.269 -0.122 : 0.960
volatility 0.074 0.093 -0.108 : 0.263
sigma 0.779 0.070 0.659 : 0.931
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Table 5.39: Parameter estimates for the model using volatility calculated between samples 4-5
as predictor and Digit Span Letter Number Sequencing as outcome variable.

Parameter Estimate SD 95% CI
intercept_female -0.446 0.236 -0.919 : 0.023
intercept_male -0.163 0.225 -0.604 : 0.281
age 0.045 0.081 -0.117 : 0.207
breastfeeding 0.003 0.085 -0.166 : 0.166
education 0.391 0.262 -0.136 : 0.906
volatility 0.093 0.089 -0.081 : 0.273
sigma 0.760 0.071 0.637 : 0.917

Table 5.40: Parameter estimates for the model using volatility calculated between samples 4-5
as predictor and BRIEF as outcome variable.

Parameter Estimate SD 95% CI
intercept -0.147 0.236 -0.618 : 0.303
breastfeeding -0.020 0.091 -0.197 : 0.161
education 0.177 0.283 -0.386 : 0.751
volatility 0.004 0.093 -0.175 : 0.184
sigma 0.690 0.074 0.562 : 0.847
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Preclinical evidence showed that stress, specifically maternal prenatal stress and early maternal
separation, drastically affect the gut microbiota of the offspring in rodents. The gut microbiota
in turn impacts brain development and functioning as well as behavior via the microbiota-gut-
brain-axis. However, there is still a lack of human studies investigating these links. The general
aim of this thesis was to translate insights garnered from three themes of experimental animal
studies to human research using data from existing longitudinal studies.
Within Theme 1, we investigated whether there are relations between maternal prenatal and
postnatal stress and features of the maternal and infant gut microbiota during and after preg-
nancy and in early life, respectively (Chapter 2). To achieve this, we obtained diverse measures
of stress from 165 mother-infant-dyads at several time points in pregnancy and postnatally.
The questionnaires included the EPDS, STAI and PSS-10, pregnancy specific stress question-
naires such as the PRAQR2 and the PSAS as well as biological measures of stress (hair cortisol
and cortisone). Maternal stool samples were collected at 18 and 32 weeks of gestation and at
eight months postpartum. The gut microbiota of the infants was obtained at two, six and 12
weeks and at eight months of age. Looking at several features of the gut microbiota (alpha
diversity, beta diversity, relative abundances, and volatility), we found strong evidence that
prenatal and postnatal maternal stress is associated with the maternal and infant gut micro-
biota, albeit not in a uniform manner for most features. Namely, we found both positive and
negative associations with alpha diversity, depending on the time the stress or the microbiota
was sampled. We also found associations with beta diversity and individual bacterial species
and phyla. Importantly, we found exclusively positive associations between measures of stress
and infant microbiota volatility (T. Bastiaanssen et al., 2021), in line with previous research.
Within Theme 2, we looked at the relation between early life stress and the infant gut microbiota
using two studies. In the first study (Chapter 3), we investigated whether the entrance into
center-based-childcare at around 10 weeks of age is associated with gut microbiota composition
over the course of one month. For this we compared infants who entered childcare to those
cared for at home taking a stool sample before childcare entrance and around one month later.
Specifically, we looked at alpha- and beta diversity as well as relative abundances. Our results
indicated that entering childcare had no or only small effects on the infant gut microbiota four
weeks after entrance. In the second study (Chapter 4), we explored whether a destressing
early life intervention influences microbiota development in the first year of life using data
from a randomized controlled trial. The early life intervention consisted of a daily one-hour
long session of skin-to-skin (SSC) contact between mother and infant in the first five postnatal
weeks. Specifically, we looked at alpha- and beta diversity, relative abundances at genus level,
a microbiota maturation index (Subramanian et al., 2014) and volatility. We found that the
infants in the treatment group had significantly lower microbiota volatility in early infancy.
Furthermore, their gut microbiota was less mature compared to the control group at one year
of age. The latter effect was partially mediated by breastfeeding duration.
Within Theme 3 we explored whether we could find relations between the gut microbiota in
infancy and childhood and executive functioning in childhood (Chapter 5). To achieve this, we
collected stool samples from children at one, three and four months as well as at six and 10
years of age and measured executive functioning using a parent report and the Digit Span test
as part of the Wechsler Intelligence Scale for children. Specifically, we looked at alpha- and beta
diversity, relative abundances, potential clusters of gut microbiota composition and microbiota
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volatility between all the time points. Our results were most compatible with no or only a weak
association between any of the investigated gut microbiota features and executive functioning
at any time point.

