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1.	 Introduction

1.1	 Pharmaceuticals in the environment
Human and veterinary medicinal products are a cornerstone of modern society. 
Most pharmaceutical structures have a natural origin and have been ingeniously 
repurposed or modified by humans for treating a plethora of maladies (Newman 
and Cragg, 2016). Modern technological advancements in drug discovery further 
opened the space to the development of new (semi-)synthetic substances (e.g. 
17α-ethinylestradiol, ciprofloxacin, and cyclophosphamide). The substances 
providing the key therapeutic benefits are often called active pharmaceutical 
ingredients (API), whereas complementary substances - called excipients - help 
improve the safety, quality and efficacy of the medicinal product to the patient. 
In the European Union there are approximately 1000 unique APIs making up 1500 
medicinal products on the European market. In 2021 alone, 104 human and veterinary 
medicines containing 60 new active substances have obtained positive opinions 
for marketing authorization (European Medicines Agency, 2022). Globally, there 
are approximately 4000 APIs being administered. With an ever-growing number 
of medicines reaching the European market, and the general aging and growth of 
population, the consumption of pharmaceuticals is unlikely to decline.  

Medicines are mostly ionisable organics administered via various routes, such as 
oral, dermal, nasal, rectal or intravenous (Charifson and Walters, 2014). The APIs 
are absorbed by the body, distributed to the tissues, metabolized at the relevant 
biological sites (e.g., liver kidney, intestine, lung, adrenals, blood, skin), and 
ultimately excreted as parent compounds and/or metabolites, predominantly via 
the urine and faeces. The excreted fractions vary widely between APIs, with many 
parent compounds excreted in high percentages (Lienert et al., 2007). In Europe, the 
pharmaceutical residues leaving the human body often find their way into the urban 
sewage and a wastewater treatment plant (WWTP) before reaching its final recipient, 
the natural environment (Figure 1). However, WWTPs have limited ability to remove 
pharmaceuticals, with large discrepancies observed within and between countries, as 
well as substances (Deblonde et al., 2011; Tran et al., 2018). APIs can enter the aquatic 
and terrestrial environment via emission of WWTP effluent into surface water or 
application of sludge on agricultural soils (and groundwater), respectively. In 
European WWTPs, micropollutants are mainly eliminated via biological degradation, 
although sorption of the pollutant to the sewage sludge can also contribute to actual 
elimination if incinerated (Larsen et al., 2004). Therefore, the fate of sewage sludge 
is central to environmental evaluation, particularly in countries where it is still a 
cheap option to dispose it on agricultural land. Storm water overflows, urban runoffs 
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and untreated discharges are also relevant entry pathways, particularly as acute 
high-polluting events (Masoner et al., 2019). Considering their health benefits and 
increasing consumption volumes, pharmaceutical emissions and their persistence in 
the environment will continue to occur many years to come despite current efforts to 
reduce it, for example through green-by-design medicines, prudent use of medicinal 
products and advanced water treatment technology (González Peña et al., 2021; 
Graumans et al., 2022; Orive et al., 2022; SAICM, 2015). Globally, APIs have been 
detected in all continents, in wastewater, surface water, drinking water, groundwater, 
soils, sediments, plants and animals (aus der Beek et al., 2016; Kümmerer, 2010; 
Wilkinson et al., 2022). 

Figure 1. Major pathways of release of human and veterinary pharmaceuticals into the environment. 
Source: OECD (2019).
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Pharmaceuticals in the environment (PiE) has been an interdisciplinary field of 
research since the early 1970s (Daughton, 2016), although more recently there 
has been increased concern over inadvertent long-term ecological and human 
health effects of pharmaceutical pollution (European Environment Agency, 2010; 
European Environmental Bureau, 2019; OECD, 2019; Persson et al., 2022; UNEP, 
2019). This is eminently manifested in the European Union’s ‘Strategic Approach 
to Pharmaceuticals in the Environment’ integrated in the Green Deal. In 2015, 
stakeholders also formally adopted environmentally persistent pharmaceutical 
pollutants (EPPP) as an emerging policy issue (SAICM, 2015). Nonetheless, questions 
on how to best characterize the environmental and human health risks of APIs in 
complex mixtures and context-dependent conditions (e.g. hydrogeomorphology, 
climate, socioeconomic activity) remain a non-trivial challenge (Maack et al., 2022). 
In fact, non-therapeutic effects of medicines beyond the clinical setting have been 
mostly overlooked until repercussions of pharmaceutical pollution became apparent 
(Nilsen et al., 2019). A coarse enquiry on Web of Science™ Core Collection indicates 
that until the year 2000, 135 scientific articles had been published on pharmaceuticals 
in the water environment; today, that number reached 20 516 publications. 

According to Küster and Adler (2014, approximately 10% of the pharmaceuticals in 
the European market are suspected to pose a notable environmental risk. Indeed, 
findings suggest ecosystems are under increasing pharmaceutical stress with 
astonishing effects in wildlife (Saaristo et al., 2018). Evidence has accumulated in 
regards to changes in natural microbial community composition, diversity and 
function due to antibiotic exposure (Grenni et al., 2018; Kergoat et al., 2021). The 
feminization of male fish in effluent-dominated rivers and the collapse of wild fish 
populations was associated with exposure to the synthetic birth-control estrogen, 
17α-ethynylestradiol (Jobling et al., 2006; Kidd et al., 2007). The psychoactive drug 
fluoxetine alters algal colonization on rocks, early emergence of aquatic insects and 
locomotion of freshwater polyps (Richmond et al., 2019; Yamindago et al., 2021). 
Vulture populations across the Indian subcontinent have drastically declined by >95% 
due to renal failure provoked by exposure to the anti-inflammatory drug diclofenac 
(Oaks et al., 2004; Shultz et al., 2004). APIs hold the potential to exert harmful effects 
across taxonomic ranks, both under acute and chronic exposure scenarios. Therefore, 
to safeguard good status of the natural environment, our ability to assess adverse 
effects of API contamination in ecosystems is paramount. 

