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Summary

Large, complex systems are often divided into components. Engineering teams
work on their components in relative isolation, making them less aware of what
goes on in the rest of the system. As the system and its software inevitably
evolve, engineers must understand the (communication) behavior of the current
software to make proper changes to it, and they must understand the impact of
their changes to prevent costly regressions and reduce risks.

To make proper changes, engineers require an overview of the software com-
munication behavior. For large component-based systems, obtaining and under-
standing this overview is both time-consuming and error-prone, even with the
available source code, tests, and documentation. We therefore (semi-)automat-
ically obtain the behavior using model inference techniques, and capture it in
suitable state machine models that provide the overview. We first use active au-
tomata learning to infer models by querying the system. To reduce the effort
required to set up active automata learning, we develop a systematic approach to
connect software components to a learning tool, dealing with the various types
of (a)synchronous interactions with the isolated component code. As inferring
models is then still too time-consuming, we use state machine learning to more
quickly infer models, from execution logs. To overcome the limitations of existing
heuristic-based state machine learning algorithms, such as hard-to-configure set-
tings and over-generalization of the behavior, we develop the Constructive Model
Inference approach. It infers intuitive multi-level models that match the structure
of component-based systems.

When changes are made, engineers often do not understand the system-wide
impact of those changes. We therefore infer models of the software versions before
and after a change, comparing them to find all behavioral differences. Our multi-
level comparison approach integrates multiple complementary methods to auto-
matically compare the behavior of state machine models. Comparison results are
presented at six levels of abstraction, providing engineers with a good overview,
and guiding them through the relevant differences by step-by-step zooming in,
without wasting time on unaffected parts of the system.

We evaluate the model inference and comparison methodologies using various
case studies at ASML, a company that develops and manufactures lithography
systems. Our open-source MIDS tool combines the methodologies. MIDS is exten-
sible, allowing it to be applied at other companies to similarly ease their software
evolution challenges.
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Samenvatting

Grote, complexe systemen worden vaak verdeeld in componenten. Teams werken
relatief geïsoleerd aan hun componenten, waardoor ze minder afweten van wat er
zich in de rest van het systeem afspeelt. Naarmate het systeem en de bijbehorende
software onvermijdelijk evolueren, moeten ingenieurs het (communicatie)gedrag
van de huidige software begrijpen om er correcte wijzigingen in aan te brengen,
en moeten ze de impact van hun wijzigingen begrijpen om kostbare regressies te
voorkomen en risico’s te beperken.

Om de software correct te wijzigingen, hebben ingenieurs een overzicht nodig
van het communicatiegedrag van de software. Voor grote component-gebaseerde
systemen is het verkrijgen en begrijpen van dit overzicht zowel tijdrovend als fout-
gevoelig, zelfs met de beschikbare broncode, tests en documentatie. We leren
daarom het gedrag (semi-)automatisch met behulp van modelinferentie technieken,
en vangen het gedrag in geschikte toestandsmachine modellen die het overzicht
bieden. We gebruiken eerst het actief leren van automaten, waarbij modellen wor-
den geleerd door het systeem te bevragen. Om het actief leren van automaten met
minder inspanning in te kunnen zetten, ontwikkelen we een systematische aan-
pak om softwarecomponenten te verbinden met een leertool, dat kan omgaan met
de verschillende soorten (a)synchrone interacties met de geïsoleerde component-
code. Omdat het leren van modellen dan nog steeds te tijdrovend is, gebruiken
we het passief leren van toestandsmachines om sneller modellen te leren, uit exe-
cutielogs. Om de beperkingen van bestaande heuristische passief leren algoritmes
te overkomen, zoals moeilijk te configureren instellingen en overgeneralisatie van
het gedrag, ontwikkelen we de ‘Constructive Model Inference’ aanpak. Het leert
intuïtieve meerlaagse modellen die overeenkomen met de structuur van compo-
nentgebaseerde systemen.

Wanneer er wijzigingen worden aangebracht, begrijpen ingenieurs vaak niet de
systeembrede impact van die wijzigingen. We leren daarom modellen van de soft-
wareversies voor en na een wijziging, en vergelijken deze om alle gedragsverschillen
te vinden. Onze meerlaagse vergelijkingsaanpak integreert meerdere complemen-
taire methoden om het gedrag van toestandsmachine modellen automatisch te
vergelijken. Resultaten worden gepresenteerd op zes abstractieniveaus, die inge-
nieurs een goed overzicht geven, en ze door de relevante verschillen leiden door
stapsgewijs in te zoomen, zonder tijd te verspillen aan onveranderde delen van het
systeem.

We evalueren de modelinferentie- en modelvergelijkingsmethodologieën in ver-
schillende casestudies bij ASML, een bedrijf dat lithografiesystemen ontwikkelt en
produceert. Onze open-source MIDS-tool combineert de methodologieën. MIDS
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is uitbreidbaar, waardoor het bij andere bedrijven kan worden toegepast om op
vergelijkbare wijze hun software-evolutie uitdagingen te verlichten.
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Chapter 1

Introduction

High-tech embedded and cyber-physical systems are becoming increasingly com-
plex with each generation. Consider for example systems produced by ASML1, a
company that develops and manufactures lithography systems for the production
of computer chips. Figure 1.1 shows three generations of their system, from 1984
to 2020 (each at a different scale, but note the number of vertical ‘segments’).
However, these systems do not only grow in size physically. Newer generations
also contain more software.

To handle the increasing complexity of their systems, companies typically use a
divide-and-conquer approach. By introducing a component-based software archi-
tecture [119], systems are divided into components and sub-components, each with
their own responsibilities. The division into smaller and smaller sub-components
continues until the components are small enough to be handled by individual
teams. Each team can then develop their own component in isolation, at their
own pace, without having to know all the details of the rest of the system. For
example, ASML’s TWINSCAN systems employ such a component-based software
architecture, and contain hundreds of software components.

However, introducing a component-based software architecture leads to various
challenges of its own [125]. In this thesis, we focus on some of the particular
challenges that arise as systems evolve [84, 132, 134]. Over time, systems are

1See https://www.asml.com.

Figure 1.1: Three generations of ASML’s TWINSCAN system. Source: ASML.
© ASML.

1

https://www.asml.com


Introduction

adapted to cater to changing user requirements, and to improve their performance,
reliability, accuracy, and so on. Software engineers add new features and fix bugs,
such that at the end of the day the software is different from what it was when
the day started. In this context of evolving software in component-based cyber-
physical systems, we focus on the following two challenges, and how they can be
addressed:

1. Understanding the current software behavior: Whenever engineers
have to make changes to the software of a system, they must first understand
the current system and its software. After all, how can they be expected to
make proper changes to the software, if they don’t understand it? However,
as we will see, understanding how large component-based systems behave is
far from trivial. Therefore, engineers spend considerable amounts of time
gaining this understanding [30, 37, 78, 132, 134].

2. Understanding the impact of software changes: Once engineers un-
derstand the software of the current system, they change it. They must then
ensure that their changes are correctly implemented, as incorrect changes
may break the system. This too is far from trivial, as the impact of the
software changes on the system behavior is not always sufficiently clear, es-
pecially for large component-based system. Hence, software changes may
introduce regressions, making software evolution risky [112, 127, 132].

In this thesis, we opt for a model-based approach. We automatically infer mod-
els of software (components). These models provide insight into how the software
behaves, such that proper changes can be made. We also automatically compare
such software behavior models, for instance of software versions before and after
a change. This gives insight into the effects of the changes on the software behav-
ior, to understand their impact and prevent regressions. The model inference and
model comparison approaches are combined into a single methodology. Together,
they help to make engineers more efficient, and to reduce the risks for software
evolution. The approaches are integrated into an open-source software tool [120],
to make our methodology widely applicable.

The remainder of this chapter is structured as follows. First, we take a closer
look at our study context: systems with a component-based software architecture,
and in particular the evolution of the software of such systems (Section 1.1). Then,
we also take a closer look at the two challenges (Section 1.2). Subsequently, we
discuss our problem statement and research questions (Section 1.3). After that,
we present our methodology (Section 1.4). Then we discuss our contributions,
and how these address the research questions (Section 1.5). Finally, we outline
the structure for the remainder of this thesis, including how the various chapters
relate to the contributions, and to previously published papers (Section 1.6).

1.1 Study context
We discuss in more detail our study context and scope. First, we discuss in
Section 1.1.1 the type of systems that we consider: cyber-physical systems with a

2



Chapter 1

component-based software architecture. Then, building upon that, we discuss in
Section 1.1.2 the evolution of the software of such systems. To some extend we
justify our scoping choices in this section. However, we come back to this later
as well, as we further discuss the effects of these choices in Chapter 7, where we
reflect on our work.

1.1.1 Component-based software architectures
As already mentioned, we consider cyber-physical systems. In particular, we con-
sider high-tech cyber-physical systems that are both large and complex, such as
lithography systems from ASML. The software of these systems is often developed
using Component-Based Software Engineering (CBSE). The system then has a
component-based software architecture [38, 91, 119], where the system is divided
into many small components that can be developed and maintained in isolation.
Especially if the systems are large and complex, CBSE can lead to increased pro-
ductivity, higher quality, and reduced costs [8, 124].

However, the components of such a system do not exist only in isolation. Most
components depend on functionality provided by other components to realize their
own functionality. Components therefore communicate with each other via inter-
faces, for instance to request certain functions to be executed, to exchange infor-
mation, or to inform each other of their progress in executing their functions at
the request of other components.

We focus on component-based systems with a client-server architecture [101],
as shown in Figure 1.2. In such systems, for every communication two components
are involved, taking the roles of client and server. Typically, the client initiates
the communication, by sending a request to the server. The server receives the
request, processes it, and responds by sending back a reply to the client. Generally,
if a component is not processing a request from one of its clients, it is idle. A
component can be both a server to its clients (providing functionality) and a
client to its servers (requiring functionality), like Component 2 in Figure 1.2.

Component 1

Component 2

Component 3

request reply

request reply

client

client

server

server

Legend:
Component

client Client side of a component
server Server side of a component

Provided interface
Required interface
Communication direction

Figure 1.2: Three communicating components, with their interfaces and roles.
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Components may communicate both synchronously and asynchronously [38,
53]. When components communicate synchronously, the client is blocked while
awaiting the server’s reply. When they communicate asynchronously, the client
is free to perform computations and other communications while awaiting the
server’s reply. Asynchronous communication thus allows components to execute
concurrently, allowing the system to achieve its performance requirements [92].

The system as a whole then consists of many components that interact, to
provide the system with its intended functionality. The communications between
two components, as well as the order in which they may occur, may be formal-
ized in interface protocols [80, 104]. Together, all the combined interactions be-
tween the various components of the system, form the communication behavior
of the system [96]. This behavior can become quite complex, as many different
sequences of requests and replies are possible. This complexity is especially preva-
lent in component-based systems with asynchronous communication, where the
communications of the concurrently-executing components may interleave, lead-
ing to many similar sequences with subtly reordered communications [90, 104].
There, the number of possible interaction sequences quickly grows to the number
of grains of sand in a desert.

1.1.2 Software evolution
Real-world component-based cyber-physical systems (such as those developed by
ASML) consist of many components, and therefore a large amount of software.
Such large codebases inevitably evolve over time, as the system is continuously
adapted to cater to changing user requirements, and to improve its performance,
reliability, accuracy, and so on [85].

As a system evolves, its specification, design and (software) implementation are
changed time and again through successive changes. In this thesis, we primarily
take the perspective of software engineers, and therefore focus on the software
implementation. We consider software implementation changes in the broad sense,
from a single line code change to the replacement of an entire legacy component,
and from fixing small bugs to implementing entirely new features.

Such changes may affect not only the functionality of the system, but also its
other characteristics, such as its performance. We focus primarily on software
functionality, and consider the non-functional aspects of software changes to be
out of scope. We believe that if we are successful in managing the complexity of
functional software changes, we can already have a big impact on reducing the
challenges for software evolution in industry (as further outlined in Section 1.2).
Furthermore – as the rest of this thesis shows – by considering the software func-
tionality, we may at times also be able to gain insights into, and prevent issues
relating to, non-functional aspects.

We further scope our work by focusing on the impact of software changes on
the communication behavior of the system. Changes have impact if they cause
differences in which messages are exchanged between components, or the order in
which they occur. This choice is based on our experience in working with various
companies in the Dutch high-tech industry, and the challenges they face, ASML
included (as further discussed in Section 1.2).

We primarily aim to prevent regressions, unintended changes in the functional
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behavior. For instance, if a new version of a component is meant as a drop-in
replacement, we aim to find any changes in the communication behavior of this
new component compared to the previous version, in terms of how they commu-
nicate with the rest of the system. However, we also consider qualification of
progressions, intended changes of the functional behavior. For instance, new mes-
sages may be exchanged if new functionality is added to the system, and these
communications should function as intended. The new functionality should by
itself function properly, but could also lead to unintended changes to the existing
functionality; regressions and progressions are thus closely related.

For practical reasons, we primarily consider control components, (high-level)
components that orchestrate various other (lower-level) components [15]. The be-
havior of such components is predominantly determined by the messages they ex-
change, rather than for instance the data that they process. In fact, at ASML new
control components are developed through model-driven engineering, and certain
modeling formalisms do not even allow modeling of data-dependent behavior [28].
Our focus on control components allows us to leave data mostly out of scope.
But, even though data is thus mostly out of scope, and we focus on the order of
exchanged messages, this does not preclude us from observing the effects of data
on the software behavior, as we will see in the remainder of this thesis.

Note that we consider the software of the system, not the entire system. How-
ever, the software is an important part of a cyber-physical system (the ‘cyber’
part). Changes to the functionality of the software are therefore likely to have
an effect on the functionality of the entire system as well, especially changes in
higher-level components. Hence, we use the software also as a lens that to some
extent allows us to consider the system behavior.

1.2 Challenges
We discuss in more detail the two challenges that are the focus of this thesis. We
start in Section 1.2.1 with the challenge of understanding the current software
behavior, especially in the context of large component-based systems. Building
upon that, we discuss in Section 1.2.2 the challenge of understanding the impact
of software changes, also in the context of large component-based systems.

1.2.1 Challenge 1: Understanding the current software be-
havior

In practice, different components developed by independent teams are combined
to form sub-systems, which in turn are combined to form the complete system.
The integration of components to form (sub-)systems often reveals issues, both
in the individual components and their composition, among others due to the
complexities of inter-component communication [27, 80, 87]; and concurrency and
interleaving certainly don’t help.

For the integration to be successful despite these complexities, an engineering
team must have a good understanding of the interactions between their own com-
ponent and the other components that their component communicates with [132].
Only by understanding the interactions, can software engineers ensure that the
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components they develop can correctly ‘talk’ to each other, ensuring correct inter-
actions and smooth integration.

For engineers however, it can be quite challenging to get a good overview of
how components communicate. If they want to understand how their component
communicates with other components, the information they need is typically not
found in a single place. Hence, they consult multiple sources of information, such
as source code, tests, execution logs, documentation and domain experts, to form
their own mental picture. However, even then it is unfortunately still a challenging
task, as often: source and test code are written in various programming languages,
and contain too many irrelevant details; tests, logs and documentation are incom-
plete; logs are too long and contain too many slightly different repetitions of the
same behavior; documentation becomes outdated; and domain experts are either
not available, or they have insufficient time. Yang et al. interviewed 25 engineers
and architects at ASML, detailing many of these practices and challenges [132].
However, these challenges are not unique to ASML, as other companies face them
as well [30, 111, 127, 131].

Over time and through painstaking effort, engineers do build up a mental
picture of the communication behavior [30, 131]. As new people join, they require
quite some time to get up to speed and to become productive members of the team.
And all the while, components change, as do the components they communicate
with. Engineers thus need to keep their mental picture up-to-date, or they risk
making decisions based on outdated information.

Getting a good overview of the system behavior is especially difficult for large
component-based systems [132]. On the one hand, engineers develop and maintain
their own component, which is just one of the components of the larger system. If
the entire system is a giant puzzle, they work on only a single piece of that puzzle,
but they know what that piece looks like, having worked on their own component
for years, fixing bugs, and adding features.

On the other hand, they are often much less aware of the puzzle pieces at the
other side of the puzzle [106]. This is good, as the whole point of a component-
based software architecture is to have small components for teams to work on in
isolation. Interfaces decouple the components. An interface alone should provide
all the information that is needed to communicate with another component. The
interface then serves as a contract between communicating components [31], a
mutual agreement on how they will interact, that abstracts away the internal
details of the other component. Engineers then do not have to look through the
source code of another component to understand how to communicate with it.

In practice however, an interface contract rarely provides enough information.
Typically, the syntax of the interface is described and well-understood, as the
functions, their arguments, and types are described in for instance C header files
or using an Interface Description Language (IDL). It is thus clear what functions
are available for communication. Other aspects of the interface contract, such as
the protocol that describes the order in which the functions may be called, often
get much less attention [27, 80]. The more complete the interface contract is, the
more it serves as a proper abstraction, shielding engineers from the internal details
of other components.

If the interface contract is not complete enough, the engineers will still go
looking for the missing information [127]. They may for instance scour through
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the source code of various components that directly communicate with their own
component, and even recursively through the code of components connected to
those components, and so on. Without proper abstraction, there is no telling how
intertwined the components have become, where the relevant information can be
found, and how much time it will take to find it.

1.2.2 Challenge 2: Understanding the impact of software
changes

Even if software engineers understand the current behavior of their software,
changing that software is still risky. Engineers must ensure that their changes are
correctly implemented, as otherwise these changes may break the system, which
can have serious repercussions.

Consider for instance a team of engineers working on a legacy component that is
implemented with end-of-life technology. They are tasked with re-engineering the
component to use the company’s new technology of choice. Once the new version
of the component is ready, it will be integrated into the system, replacing the old
version of the component. This new component must then still communicate with
its environment in the same way it did before [111], as its clients will still send the
same requests and expect the same replies. If the new component has different
behavior, and is thus not backwards-compatible [104], this may cause a cascade of
regression problems upon integration: the new component may reply to requests
differently; its clients may crash if they are not equipped to handle the different
replies; the clients will then no longer be able to reply to their clients; and so on.
In the end, this may cause the entire system to no longer be able to perform its
intended function. The system may then experience downtime, which can be very
costly. For instance, at ASML’s customers downtime can cost thousands of euros
per minute due to productivity loss [14]. Engineers must thus prevent behavioral
regressions when changing software, regardless of whether it involves small patches
or complex redesigns.

To prevent regressions, it is essential to understand the impact of the changes
on the software behavior [86, 127]. If the impact is unclear, it is impossible to
anticipate whether the system may break, and to prevent that. It is like taking
down a wall of a house to replace it with a new wall: if you do not know whether
it is a load-bearing wall, you do not know whether taking it down will bring down
the house.

Unfortunately, the impact of software changes is not always clear, especially in
large component-based systems. Engineers work on their own components, which
are part of the larger system. While engineers may know how their changes impact
other close-by components, they may lack the understanding to know how these
changes impact further-away components [54, 86, 88, 133]. A small local change
may then lead to subtle changes in seemingly-unrelated far-away components,
potentially breaking them. Engineers lack an overview of the impact of their
software changes on the software’s communication behavior.

With sufficient time, such issues may be prevented. For instance, engineers
may perform extensive tests [4, 87, 127]. However, in practice often limited tests
are available, with insufficient coverage of the software behavior [111]. Hence, even
with testing, it may be challenging to determine the impact of software changes
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on the software’s communication behavior. Then it is still too difficult to gain
sufficient confidence in the correctness of the changes, to prevent regressions and
reduce the risks.

1.3 Problem statement
Given the challenges described in the previous sections, we can conclude that
software evolution is a challenging endeavor. It requires considerable effort and is
risky, especially in large component-based systems. Therefore, the main research
question for this thesis is:

RQ How can we reduce the efforts and risks of software evolution, for large
component-based systems?

We can divide this main research question into two smaller research questions,
RQ-1 and RQ-2, that scope our work. This division closely relates to the two
challenges described in previous sections, as RQ-1 follows from Section 1.2.1, and
RQ-2 follows from Section 1.2.2.

Recall that, in Section 1.2.1, we discussed that to make correct software changes
it is essential to understand the current communication behavior of the software,
but it is difficult to gain this understanding. Software engineers lack the overview,
as there is no single place where they can find all the information. Manually
scraping it together is challenging as well, and it is a moving target as the soft-
ware changes all the time. In large component-based systems, the task is even
more daunting. Engineers only work on their own part of the system, and they
lack interfaces with clear contracts that include interface protocols. Hence, we
formulate RQ-1:

RQ-1 How can we efficiently obtain a complete overview of the software
communication behavior, for large component-based systems?

Also recall that, in Section 1.2.2, we discussed that even if software engineers
understand the current communication behavior of the software, it is still too diffi-
cult to gain sufficient confidence in the correctness of changes, prevent regressions,
and reduce the risks. Engineers lack an overview of the impact of their software
changes on the software’s communication behavior. Again, this is even more chal-
lenging in large component-based systems, where engineers work on only a small
part of the system. It is unclear to engineers what other behavioral changes are
caused by their local changes, and how such changes affect different parts of the
system. Hence, we formulate RQ-2:

RQ-2 How can we efficiently obtain a complete overview of the system-wide
impact on the communication behavior caused by software changes,
for large component-based systems?

Next, we look at both RQ-1 and RQ-2 in more detail, by discussing existing
solutions to address these challenges, and identifying gaps. Then, each of these
research questions is further divided into two even smaller ones.
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1.3.1 RQ-1: Software behavior overview

For research question RQ-1, the aim is to efficiently obtain a complete overview
of the software communication behavior, for large component-based systems. In
Section 1.2.1 we discussed that it is quite challenging and time consuming for
engineers to get such a complete overview. We therefore aim to assist them in
obtaining this overview, by automatically extracting the relevant information, and
by presenting that information in such a way that it can be easily understood.

Let us first consider the latter, the representation of the information. In order
for engineers to be able to understand the software communication behavior, it
must be represented in a suitable way. For instance, the set of all possible sequences
of interactions is not very suitable. It would likely be very large, and contain many
long sequences (they could even be infinite), making it difficult for engineers to
get the overview. Therefore, often models are used to represent the behavior in a
more compact way, and allow engineers to more easily understand it. Examples
of such models are state machines and Petri nets.

Let us then consider the former, the automatic extraction of the relevant in-
formation, to be captured in those models. We explicitly choose to extract infor-
mation from existing artifacts, rather than to improve those artifacts themselves.
This choice stems from the fact that large component-based systems consist of
many components, developed by many teams. It would not be feasible to get all
the teams to manually improve their artifacts to the level that would be required
for our purposes, especially not in the short term. For instance, manually model-
ing the behavior of all components of the system could easily take years, or even
decades [17]. Furthermore, the individual artifacts of the various components also
do not provide a sufficient overview of the interactions between the different com-
ponents. Hence, our desire is to automatically extract the relevant information,
for all the components in the system, and to properly capture the interactions
between those components in models.

We therefore turn to software behavior model inference, a collection of tech-
niques to automatically infer behavioral models for a software system [123]. These
techniques are well-suited for our needs, as they can help engineers in their task to
understand the software behavior, by determining the relevant information about
the communications of software components. Tools that implement the model
inference techniques provide automation, which reduces the time that engineers
have to invest to determine all the possible component interactions. Furthermore,
new up-to-date models can automatically be extracted again after the software
changes, once more saving time.

Next, we look at some related literature on software behavior model inference.
Then, we identify existing classes of model inference techniques, and discuss their
pros and cons, in relation to our context and the goals of our work. Based on
that, we further scope our work by selecting sub-classes of techniques that we
investigate in this thesis. Specifically for those techniques, we identify the gaps
that we address in this thesis. And we use those gaps to refine research question
RQ-1, by further dividing it into two smaller research questions.
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Related literature

Software behavior model inference is a well-studied field, although it is not always
called as such in the literature. It is for instance studied in the field of software
reverse engineering. In their seminal work, Chikofsky and Cross divide the reverse
engineering task into two parts, as we do, by defining reverse engineering as “the
process of analyzing a subject system to identify the system’s components and their
inter-relationships, and create representations of the system in another form or at
a higher level of abstraction” [34]. They also contrast reverse engineering against
reengineering, by considering reverse engineering to be a process of examination,
and reengineering to be a process of change. They do note that reengineering
generally includes some form of reverse engineering, prior to making changes.

In a more recent work, Canfora et al. provide an overview of the reverse en-
gineering field [30]. Similar to our work, they identify the need to understand
the software before it can be changed, especially as the complexity of the system
grows. They define software reverse engineering as “a broad term that encom-
passes an array of methods and tools to derive information and knowledge from
existing software artifacts and leverage it into software engineering processes”. We
look at these methods and tools below, after discussing further related literature.
Confora et al. also mention distributed services as a trend, specifically in the con-
text of service oriented architectures, where services are connected via interfaces,
and then integrated to form the system. This relates closely to our context of
concurrently-executing components in a component-based software architecture.

Canfora et al. further consider reverse engineering to be supportive of software
comprehension, one of the activities in the software development process, and espe-
cially in the software maintenance process. Program and software comprehension
are a separate field of study. Janet Siegmund examines this field, by looking at
its past, present and future [114]. While her work concentrates on how program
comprehension can be measured, one of the conclusions is that research should not
focus solely on the source code, but also on getting an overview of large software,
including the relationship between components, and their interactions. This fits
well with the scope of our work.

Cornelissen et al. provide a systematic survey of program comprehension [37],
looking specifically at dynamic analysis techniques (which we discuss below). They
too identify that the software needs to be sufficiently understood, before it can be
properly changed. One of the sub-fields that they consider, concerns the study of
behavioral aspects, which is also the focus of our work. Cornelissen et al. further
identify a lack of attention for understanding distributed systems, which relates
closely to our context of component-based software systems, as well as for legacy
systems, which we consider in some of our case studies.

Another sub-field that is discussed by Cornelissen et al. is feature analysis, and
more specifically the activity of feature location. The goal of that activity is to find
out where in the software a certain functionality is implemented. Translated to our
context, this could for instance be the identification of where certain messages are
communicated, or from where they originate. Dit et al. survey the field of feature
location [43], relating the activity strongly to software evolution. They create a
taxonomy of analysis techniques, which closely relates to the classes of techniques
that we discuss below.
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While Chikofsky and Cross, Canfora et al., and Cornelissen et al., all mention
software components in the context of their specific fields, Vale et al. specifically
survey the field of component-based software engineering [124]. They identify
current component specifications as insufficient for understanding their behavior,
and their interactions. They advocate for more attention for dynamic aspects
of component specifications, rather than only focusing on static aspects, such as
the system structure and interface signatures. Our work is specifically aimed at
such dynamic aspects, namely understanding and evolving the software behavior
in terms of the interactions between components.

Classes of model inference techniques

As already mentioned, various techniques exist to infer software behavior models.
Figure 1.3 shows two different classifications of such model inference techniques.
One of the classifications is based on the artifacts from which the information is
inferred (see Figure 1.3a). Broadly, it allows the techniques to be divided into two
classes2: static and dynamic techniques [43, 86, 134].

Static techniques work on artifacts used to define, implement and validate the
system, such as source code and test code. They are often called static analysis
techniques, and aim to extract the software behavior directly from the source code
and other artifacts, for instance through control flow analysis [46, 95].

Dynamic analysis techniques work on the executing system or artifacts pro-
duced by the executing system, such as execution logs [37]. They are also called
model learning techniques, and aim to learn the software behavior from obser-
vations of the software’s behavior [123]. Model learning techniques can be sub-
divided further into two sub-classes: passive learning techniques and active learn-
ing techniques.

Passive learning techniques infer a model from logs, and aim to generalize
beyond the observed behavior of the typically incomplete logs. Examples of passive
learning techniques include process mining and state machine learning [1, 60].

2Another commonly identified class is that of historic techniques, which for instance rely on
repository mining [30, 43]. We consider these techniques as less suitable for the scope and aim
of our work. They are out-of-scope, and therefore we disregard them.

Model Inference Techniques

Static Analysis Dynamic Analysis (Model Learning)

Passive Learning Active Learning

(a) Classification based on the artifacts from which the information is inferred.

Model Inference Techniques

Blackbox Techniques Whitebox Techniques

(b) Classification based on the scope from which the information is inferred.

Figure 1.3: Two classifications of model inference techniques.
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Active learning techniques, such as active automata learning, infer a model by
interacting with the system itself, or a part of it. While passive learning techniques
typically get as input a predetermined set of logs that cover only part of the
behavior, active learning techniques can actively query the system for additional
information, to ultimately infer complete models [11, 68, 123].

Model inference techniques can also be classified based on the scope from which
the information is inferred (see Figure 1.3b). Broadly, it allows the techniques to
be divided into two classes: black-box and white-box techniques [123]. Black-box
techniques consider only the behavior that is observable on the external interfaces
of the components (the insides of the components are hidden from view), while
white-box techniques (also) consider the internals of the components (you can see
inside the box).

Static analysis techniques are white-box techniques, as they have direct access
to the source code and other artifacts that implement the components. Dynamic
analysis techniques can be both black-box and white-box techniques. For passive
learning techniques it depends primarily on the source of the logs; for instance,
whether those logs capture the external communications of the components, or
their internal function calls. Active automata learning is traditionally a black-box
technique [11, 123].

Pros and cons of different classes of techniques

The different techniques each have their pros and cons. Static analysis techniques
have access to all the details of the implementation, through the source code. On
the one hand, Canfora et al. conclude that static analysis techniques are often
reasonably fast, precise, and cheap [30]. On the other hand however, they do
require dedicated support for all the different programming languages and language
features, that are used in the implementations of the components of the system.
Furthermore, static analysis can also be imprecise, and it is especially difficult to
extract sequences of exchanged messages, which is our aim. As exact solutions are
often computationally intensive, typically abstractions and heuristics are used [18,
46, 95, 113]. The software behavior may then be over-approximated, leading to
models that allow behavior that is not possible in the actual system.

Dynamic techniques can be used as black-box techniques. This fits well with
component-based systems, where the software architecture typically prescribes the
use of a common communication middleware that is used by all components. Logs
with the communications at the middleware level are then independent of the
implementation language used within the components, and active learning can
query the component in a common way by using the middleware, regardless of the
implementation language.

Dynamic techniques do also come with their own challenges. The main chal-
lenge for passive learning is to find proper generalizations, that generalize the be-
havior beyond what was observed. This typically involves a balance between infer-
ring a model that is as complete as possible and avoiding over-approximations [60].
Some of the main challenges for active learning are scalability and ease of use [13,
44, 68, 111]. The scalability challenges stem among others from the blackbox na-
ture of the technique. Many queries are needed to obtain a complete model, as
from the outside it is unclear what queries will discover not-yet-known behavior.
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Since scalability is an issue, active learning is typically applied to the individual
components of a system, rather than to the entire system. Active learning can
also be difficult to use, since (the part of) the system that is to be queried must be
isolated and connected to the active learning tool, which often involves significant
effort.

Scoping our research

Given the broad range of techniques, we scope our work by focusing on black-
box model learning techniques. These techniques allow us to infer the interactions
between components, regardless of the many different programming languages that
are used to implement the components of the system. We focus in particular on
techniques to infer state machines, as state machine models are broadly used in
academia and industry alike, including to represent software behavior in general,
and software interface protocols in particular. They are also already in use at our
industrial partner ASML, easing adoption.

Passive and active model learning techniques, such as state machine learning
and active automata learning, can be combined to exploit their complementary
strengths [67, 130]. Active learning can ask additional queries to fill the gaps in
incomplete models obtained through passive learning. Conversely, using execu-
tion logs and models obtained through passive learning can help to reduce the
scalability concerns for active learning. Exploiting the complementary strengths
of the techniques reduces some of the challenges in applying them, but does not
completely eliminate them. For instance, combining passive and active learning
does not help to make setting up active learning any easier. And scalability is still
a concern, especially for large systems with many components [13].

Hence, it is still of interest to explore how to effectively apply these techniques,
and use them to automatically infer the software behavior of large component-
based systems.

Sub-dividing RQ-1

We choose to separately address some of the biggest challenges in applying these
techniques for large component-based systems. We therefore sub-divide RQ-1 into
two smaller research questions.

For active automata learning, in this thesis we focus on a major practical
challenge in applying it: the active learning tool needs to be connected to the
software for which it aims to learn the behavior. In a component-based system, this
involves isolating each component and adding a suitable interface for the learning
tool to query the component. Most applications of active automata learning in the
literature use ad-hoc solutions [35, 44, 109]. Systematic approaches are rare, but
do exist, for instance for web services [94]. However, such a systematic approach is
missing for component-based systems operating under the client/server paradigm,
making the application of active automata learning laborious for such systems.
Hence, we formulate research question RQ-1a:

RQ-1a How can we efficiently set up and apply active automata learning,
to automatically infer the software communication behavior, for large
component-based systems?
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For state machine learning, in this thesis we focus on the major challenge to find
proper generalizations, that generalize the behavior beyond what was observed.
Existing algorithms from the literature generally use heuristics, which are often
based on the input observations (e.g., considering only the last n events [60]) or
the resulting model (e.g., limiting the number of resulting states [16]). These
heuristics may then be hard to configure properly for engineers in industry. They
are often not so familiar with the details of the approaches, and therefore find it
difficult to gauge the impact of the heuristics on the learning result, especially for
heuristics that do not directly relate to system properties. Existing approaches also
do not make use of the unique properties of component-based systems, such as the
component structure, the services the components provide, and the (a)synchronous
communications between the components. This also applies to modern approaches
specifically designed for component-based systems [113]. As a result, there is
no guarantee that the inferred models are good approximations of the software
communication behavior. In particular, over-generalization beyond the behavior
of the actual system is not ruled out, decreasing trust from engineers. Ideally,
the models should be as complete as possible, while completely avoiding over-
approximations. Hence, we formulate research question RQ-1b:

RQ-1b How can we apply state machine learning, such that it automatically
infers good approximations of the software communication behavior,
for large component-based systems?

1.3.2 RQ-2: Software change impact
For research question RQ-2, the aim is to efficiently obtain a complete overview
of the system-wide impact on the communication behavior caused by software
changes, for large component-based systems. In Section 1.2.2 we discussed that
engineers must understand the changes they make, as well as any other changes
caused by those changes. We therefore aim to assist them in obtaining this
overview, by determining all behavioral changes (both for their own component as
well as the rest of the system), and presenting these changes in such a way that
they can be understood and the impact of the changes becomes clear.

Let us first consider the former, determining all behavioral changes. We could
imagine various ways to accomplish this task, such as using the source code, or the
documentation. However, we already concluded that understanding the software
behavior from such artifacts is either impossible or too difficult. Hence, we study
software behavior model inference for RQ-1. Similarly, we consider determining
behavioral differences from such artifacts to be practically infeasible. Instead, we
rely on the models we infer through model inference, as they contain the relevant
information about the communications between the software components, for the
entire system. We use these models as input for model comparison. For instance,
we may have two software versions, one just before a change, and the other just
after that change. Then we can infer models of the behavior of both software
versions, and we can compare these models to determine all changes in behavior
between the software versions. This includes the intended changes, as well as any
unintended regressions.
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Let us then consider the latter, presenting the changes in such a way that
they can be understood and the impact of the changes becomes clear. Given
that we consider large component-based systems, there may be many changes,
especially in case of ripple effects (as discussed in Section 1.2.2). Providing a
single large overview with many changes would be daunting for engineers. We
therefore choose a different approach, and present the differences at multiple levels
of abstraction. Engineers can then step-by-step zoom in, to explore the differences
in more-and-more detail, without losing the overview. Besides that, we also aim
to minimize the number of (irrelevant) differences, such that engineers can more
efficiently and effectively inspect the relevant differences. This way, engineers
can get a good overview of all the behavioral changes, and assess the impact of
those changes. It enables them to gain confidence that the changes they made are
correctly implemented, and it can help them to prevent regressions. This helps
them to reduce the risks involved in making changes.

Next, we look at related literature on software evolution, including change
impact analysis. Then, we discuss existing techniques for software behavior com-
parison, and discuss their pros and cons, in relation to our context and the goals
of our work. Based on that, we further scope our work by selecting the type of
techniques that we investigate in this thesis. Specifically for those techniques, we
identify the gaps that we address in this thesis. And we use those gaps to refine
research question RQ-2, by further dividing it into two smaller research questions.

Related literature

Software evolution is a well-studied field. About two decades ago, Mens and
Tourwé surveyed software refactoring [93]. They conclude that one of the activities
in a refactoring process, is to ensure that the refactorings preserve the software
behavior. We focus exclusively on the software behavior. However, we consider
software changes in a broader sense than only refactorings. Hence, for some use
cases, changes in behavior may actually be expected and desired. Mens and Tourwé
further mention that changes may propagate, which is a challenge that we explicitly
consider and address in our work.

More recently, Václav Rajlich discusses over a decade of research on software
evolution and maintenance [106], and includes impact analysis as an explicit step
in the process for making software changes. Rajlich concludes that research on
impact analysis is often too crude, for instance indicating only whether a module
is affected or not, rather than quantifying that impact. In our work, we focus
not only on which components interact differently, but also on what exactly has
changed in how they communicate.

Around the same time, Li et al. survey change impact analysis techniques
[88]. Similar to our work, they explicitly consider ripple effects, side effects, and
regressions. In their work, they classify the techniques into multiple perspec-
tives. Particularly relevant for our context is the ‘traditional dependency analysis’
perspective, a static analysis perspective involving the use of dependency graphs.
Also relevant is the ‘execution information collection’ perspective, a dynamic anal-
ysis perspective involving the use of execution information, for instance execution
traces. Their analysis shows that the dynamic techniques may be better in terms of
accuracy than the traditional static techniques. We similarly focus on the dynamic
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perspective, as we compare models obtained through dynamic analysis techniques.
Li et al. further provide an overview of tools that support the various change

impact analysis techniques that they surveyed. While not all those dynamic anal-
ysis techniques are supported by tools, the ones that do have tool support, support
only specific programming languages. As these tools only support C or Java, they
are insufficient for our purposes. Mens and Tourwé further conclude that lan-
guage independence is desired. In our work, we compare software behavior models
that capture communications between components, regardless of the programming
languages used to implement the components.

In recent work, Nan Yang also considers dynamic analysis techniques, as she
systematically reviews the field of log comparison techniques [129]. She includes
in her review not only techniques that directly compare execution logs, but also
techniques that compare execution logs against models, and models against mod-
els. As in our work, these models may be inferred from the execution logs. We
look at such techniques in more detail below. Yang further identifies multi-level
comparison as an important need for industry. And she notes a lack of model-to-
model comparison approaches that support such multi-level comparisons. In our
work, we propose exactly such an approach.