6.1 Main conclusions

6.1.1 Theme 1: Maternal stress and offspring microbiota develop-
ment

• We found strong evidence that maternal prenatal and postnatal stress is associated with
the infant gut microbiota in the first year of life in healthy Dutch mother-infant dyads.

• The direction of the associations appears to vary depending on the time point of sampling
of stress measures and the gut microbiota.

• Infant microbiota volatility is likely consistently positively associated with maternal stress.

6.1.2 Theme 2: Early life stress and microbiota development

• The entrance into center-based childcare at three months of age in healthy Dutch infants
does not appear to affect the infant gut microbiota composition in a uniform way.

• An early life skin-to-skin intervention in the first five weeks of life is associated with lower
infant microbiota volatility in the first 5 weeks of life, as well as lower microbiota age at
one year of age in healthy Dutch infants.

6.1.3 Theme 3: Early microbiota development and learning and
memory

• There is likely no or only a weak association between the gut microbiota composition
measured at genus level in infancy and at six and ten years of age and executive functioning
measured at eight and 10 years of age using maternal report and a digit span task in
healthy Dutch children.

6.2 Challenges and future directions: Towards a gold
standard in microbiota-gut-brain-axis research

Our results from prospective studies in low-risk Dutch children add important insights to the
accumulating human research that studies the microbiota-gut-brain-axis. These include the
presence of an association between prenatal and postnatal maternal stress and features of the
gut microbiota in infants in the first year of life, the lack of an association between the early
entrance to center-based childcare and the gut microbiota of infants at three months of age, the
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effect of a skin-to-skin contact intervention on microbiota development, and the lack of a strong
association between the gut microbiota and executive functioning as measured by parent report
and a cognitive task.
We discussed research-specific results, challenges, and future directions within the discussion
section of each chapter. In this general discussion, we take a bird’s-eye view of the research
on the human microbiota-gut-brain axis, discussing challenges that are relevant across study
topics in this field. Raising awareness and addressing these challenges should be prioritized to
advance our understanding of the microbiota-gut-brain axis in the future.
A central issue is the lack of replicability in human microbiota-gut-brain axis research. Replica-
bility involves achieving consistent outcomes in multiple studies addressing the same scientific
inquiry, each using its unique dataset (Committee on Reproducibility and Replicability in Sci-
ence et al., 2019). This term is often used interchangeably with reproducibility, which is defined
as “obtaining consistent results using the same input data; computational steps, methods, and
code; and conditions of analysis” (Committee on Reproducibility and Replicability in Science
et al., 2019). Both replicability and reproducibility are crucial for gaining confidence in the
validity and generalizability of findings and for advancing our scientific theories.
Several factors make replicability challenging in microbiome studies, including the complexity of
the gut microbiota and variations between studies in stool sample collection and storage methods
(Bartolomaeus et al., 2021; Z. J. Wang, 2018), DNA extraction (Bartolomaeus et al., 2021),
the sequenced region of the 16S rRNA gene (Bukin et al., 2019), data processing pipelines that
convert raw genetic sequences to amplicon sequence variants or operational taxonomic units, and
the choice and application of statistical models and methods to control for bias in observational
studies. Discussing all these factors is beyond the scope of this thesis. Therefore, in the following
paragraphs we will focus on three key factors that limit replicability in microbiota-gut-brain axis
research.