1.2	 Risk assessment of chemicals
Risk assessment is a key process with the aim of describing and estimating risks, 
preferably in quantitative terms. One common way to achieve this is by calculating 
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quotients between the amount of toxicant an organism is exposed to (exposure 
assessment) and the limit amount of toxicant triggering an unacceptable toxic effect 
in the same organism (effect assessment). When the risk quotient (RQ) is below 1, 
the polluting substance is typically deemed to be of no concern, whereas if the RQ 
is above 1, the risk of adverse effects cannot be excluded, thus posing a reason for 
concern. The specific boundary value(s) that qualifies as “reason for concern” is 
malleable, depending on the empirical data that support it and personal values. It 
is up to the risk assessors and stakeholders to acknowledge the uncertainties that 
blur the meaning of this threshold (RQ = 1). This basic principle is similarly applied 
in human health risk and environmental risk assessments (Figure 2). 

Figure 2. Risk assessment procedure for environmentally relevant pharmaceutical active substances.
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Often, a risk assessment is established as a tiered approach, which starts with worst-
case assumptions followed by step-wise refinements up to more realistic scenarios, so 
long unacceptable risk is predicted. Prospective risk assessments are often performed 
in the context of marketing authorisation for new medicinal products and is built 
on predicted exposure concentrations (PEC). Another approach to risk assessment, 
defined as retrospective, makes use of measured exposure concentrations (MEC) to 
indicate if unacceptable risk has already been exceeded. For instance, retrospective 
risk assessments are performed in the context of determining environmental quality 
standards (EQS) to help inform which a posteriori protective measures ought to be 
implemented against actual pollution. Generally, in prospective risk assessment the 
measures anticipate the adverse effects, whereas in retrospective risk assessment 
the adverse effects anticipate the measures (Borghi et al., 2020).

1.2.1	 Environmental risk assessment
An environmental risk assessment (ERA) report is required for all new marketing 
authorisation applications for human medicinal products in the European Union 
(Directive 2011/83). In the centralized marketing authorization procedure, the ERA 
decision tree is divided in two phases (European Medicines Agency, 2018). In Phase 
I, the Predicted Environmental Concentration (PEC) of an API in surface water is 
calculated based on predicted maximum daily dose consumed per inhabitant, 
fraction of a population receiving the API, amount of wastewater produced by an 
inhabitant per day and a dilution factor upon effluent emission. If the PEC is ≥ 10 
ng/L, Phase II of the assessment is initiated, otherwise no further assessment is 
required. In Phase II (Tier A), physico-chemical characteristics, fate and ecotoxicity 
studies relevant to surface water, sediments and the functioning of sewage 
treatment plants are performed. In certain cases, justification for the absence of 
some ERA studies may be allowed. For surface water, an acceptable environmental 
concentration, named the Predicted No Effect Concentration (PNEC), is derived 
from chronic ecotoxicity data for species from at least three trophic levels and 
corrected for extrapolation uncertainties. The PEC is then compared to the PNEC. 
If a risk is identified, refinement of the PEC is required (Tier B). Finally, risks are 
estimated and evaluated. For pharmaceuticals with specific classifications, such as 
endocrine active substances or antibiotics, a tailored risk assessment is warranted. 
However, estimated risks to the environment do not constitute a criterion for 
refusal of marketing authorisation (except for veterinary medicinal products). When 
environmental risks cannot be excluded, precautionary and risk mitigation measures 
are requested (Liebig et al., 2014). Still, pharmaceutical residues are continuously 
detected and measured in surface water in Europe and across the globe (aus der Beek 
et al., 2016; Wilkinson et al., 2022), sometimes even at concentrations exceeding 
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exposure limits known to affect aquatic and terrestrial organisms. In Europe, the 
most polluted sites were identified in Spain with a mean concentration of 17.1 µg/L 
and maximum of 59.5 µg/L. Globally, maximum cumulative concentrations up to 189 
µg/L in Pakistan have been recorded, which equates to 2 oral contraceptive pills in 
a glass of water.

The European Union's Water Framework Directive (Directive 2000/60/EC) and the 
Priority Substances Directive (Directive 2008/105/EC) are legal attempts to push 
member states to actively protect water resources from damage. Despite political 
responses in this domain, risk assessors and water managers are left facing pragmatic 
challenges, such as: the vast majority of human pharmaceuticals lack environmental 
toxicity data (OECD, 2019), only a very limited set of priority substances are carefully 
monitored, and holding up to high water quality across Europe is proving hard to 
achieve (Büttner et al., 2022; Posthuma et al., 2020). Therefore, local and regional 
water managers and risk assessors may struggle with the question whether 
pharmaceutical residues and their mixtures pose an unacceptable risk to a river’s 
freshwater ecosystem. On this front, transnational alliances of scientists with shared 
knowledge about environmental pollution, can play a key role in encouraging cross 
border co-operation (Wiering et al., 2010).

1.2.2	 Human health risk assessment
The European Union has several regulations in place to protect their citizens against 
potential adverse health impacts of water pollutants, but these regulations are not 
specifically aimed at pharmaceutical residues. 

Under the presumptions of European Water Framework Directive (Directive 
2000/60/EC), the centrepiece of EU water law, environmental and human health 
should be protected from long-lasting disrupting effects of adverse polluting 
events. Environmental quality standards (EQS) are prescribed for priority pollutants 
(Directive 2008/105/EC) aiming at the protection of benthic biota (e.g. sediment-
dwelling invertebrates), pelagic biota (e.g. algae, crustaceans, fish), top predators 
(e.g. birds, mammals) and humans. In this context, human health quality standards 
are established assuming exposure via drinking water (QSdw,hh) and consumption of 
fishery products (QSbiota, hh food) (European Commission, 2018). Yet, these can be further 
developed and of greater utility considering that exposure routes, such as dermal 
exposure and ingestion of water during recreational activities, and demographic 
composition are often neglected, such as sex and age-stratified standard settings 
(Ågerstrand et al., 2023; European Commission, 2021a; Nappier et al., 2020).
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Until recently, the Drinking Water Directive (Directive 98/83/EC) did not require 
monitoring of APIs to determine the suitability of drinking water for consumption 
despite the frequent detection of pharmaceuticals across all global regions. 
However, the revised directive (Directive 2020/2184) requires the evaluation of 
pharmaceuticals by creating a ‘watch list’ of compounds found in water intended for 
human consumption. Furthermore, it requires the performance of risk assessment 
in a catchment’s water abstraction points in order to safeguard drinking water 
quality. Regulatory revisions are pivotal to reach coalescence of public interests 
and legislation (European Commission, 2021b), namely the protection of human 
health by guaranteeing wholesome and clean drinking water across Europe. Even 
so, only two APIs were included in the ‘watch list’, i.e., 17β-estradiol and nonylphenol, 
based on endocrine-disrupting properties and suspected risk as criteria(European 
Commission, 2022). This is arguably an illustration of the pressing need for 
supportive studies to quantify human health risks posed by the many APIs residues 
detected in drinking water, identify the most worrisome APIs or therapeutic classes, 
and recommend APIs for inclusion in the ‘watch list’.