Mahmood et al. specifically discuss the evolution of software components, in
their survey on component-based software development [89]. However, they discuss
only a few works on evolution, which rely on the structure of the system and its
documentation, rather than its behavior. In our work, we focus almost exclusively
on the software behavior.

More recently, Vale et al. similarly survey the field of component-based soft-
ware engineering [124]. They discuss evolution mostly in the context of tooling,
such as development environments. However, they also conclude that more re-
search is needed on the evolution of component-based software, including for large
distributed systems. And that such research must pay attention to component
interactions and interface protocols. We focus on that in our work.

Breivold et al. systemically review software evolution, both in the context of
software architecture evolution [26], and open-source software [25]. This differs
from our work, as we focus on the implementation of the software, rather than its
architecture, and we consider mostly industrial applications of component-based
software, rather than only open-source applications.

Van Deursen et al. discuss research on the evolution of software built using
model-driven software engineering [42]. This differs from our work, as we use and
compare models to support the evolution of software, but not necessarily only for
software that is developed using model-driven approaches.

Software behavior comparison techniques

As already mentioned, various techniques exist to compare software behavior. In
current industrial practice, engineers often compare execution logs to find differ-
ences in behavior that hint at regressions. They use for instance readily-available
textual comparison tools [20, 131]. These tools present many low-level differences,
that are not necessarily relevant. For instance, interleaving of communications
may lead to differences in the order of events in an execution log, while the behav-
ior has essentially remained the same [129, 132]. In the literature, there is quite

16



Chapter 1

some work on comparing logs in a smarter way [10, 19, 52, 129]. However, tuning
these algorithms is difficult, since their parameters relate to the input observations
rather than the software behavior. For instance, the 2KDiff algorithm highlights
sequences of length k or less that appear only in one of the two input logs [10].
But k is a property about logs and not about the actual system, making it diffi-
cult for engineers to choose a good value for k, or even to understand the impact
of choosing different values of k. Hence, these techniques are not being used in
industry [131]. We therefore do not use log comparison techniques in our work.

Besides log comparison, also model comparison can be used to compare soft-
ware behavior, if models are available, or if they can be inferred from the logs [129].
As we infer state machine models, we focus particularly on comparison of state
machine models. Figure 1.4 shows a classification of techniques to compare state
machine models. Broadly, such techniques can be divided into behavior-based
techniques and structure-based techniques [126]. Behavior-based comparison con-
siders the externally observable behavior of state machines, in terms of sequences
of events. It includes qualitative relations and quantitative measures. Examples
of qualitative relations include equivalence relations, such as bisimulation equiva-
lence, and inclusion relations, such as language inclusion [49]. Examples of quanti-
tative measures include precision and recall [116, 126]. Complementary, structure-
based comparison considers the overlap of their internal model representations, in
terms of their states and transitions [126].

For large component-based systems, consisting of many components, there may
also be many changes in the communication behavior. And these changes may be
scattered throughout the system (see Section 1.2.2). Various behavior-based and
structure-based techniques can help here. For instance, engineers may pair-wise
compare the languages of state machine models of different versions of individual
components. This way, they can find out which components of the system have
different behavior after the change [111]. And for those components that do have
different behavior, structural comparison can give them insight into the actual
behavioral differences, such as added function calls, or changes in the order of
function calls [126].

We have observed in practice that engineers find quantitative measures diffi-
cult to interpret, among others because these measures are difficult to relate to
the actual software, and because such values are not always directly comparable.
Hence, we do not consider them further in this thesis.

State Machine Model Comparison Techniques

Behavior-based Techniques Structure-based Techniques

Qualitative Relations Quantitative Measures

Figure 1.4: Classification of techniques to compare state machine models.
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Sub-dividing RQ-2

While various state machine comparison techniques are thus useful, for engineers
it is challenging to apply them. To obtain the comparison results, they have to
master all of the individual techniques, to know what they are and how to use them.
And then they have to apply each of them, one by one, since a single integrated
approach is lacking [132]. Furthermore, engineers must apply the techniques to
all the models, of all the components of the system, for multiple versions of the
software. Clearly, this involves a significant amount of work.

Now assume that the engineers have done this work, by performing hundreds
if not thousands of comparisons, and they have the comparison results. Then they
face a next challenge, as they have to go through all these results. They have to
go through them in detail, one-by-one, to see whether there are any differences at
all, and if so, whether it is a relevant difference or not [131]. Given the lack of
suitable multi-level overviews of the differences, this again involves a significant
amount of work [129].

If instead they would have a multi-level overview, they could at each level
see where there are differences, and where there are no differences. If some part
of the system has no differences, they do not have to inspect that part in more
detail. Thus, they can step-by-step zoom in on only those parts of the system that
have differences, to inspect those differences in more detail. Hence, we formulate
research question RQ-2a:

RQ-2a How can we combine various state machine comparison techniques
into an automated and integrated approach, that allows engineers to
efficiently obtain a suitable multi-level overview of all behavioral dif-
ferences, for large component-based systems?

With suitable multi-level overviews, engineers do not have to spend time on
inspecting the parts of the system without behavioral differences, but they still
have to inspect the parts of the system that do have differences. For each behav-
ioral difference, they have to see what exactly is the difference, and whether this
is a logical consequence of their software change, or an unintended regression. As
there may be many components, there may potentially also be many differences
to be inspected. It is then essential that there are as few irrelevant differences
as possible, and that the relevant differences can easily be inspected. Only then
can engineers focus their efforts efficiently, and effectively determine whether their
changes introduced any unintended side-effects, to ultimately reduce the risks.
Hence, we formulate research question RQ-2b:

RQ-2b How can we present engineers with suitable representations of relevant
behavioral differences, for them to efficiently and effectively find any
behavioral regressions?

1.3.3 Summary of research questions
Figure 1.5 shows an overview of the research questions of this thesis. Main research
question RQ is sub-divided into RQ-1 and RQ-2. RQ-1 is sub-divided into RQ-1a
and RQ-1b. RQ-2 is sub-divided into RQ-2a and RQ-2b.
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RQ: How can we reduce the efforts and risks of soft-
ware evolution, for large component-based systems?

RQ-1: How can we efficiently
obtain a complete overview of the
software communication behavior,

for large component-based systems?

RQ-2: How can we efficiently obtain
a complete overview of the system-
wide impact on the communication

behavior caused by software changes,
for large component-based systems?

RQ-1a: How can
we efficiently set up
and apply active au-
tomata learning, to
automatically infer

the software commu-
nication behavior, for

large component-
based systems?

RQ-1b: How can we
apply state machine
learning, such that it
automatically infers

good approximations of
the software commu-
nication behavior, for

large component-
based systems?

RQ-2a: How can we
combine various state
machine comparison
techniques into an
automated and in-
tegrated approach,

that allows engineers
to efficiently obtain

a suitable multi-level
overview of all behav-
ioral differences, for
large component-
based systems?

RQ-2b: How can we
present engineers with

suitable representations
of relevant behavioral
differences, for them

to efficiently and
effectively find any

behavioral regressions?

Figure 1.5: Overview of the research questions of this thesis.

1.4 The MIDS methodology
To address the challenges as outlined in the research questions, we develop a
methodology that comprises both model inference and model comparison. The
methodology is named after the tool that supports it, MIDS, which stands for
Model Inference and Differencing Suite [120]. Figure 1.6 shows the MIDS method-
ology.

Given a (component-based) system (System 1 ), model inference (the blue parts,
in the middle) is used to automatically infer models of its software (Models 1 ).
The models may be obtained by active learning or by passive learning. For active
learning, an active learning tool actively queries the system to get observations of
its behavior and uses them to produce models. For passive learning, the system is
executed and the observed behavior is captured in execution logs, which are used
by a passive learning tool to produce models.

As we consider large component-based systems, a single model of the entire
system behavior would be much too large and complex. Hence, models are inferred
for parts of the system, such as the software components and the functions of their
interfaces. The multi-level models provide an overview of the software behavior,
as well as detailed information about it, which gives insight into the system’s
behavior.

Given a second system (System 2 ), models can be obtained in a similar way
(Models 2 ). Rather than the second system being a different system, it could
also be the same system with for instance different configurations or different
software versions. While not visualized in the figure, the methodology allows for
any number of systems, configurations, or versions to be considered, and models
of their behavior to be inferred.
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System 1

System 2

Logs
1

Logs
2

Models 1

Models 2

Execution

Execution

Passive

Passive

Learning

Learning

Active Learning

Active Learning

Differences

Model
Comparison

Model Inference Model Comparison

Figure 1.6: An overview of the MIDS methodology, consisting of Model Inference
(the blue parts, in the middle) and Model Comparison (the green parts, on the
right).

Then, given two or more sets of models, model comparison (the green parts,
on the right) computes their behavioral differences and outputs difference models
(Differences). From the difference models, a multi-level report is generated. The
report can be inspected, by step-by-step zooming in on parts of the system that
have changes. Through inspection, engineers gain insight into the changes that
were made, and other changes in behavior caused by them, allowing for change
impact analysis. This helps them to identify unexpected differences and regres-
sions, and thereby allows them to increase the confidence in the correctness of the
changes and reduce the risks for software evolution.

1.5 Contributions
The MIDS methodology, as described in this thesis, advances the state-of-the-art
of model inference and model comparison, to support software evolution for large
component-based systems. Specifically, this thesis has five major contributions.
The first four major contributions each address one of the detailed research ques-
tions. The fifth major contribution involves the MIDS tool that implements the
MIDS methodology. It integrates the various other contributions into a single
open-source tool, and addresses the overall research question of this thesis.

Note that in this section, we only describe the contributions of this thesis, and
how they relate to the research questions. The relations of these contributions
to the chapters of this thesis, to already existing publications, and so on, are
described in Section 1.6.
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1.5.1 Contribution 1: Active automata learning for large
component-based systems

Research question RQ-1a states:

RQ-1a How can we efficiently set up and apply active automata learning,
to automatically infer the software communication behavior, for large
component-based systems?

To address this research question, we develop a systematic approach to con-
nect software components operating under the client/server paradigm to a learn-
ing tool. Our general, reusable and configurable framework allows to more quickly
produce an active learning setup for such components. The framework deals with
the particular challenges that one encounters when interfacing with such compo-
nents, including their various types of (a)synchronous communications that stem
from the components’ dual roles as servers to their clients and as clients to their
servers. In particular, we systematically derive an interfacing protocol that ensures
that certain constraints, such as input-enabledness, single-output-per-input, and
finiteness are satisfied, even if the isolated component code does not satisfy these
properties. We show the feasibility and effectiveness of our approach by applying
it to software components at ASML.

1.5.2 Contribution 2: State machine learning for large com-
ponent-based systems

Research question RQ-1b states:

RQ-1b How can we apply state machine learning, such that it automatically
infers good approximations of the software communication behavior,
for large component-based systems?

To address this research question, we develop a novel state machine learn-
ing algorithm, Constructive Model Inference (CMI ), that is specifically suited for
component-based systems. CMI learns models from software execution logs, which
are interpreted using knowledge of the software architecture, its deployment and
other characteristics. It does not rely on queries or counter examples, and has no
heuristics that would be hard to configure correctly. We instead inject our knowl-
edge of the system’s component structure, the services the components provide,
and the (a)synchronous communications between the components. This allows
us to learn multi-level models that are small enough for engineers to interpret,
while accurately capturing the complex system behavior of actual software sys-
tems. We demonstrate this by applying the approach to infer models for dozens
of components at ASML.

1.5.3 Contribution 3: Behavioral comparison for large
component-based systems

Research question RQ-2a states:
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RQ-2a How can we combine various state machine comparison techniques
into an automated and integrated approach, that allows engineers to
efficiently obtain a suitable multi-level overview of all behavioral dif-
ferences, for large component-based systems?

To address this research question, we develop a novel multi-level approach for
behavioral comparison of large component-based systems. The approach integrates
multiple existing complementary methods to automatically compare the behavior
of state machine models. The comparison results can be inspected at six levels of
abstraction, ranging from very high-level differences to very detailed ones. Users
are guided through the differences in a step-by-step fashion. At each level the
differences are presented with a suitable visualization, that is tailored to allow
engineers to zoom in on the parts of the system with differences, wasting no time
on the parts without any differences. We evaluate the approach using multiple
case studies at ASML, thereby demonstrating that it can be applied to large (sub-
)systems, provides engineers insight into the behavioral differences, and allows
them to find unintended regressions.

1.5.4 Contribution 4: Improved structural comparison of
software behavior

Research question RQ-2b states:

RQ-2b How can we present engineers with suitable representations of relevant
behavioral differences, for them to efficiently and effectively find any
behavioral regressions?

To address this research question, we focus on level 6 of our multi-level behav-
ioral comparison approach. Through application of our MIDS methodology, we
have found that engineers spend most of their time at that level, to interpret the
differences, determine whether they are relevant or not, and decide whether they
are as expected or constitute regressions. Level 6 is our most detailed level. It
shows the behavioral differences based on the results of a structural comparison of
state machines. We improve an existing state-of-the-art structural state machine
comparison algorithm named LTSDiff [126], by generalizing and extending it to
gLTSdiff. gLTSdiff reduces the number of differences represented in the compar-
ison result, which reduces the effort engineers have to spend to interpret the dif-
ferences. We apply gLTSdiff to several large-scale industrial and open source case
studies, to show that it has practical value, can efficiently compute the differences,
handles large numbers of input models, and reduces the number of differences.

1.5.5 Contribution 5: An open source tool supporting the
MIDS methodology

The overall research question of this thesis states:

RQ How can we reduce the efforts and risks of software evolution, for large
component-based systems?
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To address this research question, we develop the MIDS tool [120] that imple-
ments the MIDS methodology. The MIDS tool provides model inference to infer
models of the software. The models give insight into the current communication
behavior, which provides a solid basis for making changes to the software. The
MIDS tool also provides model comparison to allow engineers to compare software
behavior models, zoom in on the relevant differences, determine the impact of
software changes, and prevent regressions. Together model inference and model
comparison allow to increase confidence that the software changes were made as
intended, reducing the risks before these changes are delivered.

The MIDS tool is largely automated. It provides an efficient way to apply the
MIDS methodology, reducing the effort that engineers have to spend. The tool is
set up in such a way that it can be applied at different companies, which may for
instance have execution logs in different formats. The MIDS tool is open source,
allowing wide-spread use of the tool and its underlying methodology.

1.6 Thesis outline
The rest of this thesis is structured along the five contributions. Each contribution
is described in a separate chapter, as outlined below. Contributions 1 through 4
are based on published papers. To allow reading the chapters in isolation, their in-
dividual introduction and conclusion sections are kept. These chapters do contain
improvements and extensions compared to the published papers, and the most
important differences are described below. The chapter for contribution 5 is a
novel contribution for this thesis, and has not been published previously.

The work in this thesis has been conducted in the context of the Transposition
applied-research project. This project ran from 2018 through 2022, as a collabora-
tion of TNO-ESI and ASML. I was the scientific and technical lead of the project3.
The various contributions in this thesis have been collaborations with other mem-
bers of the Transposition project, its associated PhD and MSc students and their
supervisors, as well as industrial contacts at ASML. This is also evident from the
list of authors of the published papers on which the chapters are based (see below),
and from the acknowledgments sections of those papers. Below, for each chapter
based on a published paper, I also indicate my own contribution.

Chapter 2 provides a detailed description of contribution 1, our systematic ap-
proach to connect software components operating under the client/server paradigm
to a learning tool. The approach is based on a reusable and configurable frame-
work that allows engineers to quickly produce an active learning setup for such
components. This chapter is based on the following published paper [55], and is
reproduced in this thesis with permission from Springer Nature:

• Dennis Hendriks and Kousar Aslam, A Systematic Approach for Interfacing
Component-Based Software with an Active Automata Learning Tool, In: Pro-
ceedings of the 11th International Symposium On Leveraging Applications

3In this thesis, ‘we’ is used to refer to the author of this thesis, the authors of the publications
on which chapters are based (which includes the author of this thesis), or a combination of them
together with the reader. Only in this section, ‘I’ is used to distinguish the individual roles and
contributions of the author of this thesis.
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of Formal Methods, Verification and Validation (ISoLA), pages 216–236,
Springer, 2022, DOI: 10.1007/978-3-031-19756-7_13.

This work was a collaboration with Mladen Skelin, who at the time was a
member of the Transposition project. I came up with the ideas for the interfacing
approach and interfacing protocol. Mladen did all of the implementation work,
and took the lead for the case studies. The work was also a collaboration with
Kousar Aslam, a PhD student from Eindhoven University of Technology, who
worked closely together with the Transposition project. She included this work in
Chapters 6 and 7 of her own PhD thesis [12]. Writing those two chapters was a
collaborative effort. For the ISoLA publication, as lead author, I wrote the entire
paper from scratch.

The chapter in this thesis differs from the publication. It has mostly small
changes, such as textual improvements, style improvements, and some linking to
the rest of the thesis. Besides that, the introduction of the chapter is extended.

Chapter 3 provides a detailed description of contribution 2, our Construc-
tive Model Inference (CMI) state machine learning algorithm. CMI is specifically
suited for component-based systems by accurately capturing the complex system
behavior of such systems. This chapter is based on the following published pa-
per [63], and is reproduced in this thesis with permission from SciTePress:

• Bram Hooimeijer, Marc Geilen, Jan Friso Groote, Dennis Hendriks, and Ra-
mon Schiffelers, Constructive Model Inference: Model Learning for Com-
ponent-Based Software Architectures, In: Proceedings of the 17th Inter-
national Conference on Software Technologies (ICSOFT), pages 146–158,
SciTePress, 2022, DOI: 10.5220/0011145700003266.

This work was a collaboration with Bram Hooimeijer, who conducted his Mas-
ter’s thesis project under the supervision of Jan Friso Groote and Marc Geilen from
Eindhoven University of Technology (TU/e), and Ramon Schiffelers from ASML.
Building upon earlier work of the Transposition project, and working closely to-
gether with the Transposition team, Bram in his project developed the CMI ap-
proach, its formalization, and the proofs, and applied the approach to an ASML
case study. The published paper is based on Bram’s thesis [62]. I took the lead in
turning the thesis into the ICSOFT publication, which was a collaboration primar-
ily with Jan Friso and Marc. I among others introduced the 6-step methodology,
including the overview figure of the methodology, introduced the running example,
and significantly reworked the main methodology section, for instance adding for
each step the intuition in the form of an informal description, before discussing
the formalization.

The chapter in this thesis differs from the publication. The most notable
changes are numerous improved descriptions and extended explanations, more
details about the running example, and a completely rewritten section about the
analysis of the synchronous variant of the approach.

Chapter 4 provides a detailed description of contribution 3, our approach for
behavioral comparison of large component-based systems. The approach produces
a multi-level comparison overview, which guides engineers through the differences
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in a step by step fashion. It provides them with insight into the behavioral differ-
ences, and allows them to find unintended regressions. This chapter is based on
the following published paper [56], and is reproduced in this thesis with permission
from Springer Nature:

• Dennis Hendriks, Arjan van der Meer, and Wytse Oortwijn, A Multi-level
Methodology for Behavioral Comparison of Software-Intensive Systems, In:
Proceedings of the 27th International Conference on Formal Methods for
Industrial Critical Systems (FMICS), pages 226–243, Springer, 2022, DOI:
10.1007/978-3-031-15008-1_15.

This work was a collaboration within the Transposition project, in particular
with Arjan van der Meer, who was a member of the Transposition project until
the end of 2022, and Wytse Oortwijn, who joined the project in 2021. Together,
we developed the methodology, implemented the tool, and applied it to various
case studies, supported by stakeholders and experts from ASML. I took the lead,
being the scientific and technical lead of the project. As main author, I wrote
nearly the complete FMICS paper.

The chapter in this thesis differs from the publication. The most notable change
is an extensive addition that describes the steps involved in the computation of a
lattice.

Chapter 5 provides a detailed description of contribution 4, our improved
structural state machine comparison algorithm gLTSdiff. gLTSdiff efficiently com-
putes differences for large numbers of state machine models, and reduces the num-
ber of differences. This chapter is based on the following published paper [58], and
is reproduced in this thesis with permission from IEEE:

• Dennis Hendriks and Wytse Oortwijn, gLTSdiff: A Generalized Framework
for Structural Comparison of Software Behavior, In: Proceedings of the 26th
International Conference on Model Driven Engineering Languages and Sys-
tems (MODELS), pages 285–295, IEEE, 2023, DOI: 10.1109/MODELS58315.
2023.00025.

This work was a collaboration within the Transposition project, in particu-
lar with Wytse Oortwijn. Together, we developed the approach, implemented
the library, and applied it to various case studies. The ASML case studies were
a collaboration, primarily with Arjan van der Meer, who was a member of the
Transposition project at the time, and João Vieira, who worked at ASML at the
time. Being the scientific and technical lead of the project, I was heavily involved
in all activities. As main author, I wrote nearly the complete MODELS paper.

The chapter in this thesis differs from the publication. The most notable
changes are extensions to the background section, an extended explanation of
combining sequences, further elaboration about applying gLTSdiff to multiple in-
puts, an added example of tangle rewriting, more details about the TLS case
study, some updates for new experimental results, and improved explanations of
the trade-off evaluation.

Chapter 6 provides a detailed description of contribution 5, our Model Infer-
ence and Differencing Suite (MIDS) tool [120]. The tool integrates and automates
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the model inference and model differencing approaches as outlined in this thesis,
making the methodology broadly available as an open-source tool. This chapter
is a novel contribution of this thesis, and has not been published previously.

Chapter 7 concludes this thesis by summarizing the work and reflecting on
it. We answer the research questions, discuss some of the limitations of our ap-
proaches, and outline future work.
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Systematic software
component interfacing for
active learning

Cyber-physical systems often employ a component-based software architecture,
dividing the system into components that can be developed, tested and deployed
independently [119]. Model-Driven Engineering (MDE) places models at the cen-
ter of attention, allowing for early analysis of a component’s software behavior and
for implementations to be automatically generated [128]. But gaining such benefits
for legacy software requires models, and manual modeling for legacy components
is often laborious and error prone due to a lack of understanding of their cur-
rent behavior, for instance caused by insufficient documentation and the original
developers having long since left the company.

To facilitate a cost-effective transition to MDE, model learning can automat-
ically infer first-order models to bootstrap a subsequent manual modeling ef-
fort. Passive state machine learning for instance infers models based on execution
logs [60] (see also Chapter 3), but the resulting models are often incomplete due
to logs covering only parts of the component’s behavior. Active automata learning
(AAL) on the other hand repeatedly queries the component and has the poten-
tial to ultimately infer a model capturing the component’s complete behavior.
AAL was introduced in Dana Angluin’s seminal work on the L* algorithm [11]. A
comprehensive body of work extended upon this to, e.g., learn different types of
models, improve scalability, and show its practical value [68].

However, practitioners face practical challenges applying AAL to software com-
ponents of real-world industrial cyber-physical systems. In order for an AAL tool
to send queries to a component and gauge its responses, the component must be
isolated from its environment and subsequently connected to the learning tool. Ex-
isting case studies typically explicitly or implicitly explain their learning setup [35,
44, 109], but establishing such a learning setup is laborious. It can therefore pay off
to use a generic setup that can be (re)configured for reuse. By analyzing existing
interface descriptions the new configuration can even be automatically generated.
This was shown to be effective for web services [94].
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But what is lacking is a systematic approach to connect software components
operating under the client/server paradigm to a learning tool. Therefore, similar
to what is already available for web services, we contribute a general, reusable
and configurable framework, to quickly produce an AAL setup, specifically for
component-based software with a client/server architecture. Through multiple
case studies we show that our semi-automatic approach enables setting up a learn-
ing environment to learn (sub-)component behaviors within hours.

A particular challenge when interfacing with such components, is how to deal
with their various types of (a)synchronous communications, especially when con-
sidering their dual roles as servers to their clients and as clients to their servers.
For instance, a reply from a server is an input to the component, but it is only
possible after a request from the component itself. Components may thus not be
input-enabled, as they may not be able to accept every input in every state, a
practical requirement of various AAL algorithms.

If a component is not input-enabled, a learning purpose [3] can be placed be-
tween the learner and the component. A learning purpose is essentially a protocol
model that is wrapped around the isolated component, such that all communi-
cations between the learner and the component go via the protocol model. In
our case, the protocol rejects inputs not allowed by the component, such that
these inputs lead to a sink state in the inferred model, clearly marking them as
not supported by the component. Our protocol forwards any other inputs to the
component, to learn the subset of a component’s behavior satisfying the protocol.
By defining a protocol that allows all the communications that the component
supports, a complete model of the component’s behavior can in principle still be
learned. An essential part of our framework is therefore such an interfacing pro-
tocol model, a learning purpose that provides a practical but structured way of
handling the communications between the AAL tool and the component whose be-
havior is to be learned. This way, the System Under Learning (SUL), the isolated
component code combined with the protocol, is input-enabled. Besides that, the
protocol also ensures that the SUL has a single output per input, and represents
a finite Mealy machine, even if the isolated component code does not satisfy these
properties.

Our main contribution is the systematic derivation of the interfacing protocol
for deterministic single-threaded components, that may act as both clients and
servers, may perform various types of synchronous and asynchronous communica-
tions, and do not make decisions based on data. As an example, we derive such
a protocol for the software architecture of ASML, a leading company in develop-
ing lithography systems. However, the responsibilities of the interfacing protocol
and the way we handle the different types of communication patterns apply to
component-based software in general. We therefore believe our work could be
used to similarly derive interfacing protocols and set up learning frameworks at
other companies with similar software architectures.

The remainder of this chapter is organized as follows. In Section 2.1 we briefly
introduce component-based software architectures and AAL. Section 2.2 describes
our general AAL framework. Section 2.3 contains our main contribution, as it
introduces interfacing protocols and their responsibilities, and describes the sys-
tematic derivation of such a protocol for ASML’s software architecture. We then
apply our approach in practice to infer behavioral models of multiple software
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components in Section 2.4, before concluding in Section 2.5.

2.1 Background
Component-based software architectures are often employed by cyber-physical sys-
tems to divide the system into components that can be developed, tested and
deployed independently [119]. A component can act as a server offering its func-
tionality via interfaces to other components, its clients. A component may in-
teract with multiple other components, its environment, acting as either client
or server to the various components. A single component may be both a server
to its clients and a client to its servers. We focus on client-server architectures,
where typically clients initiate communication, and servers are idle while not han-
dling requests from their clients. Interactions typically involve calling functions
from interfaces of other components, e.g., as remote procedure calls. Concurrent
components can communicate synchronously and asynchronously [53]. With syn-
chronous communication a client remains idle while awaiting the server’s response,
while asynchronous communication allows a client to perform other interactions
while a server is processing the client’s request.

Active automata learning (AAL) involves repeatedly querying a component
and has the potential to ultimately infer a model that captures the component’s
complete behavior. The AAL algorithm thus determines which inputs to send
to the system to learn more about the system’s behavior, and observes the out-
puts that the system produces. Given our context of component-based software,
queries involve function calls. As for instance function calls from clients are nat-
urally inputs, and their corresponding return values are then outputs, we infer
Mealy machine models. AAL then involves a learner using membership queries
(MQs), sending sequences of inputs (matching, e.g., function calls from clients)
to the System Under Learning (SUL) and observing the outputs (e.g., function
return values), using them to construct a hypothesis Mealy machine model for
the SUL’s unknown behavior. An equivalence oracle (EO) then either confirms
that the hypothesis matches the SUL’s behavior or it produces a counterexample.
The EO is typically implemented using conformance testing techniques, using test
queries (TQs) to find differences in behavior between the hypothesis and the SUL.
Iteratively, the learner uses the counterexample and further membership queries
to refine its hypothesis, and the EO checks this refined hypothesis, until the EO
considers a hypothesis correct. See also the left part of Figure 2.1. For a more
extensive introduction to AAL, see the literature [11, 68, 123].

2.2 Active automata learning framework
Complex cyber-physical systems may consist of millions of lines of code, spread
out over many hundreds of components. Our goal is to infer the externally visible
behavior of individual (sub-)components, e.g., to allow replacing the legacy imple-
mentation of their business logic. This requires that a component whose behavior
is to be learned is isolated from its environment and is subsequently connected
to the AAL tool. We assume components are single-threaded, for instance cor-
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Figure 2.1: General framework to perform AAL on software components operating
under the client/server paradigm.

responding to a single Linux thread. Figure 2.1 shows our general framework to
perform AAL on software components operating under the client/server paradigm.
The outermost boxes represent processes.

At the left is the AAL process. It consists of a Main function that configures
a Learner and EO, and subsequently iteratively invokes them as described in
Section 2.1. The Learner and EO produce MQs and TQs, respectively, which are
handled identically by a Cache. The Cache caches and directly answers previously
asked queries. For new queries, the I/O module sends the input symbols to a SUL
Manager process via sockets, and similarly receives output symbols.

The I/O module of the AAL process sends after each MQ/TQ a reset symbol
to the SUL Manager, informing it of query completion. The SUL Manager uses
a new SUL instance for every query to ensure that the SUL executes inputs from
the same initial state. It manages a pool of SUL instances and concurrently
processes MQs/TQs and spawns new SUL instances for better performance. The
SUL Manager thus forwards inputs from the AAL process to a SUL instance,
and outputs in the reverse direction. Using multiple processes allows a SUL to
be implemented in a different programming language than the AAL process and
eases spawning of new SUL instances and killing obsolete ones.

At the core of the SUL is the Component Code (CC ) whose behavior is to be
inferred. The wrapper code that handles inter-process communications to other
components via middleware, dealing with serialization and such, is not considered
part of CC. Instead, only the code that implements the component’s functionality
is used, as that is sufficient to learn the component’s business logic. Dispatchers
and stubs replace the wrapper code, and play the role of the environment of the
component, similar to how code is isolated in the field of automated software
testing.

When the I/O module receives an input, it forwards the input to the Idle
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Dispatcher, if the SUL is idle. A component can be both a server to its clients
and a client to its servers. The Idle Dispatcher forwards inputs to the Server
Dispatcher if the CC (and thus the SUL) acts as server for requests from clients,
or to the Client Dispatcher if it acts as client to responses from servers, e.g., due
to earlier asynchronous requests to servers. These Client/Server Dispatchers act
as mappers [94] translating input symbols provided as strings to function calls on
the CC. Once a function returns, its return value is mapped back to an output
(string), which via the Idle Dispatcher and I/O module is provided back to the
SUL Manager and AAL processes. When the CC communicates as a client to
one of its servers, the call is intercepted in the Client Stub. This is also a mapper,
forwarding the output symbol corresponding to the call to the I/O module. Upon
receiving the server reply as input from the I/O module, the Client Stub translates
this server reply to a return value to be returned back to the CC. Finally, the Server
Stub similarly intercepts and handles calls from the CC (acting as server) to the
client. In our work, the mappers do not apply any abstractions to the input and
output alphabets.

The final aspect of our framework, the interfacing protocol, as implemented in
the dispatchers and stubs, is further explained in Section 2.3. The various shades
of gray used to color the boxes of Figure 2.1 are explained in Section 2.4.

2.3 Interfacing protocol
In this section, we discuss interfacing protocols and their systematic derivation,
using the software architecture of ASML as an example. After briefly explaining
the company’s software architecture, we describe its communication patterns, and
how they map to AAL inputs and outputs, before introducing the interfacing
protocol and its responsibilities, and systematically deriving such a protocol from
the patterns and the input/output mapping.

2.3.1 Software architecture and communication patterns
The components interact through remote function calls. A call from a client is,
by the middleware, placed in the server’s message queue. A server is idle while
awaiting incoming messages in its main function’s message processing loop. In
this loop, messages are picked up from the queue and processed one by one, non-
preemptively. This continues until the queue is empty. The component is then
idle again until new messages arrive.

Components communicate with each other using various communication pat-
terns. Clients can invoke functions of their servers in three ways: as blocking calls,
request/wait calls, and function completion notification (FCN) calls. Servers can
handle these requests either synchronously or asynchronously. The middleware
transparently hides these details, as clients are not aware of how servers handle
their calls, nor are servers aware of how clients invoke the calls. A client invoke
pattern is a partial pattern, as it only concerns the client-side perspective. And
so is a server handler pattern, as it only concerns the server-side perspective. Any
client invoke pattern can be combined with any server handler pattern to form
a complete pattern, as we will see later. We ignore library calls, which for the
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purpose of this work are identical to synchronously-handled blocking calls. The
last two patterns are ‘fire-and-forget’ type of communications: triggers and events,
which give no assurances of (successful) function execution, e.g., a call may fail
without notifying the caller. The trigger and event patterns are complete patterns.
Next, we describe the 7 (partial) patterns (3 client requests, 2 server handlers, 2
fire/forget) in more detail using the Message Sequence Charts (MSCs) from Fig-
ure 2.2.

Here f denotes any function, t any trigger and e any event. Collectively, these
three are called methods. A method is assumed to include the identity of the
server that provides it, distinguishing methods from interfaces provided by mul-
tiple servers. The company uses a proprietary Interface Description Language
(IDL) to define interfaces and their methods. A generator generates, from IDL
files, implementation functions to call and handle all defined methods, for various
programming languages. We distinguish IDL functions (i-functions) from gener-
ated functions (g-functions) where relevant. For instance, a i-function f from an
interface may among others be invoked asynchronously through the request/wait
pattern, for which g-functions freq and fwait are generated, as detailed in pattern
(ii) below. Any non-void g-function returns a value of type ASML RESULT, an in-
teger result indicating success (0) or failure (non-zero). The company’s software
architecture rule book states that callers must not use individual error codes, but
only OK (0) vs not-OK (non-zero), except for logging, to prevent tight coupling
between functions.

(i) Blocking call (Figure 2.2a): A client may invoke an i-function f syn-
chronously as a blocking call (with generated g-function fblk ). While awaiting the
server’s response (return value rok for successful execution, or rnok for unsuccess-
ful execution), the client is then blocked and can not do any internal processing,
perform calls, or process messages from its message queue.

(ii) Request/wait call (Figures 2.2b / 2.2c): A client may asynchronously
request (freq) a server to start executing an i-function f . The client is then free
to do other things before explicitly waiting (fwait) for the server’s response (the
second rok or rnok ). If the server has already finished executing the i-function,
the middleware has stored the server’s response and immediately returns this to
the client (2.2b). Otherwise, the client is blocked until the server finishes and
its response is provided back to the client via the middleware (2.2c). With re-
quest/wait calls the client is in control of when it is ready to receive the server’s
response.

(iii) Function completion notification (FCN) call (Figure 2.2d): A
client may asynchronously request (ffcn) a server to start executing an i-function
f , providing it a callback address (fcb). The client is then free to do other things.
Once the server finishes executing f , it provides its response (rok or rnok ) to the
middleware, which places both the callback address and the server’s response in
the client’s message queue. Once the client is idle it will process its message queue,
eventually processing the server’s response using callback g-function fcb , i.e., fcb
is called with the queued server response as argument. The client is thus notified
of the server completing the execution of function f , as the client requested. With
FCN calls the server is in control of when it provides the response.

(iv) Synchronous handler (Figure 2.2e): A server may synchronously
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Figure 2.2: MSCs for all (partial) communication patterns.
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handle all blocking calls, request/wait calls and FCN calls for an i-function f .
Once the handler (fsync) finishes, it immediately returns its response (rok or rnok ).

(v) Asynchronous handler (Figures 2.2f / 2.2g): A server may also a-
synchronously handle all blocking calls, request/wait calls and FCN calls for an
i-function f . The asynchronous handler (fasync) starts handling the request. In
that handler (2.2f), or at any later time in any other g-function (2.2g), it sends its
response to the client by calling an asynchronous result g-function, i.e., far (rok )
or far (rnok ). If it sends the response during the execution of the asynchronous
handler (2.2f), it effectively acts as a synchronous handler. If on the other hand
it sends the response at a later time, the request is truly handled asynchronously,
allowing other processing in between (2.2g).

A client call pattern (i – iii) and server handler pattern (iv – v) are to be com-
bined to form a complete pattern, with a client, middleware and a server.

(vi) Trigger (Figure 2.2h): A client may trigger a server (tcall), for a trigger
t. The server handles (th) the trigger without responding back to the client (rvoid).
A server may also be triggered directly by the middleware, e.g., periodically. Since
this is more rare, we ignore it in this chapter.

(vii) Event (Figures 2.2i – 2.2k): A client may subscribe (esub) to a specific
event e of one of its servers (2.2i), providing a callback address (ecb). The middle-
ware stores the subscription. A server may optionally have a subscription handler
(esubh) to be notified of subscriptions. A server may raise (eraise) an event (2.2j),
which leads to callback g-functions (ecb) being invoked (akin to FCN callbacks)
on all clients subscribed to that server for the specific event. Clients may at any
time unsubscribe (eun) from events (2.2k), again optionally notifying the server
(eunh).

2.3.2 Mapping communication patterns to inputs/outputs
For each of the 7 (partial) communication patterns the various calls to g-functions
and their replies can be mapped to inputs and outputs for AAL. Table 2.1 shows
this mapping. It is constructed by considering the role of the CC (and thus of
the SUL), as client and/or server, for each pattern from Figure 2.2. As our goal
is to infer a component’s functional behavior, it is isolated from its environment,
‘cutting off’ (ignoring) the middleware. Only the incoming and outgoing messages
from clients and servers are considered (C and S lifelines in the MSCs). Messages
from a client to the SUL (acting as server) are inputs. Reverse communications
are outputs. Conversely, messages from the SUL (acting as client) to a server
are outputs. Reverse communications are inputs. The role of the SUL, as client
or server, thus inverts whether its incoming and outgoing messages are inputs or
outputs.

For instance, in Figure 2.2a the SUL can only act as client. The outgoing fblk
message to a server is then an output, and the incoming rok or rnok message from
a server is an input.