6.2.1 From animal to human research: Adding complexity to a dy-
namic complex system demands power

There are many hurdles when attempting to integrate findings from experimental animal re-
search into human research. One significant hurdle is the increased intra- and interindividual
variance of the gut microbiota in natural environments (Delaroque et al., 2022). In animal
studies, variance can be controlled through the use of genetically identical animals, adminis-
tration of identical diets, and a highly controlled living environment. In microbiome studies,
added variance is particularly challenging because microbiomes are inherently complex and dy-
namic systems that constantly evolve and change depending on interactions between microbes
and their environments (Ji et al., 2020). This leads to relatively high intraindividual variance
compared to other outcome variables. For instance, total microbial cell counts (microbial load)
varied between 1.1×108 and 1.6×1011 cell counts per gram of feces within individuals over just
one week (Vandeputte et al., 2017). Furthermore, unwanted technical variation is added due
to the measurement process, increasing total variation (Fachrul et al., 2022). All these factors
combined can obscure the effects of a single environmental variable and result in small effect
sizes for individual variables in association with the human gut microbiota (Falony et al., 2016).
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Unsurprisingly, it has been concluded that microbiome studies must use relatively high sample
sizes (Falony et al., 2016). For example, Falony et al. (2016) estimated that the required sample
size to achieve 80% power at P < 0.05 when studying the association between the gut microbiota
and obesity (case-control design; 16S rRNA gene amplicon sequencing) is 1730. While this
sample size could be reduced to 1070 when several covariates are included (in this specific case
stool quality, age, and gender), a comparable sample size is still reached only by few microbiota-
gut-brain axis studies. To our knowledge, Falony et al. (2016) was one of the first to provide
these recommendations on sample size requirements for microbiome studies based on power
analysis. Recent developments allow all microbiome researchers to conduct their own power
analyses. For example, Rahman et al. (2023) designed the tool Evident, which can calculate
effect sizes for a wide range of metadata variables—including birth mode, antibiotic use, and
socioeconomic factors—to assist in performing power calculations for new studies. Furthermore,
new tools to simulate microbiome data enable a customized power analysis (Y. Gao et al., 2023).
Other recommendations to cope with the outlined properties of microbiome data include col-
lecting samples from the same (small) communities who are more likely to share comparable
environments and lifestyle variables (Sarkar et al., 2018). However, this would limit the gener-
alizability of findings. Controlling factors partially responsible for high intraindividual variance
to increase power is possible for shorter intervention studies. For instance, Delaroque et al.
(2022) conducted a controlled-feeding study in which participants followed a controlled diet
as inpatients for 11 days. They showed that controlling the diet helped to significantly re-
duce intraindividual variance and enabled the study of the effect of a food additive on the gut
microbiota. However, this approach is not applicable for many study aims and infeasible for
longer-lasting developmental studies.
Another way to increase power is to use longitudinal within-subject designs. While this remains
applicable in microbiome studies, we noted that intraindividual correlation between microbiota
features such as alpha diversity or relative abundances is relatively low over time when em-
ploying a sampling structure typically used in developmental studies in the social sciences (i.e.,
sampling every few months or years and at varying time intervals). Accordingly, longitudinal
models often performed similarly or sometimes worse than models fit per time point (as eval-
uated by crossvalidation prediction accuracy). This reflects the complexity and resulting high
intraindividual variability, as well as the technical variation introduced by the measurement
process. To better enable the longitudinal modeling process and truly harness power benefits
from within-subject designs, we believe that higher sampling frequency and evenly spaced time
intervals (e.g., monthly, weekly, or daily) are necessary in longitudinal studies. Longitudinal
models have been successfully utilized with such a sampling structure (see e.g. DiGiulio et al.
(2015) or Shenhav et al. (2019)). A possible compromise for very long-lasting studies, such
as our BIBO study, could be to sample yearly but take several samples on consecutive days
per measurement round. A microbial profile based on several samples collected over around a
week should help to create a less noisy representation of the gut microbiota composition of an
individual at a given time and also allows to estimate short term volatility of the ecosystem.
In summary, the dynamic complex nature of the gut microbiome and added technical variation
demand high sample sizes and hinder the longitudinal modeling process when there are single
snapshots and long and uneven time intervals between samples. We therefore recommend to
use the recently developed tools for power analysis in microbiome studies to ensure sufficiently
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powered studies in the future. Furthermore, more dense time series data with monthly, weekly
or even daily sampling would help to harness power benefits that can come with longitudinal
within-subject designs.

6.2.2 Choice and application of statistical methods

In Chapter 5, we discussed how both the choice and application of a statistical method can
lead to different results. In the specific example we encountered, we used the partitioning
around mediods (PAM) algorithm as recommended by Koren et al. (2013) to group infant
microbiota samples into clusters based on their bacterial relative abundances. The absolute
measures of cluster strength as applied in Koren et al. (2013) suggested that there were no
clusters, while a different method- a generative model for microbial metagenomics (Dirichlet
Multinomial Mixtures)- suggested that clusters were present. Furthermore, applying PAM using
a much less strict evaluation procedure, as applied in Carlson et al. (2018), would have also
suggested that clusters were present. Additional variation in results from clustering methods
arises from different choices of the applied distance metric (Shi et al., 2022). Thus, different
configurations of variables such as distance metric, clustering model and evaluation criteria of
the model are all common practice and accepted, manifesting lack of standardization in the field
of microbiome research, which in turn hinders replicability.