According to the European Bathing Water Directive (Directive 2006/7/EC), bathing 
waters are classified as appropriate for bathing when the mandatory criteria for two 
microbiological parameters are being met. Furthermore, this requirement does not 
apply to surface waters where competent authorities expect a small number of people 
to bathe, thus ignoring the widespread practice of wild swimming and freelance 
angling (Blaak et al., 2019). Health implications due to other environmental stressors 
during these water-related activities, such as direct exposure to pharmaceutical 
residues, are disregarded and poorly reported.

EU legal acts are in place aiming to protect human health against potential adverse 
effects of water pollutants, including APIs. Still, these regulations and other 
initiatives seem insufficiently integrated and detailed guidelines to specifically 
assess the human health risks of APIs are lacking (Miettinen and Khan, 2022). 
Studies on human health risks of APIs suggest that effects are likely to be limited 
(Kumar et al., 2010).  However, these are typically limited in scope, for example, by 
focusing on individual APIs, a single exposure route (e.g., skin) or exposure patterns 
which neglect population-specific behaviours (e.g., swimmers). Humans are 
exposed to a multitude of APIs through different exposure pathways and at different 
concentration levels that can vary substantially in space and time. Even so, guidelines 
on how to assess the location-specific human health risks are generally lacking. 
Therefore, local and regional water managers and risk assessors may struggle with 
the question whether human health is sufficiently protected at particular locations 
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and times. Can pharmaceutical residues and their mixtures in a river basin pose an 
unacceptable lifetime risk to humans in a river basin via drinking water, swimming 
and fishing?

1.3	 Antimicrobial resistance
The remarkable ability of antimicrobial agents to inhibit growth or eliminate 
microbes has been made known as early as 1909, with the discovery of the first 
modern antibiotic arsphenamine (Zaffiri et al., 2012). Yet, health concerns would 
later rise due to the stealth ability of pathogenic microbes to adapt to antibiotic 
exposure and thrive in their diseased hosts. Most notably, an early warning on 
antimicrobial resistance (AMR) was voiced in 1945 by the discoverer of penicillin, 
Alexander Fleming, towards the end of his Nobel Prize lecture (Fleming, 1945). 
Numerous cases of antibiotic-resistant bacteria have since been reported in the 
clinical setting. Today, the spread of antibiotic resistance is increasing globally, 
putting pressure on the long-term effectiveness of antibiotics and posing a major 
threat to human health worldwide claiming 1.27 million  deaths in 2019 (Murray et 
al., 2022). At the same time, the development of new antibiotics is slow, resource-
intensive and facing strong market competition over pharmaceuticals that are more 
profitable (AMF, 2022). Antibiotics are the most important pharmaceuticals for 
controlling bacterial infections and therefore widely used in human health care as 
well as livestock production and aquaculture. Prolonged or frequent consumption of 
antibiotics can affect the gut microbiota of mammals and lead to the development of 
antimicrobial-resistant genes (ARGs) and bacteria (ARBs). A conceptual description 
of the cause-effect relationship between the environment and society in the context 
of antibiotic pollution and resistance is presented in Figure 3. The available scientific 
information about the processes involved in the environmental fate, exposure 
and effects of ARGs and ARBs are very limited, preventing the quantification of 
human health risks (Manaia, 2017). Consequently, human health risk assessment 
of antibiotic resistance in the environment is still in its infancy compared to risk 
assessment of direct toxic effects of chemicals.

1.3.1	 Antibiotic resistance in the urban environment
ARGs, ARBs and antibiotic residues are excreted via faeces and emitted into the 
environment either directly (animals; lacking sewer infrastructure) or indirectly (via 
sewers and WWTPs). While the use of antibiotics in animal production is typically 
related to veterinary disease control and prevention, WWTP outlets in urban areas 
may be regarded as a steady source of antibiotic and AMR pollution (Rizzo et al., 
2013). Since most WWTPs are built to remove macro-pollutants (such as nutrients) 
from wastewater, micropollutants, like pharmaceuticals, and microbes are only 
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partially removed. Moreover, recent studies suggest that urban sewer systems 
might act as reservoirs for ARGs and enhance non-hereditary gene transfer across 
pathogenic bacteria (Auguet et al., 2017; Wang et al., 2018). Several studies assessed 
the role of hospitals and WWTPs in the spread of antibiotics, ARBs and ARGs to the 
environment (e.g. (Hutinel et al., 2021; Rodriguez-Mozaz et al., 2015; Voigt et al., 
2020), other studies approached the issue on a global scale (e.g. (Hendriksen et al., 
2019; Oldenkamp et al., 2021; Zhang et al., 2022). However, the role and contribution 
of different urban activities and demographics to the emission of antibiotics and 
ARGs within an urban sewer catchment is still not well understood. Therefore, as a 
first step it might be necessary to understand if antibiotic concentration and ARG 
abundance data can be used to identify in-sewer emission hotspots and improve the 
prioritization of emission reduction strategies.

Figure 3. Drivers-Pressures-States-Impacts-Responses (DPSIR) framework applied to antibiotic pollution 
and antibiotic resistance.