2.3.3 The interfacing protocol and its responsibilities
When applying AAL in practice, often several preconditions must hold, e.g., when
using LearnLib [70] to learn Mealy machines, the SUL must be input-enabled. If
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Communication Pattern Role of SUL Message Input/Output

(i) Blocking call Client fblk output
rok / rnok input

(ii) Request/wait call Client

freq output
rok / rnok input
fwait output
rok / rnok input

(iii) FCN call Client

ffcn output
rok / rnok input
fcbok / fcbnok input
rvoid output

(iv) Synchronous handler Server fsync input
rok / rnok output

(v) Asynchronous handler Server

fasync input
rvoid output
farok / farnok output
rvoid input

(vi) Trigger
Client tcall output

rvoid input

Server th input
rvoid output

(vii) Event

Client

esub output
rok / rnok input
ecb input
rvoid output
eun output
rok / rnok input

Server

esubh input
rok / rnok output
eraise output
rvoid input
eunh input
rok / rnok output

Table 2.1: Communication pattern messages from Figure 2.2 mapped to AAL
inputs and outputs, for the SUL acting as client or server.

the CC does not satisfy such conditions, the interfacing protocol ensures that the
SUL does satisfy them. More precisely, the protocol is implemented in the SUL’s
dispatchers and stubs. With the CC, dispatchers, and stubs all being part of the
SUL, the SUL as a whole then does satisfy the conditions (see Figure 2.1). All
communications between the learner and the CC then adhere the protocol, as the
dispatchers and stubs for instance reject any invalid inputs. Here, we discuss the
protocol’s three responsibilities. The next section explains how it satisfies them.

(a) Input-enabled: For some learning tools/algorithms, the SUL must be
input-enabled for the learner to query every input on the SUL for every state.
This condition does not always hold, e.g., for FCN callbacks (Figure 2.2d). Along
with an FCN call (ffcn) the SUL provides a callback address (fcb). In the real
system, the middleware places that callback in the client’s message queue upon

35



Systematic software component interfacing for active learning

receiving the server’s reply. For AAL, the client dispatcher invokes it directly. An
FCN callback to the SUL is an input, which is thus only possible after an FCN
call by the SUL. Without the call, the callback address is unknown and it can
not be invoked on the CC. The SUL is then not input-enabled. The interfacing
protocol detects such invalid inputs, for which it can not rely on the CC. Instead,
the dispatchers and stubs that implement the protocol directly reply to the learner,
making the SUL as a whole input-enabled. As only impossible inputs are rejected,
the complete CC behavior can still be learned for all valid inputs.

(b) Single input, single output: Inferring Mealy machines with AAL re-
quires that each input produces a single output. That is, an input should not lead
to zero or multiple outputs, but to exactly one output. The interfacing protocol
is designed to always alternate inputs and outputs. By matching g-function calls
and their returns, this is a natural fit. It therefore does not prevent learning the
full externally-observable behavior of CC. As the components we use in our work
do not have timeouts, we do not consider them in this chapter.

(c) Finite learning result: Certain component behavior can not be cap-
tured as a finite Mealy machine, e.g., for multiple concurrent executions of an
asynchronous handler (Figure 2.2g). With a the handler’s start (fasync), b its
end (rvoid), c a later successful asynchronous result call (farok ), and d its end
(rvoid), this may lead to sequences ‘...ab...cd...’, ‘...abab....cdcd...’, etc, and in gen-
eral ‘...(ab)n...(cd)n...’. Unlike a pushdown automaton, a Mealy machine can not
capture this in a finite manner. It would contain infinitely many paths, one for each
value of n ≥ 0. AAL would have to discover each path to infer a complete model,
which would never terminate. The interfacing protocol can restrict such concur-
rent executions (n ≤ m, for some chosen m) to ensure that AAL terminates, at the
expense of not learning the full behavior. Not only are higher concurrency variants
then absent (n > m), any differences in behavior resulting from them would also
be absent, e.g., the component’s behavior could be different for n = m+1 than for
any n ≤ m, but this would not be in the inferred model. However, the resulting
models can still be valuable in practice, as the automatically inferred first-order
models can be used to bootstrap a subsequent manual modeling effort.

The interfacing protocol is implemented in the dispatchers and stubs, which
act as a small wrapper around CC, addressing these three responsibilities. Neither
ensuring input-enabledness, nor ‘single input, single output’, prevents learning
the full externally-observable behavior of CC. Using interaction limit m = ∞,
the full behavior of a CC can thus be learned, assuming CC has a finite Mealy
machine representation. Otherwise, by restricting m, a subset of the CC ’s pos-
sible behaviors can be queried. As a result of this, the inferred models may be
under-approximations of the CC ’s behavior, over-approximations of it, or a mix of
under-approximations and over-approximations for different parts of its behavior.
Assuming an AAL algorithm is used that ensures that learned models are minimal,
our approach in no way impacts that guarantee. We do not consider the condition
that the SUL may not exhibit non-determinism (different outputs for the same
input), as for the components we use in our work we have not encountered any
non-determinism.
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2.3.4 Systematic derivation of the interfacing protocol
The interfacing protocol provides a structured way of handling the various commu-
nication patterns, ensuring that the SUL is input-enabled, provides a single output
per input, and represents a finite Mealy machine, even if the isolated CC does not
satisfy these properties. We derive such an interfacing protocol in a systematic
manner, still using the same example software architecture.

Figure 2.3 shows the interfacing protocol as an Extended Finite State Machine
(EFSM). As we infer Mealy machines, each protocol input and following output
matches a single Mealy machine transition. We use the syntax g → m [u] on the
edges of the protocol, with g a guard, m a message and u an update. The guard
is optional. m1/m2 indicates either message m1 or message m2. There may be
multiple updates, each between square brackets. x++ is short for the update
x := x+ 1, and x- - is short for the update x := x− 1. > indicates value true and
⊥ indicates values false.

The protocol starts in state Idle as the CC is initially idle, awaiting a call.
The Idle state is an input state from the SUL’s perspective, shown in dark gray
in the figure. Upon receiving a SUL input, the g-function matching that input
is called on the CC. The protocol then transitions to the Busy state, which is
an output state from the the SUL’s perspective, denoted light gray in the figure.
Here the CC continues executing the g-function. Upon its return, the protocol
transitions back to the Idle state. Alternatively, while Busy, it may communicate
to one of its servers and go to the Blocked state. There it is blocked until the call
to the server returns, going back to the Busy state to continue the still-in-progress
g-function execution. For simplicity, we do not consider calls of a component to
its own provided interface. Next, we consider all 7 communication patterns from
Figure 2.2, with their associated inputs/outputs from Table 2.1, one at a time.
As we gradually build up the interfacing protocol, we consider the patterns from
Figure 2.2 in a slightly different order.

(iv) Synchronous handler (Figure 2.2e): An idle SUL, acting as a server,
can synchronously handle a call from one of its clients. Upon receiving fsync for
some i-function f as an input in the Idle state the protocol invokes the correspond-
ing handler (g-function) on the CC. It also transitions to the Busy state, as the CC
is then busy executing. Variable v1 is updated to indicate the in-progress handler
is not a void function (update [v1 := ⊥]). When the handler returns, depending
on its return value (zero for successful execution, non-zero otherwise) the protocol
produces an output (rok for zero, rnok otherwise) and transitions back to the Idle
state.

(i) Blocking call (Figure 2.2a): The CC, while it is executing (state Busy),
may execute a blocking call to one of its servers. If the Client Stub receives a
blocking call for an i-function f , it maps that to output fblk and transitions to
Blocked. A blocking call is a non-void g-function ([v2 := ⊥]). In Blocked the SUL
is blocked while waiting until it receives rok or rnok as input. It then returns from
the blocking call back to the CC, with return value 0 (for rok ) or 1 (for rnok ), and
transitions back to Busy.

(ii) Request/wait call (Figures 2.2b / 2.2c): Similar to blocking calls, the
CC may perform request/wait calls (freq and fwait), going from Busy to Blocked
and back (rok or rnok ).
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(iii) FCN call (Figure 2.2d): The CC may also invoke an FCN call (ffcn),
going from Busy to Blocked and back (rok or rnok ). nfcn

f is incremented by one
([nfcn

f ++]) to indicate the FCN callback corresponding to this FCN call has not
yet been handled. At a later time, when the SUL is Idle, it may handle the FCN
callback, i.e., fcbok in case of success or fcbnok upon failure of the FCN call. An
FCN callback is a void g-function ([v1 := >]), and nfcn

f is then decreased by one
([nfcn

f - -]). For any i-function f , the protocol restricts the number of concurrently
outstanding FCN calls (nfcn

f ) to at most mfcn
f . Its callback (fcbok or fcbnok ) is only

possible if there is an outstanding FCN call (guard ‘nfcn
f > 0→’). For simplicity,

we ignore the use of FCN call timeouts.
(v) Asynchronous handler (Figures 2.2f / 2.2g): Similar to synchronous

handlers, the SUL may asynchronously handle calls from its clients (fasync). Such
handlers are void g-functions ([v1 := >]). The CC may, during that handler
or at any later time that it is Busy, invoke an asynchronous result g-function
for this asynchronous handler (farok or farnok ), which returns rvoid . Variable 0 ≤
nasync
f ≤ masync

f keep track of and restricts the number of concurrently outstanding
asynchronous handler calls for i-function f .

(vi) Trigger (Figure 2.2h): While Busy, the SUL can trigger a server (tcall),
returning void ([v2 := >]). While Idle, the SUL can handle a trigger from a client
(th), also returning void ([v1 := >]).

(vii) Event (Figures 2.2i – 2.2k): While Busy, a SUL may subscribe to an
event of a server (esub), after which it is subscribed ([se := >]). It can only do
so if not yet subscribed to that event of that server (¬se →). Similarly, it may
unsubscribe (eun) if already subscribed (se →) and is then no longer subscribed
([se := ⊥]). While Idle and subscribed (se →), it may process event callbacks
(ecb). Reversely, acting as a server to its clients, it may execute event (un)sub-
scription handlers (esubh and eunh) while Idle, and raise events (eraise) while Busy.
For simplicity, we ignore the rare use of re-subscriptions.

States Idle, Busy and Blocked, and the transitions between them, support all
7 communication patterns, i.e., allow the interaction patterns modeled as MSCs
in Figure 2.2. Next, we explain how the protocol satisfies its responsibilities.

(a) Input-enabled: Some inputs are impossible in certain input states. For
instance, a th input is possible in state Idle, but not in state Blocked. Also, fcbok is
only allowed in Idle if nfcn

f > 0 holds. For all impossible inputs in input states, the
interfacing protocol transitions to a sink state, where it keeps producing rejected
outputs. That is, for invalid inputs it goes to the SinkOut output state. There
it produces output rejected , goes to input sink state SinkIn, where it accepts
any input, goes to SinkOut, produces rejected as output, etc. This turns a non-
input-enabled CC into an input-enabled SUL, while preserving all its original
externally-observable communication behavior.

(b) Single input, single output: Each of the five protocol states is either
an input state (dark gray) or output state (light gray). Input states have only
outgoing transitions for inputs, and output states only for outputs. Transitions
for inputs go to output states, while output transitions lead to input states. It
intuitively matches the duality of g-function call starts and their returns. If the
CC crashes in state Busy, the protocol produces a single crash output symbol and
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goes to SinkIn. This way the protocol ensures that each input is followed by a
single output, and that they alternate. It also remains input-enabled, and still
supports all communication patterns to allow inferring the full CC behavior.

(c) Finite learning result: To ensure that the SUL represents a finite Mealy
machine, certain interactions can be limited. For instance, masync

f limits the num-
ber of concurrently outstanding asynchronous handlers for i-function f . Starting
with masync

f = ∞, intermediate hypotheses may reveal it is necessary to restrict
masync

f . This ensures a finite SUL and learning result at the expense of potentially
missing some component behavior. The protocol restricts both inputs (e.g., fasync)
and outputs (e.g., farok ), redirecting them to sink states. The protocol in Figure 2.3
limits only outstanding FCN calls and asynchronous handlers. Theoretically, sim-
ilar issues could arise for other communication patterns. These can similarly be
restricted, but this has been omitted here, to keep the protocol simpler and be-
cause they rarely need to be restricted in practice. In particular, request/wait calls
are not restricted as they involve only outputs, not inputs, and the company’s soft-
ware architecture rule book, to which all its software must adhere, already allows
at most one concurrently outstanding request per i-function f .

The complete behavior of a CC can be learned, if it is finitely representable
as a Mealy machine, by setting all interaction limits to ∞. Otherwise, by setting
interaction limits, a subset of the CC behavior can be queried, and we lose the
guarantee that the SUL’s complete behavior can be learned. We do not provide a
formal proof of the correctness of our approach, leaving this as future work.

2.3.5 Interfacing protocol optimization
In the interfacing protocol (Figure 2.3) the CC may, while Busy, raise an event
(eraise). It is then Blocked until the event raise g-function returns (rvoid). The
part from Figure 2.3 related to raising events is shown in Figure 2.4a. While in
state Blocked only one input (rvoid) is allowed, the learner will try out all inputs,
only to find out all of them get rejected, except for rvoid . This holds any time an
event is raised by the CC.

This can be optimized as shown in Figure 2.4b. Here the output (eraise) and
subsequent input (rvoid) are combined into a single transition. To preserve the
single input, single output property of the interface protocol, the eraise , rvoid tran-
sition from output state Busy is considered an ‘extra output’. Upon executing
such a self-loop, the protocol stores the extra outputs until the next ‘real’ output.
It then prefixes the ‘real’ output with the extra outputs, in the order they were
produced. The mapper, being part of the protocol, maps each of them to a string
and combines them to form a single output. For instance, for two consecutive

Busy Blocked
eraise [v2 := >]

v2 → rvoid

(a) Non-optimized

Busy
eraise , rvoid

(b) Optimized

Figure 2.4: Optimization of the interfacing protocol, for raising an event.
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Mealy transitions i/eraise and rvoid/o, with i some input and o some output, the
optimized result would be a single Mealy transition i/eraise , rvoid , o.

To reverse the optimization after learning, the Mealy transition in the learned
model can be split up into multiple Mealy transitions: i/eraise and rvoid/o, with
an intermediate state in between. From the intermediate state, all other inputs
are rejected and go to the sink state. The learning result is then the same as it
would have been without the optimization.

All void g-function outputs from Busy to Blocked allow for this optimization,
i.e., farok , farnok , tcall , and eraise .

2.4 Application
We apply our approach to infer the behavior of two ASML software components:
a high-level wafer exposure controller (we name it WEC), and a metrology driver
(MD). However, these case studies are not a main contribution of our work, but
rather examples to show the feasibility of applying our framework in practice,
and to discuss the practicalities that it involves. Therefore, and for reasons of
confidentiality, we do not describe them in more detail.

For each component, the AAL framework from Figure 2.1 needs to be instan-
tiated. The following steps were involved:

1. Framework generation: For the component of interest, its interfaces
must be identified, and their relevant code (g-functions) collected to use as CC.
The company’s proprietary generator takes IDL files with interface methods and
automatically generates g-functions. We extended it to generate the Main func-
tion, dispatchers and stubs, including code to implement the interfacing protocol
and mappers. The three I/O modules are hand-written and reusable. The SUL’s
I/O module includes its main function, which establishes a socket connection with
the SUL Manager and waits for inputs to dispatch. While any AAL tool can be
used, we opt for the mature AAL tool LearnLib [70], making our AAL process
Java-based. The SUL Manager and SUL, including the CC, are C-based.

2. Initialization: We manually add initialization code to the SUL’s new main
function, reusing code from the component’s original main function. The new main
function replaces the original main function.

3. Function parameters: WEC and MD are control components. They
pass function call parameter values along, rather than them being used for control
decisions (e.g., if statement conditions). We therefore mostly ignore function
call parameters, rather than learning register automata. Our generator generates
default values for function call arguments (0 for int, NULL for pointers, etc). This
may be insufficient, e.g., when the CC tries to pass along a field of a NULL-valued
argument for a struct-typed parameter. It was an iterative process to manually
adapt these values, where the CC and existing test code served as inspiration.

4. Interaction limits: Based on expert knowledge of WEC and MD, we set
both interfacing protocol interaction limits: masync

f = 1 and mfcn
f = 1. Using this

low value reduces the size of the SUL’s unknown behavior model, for better AAL
performance.
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5. SUL compilation: We adapt the component’s build scripts, excluding
any irrelevant code, e.g., its original main function and serialization wrappers, and
including the new dispatchers, stubs, and I/O module, before compiling the SUL.

6. SUL Manager compilation: We configure the SUL pool size to 100, as
higher did not help on our platform. We then compile the SUL Manager using its
generated build script.

7. Learner and EO: Our generated Main Java class is by default configured
to use TTT [71] as Learner and Wp [47] as EO. To guarantee learning a complete
model, Wp requires n, the number of states of the SUL’s unknown behavior model.
As we don’t know n, we use Wp-incremental, where we guess n (or just start at
0), and iteratively increase the value if needed [12]. Caching is also enabled by
default.

8. Input alphabet: The generated Main class by default configures the
complete input alphabet as derived from the IDL files. It can be reduced to only
learn a part of the component’s behavior. Considering all provided (to clients) and
required (to servers) interfaces, WEC has 591 inputs. It implements 25 distinct
workflows. We select five of them, of various complexities, and learn them, includ-
ing their prerequisite other workflows. For component MD, we keep the complete
alphabet with 25 inputs.

9. AAL process compilation: We compile the AAL process executable.
10. Perform AAL: Finally, we execute the AAL process executable to learn

models, repeating earlier steps in case of required changes, e.g., after adapting
function call arguments or protocol interaction limits.

Each experiment was executed for 24 hours. For WEC, a dedicated system
with 24 CPU cores (Intel Xeon Gold 6126) and 64 GB memory was used. For
MD, a readily-available virtualized platform with shared resources was used.

We consider the learning/testing rounds up to and including the last learning
round that produced the largest hypothesis, and omit subsequent testing that did
not find any more counterexamples. Table 2.2 shows for each (sub-)component
(C) the number of inputs (I), the Wp EO n value (Wp-n), the number of Mealy
machine states in the model we learned (M-n), the number of equivalence queries
(EQs), the number of membership queries (MQs) and membership symbols (MSs),
the number of test queries (TQs) and test symbols (TSs), both to the cache (/C)
and to the SUL (/S), and the total time in seconds (T).

WEC-1 and WEC-2 are small workflows, without prerequisites. Their largest
hypotheses are produced within a few seconds, and no new behavior was found
during the many remaining hours of AAL execution. Manual inspection of the
component code leads us to conclude they have been learned completely.

WEC-3, WEC-4 and WEC-5 have other workflows as prerequisites. Their
largest hypotheses are produced within a few hours. However, they do not accept
traces that we manually constructed based on their source code. The traces have
86, 100 and 101 inputs, respectively. Learning thus did not yet find all their
behavior. This is to be expected though, given that it is hard for black-box
testing to find the exact (combination of) prerequisite sequences to test out of all
possible test sequences. And even more so considering that we test breadth-first
by incrementally increasing the n value of the Wp EO.
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C WEC-1 WEC-2 WEC-3 WEC-4 WEC-5 MD
I 2 6 25 26 30 25
Wp-n 46 17 66 39 66 916
M-n 50 23 71 55 71 917
EQs 5 4 13 8 13 544
MQs/C 538 967 8,876 7,685 10,644 98,635
MQs/S 52 129 1,462 1,281 1,779 38,300
MSs/C 12,554 12,015 143,335 112,681 171,851 2,122,205
MSs/S 1,015 1,490 23,020 18,266 28,072 854,765
TQs/C 1.59×107 1,435 1.67×109 6.57×109 4.13×109 9.80×107

TQs/S 43 3 5,543 3,048 22,689 196,686
TSs/C 4.91×108 14,074 3.08×1010 1.06×1011 7.65×1010 2.00×109

TSs/S 1,399 36 88,398 41,046 372,376 4,262,369
T 23 5 2,171 7,569 5,870 62,604

Table 2.2: Case study metrics, per (sub-)component.

For component MD in total 544 hypotheses are constructed in about 17.4
hours. The last hypothesis accepts our manually constructed trace. Acceptance
of this trace, and no further counterexample being found for the remaining 6.6
hours, gives us some confidence that we might have found the complete behavior,
although we do not have any evidence that we indeed found all behavior.

The learned models can be used for various purposes [13]. Here, our goal is
to facilitate a cost-effective transition to MDE, concretely to Verum’s commer-
cial ASD Suite1, which is based on their patented ASD technology [28], and is
used by ASML as MDE tooling2. To exemplify this, Figure 2.5a shows WEC-
2 (abbreviated to W ) and part of its anonymized context. Figure 2.5b shows a
part of the anonymized learned Mealy machine of WEC-2. The sink state and
its incoming and outgoing transitions are purposely omitted. Figure 2.5c shows
the result of manual conversion of the Mealy machine to a partial ASD design
model. The conversion is straightforward: Mealy machine states and transitions
correspond one-on-one to states and transitions in the ASD model, where inputs
become triggers and outputs become actions. For simplicity, we ignore function
parameters. ASD requires for each control component both an interface model
and a design model. An interface model can be automatically obtained from the
AAL result [13], and then similarly converted to an ASD interface model. From
the ASD models, new component code can be automatically generated using the
ASD Suite. This can then replace the existing CC. All that remains is to up-
date the glue code as needed, and to include the ASD runtime for compilation.
If a complete Mealy machine of the CC was learned, the newly generated code is
then a drop-in replacement, its externally-visible communication behavior being
identical to that of (the learned model of) CC.

1See https://verum.com/asd.
2The company has since moved to a different but similar MDE tooling solution, which does

not affect our approach.
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W

W start
async rvoid W start

arok W started
raise

Aset
blk

rok Aload
blk

rok Bstart
fcn rok Bstart

cbok
rvoid

(a) W and some of its communications with its context.

I B B B B

BIBBB

W start
async/Aset

blk rok/. . . (10 transitions) . . . /Bstart
fcn

rok/. . .

. . . /rvoidBstart
cbok

/Aload
blk

rok/. . .(4 transitions)

. . . /W started
raise ,W start

arok
,rvoid

(b) Mealy machine representing a partial learning result. Mealy machine states are
labelled with interfacing protocol states: I=Idle, Y =Busy, B=Blocked.

(c) Screenshot of a partial ASD design model in ASD Suite. Irrelevant rows are hidden.

Figure 2.5: Partial example of converting learning results to ASD, for WEC-
2 (abbreviated ‘W ’). Naming scheme: W start

async is an asynchronous handler for
function start of W .
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2.5 Conclusions and future work
In this chapter, we describe a general AAL framework to learn the external commu-
nication behavior of software components with a client-server architecture, filling
a practical gap when applying AAL to such components. Our framework includes
an interfacing protocol, which ensures that the SUL satisfies various practical pre-
conditions of AAL, even if the isolated component code does not satisfy them. It
is future work to infer pushdown automata to prevent having to use interaction
limits to ensure finite learning results.

Our main contribution is the systematic way in which we derive the protocol,
handling the different types of (a)synchronous communications. We derive, as an
example, such a protocol specifically for ASML’s software architecture. However,
we rely on generic concepts, e.g., function calls and returns, requests and replies,
synchronous vs asynchronous calls, and MSCs, that apply to communication pat-
terns of component-based software in general. We therefore expect that our work
can be used to similarly derive such protocols and set up learning frameworks at
companies with similar software architectures.

We show the feasibility of our approach by applying it to infer the behavior
of several ASML (sub-)components. We believe that company engineers should
be able to similarly apply our framework, given only a document with detailed
instructions, which is future work.

Using generators we automate most of the work to set up an AAL environment.
Still, this takes up to a few hours per (sub-)component. It is especially time-
consuming to provide sensible function call arguments, to ensure that the SUL
does not crash and thus exhibits relevant behavior. It is future work to automate
this using white-box techniques, and to infer register automata for components
with argument-dependent behavior.

Furthermore, scalability remains a major challenge. Even after hundreds of
billions of test symbols, the complete behavior was not learned for some sub-
components. There are various techniques that can improve active learning per-
formance, including checkpointing, incremental equivalence queries [66], white-box
approaches [68] and incorporating available traces [130]. Integrating them into our
framework is also future work.

Still, for some (sub-)components we learned the complete behavior well within
a day. This can significantly reduce the time to obtain a model of their behav-
ior, compared to modeling them in a completely manual way. It is future work
to automate the conversion to ASD, and further investigate the qualitative and
quantitative advantages of our approach compared to manual modeling.
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CMI: State machine learning
for component-based
software

Model-based software engineering has been shown to be able to cope with the
increasing complexity of software [5]. However, for most software, especially legacy
software, no models exist and constructing models manually is laborious and error-
prone. This is especially the case for models that capture the behavior of the
software, for instance the order of function calls and returns.

A solution is to infer the models automatically from software execution logs,
observations of the system behavior. Model inference has been studied in the
fields of model learning [60] and process mining [1]. Both encompass a vast body
of research, and do not focus specifically on software systems. Still, the techniques
have been applied to software components in general [2, 59, 113], and specifically
to legacy components [21, 83, 111].

There are known fundamental limitations to the capabilities of model inference:
Mark Gold proved that accurately generalizing a model beyond observations (logs)
is impossible based on observations alone [51]. Accurate learning from logs requires
additional information, such as for instance counter examples, i.e., program runs
that can never be executed. In practice, heuristics are used, for instance based on
the input observations (e.g., considering only the last n events [60]) or the resulting
model (e.g., limiting the number of resulting states [16]). These heuristics may
then be hard to configure properly for engineers in industry. They are often not so
familiar with the details of the approaches, and therefore find it difficult to gauge
the impact of the heuristics on the learning result, especially for heuristics that do
not directly relate to system properties.

Alternative to using counter examples, active automata learning queries (parts
of) the system [11] (see Chapter 2). It guarantees – under certain assumptions –
that the inferred models exactly match the behavior of the software implementa-
tion. But it suffers from scalability issues [13, 68, 130], limiting the learned models
to a few thousand states at most.

We aim to infer models for large industrial systems. We therefore introduce
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a novel state machine learning algorithm, Constructive Model Inference (CMI),
which learns models from software execution logs, interpreting them using knowl-
edge of the software architecture, its deployment, and other characteristics. It does
not rely on queries or counter examples, and has no hard-to-configure heuristics.

We instead inject our knowledge of the system’s component structure, and the
services each component provides, which it can implement by invoking services
provided by other components. After a component executes a service, it returns
a response and is ready to again provide its services. This knowledge of the
components and their services is essential to cope with the complexity of the
industrial systems we deal with. The CMI approach allows us to learn multi-
level models that are small enough for engineers to interpret, while capturing the
complex system behavior of actual software systems. We apply CMI to dozens of
components from ASML’s TWINSCAN system. The components have a combined
state space that is too large to interpret (i.e., 1010 states and beyond). To the
best of our knowledge no similar approach exists.

To demonstrate that our CMI approach is adequate, we show that if a compo-
nent-based software architecture satisfies our assumptions, CMI returns correct
results, both in settings with synchronous and asynchronous communication be-
tween the concurrent components. Inferred models are correct if they accept at
least the input observations, and generalize beyond those observations, but do
not over-generalize beyond the behavior of the actual system. The latter is es-
pecially important, as models with behavior that the system can never exhibit
decrease the trust of engineers in the models. The CMI approach prevents such
over-generalization by only generalizing based on knowledge of the system, so only
when it is justified. Additionally, a correct model inference approach should ensure
that using additional observations only leads to models with more behavior, never
less behavior.

While the actual software largely adheres to our structural and behavioral
assumptions, there are however parts that do not. We deal with this by analyzing
the learned models, e.g., by searching for deadlocks. Part of the CMI approach
is a systematic method to add additional knowledge, to exclude from the models
any behavior known to not be exhibited by the system.

Inspection of the learned models by experts led to the judgment that the models
are very adequate, and provide them the software behavior abstractions that they
currently lack [132]. Learning larger models is limited not by the software size,
but by the capability of both engineers and computers to analyze those models.

We first present an overview of the approach in Section 3.1, and recall basic
definitions in Section 3.2. We then describe and analyze the CMI approach, our
main contribution, for synchronously and asynchronously composed component-
based systems, in Sections 3.3 and 3.4, respectively. Finally, we outline a method
to apply the approach, using a case study at ASML as an example, in Section 3.5,
and draw conclusions in Section 3.6.

3.1 Constructive Model Inference overview
We present a high-level outline of the CMI approach before discussing the detailed
steps in the following sections. Figure 3.1 illustrates the overall approach and the
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steps involved. The left column shows the assumed system architecture. A system
(S) consists of a known set of components (C1, C2, C3) that collaborate, com-
municate and use each other’s services through function calls. Different functions
may for instance represent requests to other components, responses from other
components, or handlers to handle requests or responses. A component, in turn,
consists of the services it offers (F1, F2). We refer to different functions in the
component’s implementation that together implement a service (F1,1, F1,2, F1,3)
as service fragments. They handle incoming communications, e.g., client requests
and server responses. We use this architecture to decompose observations, down-
wards in the middle column, and compose models, upwards in the right column,
to reconstruct the system behavior.

The behavior of a system is the order in which the various communications can
occur, and thus the order in which the corresponding functions can be called. The
CMI approach requires observing the system behavior during one or more execu-
tions (Preparation). The resulting runtime observations in the form of execution
logs, consisting of events, are the input to our approach. Each event represents
the start or end of a function call. An observation is thus a possible order in which
the events of the system can occur, as observed during an execution.

Using knowledge of the system architecture, the observations are first decom-
posed into observations pertaining to individual components (Step 1). Assuming
that the beginning and the end of each service fragment can be identified, we
decompose observations further into observations of individual service fragments
(Step 2). Then, we infer finite state automata models of service fragments from
their observations (Step 3), assuming that offered services may be repeatedly re-
quested, and executed from start to end. A service fragment model captures the
behavior of a service fragment, the possible orders in which a handler function may
communicate with other components. The service fragment models are combined
to form component models (Step 4), where each component repeatedly executes
its services, non-preemptively, one at a time. A component model captures the
behavior of a service fragment, the possible orders in which the different handler
functions may be called, and how these handler functions then may communicate
with other components. These component models are put in parallel to form a
model that captures the system behavior (Step 6).

The learned system model may exhibit behavior that the real system does not,
e.g., due to missing dependencies between service fragments. The CMI approach
provides for optional refinement (Step 5), whereby behavioral constraints derived
from the software architecture and expert knowledge can be added to the com-
ponent models, in a generic and structured way. Injecting such behavior allows
turning stateless services into stateful ones, removing non-system behavior from
the models.

The composition in Step 6 can be performed in various ways, depending on
assumptions about the way the system is composed of components, i.e., either
synchronously or asynchronously, with varying buffering and scheduling policies.
In Figure 3.1, this is visualized as the composition of component models with
explicit buffer models (B1, B2).

The approach is fully automated, except for optional step 5. Step 5 requires
user-provided input, but is otherwise automated as well.
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3.1.1 Running example
Figure 3.2 shows two examples of observations of the behavior of a component-
based system. The horizontal axis represents passage of time, from left to right.
The system consists of three components, C1, C2, and C3, shown on the vertical
axis. In Figure 3.2a, component C1 receives an incoming request reqf from the
environment, and in response executes its service fragment (function) f , illustrated
by the horizontal bar, ultimately leading to a reply repf . During the execution
of function f , component C1 executes function g and component C3 handles it.
This involves a remote procedure call (arrow in the figure), with request reqg being
sent to component C3, and after C3 has executed function g, its reply repg being
received by C1. C1 similarly calls h on component C2. After C1 becomes idle
again, a second request reqz is received, and handled in service fragment z, leading
to a reply repz, this time without involving other components.

In the figure, the stacked bars for each component represent call stacks of nested
function calls. The bottom bars represent service fragment function executions.
Complete call stacks are visualized in the figure by enclosing them in blue dashed
rectangles. From the start of a service fragment’s call stack, until its end where it
is idle again, this represents a single observation of its behavior.

Figure 3.2b shows a different observation of the system, where request reqf
is handled asynchronously. Again, services from components C3 and C2 are re-
quested, but now the system does not wait for their replies. Instead, it completes
service fragment f and proceeds to handle request reqz. When the responses from
the other components come in (reph and repg), it handles these in separate service
fragments (hr and gr). Having received both responses, it sends reply repf as part
of the last service fragment, by a call to function fr. Here service fragments f, hr
and gr together implement a service of C1, offered via reqf .

Such system behaviors can be observed in the form of an execution log, se-
quences of events in the order in which they occurred in the system. Each start
and end of a function execution (bars in Figure 3.2) has an associated event. We
identify an event by its executing component, the related function, and whether
it represents the start (↑) or the completion (↓) of its execution. E.g., event f↑

C1
,

abbreviated to f↑
1 , denotes the start of function f on component C1. For instance,

for the synchronous function call of function g from component C1, being handled

C1 f
g h

z

C2 h

C3 g

reqf repf

reqg

repg reqh reph

reqz repz

(a)

C1 f
g h

z hr gr
fr

C2 h

C3 g

reqf repf

reqg
reph

reqh repg

reqz repz

(b)

Figure 3.2: Observations showing client request reqf being handled by component
C1 through calls g and h to its servers, (a) synchronously and (b) asynchronously.
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C1 f
g h

z hr gr
fr

C2 h

C3 g

reqf repf

reqg
reph

reqh repg

reqz repz

(a) w1

C1 f
h g

zhr gr
fr

C2 h

C3 g

reqf repf

reqg reph
reqh repg

reqz repz

(b) w2

Figure 3.3: Observations for the running example.

by component C3, as shown in Figure 3.2a, there are thus four events: g↑1 and
g↓1 for the start and end of the function call on C1, and g↑3 and g↓3 for the start
and end of the handler function on C3. The g call on C1 through g↑1 leads to the
handler for g starting to execute on C2, as represented by g↑3 . Once the execution
of g finishes on C2, represented by g↓3 , this leads to the call on C1 ending as well,
represented by g↓1 . Where appropriate, we identify service fragments by their start
events, e.g., f↑

1 , z↑1 , hr↑1 , gr↑1 , h↑
2, and g↑3 , for the service fragments of Figure 3.2b.

Our running example has two observations, w1 and w2. The first one, w1, is
the behavior from Figure 3.2b, which for convenience is repeated in Figure 3.3a.
w1 consists of the start and end events of each function execution (the grey bars
in the figure), in the order that they occurred in time. That is:

w1 = 〈f↑
1 , g

↑
1 , g

↑
3 , g

↓
1 , h

↑
1, h

↑
2, h

↓
1, f

↓
1 , z

↑
1 , z

↓
1 , h

↓
2, hr

↑
1 , hr

↓
1 , g

↓
3 , gr

↑
1 , fr

↑
1 , fr

↓
1 , gr

↓
1〉

The second one, w2, is shown in Figure 3.3b. w2 is a variation of w1, where
the calls to g and h are reversed, and z is handled last. That is:

w2 = 〈f↑
1 , h

↑
1, h

↑
2, h

↓
1, g

↑
1 , g

↑
3 , g

↓
1 , f

↓
1 , h

↓
2, hr

↑
1 , hr

↓
1 , g

↓
3 , gr

↑
1 , fr

↑
1 , fr

↓
1 , gr

↓
1 , z

↑
1 , z

↓
1〉

3.2 Preliminary definitions
This section introduces basic definitions that we build upon to place our CMI
approach in a framework based on finite state automata and regular languages [32,
65, 108].

3.2.1 Finite state automata
Let Σ be a finite set of symbols or events, called an alphabet. A word (or string)
w over Σ is a finite concatenation of events from Σ. Given a word w, we denote
its length as |w|, and its ith event as wi. If words u and v are such that uv = w,
then uv is a concatenation, u is a prefix of w, and v is a suffix of w.

The Kleene star closure of Σ, Σ∗, is the set of all finite words over Σ, including
the empty word denoted as ε. The Kleene plus closure of Σ is defined as Σ+ =
Σ∗ \ {ε}. A language over Σ is a subset of Σ∗. Given two languages K, L over the
same alphabet, concatenation language KL is {uv | u ∈ K, v ∈ L}. The repetition
of a language L is recursively defined to be L0 = {ε}, Li+1 = LiL. Similarly, we
define the repetition of a word w: w0 = ε, wi+1 = wiw. The Kleene star and plus
closures of L are defined as L∗ =

⋃∞
n=0 L

n and L+ =
⋃∞

n=1 L
n, respectively.
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We represent inferred models using state machines, namely as DFAs:

Definition 3.1 (DFA). A deterministic finite automaton (DFA) A is a 5-tuple
A = (Q,Σ, δ, q0, F ), with Q a finite set of states, Σ a finite alphabet, δ : Q×Σ ↪→ Q
the partial transition function, q0 ∈ Q the initial state and F ⊆ Q a set of accepting
states.

The transition function is extended to words such that δ : Q × Σ∗ ↪→ Q, by
inductively defining δ(q, ε) = q and δ(q, wa) = δ(δ(q, w), a), for w ∈ Σ∗, a ∈ Σ.
DFA A = (Q,Σ, δ, q0, F ) accepts word w iff state δ(q0, w) ∈ F . If w is not accepted
by A, it is rejected. Set L(A) = {w ∈ Σ∗ | A accepts w} is the language of A.

A DFA is minimal iff every state q ∈ Q is reachable, i.e. there is a w ∈ Σ∗ such
that δ(q, w) is defined, and every two states p, q ∈ Q (p 6= q) can be distinguished,
i.e. there is a w ∈ Σ∗ such that δ(p, w) ∈ F and δ(q, w) /∈ F , or vice versa.

Given a finite set of words W ⊆ Σ∗, a Prefix Tree Automaton PTA(W ) is a
tree-structured DFA with L(PTA(W )) = W , where common prefixes of W share
their states and transitions. As a PTA is tree-structured, it is also acyclic.

Given two DFAs A1, A2 we define operations on DFAs with notations that
reflect the effect on their resulting languages, i.e., A1 ∩ A2, A1 ∪ A2, and A1 \ A2

result in DFAs with languages L(A1) ∩ L(A2), L(A1) ∪ L(A2), and L(A1) \ L(A2),
respectively. In addition, we define synchronous composition:

Definition 3.2 (Synchronous composition). Given two DFAs A1 = (Q1,Σ1, δ1,
q0,1, F1) and A2 = (Q2,Σ2, δ2, q0,2, F2), their synchronous composition, denoted
A1‖A2, is the DFA:

A = (Q1 ×Q2,Σ1 ∪ Σ2, δ, (q0,1, q0,2), F1 × F2),

with δ((q1, q2), a) defined as:
(δ1(q1, a), δ2(q2, a)) if δ1(q1, a), δ2(q2, a) are defined,
(δ1(q1, a), q2) if δ1(q1, a) is defined, and a /∈ Σ2,
(q1, δ2(q2, a)) if δ2(q2, a) is defined, and a /∈ Σ1,
undefined otherwise.

Two DFAs A1 and A2 are language equivalent, A1 ⇔L A2, iff L(A1) = L(A2).
Under language equivalence, each of the operators � ∈ {‖,∪,∩} is both commuta-
tive and associative, i.e., A1 �A2 ⇔L A2 �A1 and (A1 �A2)�A3 ⇔L A1 � (A2 �A3).