Lack of standardization is not limited to unsupervised machine learning tasks such as clustering.
For example, Nearing et al. (2022) compared 14 differential abundance testing methods on 38
16S rRNA gene datasets, each containing two distinct sample groups (e.g., diseased vs. healthy).
Despite all the tested methods being commonly used and accepted in the microbiota-gut-brain-
axis field, they yielded markedly different results (Nearing et al., 2022; L. Yang & Chen, 2022).
Furthermore, each of these different methods can be applied differently, e.g. by performing
different pre-processing steps (rarefaction vs no rarefaction, relative abundances vs centered-
log-ratio transformed abundances etc.). Thus, lack of replicability can arise from the choice and
application of the statistical method.

Analogously to these two examples (clustering and differential abundance analysis), for any
modeling task there is a variation of accepted and common statistical models available that
can be applied in different manners. A common recommendation to tackle this problem is to
use a consensus approach based on multiple accepted methods to help ensure robust biological
interpretations (Nearing et al., 2022). An example of this was presented in Chapter 4, where we
attempted to detect bacterial genera that are differentially abundant between the treatment and
the control group (skin-to-skin and care as usual). We carried out three differential abundance
analysis methods (MaAsLin2 (Mallick et al., 2021), ANCOMBC (Lin & Peddada, 2020) and
LinDA (Zhou et al., 2022)) and indicated their overlap in Figure 4.5. As statistical analyses can
become increasingly automated, this consensus approach is indeed feasible and recommendable
under current circumstances. Nevertheless, comparing and reporting alternative analyses for
each feature of the gut microbiota remains tedious, time consuming, and results in large analysis
reports. Also, different methods may be differently suited for modeling particular aspects of
the data, such that disagreements in results do not necessarily mean the result was noise rather
than signal. Therefore, it would be highly desirable to reach a gold standard for the analyses
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of the different microbiota features. How can we reach such a gold standard?
One challenge that has hindered the field from achieving this was the inability to simulate
microbiome data sets using different kinds of generative models. Most published statistical
methods were benchmarked using a single generative model that was underlying the statistical
method proposed. Unsurprisingly, the proposed statistical method then performed better than
others to model the data. Nearing et al. (2022) attempted to circumvent this issue by using
many real datasets and looking for robustness of findings between methods as an evaluation
criterium as to which methods perform well. However, as the ground truth in real datasets
remains unknown, robustness could also mean that certain methods are robust in responding
to noise. Therefore, a significant milestone for the field has been the recent development of
tools that make the simulation of microbiome data readily available to the research community
(Y. Gao et al., 2023). The miaSim R/Bioconductor package allows researchers to simulate
microbiome data based on diverse assumptions and commonly employed models. Specifically,
data can be simulated based on MacArthur’s consumer-resource model, the stochastic logistic
model, Hubbell’s neutral model, and the generalized Lotka-Volterra model alongside various
derivatives (Y. Gao et al., 2023). Developers of methods are now able to benchmark their
method against others using various generative models. This should not only help to improve
method development but to also understand strengths and weaknesses of existing models better,
hopefully paving the way to a gold standard of analysis methods.
However, relying solely on simulations still entails the risk that the simulated data does not
correspond to data that we would encounter in a real-world experiment under the assumed
ground truth (Pelto et al., 2024). To circumvent this problem, Pelto et al. (2024) created a
sophisticated evaluation procedure for differential abundance analysis methods. They split 54
microbiome datasets repeatedly randomly into an exploration and a validation set. For each
method, they evaluated how well the analysis on the exploration set agreed with the analysis
on the validation set using several evaluation metrics. They applied a similar procedure us-
ing a between dataset approach. By employing this within and between dataset comparison
approach, they were able to identify strengths and weaknesses of the individual methods. Inter-
estingly, from the 13 differential abundance analysis methods tested, the elementary methods
provided more consistent results without unnecessarily compromising sensitivity. Specifically,
linear regression (MaAsLin2) or non-parametric methods (Wilcoxon test or a ordinal regression)
performed comparably well (Pelto et al., 2024).
To sum up, variability in the choice and application of statistical methods impedes replicability.
Until the field defines a gold standard of analysis methods for different microbiota features, test-
ing results for robustness to the choice of methods (using a consensus approach) is recommended.
Recently published tools that aid the simulation of microbiome data as well as increasingly so-
phisticated benchmark studies that employ within and between dataset replication tests should
help reach a gold standard.