1.3.2	 Antibiotic resistance in the natural environment
The antibiotic resistance dilemma was for long an exclusive concern in human 
and veterinary medicine, thus mostly dealt with by clinicians and other health 
professionals. However, attention began to drift beyond waste disposal or a simple 
toilet flush. The environmental dimension recently became broadly acknowledged 
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as an integral element of human and animal health. This rediscovered principle has 
been unified under the term One Health (Brack et al., 2022; European Commission, 
2017; Osterhaus et al., 2020).  Current risk assessment guides are missing critical 
AMR considerations, hindered by a generally poor understanding of the human-
animal-ecosystem nexus and how antibiotic resistance operates in the natural 
environment (Jin et al., 2022). Consequently, science is yet struggling to inform 
policy, regulators and risk assessors (European Food Safety Agency et al., 2021; 
Singer et al., 2016). Numerous studies have measured environmental concentrations 
of antibiotics and ARGs in artificial (e.g. wastewater) and natural environments (e.g. 
surface water, sediment), as well as in wildlife (Laborda et al., 2022; Zhao et al., 
2020) However, only a minority quantify both simultaneously, thus hampering the 
ability to explore their co-occurrence. Eventually, a subsequent challenge lays on 
discerning if the co-occurrence is causal, i.e., if ARG proliferation in the environment 
is in part driven by the selective pressure of antibiotics over ARG-carrying hosts or 
if paired fluctuations of ARGs and antibiotics is coincidental. Therefore, integrating 
available empirical data can help address this challenge. In addition, considering the 
profound lack of mechanistic understanding of the underlying processes steering 
the environmental fate and development of antimicrobial resistance, predictive 
mathematical models are for the time being of limited utility to risk assessment 
practice (Knight et al., 2019; Opatowski et al., 2011). Within this context, statistical 
models such as regressions based on empirical data can be used in a first attempt to 
describe the overall relationships between antibiotics, ARGs and ARBs. For instance, 
it may be able to help answer the question on whether antibiotic-resistance gene 
abundance correlate with antibiotic selective pressure in surface water, sediments 
and wastewater.

1.4	 The MEDUWA-Vecht(e) project
Over 60% of the European Union is covered by transboundary river basins and 70% 
of European catchment areas are shared between European countries (Reichert, 
2016). In fact, the EU harbours the largest number of shared river basins in the 
world (Baranyai, 2019). It is crucial to assess the risks of pharmaceutical pollution 
in order to protect the populations’ health and ecosystems integrity throughout the 
European continent. 

The research presented in this dissertation was conducted as part of the MEDUWA 
(Medicines Unwanted in Water) project which tackles the reduction and prevention 
of pharmaceutical emissions as well as multi-resistant bacteria in different 
environmental media. The 27 MEDUWA partners from research, private companies, 
governmental and non-governmental organizations aimed to develop a variety of 
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approaches to avoid pharmaceutical pollution along the entire medicine chain 
(Moermond and de Rooy, 2022). The project’s regional focus lies in the transboundary 
German-Dutch Vecht River catchment.

The Vecht River originates in the German federal state of North Rhine-Westphalia, 
and streams through Lower Saxony before entering the Netherlands, in the 
province of Overijssel. The Vecht River, a tributary of the Dutch IJssel River, is 
under the influence of diverse anthropological stressors (e.g., population density, 
pharmaceutical consumption, treated wastewater emissions, water level control via 
pumps and locks) (Lämmchen et al., 2021; Lulofs and M., 2007; Wöhler et al., 2020). 
The catchment extends over a substantial cross-border region of approximately 
6100 km² and the total length of the Vecht River main course amounts to 167 km. 
Therefore, Vecht River transboundary catchment is a study area of particular interest 
from an environmental risk perspective.

The transboundary River Vecht basin served as a study site where the diverse 
MEDUWA innovations (measuring, visualizing, and communicating about 
pharmaceutical emissions and multi-resistant bacteria; simulating measures to 
reduce emissions; mitigating and preventing emissions) were developed and applied. 
Comprehensive details about the project’s outcomes can be found on the website 
www.meduwa.eu. This document’s objectives overlap with the MEDUWA project’s 
concept by investigating the risks pharmaceuticals pose to the natural environment, 
human health and antimicrobial resistance.

1.5	 Aim
The aim of the present dissertation is to advance human and environmental risk 
assessment of pharmaceutical pollution, acknowledging variations over time, space 
and between individuals. The German-Dutch transboundary Vecht River was used 
as a case study area of particular interest due to the strong and diverse influence of 
anthropological stressors and its transnational character. In addition, the present 
dissertation also examines the local and global relationships between antimicrobial 
resistance and antibiotic pollution. Specifically, we attempted to address the main 
research questions outlined below:

Chapter 2: Do pharmaceutical residues and their mixtures in a transboundary river basin pose 
an unacceptable lifetime risk to humans via drinking water, swimming and fishing? 

Chapter 3: Do pharmaceutical residues and their mixtures pose an unacceptable risk to a 
transboundary river’s freshwater ecosystem?
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Chapter 4: Does antibiotic-resistance gene abundance correlate with antibiotic selective 
pressure in surface water, sediments and wastewater? 

Chapter 5: Can antibiotic concentration and ARG abundance data be used to identify in-sewer 
emission hotspots and improve the prioritization of emission reduction strategies?

1.6	 Outline
Chapter 1 provides a motivation for the research presented in the present 
dissertation and describes the aims and scope of the studies. The work presented 
in this dissertation is divided into two main parts. The first part (Chapters 2 and 
Chapter 3) concerns the advancement of environmental and human health risk 
assessment of pharmaceuticals by improving upon well-established methodologies 
and incorporating new toxicity data. The second part (Chapters 4 and Chapter 5) 
focuses on the advancement of our understanding of the environmental dimension 
of antibiotic resistance by exploring relationships at the local and global level.

In Chapter 2, we systematically assessed the lifetime human health risks posed by 15 
individual APIs and their mixtures occurring in the German-Dutch transboundary 
Vecht River. An exposure model was developed and used to assess the combined risks 
of oral and dermal exposure under a variety of exposure conditions. A total of 4500 API 
uptake values and 165 lifetime risk values were estimated for 15 and 11 APIs, respectively.

In Chapter 3, we defined ecological risk profiles for surface water concentrations of 
8 APIs (carbamazepine, ciprofloxacin, cyclophosphamide, diclofenac, erythromycin, 
17α-ethinylestradiol, metformin, and metoprolol) in the Vecht River. To achieve this, 
we geo-referenced and estimated API concentrations in surface water, derived new 
predicted-no-effect concentrations for 7 of the studied APIs, and created detailed 
spatially explicit ecological risk profiles of APIs under 2 distinct water flow scenarios.

In Chapter 4, we collected the limited data on antibiotic concentrations and ARG 
abundance currently available to explore if a relationship could be defined in surface 
waters, sediments and wastewaters. A metric of antibiotic selective pressure, i.e. 
the sum of concentrations corrected for microbial inhibition potency, was used to 
correlate the presence of antibiotics in the environment to total relative abundance 
of ARG while controlling for basic sources of non-independent variability, such as 
country, year, study, sample and antibiotic class.