To reason about components of a synchronous composition, we define word
projection:

Definition 3.3 (Word projection). Given a word w over alphabet Σ, and a target
alphabet Σ′, we define the projection πΣ′(w) : Σ∗ → Σ′∗ inductively as:

πΣ′(w) =


ε if w = ε,

πΣ′(v) if w = va with v ∈ Σ∗, a 6∈ Σ′,

πΣ′(v)a if w = va with v ∈ Σ∗, a ∈ Σ′.

This definition is lifted to sets of words: πΣ′(L) = {πΣ′(w) | w ∈ L}.
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With word projection, we define synchronization of languages, which is com-
mutative and associative:

Definition 3.4 (Synchronization). Given two languages L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2,
the synchronization of L1 and L2 is the language L1 ‖L2 over Σ = Σ1 ∪ Σ2 such
that for all w ∈ Σ∗:

w ∈ (L1 ‖L2)⇔ πΣ1(w) ∈ L1 ∧ πΣ2(w) ∈ L2.

From the definitions we derive:

Proposition 3.1. Given two DFAs A1 and A2, their synchronous composition is
homomorphic with the synchronization of their languages:

L(A1 ‖A2) = L(A1) ‖L(A2).

Corollary 3.2. Given three DFAs A, A1, and A2, over alphabets Σ, Σ1, and Σ2,
respectively, such that A = A1 ‖ A2 and Σ = Σ1 ∪ Σ2, then for all w ∈ Σ∗:

w ∈ L(A)⇔ πΣ1
(w) ∈ L(A1) ∧ πΣ2

(w) ∈ L(A2).

3.2.2 Formalizing concurrent behavior
To represent concurrent behavior, we briefly introduce Mazurkiewicz Trace the-
ory [90]. Intuitively, events that occur in the alphabets of multiple automata
synchronize in the synchronous composition (are dependent), while, e.g., internal
non-communicating events and communications involving different components
interleave (are independent), and can thus be reordered or commuted.

Formally, let dependency D ⊆ ΣD ×ΣD be a symmetric reflexive relation over
dependency alphabet ΣD. Inversely, relation ID = (ΣD × ΣD) \D is the indepen-
dency induced by D. The commutation of events is captured by binary relation
∼D, with u ∼D v iff there are x, y ∈ Σ∗

D and (a, b) ∈ ID such that u = xaby and
v = xbay. Mazurkiewicz trace equivalence for D, denoted as ≡D, is the reflexive
transitive closure of ∼D, i.e., u ≡D v iff there exists a sequence (w0, . . . , wn) such
that w0 = u, wn = v and wi ∼D wi+1 for 0 ≤ i < n. Mazurkiewicz trace equiva-
lence for D can alternatively be defined as the least congruence ≡D in the monoid
Σ∗

D such that for all a, b ∈ ΣD: (a, b) ∈ ID ⇒ ab ≡D ba, i.e., the smallest equiv-
alence relation that, in addition to the above, is preserved under concatenation:
u1 ≡D u2 ∧ v1 ≡D v2 ⇒ u1v1 ≡D u2v2.

Equivalence classes over ≡D are called traces. A trace [w]D for a word w is the
set of words equivalent to w under D, i.e., all commutations of w under D. This
definition is lifted to languages: [L]D = {[w]D | w ∈ L}. We drop subscript D if
it is clear from the context. Language iteration is extended to traces by defining
concatenation of [u]D, [v]D ∈ [Σ∗

D]D as [u]D[v]D = [uv]D, with [u]D a prefix of
[uv]D, and [v]D a suffix of [uv]D.

Given a set T of traces, linT is the linearization of T , i.e., the set {w ∈
Σ∗

D | [w]D ∈ T}. For any string language L, if L = lin[L]D then L is consistent
with D, as opposed to when L ⊂ lin[L]D. A consistent language thus has all the
commutations allowed by D. If the language L(A) of automaton A is consistent
with D, A has trace language T (A) = [L(A)]D, i.e., L(A) = lin[L(A)]D.
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As an example, consider ΣD = {a, b, c} and D = {a, b}2 ∪ {a, c}2 = {(a, a),
(a, b), (a, c), (b, a), (b, b), (c, a), (c, c)}. As b and c can then occur independently,
ID = {(b, c), (c, b)}. Word abbca is part of trace [abbca]D = {abbca, abcba, acbba},
which confirms that commuting b and c results in the same trace.

We rely on an additional result from Mazurkiewicz [90]:

Proposition 3.3. Given dependency D and words u, v ∈ Σ∗
D, then for any alpha-

bet Σ, we have: u ≡D v ⇒ πΣ(u) ≡D πΣ(v).

3.2.3 Asynchronous compositions
In addition to synchronous composition, we introduce asynchronous composi-
tion [6, 24]. This makes use of explicit buffers to pass messages from a sender
to a receiver. For an asynchronous composition of DFAs A1, . . . , An, we assume
component Ai, 1 ≤ i ≤ n, has alphabet Σi, partitioned in sending event, receiving
events, and internal events, Σ!

i, Σ?
i , and Στ

i , respectively. Sending events are at the
start of a communication, receiving events are at the end of a communication, and
all other events are internal events. For instance, in Figure 3.3a, g↑1 is a sending
event, g↓3 a receiving event, and g↓1 an internal event. Each message has a unique
sender and receiver, Σ!

i ∩ Σ!
j = ∅ and Σ?

i ∩ Σ?
j = ∅, for i 6= j. The receiver is

assumed to exist, and to be different from the sender, a ∈ Σ!
i ⇒ ∃j 6=i : a ∈ Σ?

j .
Finally, we assume internal events are unique to a component, Στ

i ∩Σj = ∅, i 6= j.
We denote an alphabet under these assumptions as Σ!,?,τ

i .
The components communicate via buffers. A buffer is denoted as Bi. It rep-

resents, e.g., a FIFO buffer or a bag buffer. FIFO buffers are modeled as a list
of events over Σ?

i , with ε the empty buffer, where messages are added to the tail
of the list and consumed from the head of the list. We define the asynchronous
composition using (for now unbounded) FIFO input buffers as follows:

Definition 3.5. Consider n DFAs A1, . . . , An, with Ai = (Qi,Σ
!,?,τ
i , δi, q0,i, Fi),

1 ≤ i ≤ n. The asynchronous composition A of A1, . . . , An using FIFO buffers
Bi, . . . , Bn, denoted A = ‖ni=1(Ai ‖Bi), is given as the (typically infinite) DFA:

A = (Q,Σ, δ, (q0,1, ε, . . . , q0,n, ε), F1 × · · · × Fn)

with Q = Q1 × (Σ?
1)

∗ × · · · × Qn × (Σ?
n)

∗, Σ =
⋃

i{a! | a ∈ Σ!
i} ∪

⋃
i{a? | a ∈

Σ?
i} ∪

⋃
i Σ

τ
i , and δ : Q × Σ ↪→ Q such that for q = (q1, b1, . . . , qn, bn) ∈ Q and

q′ = (q′1, b
′
1, . . . , q

′
n, b

′
n) ∈ Q we have:

(send) δ(q, a!) = q′ if ∃i,j : (i) a ∈ Σ!
i ∩ Σ?

j , (ii) δi(qi, a) = q′i, (iii) b′j = bja,
(iv) ∀k 6=i q

′
k = qk, (v) ∀k 6=j b′k = bk.

(receive) δ(q, a?) = q′ if ∃i : (i) a ∈ Σ?
i , (ii) δi(qi, a) = q′i, (iii) bi = ab′i, (iv)

∀k 6=i q
′
k = qk, (v) ∀k 6=i b

′
k = bk.

(internal) δ(q, a) = q′ if ∃i : (i) a ∈ Στ
i , (ii) δi(qi, a) = q′i, (iii) ∀k 6=i q

′
k = qk, (iv)

∀k b′k = bk.

Bag buffers are defined as a multiset over Σ?
i . To use bags instead of FIFOs,

we change: ε to ∅ in the definition of A, list type to multiset type in the definition
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of Q, send rule clause (iii) to b′j = bj ∪ {a}, and receive rule clause (iii) to a ∈
bi ∧ b′i = bi − {a}.

With unbounded buffers, asynchronous compositions can have infinite state
spaces. When buffers are bounded, the buffer models can be represented by a
(finite) DFA [97], and hence the composition as well. We bound buffer Bi to k
places, denoted Bk

i , by adding requirement |bj | < k (such that |b′j | ≤ k) to the
send rule.

We do not discuss the construction of a DFAs for Bk
i , as it follows from the

definition above. Then, the synchronous composition of such constructed DFAs
Ai ‖Bk

i is equivalent to asynchronous composition Ai ‖Bk
i as in Definition 3.5, if

for synchronous composition we differentiate a! and a? to prevent synchronization
of communications to and from buffers, respectively.

The question whether there is a buffer capacity bound such that every accepted
word of the unbounded composition is also accepted by the bounded composition is
called boundedness and is generally undecidable [48]. However, if the asynchronous
composition is ‘deadlock free’, i.e., an accepting state can be reached from every
reachable state [81], then it is decidable for a given k whether the asynchronous
composition is bounded to k [48].

3.3 CMI for synchronous composition
Recall the CMI approach introduced in Section 3.1, and its overview in Figure 3.1.
We assume system execution observations are available (Preparation step). They
are decomposed following the system architecture (Steps 1 and 2). Models are then
inferred at the most detailed level, for service fragments (Step 3). Again following
the architecture, inferred models are composed to obtain models at various levels
of abstraction (Steps 4 – 6). In the previous sections we introduced the definitions
and results with which we can now describe our approach in detail.

In this section, we consider a system with a synchronous composition of compo-
nents. We later lift this restriction in Section 3.4, where we discuss asynchronous
compositions. Note that even though we for now only consider synchronous com-
position, components may still synchronously or asynchronously request services
of other components, being blocked or not blocked, respectively, while waiting for
the reply. Similarly, components may still synchronously or asynchronously han-
dle requests, either replying immediately or replying at a later time after handling
other requests in the mean time.

Formally, in this section, we assume the system under study is a DFA A =
(Q,Σ, δ, q0, F ), Σ consists of observable events, A is synchronously composed of n
component DFAs, A = A1 ‖ . . . ‖An, and observations W ⊆ L(A) are available to
infer an approximation A′ of A, with W 6= ∅. We use subscripts for component
and service fragment instances, e.g., C1 for the first component of a system, and
prime symbols for inferred instances, e.g., A′ for the inferred model for A.

3.3.1 Step 1: System decomposition
Informal description: We assume a fixed and known deployment of services on
components, such that we can project the observations onto each component.
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Formalization: We assume component alphabets Σi are known a-priori. W
is projected to πΣi(W ) for each component, 1 ≤ i ≤ n. Recall that we denote
events in Σ as fs

i , with f a function, Ci a component, and s ∈ {↑, ↓} denoting the
start or completion of a function execution, respectively. For instance, f↑

1 denotes
the start of function f on component C1. Hence, alphabet Σi for component Ci

contains the events with subscript i.
Example: Consider again the running example from Section 3.1, with W =

{w1, w2}. By projection on component C1, we get two projected words, i.e.,
πΣ1

(W ) = {〈f↑
1 , g↑1 , g↓1 , h↑

1, h↓
1, f↓

1 , z↑1 , z↓1 , hr↑1 , hr↓1 , gr↑1 , fr↑1 , fr↓1 , gr↓1〉, 〈f
↑
1 ,

h↑
1, h↓

1, g↑1 , g↓1 , f↓
1 , hr↑1 , hr↓1 , gr↑1 , fr↑1 , fr↓1 , gr↓1 , z↑1 , z↓1〉}. By projection on compo-

nent C2, we obtain twice the same projected word, i.e., πΣ2(W ) = {〈h↑
2, h↓

2〉}. By
projection on component C3, we also obtain twice the same projected word, i.e.,
πΣ3

(W ) = {〈g↑3 , g↓3〉}.

3.3.2 Step 2: Component decomposition
Informal description: We assume that:

• Components are sequential, e.g., corresponding to a single operating system
thread.

• Client requests (and server responses) can only be handled once the com-
ponent is idle, and prior requests are finished, i.e., service fragments are
executed non-preemptively.

• Events that start or end a service fragment can be distinguished.
• Components do not call the functions of their own interface, such that within

a service fragment there are only communications to other components.

These assumptions enable us to decompose component observations into service
fragment observations.

Formalization: A task or task word captures a possible execution behavior of
a service fragment:

Definition 3.6 (Task). Let Σ be a partitioned alphabet Σs,o,e = Σs ∪ Σo ∪ Σe,
with service fragment execution start events Σs, its corresponding end events Σe,
and other events Σo. Word w ∈ Σ∗ is a task on component Ci iff w = f↑

i vf
↓
i with

f↑
i ∈ Σs, v ∈ Σo∗, and f↓

i ∈ Σe.

The start and end events do not occur within the tasks, which means that no
task for a service fragment can be a prefix of another task for that same service
fragment.

We also define task sequence, a sequence of tasks, and task set, the set of tasks
comprising such a sequence:

Definition 3.7 (Task sequence/set). Given alphabet Σs,o,e, a word w ∈ Σ∗ is a
task sequence iff w = w1 . . . wn with each wi, 1 ≤ i ≤ n, a task. The set T (w) =
{wi | 1 ≤ i ≤ n} is the task set corresponding to w. Similarly T (W ) =

⋃
w∈W T (w)

for W ⊆ Σ∗. Identifying a service fragment by its start event f ∈ Σs, its task set
is Tf (w) = {v | v ∈ T (w) ∧ w1 = f}. Tf (W ) ⊆ T (W ) is similarly defined.
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For each component Ci, based on the given assumptions, component observa-
tions πΣi(W ) are task sequences. From these task sequences, we obtain for each
service fragment f ∈ Σs its task set Tf (πΣi

(W )), containing the various observed
alternative executions of f .

Example: For our running example, we get for service fragments f↑
1 , z↑1 , hr↑1 ,

gr↑1 , h↑
2, and g↑3 , their respective task sets. That is:

• Tf↑
1
(πΣ1

(W )) = {〈f↑
1 , g↑1 , g↓1 , h↑

1, h↓
1, f↓

1 〉, 〈f
↑
1 , h↑

1, h↓
1, g↑1 , g↓1 , f↓

1 〉},

• Tz↑
1
(πΣ1

(W )) = {〈z↑1 , z↓1〉},

• Thr↑1
(πΣ1(W )) = {〈hr↑1 , hr↓1〉},

• Tgr↑1
(πΣ1(W )) = {〈gr↑1 , fr↑1 , fr↓1 , gr↓1〉},

• Th↑
2
(πΣ2(W )) = {〈h↑

2, h↓
2〉}, and

• Tg↑
3
(πΣ3(W )) = {〈g↑3 , g↓3〉}.

3.3.3 Step 3: Service fragment model inference
Informal description: We infer a DFA per service fragment. Assuming services
may be requested repeatedly, each DFA allows its service fragment to repeatedly
be completely executed from start to end.

Formalization: For service fragment f ∈ Σs, TDFAf constructs a Task DFA
(TDFA) from Tf (πΣi(W )), i.e., TDFAf (W,Σs,o,e, f) = A′

f = (Q,Σi, δ, q0, {q0}). It
has language L(A′

f ) = Tf (πΣi(W ))∗, allowing repeated uninterrupted executions
of its observed set of tasks.

An efficient way to implement TDFAf is to build PTA(Tf (πΣi(W ))) with root
q0 and language Tf (πΣi(W )). Since no task for a service fragment is a prefix of
another task for the same service fragment, all leafs of the PTA tree are accepting
states, and there are no other accepting states. Then, optionally, minimize the
PTA to reduce any redundancy. This merges all common postfixes, while preserv-
ing the PTA’s language. Minimizing a PTA typically results in a DFA that is
not a PTA. Finally, to allow the observed tasks to be repeatedly executed, merge
all accepting states into initial state q0, which is then the one and only accepting
state. State q0 exists, since we assume a non-empty set of input observations, and
each task consists of at least the start and end events. The final result is a Task
DFA, which is a DFA, but never a PTA.

Example: The inferred Task DFAs for the running example’s service fragments
are shown in Figure 3.4.

3.3.4 Step 4: Service fragment generalization
Informal description: We assume components can repeatedly handle requests of
their services. We also assume (for now, but we revisit this assumption in Sec-
tion 3.3.5) that components consist of service fragments, and service executions
are mutually independent. That is, executing one service fragment does not im-
pact which service fragments may subsequently be executed or the order in which
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f↑
1

g↑1 g↓1 h↑
1 h↓

1

h↑
1 h↓

1 g↑1
g↓1

f↓
1

z↑1

z↓1

hr↑1

hr↓1

h↑
2

h↓
2

g↑3

g↓3

gr↑1 fr↑1

fr↓1gr↓1

Figure 3.4: Task DFAs for the service fragments of the running example.

they may be executed, nor does it impose any restrictions on which of the possible
behaviors of those service fragments may occur when they are executed.

We infer component models from service fragment models, generalizing the
component behavior to repeated non-preemptive executions of the various service
fragments. A component model can then execute any of the component’s service
fragments in arbitrary order, any number of times.

Formalization: For a component Ci, its service fragments are Σs
i = Σi ∩ Σs.

TDFAi constructs TDFA A′
i for component Ci, i.e., TDFAi(W,Σs,o,e,Σs

i ) = A′
i.

It does so by merging the initial states of all TDFAs A′
f = TDFAf (W,Σs,o,e, f)

for service fragments f ∈ Σs
i . Then L(A′

i) = T (πΣi
(W ))∗. A′

i is deterministic, as
all outgoing transitions from the initial states of TDFAs A′

f , i.e., f↑
i , are unique.

Given the assumptions of this step, we define such constructed TDFAs A′
i to be

stateless component models.
Alternatively, such a stateless component model can be formed directly from

component observations, rather than by partitioning the component observations
into observations per service fragment, inferring service fragment models, and com-
bining those service fragment models into a stateless component model. To do so,
use TDFAf from Step 3, constructing the PTA from the component observations,
rather than from service fragment observations.

Example: For the running example’s components C1, C2, and C3, the respective
inferred Task DFAs A′

1, A′
2, and A′

3, are shown in Figure 3.5. The component
models for C2 and C3 are identical to their service fragment models, for h↑

2 and g↑3 ,
respectively, in Figure 3.4. For C1, the initial states of its four service fragment
models are merged.

3.3.5 Step 5: Stateful behavior injection
Informal description: In Step 4 we assumed stateless components with service
fragments that are mutually independent. This assumption does not always hold
in practice. Consider our running example (Figure 3.2b in Section 3.1.1). Service
fragment f handles the responses for asynchronous calls g and h in service frag-
ments gr and hr, respectively. Therefore, handling gr always comes after call g in
f . This is ensured by the interaction with C3, but it is not captured in the model
for C1.
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A′
1: A′

2:

A′
3:

f↑
1

g↑1 g↓1 h↑
1 h↓

1

h↑
1 h↓

1 g↑1
g↓1

f↓
1

z↑1 z↓1

hr↑1hr↓1

h↑
2

h↓
2

g↑3

g↓3

gr↑1fr↑1

fr↓1 gr↓1

Figure 3.5: Task DFAs for the components of the running example.

Optional Step 5 allows to inject stateful behavior to obtain stateful component
models that exclude behavior that cannot occur in the real system. As many
varieties of component-based systems exist, our structured method for Step 5
allows to improve the inferred models based on injection of domain knowledge.
This allows customization to fit a certain architecture or target system, and is not
specific to our application of the CMI approach to a case study in Section 3.5. Our
general domain knowledge injection method for instance allows one to capture the
general property that ‘a response must follow a request’ (like gr after g in the
running example).

Figure 3.6 visualizes the approach. We compose TDFAs inferred in Steps 1 – 4
with additional, typically small, automata, which specify explicitly which behavior
we add, constrain or remove. Multiple different composition operators are sup-
ported: union, intersection, synchronous composition and (symmetrical) difference
(see Section 3.2). The injected automata are either manually specified, or obtained
by a miner [22, 107], an automated procedure that uses the observations as input.

Additional properties that should be added often apply in identical patterns
across the whole system. To allow modeling them only once, DFAs with parameters
are used, e.g., for the pattern of a request and reply. The parameterized DFA
(template) is instantiated with specific events, e.g., user-provided request/reply
pairs, to obtain the DFAs to inject.

Formalization: We define substitution, which renames parameter events to
provided events:

Definition 3.8 (Substitution). Given a parameterized DFA A = (Q,Σ, δ, q0, F ),
and events p ∈ Σ, a /∈ Σ, the substitution of a for p in A, denoted A[p := a], is

Observations Steps 1 – 4

Mining Composition Model

Manually specified automata

Figure 3.6: Generic method to inject specific domain knowledge in Step 5.
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Req

Reply

(a) P1 (request before reply)

1 2 3
cReq

cReply

sReq

sReply

(b) P2 (server replies before client reply)

Figure 3.7: Parameterized property automata, as examples for Step 5.

defined as A[p := a] = (Q, (Σ \ {p}) ∪ {a}, δ[p := a], q0, F ), with δ[p := a](q, c) =
δ(q, p) if c = a, and δ(q, c) otherwise.

In general the order of substitutions matters. We apply them in the given
order, and only replace parameters by concrete events, assuming both sets are
disjoint.

Example pattern 1 (request before reply): For asynchronous calls, a reply must
follow a request, e.g., gr after g. We model this property as DFA P1 in Figure 3.7a.
Parameter Req represents a request, Reply a reply. To enforce the property, we
compose the inferred TDFAs A′

i with P1, for every request and its corresponding
reply in the system: A′′

i = A′
i ‖ (‖a∈reqsP1[Req := a][Reply := R(a)]), where

reqs is the set of requests, and R : Σi → Σi maps requests to their replies. By
Corollary 3.2, for any a ∈ reqs: π{a,R(a)}(L(A′′)) = {(a.R(a))n | n ∈ N}. This
correctly models the informally given property, assuming at most one outstanding
request for each a. For our running example, we get: reqs = {g↑1 , h

↑
1}, R(g↑1) = gr↑1,

and R(h↑
1) = hr↑1. The instantiated DFAs P g

1 = P1[Req := g↑1 ][Reply := gr↑1] and
Ph
1 = P1[Req := h↑

1][Reply := hr↑1] are shown in Figures 3.8a and 3.8b, respectively.
Example pattern 2 (server replies before client reply): For a service execution,

often nested requests should have been replied before finishing the service. We
model this property as DFA P2 in Figure 3.7b. Upon receiving a client request
cReq, P2 goes to state 2. If during this service, a request sReq is sent to a server, it
must be met with reply sReply to get out of state 3 and allow the original service
to reply to its client with cReply. For our running example, we get:

• P g
2 = P2[cReq := f↑

1 ][cReply := fr↑1 ][sReq := g↑1 ][sReply := gr↑1 ]), and

• Ph
2 = P2[cReq := f↑

1 ][cReply := fr↑1 ][sReq := h↑
1][sReply := hr↑1 ]).

The instantiated DFAs P g
2 and Ph

2 are shown in Figures 3.8c and 3.8d, respectively.

g↑1

gr↑1

(a) P g
1

h↑
1

hr↑1

(b) Ph
1

f↑
1

fr↑1

g↑1

gr↑1

(c) P g
2

f↑
1

fr↑1

h↑
1

hr↑1

(d) Ph
2

Figure 3.8: Automata to inject in Step 5, for the running example.
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z↑1 z↓1

f↑
1

g↑1 g↓1 h↑
1 h↓

1

h↑
1 h↓

1 g↑1
g↓1

f↓
1

z↑1 z↓1

gr↑1

hr↑1 hr↓1

z↑1 z↓1

gr↑1 fr↑1 fr↓1

gr↓1

Figure 3.9: DFA for component C1 of the running example, after injecting domain
knowledge: A′′

1 (solid and dashed parts) and A′′′
1 (solid parts only).

Running example: For the running example, we have four automata to inject
for C1, and none for C2 and C3. A′

2 and A′
3 thus remain as they are in Figure 3.5.

For C1, we compute A′′
1 = A′

1 ‖ P
g
1 ‖ Ph

1 ‖ P
g
2 ‖ Ph

2 . From A′′
1 , we prune all states

from which no accepting state can be reached, to obtain A′′′
1 . The result is shown

in Figure 3.9, where the parts of the model that are pruned away are indicated by
dashed lines.

The examples show that domain knowledge can be added explicitly, straight-
forwardly, and with parameterized DFAs and miners also scalably.

3.3.6 Step 6: Component composition

Informal description: The last step is to form system models by composing the
obtained stateless and/or stateful component models (from Steps 4 and 5). For
now, we use a synchronous composition. We later consider an asynchronous com-
position in Section 3.4.

Formalization: So far we have used unique events per component, such as,
e.g., f↑

1 . Properly capturing component synchronization requires that we ensure
the correct communications when one component uses the services of another
component. For our running example (see Figure 3.3), we have a communication
(arrow) from g↑1 to g↑3 . To ensure correct synchronization in the synchronous
composition (see Definition 3.2), we use the same event for both of them. For
instance, we combine: g↑1 and g↑3 to the synchronization event ‘g↑1 .g

↑
3 ’, representing

the start of call g on C1 leading to the immediate start of a handler for g on
C3. The synchronous composition can then be applied directly, to obtain A′ =
A′

1 ‖A′
2 ‖ . . . ‖A′

n, as per Definition 3.2.
Example: For the running example, we perform the event renaming on A′′′

1 , A′
2,

and A′
3, to obtain A′′′′

1 , A′′
2 , and A′′

3 , respectively. We then compute composition
A′ = A′′′′

1 ‖ A′′
2 ‖ A′′

3 . The resulting system model A′ is shown in Figure 3.10. In
this case, the result is identical to the solid part of the model in Figure 3.9, except
for the renaming. Since components C2 and C3 have call stacks with only one
bar, their behavior is already captured by C1. Hence, for this particular running
example, merging A′′

2 and A′′
3 with A′′′

1 results in A′′′
1 .
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z↑1 z↓1

f↑
1

g↑1 .g
↑
3

g↓1 h↑
1.h

↑
2 h↓

1

h↑
1.h

↑
2 h↓

1 g↑1 .g
↑
3

g↓1

f↓
1

z↑1 z↓1

h↓
2.hr

↑
1 hr↓1

z↑1 z↓1

g↓3 .gr
↑
1 fr↑1 fr↓1

gr↓1

Figure 3.10: The inferred system model for the running example, DFA A′.

3.3.7 Analysis of the CMI approach
We analyze the CMI approach using synchronous composition as described in this
section. We consider Steps 1 – 4 and 6, to infer service fragment, component,
and system models. Step 5 is left out, as its effects on the behavior of the in-
ferred models depend greatly on the domain knowledge being injected, which is
manually specified by users or is mined by a user-defined miner. We thus forego in-
jecting stateful behavior, and consider only stateless systems. That is, we consider
systems that consist of stateless components, which allow their service fragments
to be repeatedly executed in any order, without further restrictions. And those
components are composed by putting them in parallel, without any additional re-
strictions imposed on their composition. Furthermore, the system must adhere to
the various assumptions listed so far in Section 3.3.

We analyze four properties. Firstly, the inferred models at least accept the
input observations. Secondly, they generalize beyond those observations. But
thirdly, they do not over-generalize beyond the system behavior. Fourthly, adding
additional observations only increases their behavior. Proving these properties is
future work, but some proofs can be found in [62].

1) Accept at least the input observations

For a stateless system whose behavior is represented by DFA A, input observations
W ⊆ L(A) are behaviors that A exhibits. A system model A′ that is inferred from
these observations, should at the very least accept them:

Proposition 3.4. Consider a stateless system model A and observations W ⊆
L(A). System model A′, which is inferred from those observations, then accepts
those observations, i.e., W ⊆ L(A′).

Similarly, inferred component models should accept the component observa-
tions, and inferred service fragment models should accept the service fragment
observations.

2) Generalize beyond the input observations

The inferred models should not only accept the input observations, but should also
generalize beyond them. The inferred service fragment, component, and system
models each generalize based on certain assumptions.
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By assuming that services may be requested repeatedly, an inferred service
fragment model allows repeated non-preemptive executions of the service fragment.
That is, it allows any of its observed tasks to be executed in arbitrary order, any
number of times:

Proposition 3.5. Consider service fragment observations Tf (πΣi
(W )). Service

fragment model A′
f , which is inferred from those observations, then allows tasks

Tf (πΣi
(W )) to be repeatedly executed, i.e., L(A′

f ) = Tf (πΣi
(W ))∗.

By assuming components can repeatedly handle requests of their services, and
that components are stateless and therefore service fragments are mutually in-
dependent (thus ignoring Step 5), an inferred component model allows repeated
non-preemptive executions of its various service fragments. That is, it allows any
of its service fragments to be executed in arbitrary order, any number of times:

Proposition 3.6. Consider component observations πΣi(W ). Component model
A′

i, which is inferred from those observations, then allows tasks T (πΣi(W )) to be
repeatedly executed, i.e., L(A′

i) = T (πΣi
(W ))∗.

By assuming a synchronous composition of components, an inferred system
model allows independent events to commute. The concurrency between (state-
less) components is used to accept all valid alternative interleavings that were
not directly observed. Inferred system models at least generalize to traces using
Mazurkiewicz trace theory:

Proposition 3.7. Consider system observations W . Stateless system model A′ =
A′

1 ‖ . . . ‖A′
n, which is inferred from those observations, and constructed by syn-

chronously composing inferred component models A′
i, consistently generalizes to

traces, i.e., L(A′) = lin T (A′) ⊇ linT ([W ]D)∗.

This proposition depends on dependency D, which we define such that it
matches the synchronous parallel composition (see Definition 3.4): D =

⋃n
i=1 Σ

2
i .

That is, for every pair of events e1, e2 ∈ Σi, there is a dependency, i.e., (e1, e2) ∈
Σ2

i = Σi ×Σi. And the union of all these dependencies of the various components
is the dependency set D.

For parallel composition, each component model restricts the system model to
its allowed behavior, preserving the sequential nature of the components. There-
fore, all events within a component are made dependent in D, preventing them
from commuting. Events are also dependent on themselves, to ensure that D is
reflexive.

Shared events for communications between components synchronize to a single
event in the parallel composition, preserving communication behavior. Since in
the composed system this concerns a single event, it does not impact the definition
of D, which is only concerned with the dependencies between events.

The parallel composition allows non-shared events of components to interleave.
Therefore, all events of a component that are not shared with any of the other com-
ponents are not dependent in D. They are thus independent, and may commute,
allowing all valid interleavings between components.

Proposition 3.7 uses an extended definition of T for task sequence traces:
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Definition 3.9 (Task sequence trace). Consider a dependency D =
⋃n

i=1 Σ
2
i and

alphabet Σs,o,e. A trace [t] ∈ [Σ∗
D] is a task sequence trace iff ∀ni=1 πΣi(t) is a

task sequence for Σs,o,e. Its task set T ([t]), is given as {[tj ] | [t1 . . . tm] = [t] and
tj a task for 1 ≤ j ≤ m}.

Characterizing the full generalization remains an open problem.

3) No over-generalization

The inferred models should not over-generalize, i.e., should not allow more be-
havior than the actual system. We found that this is an essential property for
industrial engineers to place their trust in the inferred models. Typically, neither
heuristic-based approaches that infer models from logs, nor active automata learn-
ing approaches, satisfy this property. The CMI approach is specifically designed
to avoid over-generalization, by only allowing generalization when it is known not
to lead to over-generalization, based on knowledge of the system.

That is, with the assumptions we place on the architecture and deployment of
the systems that we consider, we can formulate the following theorem, which is a
main result of our approach:

Theorem 3.8. Consider a stateless system model A and observations W ⊆ L(A).
System model A′, which is inferred from those observations, then does not over-
generalize, i.e., L(A′) ⊆ L(A).

Similarly, inferred component and service fragment models should not over-
generalize.

If complete observations W = L(A) are used as input, then the approach
should infer complete models, i.e., L(A′) = L(A). Providing complete observations
is infeasible, as L(A) is generally not a finite set. However, the CMI approach
generalizes beyond the input observations. Providing complete observations is
therefore not needed, and it could already be sufficient to observe all unique service
fragment behaviors. It remains an open problem to characterize the minimal
observations needed as input to ensure complete models are inferred.

4) Robust under additional observations

The approach should be robust under additional observations, i.e., model inference
from the same observations or more observations, leads to inferred models with
the same or more behavior, so never less behavior:

Proposition 3.9. Consider a stateless system model A, observations W ⊆ L(A),
and system model A′ inferred from W . Also consider observations V ⊆ L(A), with
W ⊆ V , and system model A′′ inferred from V . Then L(A′) ⊆ L(A′′).

Similarly, inferred component models should be robust under additional com-
ponent observations, and inferred service fragment models should be robust under
additional service fragment observations.
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3.4 CMI for asynchronous composition
In Section 3.3 we considered systems consisting of synchronously composed com-
ponents. This section considers the CMI approach applied to systems with asyn-
chronously composed components.

We now assume the system is a DFA A, asynchronously composed of compo-
nents Ai, using buffers Bi bounded to capacity bi. Per Section 3.2.3 we model
this as a synchronous composition with buffer automata, A = ‖ni=1(Ai ‖Bbi

i ). We
shorten Bbi

i to Bi, leaving the buffer size implicit, in case it is not relevant. Then
Ai has alphabet Σ!,?,τ

i , ΣBi
= Σ?

Bi
∪ Σ!

Bi
, Σ?

Bi
= {a! | a? ∈ Σ?

i}, and Σ!
Bi

= Σ?
i .

As an example, Figure 3.11 shows the events used to communicate between two
components, via a buffer, for event h↑

1.h
↑
2. For this example, Σ!

1=Σ?
B2

={h↑
1.h

↑
2!}

and Σ!
B2

=Σ?
2={h

↑
1.h

↑
2?}. We furthermore assume system observations W ⊆ L(A)

as before, still with W 6= ∅.
To infer A′, we first infer component models A′

i, reusing Steps 1 – 5 from
the synchronous case of Section 3.3. Then, we model buffer DFAs B′bi

i as in
Section 3.2.3, according to the buffer type (FIFO or bag) and capacity bound bi. A
capacity lower bound bi,w for each buffer Bi is inferred from W , by considering the
maximally occupied buffer space along each observed word w ∈W . That is, bi,w=
max1≤i≤|w|(|πΣ?

Bi

(w1 . . . wi)| − |πΣ!
Bi

(w1 . . . wi)|). Then, the overall lower bound
bi for Bi is inferred, as bi = maxw∈W bi,w. Finally, A′ is given as synchronous
composition A′ = ‖ni=1(A

′
i ‖B

′bi
i ).

Just as for the synchronous case, we analyze for this asynchronous version of
Step 6, that A′ accepts W , does not over-generalize, and is robust under additional
observations:

Proposition 3.10. Consider DFA A = ‖ni=1(Ai ‖Bi) with each Ai stateless,
Bi a FIFO (or bag) buffer, W ⊆ L(A), DFA A′ = ‖ni=1(A

′
i ‖B

′bi
i ) with A′

i =

TDFAi(W,Σs,o,e,Σs
i ), and B′bi

i a FIFO (or bag) buffer with bi = maxw∈W bi,w.
Then W ⊆ L(A′) ⊆ L(A). For DFA A′′, similarly composed and obtained from
observations V , with W ⊆ V , then holds L(A′) ⊆ L(A′′).

With this approach we need to know a-priori the kind of buffers used in our
system. To understand whether our choices were correct we experimented with
various buffer types. For instance, using a single FIFO buffer between each pair of
components can lead to an issue shown in Figure 3.12. If reqC2

is sent before repg,
the FIFO order enforces reception of reqC2

before repg, while the TDFA for C3

has to handle repg before starting a new service with reqC2
, leading to a deadlock.

In order to resolve this problem, and other mismatches with ASML’s middleware,
we use a FIFO buffer per client that a component communicates with, and a bag
buffer per server [62].

C1 B2 C2

h↑
1.h

↑
2! h↑

1.h
↑
2?

Figure 3.11: Asynchronous communication for event h↑
1.h

↑
2 from component C1 to

component C2, via buffer B2.
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C1 f

C2 f

C3 f

g

C4 g

reqf repf

reqg repg

reqC2

Figure 3.12: Example of limited commutations for FIFO buffers.

3.5 CMI in practice
We demonstrate our CMI approach by applying it to a case study at ASML.
ASML designs and builds machines for lithography, which is an essential step in
the manufacturing of computer chips.

3.5.1 System characteristics
Our CMI approach requires system observations as input. The middleware in
ASML’s systems has been instrumented, allowing us to extract Timed Message
Sequence Charts (TMSCs) from executions. A TMSC [73] is a formal model
for system observations, akin to what we described in Section 3.1. The TMSC
formalism implies that the system can be viewed as a composition of sequential
components bearing nested, fully observed, non-preemptive function executions.
We can therefore obtain observations W , component alphabets Σi, and partitioned
alphabet Σs,o,e, from TMSCs, to serve as inputs to our approach.

For this case study, we infer a model of the exposure subsystem, which exposes
each field (die) on a wafer. By executing a system acceptance test, and observing
its behavior during the exposure of a single wafer, which spans about 11 seconds,
a TMSC is obtained that consists of around 100,000 events for 33 components.

3.5.2 Model inference steps 1 – 4
We apply Steps 1 – 4 for our case study. Figure 3.13 shows for each component
the number of events in the observations and the number of states of the inferred
component model. For most components the inferred model is two orders of mag-
nitude more compact than its observations, showing repetitive service fragment
executions in these components.

Component 1 orchestrates the wafer exposure. Its model has the same size as
its observation, as it spans a single task with over 5,000 events. For components
26 – 33, the small reduction is due to their limited observations.

3.5.3 Model inference step 5
We analyze the inferred models, assessing whether their behavior is in accordance
with what we expect from the actual software and if not, what knowledge must
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Figure 3.13: Per component, the number of states in its component model after
Step 4, compared to the number of events in its observations.

be injected (according to Step 5).
Although the system matches an asynchronous composition of components as

discussed in Section 3.4, we first apply our CMI approach for synchronous systems
(Step 6 from Section 3.3). A synchronous composition has more limited behavior
compared to an asynchronous composition, and hence a smaller state space. The
resulting model can therefore be analyzed for issues more easily, while many such
issues apply to both the synchronous and the asynchronous compositions.