6.2.3 Defining, identifying, and handling confounders

One of the main advantages of experimental animal research is that it allows a causal interpreta-
tion of findings. In human research, we are often limited to the use of observational studies due
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to ethical considerations. For example, we would not be able to conduct a randomized controlled
trial where humans are randomly assigned to experience traumatic life events in childhood to
study how the gut microbiota is related to this stressor. It remains a challenge across scientific
disciplines to go beyond the reporting of mere associations in such settings. The reason for that
is that third variables that influence both the predictor of interest and the outcome may cause
the estimate (that quantifies the direction and magnitude of the relation) to be biased (Hernan
& Robins, 2020). For example, if that third variable is unequally distributed along the predictor
space (e.g., between a disease and a control group) and not being accounted for, the estimate
will be biased in magnitude or even direction.

There are various strategies to prevent bias from confounding in an estimate. These include
matching, instrumental variables, propensity score matching, regression discontinuity design,
G-methods, and others (Hernan & Robins, 2020). All these methods require that the applicant
has expert knowledge to reason how the variables could be causally related. This reasoning
process typically results in one or several alternative theoretical models that can be visualized,
for example using directed acyclic graphs. The established theoretical model(s), in combination
with data-driven approaches, in turn help to define a confounding variable (Cinelli et al., 2020;
Hernan & Robins, 2020).

The correct identification of confounding variables is crucial to reduce bias in estimates ob-
tained from observational studies. Drastic differences in whether and how researchers define
and identify confounding variables and how they account for them, hinder replicability. In the
social sciences, it is very common to identify confounding variables as those that are correlated
with both the predictor of interest and the outcome. Also, variables that have been correlated
to predictor and outcome in previous studies are defined as confounders. Then these variables
are included in statistical models, such as a linear regression model. This wide-spread approach
is not a valid approach to reduce bias because a correlation can also arise if both the predictor
and the outcome cause variation in the third variable (this is referred to as a collider) (Cinelli
et al., 2020; Hernan & Robins, 2020; Wysocki et al., 2022). Including a collider can induce bias
in the estimate rather than reduce or prevent it. Similarly, a third variable can also correlate
with the predictor and outcome if it mediates the effect of the predictor on the outcome. In that
case the estimate will also be biased if the mediator is included in, e.g., a regression analysis.

A similar approach is common in bio-medical research, whereby the correlation analysis is often
replaced by feature selection methods such as Random Forest feature selection (Bommert et al.,
2020) or model selection methods using information criteria. These approaches can identify
whether the provided variables improve the prediction accuracy of the employed model. How-
ever, whether one employs correlation analyses, machine learning models, or other data-driven
methods, these tools alone are unable to distinguish between different types of relationships in
observational studies (as of the time of writing this thesis) (Wysocki et al., 2022).

For example, Vujkovic-Cvijin et al. (2020) used a sophisticated and yet purely data driven
approach to identify confounding variables with respect to the gut microbiota and diseases.
They identified alcohol consumption and stool quality as confounders because these variables
were often unequally distributed between disease- and control group while also being related
to gut microbiota composition. They recommend performing matching to distribute these
variables equally between disease and control groups in future research. However, this data
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driven approach is not able to distinguish whether any third variable is a mediator or a common
cause of the microbiota and the studied disease using observational data. For instance, it is
possible that certain bacteria influence stool quality (e.g., an extreme case would be a pathogenic
bacterium inducing diarrhea). Stool quality could in turn contribute to or even define other
health issues (such as irritable bowel syndrome). In such a case, matching patients of that health
issue and the control group by stool quality, can lead to bias in the effect estimate. Because stool
quality undoubtedly influences the quantified relative abundances of bacteria in stool samples
by affecting the measurement procedure (Tito et al., 2024), there seems to be no good solution
to this problem at the moment and either way some bias may remain. Possibly, moving from
relative microbiome profiling to quantitative approaches, such as combining sequencing data
with flow cytometry measurements of fecal microbial load (which quantifies the total number
of microbial cells in a sample; (Vandeputte et al., 2017)), can reduce the bias that stool quality
would cause (Tito et al., 2024). Independent of how this question resolves, it is important to
note that data-driven approaches alone may not define which variables are possible confounders
and how these should be handled.