In Chapter 5, we conducted a detailed study in the city of Nijmegen, The Netherlands, 
to characterize various urban sources of antibiotics and antibiotic resistant genes in 
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wastewater. Prevalence of ermB, tetW, sul1, sul2, intl1, and 16S rRNA was determined at 
10 locations within the sewer system. Sampling locations included a nursing home, 
a student residence, a hospital and an industrial area, among others. Wastewater 
concentrations of 23 antibiotics were measured using passive sampling. Additionally, 
excreted loads of 22 antibiotics were estimated based on ambulatory prescription 
and clinical usage data.  

Finally, in Chapter 6 we integrate the main findings of each chapter and extract key 
conclusions to help guide further research on targeted risk management decisions 
on pharmaceutical pollution, by local, regional and national authorities.
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1.	 Abstract

Active pharmaceutical ingredients (APIs) can reach surface waters used for drinking 
water extraction and recreational activities, such as swimming and fishing. The aim 
of the present study was to systematically assess the lifetime human health risks 
posed by 15 individual APIs and their mixtures occurring in the German–Dutch 
transboundary Vecht River. An exposure model was developed and used to assess the 
combined risks of oral and dermal exposure under a variety of exposure conditions. 
A total of 4500 API uptake values and 165 lifetime risk values were estimated for 15 
and 11 APIs, respectively. Overall, the lifetime human health risks posed by the APIs 
and their mixtures based on modeling results were deemed acceptable under typical 
exposure conditions. Under very extreme environmental conditions and human 
behavior, API mixture risks were of potential concern while the risks of individual 
APIs were negligible, with a few exceptions. The antibiotic doxycycline and analgesic 
phenazone showed the highest and lowest risks, respectively. The study did not 
evaluate the potential risks caused by metabolite compounds. Recommendations 
for water managers are provided to help improve the accuracy and utility of human 
health risk assessments of pharmaceuticals. Integr Environ Assess Manag 2022;18:1639–
1654. © 2022 The Authors. Integrated Environmental Assessment and Management 
published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology 
& Chemistry (SETAC).
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2.	 Introduction

Medicinal products are a cornerstone of modern society. They contain active 
pharmaceutical ingredients (APIs) that typically elicit potent biological activity at 
low concentrations. Active pharmaceutical ingredients are used for their therapeutic 
qualities, including reducing morbidity and mortality. Following consumption, 
APIs are metabolized and excreted in their parent and metabolite forms at variable 
fractions (Celiz et al., 2009). These forms can ultimately reach the environment, 
where they have been detected in a myriad of environmental matrices. In surface 
waters, for example, APIs have been detected in the ng/L to µg/L concentration range 
(aus der Beek et al., 2016). Toxicological effects in wildlife (based on field studies) 
caused by pharmaceutical residues at environmentally relevant concentrations have 
been reported (Arnold et al., 2014; Oaks et al., 2004; Sanchez et al., 2011), motivating 
environmental risk assessment of APIs as an active field of research and regulation.

The European Union has several statutes in place aiming to protect human health 
against potential adverse effects of water pollutants. Examples include the Bathing 
Water Directive (2006/7/EC), the Water Framework Directive (2000/60/EC), and 
the Drinking Water Directive (2020/2184). However, none of these directives has 
environmentally protective standards for APIs, and detailed guidelines to specifically 
assess the human health risks of APIs are lacking (EU,  2000,  2006,  2020). As a 
consequence, human health risks due to direct and indirect environmental exposure 
to APIs are rarely assessed. The few scientific studies that are available usually 
conclude that human health risks of environmental exposures to APIs are negligible 
(Cunningham et al., 2009; de Jesus Gaffney et al., 2015; de Jongh et al., 2012; Kumar 
et al., 2010; Roden et al., 2015). However, these studies are typically limited in scope, 
for example, by focusing on individual APIs, a single exposure route (e.g., ingestion) 
or exposure patterns that are not representative for the behavior of specific groups 
such as swimmers and fish consumers (Bercu et al.,  2008; Christensen,  1998; 
Leung Ho et al., 2013; Muñoz et al., 2010; Schulman et al., 2002; Shanmugam et 
al.,  2014; Webb,  2001). Human health risks from standard exposure situations 
involving single APIs are likely to be limited and site-specific. Still, humans can be 
exposed to a multitude of APIs through different exposure pathways, behaviors, and 
concentrations that can vary substantially over space and time. Therefore, local and 
regional water managers may struggle with the question of whether human health 
is sufficiently protected.

The aim of the current paper is to present a screening approach that estimates 
lifelong human health risks by systematically integrating exposure routes of multiple 
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APIs and assessing their combined effects. The approach is illustrated in a case study 
using concentrations of 15 APIs in the German–Dutch transboundary Vecht River. 
Based on the results of this study we hope to (1) find out whether the integrated 
human health risks resulting from direct and indirect exposure to APIs in the Vecht 
River can be considered acceptable, (2) inform local, regional, and (inter)national 
water managers by showing how an integrated human health risk assessment of APIs 
can be performed, and (3) propose simple alternatives for assessing the integrated 
human health risks of multiple APIs under data-poor settings, making onerous and 
exhaustive assessments superfluous.

3.	 Data and methods

3.1	 Vecht River
The Vecht River is a transboundary river that crosses several regions in the 
European Union member states of Germany and the Netherlands (Figure 1). The 
Vecht River is a tributary of the Dutch IJssel River with a total length of 167 km and 
covering a catchment area of 6100 km2, reaching from the northwest of Germany 
(160 inhabitants/km2) to the east of the Netherlands (260 inhabitants/km2). Municipal 
wastewater from 1.4 million inhabitants and 13 hospitals is collected by 57 sewage 
treatment plants and subsequently discharged into the Vecht River and its tributaries 
(Duarte et al., 2022; Lämmchen et al., 2021; Wöhler et al., 2020). Contributions from 
industrial and agricultural discharges were not characterized in this study. The area 
attracts numerous visitors, particularly in the Vechtdal region of the Dutch province 
of Overijssel. This region is actively promoted by local entities for its outdoor leisure 
activity opportunities, including recreational swimming and fishing, registering 2.5 
million overnight stays and 90 million euros spent in 2019 (www.marketingoost.nl).