We observe that component model 1, A′
1, has over 5,000 states, in a single

task w. To reduce the model size, we analyze w for repetitions and reduce it
[98]. We look for short x, y, z ∈ Σ∗

1 such that w = xynz for some n. Then, we
create reduced model A′′

1 , with L(A′′
1) = (xyz)∗. This reduces the model size by

|y| ∗ (n − 1) states to about 600 states for Component 1, in this case without
limiting its synchronization with the other components.

As a second reduction, we remove DFA transitions that do not communicate
and originate from a state which has a single outgoing transition, i.e., do not allow
for a choice in the process. This is akin to process algebra axiom a.τ.b = a.b,
where τ is a non-synchronizing event [96]. Examples in Figure 3.14 are g↓7 and f↓

7 .
This further reduces A′′

1 from about 600 to about 300 states. Other components

C7 f
h g

gr hr
fr

S1 g

S2 h

reqf repf

reqh
repg

reqg
reph

(a)

C7 f
h g

hr gr
fr

S1 g

S2 h

reqf repf

reqh
repgreqg reph

(b)

Figure 3.14: Component C7 requires both repg and reph to reply to its client. (a)
gr before hr, with fr in hr, and (b) hr before gr, with fr in gr.
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are reduced as well.
With these two reductions, exploring the resulting state space becomes feasible,

being approximately 1010 states. We look for deadlocks: states without outgoing
transitions. As we use execution logs representing successful executions of the
system, we expect no deadlocks in the inferred models. All deadlocks that we
found where due to a synchronizing event, the counterpart of which could not be
reached.

A first issue is illustrated in Figure 3.14. Component C7 requests services
g and h concurrently. Both are called asynchronously and can return in either
order, with only the last reply leading to repf . The inferred stateless model does
not capture the dependency between replies repg, reph, and repf . When in the
learned model both, or neither, incoming replies are followed by repf , the system
deadlocks, as the calling environment expects exactly one reply. This is solved by
enforcing nested services to be finished before finishing f , as in Example 2 from
Step 5 of Section 3.3.5.

A second issue is illustrated in Figure 3.15, where component C14 deals with
server S∗

1 . However, we do not observe the behavior of S∗
1 directly, but merely

through the messages observed at C14. Server S∗
2 , which is used by S∗

1 , is not ob-
served at all. The observation is shown in Figure 3.15a, and a possible perspective
of the actual system behavior is shown in Figure 3.15b.

Since we do not observe the behaviors of S∗
1 and S∗

2 , the model misses the
dependency between functions g and e2. Now, e2 has no incoming message and it
is able to start ‘spontaneously’. The actual system relies on the dependency, but
it is missing in the learned behavior, leading to deadlocks. Knowing the missing
dependency from domain knowledge, we inject it through Step 5 as a one-place
buffer similar to Figure 3.7a, extended to multiple places as needed.

After resolving these issues, we analyze choices. From other observations we
know that g is optional when performing f in component C7 of Figure 3.14a.
The inferred component model for C7 thus contains tasks which have a common
prefix, i.e., 〈f↑

7 , h
↑
7, h

↓
7, f

↓
7 〉 (g is skipped), and 〈f↑

7 , h
↑
7, h

↓
7, g

↑
7 , g

↓
7 , f

↓
7 〉 (g is called).

After h↓
7 a choice arises, to either call g by g↑7 or finish f by f↓

7 . Such choices
can enlarge the state space, and may not apply in all situations. We therefore
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g

k e2
kr
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1 g e2
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reqk repk

n2
reqg repg

(a)
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Figure 3.15: Component C14 communicates with components outside the obser-
vations, causing missing dependencies.
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asked domain experts on which information in the software such a choice could
depend. Together, we concluded that g is only skipped once, and this relates to
the repetitions we observed for C1, as g is skipped for one particular such iteration.
We ensured the correct choice is made, by constraining the two options to their
corresponding iterations on C1, thus removing some further non-system behavior
from the inferred model.

3.5.4 Model inference step 6
To the result of Step 5, we apply asynchronous composition (Step 6, Section 3.4).
Using FIFO and bag buffers as described in that section, service fragments are
allowed to commute due to execution and communication time variations.

For our case study, all inferred buffer capacities are either one or two, except
component C2, which has buffers with capacities up to 24. The low number
of buffer places for most components, is due to the extensive synchronization
on replies. C2, the log component, only receives ‘fire-and-forget’-type logging
notifications without replies.

We verified that the resulting, improved, asynchronously composed model in-
deed accepts its input TMSC, i.e., the inferred model accepts the input observation
from which it was inferred. This gives trust that the practically inferred model
is in line with that observation. The inferred multi-level models were confirmed
by domain experts as remarkably accurate, allowing them to discuss and analyze
their system’s behavior. This in stark contrast to models that were previously
inferred using process mining and heuristics-based state machine learning, where
they questioned the accuracy of the models instead of using them.

3.6 Conclusions and future work
We introduced our novel approach, Constructive Model Inference (CMI), which
uses execution logs as input. Relying on knowledge of the system architecture, it
allows learning the behavior of large concurrent component-based systems. The
trace-theoretical framework provides a solid foundation. The ASML engineers that
we worked with consider the state machine models resulting from our approach
accurate, and the service fragment models in particular, to be highly intuitive.
They see many potential applications, and are already using the inferred models
to gain insight into their software behavior, as well as for change impact analysis
(see Chapters 4 and 5).

Future work includes among others extending the CMI approach to inferring
Extended Finite Automata and Timed Automata (see Section 7.2.1), further in-
dustrial application of the approach (see Chapters 4 and 5), and automatically
deriving interface models from component models.
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Multi-level behavioral
comparison methodology

Software-intensive systems, e.g., cyber-physical systems, become more and more
complex. They often employ a component-based software architecture to manage
their complexity. Over the years such systems continuously evolve by adding new
features and addressing defects, more and more layers are built on top of each
other [77], and components that are not well-maintained become legacy [85, 111].

Changing the software is often considered risky as any change can potentially
break a system. If a software change leads to a system defect, then the impact
can be tremendous due to system downtime and productivity loss [111]. This may
even lead to software engineers becoming afraid to make changes for which they
cannot properly foresee the impact on (other parts of) the system.

To reduce the risks, it is essential to understand the impact of software changes.
However, for large complex industrial code bases consisting of tens of millions of
lines of code, no single person has the complete overview. This makes it difficult to
understand the impact of software changes on the overall system functionality [54].
This is especially true when the system can behave differently for different config-
urations and usage scenarios [132].

It is thus important that: 1) software developers understand how the system
currently behaves for different configurations and usage scenarios, and 2) they
understand how software changes impact that system behavior.

To address these needs, in this chapter we introduce a novel multi-level method-
ology for behavioral comparison of (large) software-intensive systems. The power
of our methodology is that it quickly guides users to (the parts of the system with)
relevant differences. This avoids the laborious and error-prone practice of looking
into many thousands of lines of code, or plough through gigabytes of execution
logs. Our method is fully automated, making it possible to consider huge (sub-
)systems, for which due to their sheer size it is practically impossible to compare
their behavior manually.

Our methodology is based on comparing state machine models rather than
source code or execution logs, which makes it generally applicable. State machines
can compactly and intuitively represent system behavior as a collection of software
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function calls and the order in which they are called. Such models are general
and can be obtained by any means of model learning or construction (see also
Chapters 2 and 3).

Methods to compare state machines can be divided into two classes that com-
plement each other [126]. Language-based methods compare state machines in
terms of their allowed sequences of function calls, while structure-based methods
compare them in terms of their states and transitions.

However, two important things are missing in the literature: 1) a single auto-
mated method integrating these individual methods to allow large-scale industrial
application, and 2) an approach to inspect the resulting differences at various
levels of detail, and step by step zoom in on relevant differences, to manage the
complexity of huge systems. Our methodology tackles both these challenges.

Our methodology takes any number of sets of state machines representing
software behavior of, e.g., different software versions, different configurations or
different usage scenarios. We automatically compare the provided sets by compar-
ing the languages and structures of their state-machine models. The comparison
results can be inspected at six levels of abstraction, ranging from very high-level
differences to very detailed ones. Users are guided through the differences in a
step by step fashion tailored to allow them to zoom in on relevant behavioral
differences, wasting no time on irrelevant ones.

We empirically evaluate the practical potential of our methodology through a
qualitative exploratory field study [110, 118]. Using multiple case studies at ASML,
a leading company in developing lithography systems, we demonstrate that our
approach can be applied to large industrial (sub-)systems, provides developers
and architects insight into their behavioral differences, and allows them to find
unintended regressions.

The remainder of this chapter is organized as follows. In Section 4.1 we intro-
duce the concepts, definitions and methods on which we build our methodology.
Section 4.2 introduces our methodology, both conceptually and formally. We eval-
uate our methodology in Section 4.3, before concluding in Section 4.4.

4.1 Background

4.1.1 Software behavior

Programming languages typically have a notion of function, procedure or method.
The behavior of software implemented in such languages can then be seen as all
the calls to or invocations of these functions, and the constraints on the order in
which they may be called.

Large systems often employ a component-based software architecture to man-
age their complexity. The many components are independent units of development
and deployment, encapsulate functionality and allow for re-use [91, 119, 125].
Functions may then be called internally within a component and to communicate
between components connected via interfaces, e.g., remote procedure calls.
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4.1.2 State machines
We consider software behavior in terms of sequences of discrete events, e.g., the
start and end of function calls. We define an alphabet Σ to be a finite set of events
of interest. A trace t ∈ Σ∗ represents a single finite execution1, with ∗ the Kleene
star. The length of t is denoted by |t| and its i-th event by ti for 1 ≤ i ≤ |t|.
An execution log is a set of observed traces, and can for instance be obtained by
explicit logging or through sniffing tools.

A state machine or automaton compactly and intuitively represents multi-
ple executions. We define a Non-deterministic Finite Automaton (NFA) A =
(S,Σ,∆, I, F ) as a 5-tuple, with S a finite set of states, Σ a finite set of events
(the alphabet), ∆ ⊆ S × Σ × S a set of transitions, I ⊆ S a set of initial states,
and F ⊆ S a set of accepting states. Deterministic Finite Automata (DFAs) are
a sub-class of NFAs allowing for each source state and event only a single target
state. An NFA can be determinized to a DFA [50].

A trace t ∈ Σ∗ is accepted by an NFA A = (S,Σ,∆, I, F ) iff there exists a
sequence (s0, t1, s1), (s1, t2, s2), ..., (s|t|−1, t|t|, s|t|) ∈ ∆∗ with s0 ∈ I and s|t| ∈ F .
Traces that are not accepted are rejected. The language L(A) of an NFA A is the set
of all its accepted traces, i.e., L(A) = {t ∈ Σ∗ |A accepts t}. The behavior presence
predicate B(A) indicates whether A has any behavior, i.e., B(A) = (L(A) 6= ∅).
State machines can be minimized to a representation with the least number of
states possible, while still accepting the same language [64, 103]. Given two NFAs
A1 and A2, union and intersection are defined as operations that reflect the effect
on their resulting languages, i.e., L(A1 ∪A2) = L(A1) ∪ L(A2) and L(A1 ∩A2) =
L(A1) ∩ L(A2), respectively [115].

A (minimal) state machine can be obtained from an execution log through
model learning, e.g., using state machine learning algorithms [51, 60, 82] (see
Chapter 3) or through active automata learning [60, 68] (see Chapter 2).

4.1.3 State machine comparison
State machines can be compared in various ways. Walkinshaw and Bogdanov [126]
differentiate two perspectives: language-based and structure-based comparisons.

The language perspective considers to which extend the languages of state
machines overlap. Two state machines A1, A2 are language equivalent (=L) iff
they accept exactly the same language, i.e., A1 =L A2 ⇔ L(A1) = L(A2). A
state machine A1 is related by language inclusion (≤L) to state machine A2 iff the
language of A1 is included in that of A2, i.e., A1 ≤L A2 ⇔ L(A1) ⊆ L(A2). Various
other types of well-known binary equivalence and inclusion relations exist [49], as
well as non-binary ones such as precision and recall [116, 126]. We use language
equivalence and inclusion as these are commonly used in automata theory, are
sufficient to capture the order of function calls, and can be easily explained even
to engineers without a formal background. For finite state machines these relations
can be computed on their finite structures [36].

Language-based comparison considers the externally observable behavior of
state machines. Complementary to it, structure-based comparison considers the
overlap of their internal representations in terms of states and transitions.

1What is called a ‘trace’ here, is called a ‘word’ in Chapter 3.
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Figure 4.1: Source and target NFAs and their structural differences as a diff NFA.

Walkinshaw and Bogdanov define the LTSDiff algorithm [126] that takes two
state machines and computes a diff state machine: a compact representation of
their differences. Figure 4.1 shows an example. A diff state machine is a regular
state machine with its states and transitions annotated to represent difference
information, i.e., ‘unchanged’ (black/solid), ‘added’ (green/dashed) and ‘removed’
(red/dotted).

The algorithm has three steps:

1. Compute similarity scores for all possible pair-wise combinations of states
from the two NFAs being compared. A local score considers only the overlap
in directly connected incoming and outgoing transitions of the states. It is
extended to a global score by recursively considering all context, using an
attenuation factor to ensure closer-by context counts more towards the score
than further away context.

2. Use the scores to heuristically compute a matching between states of the
two NFAs based on landmarks, a percentage of the highest scoring pairs
that score at least some factor better than any other pairs, with a fallback
to the initial states. The most obviously similar state pairs are matched
first and these are then used to match the surrounding areas, rejecting any
remaining conflicting state pairs. The next-best remaining state pair is then
selected and matched, etc, until no state pairs are left to consider.

3. Use the matching to compute the diff state machine.

The LTSDiff algorithm has the advantage that it does not require states to be
reachable from initial states, does not require state machines to be deterministic
or minimal, does not rely on state labels, and that it produces relatively small
diffs in practice, unlike some other approaches [76, 99, 105, 117].

For a more elaborate introduction to the LTSDiff algorithm, see Chapter 5.
For a more extensive overview of alternative approaches to compare state machine
languages and structures, see the work of Walkinshaw and Bogdanov [126] as well
as Chapter 5.

4.2 Behavioral comparison methodology
The language and structure-based state machine comparison approaches are com-
plementary. However, to the best of our knowledge there is no work that fully
exploits the complementary nature of these approaches, to provide intuitive in-
sights into the behavioral impact of changes for industrial-scale software-intensive
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systems. Our methodology takes advantage of their complementary nature in a
novel way, to allow handling the complexity of such scale.

As input our methodology takes any number of model sets representing, e.g.,
different software versions, configurations or usage scenarios. They contain state
machines that represent behaviors of a number of entities representing, e.g., soft-
ware functions or components. Formally, let E be a finite set of (behavioral)
entities and N the set of all NFAs. A model set S : E → N is a complete map-
ping of entities to models (NFAs). An incomplete mapping can be made complete
using (∅, ∅, ∅, ∅, ∅) for unmapped entities, thus using an NFA with empty sets of
states, events, transitions, and so on. As input our methodology takes a finite set
of entities E and a finite set of model sets S = {S1, ..., Sn} ⊆ NE .

Figure 4.2 shows the model sets that we use as a running example. Model set
S4 that represents for instance configuration 4, there is no model for entity E4

that represents for instance (software) function 4. If these models were obtained
through model learning on execution logs, no behavior was observed for function
4 using configuration 4.

Our methodology compares the state machines of all input model sets. The
results are represented at six levels of abstraction (Figure 4.3). The first three levels
focus on model sets and the last three on individual (models of) entities within
them. For both model sets and models, the first level considers different behavioral
variants, the second level relates the variants, and the third level elaborates on
variant differences. Users are guided step by step through the levels, by gradually
zooming in on more details, letting them focus on relevant differences. Levels 1 – 5
contain information from the language perspective (L), while levels 5 and 6 contain
information from the structural perspective (S). Next, we discuss each of the six
levels in more detail.
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Figure 4.2: The input state machines for the running example, for entities E1

through E4 (rows) and model sets S1 through S4 (columns). S4(E4) = (∅, ∅, ∅, ∅, ∅).
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Model sets Models
Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
Variants Variant Variant Variants Variant Variant

relations differences relations differences
L L L L L / S S

Figure 4.3: Methodology overview: six levels of detail to inspect comparison re-
sults.

4.2.1 Level 1: Model set variants
Level 1 provides the highest level overview. It shows whether model sets have the
same behavior, i.e., their entity models are language equivalent. Two model sets
Si, Sj ∈ S have the same behavior, denoted Si =L Sj , iff ∀e∈E Si(e) =L Sj(e).

We compare model sets against each other and determine unique model set
behavior variants. Variants are formally defined to be equivalence classes of S
under =L, so that S/=L is the set of all variants. For presentational clarity we
enumerate and refer to different variants of S in alphabetical order: A, B, etc. We
choose a structural representative for each behavioral equivalence class.

Figure 4.4a shows the level 1 result for our running example. Model sets S1

and S2 have the same behavior for all four functions and thus get variant A, even
though their models for E4 are structurally different. Model sets S3 and S4 get
variants B and C as they differ from the other model sets (and each other).

Level 1 thus provides a very high level overview of which model sets have the
same or different behavior, and how few or many variants there are. We can
see whether this matches our expectations. Depending on the use case, we may
be satisfied already after looking at these results. For instance, if we want to
know whether different configurations have the same behavior, and if they all have
the same variant, we can already conclude that there are no differences in their
behavior. If we do go to the other levels, we can ignore model set S2 as it has
the same behavior as S1. In fact, from the language perspective we can focus on
(representatives of) model set variants, each representing one or more models with
the same behavior, rather than on individual model sets. Finally, in Figure 4.4a
variants are colored using shades of blue like a heat map. In case of many model
sets this may reveal patterns, as we will see in Section 4.3.

4.2.2 Level 2: Model set variant relations
Level 1 provides us with model set variants that each have different behavior.
Level 2 provides more details. It considers whether the behavior of one model set
variant is completely included in the behavior of another variant, i.e., it has less
behavior. Formally, for two model sets Si, Sj ∈ S, Si is related to Sj by language
inclusion, denoted Si ≤L Sj , iff ∀e∈E Si(e) ≤L Sj(e). Given that all model set
variants have different behavior, Si thus has less behavior for at least one entity.
Partially ordered set (S/=L,≤L) can be extended into a finite lattice by computing
unions (as supremum) and intersections (as infimum) of representatives of model
set variants until a fixed point is reached. The union or intersection of two model
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Figure 4.4: Behavioral comparison methodology output for the running example:
complete levels 1 – 4, level 5 for E2, and level 6 for E2 variants B → C.

sets constitutes the per-entity pairwise combination of their entity models, using
state machine union or intersection, respectively.

Algorithm 1 shows how a partial lattice of the input model set variants can
be computed. As input, a partially ordered set X = (S/=L,≤L) of level 1 model
set variants is given. First, the output lattice (N,E) get initialized, by settings
its nodes and edges to empty sets (lines 1 and 2). Then each of the input model
set variants x ∈ X gets considered one by one (lines 3 – 14). First new edges
are considered, between x and any existing nodes n ∈ N that are already in
the lattice (lines 4 – 12). To this end, existing ancestor or descendant relations
between x and n are considered (line 5). A node n1 ∈ N is an ancestor of a node
nm ∈ N , denoted n1 <N nm, if and only if there exists a non-empty sequence of
edges e1 = (n1 → n2), e2 = (n2 → n3), ..., em−1 = (nm−1, nm), with ei ∈ E for
1 ≤ i ≤ m − 1, and with m > 1. The node nm is then also a descendant of node
n1. A node is thus not an ancestor or descendant of itself. If there is no such
ancestor or descendant relation between x and n yet in (N,E) (line 5), then it is
determined whether such a relation should exist. If x is language included in n
(line 6), then a directed edge from x to n, denoted (x → n) is added to (N,E)
(line 7). If on the other hand n is language included in x (line 8), then instead a
directed edge from n to x, denoted (n→ x) is added to (N,E) (line 9). Adding a
directed edge to a lattice is accomplished using Algorithm 2. Once all the edges
have been added, x is added as a new node in N (line 13). After the algorithm,
partial lattice (N,E) has been constructed, which contains all the input model set
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Algorithm 1 Compute a partial lattice for level 2
Input: A partially ordered set X = (S/=L,≤L) of level 1 model set variants.
Output: A partial lattice (N,E), with nodes N and directed edges E.

1: N ← ∅
2: E ← ∅
3: for all x ∈ X do
4: for all n ∈ N do
5: if x ≮N n ∧ n ≮N x then
6: if x ≤L n then
7: Add edge (x→ n) to (N,E).
8: else if n ≤L x then
9: Add edge (n→ x) to (N,E).

10: end if
11: end if
12: end for
13: N ← N ∪ {x}
14: end for

Algorithm 2 Add a directed edge to a lattice
Input: A lattice (N,E), and a directed edge (s→ t) to add to the lattice.
Output: The updated lattice (N,E).

1: S ← {n ∈ N |n <N s} ∪ {s}
2: T ← {n ∈ N | t <N n} ∪ {t}
3: for all s′ ∈ S do
4: C ← {c ∈ N | ∃e∈E e = (s′ → c)}
5: for all d ∈ C ∩ T do
6: E ← E \ {(s′ → d)}
7: end for
8: end for
9: E ← E ∪ {(s→ t)}

variants, but is not necessarily a complete lattice just yet.
Algorithm 2 shows how a directed edge (s → t) can be added to a lattice

(N,E). First, certain existing edges are removed to ensure that there will be no
two paths in the lattice from s to t (lines 1 – 8). Note that s and t have no direct
ancestor or descendant relation yet, as per Algorithm 1. Still, duplicate paths may
be created by adding (s → t) to E. To this end, the set S of all ancestors of s
is computed, s included (line 1). Similarly, the set T of all descendants of t is
computed, t included (line 2). Each node s′ ∈ S is then considered (lines 3 – 8).
For such an s′, its direct children c are determined and put into C (line 4). Then
for all duplicate targets d ∈ C ∩ T (lines 5 – 7), edge (s′ → d) is removed from E,
if it exists (line 6). Once the duplicate edges have been removed, the new edge is
added (line 9).

As an example of the application of Algorithm 2, consider Figure 4.5. During
the execution of Algorithm 1, a partial lattice is constructed, as shown in Fig-
ure 4.5a. A directed edge (n1, n3) is to be added to the partial lattice. To prevent
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Figure 4.5: Example of adding directed edge (n1, n3) to a partial lattice.

two paths from n1 to n2, edge (n1, n2) is removed, before edge (n1, n3) is added.
In the algorithm, s = n1, t = n3, S = {n1}, and T = {n2, n3}. There is only
one s′ ∈ S, namely s′ = n1. The children of n1 are C = {n2}. There is only one
d ∈ (C ∩ T ), namely d = {n2}. Hence, edge (n1 → n2) is removed. Finally, edge
(n1 → n3) is added. The result is shown in Figure 4.5b. By removing the direct
edge from n1 to n2, the new path n1 to n3 to n2 is the only path that remains
from n1 to n2.

The partial lattice is completed by two executions of Algorithm 3. The first
execution starts from the partial lattice constructed using Algorithm 1, and adds
extra intersection variants where needed. The second execution starts from the
result of the first execution, and adds extra union variants where needed. After
both executions, (N,E) is a complete lattice. The algorithm uses a queue Q of
still to be considered nodes, which is initialized to the level 1 model set variants
X (line 1). All elements of X have been added as nodes to N in Algorithm 1,
such that X ⊆ N . It then processes the queue as long as it is not empty (lines 2
– 26). It picks an element q from queue Q (line 3), and removes it from Q (line
4). It then considers all possible combinations of q with other level 1 models set
variants from X, to in the end consider all combinations of elements from X (lines
5 – 25). Several optimizations could be done here for the selection of x ∈ X.
For instance, all elements x = q could be skipped as unions and intersections are
reflexive, and therefore don’t lead to new variants and thus not to new nodes. If
x and q are either ancestors or descendants of each other, they also do not need
to be combined, as their union or intersection would either result in x or q, and
thus not in new variants/nodes. Finally, each combination of x and q needs to be
considered only once, as both union and intersection are commutative. The two
nodes q and x are combined using o, so either q ∪ x or q ∩ x is computed, and
the result is x′ (line 6). Then first it is considered whether new edges need to be
added (lines 7 – 20). An edge between q and x′ needs to be added (lines 8 – 12) if
x′ is a new variant (x′ /∈ N), or if it is an existing variant, but it is not yet related
(q 6= x′ ∧ q ≮N x′ ∧ x′ ≮N q) (line 7). If a union was computed (line 8), then an
edge from q to its child x′ is added (line 9), while if an intersection was computed
(line 10), then an edge to q from its parent x′ is added (line 11). Similarly, and
edge between x and x′ is added, if needed (lines 14 – 20). After adding edges, it
is considered whether a new node needs to be added (lines 21 – 24). If x′ is a new
variant not yet in N (line 21), it is added as a node (line 8) and that node needs
to be combined with all inputs as well and is therefore also added to the queue
(line 9).

Figure 4.4b shows the level 2 lattice for our running example. The variants
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Algorithm 3 Complete a partial lattice for level 2
Input: A partially ordered set X = (S/=L,≤L) of level 1 model set variants, a

partial lattice (N,E), and an operation o ∈ {∪,∩} to combine two nodes.
Output: The updated lattice (N,E).

1: Q← X
2: while Q 6= ∅ do
3: q ← an element of Q
4: Q← Q \ {q}
5: for all x ∈ X do
6: x′ = q o x
7: if x′ /∈ N ∨ (q 6= x′ ∧ q ≮N x′ ∧ x′ ≮N q) then
8: if o = ∪ then
9: Add edge (q → x′) to (N,E).

10: else if o = ∩ then
11: Add edge (x′ → q) to (N,E).
12: end if
13: end if
14: if x′ /∈ N ∨ (x 6= x′ ∧ x ≮N x′ ∧ x′ ≮N x) then
15: if o = ∪ then
16: Add edge (x→ x′) to (N,E).
17: else if o = ∩ then
18: Add edge (x′ → x) to (N,E).
19: end if
20: end if
21: if x′ /∈ N then
22: N ← N ∪ {x′}
23: Q← Q ∪ {x′}
24: end if
25: end for
26: end while

from level 1 are indicated by ellipses containing the variant and number of entity
models that have behavior. The extra variants computed to complete the lat-
tice are indicated by diamonds. They are new behavioral variants, and therefore
new letters (compared to the ones already used in level 1) are assigned here, in
alphabetical order, to identify the new variants (D, E, F, etc). Arrows indicate
directed edges that represent inclusion relations, e.g., the behavior of variant D
is included in that of variants A and B (and E, I and G, by transitivity). The
arrows are labeled with the number of entities with different present behavior
(e.g., ~1) and the number of entities with newly present behavior (e.g., +1). For-
mally, for model set variants Si, Sj and Si ≤L Sj , these are computed by |{e ∈
E |B(Si(e)) ∧ B(Sj(e)) ∧ Si(e) 6=L Sj(e)}| and |{e ∈ E | ¬B(Si(e)) ∧ B(Sj(e))}|,
respectively.

Level 2 provides information on which variants have more or less behavior than
other variants, whether variants are closely related (direct arrow) or less closely
related (via several arrows), and it has quantitative information on the models

80



Chapter 4

within the model sets by means of the labels on the arrows. As for level 1, we
can check whether this conforms to our expectations, or not. For instance, if we
compare two software versions and we only added new functionality (e.g., new
entities), we would reasonably expect the behavior of the old software version to
be included in that of the new software version, and we can check whether that is
indeed the case. If this is all that we want to know, we can stop here and we do
not need to proceed to level 3.

4.2.3 Level 3: Model set variant differences
Level 2 shows us the quantitative differences between model sets via the arrow
labels. However, some model set variants are not directly related by an inclusion
arrow (e.g., variants A and B). The number of entities with different behavior
between them cannot be determined from the lattice, as simply summing labels
(e.g., ~1, +1) could count the same entity multiple times. Level 3 provides more
details, showing the number of entities with different behavior between all input
model sets. That is, for model sets Si, Sj ∈ S it shows |{e ∈ E |Si(e) 6=L Sj(e)}|.

Figure 4.4c shows the level 3 matrix for our running example. Rows and
columns are labeled with the input model sets. Cells indicate the number of
entities with different behavior. As language equality is a symmetric and reflexive
relation, only the upper-right part of the matrix is filled, and the diagonal is
labeled with ‘=’ symbols. As expected, model sets S1 and S2 have zero entities
with different behavior, as they have the same model set variant. Model sets S1

(variant A) and S4 (variant C) have three entities with different behavior.
Level 3 provides more detailed quantitative information. It shows not just

whether model sets are different, and how many model sets have differences, but
also how different they are. The diagonal is colored gray as it is not relevant.
Numbered cells are colored like a heat map based on a gradient from green (no
entities with differences) via yellow and orange to red (most entities with differ-
ences). In case of many model sets this may again reveal patterns, as we will see in
Section 4.3. Similarly to the previous levels, we can check whether all information
matches our expectations, and whether we want to proceed to level 4, or not.

4.2.4 Level 4: Model variants
Levels 1 – 3 focus on model sets. Level 4 zooms in even further and considers the
(entity) models within the model sets. Similar to how level 1 identifies model set
variants, level 4 identifies model variants for each entity. Formally, for an entity
e ∈ E, let Se = {S(e) |S ∈ S}. We consider equivalence classes Se/=L for each
e ∈ E and enumerate and represent them in alphabetical order: A, B, etc. Note
that variants are determined per entity and thus variant A of one entity does not
necessarily have the same behavior as variant A of another entity.

Figure 4.4d shows the level 4 matrix for our running example. The cells indi-
cate the behavior variant of the model for the corresponding entity (row) in the
corresponding model set (column).

Level 4 is the first level to provide details on which entities differ between
model sets. This provides a high level overview of the behavior variants for entity
models, similar to how level 1 provides it for model sets. We can see the variants,
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how many there are, for which models sets, and whether this is expected or not.
Depending on the use case, we may again stop at this level if it answers our
questions, e.g., in case of checking for regressions if each entity has only a single
behavior variant. Otherwise, we can reduce the number of entities to consider for
subsequent levels, e.g., skip the ones without regressions (only a single variant, no
differences). Furthermore, we may then focus only on unique entity model variants
instead of all individual entity models. Finally, the matrix cells are again colored
using shades of blue like a heat map. Models without behavior are indicated as a
red cell labeled ‘−’ to make them stand out. Here too, in case of many model sets
this may reveal patterns, as we will see in Section 4.3.

4.2.5 Level 5: Model variant relations
Level 5 shows relations between entity model variants of level 4, similar to how
level 2 shows relations between model set variants of level 1. Formally, for an
entity e ∈ E we have a partially ordered set (Se/=L,≤L), which we extend to a
finite lattice using unions and intersections, similar to level 2.

Figure 4.4e shows the level 5 lattice for our running example, for entity E2.
We use a representative model for each entity model variant (set of equivalent
models). The node shapes and arrows are as in level 2. The node labels now
indicate the number of transitions of the model, and the arrow labels indicate the
number of added (e.g., +7) and removed transitions (e.g., -1). These are based on
the structural comparison that we use and will explain further for level 6. In our
example, the behavior of variant B is included in the behavior of variant C.

Level 5 provides information on which entity model variants have more or less
behavior, how closely they are related, and the amount of changes between them.
As for previous levels, we can check whether this conforms to our expectations, or
not. We can also use it to decide what to inspect in more detail in level 6.

4.2.6 Level 6: Model variant differences
Level 6 is the last level. It shows all structural differences between two entity
model variants of level 5 as a diff NFA, computed with the LTSDiff algorithm.

Figure 4.4f shows the level 6 diff NFA for our running example, for variants B
and C of entity E2. Variant C (from model set S4) has two extra transitions in its
state machine, and this is clearly visible as two green arrows in this figure.

Level 6 provides the most detailed behavioral differences. Diff NFAs show
differences in terms of states and transitions within models. As with the other
levels, we can check whether this matches our expectations, or not.

4.3 Evaluation
We perform an empirical evaluation of our methodology through an exploratory
field study [110, 118]. To gain some first evidence of both its practical potential
and its ability to handle large systems, we perform three case studies at ASML.
The first two case studies provide some preliminary evidence of our methodology’s
practical value, by showing the benefits of all six of its levels, as well as finding a
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regression. The third case study shows that our methodology can be applied to a
large industrial system, providing insights into its behavior. We have completely
automated our approach, in the MIDS tool (see Chapter 6).

ASML develops photolithography systems for the semiconductor industry.
These systems process wafers (thin circular slices of silicon) in batches (lots).
Multiple circuits (dies) are produced on a single wafer. After the wafer’s height
profile is measured, a light source exposes the chip pattern onto a wafer through a
projection mask (a reticle). A reticle may contain a full-sized pattern (full field)
or a smaller one (narrow field). Computational lithography software uses the
measurements to compensate for nano-scale imperfections during exposure.

In this section the start of function call f is denoted as f↑ and its end as f↓.

4.3.1 Case study 1: Legacy component technology migra-
tion

For the first case study, we look at a relatively small computational lithography
component, developed and maintained by two engineers. It is internally imple-
mented using legacy end-of-life technology and is migrated to new technology,
without changes to its external interface. The engineers thus expect to see the
same external behavior in communications with the other components, and we
apply our approach to see whether this is indeed the case.

We observe six executions, using three different test sets for both the legacy
and new implementations. The integration test set contains integration tests. The
overruling and verification test sets each test different configuration options and
functionality of the component. Each test set contains multiple tests. For rea-
sons of confidentiality we do not explain them in more detail. For each observed
execution, we obtain an execution log capturing the component’s runtime commu-
nications with other components. The log for each execution is split into separate
logs for each of the functions in the component’s external interface. Using the
CMI state machine learning algorithm (see Chapter 3), we obtain six model sets
(one for each execution), with 11 interface functions of the component as entities.
The model sets together contain 46 models with behavior, with 2 to 578 states per
model, and a sum total of 1,330 states. We run our tool, which takes about 3.38
hours on a standard laptop, mostly spent on executing LTSDiff, and discuss the
results per level.

Level 1 (Figure 4.6a): Only for integration there are differences in behavior
between the legacy and new implementations. As the other two test sets show no
differences, they do not need further inspection. Given that we then have only
two model sets left, we skip levels 2 and 3, and proceed directly to level 4.

Level 4 (Figure 4.6b): We see the 11 functions, anonymized for confidentiality
reasons, and their behavioral variants. Only 6 out of 11 entities show differences
in behavior, to be inspected in more detail. Given that they all have only two
variants per entity, we skip level 5 and proceed directly to level 6.

Level 6 (Figures 4.6c and 4.6d): Figure 4.6c shows the diff NFA for function
‘apply’ (abbreviated to ‘a’), for variant A to variant B. The figure shows that the
new implementation involves only the start and end of this function. The legacy
implementation has more behavior, as within the ‘apply’ function it has 30 calls
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integration legacy A
integration new B
overruling legacy C
overruling new C
verification legacy D
verification new D

(a) Level 1

legacy new
apply A B

finalize A B
get_status1 A A
get_status2 A A

initialize1 A B
initialize2 A A

model A B
prepare A B

set_context A A
terminate1 A B
terminate2 A A

(b) Level 4
(integration)

a↑ a↓

log↑

log↓

[56]
log↑

log↓

a↓

(c) Level 6
(apply, A → B)

p↑

p↑
[8]

[4] [14]

x↑

x↓ x↓

[64]

p↓

(d) Level 6
(prepare, A → B)

Figure 4.6: First results for case study 1: complete level 1, level 4 for the integration
test set, and level 6 with variants A vs B for functions ‘apply’ and ‘prepare’.

(with returns) to a ‘log’ function. In the figure, only the first and last of these
calls (with their returns) are shown, and the remaining sequence of 56 transitions,
representing 28 calls and their returns, is abbreviated to ‘[56]’. Figure 4.6d shows
the diff NFA for function ‘prepare’ (abbreviated to ‘p’), for variant A to variant B.
For reasons of confidentiality and presentational clarity again several sequences of
transitions are abbreviated. Here, the figure shows that the legacy implementation
invokes the ‘log’ function 4 and 32 times, indicated as ‘[8]’ and ‘[64]’, respectively,
while the new implementation does not.

Having inspected the differences for only two entities, it appears that all ‘log’
function calls are missing in the new implementation. The component engineers
confirmed that indeed for the new implementation the component was not yet
hooked up to the logging framework. Our approach clearly shows this regression.

To look for other differences in behavior, we remove all ‘log’ function calls and
returns from the models of the legacy implementation. To do so, we rename all ‘log’
function call and return events to ε and apply weak-language normalization [115].
We run our tool again, which now only takes a mere 19 seconds.

Level 1 (Figure 4.7): Looking at the new results for level 1, we immediately
see that there are no more observed differences in behavior for the legacy and new
implementations, for all three test sets. We do not see any further regressions in
behavior, and we thus do not have to go to further levels.

integration legacy A
integration new A
overruling legacy B
overruling new B
verification legacy C
verification new C

Figure 4.7: New results for case study 1: level 1.
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Given that the engineers consider this component to have quite a good test
set with adequate coverage, our approach is applied as an extra safety net that
complements traditional testing, akin to differential testing [54]. As any change in
the (order of) communications with other components will show up in our models
and comparisons, it is like having assertions for all external communications. Both
engineers find this valuable. They would like to apply our methodology also for
larger and more complex technology migrations, where they foresee even more
value.

4.3.2 Case study 2: Test coverage
The second case study considers again the same component and three test sets from
the first case study, but from a difference angle. Instead of comparing the legacy
and new implementation, we compare the three test sets against each other. The
goal is to see how the behaviors of the components that communicate during the
different test sets differ, and whether one or more test sets are perhaps superfluous.
We use the versions of the input models, and results of running our tool, from the
first case study where the ‘log’ function is completely removed. We discuss the
results of applying our methodology, per level:

Level 1 (Figure 4.8a): The three tests sets have different behavior (A – C).
Level 2 (Figure 4.8b): The integration test set (variant A) has behavior for

all 11 functions, and the other two test sets (B, C) for 5 fewer functions, i.e., 6
functions. Also, integration (A) includes all the behavior of the other two test
sets, while verification (C) differs from overruling (B) by only one function. As
all variants are (transitively) related in the lattice, we skip level 3.

Level 4 (Figure 4.8c): We clearly see which 5 functions are only used during the
integration tests. The component engineers expect this difference, as for overruling
and verification these 5 functions are stubbed internally and are thus not externally
visible. Also, for the verification tests only the ‘model’ function has different
behavior. We inspect this further in level 5.