Summarizing, there are diverse practices as well as recommendations on how to identify and
handle confounding variables in observational studies within and beyond the microbiota-gut-
brain-axis research field. These differences are problematic because they hinder comparability
and replicability of results. Furthermore, several common practices are prone to lead to biased
results, such as purely data-driven approaches to define which variable is a confounder. Data-
driven approaches must be combined with causal justification to define confounding variables
(Wysocki et al., 2022). Causal reasoning will inevitably result in different theoretical models
across research labs. Therefore, it is crucial to engage in collective debate and refine these
models over time. As statistical analyses increasingly occur within automated pipelines, testing
different theoretical models becomes more feasible. Consequently, researchers should assess and
report whether their results hold under varying causal assumptions. This practice will help
ensure the replication of results despite differing theoretical frameworks across research labs.

6.3 Thesis reflections

The motivation for this thesis stemmed from a desire to integrate findings from experimental
animal research about the microbiota-gut-brain axis with human research using ongoing longi-
tudinal studies. Through comprehensive analysis of data aligned with three different themes of
animal research, this study has provided valuable insights and knowledge. Notably, prenatal
and postnatal maternal stress was positively associated with infant microbiota volatility. Fur-
thermore, the infant microbiota appeared relatively unaffected by a potential early life stressor,
specifically the entrance to center-based childcare at 10 weeks of age. An early skin-to-skin
intervention was associated with lower microbiota volatility and slower microbiota maturation
in the first year of life. Lastly, our data indicated a weak or absent association between the gut
microbiota measured at the genus level throughout the first 10 years of life and executive func-
tioning as assessed by parental reports and a cognitive task at 10 years of age. These findings
point at the relevance of early life factors such as maternal stress and skin-to-skin contact for
the development of the infant gut microbiota, with possible long-term implications for health.
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Reflecting on this journey, conducting high-quality microbiota-gut-brain axis research demands
substantial interdisciplinary knowledge. Next to discipline-specific knowledge (in this case De-
velopmental Psychobiology) it requires expertise in various microbiome-related methods, from
sample collection and DNA extraction to the processing of raw genetic sequences and statistical
analysis of complex data. It is challenging and inefficient for each microbiome researcher to
master all these skills at a high level. Instead, microbiota-gut-brain axis research necessitates
collaborative interdisciplinary efforts. Furthermore, after more than a decade of hype and ex-
citement, it is crucial to reflect on the acquired knowledge and the many realizations about
methodological challenges. Building on this foundation, this field offers tremendous opportuni-
ties to improve diagnosis and treatment options for various poorly understood conditions. This
thesis contributed knowledge about early life environmental factors influencing the gut micro-
biota and highlighted methodological challenges in microbiota-gut-brain axis research. We hope
these contributions will inform and support future studies in this evolving field.
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Chapter 7

Appendices

7.1 Nederlandse samenvatting

Preklinisch onderzoek bij knaagdieren heeft aangetoond dat stress, met name prenatale mater-
nale stress en vroege scheiding van de moeder, de darmbacteriën van het nageslacht drastisch
beïnvloedt. De darmbacteriën beïnvloedt op zijn beurt de hersenontwikkeling en -functie, eve-
nals gedrag via de microbiota-darm-hersen-as. Er is echter nog steeds een gebrek aan menseli-
jke studies die deze verbanden onderzoeken. Het algemene doel van dit proefschrift was om
inzichten uit drie thema’s van experimentele dierstudies te vertalen naar menselijk onderzoek,
gebruikmakend van gegevens uit bestaande longitudinale studies.

7.1.1 Thema 1: Maternale stress en ontwikkeling van de microbiota
bij het nageslacht

Binnen Thema 1 onderzochten we of er verbanden waren tussen pre- en postnatale maternale
stress en kenmerken van de maternale en kind darmbacteriën tijdens en na de zwangerschap
en in de vroege levensjaren (Hoofdstuk 2). Hiervoor verzamelden we diverse maten van stress
bij 165 moeder-kind-paren op verschillende tijdstippen tijdens de zwangerschap en na de ge-
boorte. Daaronder waren maten van depressie (EPDS), angst (STAI), algemene stress (PSS-10),
zwangerschaps-specifieke angst (PRAQR2 en de PSAS) en biologische stressmaten (haarcortisol
en cortison). Maternale ontlastingsmonsters werden verzameld bij 18 en 32 weken zwangerschap
en acht maanden postpartum. De darmbacteriën van de baby’s werd verzameld op twee, zes
en twaalf weken en op acht maanden. Door te kijken naar verschillende kenmerken van de
darmbacteriën (alfa-diversiteit, beta-diversiteit, relatieve hoeveelheden en volatiliteit), vonden
we sterk bewijs dat prenatale en postnatale maternale stress geassocieerd is met de maternale
en kind darmbacteriën, zij het niet op een uniforme manier voor de meeste kenmerken. We von-
den namelijk zowel positieve als negatieve verbanden met alfa-diversiteit, afhankelijk van het
tijdstip waarop de stress of de microbiota werd gemeten. We vonden ook verbanden met beta-
diversiteit en individuele bacteriesoorten en -phyla. Belangrijk is dat we uitsluitend positieve
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verbanden vonden tussen stressmaten en volatiliteit van de kind microbiota, in overeenstemming
met eerder onderzoek.