3.2	 Pharmaceuticals
Human health risks were assessed for 15 selected APIs (Table 1). This selection was 
made within the context of the MEDUWA-Vecht(e) project (www.meduwa.uni-
osnabrueck.de), to represent a wide range of therapeutic classes, physicochemical 
properties, biodegradation potential, and available ecotoxicity data. The selection 
includes APIs on the Watch List under the Water Framework Directive (EU, 2013; 
Gomez Cortes et al.,  2020) (diclofenac, erythromycin, 17α-ethinylestradiol), 
understudied APIs (e.g., amantadine), highly prescribed APIs (e.g., metformin, 
metoprolol, valsartan, diclofenac, 17α-ethinylestradiol), and APIs with toxicity 
potential. Doxycycline, erythromycin, and sulfamethazine are used as veterinary 
medicines in the study region (Wöhler et al., 2020). Consequently, the exposure to 
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these compounds could be underestimated due to uncertainty in the annual masses 
being discharged into the environment. Metabolites and transformation products 
(TPs) of APIs were not considered in the present study.

Figure 1. Vecht River basin. The red dashed line and the dark red closed polygons indicate the Dutch–
German border and main cities, respectively

of specific groups such as swimmers and fish consumers
(Bercu et al., 2008; Christensen, 1998; Leung Ho et al., 2013;
Muñoz et al., 2010; Schulman et al., 2002; Shanmugam
et al., 2014; Webb, 2001). Human health risks from standard
exposure situations involving single APIs are likely to be
limited and site‐specific. Still, humans can be exposed to a
multitude of APIs through different exposure pathways,
behaviors, and concentrations that can vary substantially over
space and time. Therefore, local and regional water managers
may struggle with the question of whether human health is
sufficiently protected.
The aim of the current paper is to present a screening

approach that estimates lifelong human health risks by sys-
tematically integrating exposure routes of multiple APIs and
assessing their combined effects. The approach is illustrated
in a case study using concentrations of 15 APIs in the
German–Dutch transboundary Vecht River. Based on the re-
sults of this study we hope to (1) find out whether the in-
tegrated human health risks resulting from direct and indirect
exposure to APIs in the Vecht River can be considered ac-
ceptable, (2) inform local, regional, and (inter)national water
managers by showing how an integrated human health risk
assessment of APIs can be performed, and (3) propose
simple alternatives for assessing the integrated human health
risks of multiple APIs under data‐poor settings, making on-
erous and exhaustive assessments superfluous.

DATA AND METHODS

Vecht River

The Vecht River is a transboundary river that crosses several
regions in the European Union member states of Germany
and the Netherlands (Figure 1). The Vecht River is a tributary
of the Dutch IJssel River with a total length of 167 km
and covering a catchment area of 6100 km2, reaching from
the northwest of Germany (160 inhabitants/km2) to the east of
the Netherlands (260 inhabitants/km2). Municipal wastewater
from 1.4 million inhabitants and 13 hospitals is collected by 57
sewage treatment plants and subsequently discharged into
the Vecht River and its tributaries (Duarte et al., 2022;
Lämmchen et al., 2021; Wöhler et al., 2020). Contributions
from industrial and agricultural discharges were not charac-
terized in this study. The area attracts numerous visitors,
particularly in the Vechtdal region of the Dutch province of
Overijssel. This region is actively promoted by local entities for
its outdoor leisure activity opportunities, including
recreational swimming and fishing, registering 2.5 million
overnight stays and 90 million euros spent in 2019
(www.marketingoost.nl).

Pharmaceuticals

Human health risks were assessed for 15 selected APIs
(Table 1). This selection was made within the context of the
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Table 1. Names, CAS numbers, ATC codes, and therapeutic classes of the 15 active pharmaceutical 
ingredients (APIs) assessed in the present study

API Abbreviation CAS RN ATC code Therapeutic class

Amantadine AMA 768-94-5 N04BB01 Antiparkinson

Carbamazepine CBZ 298-46-4 N03AF01 Antiepileptics

Ciprofloxacin CIP 85721-33-1 J01MA02 Antibacterials

Cyclophosphamide CYC 50-18-0 L01AA01 Antineoplastics

Diclofenac DCF 15307-86-5 M01AB05 NSAID

Doxycycline DOX 564-25-0 J01AA02 Antibacterials

Erythromycin ERY 114-07-8 J01FA01 Antibacterials

17α-Ethinylestradiol EE2 57-63-6 G03CA01 Sex hormones

Iopamidol IOP 60166-93-0 V08AB04 Contrast media

Metformin MET 657-24-9 A10BA02 Antidiabetics

Metoprolol MEP 37350-58-6 C07AB02 Beta blockers

Oxazepam OXA 604-75-1 N05BA04 Anxiolytics

Phenazone PHE 60-80-0 N02BB01 Analgesics

Sulfamethazine SUL 57-68-1 J01EB03 Antibacterials

Valsartan VAL 137862-53-4 C09CA03 Angiotensin II receptor blockers

Abbreviations: ATC, Anatomical therapeutic chemical; NSAIDs, Non-steroidal anti-inflammatory drugs

3.3	 Exposure model
A human lifetime exposure model (Figure 2) was created based on algorithms of a 
previously published model (Oldenkamp et al., 2013; Ragas & Huijbregts, 1998; Ragas 
et al., 2011). A detailed overview of the model's equations and parameters is presented 
in Table 2. The aim of this exposure model was to estimate exposure from multiple 
routes and quantify the systemic uptake in the human body, that is, uptake in the 
bloodstream. The uptake was estimated as a lifetime-averaged daily uptake, which is 
ultimately compared with an internal safe dose (ISD), resulting in a hazard quotient 
(HQ). The ISD (Table S10) was calculated by multiplying the oral absorption fraction 
of an API with its safe dose for oral exposure, for example, the Acceptable Daily Intake 
(for threshold substances; Table 2—Equation 2) or the dose that corresponds to a 1 
in 10 000 lifetime cancer risk (for genotoxic carcinogens; Dutch standard; Table 2—
Equation 3). Unfortunately, human reference doses were lacking for amantadine, 
iopamidol, oxazepam, and sulfamethazine, implying that we could not assess their 
human health risks.
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Figure 2. Schematic presentation of the human health risk assessment. The lifetime exposure model 
developed in the present study is demarcated in the red box. Three human activities were accounted for, 
namely, swimming, water-drinking, and fishing. Two exposure routes were accounted for, namely, the 
dermal and oral routes. Five age groups were accounted for, namely, 0–1, 1–5, 5–10, 10–18, and 18–80 age 
groups. Five main behavioral profiles were accounted for, namely, “Average,” “Fisherman,” “Swimmer,” 
“Drinker,” and “Extreme” profile. PiE, pharmaceuticals in the environment.