Level 5 (Figure 4.8d): The behavior of the ‘model’ function for variant B

integration A
overruling B
verification C

(a) Level 1

A (11)

B (6)

C (6)

+5

~1

(b) Level 2

integration

overru
ling

verifi
cation

apply A A A
finalize A A A

get_status1 A − −
get_status2 A A A

initialize1 A − −
initialize2 A − −

model A A B
prepare A A A

set_context A A A
terminate1 A − −
terminate2 A − −

(c) Level 4

A (45)

B (44)

+1

(d) Level 5
(model)

m↑

[8]
[14]

[2]
[8]

m↓

[4]
[4]

[2]

m↓

(e) Level 6
(model, B → A)

Figure 4.8: Results for case study 2: complete levels 1, 2 and 4, level 5 for function
‘model’, and level 6 for function ‘model’ variants B vs A.
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(verification) is included in that of variant A (integration and overruling), which
has one additional transition. We inspect this further in level 6.

Level 6 (Figure 4.8e): Here we see the diff NFA for function ‘model’ (abbrevi-
ated to ‘m’), for variant B to variant A, following the arrow in the level 5 lattice.
For confidentiality and presentational clarity we annotate other arrows with [n] to
abbreviate n transitions in sequence. The one extra transition of function variant
A is clearly visible. There it is possible to return to the initial state earlier on, skip-
ping part of the behavior of the state machine. The engineers again expect this,
as some functionality is not activated depending on the component configuration.

The comparison results suggest that since the integration test set covers more
behavior than the other two test sets, those other two test sets can be removed.
This would be a valid conclusion, if one only considers function call order, as we do
for our methodology. However, functions could have different behavior for different
arguments. If this results in a difference in which functions are called or in what
order they are called, then our approach will highlight such differences. If however
for different configurations there are differences in which paths through a state
machine are taken for which argument values, while each path is still taken for
some argument value, this would not be visible with our current approach. The
different test sets that we consider do indeed test different configurations using
different argument values, and hence they do add value and can not simply be
removed. Fully taking the influence of argument values into account is considered
future work (see also Section 7.2.3).

In any regard, our methodology provides insight into the behavioral differences
for the various configurations and functional scenarios considered by the different
test sets. This can be automatically obtained even by engineers who are not
domain experts.

4.3.3 Case study 3: System behavior matching recipe
For the third case study, we investigate how recipes containing information on
the number of wafers and used reticles relate to the system behavior. ASML’s
customers can specify their own recipes to configure their lithography systems for
their purposes, e.g., to create CPU or memory chips. The software running on
the systems will exhibit different behavior for different recipes, and thus software
behavior offers a lens to look at system behavior.

Table 4.1 shows the recipes that we consider for this case study. For reasons of
confidentiality, we do not explain the origin of these recipes and we consider only
the details relevant for this case study. There are six lots, each with their own
recipe. Lots 1 and 2 have five wafers each and the other lots have 15 wafers each.
There are two reticles, X and Y. For lot 1, reticle X is used 96 times, one for each

Lot 1 Lot 2 Lot 3 Lot 4 Lot 5 Lot 6
Wafers 5 5 15 15 15 15
Reticle 96*X 96*Y 96*X 96*Y 124*X, 1*Y 125*X
Field Full Full Full Full Narrow Narrow

Table 4.1: Case study 3: recipes for the different lots.
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Figure 4.9: Case study 3: sizes of the input models with behavior.

die. Lot 5 uses both reticles. Exposure can be done using full field or narrow field,
where narrow field leads to more exposures (125 rather than 96).

We consider the behavior of the exposure sub-system, i.e., 32 software compo-
nents involved in the high-level exposure control. Observing the system execution
for about an hour as it initializes and processes lots, we obtain a single execution
log capturing all observed inter-component communications. This log is split into
multiple logs, one for each of the 85 exposures (one per wafer and for lot 5 twice
per wafer as it uses two reticles). The exposure logs are further split into separate
logs for each of the components, containing only their interactions with the other
components. Using the CMI state machine learning algorithm (see Chapter 3), we
obtain 85 model sets (one per exposure), containing models of the 32 components
(entities). Model sets may lack a certain component model if that component did
not interact with other components during the corresponding exposure. Figure 4.9
shows the sizes of the input models in number of states. The 85 model sets to-
gether contain 2,386 models with behavior, with 2 to 7,070 states per model, and
a sum total of 495,505 states, making this a large case study.

We run our tool, skipping levels 2 and 5 as they are less relevant for this case
study. For LTSDiff, local instead of global scoring is used when state machines with
more than 100 states are involved, sacrificing accuracy for performance. Running
the tool takes about 1.23 hours. We discuss the results per level.

Level 1 (Figure 4.10): We discuss multiple observations based on patterns
that are visible in level 1. Each exposure is indicated with an identifier, such as
3-10 for the exposure of wafer 10 from lot 3, and 5-15B for the second exposure
(B) of wafer 15 from lot 5. Different gradient colors are used for the different
behavioral variants, for presentational clarity.

a) First exposure of a lot: For lots 1 – 4, the main behavior variant is variant
B. The first exposures of these lots however all have different behavior than
B, namely A or D.

b) Changes during a lot: For lots 2 – 4 we also see different behavior for some
exposures later during the lot (C, E).

c) Reticle swaps: All exposures of lot 5 (F – L) have behavior different than the
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1-1 A
1-2 B
1-3 B
1-4 B
1-5 B

2-1 A
2-2 B
2-3 B
2-4 C
2-5 B

3-1 A
3-2 B
3-3 B
3-4 B
3-5 B
3-6 B
3-7 B
3-8 B
3-9 B
3-10 B
3-11 C
3-12 B
3-13 B
3-14 B
3-15 B

4-1 D
4-2 B
4-3 B
4-4 B
4-5 B
4-6 B
4-7 B
4-8 B
4-9 B
4-10 B
4-11 B
4-12 B
4-13 E
4-14 B
4-15 B

5-1A F
5-1B G
5-2B H
5-2A I
5-3A J
5-3B G
5-4B H
5-4A I
5-5A J
5-5B G
5-6B H
5-6A I
5-7A K
5-7B G
5-8B H
5-8A I

5-9A K
5-9B G
5-10B H
5-10A I
5-11A K
5-11B G
5-12B H
5-12A I
5-13A K
5-13B L
5-14B H
5-14A I
5-15A K
5-15B L

6-1 M
6-2 N
6-3 N
6-4 N
6-5 N
6-6 N
6-7 N
6-8 N
6-9 O
6-10 N
6-11 N
6-12 N
6-13 N
6-14 N
6-15 O

Figure 4.10: Results for case study 3: level 1.

other lots (A – E, M – O). Lot 5 is the only lot where two reticles are used
per wafer, and thus reticles must be swapped regularly. To minimize the
number of swaps, the system uses an ‘XYYX’ pattern for every two wafers
(first wafer reticle ‘X’, first wafer reticle ‘Y’, second wafer reticle ‘Y’, second
wafer reticle ‘X’). These patterns of four exposures are clearly visible in the
model set variants (J – G – H – I, K – G – H – I).

d) Full field vs narrow field: The difference between lots 1 and 3 compared to
lot 6 is the use of full vs narrow field. The behavior for lots 1 and 3 (A – C)
and lot 6 (M – O) differ, but they have similar structure (mostly the same
variant, first exposure and some exposures during the lot are different).

Level 3 (Figure 4.11): We elaborate on each of the four observations using
the results for level 3.

a) First exposure of a lot: For lots 1 – 4, we mainly see regular behavior (dark
green, no components with different behavior). For the first exposures of
these lots we do see differences (yellow lines, mainly 2 or 3 components).

b) Changes during a lot: For lots 2 – 4 we again see differences for some ex-
posures later during the lot (light green and yellow lines, mainly 1 or 2
components).

c) Reticle swaps: The reticle swaps are again very much visible for lot 5 (vertical
orange, red and light green lines in a repeating pattern of 4 columns).

d) Full field vs narrow field: Observe the differences between thick-border en-
closed areas left and right of the figure. These full field (lots 1 + 3) vs narrow
field (lot 6) differences seem to be caused by a single component.

Level 4 (Figure 4.12): The observations are detailed even further using the
results for level 4.
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Multi-level behavioral comparison methodology
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Chapter 4

a) First exposure of a lot: The differences in first exposures of lots 1 – 4 can be
attributed primarily to components C1 and C21, and for lot 4 also to C28.

b) Changes during a lot: The changes for exposures during lots 2 – 4 can be
attributed to components C4, C9 and C28.

c) Reticle swaps: The reticle swap differences affect many components. For
several components (e.g., C2, C6, C9) we again see the ‘XYYX’ reticle swap
pattern. For some other components (e.g., C3, C4) we see a ‘VWVW’ pattern
instead, relating to first vs second exposure of a wafer.

d) Full field vs narrow field: Indeed only one component (C9) causes the full
field (lots 1 + 3) vs narrow field (lot 6) differences (variants A/B vs G).

Level 6 (Figure 4.13): For reasons of confidentiality, we focus only on the first
exposure of a lot differences. We inspect level 6 for variants A and B of component
C21. Figure 4.13 shows a part of the diff state machine, with ‘l’ a logging function,
‘i’ a function to get some information, and ‘q’ a query function. For confidentiality
reasons we do not explain the functions in more detail. The upper and lower paths
indicate that both versions can skip the calls to ‘q’. The only difference is that
variant A (first wafer, in red) calls ‘i’ before calling ‘q’, while variant B (other
wafers, in green) does not. The company’s domain experts are well aware of such
‘first wafer effects’.

Conclusion: The system behavior differs between wafers, and by going through
the levels of our methodology we obtain progressive insights into these behavioral
differences and how they relate to the recipes. This allows engineers to understand
how different configurations influence the system behavior, e.g., which components
are affected by reticle swaps or full field vs narrow field, and in what way they
behave differently. While the input contains a large number of state machines,
with an even larger number of states, our methodology allows engineers to step
by step zoom in on parts of this behavior, thus making it suitable to analyze this
large system.

Our approach has many potential applications. For instance, understanding
how certain configurations affect the system behavior is key when changing the sys-
tem behavior. Junior engineers can understand the system and its configurations
without having to rely on domain experts. Domain experts can check whether
their mental views conform to reality, and adapt their mental views if they turn
out to be outdated or incomplete. Furthermore, if certain configurations have no

. . . . . .l↑
l↓

l↓

i↑
l↑

i↓ q↑

l↑

q↓ q↑ q↓ l↑ l↓

Figure 4.13: Results for case study 3: excerpt of level 6 (C21, A → B).
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effect at all on the system behavior, they could be removed from the system to
avoid having to consider them when changing the system.

4.4 Conclusions and future work
We contribute a novel multi-level methodology for behavioral comparison of soft-
ware-intensive systems. It integrates multiple existing complementary methods to
automatically compare the behavior of state machines. Our methodology takes
advantage of their complementary nature in a novel way, using six levels with
progressive detail to handle the complexity of large industrial systems.

Our qualitative exploratory field study suggests that our approach allows one to
inspect the behavioral differences of large systems, and that it has practical value
for getting insight into system behavior for various configurations and scenarios,
and preventing regressions. However, a more rigorous and quantitative evaluation
of our methodology is still needed (see Chapter 5).

Our work is generically applicable as it works on state machines, which are
widely used and understood in both computer science and industry. We plan to
research the generality of our approach by also applying it at other companies
with software-intensive systems that have suitable state machine models [21] (see
Section 6.2.2). We also plan to make the MIDS tool, which includes our multi-level
comparison approach, publicly available as an open-source tool (see Chapter 6).

Other future work includes extensions beyond comparing NFAs to consider
also Extended Finite Automata and Timed Automata as input to our approach
(see also Section 7.2.1), and adding actionable insights beyond merely behavioral
differences to further support change impact analysis (see [7]). Our methodology
could also be applied to different use cases such as diagnosis of unstable tests and
field issues.
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gLTSdiff: Generalized and
extended structural
comparison

Various kinds of state machine models exist, such as labeled transition systems,
(extended) finite automata, feature finite state machines, and timed automata.
They are broadly used in academia and industry alike, to model software behav-
ior, as well as for other purposes. In practice, state machine models are often
compared, for instance to evaluate the accuracy of different model learning al-
gorithms [105, 126], to find regressions in new software versions before they are
deployed [132] (see also Chapter 4), and to perform software fingerprint match-
ing for security applications such as malware detection, copyright infringement,
vulnerability analysis, and digital forensics [9, 41].

Methods to compare state machine models can be divided into behavior-based
methods, well-suited for comparing many state machines and providing a broad
overview, and structure-based methods, which make detailed differences tangi-
ble [126] (see also Chapter 4). Various structural model comparison approaches
have been proposed in the literature [99, 105]. State of the art is the LTSDiff algo-
rithm by Walkinshaw and Bogdanov [126]. It is fully automated and has limited
assumptions, making it broadly applicable. However, its limited assumptions also
mean that additional information of specific state machine model representations
is not taken into account, requiring adaptations to prevent sub-optimal or even
invalid results [23, 39, 40, 99].

We introduce gLTSdiff, which generalizes and extends LTSDiff. Our main con-
tribution is gLTSdiff’s generality. It supports a wide range of state machine model
representations, taking their additional information into account by matching over
the (fine-grained) structure of state and transition labels. And it can be config-
ured to support additional representations. We also discuss further challenges we
faced while applying LTSDiff in an industrial context. gLTSdiff addresses them,
by rewriting undesired difference patterns, supporting comparison of any number
of input models, and allowing for an effort/quality trade-off.

The gLTSdiff approach is implemented as an extensible open-source library.
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We apply it to several large-scale industrial and open-source case studies, to show
that gLTSdiff provides an extensible, configurable, scalable approach to compare
various kinds of state machine models, supporting a variety of real-world appli-
cations. Concretely, we show its practical value, that it handles large numbers
of input models, reduces the number of differences in comparison results, and al-
lows for an effort/quality trade-off. For reproducibility, all input models, code and
comparison results of the evaluation are available as a public artifact [57].

We discuss related literature and the LTSDiff algorithm in Section 5.1, the
challenges in applying it in Section 5.2, our generalized and extended approach
gLTSdiff in Section 5.3, and our open-source library and its design in Section 5.4.
We evaluate our approach in Section 5.5, before concluding in Section 5.6.

5.1 Background
5.1.1 General notations
The length of a sequence or tuple t is denoted by |t|, its i-th element by ti or
t[i] for 1 ≤ i ≤ |t|. We further denote the symmetric difference of two sets by
	, and the powerset of set X by P(X). The domain dom(f) and range rng(f)
of a partial function f : X ⇀ Y are defined as {x ∈ X | f(x) is defined} and
{f(x) |x ∈ dom(f)}, respectively, with dom(f) ⊆ X and rng(f) ⊆ Y .

5.1.2 State machines
State machines can be used to model (software) behavior, for instance the order
of function calls and returns. State machines exist in various flavors. We define
a finite Labeled Transition System (LTS), simply called LTS from here on, and a
Non-deterministic Finite Automaton (NFA) as usual:

Definition 5.1 (LTS). An LTS L=(S,Σ,∆, I) is a 4-tuple with S a finite set of
states, Σ a finite set of events or labels, ∆⊆ S×Σ×S a set of transitions, and
I⊆S its initial states.

Definition 5.2 (NFA). An NFA A = (S,Σ,∆, I, F ) is a 5-tuple with (S,Σ,∆, I)
an LTS, and F ⊆S a set of accepting or final states.

Deterministic Finite Automata (DFAs) are a sub-class of NFAs allowing for
each source state and event at most one target state. We use subscripts to dis-
tinguish multiple state machines, such as two LTSs L1 = (S1,Σ1,∆1, I1) and
L2 = (S2,Σ2,∆2, I2). We further use superscripts to refer to elements of state
machines. For example, LS

1 and LS
2 refer to the sets of states of L1 and L2, respec-

tively. For a transition t = (s, σ, s′) ∈ ∆, we define tsrc = s, tlbl = σ and ttgt = s′,
to refer to its source state, label and target state, respectively.

5.1.3 State machine comparison
Rather than general model comparison methods [29, 75], we consider ones specific
to state machines. Walkinshaw and Bogdanov [126] differentiate behavior-based
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and structure-based methods. Behavior-based methods consider the externally ob-
servable behavior of state machines in terms of sequences of events. They include
qualitative equivalence and inclusion relations such as bisimulation equivalence and
language inclusion [49], and quantitative measures such as precision and recall [116,
126]. Complementary, structure-based methods consider the overlap of their inter-
nal model representations in terms of their states and transitions. Both are useful:
behavior-based methods are well-suited for comparing many state machines and
providing a broad overview, while structure-based methods allow revealing their
detailed differences (see Chapter 4).

Various algorithms for structural comparison of state machines exist. Quante
and Koschke [105] automatically compare two minimal DFAs by computing their
union, and from the initial states walking through each input DFA in parallel with
the union, finding deleted and inserted transitions along the way. Nejati et al. [99]
match hierarchical StateChart models, considering states to match if a weighted
average of some typographic, linguistic, depth and structure measures exceeds
a certain threshold. Structurally, they consider immediate neighbors for local
similarity scores, and take into account further-away states by aggregating scores
forwards and backwards through a bounded iterative refinement. Initial values
can be customized, and domain experts must review matches. For sound matches,
where initial states are matched and behavior and hierarchy are preserved, the
input StateCharts are merged into a single parameterized model. Walkinshaw and
Bogdanov define the LTSDiff algorithm [126]. LTSDiff is similar to the work of
Nejati et al. in various ways, as it computes global similarity scores between states
of two input LTSs, heuristically matches states based on those scores, and uses
the matching to construct a difference LTS, a merged model of the differences (see
Figure 5.1d for an example).

LTSDiff has the advantage that it does not require state machines to be de-
terministic or minimal, does not require states to be reachable from initial states,
does not rely on state labels, does not require input from domain experts, and
produces relatively small diffs in practice. The limited assumptions are however a
double-edged sword, on the one hand leading to a more universally-applicable al-
gorithm, and on the other hand not allowing to take state information and domain
knowledge into account to improve matches. LTSDiff can however be adapted to
support specific kinds of models. For example, it was adapted to compare Feature
Finite State Machines (FFSMs) [39, 40], and to compare LTSs that distinguish
unknown from invalid behavior [23]. LTSDiff can thus be seen as state-of-the-
art in structural comparison of software behavior, and serves as a good basis for
adaptation and extension towards other kinds of state machine models.

5.1.4 The LTSDiff algorithm
In this chapter, we extend and generalize LTSDiff to gLTSdiff. We briefly discuss
the definition of the LTSDiff algorithm by Walkinshaw and Bogdanov [126], using
slightly different notation, and illustrate it using the example of Figure 5.1. The
structural comparison of two LTSs L1 and L2 (Figure 5.1a) involves determining
which of their states and transitions are similar and can thus be matched, and
which (remaining) states and transitions have then been added or removed to
turn L1 into L2. LTSDiff assumes no particular knowledge about the states, such
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v w x

y z

a

b

a

a

b
a

a

a

c

(a) Input LTSs

vy vz wy wz xy xz
vy 2 −k 1
vz 8 −k −k 2
wy 6 −k −k 2
wz −k −k 12−k −k −k 5
xy 2 0
xz 6 0

(b) Linear equations for scglobsucc

Pair scglobsucc scglobpred scglob

vy 0.648 0.321 0.484
vz 0.316 0.000 0.158
wy 0.383 0.380 0.381
wz 0.493 0.470 0.482
xy 0.000 0.321 0.160
xz 0.000 0.418 0.209

(c) (Rounded) scores for k = 0.6

a

b

a

a

a

c

(d) Diff LTS

Figure 5.1: LTSDiff example, inspired by Figure 3 and Table V of [126].

as state labels. The algorithm matches states based on the similarity of their
surroundings, which is captured in (state) similarity scores.

1) Similarity Scores: LTSDiff first computes similarity scores for all possible
pair-wise combinations of states from L1 and L2. A local score only considers
overlap in directly connected incoming and outgoing transitions of the states. For
a state s ∈ S, its outgoing events are defined as out(s) = {tlbl | t ∈ ∆ ∧ tsrc = s}.
For two states s1 ∈ LS

1 and s2 ∈ LS
2 their set of common successors contains the

pairs of states reachable by common outgoing events:

succ(s1, s2) = {(s′1, s′2, σ) | (s1, σ, s′1) ∈ L∆
1 ∧ (s2, σ, s

′
2) ∈ L∆

2 } (5.1)

The local successor similarity score is then defined as the total number of common
transitions as a fraction of the total number of transitions that constitute possible
matches (common and uncommon ones):

sclocalsucc (s1, s2) =
|succ(s1, s2)|

|out(s1)	 out(s2)|+ |succ(s1, s2)|

In case of division by zero, the score is zero. The local predecessor similarity
score sclocalpred is computed similarly. For the two example LTSs of Figure 5.1a,
succ(w, z)={(w, z, a), (x, z, a), (w, y, a), (x, y, a), (v, y, b)}, out(w)={a, b}, out(z)=
{a, b, c} and sclocalsucc (w, z)=

5
1+5 . The local successor similarity score is extended to

a global successor similarity score by recursively considering all context:

scglobsucc(s1, s2) =
1

2

∑
(s′1,s

′
2,σ)∈succ(s1,s2)

(
1 + k · scglobsucc(s

′
1, s

′
2)
)

|out(s1)	 out(s2)|+ |succ(s1, s2)|
(5.2)

Successor count |succ(s1, s2)| is replaced by a summation over all successors. Each
successor is still counted once, by adding 1, and additionally the global score of
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each successor is taken into account, by adding scglobsucc(s
′
1, s

′
2). Attenuation or

discounting factor 0 ≤ k ≤ 1 ensures that nearby states contribute more to the
score than further-away ones. The 1

2 fraction in front ensures that scglobsucc ≤ 1. In
case of division by zero, the score is zero instead.

The definition of scglobsucc forms a system of linear equations, by considering
scglobsucc(s1, s2) as a variable for each state pair (s1, s2) ∈ LS

1×LS
2 , and pre-calculating

the local knowledge of Equation 5.2, leaving only recursive uses of scglobsucc as un-
known variables. For the example, the linear equations to compute scglobsucc are
shown in Figure 5.1b. For instance, for variable vy denoting scglobsucc(v, y), using
Equation 5.2 we get vy = 1

2
1+k·wz
0+0+1 . By multiplying both sides by 2, and simpli-

fying the divisor, we get 2 · vy = 1+k·wz
1 . We can then simplify the fraction, to

get 2 · vy = 1 + k · wz. By on both sides subtracting the right-side term with the
variable (k · wz), we get 2 · vy − k · wz = 1. This way, only a constant remains
on the right side. This matches the first row in Figure 5.1b. The first column
indicates the variable that we are considering (vy). The last column indicates the
right side value (1). The other columns indicate the left side of the equation: for
2 · vy we get a 2 in the vy column, and for −k · wz we get −k in the wz column.

Solving the system of equations produces the global successor similarity score
for each state pair. The global predecessor similarity score scglobpred can be similarly
computed. They are averaged to compute the final global similarity score:

scglob(s1, s2) =
scglobpred(s1, s2) + scglobsucc(s1, s2)

2
(5.3)

The final scores for the example are shown in Figure 5.1c.
2) State Matching: LTSDiff uses the similarity scores to heuristically compute

a matching between states of the two LTSs. It does so based on landmarks, a per-
centage of the highest scoring pairs (threshold t) that score at least some factor
better (ratio r) than any other pairs, with a fallback to the initial states. The
most obviously similar state pairs are matched first and are then used to match
the surrounding areas, rejecting any remaining conflicting state pairs. Surround-
ing areas are matched both forwards and backwards. In case there are multiple
potential choices, such as non-deterministic choices of transitions, scores are used
to select best matches. Once the surrounding areas are matched as far outwards
as is possible, the next-best remaining state pair is selected and matched, and so
on, until no state pairs are left to consider. The details are not so relevant for our
work, but can be found in Algorithm 1 of the LTSDiff paper [126].

For the example, we use t = 0.25 and r = 1.5. We thus select out of the six
possible state pairs the top 25%, namely ‘vy‘ with score 0.484, and ‘wz‘ with score
0.482. For ‘vy’, r is not relevant, as there are no other selected state pairs with
states ‘v’ or ‘y’. Similarly, for ‘wz’ also r is not relevant, as there are no other
selected state pairs with states ‘w’ or ‘z’. Hence, both state pairs are selected
as landmarks. The landmarks have no states in common, and therefore do not
conflict. Both landmarks thus become matches. No surrounding area is matched,
as for the only remaining state ‘x’ there are no states left in the other LTS against
which to match it. State ‘x’ thus remains unmatched.

3) Diff LTS: Finally, the state matching is used to compute a patch consisting of
added and removed transitions, and renamed states. Walkinshaw and Bogdanov
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visualize the patch as a Diff LTS, an LTS with its states and transitions anno-
tated to represent difference information, i.e., ‘unchanged’ (black/solid), ‘added’
(green/dashed) and ‘removed’ (red/dotted). We omit patches and use Diff LTSs
directly, being sufficient for our work. Patches can however be derived from Diff
LTSs.

The Diff LTS for the example is shown in Figure 5.1d. The left state corre-
sponds to matched state pair ‘vy’, the middle state to matched state pair ‘wz’,
and the right state to the unmatched state ‘x’. The outgoing a transition from
‘v’ to ‘w’ in the first LTS has a matching transition from ‘y’ to ‘z’ in the second
LTS. Since the source states of these two transitions are matched (‘v’ and ‘y’),
as well as their target states (‘w’ and ‘z’), we see in the Diff LTS an unchanged
transition labeled with a from the left state to the middle state. Similarly, there
is an unchanged transition labeled with b in the opposite direction, and a self loop
on the middle state. The transition labeled with a to state ‘x’ from the first LTS
has no counterpart in the second LTS, as state ‘x’ is unmatched. The transition
in the Diff LTS labeled with a from the middle state to the right state is therefore
considered a removed transition. Similarly, there are two added transitions.

5.2 Challenges in applying LTSDiff
While applying LTSDiff to various case studies, some of them described in Sec-
tions 4.3 and 5.5, we identified several challenges. We briefly describe these nine
challenges, as well as how gLTSdiff addresses them.

1) Kinds of Models: The LTSDiff algorithm compares LTSs, others compare
FFSMs, and we compare NFAs. Rather than developing yet another algorithm
for a specific kind of state machine model, gLTSdiff generalizes LTSDiff to allow
structural comparison for a wide range of state machine formalisms.

2) Initial States: The LTSDiff algorithm considers the surrounding network
of transitions to determine state matches, where all states are considered in an
equal manner. In the example of Figure 5.2, the pair of states marked with ‘∗’
(Figures 5.2a and 5.2b) gets the highest score and these two states are matched
first. Then either of the two remaining states from the source LTS can be matched
to the single remaining state of the target LTS. Since the matches have equal scores,
a sub-optimal choice can be made here, leading to removed and added initial state
arrows (Figure 5.2c). gLTSdiff features configurable scorers that allow taking into
account extra information while computing scores, to influence subsequent state
matching. For this example, considering initial state information ensures that we
get the least number of differences (Figure 5.2d).

∗c

ab

(a) Source LTS

∗
c

a

(b) Target LTS

∗c

ab c

(c) Diff LTS

∗
c

a
ab

(d) Improved Diff LTS

Figure 5.2: Example where considering initial states leads to fewer differences.
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3) Accepting States: Using LTSDiff we have to ignore the extra state acceptance
information of NFAs. gLTSdiff features configurable matchers. These can for
instance be configured to allow two states to be matched only if they agree on
acceptance. While scoring can be configured to influence matches, matchers can
be configured to prevent certain states from being matched. Similar to adapting
scoring for initial states, configuring matchers to account for state acceptance may
lead to fewer differences in comparison results.

4) Repetitions/EFAs: In our work we regularly encounter NFAs that repeat the
same behavior (Figure 5.3a, ab is repeated three times), for instance when polling
is involved. An NFA can be made more compact by detecting such repetitions [98],
and adapting it to an Extended Finite Automaton (EFA) with bounded (possibly
nested) loops (Figure 5.3b). This makes its representation smaller, especially if
sequences are longer or repeated many times. The EFA guards and updates can
be encoded in the transition labels to represent the EFA as an NFA, allowing NFA
comparison. However, this leads to differences that cover entire transitions, such
as when the EFA is compared with a second input allowing the repetition 5 times
(Figure 5.3c). By instead recursively comparing the structure of EFA transitions,
more fine-grained differences can be obtained, revealing the repetition count as
the only difference (Figure 5.3d). gLTSdiff supports such fine-grained comparison
through configurable comparison of states and transitions.

5) Skips: We also regularly encounter comparisons where one NFA skips a part
of another (Figure 5.4), for example when behavior is added or removed in a new
software version. Such comparisons result in Diff NFAs where either the transition
before the skipped behavior is duplicated (fork pattern, Figure 5.2d, transition a
from state ‘*’), or the one after it (join pattern, Figure 5.4c). In Figure 5.4c, d is
present as both an added and a removed transition to the initial state, while that

x

a

b

a

b

a

b

y

(a) Source NFA

x [v := 0]v = 3 → y

v < 3 → ab [v := v+1]

(b) Source EFA

x [v := 0]v = 3 → y
v = 5 → y

v < 3 → a
v < 5 → a

b [v := v+1]

(c) Diff EFA

x [v := 0]v = 35 → y

v < 3 5 → ab [v := v+1]

(d) Improved Diff EFA

Figure 5.3: EFA-encoded repetitions, compared on full labels and sub-labels.
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a

b

c

d

(a) Source NFA

a

d

(b) Target NFA

a

d

b

cd

(c) Diff NFA

a b

c

[skip]

d

(d) Improved Diff NFA

Figure 5.4: Example join skip pattern that is rewritten.

is not actually a difference. gLTSdiff features optional post-processing to rewrite
such patterns, removing the duplication, leading to fewer differences (Figure 5.4d).

6) Tangles: We furthermore observe that compare results may contain states
with only red and green incoming and outgoing transitions. Such ‘tangles’ are due
to sub-optimal heuristic matching, where two entirely different states/paths got
entangled. gLTSdiff features optional post-processing to untangle them, leading
to more intuitive representations of the differences. Figure 5.5a shows an example,
for paths where f is called one or two times. Untangling separates the paths
where the function is called zero, one and two times (Figure 5.5b). However, in
this example the paths are still quite related. If completely unrelated states and
paths get entangled, the benefit of untangling is even more apparent.

7) More Inputs: LTSDiff takes two LTSs as input, compares them, and pro-
duces a Diff LTS. Comparing n LTSs requires n(n−1)

2 comparisons, which does not
scale. The many comparison results also make it difficult to see the bigger picture.
gLTSdiff considers comparison a binary operator, allowing for example two Diff
NFAs, one entirely red and the other entirely green, to be compared, resulting in a
Diff NFA with their common parts merged (black), while their differences remain
(in red and green). However, the transitions could for instance also be num-
bered (Figures 5.6a – 5.6c). Any number of input models can then be compared,
by repeated execution of binary comparison on results of previous comparisons,
producing a single difference model with all their differences (Figure 5.6d).

8) Performance: LTSDiff creates a system of linear equations, where for every
state pair there is a variable, and the variables are related to each other, potentially
leading to twice a quadratic factor. gLTSdiff has multiple scoring and matching
algorithms, including faster and slower ones that may produce more or less differ-

f call f return

c < 2 →
f call

f return
[c := c+1]

[c:=0] c=2

[skip]

(a) Tangled Diff EFA

f call f return

c < 2 →
f call

f return
[c := c+1]

[c:=0] c=2

[skip]

(b) Untangled Diff EFA

Figure 5.5: Example partial Diff EFA that is untangled.
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a {1} b {1}

c {1}

hidden {}

(a) 1st input

a {2} b {2}

c {2}

d {3}

(b) 2nd input

a{3}

e {3}

b {3}

c {3}

d {3}

(c) 3rd input

a{1,2,3}

e {3}

b{1,2,3}

c {1,2,3}

d {2,3}

(d) Diff

Figure 5.6: Example comparison with three inputs (colors for visualization pur-
poses only).

ences, allowing for an effort/quality trade-off. Dynamic scorers and matchers use
slower algorithms for smaller models and faster ones for larger models.

9) Extensibility: The LTSDiff algorithm is implemented in the StateChum
tool1. We experienced difficulties adapting and extending StateChum to address
the described challenges. Our gLTSdiff library, implementing the gLTSdiff al-
gorithm, is developed with extensibility for adding new algorithms and model
representations as a key consideration.

5.3 The gLTSdiff framework
gLTSdiff generalizes and extends LTSDiff. Input LTSs are generalized to gLTSs
with arbitrary state and transition properties, encoding a wide range of state
machine models (Section 5.3.1). A combinability notion allows configuring which
state and transition properties are combinable (mergeable). A combiner then
allows to configure the result of combining (merging) two such properties (Section
5.3.2). Using combiners, gLTSdiff first computes a state matching with a state
matcher (Section 5.3.3), for example using generalized versions of LTSDiff’s scoring
and matching (Section 5.3.4). Based on a matching, the merger then merges
the input gLTSs into a single gLTS, combining properties of matched states and
transitions as configured (Section 5.3.5). gLTSdiff is then a binary operation over
gLTSs that performs matching and merging (Section 5.3.6). Finally, undesired
patterns may be rewritten (Section 5.3.7).

5.3.1 Generalized labeled transition systems
We define a generalized Labeled Transition System (gLTS), an LTS with arbitrary
state properties:

Definition 5.3 (Generalized Labeled Transition System). A gLTS L = (S, S, P,
T, T ) is a 5-tuple with: S a finite set of states, S a set of state properties, P : S → S
a function that assigns properties to states, T a set of transition properties, and
T ⊆ S × T× S a finite set of transitions.

1See https://github.com/kirilluk/statechum.
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Our definition resembles definitions from the literature, with subtle non-fun-
damental differences [33, 69, 100]. As before, subscripts are used to distinguish
multiple gLTSs, and superscripts to refer to elements of gLTSs. We define, for a
transition t∈LT , tsrc and ttgt as for LTSs, renaming tlbl to tprp.

gLTSs allow encoding many well-known graph and state machine models. An
LTS L=(S,Σ,∆, I) can be encoded as a gLTS L′=(S,B, λs.s∈I,Σ,∆), with state
properties being Booleans from B expressing whether a state is initial. Similarly,
an NFA can be encoded as a gLTS:

Definition 5.4 (gNFA). A gNFA is an NFA A = (S,Σ,∆, I, F ) encoded as a
gLTS A′ = (S,B×B, λs.(s∈I, s∈F ),Σ,∆), with states being initial (1st B) and/or
final (2nd B).

For example, for the gNFA of Figure 5.4b, we could define:

• S={s1, s2}
• P (s1)=(>,>)
• P (s2)=(⊥,⊥)
• T ={(s1, a, s2), (s2, d, s1)}

Extending gNFAs, gDiffNFAs encode Diff NFAs as gLTSs:

Definition 5.5 (gDiffNFA). A gDiffNFA is a gLTS A, with: AS = B× B×D ×
(D∪{⊥}) a set of state properties (initial, final, state difference kind, state initial
difference kind or ⊥ if state is not initial), AT = Σ×D a set of transition properties
(symbol, symbol/transition difference kind), and D={−,+,=} a set of difference
kinds (removed, added, unchanged).

Both state and transition properties get additional difference kinds. For exam-
ple, for the gDiffNFA of Figure 5.2c, we could define:

• S={s1, s2, s3}
• P (s1)=(>,⊥,−,−)
• P (s2)=(⊥,⊥,=,⊥)
• P (s3)=(>,⊥,=,+)

• T ={(s1, (c,−), s2), (s2, (a,=), s3), (s3, (c,+), s2), (s3, (b,−), s1)}

gNFAs are also extended to gEFAs, with variables, guards and updates (for
this chapter kept simple, with only integers):

Definition 5.6 (gEFA). A gEFA is a gLTS A, with: state properties AS = B×
B (initial, final), transition properties AT = P(E) × Σ × P(U) (guards, symbol,
updates), expressions E = V ∪ N ∪ (E × O × E) (variables, numbers, binary
expressions), finite variable set V (distinct from N), binary operators O = {≤,
<,=, 6=, >,≥,+,−}, and updates U=V × E.

For example, for the gEFA of Figure 5.3b, we could define:

• S={s1, s2, s3}
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• P (s1)=(>,>)
• P (s2)=(⊥,⊥)
• P (s3)=(⊥,⊥)
• T = {(s1, (∅, x, {(v, 0)}), s2), (s2, ({(v,<, 3)}, a, ∅), s3), (s3, (∅, b, {(v, (v,

+, 1))}), s2), (s2, ({(v,=, 3)}, y, ∅), s1)}
Type safety is not essential for structural comparison. In figures, (e1, o, e2) ∈
E×O×E is shown as ‘e1 o e2’, and (v, e)∈U as ‘v := e’.

gDiffNFAs and gEFAs can be combined to form gDiffEFAs:
Definition 5.7 (gDiffEFA). A gDiffEFA is a gLTS A, with: AS = B × B ×D ×
(D ∪ {⊥}), AT = P(E)× (Σ×D)× P(U), E = (V ×D) ∪ (N×D) ∪ (E × (O ×
D)× E) ∪ P(E), and U = (V ×D)× E.

In the structure of T, all leaf elements (transition symbols, variables, numbers,
operators and updated variables) get an extra D. Adding P(E) to E allows both
added and removed sub-expressions at the same place within a larger expression.
For example, for the gDiffEFA of Figure 5.3d, we could define:

• S = {s1, s2, s3}
• P (s1) = (>,>,=,=)

• P (s2) = (⊥,⊥,=,⊥)
• P (s3) = (⊥,⊥,=,⊥)
• T = {(s1, (∅, (x,=), {((v,=), (0,=))}), s2), (s2, ({((v,=), (<,=), {(3,−), (5,

+)})}, (a,=), ∅), s3), (s3, (∅, (b,=), {((v,=), ((v,=), (+,=), (1,=)))}), s2),
(s2, ({((v,=), (=,=), {(3,−), (5,+)})}, (y,=), ∅), s1)}

We further define version-annotated LTSs:
Definition 5.8 (gVLTS). A gVLTS is a gLTS A with: AS = B (initial), and
AT = Σ× P(N) (symbol, version numbers).