7.1.2 Thema 2: Vroege stress en ontwikkeling van de microbiota

Binnen Thema 2 onderzochten we het verband tussen vroege stress en de kind darmbacteriën
met behulp van twee studies. In de eerste studie (Hoofdstuk 3) onderzochten we of het beginnen
met de kinderopvang op ongeveer 10 weken geassocieerd is met de samenstelling van de darm-
bacteriën gedurende een maand. Hiervoor vergeleken we zuigelingen die naar de kinderopvang
gingen met zuigelingen die thuis werden verzorgd, waarbij een ontlastingsmonster werd genomen
vóór het beginnen met de kinderopvang en ongeveer een maand later. We keken specifiek naar
alfa- en beta-diversiteit en relatieve hoeveelheden bacteriën. Onze resultaten gaven aan dat de
kinderopvang geen of slechts kleine effecten had op de darmbacteriën van de zuigelingen vier
weken na het begin. In de tweede studie (Hoofdstuk 4) onderzochten we of een vroege interven-
tie, die mogelijk stress verlagende effecten heeft, de ontwikkeling van de microbiota in het eerste
levensjaar beïnvloedde, gebruikmakend van gegevens uit een gerandomiseerde gecontroleerde
studie. De vroege interventie bestond uit een dagelijkse sessie van één uur huid-op-huid (SSC)
contact tussen moeder en kind in de eerste vijf postnatale weken. We keken specifiek naar alfa-
en beta-diversiteit, relatieve hoeveelheden bacteriën op genusniveau, een microbiota-maturatie-
index en volatiliteit. We vonden dat de zuigelingen in de behandelingsgroep significant lagere
microbiota-volatiliteit hadden in de vroege kindertijd. Bovendien leek hun darmbacteriën trager
te ontwikkelen in vergelijking met de controlegroep op éénjarige leeftijd. Dit laatste effect werd
gedeeltelijk verklaard door de duur van de borstvoeding.

7.1.3 Thema 3: Vroege ontwikkeling van de microbiota en leren en
geheugen

Binnen Thema 3 onderzochten we of er verbanden zijn tussen de darmbacteriën in de vroege
kindertijd en de kindertijd en executief functioneren in de kindertijd (Hoofdstuk 5). Hier-
voor verzamelden we ontlastingsmonsters van kinderen op één, drie en vier maanden, evenals
op zes en tien jaar en maten we het executief functioneren met behulp van een ouderrap-
port en de cijferreekstest als onderdeel van de Wechsler Intelligentietest voor kinderen. We
keken specifiek naar alfa- en beta-diversiteit, relatieve hoeveelheden, potentiële clusters van
darmbacteriën-samenstelling en volatiliteit tussen alle tijdspunten. Onze resultaten waren het
meest in overeenstemming met geen of slechts een zwak verband tussen de onderzochte ken-
merken van de darmbacteriën en executief functioneren op elk tijdstip.
Door middel van een uitgebreide analyse van data, afgestemd op drie verschillende thema’s van
dieronderzoek, heeft deze proefschrift waardevolle inzichten en kennis opgeleverd. Met name
pre- en postnatale maternale stress was positief geassocieerd met de volatiliteit van de micro-
biota van het kind. Bovendien leek de kind microbiota relatief onaangetast door een mogelijke
vroege stressfactor, namelijk het beginnen met kinderopvang op 10 weken leeftijd. Een vroege
huid-op-huid-interventie was geassocieerd met lagere volatiliteit en langzamere maturatie van
de microbiota in het eerste levensjaar. Ook gaven onze gegevens aan dat er geen of alleen een
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zwak verband was tussen de darmbacteriën gemeten op genusniveau gedurende de eerste 10 lev-
ensjaren en het executief functioneren, zoals beoordeeld door ouderrapporten en een cognitieve
taak op 10-jarige leeftijd. Deze bevindingen wijzen op het belang van vroege levensfactoren
zoals maternale stress en huid-op-huid contact voor de ontwikkeling van de kind darmbacter-
iën, met mogelijke lange termijn implicaties voor de gezondheid. Ten slotte wijst dit proefschrift
op belangrijke methodologische uitdagingen in het veld van de microbiota-darm-hersen-as die
de reproduceerbaarheid van bevindingen beperken. De uitdagingen omvatten de dynamische
complexe aard van de darmbacteriën, de keuze en toepassing van statistische methoden en hoe
confounders in observationele studies gedefinieerd, geïdentificeerd en behandeld kunnen worden.