Table 2. Equations used to calculate human lifetime uptake and hazard

Equation
number

Equation Parameter Unit Description

(1) HQ 1 Hazard quotient of a 
pharmaceutical

Ut mg/kg/day Total uptake of a pharmaceutical 
in a lifetime

ISD mg/kg/day Pharmaceutical internal safe 
dose

(2) ISD mg/kg/day Internal reference dose

RfDoral mg/kg/day Oral reference dose (of threshold 
or nonthreshold compounds)

fGI % Fraction of contaminant 
absorbed in the gastrointestinal 
tract

(3) RfDoral_nt mg/kg/day Oral reference dose (of 
nonthreshold
compounds)

ECR 1 Extra cancer risk in the 
environment

CSForal mg/kg/day Cancer slope factor via oral 
exposure

ggspatial, RColorBrewer, rgdal, rnaturalearth, scales, sf, sp,
tidyverse, and viridis.

API concentrations in surface and drinking water

Table 3 presents API concentrations in Vecht River water
and Vecht‐derived drinking water used in the present study.
For Vecht River water, we used the mean and maximum API
estimated concentrations based on human consumption as
reported in our previous modeling study. For Vecht‐derived
drinking water, we used measured API concentrations and
their corresponding quantification limits obtained from a
measurement campaign by the Dutch water company Vitens
(personal communication, 1st June 2021). Since only iopa-
midol was actually detected in drinking water, we decided
to assume either a zero concentration or a concentration
equaling the quantification limit. Based on these data, we
defined three concentration profiles for API concentrations
in surface and drinking water:

(I) mean surface water concentrations and zero drinking
water concentrations;

(II) maximum surface water concentrations and zero
drinking water concentrations; and

(III) maximum surface water concentrations and drinking
water concentrations equal to the analytical limit of
quantification.

Human behavior

Human behavior determines the extent to which people
are in contact with polluted water, either directly or in-
directly, that is, via recreational swimming, drinking water,
and fish consumption. We defined five archetypes of human
behavior:

(A) The “Average” archetype refers to adult individuals
whose behavior falls within the typical range of ex-
pectable behavior in the majority of the population;

(F) The “Fisherman” archetype refers to adult individuals
with high consumption of fish caught in the Vecht
River;

(S) The “Swimmer” archetype refers to adult individuals
who heavily engage in frequent swimming activities in
the Vecht River;

(D) The “Drinker” archetype refers to adult individuals who
differ from the “average” archetype in their unusual
high consumption of Vecht‐derived drinking water; and

(E) The “Extreme” archetype refers to adult individuals
with combined characteristics of the “Fisherman,”
“Swimmer,” and “Drinker” archetypes.

The lifetime‐averaged daily pharmaceutical uptake of all
archetypes was calculated assuming typical behavior at non-
adult life stages. Human physical and behavioral data were
mostly informed by the Dutch population characteristics; it
was assumed that the German population characteristics re-
semble these.

Exposure scenarios

An exposure scenario combines an assumption about the
API concentrations present in surface and drinking water (I, II,
or III) with a distinct type of human behavior (A, F, S, D, or E).
In total, we calculated exposure and risk for 15 scenarios, that
is, three environmental exposure levels for each of the five
human archetypes. Table 3 presents the pharmaceutical‐
specific input parameters used in the exposure model calcu-
lations, and in Table 4, the age‐ and behavior‐specific input
parameters are presented.

Combined effects and risks of APIs

Pharmaceutical mixture risks were estimated by summing
individual HQ, implicitly assuming that the APIs have a
similar mode of action, but do not affect each other's tox-
icity (noninteractive), that is, the (concentration) addition‐
based hazard index (HIadd). However, actual combined ef-
fects of APIs could be more than additive (synergism, po-
tentiation) or less than additive (antagonism, inhibition,
masking) (More et al., 2019). To accommodate this, pairwise
drug interaction information was incorporated into the es-
timation of risk indices, following the concept of an
interaction‐based hazard index (HIint, Table 2—Equation 15)
(USEPA, 2000, 2007). Interaction information for each

Integr Environ Assess Manag 2022:1639–1654 © 2022 The Authorswileyonlinelibrary.com/journal/ieam

FIGURE 2 Schematic presentation of the human health risk assessment. The lifetime exposure model developed in the present study is demarcated in the red
box. Three human activities were accounted for, namely, swimming, water‐drinking, and fishing. Two exposure routes were accounted for, namely, the dermal
and oral routes. Five age groups were accounted for, namely, 0–1, 1–5, 5–10, 10–18, and 18–80 age groups. Five main behavioral profiles were accounted for,
namely, “Average,” “Fisherman,” “Swimmer,” “Drinker,” and “Extreme” profile. PiE, pharmaceuticals in the environment.
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TABLE 2. Equations used to calculate human lifetime uptake and hazard. 

 

Equation 
Number 

Equation Parameter Unit Description 

(1) 𝐻𝐻𝐻𝐻 =
𝑈𝑈!
𝐼𝐼𝐼𝐼𝐼𝐼 

𝐻𝐻𝐻𝐻 1 Hazard quotient of pharmaceutical  
𝑈𝑈! mg/kg/day Total uptake of a pharmaceutical in a lifetime 
𝐼𝐼𝐼𝐼𝐼𝐼 mg/kg/day Pharmaceutical internal safe dose 

(2) 𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑅𝑅𝑅𝑅𝑅𝑅"#$% ∙ 𝑓𝑓&' 
𝐼𝐼𝐼𝐼𝐼𝐼 mg/kg/day Internal reference dose 

𝑅𝑅𝑅𝑅𝑅𝑅"#$% mg/kg/day Oral reference dose (of threshold or non-threshold compounds) 
𝑓𝑓&' % Fraction of contaminant absorbed in the gastrointestinal tract 