For example, for the gVLTS of Figure 5.6a, we could define:
• S={s1, s2, s3}
• P (s1)=>
• P (s2)=⊥
• P (s3)=⊥
• T ={(s1, (a, {1}), s2), (s2, (b, {1}), s3), (s3, (c, {1}), s1)}

5.3.2 Combining state and transition properties
Now that we have generalized LTSs to gLTSs, with arbitrary state and transition
properties, the notions of matching states and transitions need to be generalized
as well. For instance, we may want to only allow merging NFA states that agree
on state acceptance, and to define merging of EFA transitions as a recursive op-
eration on their structure, highlighting differences on their leafs (see Figure 5.3).
In general, we want to be able to configure when state and transition properties
may be merged (are combinable), and if so, what the result is when merging them
(their combination):
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Definition 5.9 (Combiners and combinability). A combiner c :X ×X⇀X is a
partial binary function over X that combines two properties to their combination.
A combiner c induces a combinability relation ./c, defined as x1 ./c x2⇔(x1, x2) ∈
dom(c). They must together satisfy the following conditions:

1. ./c is an equivalence relation, i.e., it is 1.1) reflexive, 1.2) symmetric and
1.3) transitive,

2. c preserves ./c: x1 ./c x2 =⇒ x1 ./c c(x1, x2),

3. c is associative: x1 ./c x2 ∧ x2 ./c x3 =⇒ c(x1, c(x2, x3)) = c(c(x1, x2), x3),
and

4. c is commutative: x1 ./c x2 =⇒ c(x1, x2) = c(x2, x1).

The equivalence classes of a combiner under combinability are equivalent to a
disjoint union of abelian semigroups. The four conditions ensure that any number
of combinable properties may be combined, in any order. That is, conditions 1.2
and 1.3 ensure that properties may be combined in any order, condition 2 ensures
that combinability is not lost along the way, and conditions 3 and 4 ensure that
their combination is then always the same, regardless of the order. Condition 1.1
ensures that properties may be combined with themselves, for instance allowing
identical transition labels of multiple gEFAs to be combined.

For convenience, we extend c from a binary to an n-ary operation, by defining
c(x1, x2, ..., xn) = c(c(c(x1, x2), ...), xn). Such a combination is only allowed if the
properties x1, x2, ..., xn are combinable through the associated notion of combin-
ability ./c, which we define for n > 0 as:

./c(x1, x2, ..., xn) =


> if n = 1

./c(x1, x2) if n = 2

./c(c(x1, x2, ..., xn−1), xn) otherwise

That is, a single property doesn’t need to be combined, and is thus always com-
binable (>). This matches with condition 1.1 that ./c is reflexive, and properties
can thus always be combined with themselves. For two properties, we fall back to
Definition 5.9. For more than two properties, we define combinability recursively.

For a combiner c there is always an associated notion of combinability ./c, and
vice versa, even if not explicitly mentioned. Where possible we name combiners c
and combinability ./ based on what they combine or how they combine it, writing
for instance cS for a combiner over state properties from S, and ./S rather than
./cS , leaving combiner c implicit.

This theoretical framework allows defining composite combiners over the struc-
ture of state and transition properties:

• Pairs: For any two combiners cX over some set X and cY over some sets
Y , combiner c× combines pairs from X×Y by combining their elements.
Formally, for any x1, x2 ∈X and y1, y2 ∈Y , we define (x1, y1) ./× (x2, y2)⇔
x1 ./X x2∧y1 ./Y y2. For combinable pairs, c×((x1, y1), (x2, y2))=(cX(x1, x2),
cY (y1, y2)). This also generalizes to n-tuples.
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• Sets: For any combiner cX over some set X, combiner cP combines sets
from powerset P(X) by combining the equivalence classes of their elements.
Formally, for any sets X1, X2 ∈ P(X), X1 ./P X2 = >, and cP(X1, X2) =
{cX(Y ) |Y ∈ (X1 ∪ X2)/ ./X}. Here, Y is a single equivalence class of
combinable elements, and cX combines the combinable elements to a single
element using the n-ary extension of cX .

• Optionals: For any combiner cX over some set X, combiner c⊥ combines
optional values from set X ∪ {⊥}, with ⊥ /∈ X. Formally, if ∀x,x′∈X x ./X
x′ =>, then for any x1, x2 ∈ X ∪ {⊥}, x1 ./⊥ x2 = > and c⊥(⊥,⊥) = ⊥,
c⊥(x1,⊥) = x1, c⊥(⊥, x2) = x2, and otherwise c⊥(x1, x2) = cX(x1, x2).
Assumption ∀x,x′∈X x ./X x′=> ensures that ./⊥ is transitive.

Basic combiners for leaf types can also be defined, such as:

• Equality: Equality combiner c= over any set X only allows combining equal
properties, and leaves them unchanged. Formally, for any x1, x2 ∈ X, x1 ./=
x2⇔x1=x2. For combinable properties, c=(x1, x2)=x1.

• Disjunction of Booleans: Combiner c∨ allows combining any two Booleans,
producing their disjunction. Formally, for any b1, b2 ∈ B, b1 ./∨ b2⇔> and
c∨(b1, b2) = b1∨ b2.

• Difference kinds: For any d1, d2 ∈D, d1 ./D d2⇔>, and cD(−,−) = ‘− ’,
cD(+,+) = ‘+’ and else cD(d1, d2) = ‘= ’.

Similarly, composite and basic combiners may also be defined for other types.
We write composite combiners in terms of the combiners that they rely upon, e.g.,
c×[c=, cD] for a pair combiner that uses c= for left and cD for right elements of
pairs, and similarly ./×[./=, ./D]. This way, combiners and combinability may be
reused and composed in different ways.

We now present the combiners for the representations used in this chapter.

gDiffNFAs: For gDiffNFAs, we use the following combiners:

cS = c×[c∨, c=, cD, c⊥[cD]]

cT = c×[c=, cD]

Initial states are later taken into account for scoring, while merging states
that disagree on acceptance is explicitly prevented here. The different handling of
initial and acceptance information stems from practical experience.

gDiffEFAs: For gDiffEFAs, we use the following combiners:

cS = c×[c∨, c=, cD, c⊥[cD]]

cT = c×[cP [cE ], c×[c=, cD], cP [cU ]]

cU = c×[c×[c=, cD], cE ]

./E (e1, e2) = true
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cE(e1, e2) =



c×[c=, cD](e1, e2)
if e1, e2 ∈ V ×D ∧ e1 ./×[./=, ./D] e2

c×[c=, cD](e1, e2)
if e1, e2 ∈ N×D ∧ e1 ./×[./=, ./D] e2

c×[cE , c×[c=, cD], cE ](e1, e2)
if e1, e2 ∈ E × (O ×D)× E)
∧ e1 ./×[./E , ./×[./=, ./D], ./E ] e2

cP [cE ](e1, e2) if e1, e2 ∈ P(E) ∧ e1 ./P[./E ] e2
cP [cE ](e1, {e2})

if e1 ∈ P(E), e2 /∈ P(E) ∧ e1 ./P[./E ] {e2}
cP [cE ]({e1}, e2)

if e1 /∈ P(E), e2 ∈ P(E) ∧ {e1} ./P[./E ] e2
{e1, e2} otherwise

The extensions follow directly from the structure of expressions and updates.
If expression operators don’t match, the entire binary expression is not combined
recursively. An interested reader could adapt this to recursively still consider the
operands.

gVLTSs: For gVLTSs, we use the following combiners:

cS = c=

cT = c×[c=, cP [c=]]

gVLTSs encode no state difference information, so only states with matching
initial state properties are merged.

5.3.3 Matching gLTSs
We define a valid matching of states from two input gLTSs:

Definition 5.10 (Matching). For any two gLTSs L1 and L2 over the same set
of state properties (i.e., LS

1 = LS
2), and cS a state property combiner, any injective

partial function m : LS
1 ⇀ LS

2 is a matching for L1 and L2 with respect to cS if
s ∈ dom(m) =⇒ LP

1 (s) ./S LP
2 (m(s)).

Matchings are finite as gLTSs have finite sets of states. Any matching m
being injective means that m is a one-to-one mapping, i.e., all states of L1 and
L2 are mapped to at most one state of the other. This makes m a matching (or
assignment) in the standard graph-theoretical sense.

gLTSdiff uses a matcher to obtain a state matching, and then merges each pair
of matched states into a single state, thereby combining their state properties.
We therefore impose the additional constraint on matchings that the properties
of all matched states must be combinable. This may in turn be exploited by
implementations of matchers, to reduce the search space of potential matches,
improving performance.

The following definition gives a specification for matchers:

Definition 5.11 (Matcher). A matcher matcher(L1, L2, cS, cT) : L
S
1 ⇀ LS

2 is an
operation that computes a matching for its two input gLTSs L1 and L2 over the
same sets of state and transition properties (i.e., LS

1 = LS
2 and LT

1 = LT
2), and

state and transition property combiners cS and cT, respectively.
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Many possible implementations of matchers exist that satisfy this specification,
including heuristic-based ones like LTSDiff, and optimization-based ones like the
well-known Kuhn-Munkres algorithm (also called the Hungarian method).

5.3.4 Generalizing scoring and matching
The definitions of global scoring and matching as defined in LTSDiff require adap-
tations in gLTSdiff, to support gLTSs, combiners and combinability. For s1 ∈ LS

1

and s2 ∈ LS
2 , we generalize common successors succ from Equation 5.1 (see Sec-

tion 5.1.4) to combinable outgoing transitions succc. Furthermore, we define
succun(s1, s2), the outgoing transitions of s1 whose properties can not be com-
bined with those of any outgoing transition of s2 (and similarly the other way
around):

succc(s1, s2) = {(t1, t2) | t1∈LT
1 ∧ t2∈LT

2 ∧
tsrc1 =s1 ∧ tsrc2 =s2 ∧ tprp1 ./T tprp2 }

succun(s1, s2) = {t1 | t1∈LT
1 ∧ tsrc1 =s1 ∧

@t2∈LT
2
(tsrc2 =s2 ∧ tprp1 ./T tprp2 )}

With this, we generalize global successor scoring from Equation 5.2:

scglobsucc(s1, s2) =
1

2

∑
(t1,t2)∈succc(s1,s2)

(
1 + k · scglobsucc(t

tgt
1 , ttgt2 )

)
|succun(s1, s2)|+ |succun(s2, s1)|+ |succc(s1, s2)|

Any two states that do not have combinable state properties get score −1 instead.
We then get |scglobsucc| ≤ 1 rather than scglobsucc ≤ 1, as defined by Walkinshaw and
Bogdanov [126], who similarly allow negative scores. We define scglob to be −∞
if either scglobpred or scglobsucc is negative, and otherwise use their average as in Equa-
tion 5.3. Scores are thus extended with −∞, indicating to score-based matchers
that the state pair must never be matched. They should thus, for example, not
be considered for landmarks and fallback landmarks. In general, both score-based
and non-score-based matchers never match states with non-combinable state prop-
erties.

Furthermore, to allow taking into account state property information that is
not captured in combiners and combinability, the scoring fractions may optionally
be customized. For gLTSs with initial states, scglobpred(s1, s2) is adapted, by incre-
menting the dividend by one if both states are initial, and the divisor by one if
either of the states is initial. The fallback landmarks can also be customized. The
fallback to initial states is omitted for gLTSs without initial states.

5.3.5 Merging gLTSs
gLTSdiff uses a matching as a basis for merging two input gLTSs into a single
merged gLTS. Matched states and transitions are merged into single states and
transitions, combining their properties using combiners:

Definition 5.12 (Merger). The merger is an operation that computes the merged
gLTS L for two input gLTSs L1 and L2 over the same types of state properties
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S and transition properties T, but with disjoint states (LS
1 ∩ LS

2 = ∅), given a
state combiner cS, a transition combiner cT, and m a matching over L1 and L2.
Formally, merger(L1, L2, cS, cT,m) = L, with:

• f1 : LS
1 → LS, with f1(s) = s

• f2 : LS
2 → LS, with f2(s) ={
s if s ∈ LS

2 \ rng(m)

m−1(s) otherwise

• LS = {f1(s) | s ∈ LS
1 } ∪ {f2(s) | s ∈ LS

2 }

• LP (s) =


LP
1 (s) if s ∈ LS

1 \ dom(m)

LP
2 (s) if s ∈ LS

2 \ rng(m)

cS(L
P
1 (s), L

P
2 (m(s))) otherwise

• T1 = {(f1(s1), t, f1(s2) | (s1, t, s2) ∈ LT
1 }

• T2 = {(f2(s1), t, f2(s2) | (s1, t, s2) ∈ LT
2 }

• LT = cP [c×[c=, cT, c=]](T1 ∪ T2)

LS consists of the states of the two input gLTSs, mapped via functions f1
and f2. Unmatched states are used as is, while matched states from the first
input gLTS are reused. Without loss of generality, we require LS

1 ∩ LS
2 = ∅ as

precondition to prevent state overlap issues. State properties from unmatched
states are preserved. For matched states, the properties are combined using cS.
Sets T1 and T2 contain the transitions of the two inputs gLTSs, with their source
and target states mapped to states in LS . Transition set LT then contains the
combined transitions from T1 and T2. Combiner c× combines transition triples,
where source and target states must match (./=) and their transition properties
must be combinable (./T) for the transitions to be combinable, which leads to their
transition properties being combined (cT). Combiner cP merges sets of transitions,
combining all combinable transitions.

5.3.6 Generalized structural comparison
Finally, the gLTSdiff algorithm is defined:

Definition 5.13 (gLTSdiff). Generalized structural comparison is a binary oper-
ator that given any matcher and merger over gLTSs with the same types of state
properties S and transition properties T, constructs a single merged gLTS also over
S and T. Formally:

gLTSdiffcS,cT(L1, L2) = merger(L1, L2, cS, cT,matcher(L1, L2, cS, cT))

We omit subscripts cS and cT if they are clear from context. We use the same
types of state and transition properties for the inputs as well as the output, as
mentioned in challenge 7, and as is also be clear from the definition of the merger.
For instance, two gDiffNFAs, one entirely in red and the other entirely in green,
can be compared, resulting in a gDiffNFA with their common parts merged (in
black), while their differences remain (in red and green). The inputs and output
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are then all gDiffNFAs, rather than the inputs being gNFAs and only the output
being a gDiffNFA.

This allows us to extend the algorithm to compare any number of inputs, by
repeated application of gLTSdiff on results of previous comparisons:

gLTSdiff (L1, L2, ..., Ln) = gLTSdiff (gLTSdiff (gLTSdiff (L1, L2), ...), Ln)

It does not make sense to compare and merge more than two gDiffNFAs. Once a
third input comes into play, two input colors (red and green) is not sufficient, and
a third color for the third input would be required. It is thus essential that a gLTS
representation is chosen for which it makes sense to compare and merge more than
two inputs, such as one where the identities of the various inputs can still be rec-
ognized. The transitions could for instance be numbered, as in Figures 5.6a – 5.6c.
Any number of input models can then be compared, by repeated application of
gLTSdiff on results of previous comparisons:

L(1,2) = gLTSdiff (L1, L2)

L(1,2,3) = gLTSdiff (L(1,2), L3)

L(1,2,3,4) = gLTSdiff (L(1,2,3), L4)

L(1,2,3,4,5) = . . .

That is, the first two inputs are compared and merged. Then, the third input is
compared to and merged with the result of merging the first two inputs. The fourth
input is compared to and merged with the result of merging the first three inputs,
and so on. This way, a single single difference model with all their differences is
produced, as in Figure 5.6d.

5.3.7 Rewriting undesired difference patterns
Ideally, a result of structural comparison has as few differences as possible, that are
immediately apparent. Even with an optimization algorithm producing optimal
matches, there may be ‘undesired’ differences. Taking a practical approach, we
rewrite some of the undesired patterns that we encountered in our work: skips and
tangles. Rewriting may optionally be performed as post-processing, after applying
gLTSdiff. In this chapter, we explain only tangle rewriting in more detail.

Tangles, poorly matched (and thus merged) states with incoming and outgo-
ing transitions of both inputs, where none of those transitions got merged (see
Figure 5.5), are untangled:

Definition 5.14 (Tangle Rewriting). For a gDiffNFA L, any state s ∈ LS is
a tangle if s is an unchanged state: LP (s)[3] = ‘ = ’, with only added/removed
incoming and outgoing transitions: {d | ∃t∈LT s ∈ {tsrc, tdst} ∧ tprp = (σ, d)} =
{+,−}. The tangle state can be rewritten by transforming L to Lr, with:

• LS
r = (LS \ {s}) ∪ {s+, s−}

• i+ = LP (s)[1] ∧ LP (s)[4] 6= ‘−’
• i− = LP (s)[1] ∧ LP (s)[4] 6= ‘+’
• LP

r (s+) = (i+, L
P (s)[2],+, if i+ then ‘+’ otherwise ⊥)
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• LP
r (s−) = (i−, L

P (s)[2],−, if i− then ‘−’ otherwise ⊥)
• LT

r = {(m(tsrc), tprp,m(ttgt)) | t ∈ LT ∧ tprp = (σ, d)}

with for s′∈{tsrc, ttgt}, m(s′)=

s′ if s′ 6=s
s+ if s′=s ∧ d=‘+’
s− if s′=s ∧ d=‘−’

As an example, consider again Figure 5.5. In Figure 5.5a, there are three
unchanged/black states. The middle one is a tangle state (s in Definition 5.14),
with both removed/red incoming and outgoing edges, and added/green incoming
and outgoing edges, but no unchanged/black ones. By rewriting, s is split into
two new states not yet in LS , with appropriate state properties, as shown in
Figure 5.5b:

• State s− is a removed/red state and s+ is an added/green state.
• State s+ is initial (as captured in i+) if two conditions hold. First, s must be

initial, per condition LP (s)[1]. Second, s must not only be initial for removed
(red/removed initial arrow). It must thus be initial for added (added/green
initial arrow) or initial for both (unchanged/black initial arrow). This is
captured by condition LP (s)[4] 6= ‘−’. And similarly i− is defined for s−. In
the example, s is not initial, and thus neither of the two new states is initial.

• The final state property is inherited from s, using property LP (s)[2]. In the
example, s is not final, and thus the two new states are not final.

• The state initial difference kind for a new state that is initial, is equal to the
new state’s state difference kind, and it is ⊥ if the new state is not initial. In
the example, s is not initial and thus both new states get ⊥ as state initial
difference kind.

The incoming and outgoing transitions of s are moved to either s+ or s−. For
a transition t ∈ LT , the transition property tprp is kept. The source and target
states are mapped via m. If a source state s′ of t is state s, then m maps it to
s+ if the transition is an added transition (d = ‘+′), or to s− if it is a removed
transition (d = ‘−′). And similarly for any target state s′ of t that is state s. So,
all removed/red incoming and outgoing transitions of s are moved to s−, and all
added/green incoming and outgoing transitions of s are moved to s+.

Untangling models other than gDiffNFAs is future work.

5.4 The gLTSdiff open-source library
We have implemented our gLTSdiff algorithm in an open-source Java library. It is
freely available under the MIT license on GitHub2. The library has been developed
with extensibility, for adding new model representations and new algorithms, as a
key consideration.

The glts package contains model representations, such as gLTSs, gNFAs and
gDiffNFAs. combiners contains reusable combiners, including leaf combiners such
as c= and cD, and composite combiners such as c× and cP . matchers con-
tains matchers, such as an LTSDiff landmark-based matcher, a Kuhn-Munkres

2See https://github.com/TNO/gLTSdiff.
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score-minimizing matcher that computes a guaranteed maximal matching (as few
red/green states in the result as possible), and a dynamic matcher. scorers con-
tains scorers for scoring-based matchers, such as local and global scorers as defined
in LTSDiff, and a dynamic scorer. mergers contains the merger. rewriters con-
tains rewriters, including fork/join skip and tangle rewriters.

Each package contains an interface or base class that allows multiple imple-
mentations for extensibility, and has one or more implementations already avail-
able. The various matchers allow for making a trade-off between computational
effort and quality of the results, as a fast heuristics-based matching algorithm
may produce sub-optimal results (such as the LTSDiff landmark-based matcher),
while a computationally-intensive optimization algorithm may produce (more) op-
timal results (such as the Kuhn-Munkres score-minimizing matcher). The dy-
namic matcher automatically chooses a more computationally-intensive algorithm
for smaller inputs and a faster one for larger inputs. Similarly, gLTSdiff features
multiple scorers and a dynamic scorer. The local scorer has been extended to
allow iterative refinement with a configurable bound, to take into account more
context than a pure local scorer, while still performing less work than a global
scorer. Some further details on several of the scorers and matchers are provided
as part of the evaluation in Section 5.5.5.

The library has optimizations to improve performance, such as the global scorer
precomputing as much as possible, to reduce the size and complexity of the system
of linear equations. The library also comes with documentation on how to use and
extend it.

5.5 Evaluation
We first show the practical value of gLTSdiff by applying it in industry (Sec-
tions 5.5.1 and 5.5.2). We then show that gLTSdiff handles large numbers of
input models (Section 5.5.3), addressing challenge 7 and partially challenge 8. We
further show that that gLTSdiff reduces the number of differences in comparison
results (Section 5.5.4), addressing challenges 2 – 6. Finally, we show that gLTSdiff
supports the effort/quality trade-off (Section 5.5.5), addressing challenge 8. This
chapter’s artifact contains all input models and code to reproduce the experiments
[57].

5.5.1 Wafer exposure regression case study

To show the practical value of our work, we apply gLTSdiff to a case study [102]
at ASML, a leading company in developing lithography systems. We thereby
expand upon Chapter 4, comparing the behavior of different software versions to
find potential behavioral regressions. The case study involves a high-level wafer
exposure controller. A system throughput regression was found during pre-delivery
testing of a new software version. ASML experts diagnosed it in about two person-
days, tracing it back to a small change that was originally considered harmless,
and was made for a different machine type than for which the regression was found.
Existing tests did not find this issue.
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return
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...[2]

start
operation

return

...[2]

Figure 5.7: Wafer exposure case study: two anonymized compare results.

ASML executed a standard scenario, both for the software revision before and
after the regression was introduced. In both cases, the resulting execution logs
capture all communications in the system during execution, from which we inferred
state machine models (see Chapter 3). Not knowing the cause of the regression,
we applied gLTSdiff to compare the models, per function.

We looked into each function with behavioral changes, without having domain
knowledge of this component. Figure 5.7 shows what we believed to be the root
cause of the regression. In the operation queued callback (left in Figure 5.7),
the determine params call is no longer executed. It has moved to the later start
operation callback (right in Figure 5.7), causing the performance degradation.
Some other functionality, abbreviated to ‘...[6]’ in green, is now also executed
there. The functionality that was originally here, abbreviated to ‘...[6]’ and ‘...[2]’
in red, has also been delayed, being moved to a third not shown callback. ASML
experts confirm that we found the root cause, subsequent ‘collateral’ moves, and
some remaining irrelevant as well as intended differences.

With our approach, we were able to find the differences in about two person-
hours. Would it have been applied before the change was delivered to the inte-
gration team, this regression would not have happened. It could thus have been
prevented, as was confirmed by the ASML component owner.

5.5.2 Wafer stage refactoring case study
To further show the practical value of our work, we apply gLTSdiff to a second
ASML case study [102]. It involves code for a high-level wafer stage controller
being split into two code bases for different machine types, one to be developed
further, the other not. This redesign is considered particularly risky, as it involves
a legacy component, there is time pressure, test machines are scarce or no longer
available, and the team lacks knowledge of some old machine types. Using the
same approach as for the first case study, models are obtained for executions from
before and after the changes. After comparing them using gLTSdiff, an ASML
engineer interpreted the results, while working on the refactoring. It took about
half a person-day for each new code base, to analyze the results, discuss them in
the redesign team, and to fix the identified regressions.

A prominent result is finding and fixing a serious regression, before the newly
split code was delivered. The regression is shown in Figure 5.8. The switch function
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. . . . . .
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call
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call
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call
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mode
return

switch
return

[skip]

Figure 5.8: Wafer stage case study: anonymized partial compare result.

was not meant to be called here, for this machine type. The switch to a different
control mode did not make the existing tests fail. It would have later shown up
as a system throughput regression. Tracing it back to this particular call would
have been “very hard”, requiring significant diagnosis time, according to ASML
engineers. Their very conservative estimate indicates that at least one person-day
of effort is saved by preventing this regression from being delivered. Applying
gLTSdiff also helped to increase confidence in the results of the risky redesign.

5.5.3 TLS implementations case study

To show how gLTSdiff can work with a large number of inputs, we apply it to merge
Mealy machines representing the behavior of different server implementations for
versions 1.0, 1.1 and 1.2 of the Transport Layer Security (TLS) protocol. We use
the 332 Mbed TLS models and 264 OpenSSL models by Erwin Janssen [72], for
a total of 596 input models, each with 6 to 14 states. Each model represents the
behavior of a specific version of an implementation for a specific version of the
TLS protocol, e.g., TLS 1.2 behavior of OpenSSL v1.1.0e.

To support comparing Mealy machines, we extend a gVLTS to a gVMM
(Version-annotated Mealy Machine). We do this by splitting symbols Σ into Σi

and Σo, such that T = Σi×Σo×P(N), with cT = c×[c=, c=, cP [c=]]. We feed all
the models into gLTSdiff, to produce a single merged gVMM of all their behav-
iors. As all input models are complete Mealy machines, they have a transition
for every input symbol in every state. When in a certain state the TLS protocol
does not allow a certain command, such a command leads to a sink state. We
remove the single sink state of the merged gVMM, which then has 13 states and
39 transitions left. By removing the sink state, we get some deadlock states, where
no further commands are allowed by any version of the TLS protocol. Each tran-
sition is version-annotated with a set indicating which of the 596 models include
that transition. As these sets can be large, and there are only 30 unique behav-
iors, we replace versions with equivalent behavior by a single unique number (see
Table 5.1). The resulting gVMM is shown in Figure 5.9, where transitions are
labeled with ‘input / output(s) {behavior-number-ranges}’.

The merged gVMM was obtained in 30 seconds on a laptop with a 3 GHz
Intel Core i7-1185G7 processor, using the LTSDiff landmarks-based matcher and
optimized global scorer. Comparing instead each model pairwise to each other
model leads to 354,620 comparisons, which takes about 14 minutes.
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Nr Impl. TLS Versions
1 Mbed TLS 1.0 1.0.0, 1.1.0, 1.1.1, 1.1.2, 1.1.3, 1.1.4, 1.1.5, 1.1.6, 1.1.7, 1.1.8

1.1 1.0.0, 1.1.0, 1.1.1, 1.1.2, 1.1.3, 1.1.4, 1.1.5, 1.1.6, 1.1.7, 1.1.8
2 Mbed TLS * 1.2.1, 1.2.2, 1.2.3, 1.2.4, 1.2.5, 1.2.6, 1.2.7, 1.2.8, 1.2.9, 1.2.10,

1.2.11, 1.3.6, 1.3.7, 1.3.8
3 Mbed TLS * 1.3.0, 1.3.1, 1.3.2, 1.3.3, 1.3.4, 1.3.5
4 Mbed TLS * 2.0.0, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.1.5, 2.1.6, 2.1.7, 2.1.8,

2.1.9, 2.1.10, 2.1.11, 2.1.12, 2.1.13, 2.1.14, 2.1.15, 2.1.16, 2.1.17,
2.1.18, 2.2.0, 2.2.1, 2.3.0, 2.4.0, 2.4.1, 2.4.2, 2.5.0

5 Mbed TLS * 2.5.1, 2.6.0, 2.6.1, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.7.5, 2.7.6,
2.7.7, 2.7.8, 2.7.9, 2.7.10, 2.7.11, 2.7.12, 2.7.13, 2.7.14, 2.7.15,
2.7.16, 2.7.17, 2.8.0, 2.9.0, 2.10.0

6 Mbed TLS * 2.11.0, 2.12.0, 2.13.0, 2.13.1, 2.14.0, 2.14.1, 2.15.0, 2.15.1,
2.16.0, 2.16.1, 2.16.2, 2.16.3, 2.16.4, 2.16.5, 2.16.6, 2.16.7,
2.16.8, 2.17.0, 2.18.0, 2.18.1, 2.19.0, 2.19.0d1, 2.19.0d2, 2.19.1,
2.20.0, 2.20.0d0, 2.20.0d1, 2.21.0, 2.22.0, 2.22.0d0, 2.23.0,
2.24.0, 3.0.0p1

7 OpenSSL 1.0 0.9.7, 0.9.7a, 0.9.7b, 0.9.7c, 0.9.7d
8 OpenSSL 1.0 0.9.7e, 0.9.7f, 0.9.7g, 0.9.7h, 0.9.7i, 0.9.7j, 0.9.7k, 0.9.7l, 0.9.7m,

0.9.8, 0.9.8a, 0.9.8b, 0.9.8c, 0.9.8d, 0.9.8e, 0.9.8f, 0.9.8g, 0.9.8h,
0.9.8i, 0.9.8j, 0.9.8k

9 OpenSSL 1.0 0.9.8l
10 OpenSSL 1.0 0.9.8m, 0.9.8n, 0.9.8o, 0.9.8p, 0.9.8q, 0.9.8r, 1.0.0, 1.0.0a,

1.0.0b, 1.0.0c, 1.0.0d, 1.0.0e
11 OpenSSL 1.0 0.9.8s, 0.9.8t
12 OpenSSL 1.0 0.9.8u, 0.9.8v, 0.9.8w, 0.9.8x
13 OpenSSL 1.0 0.9.8y
14 OpenSSL 1.0 0.9.8za
15 OpenSSL 1.0 0.9.8zb, 0.9.8zc, 0.9.8zd, 0.9.8ze, 0.9.8zf, 0.9.8zg, 0.9.8zh,

1.0.0n, 1.0.0o, 1.0.1i, 1.0.1j
1.1 1.0.1i, 1.0.1j
1.2 1.0.1i, 1.0.1j

16 OpenSSL 1.0 1.0.0f
17 OpenSSL 1.0 1.0.0g
18 OpenSSL 1.0 1.0.0h, 1.0.0i, 1.0.0j, 1.0.1, 1.0.1a, 1.0.1b, 1.0.1c
19 OpenSSL 1.0 1.0.0k, 1.0.0l, 1.0.1d
20 OpenSSL 1.0 1.0.0m
21 OpenSSL 1.0 1.0.0p, 1.0.0q, 1.0.0r, 1.0.0s, 1.0.0t
22 OpenSSL 1.1 1.0.1, 1.0.1a, 1.0.1b, 1.0.1c

1.2 1.0.1, 1.0.1a, 1.0.1b, 1.0.1c
23 OpenSSL 1.1 1.0.1d

1.2 1.0.1d
24 OpenSSL * 1.0.1e, 1.0.1f, 1.0.1g
25 OpenSSL * 1.0.1h
26 OpenSSL * 1.0.1k, 1.0.1l, 1.0.1m, 1.0.1n, 1.0.1o, 1.0.1p, 1.0.1q, 1.0.1r,

1.0.1s, 1.0.1t, 1.0.1u
27 OpenSSL * 1.0.2, 1.0.2a, 1.0.2b, 1.0.2c, 1.0.2d, 1.0.2e, 1.0.2f, 1.0.2g, 1.0.2h,

1.0.2i, 1.0.2j, 1.0.2k, 1.0.2l
28 OpenSSL * 1.0.2m, 1.0.2n, 1.0.2o, 1.0.2p, 1.0.2q, 1.0.2r, 1.0.2s, 1.0.2t,

1.0.2u
29 OpenSSL * 1.1.0, 1.1.0a, 1.1.0b, 1.1.0c, 1.1.0d, 1.1.0e, 1.1.0f, 1.1.0g, 1.1.0h,

1.1.0i, 1.1.0j, 1.1.0k, 1.1.0l
30 OpenSSL * 1.1.1, 1.1.1a, 1.1.1b, 1.1.1c, 1.1.1d, 1.1.1e, 1.1.1f, 1.1.1g

Table 5.1: Unique TLS behavior numbers mapped to TLS server implementation
versions.
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Set Models Initial Accepting EFA Skip Tangle
1 913 +00.00% +00.00% +00.00% −02.39% +00.00%
2 1, 071 +00.00% +00.00% −31.86% −01.24% +00.31%
3 92 +00.00% +00.00% −23.85% −00.57% +00.00%
4 350 +00.00% +00.00% −26.77% −01.86% +00.00%
5 87 +00.00% +00.00% −45.32% −02.38% +00.00%
6 82 +00.00% +00.00% −13.27% −02.97% +00.61%
7 195 +00.00% +00.00% −02.27% −00.10% +00.03%
Total 2, 7902, 7902, 790 +00.00%+00.00%+00.00% +00.00%+00.00%+00.00% −18.34%−18.34%−18.34% −01.68%−01.68%−01.68% +00.14%+00.14%+00.14%

Table 5.2: Results for the ‘reduced number of differences’ experiments.

5.5.4 Reduced number of differences in comparison results
To study the effect of various gLTSdiff improvements compared to LTSDiff, we use
7 ASML model sets with before and after models (2 to 6,538 states per model),
for a total of 2,790 gDiffEFA comparisons. We start with a baseline configuration,
mimicking LTSDiff. For each difference model we measure the fraction of the
model that shows differences, by calculating the number of added and removed
(parts of) state and transition properties as a fraction of the total number of
(parts of) state and transition properties. Then we add our improvements, one
by one, considering initial states for scoring, allowing merging of states only if
they agree on acceptance, comparing EFA transitions by their parts rather than
in their entirety, rewriting skip patterns, and rewriting tangle patterns. For each
improvement, we calculate the increase of the fraction, with respect to the baseline
for the first improvement, and with respect to the previous improvement for the
other improvements.

Table 5.2 shows the results. For these model sets, the initial and accepting
state improvements have no effect. We conjecture this is due to the used model
inference approach (see Chapter 3), which produces models with a single initial and
accepting state, with per definition the same incoming and outgoing transitions.
For other models, in our earlier work, we did see improvements. Comparing parts
of EFA transition properties leads to significant reductions for most model sets.
Model set 1 has guards and updates that are either the same for the before and
after models, or are part of behavior that is completely missing for one of them.
Hence the 0% improvement. Skip pattern rewriting reduces the differences as
well. Tangle rewriting leads to slightly more differences, as expected, since each
unchanged/black tangle state is split into two states, one added/green and one
removed/red. However, for the 9 out of 2,790 comparison results with tangles, it is
our opinion after manual inspection that the rewritten results are more ‘intuitive’,
which we want to define formally in future work.

5.5.5 Effort/quality trade-off
To study the trade-off between computational effort and quality of the result, we
apply gLTSdiff to the 2,790 pairs of gDiffEFA models from Section 5.5.4, with
all improvements discussed in that section. We use the LTSDiff landmark-based
matcher (‘ltsdiff’), Kuhn-Munkres score-minimization matcher (‘k-m’), and dy-
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namic matcher (‘dynamic’, uses ‘k-m’ for gLTSs with ≤ 45 states and ‘ltsdiff’
otherwise), as well as two local scorers with 1 and 5 refinements (‘local-1’ and
‘local-5’), the optimized global scorer (‘global-opt’), and dynamic scorer (‘dy-
namic’, with ‘global-opt’ for ≤ 45 states, ‘local-5’ for ≤ 500 states, and ‘local-1’
otherwise). With 3 matchers and 4 scorers, we get 12 configurations. To ensure
a fair comparison between configurations, we omit 5 very large model pairs. For
these 5, comparison with ‘global-opt’ hits our configured timeout of an hour, or
state-pair relations can not be represented due to hitting Java array size limits3.
With 12 configurations, 2,785 model pairs (with 2 to 1,882 states per model), and
10 runs per model pair, we get 334,200 comparisons in total. We measure, for each
configuration, 1) the total running time to perform all 2,785 comparisons averaged
over the 10 runs, and 2) the average of the difference fractions (see Section 5.5.4)
that result from those comparison runs.

Table 5.3 shows the results. The first four columns indicate the used matcher,
used scorer, average running time, and average difference fraction. The last two
columns show the time and diff fraction factors, with the best configuration per
column getting factor 1, and the other configurations (rows) getting the number
of times that their values are higher. So, there are 12 time values in the third
column (v1, v2, ..., v12). If vmin is the minimum of these values, then the time
factor for value vi (1 ≤ i ≤ 12) is computed as vi

vmin
. These time factors are shown

in the fifth column. Similarly, for the diff fractions of the fourth column, the diff
fraction factors are shown in the sixth column.

The first and third configurations should be avoided, as they have significantly
worse diff factors than the other configurations. The ‘ltsdiff’ matcher has good diff
factors regardless of the scorer that is used. Somewhat surprisingly, ‘ltsdiff/local-
1’ scores quite well in both time and diff factors. It seems to be a good choice if
results are to be obtained quickly. If a bit more time can be spent, ‘ltsdiff/dynamic’

3The experiments in this chapter were performed using gLTSdiff v1.0.1. In gLTSdiff v1.1.0,
a different matrix representation is used to resolve these issues. Rather than hitting Java array
size limits, we then run out of memory.

Matcher Scorer Time [s] Diff Time Diff
fraction factor factor

dynamic local-1 152.38 0.07312 1.00000 1.45550
ltsdiff local-1 161.84 0.05073 1.06204 1.00985
k-m local-1 174.94 0.09127 1.14803 1.81691
dynamic dynamic 213.42 0.05068 1.40056 1.00878
dynamic local-5 221.67 0.05075 1.45466 1.01022
k-m dynamic 226.44 0.05303 1.48595 1.05562
ltsdiff dynamic 228.57 0.05059 1.49994 1.00704
ltsdiff local-5 233.02 0.05062 1.52915 1.00765
k-m local-5 234.74 0.05216 1.54046 1.03823
dynamic global-opt 2, 335.78 0.05069 15.32817 1.00898
k-m global-opt 2, 369.89 0.05023 15.55203 1.00000
ltsdiff global-opt 2, 493.60 0.05060 16.36385 1.00724

Table 5.3: Results for the trade-off experiments, sorted on time.
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seems a good choice, as it has the second-best diff factor. ‘k-m/global-opt’ has the
best diff factor, but this comes at a significant time cost.

We also ran these experiments with a non-optimized global scorer. Since it only
affects running time, the diff fractions are the same as for the optimized global
scorer. Instead of 5 model pairs then 68 model pairs hit timeouts and Java array
size limits. Excluding these 68 model pairs, the optimizations make the global
scorer approximately 99 to 101 times faster.

5.6 Conclusions and future work
In this chapter we introduce the gLTSdiff framework, a generalization and ex-
tension of the LTSDiff algorithm. It addresses the challenges from Section 5.2.
The configurable state and transition properties, as well as configurable, reusable
and composable combiners, and the extensible library, allow comparison of differ-
ent kinds of models, in different ways. gLTSdiff therefore provides an extensible,
configurable, scalable approach to compare a variety of models, for a variety of
applications.