7.2 Research Data Management Statement

This thesis utilized data from several studies including the BIBO, BINGO, SKIPPY and the
SMILEY study. FAIR principles were used for the research data management for all studies.

7.2.1 Ethics

The BINGO, BIBO, SKIPPY and SMILEY studies were conducted in accordance with the 1964
Declaration of Helsinki and its later amendments. The study protocols were approved by the
ethics committee of the Social Science faculty of Radboud University, Nijmegen, the Nether-
lands, with the following approvals: BINGO study (ECSW2014-1003-189, ECSW-2018-034),
BIBO study (SW2017-1303-497, SW2017-1303-498, ECSW-2018-067, ECG 300107), SKIPPY
study (ECSW2015-2311-358) and SMILEY study: (SW2017-1303-497, ECSW-2019-051 and
ECSW2020-021). Written informed consent was obtained from all participants regarding the
use and storage of their data. Participants were informed that they could discontinue the study
at any moment without providing a reason. This research was supported by the European
Union’s Horizon 2020 Eat2beNice grant (728018 to C. de Weerth and A. Arias Vásquez), a
Jacobs Foundation Advanced Research Fellowship (to C. de Weerth), and a Netherlands Orga-
nization for Scientific Research VENI grant (016.195.197 to R. Beijers), VIDI grant (575-25-009
to C. de Weerth), and VICI grant (016.Vici.185.038 to C. de Weerth).

7.2.2 FAIR principles

7.2.2.1 Findable

All data from the BINGO, BIBO, SKIPPY and SMILEY studies, including raw, cleaned, and
master data, are stored on the secure network drive of the Donders Institute for Brain, Cognition,
and Behavior. The pseudonymization keys are stored in subfolders specific to each study.
Physical data, including paper data and informed consent forms, are stored in the locked archive
of the department of Cognitive Neuroscience at the Donders Institute.
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7.2.2.2 Accessible

The data and research documentation are only accessible to researchers involved in the BINGO,
BIBO, SKIPPY and/or SMILEY projects, and to the Developmental Psychobiology (DPB) lab
manager. The data are not freely available as we did not obtain participant consent for public
online depository storage. Researchers may request access to the data with a methodologically
sound proposal directed to carolina.deweerth@radboudumc.nl. Upon approval, requestors must
sign a data transfer agreement or research collaboration agreement, depending on the collabo-
ration level. Anonymous processed data will be shared, and researchers are expected to analyze
the data and/or publish the results within two years. Data availability statements were added
to the published papers whenever possible.

7.2.2.3 Interoperable

Documentation on the setup of the BINGO, BIBO, SKIPPY and SMILEY studies can be found
in their respective folders and published papers. The study protocol of the SKIPPY study was
preregistered (Netherlands Trial Register: NTR5697; 13/03/2016) and published (Cooijmans et
al., 2017). As the raw, cleaned, and master data, along with syntax, output, and documentation
files for the papers presented in the current thesis, are stored on the secure network drive of the
Donders Institute, the results are reproducible and interoperable.

7.2.2.4 Reusable

All data will be stored for at least 20 years from the moment of data collection and can be
reused within this period, as stated in the informed consent forms.

7.2.3 Privacy

The privacy of the participants in the BINGO, BIBO, SKIPPY and SMILEY studies was
ensured by pseudonymization. The pseudonymization keys, which link codes to personal data,
are stored on the secure network drive of the Donders Institute in separate folders for each
study. These keys are only accessible to the DPB lab manager and researchers involved in the
projects, depending on their roles. Since the BINGO study may continue, and the SKIPPY
and BIBO studies are ongoing longitudinal studies, the pseudonymization keys have not been
destroyed to allow for future contact with participants for new measurement waves. If data is
shared, no personal data (e.g., addresses, videos with participant faces) will be shared.
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