However, we have only begun to explore the full possibilities that our framework
unlocks. It is future work to compare other kinds of models, such as richer EFAs,
Timed Automata and hierarchical StateCharts. Other future work includes con-
sidering further rewriters, and extending existing rewriters to other model types.
Furthermore, the different matchers and scorers could be evaluated on other mod-
els, and the gLTSdiff framework could be applied and evaluated for other applica-
tions. Finally, a formal notion of ‘intuitiveness’ could be defined.
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The MIDS tool

The model inference and model comparison approaches outlined in this thesis to-
gether form the MIDS methodology (see Section 1.4). The MIDS tool, the Model
Inference and Differencing Suite [120], implements the MIDS methodology. It of-
fers automation, and therefore provides an efficient way to apply the methodology,
reducing the effort that engineers have to spend. The tool is open source, allowing
it to be widely used.

Figure 6.1 shows an overview of the functionality provided by the MIDS tool.
It closely resembles the overview of the MIDS methodology, but there is one major
difference: the MIDS tool features only a single model inference technique, while
the MIDS methodology features two such techniques. The Constructive Model
Inference (CMI) approach, our state machine learning approach that infers models
from execution logs (see Chapter 3), was successfully applied to infer the behavior

System 1

System 2

Logs
1

Logs
2

Models 1

Models 2

Execution

Execution

Model
Learning

Model
Learning

CMI

CMI

Differences

Model
Comparison

Model Inference Model Comparison

Figure 6.1: An overview of the MIDS tool, consisting of Model Inference (the blue
parts, in the middle) and Model Comparison (the green parts, on the right).
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of large industrial component-based systems (see Sections 3.5, 4.3 and 5.5). CMI
is therefore included in the MIDS tool. Active automata learning as a model
inference technique is not included in MIDS. It is still too cumbersome to set
up a proper learning setup, and the technique still suffers from scalability issues,
making it unsuited for application at the scale we consider (see Section 2.5).

In this chapter, we take a closer look at the MIDS tool, from the perspective of
applying the tool in industrial practice, to create impact with the MIDS method-
ology. We first look at two examples of the tool in action, based on small ASML
case studies, to show how the MIDS methodology is worked out in the MIDS tool,
as well as how the MIDS tool differs from the MIDS methodology (Section 6.1).
And then we look at the extensibility of MIDS, and how it could be used at other
companies, as well as for software that is not component-based (Section 6.2).

6.1 MIDS in action: Two examples
We look at two examples of the MIDS tool in action. The first example shows
model inference, using our CMI method (see Chapter 3). We especially look at
the visualization of the resulting multi-level model. The second example shows
model comparison, using our multi-level comparison approach (see Chapter 4)
and gLTSdiff structural comparison approach (see Chapter 5). We especially look
at the generated comparison report.

6.1.1 Example 1: Model inference and visualization
In the first example, we showcase model inference using the MIDS tool. We in
particular discuss the visualization of the resulting multi-level model, which is a
unique feature of the tool, not yet described in Chapter 3.

To start, we execute an existing system acceptance test, and capture all inter-
component communications in an execution log. From this execution log, we
create a Timed Message Sequence Chart (TMSC), as defined by Jonk et al. [74]
(see Chapter 3). This functionality is not provided by the MIDS tool itself, but
by the Platform Performance Suite (PPS) [121]. PPS is an open source tool, and
it is included in the MIDS tool. The MIDS tool itself then takes the TMSC as
input. The TMSC is thus the starting point for the model inference using the CMI
method.

We apply CMI and obtain a multi-level model of the communications between
the various components. We skip Step 5 of the CMI algorithm (see Section 3.3.5),
and thus do not inject stateful behavior. Instead, we generate a multi-level visu-
alization from the inferred multi-level model. The generation of the visualization
is part of the MIDS tool. The tool generates a diagram that can be opened with
the yEd graph editing software1.

We focus here on the communications between only two components. These
two components have only a few interactions, but that is sufficient to show the
features of the visualization. We thus filter the multi-level model to only those
service fragments of the two components that are involved in communications
between the two components.

1See https://www.yworks.com/products/yed.
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Figure 6.2: System level visualization for Example 1 (anonymized).

System level: Figure 6.2 shows the visualization at the system level. We see
the two components, A and B. Component A sends an operation_request request
to component B. This request is sent as an FCN call, an asynchronous request
(see Section 2.3.1). The request is handled by component B in an asynchronous
handler. Component B responds to this request by invoking the asynchronous
result function for the request, which leads to an FCN callback handler being
triggered on component A. Component A later sends a get_results request to
component B, again using an FCN call, and this is again handled by component B
using an asynchronous handler. Component B responds by invoking the relevant
asynchronous result function and this again leads to an FCN callback handler being
triggered on component A. We thus see two communications from component A
to component B. In principle, at this level, we do not know the order between the
different requests. For that, we need to zoom in further, to the next level.

Component level: To go to the next level, we can expand the components, by
clicking their ‘+’ icons. This will reveal the internals of the components. Figure 6.3
shows the visualization at the component level. We again see the two components,
A and B, but now in expanded state. We also still see the four possible interactions
between the two components, as arrows between the larger boxes. Within each
component, we now see service fragments.

In this example, we see that component A in its load service fragment sends the
operation_request request to component B, that handles this in its operation_re-
quest handler service fragment. Even though this is an asynchronous handler,
the asynchronous result is sent back synchronously in that same service fragment.
Component A handles the response in its operation_request callback service frag-
ment. There it sends the second request, the get_results request, to component B.
Component B handles this request in its asynchronous handler service fragment
get_results. This time, it does not synchronously respond back to component A.
Instead, it sends the response at a later time in service fragment results_avail-
able. Component A then handles that response in its get_results callback service
fragment.

The requests from component A to component B are indicated by green arrows.
The corresponding handler service fragments that handle the requests are indicated
by green boxes. Similarly, responses from component B to component A are
indicated by blue arrows, and the corresponding handler service fragments that
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Figure 6.3: Component level visualization for Example 1 (anonymized).

handle the responses are indicated by blue boxes. Two of the service fragments
are indicated by black boxes, indicating them to be internal service fragments,
that do not handle requests or responses. Given the filtering that we applied to
scope to only these two components, all communications with other components
are omitted from the diagram. Hence, in this scoped diagram, these two service
fragments no longer correspond to requests or responses as they did in the full
scope, and are considered internal service fragments for this particular view of the
software behavior.

Besides the green and blue arrows, the diagram also features purple and yellow
arrows. A purple arrow connects two service fragments on the same component,
where the service fragment at the start of the arrow sends a request, and the
service fragment at the end of the arrow handles the response to that request. If a
single service fragment both sends a request and handles the response, the purple
arrow is omitted. Similarly, a yellow arrow connects two service fragments on the
same component, where the service fragment at the start of the arrows handles a
request, and the service fragment at the end of the arrow sends the response to
that request. If a single service fragment both handles a request and also sends
the reply, the yellow arrow is omitted.

With these various arrows, we can follow the execution and communication
flows through the software. For instance, we can follow the communication flow,
by following the arrows from service fragment load in A, to operation_request in
B, to operation_request in A, to get_results in B, to results_available in B, and
to get_results in A. Similarly, we can follow the execution flow between service
fragment in A, by following the arrows from load to operation_request and get_re-
sults. We can thus observe the order of the communications and service fragment
executions.
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Service fragment level: There are however aspects of the behavior that we
can not see at the component level. For instance, we can not see under which
circumstances the response from component B to component A is sent in service
fragment results_available. For that, we need to zoom in even further. Similarly
to how we can expand components to reveal their internals, we can also expand
service fragments.

We expand service fragments results_available on component B and get_re-
sults on component A. Figure 6.4 shows the part of the visualization at the service-
fragment level for these two service fragments. Within each service fragment, the
state machine of the observed behaviors of that service fragment is shown. For
results_available we see from the loop between loc1 and loc2, that the callback
can start and end, without any other communications taking place in between.
Alternatively, it is possible that other communications do happen in between.
Component B may perform a blocking call query_results, going to loc3 and loc4.
There, three different things may happen. Either component B sends a response
for the get_results request that we discussed earlier, and goes to loc6 and loc8. Al-
ternatively, it may send responses for two other requests, namely for get_result_ext
(loc5 and loc8 ) and get_other_result (loc7 and loc8 ). We did not see the start of
the asynchronous handling for these other two requests, as they were filtered out.
Regardless of which asynchronous response is sent, at the end the state machine
finishes when the results_available callback returns, and component B becomes
idle again. The get_results callback service fragment in component A similarly
has a state machine. This state machine is much simpler. We only see that the
callback starts and returns. No other communications have been observed from
this service fragment. Likely, it only updates some internal state.

We can thus see the detailed behavior of the service fragments as depicted
by their state machines. The service-fragment-level view also provides additional
context to the communications we already observed at the higher level. We can
see where component B sends the get_results response. By following the yellow
arrow, we can see it goes to loc4, where the response is being sent. In loc4 we see
two outgoing arrows labeled with get_results. We see a black arrow, showing how
the state machine transitions to loc6 when sending the response. And we see a
blue arrow, showing the communication to component A. Similarly, in component
A, we see multiple related arrows. We see the blue arrow there as well. We also see
a purple arrow. It indicates where in the state machine the response is received.
We also see a black arrow, showing how the state machine transitions from loc1
to loc2 when the response is received and the get_results callback is called.

Conclusion: By means of the system-level, component-level, and service-
fragment-level views, the multi-level visualizations allow to interactively zoom in,
and step-by-step inspect more detailed information. Engineers can follow the in-
teractions of the components, and the execution of the software. This gives them
insight into the software behavior, to understand how the software currently works,
which is essential to make correct software changes.

6.1.2 Example 2: Model comparison
In the second example, we showcase model comparison using the MIDS tool. We
in particular discuss the comparison report that is generated as the result of a
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comparison. Rather than discussing a new case study, we look again at the legacy
component technology migration case study from Section 4.3.1.

Similar to the first example, we create a TMSC for each execution log. In this
case, we have six execution logs, as we have a legacy implementation and a new
implementation, and for each implementation we execute three test sets. Then we
apply CMI to each of the six execution logs to obtain six model sets. On the six
model sets, we apply our comparison approach.

The MIDS tool allows comparison at different levels of the multi-level models
inferred by CMI, namely at the service-fragment level (such as in Section 4.3.1),
and the component level (such as in Section 4.3.2). Component models are formed
from service-fragment models, and thus they contain the same information, at
different levels of granularity (see Section 3.3.4). We typically compare models at
the most fine-grained level, the service fragment level. This provides us with the
most detailed comparison. It also means that we compare more models, as each
component typically consists of multiple service fragments. However, the service-
fragment models themselves are smaller (have less states). Smaller models lead to
faster comparison. With smaller models the comparison results are also smaller,
and therefore typically easier to inspect and analyze, especially the structural
comparison results. If the scope of the comparison is much larger, we may not
be interested in all of the details, and we may instead opt to compare at the
component level. For instance, we compared at the component level when we
compared the system behavior for various recipes (see Section 4.3.2). For the
legacy component technology migration case study, we have a rather limited scope,
namely the legacy component and its neighbors. In this case, we thus compare at
the service-fragment level.

The MIDS tool produces a comparison report as the output of a comparison.
This report is an HTML report, that can be opened in a browser. The report can
thus be inspected without requiring the MIDS tool to be installed. The HTML
report can also easily be shared.

Figure 6.5 shows the main overview page of the comparison report generated
by the MIDS tool, for the legacy component technology migration case study. The
overview clearly shows the six levels of the comparison results. The six levels are
divided into two groups: for levels 1 – 3 model sets are compared, and for level
4 – 6 models within the model sets are compared. Each level is shown, with its
name and a short description. For each level, the blue View button can be used
to inspect the results for that level.

We start by inspecting the results for level 1, shown in Figure 6.6. The results
match the output of Figure 4.6 in Section 4.3.1. We then inspect the results of
level 4, shown in Figure 6.7. This overview is slightly different than the one in
Figure 4.6b. In the output of the MIDS tool, we add suffixes to variant identifiers,
per entity/row, to make it clearer to users that variants are assigned per entity.

Finally, we inspect the results of level 6, for the apply service fragment, shown in
Figure 6.8, and for the prepare service fragment, shown in Figure 6.9. The results
differ slightly, as here we used gLTSdiff rather than LTSDiff, and we enabled post-
processing (see Section 5.3.7). Also, we now use arrows labeled with ‘ . . . ’ to
indicate abbreviations.

The comparison report has a few other features. It has an About page, see
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Figure 6.5: Comparison report overview page for Example 2.

Figure 6.6: Comparison report level 1 page for Example 2 (anonymized).

Figure 6.7: Comparison report level 4 page for Example 2 (anonymized).
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Figure 6.10: Comparison report About page for Example 2.

Figure 6.10. It shows information about the configuration used for the comparison,
and the model sets that were used as input. The comparison report also allows
to inspect the input models, in a similar way as the structural comparison results
are shown in level 6.

The information contained in the comparison report allows engineers to inspect
behavioral differences at various levels of abstraction, zoom in on the parts of the
system that have differences, and determine whether the differences are expected
or not. This way, they either find regressions, or they increase their confidence in
the correctness of their changes. This reduces the risks for software evolution.

6.2 Extending MIDS for use at other companies
The MIDS methodology is generic. It is not specific to ASML, and can thus
also be applied at other companies. To enable this, we open sourced the MIDS
tool [120]. It is available under the MIT license, allowing everyone to use it, even
commercially.

6.2.1 Extensions of MIDS
While the MIDS tool is thus open source and generic, this does not mean that
any engineer can just download the tool and use it as is. The tool may need to
be extended to fit particular companies. The MIDS tool provides clear interfaces
that allow the tool to be extended.

The execution logs that are used to construct the TMSC models, which are
the input to the CMI approach, are typically different for each company. What
should be captured in the execution logs, and how this information should be used
to construct TMSC models, is not specific to MIDS. The TMSC metamodel is
defined by the PPS tool [121]. Concrete TMSC models are the input to the MIDS
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tool, and the TMSC metamodel thus serves as an interface for the MIDS tool.
Information on how to work with the PPS metamodel and create TMSC models,
is described in a PPS report [122].

The TMSC metamodel itself also allows for extensions. Companies can encode
their own architectures and communication patterns. Since TMSC models will
then be partly specific for each company, the MIDS tool requires a small adapter
for each company-specific TMSC dialect. These adapters, called CMI preparers,
prepare the TMSC by adding standardized properties to various objects in the
models. This way, the company-specific architecture information is translated
into standardized information for the MIDS tool to work with. The MIDS tool
features a built-in CMI preparer that is suited for simple use cases only. The
ASML version of the MIDS tool, which extends the tool for ASML, comes with
multiple dedicated CMI preparers for some of ASML’s company-specific execution
log formats.

While the TMSC metamodel and CMI preparers form the main interface to al-
low company-specific use of the MIDS tool, there is one other important interface
that allows for extensions of the tool. The CMI approach allows for various post-
processing operations. This includes step 5 of the CMI approach, to inject stateful
behavior and domain-specific knowledge into the models (see Section 3.3.5). It
also supports various other operations, such as filtering, renaming, and repetition
detection [98]. Post-processing is set up in a modular way. Besides the built-in
operations, it is possible to add additional ones. For instance, the ASML ver-
sion of the MIDS tool comes with two additional post-processing operations, that
configure existing operations with ASML-specific configurations.

The compare part of the MIDS tool currently does not feature any extensibility.
It can be used out of the box.

6.2.2 Application of MIDS to ComMA
To show that the MIDS tool can also be applied outside ASML, we apply the tool
in the context of ComMA [79, 80]. ComMA stands for Component Modeling and
Analysis. ComMA is a domain-specific language for the specification of software
interfaces, by means of signatures, protocols, and timing and data constraints. The
ComMA language and tools are part of the Eclipse CommaSuite™ open-source
project2.

ComMA has its own trace format [21]. We made a translation of this format
to TMSCs. With this prototype translation, and the simple built-in CMI preparer
of MIDS, we can use ComMA traces as input for CMI.

Eclipse CommaSuite ships with several examples, including a ‘Vending Ma-
chine’ example, which is described in more detail in the CommaSuite tutorial [45].
We use a single ComMA trace for our experiment, and translate it to a TMSC.
We use that TMSC as input for CMI. Figure 6.11 shows a part of the resulting
multi-level model, with the vending machine itself, the coin checker, and the user.

The prototype translation that we used to translate the ComMA trace to a
TMSC is far from perfect. The input ComMA trace that we used is also far from

2See https://eclipse.dev/comma. ‘Eclipse’, ‘Eclipse CommaSuite’ and ‘CommaSuite’ are
trademarks of Eclipse Foundation, Inc.
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complete. Still, this experiment shows that the MIDS tool can be made to work
for other types of execution logs.

6.2.3 Application of MIDS to C code, with timing analysis
Another example of how the MIDS tool can be used with other types of tracing,
is the work of Aaron Hilbig [61]. Hilbig extended the MIDS methodology with
comparison of timing behavior. To validate his work, he observed the execution of
the ‘cURL’ open source tool, after instrumenting it using certain flags of the GCC
compiler.

cURL is not component-based software, but rather a collection of C code files.
To apply MIDS, different compilation units are considered as components, and
calls between the different compilation units are interpreted as communications
between components.

The extension of MIDS with timing analysis was applied to analyze the tim-
ing behavior of using cURL to download a file from the Internet. Two different
scenarios were executed, where the same file is downloaded using either a cellular
connection or a WiFi connection. The expected increase in network response time
for the cellular connection over the WiFi connection was apparent in several ‘ser-
vice fragments’ (functions), particular those in ‘components’ (compilation units)
related to executing network requests and polling.

6.2.4 Concluding remarks
Currently, the MIDS tool is being rolled out at ASML, with the primary focus on
preventing regressions after software changes. The tool is being integrated into the
company’s systems and way of working, making MIDS widely available for ASML
(software) engineers. This will allow MIDS to have a larger impact.

Now that the MIDS tool is open source, we look forward to apply it also at
other interested companies. Then, we can also do a proper evaluation of how
easy it is to apply MIDS methodology in different settings, and how suitable the
resulting models are to address their software evolution challenges.
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Conclusions and future work

To conclude this thesis, in this final chapter we first answer the research questions.
And then we reflect further on the work, by discussing some of its implications
and shortcomings, which lead to future work. For each research question, we first
summarize our main contributions, before answering the question.

7.1 Answering the research questions
We first answer the research questions of this thesis (see the overview in Figure 1.5).
We start from the most detailed questions, working our way towards higher-level
research questions, and finally the main research question.

RQ-1a How can we efficiently set up and apply active automata learning,
to automatically infer the software communication behavior, for large
component-based systems?

To answer this research question, we investigated approaches to isolate compo-
nent code and connect it to an active automata learning tool. Since no systematic
approaches existed, we developed a systematic approach to connect software com-
ponents operating under the client/server paradigm to a learning tool (see Chap-
ter 2). Our general, reusable and configurable framework allows to more quickly
produce an active learning setup for such components, dealing with the various
types of (a)synchronous communications. We showed the feasibility and effective-
ness of our approach that generates large parts of the active learning setup, by
applying it to multiple industrial software components.

While our approach significantly reduces the effort to apply active automata
learning for large component-based systems, still too much effort is required, as
instantiating the framework takes a few hours per (sub-)component. Furthermore,
scalability of the learning technique itself continues to be a major challenge. While
active automata learning remains a promising technique, in its current state we
find it unsuited for application at the scale of the large component-based systems
that we consider.
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RQ-1b How can we apply state machine learning, such that it automatically
infers good approximations of the software communication behavior,
for large component-based systems?

To answer this research question, we investigated existing state machine learn-
ing algorithms from the literature, to see how they generalize from observations of
the system behavior. We found that the existing algorithms generally use hard-to-
configure heuristics, that do not relate to the characteristics of component-based
systems. And they often over-generalize beyond the system behavior. We therefore
developed our Constructive Model Inference (CMI) approach, which infers multi-
level models that match the structure of component-based systems (see Chapter 3).
We analyzed several properties of the approach and the way it generalizes the ob-
served behavior, without over-approximating beyond the actual system behavior.
The approach is mostly automated, and using an industrial case study we showed
that it can be applied to large component-based systems, producing models that
engineers were able to interpret.

The CMI approach thus tailors state machine learning to learning the soft-
ware communication behavior for large component-based systems. It also, for this
setting, addresses some of the major limitations of existing state machine learn-
ing approaches, namely over-generalization and hard-to-configure heuristics. The
CMI approach thereby improves the applicability of state machine in industry, for
large component-based systems.

RQ-1 How can we efficiently obtain a complete overview of the software
communication behavior, for large component-based systems?

We answer this research question by capturing the software communication
behavior in multi-level state machine models. We reduce the laborious and error-
prone manual modeling work by to a large degree automating the creation of such
models, using our CMI approach.

We used CMI successfully for various case studies throughout this thesis (see
Sections 3.5, 4.3 and 5.5). In total, CMI has been applied at ASML in over a
dozen real-world cases, either by us or by ASML engineers themselves. The CMI
approach is largely automated, and for our use cases it does not require complicated
configuration. It also scales well when applied to large systems, as we are able to
infer the behavior of all software components of an ASML TWINSCAN system1,
inferring the behavior of hundreds of components, from dozens or even hundreds of
millions of events. So far, software engineers, software architects, and component
owners were able to interpret the models that result from the CMI approach.

The CMI approach uses execution logs as input, which may not contain all
communication behavior of the system. Hence, we can not guarantee a complete
overview of the software communication behavior. We further reflect on this in
the next section.

RQ-2b How can we present engineers with suitable representations of relevant

1We currently only look at the main host of the machine, which contains the majority of
the (control) software. The other hosts mostly run embedded software to control lower-level
sub-systems. Dealing with other hosts is future work.
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behavioral differences, for them to efficiently and effectively find any
behavioral regressions?

To answer this research question, we investigated various existing comparison
techniques for state machine models, to compare the externally observable behav-
ior of state machines, as well as their internal structure. The techniques can be
combined to use their complementary strengths, but a single integrated approach
and good overview of the results was lacking. We therefore developed a multi-level
approach for behavioral comparison of large component-based systems, which in-
tegrates multiple existing complementary methods to automatically compare the
behavior of state machine models (see Chapter 4). The comparison results can
be inspected at six levels of abstraction, ranging from very high-level differences
to very detailed ones. Users are guided through the differences in a step-by-step
fashion. At each level the differences are presented with a dedicated visualization,
that is tailored to allow engineers to zoom in on the parts of the system with dif-
ferences, wasting no time on the parts without any differences. We evaluated the
approach using multiple industrial case studies, thereby demonstrating that it can
be applied to large (sub-)systems, provides engineers insight into the behavioral
differences, and allows them to find unintended regressions.

RQ-2b How can we present engineers with suitable representations of relevant
behavioral differences, for them to efficiently and effectively find any
behavioral regressions?

To answer this research question, we investigated reducing the number of irrel-
evant differences, such that engineers can more efficiently and effectively inspect
the relevant differences. We focused on the most detailed level of our multi-level
behavioral comparison approach (level 6), where we found that engineers spend
the most effort in interpreting the differences. Level 6 shows the behavioral dif-
ferences based on the results of a structural comparison of state machines. We
improved LTSDiff, an existing state-of-the-art algorithm to structurally compare
state machines, by generalizing and extending it to gLTSdiff (see Chapter 5). We
applied gLTSdiff to several large-scale industrial and open source case studies. We
showed that it efficiently computes behavioral differences for large numbers of in-
put models; that it reduces the number of differences in comparison results, which
reduces the effort engineers have to spend to interpret the differences; and that it
can be used to effectively find behavioral regressions.

RQ-2 How can we efficiently obtain a complete overview of the system-wide
impact on the communication behavior caused by software changes,
for large component-based systems?

We answer this research question by combining our multi-level behavioral com-
parison approach with our structural comparison framework gLTSdiff. The former
provides the overview, using the latter to provide the most detailed information.
We showed that both are able to efficiently handle large component-based systems,
and reduce the effort that engineers have to spend on inspecting and interpreting
differences. We further showed that our combined approach can be used to find
behavioral regressions. Engineers can thus determine the (undesirable) impact of
their software changes on the communication behavior.
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RQ How can we reduce the efforts and risks of software evolution, for large
component-based systems?

We answer this research question with our MIDS methodology, which com-
bines our model inference and model comparison approaches. Both approaches
reduce the risks of software evolution. Model inference allows engineers to infer
models of the software that give them insight into the current communication be-
havior. Understanding the behavior of the software before they change it, aids
them in making proper changes to the software. And model comparison allows
them to compare the (inferred) software behavior models, zoom in on the relevant
differences, and determine the impact of software changes. Together model infer-
ence and model comparison assist them in increasing confidence that the software
changes were made as intended, preventing regressions, and thereby reducing some
of the risks before these changes are delivered.

We rely on automation provided by the MIDS tool, the Model Inference and
Differencing Suite, to reduce the effort that engineers have to spend in applying
the methodology (see Chapter 6). The tool is also extensible, allowing to support
applications at different companies, which may for instance have execution logs in
different formats. The tool is open source, allowing wide-spread use of the tool and
its underlying methodology in industry, to reduce the effort and risks for software
evolution in their large component-based systems.

7.2 Further reflection and future work
Next, we reflect further on the work, discussing its implications, and identifying
shortcomings, leading to future work. We discuss the following topics:

1. What is the impact of focusing only on functional software behavior, and
not (for instance) on performance aspects?

2. What is the impact of focusing only on the communication behavior of com-
ponents, and not on their internals?

3. What is the impact of focusing only on the order of the communications,
and not (for instance) on data relations?

4. How effective is the approach in dealing with concurrency and asynchronous
communications?

5. What is the impact of incomplete execution logs on the completeness of the
inferred models?

6. What is the overall impact of the work?

7.2.1 Focus on functional software behavior
We scoped our work by focusing primarily on software functionality, considering
the non-functional aspects of software changes to be out of scope. We made this
decision from the belief that if we are successful in managing the complexity of
functional software changes, we can already have a significant impact on reducing
the challenges for software evolution in industry (as outlined in Chapter 1). The
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various case studies we performed, and that are described in this thesis, show
that we can indeed reduce effort and risks for software evolution. For instance, in
Section 5.5.1, we found the cause of an already delivered regression in two hours
rather than in two days. And in Section 5.5.2, ASML engineers were able to find a
regression before delivery that was not found by existing tests, reducing risks and
saving at least a person-day in effort.

However, while non-functional aspects are thus out of scope for this thesis,
our approach may at times also be able to provide insights into, and prevent
issues relating to, non-functional aspects. This is for instance shown in the two
aforementioned case studies from Section 5.5. For the wafer exposure regression
case study, we were able to pinpoint the functional change that led to a system
throughput regression. And for the wafer stage refactoring case study, an ASML
engineer was able to find and fix a mode switching issue that would have otherwise
led to a system throughput regression.

Being able to see some impact on performance by only considering functional
changes is nice. But, to thoroughly analyze the software performance, and changes
in performance after the software is changed, requires including timing information
into our approach. Some first work has already been performed by Aaron Hilbig
(see also Section 6.2.3). His work resulted in a prototype implementation of MIDS
that takes timing into account in both model inference and model comparison.
However, working this out in more detail, maturing it, and including it in the
open source MIDS tool, remains future work.

7.2.2 Focus on communication behavior of components
We scoped our work by focusing on the communication behavior between compo-
nents in a large component-based system. This choice is based on our experience
in working with various companies in the Dutch high-tech industry, and the chal-
lenges they face (see Chapter 1). We believe that, in such systems, engineers typ-
ically already have a good grip on their own component. It is the interaction with
the rest of the system, especially the impact on further-away parts of the system,
where they lack the insights and the knowledge. The integration of components
to form (sub-)systems often reveals issues, both in the individual components and
their composition, not in the least due to the complexities of inter-component
communication.

However, while that is our focus in this thesis, it does not mean our approach
is limited to the externally visible communication behavior of components. We
believe our approach could also be applicable to the internal software behavior
of the components. If suitable logging is available for the function calls within a
component, this could be incorporated into the inferred models. We performed
some first experiments, using function-level logging available within ASML.

Figure 7.1 shows two versions of an example TMSC model, where on the left
only the externally-observable communications (function calls, light gray bars)
are captured, and on the right additionally the internal function calls (darker
gray bars) are added. A request to execute function f leads to external calls for
functions j and h. If the internal function calls are considered, f first calls g, which
calls function i twice. The second call to i leads to the j call. Function h is directly
called from function f.
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C1 f

hj

reqf repf

reqj repj

reqh reph

(a) External function calls only

C1 f

g h

i i

j

reqf repf

reqj repj

reqh reph

(b) External and internal function calls

Figure 7.1: An example TMSC model, with and without internal function calls.

Each component still consists of well-formed call stacks. Hence, this fits well
with our CMI approach, which could be adapted to take the additional calls into
account when inferring state machines. And our comparison approach works on
state machines, so it can be used without any fundamental changes. First exper-
iments thus show that our approach is not fundamentally limited to considering
the externally-visible communication behavior of components, and it could also
consider the internal software behavior of components. However, working this out
in detail is future work.

7.2.3 Focus on order of communications
We scoped our work by focusing on the order of communications between compo-
nents. We thus consider only a part of what comprises a good interface protocol.
A good protocol should consist of at least the following aspects [80]:

• The syntax, e.g., the functions that may be called, and if relevant also their
parameters, and the types of the parameters and return values.

• The order constraints, e.g., the order in which the functions may be called.
This can for instance be captured as a protocol state machine.

• The data constraints, e.g., in which situations a component replies in a par-
ticular way, or sends requests to other components, based on the values of
the parameters.

• The time constraints, e.g., the amount of time a component needs to reply to
a request, or the number of requests it can handle in a certain time period.

We primarily consider the first two aspects in this thesis. Our approach can
be extended to also consider timing, as discussed in Sections 6.2.3 and 7.2.1.

An important aspect we have not yet discussed is the influence of data. We
primarily considered components whose behavior is predominantly determined by
the messages they exchange, rather than for instance the data that they process
(see Section 1.1.2). However, data can have an impact on the software behavior.
Figure 7.2 shows an example. In the code (Figure 7.2a) there is an ‘if’ statement,
where in the ‘then’ branch one communication takes place, while in the ‘else’
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func void f(int x) {
if (x > 0) {

g();
} else {

h();
}

}

(a) Source code

f↑

g↑ g↓

h↑ h↓

f↓

(b) Plain state machine

f(x)↑

g()↑

x ∈ {1, 3, 7} g()↓

h()↑

x ∈ {−2, 0} h()↓

f(x)↓

(c) Extended state machine

Figure 7.2: An example of the influence of data on the software behavior.

branch a different communication occurs. If we observe both these variants of
behavior in the execution logs, our CMI approach will infer a state machine in
which both behaviors are possible (Figure 7.2b). From this state machine, it is
clear that a choice is possible, but not in which cases which branch is taken. We
thus see the effect of decisions that are made based on data, but not the data
itself.

We envision our approach could be extended to make the data relations explicit.
The arguments of function calls could be recorded in the execution logs. The data
could then be taken into account when inferring state machines using our CMI
approach. Figure 7.2c shows what the result could look like, if we have several
observations for calls to function f , for three positive and two non-positive values
for parameter x.

This is however future work, where several research questions would need to
be answered, such as:

1. What arguments or combination of arguments are relevant to a choice, and
should thus be included on the transitions?

The event for the start of the function call, such as f(x)↑ in 7.2c, has the
information about the arguments. Some of the values of the arguments may
be used in ‘if’ statements in the function body. One could check after each
event f(x)↑ which path in the state machine is taken, and annotate the
choices with all the values of all the arguments of the function, such as for
g()↑ and h()↑. However, likely not all arguments are relevant to the choice.
The question is then how to determine which arguments, or combinations of
arguments, are minimally needed to distinguish the different choices.

2. What is the generalization of the observed values? Can we create a predicate
out of it?

In the code of a C/C++ function, there could for instance be an ‘if’ statement
guard ‘x > 0’ to check that x is positive, or ‘x % 2 == 0’ to check that x is
even. In the approach as suggested above, we add to the choice transitions
those observed values of arguments that distinguish the choices (e.g., x ∈
{1, 3, 7}). The question is then how we can generalize such collections of
values, and for instance infer back the original guard predicates.
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7.2.4 Dealing with concurrency and asynchronous commu-
nications

One of the major sources of complexity in large component-based systems is con-
currency (see Chapter 1). If components execute concurrently, there can be many
interleavings, similar sequences of communications with subtly reordered commu-
nications. Asynchronous communication can make this even more complex. There
are a few ways we deal with this complexity in our approach, both in model infer-
ence and model comparison.

In the CMI approach (see Chapter 3), we infer multi-level models: system
models, component models, and service fragment models. The CMI approach is
based on several assumptions, of which the following two are key in this regard:

• Components are sequential, e.g., corresponding to a single operating system
thread.

• Client requests (and server responses) can only be handled once the com-
ponent is idle, and prior requests are finished, i.e., service fragments are
executed non-preemptively.

This means that concurrency and interleaving are mostly confined to the system
level (models). In system models, the component models are combined, and this
is where all the different interleavings of the communications of the concurrently
executing components will be fully visible. However, system models are typically
used only for analysis, not human inspection. For instance, the complete system
behavior may automatically be checked for deadlock or trace conformance, by a
computer, as we did in Section 3.5. For human inspection, we do not compute the
full system model. Instead, we visualize the multi-level models (see Section 6.1.1).
This way, the full system behavior may be inspected, without explicitly showing
all the different interleavings.

Stateless component models allow their service fragments to be executed in
any order. If stateful behavior is injected in step 5 of the CMI approach, stateful
component models may see the effects of interleaving. Different service fragments
may be executed in different orders, as a result of the environment initiating them
earlier or later. Component models are also used primarily for analysis rather than
human inspection, and multi-level visualization allows inspecting their behavior
without making all interleavings explicit.

Service fragment models are typically not impacted by concurrency and in-
terleaving, as they represent non-concurrent non-interrupted executions of single
functions. However, subtle details may still be visible.

For instance, consider Figure 7.3. Figure 7.3a repeats one of the observations
for the running example from Chapter 3 (w1 from Figure 3.3a). In this observa-
tion, component C1 handles reqf by sending two asynchronous requests, reqg and
reqh, to two different servers, C3 and C2, respectively. Only once both servers
have responded can component C1 reply back to its client by means of repf . In
Figure 7.3a, reph is first and repg is second. Therefore, the service fragment that
handles repg, namely gr, sends repf . In Figure 7.3b, instead, repg is first and reph

is second. The order that the replies come in is thus reversed, which could for
instance be due to timing differences in the system. And thus the service frag-
ment that handles reph, namely hr, sends repf . In these observations, repf is thus
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z hr gr
fr

C2 h

C3 g

reqf repf

reqg
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reqh repg

reqz repz

(a) First observation

C1 f
g h

z gr hr
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reqf repf

reqg
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reqh reph

reqz repz

(b) Second observation

Figure 7.3: An example of the effects of concurrency on service fragments.

either sent by service fragment gr or hr, depending on whether repg or reph comes
in last. If only one of the behaviors is observed, then only one of the models for
service fragments gr and hr will include the sending of repf . If both the behaviors
are observed, then both service fragment models will include it.

There are other, similar subtleties where concurrency and interleaving can pop
up in service fragment models. For instance, different clients could send a first
request to a component, and the component may behave differently for a first
request. Then the service fragments that handle the requests from the different
clients may show differences, depending on what is observed.

For model comparison, we typically use the service fragment models (see Sec-
tion 6.1.2), which are least impacted by concurrency and interleaving.

If the subtleties related to concurrency and interleaving are not relevant for a
particular use case, the MIDS tool can post-process the models to eliminate such
differences. For instance, the identities of different clients could be hidden, or
certain service fragments could be merged together. These differences then also
do not show up in the comparison results.

Our methodology thus provides several practical ways to cope with concurrency
and interleaving. However, it does not completely eliminate their effects.

7.2.5 Completeness of the inferred models
Passive learning approaches, like CMI, infer models from observations. In practice,
the observations are typically incomplete. While the approaches generalize beyond
the observations, this is often insufficient and thus only a part of the system
behavior is captured in the inferred models. Such incompleteness is a fundamental
limitation of passive learning approaches.

It is therefore important to observe as much of the system behavior as possi-
ble. It can be beneficial to combine observations from different executions. For
instance, execute the system in its normal environment, to obtain observations
of the regular production behavior. But, also execute various test sets, that test
some of the exceptional behavior. Still, it remains difficult to obtain observations
of all the relevant system behavior. And at the moment we can give no guarantees
on how much of the system behavior we have observed, or inferred.

In the long run, we believe active automata learning can fill the gap. What is
not yet observed, could be queried, resulting in more complete observations and
thus more complete models.
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For now however, we use models that are typically incomplete. Still, in our
work, we have applied MIDS to quite some case studies, where we were able to
give insight into the system behavior. And we could find regressions that could
not be found by existing test suites. Hence, even if the models are incomplete, our
approach still has practical value.

7.2.6 The overall impact of the work
MIDS has so far been applied in over a dozen real-world cases, either by us or
by ASML engineers themselves. Some of these cases are described in this thesis.
We believe this shows the concrete value of the approach for these applications,
reducing the effort that engineers have to spend, and reducing the risks for software
evolution. It also indicates the potential of the approach in general.

Currently, the MIDS tool is being rolled out at ASML, integrating the tool into
the company’s systems and way of working. By making the tool widely available,
and spreading the word, we hope to increase the number of users, and thereby
increase the impact of our work.

Now that the MIDS tool is open source, we look forward to apply it also at
other interested companies. Then, we can also do a proper evaluation of how
easy it is to apply the MIDS methodology in different settings. Our hope is that
we can get MIDS users in various companies, to address their software evolution
challenges, and further increase the impact of our work.
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Research data management

This thesis research has been carried out under the research data management
policy of the Institute for Computing and Information Science of Radboud Uni-
versity, The Netherlands2. The following research datasets have been produced
during this PhD research:

• Chapter 5:

– Dennis Hendriks and Wytse Oortwijn, Artifact for the paper ‘gLTSdiff:
A Generalized Framework for Structural Comparison of Software Be-
havior’, Zenodo, 2023, DOI: 10.5281/zenodo.8096654.

Besides this, the MIDS methodology is available as part of the open-source MIDS
tool [120]. The materials for the remaining industrial case studies are not publicly
available.

2https://www.ru.nl/icis/research-data-management/, last accessed November 17, 2023.
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