(3) 𝑅𝑅𝑅𝑅𝑅𝑅"#$%_)! =
𝐸𝐸𝐸𝐸𝐸𝐸
𝐶𝐶𝐶𝐶𝐶𝐶"#$%

 
𝑅𝑅𝑅𝑅𝑅𝑅"#$%_)! mg/kg/day Oral reference dose (of non-threshold compounds) 
𝐸𝐸𝐸𝐸𝐸𝐸 1 Extra cancer risk in the environment 
𝐶𝐶𝐶𝐶𝐶𝐶"#$% mg/kg/day Cancer slope factor via oral exposure 

(4) 𝑈𝑈! = ./
𝑦𝑦*
𝑦𝑦%!
𝑈𝑈*1

)

*+,

 

𝑈𝑈! mg/kg/day Total uptake of a pharmaceutical in a lifetime 
𝑈𝑈* mg/kg/day Total pharmaceutical uptake in age group 𝑖𝑖 
𝑦𝑦* year Number of years in an age group 𝑖𝑖 
𝑦𝑦%! 
n 

year 
- 

Human lifetime expectancy (i.e. 80 years) 
Number of age groups 

(5) 𝑈𝑈* = 𝑈𝑈"#$%,* + 𝑈𝑈./#0$%,* 
𝑈𝑈* mg/kg/day Total pharmaceutical uptake in age group 𝑖𝑖 
𝑈𝑈"#$%,* mg/kg/day Total pharmaceutical uptake via oral exposure in age group i 
𝑈𝑈./#0$%,* mg/kg/day Total pharmaceutical uptake via dermal exposure 

(6) 𝑈𝑈"#$% = 𝑈𝑈"1 + 𝑈𝑈.2 + 𝑈𝑈3 

𝑈𝑈"#$% mg/kg/day Total pharmaceutical uptake via oral exposure 
𝑈𝑈"1 mg/kg/day Pharmaceutical uptake after water ingestion during recreational swimming 
𝑈𝑈.2 mg/kg/day Pharmaceutical uptake after ingestion of drinking water 
𝑈𝑈3 mg/kg/day Pharmaceutical uptake after ingestion of fish 

(7) 𝑈𝑈"1 =
𝑞𝑞1 ∙ 𝑡𝑡/ ∙ 𝑠𝑠/ ∙ 𝑓𝑓&' ∙ 𝐶𝐶2

𝑑𝑑 ∙ 𝑚𝑚  

𝑈𝑈"1 mg/kg/day Pharmaceutical uptake after water ingestion during recreational swimming 
𝑞𝑞1 ml/min Rate of water swallowing while swimming 
𝑡𝑡/ min/event Duration per swimming event 
𝑠𝑠/ events/year Number of swimming events per year 
𝑓𝑓&' -% Gastrointestinal absorption fraction 
𝐶𝐶2 mg/ml Pharmaceutical concentration in the swimming water 
𝑑𝑑 days/year Number of days in a year (365) 
𝑚𝑚 kg Human body weight 

(8) 𝑈𝑈.2 =
𝑞𝑞2 ∙ 𝑓𝑓&' ∙ 𝐶𝐶.2

𝑚𝑚  

𝑈𝑈.2 mg/kg/day Pharmaceutical uptake after ingestion of drinking water 
𝑞𝑞2 ml/day Amount of drinking water ingested per day 
𝑓𝑓&' -% Gastrointestinal absorption fraction 
𝐶𝐶.2 mg/ml Concentration in drinking water 
𝑚𝑚 kg Human body weight 

(9) 𝑈𝑈3 =
𝑞𝑞3 ∙ 𝑓𝑓&' ∙ 𝐶𝐶3

𝑚𝑚  

𝑈𝑈3 mg/kg/day Pharmaceutical uptake after ingestion of fish 
𝑞𝑞3 mg/day Daily amount of fish tissue ingested 
𝑓𝑓&' -% Gastrointestinal absorption fraction 
𝐶𝐶3 mg/mg Pharmaceutical concentration in fish tissue 
𝑚𝑚 kg Human body weight 

(10) 𝐶𝐶3 = 𝐶𝐶2 ∙ 𝐵𝐵𝐵𝐵𝐵𝐵 𝐶𝐶3 mg/mg Pharmaceutical concentration in fish tissue 
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(4) Ut mg/kg/day Total uptake of a pharmaceutical 
in a lifetime

Ui mg/kg/day Total pharmaceutical uptake in 
age group i

yi year Number of years in an age 
group i

ylt year Human lifetime expectancy  
(i.e., 80 years)

n ‐ Number of age groups

(5) Ui mg/kg/day Total pharmaceutical uptake in 
age group i

Uoral,i mg/kg/day Total pharmaceutical uptake via 
oral exposure in age group i

Udermal,i mg/kg/day Total pharmaceutical uptake via 
dermal exposure

(6) Uoral mg/kg/day Total pharmaceutical uptake via 
oral exposure

Uos mg/kg/day Pharmaceutical uptake 
after water ingestion during 
recreational swimming

Udw mg/kg/day Pharmaceutical uptake after 
ingestion of
drinking water

Uf mg/kg/day Pharmaceutical uptake after 
ingestion of fish

(7) Uos mg/kg/day Pharmaceutical uptake 
after water ingestion during 
recreational swimming

qs mL/min Rate of water swallowing while 
swimming

te min/event Duration per swimming event

se events/
year

Number of swimming events 
per year

fGI % Gastrointestinal absorption 
fraction

Cw mg/mL Pharmaceutical concentration in 
the swimming water

d days/year Number of days in a year (365)

m kg Human body weight
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𝑈𝑈3 mg/kg/day Pharmaceutical uptake after ingestion of fish 
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(8) Udw mg/kg/day Pharmaceutical uptake after 
ingestion of drinking water

qw mL/day Amount of drinking water 
ingested per day

fGI % Gastrointestinal absorption 
fraction

Cdw mg/mL Concentration in drinking water

m kg Human body weight

(9) Uf mg/kg/day Pharmaceutical uptake after 
ingestion of fish

qf mg/day Daily amount of fish tissue 
ingested

fGI % Gastrointestinal absorption 
fraction

Cf mg/mg Pharmaceutical concentration in 
fish tissue

m kg Human body weight

(10) Cf mg/mg Pharmaceutical concentration in 
fish tissue

Cw mg/mL Pharmaceutical concentration in 
surface water

BCF mL/mg Pharmaceutical‐specific 
bioconcentration factor

(11) Udermal mg/kg/day Total pharmaceutical uptake via 
dermal exposure

As cm2 Human body surface area

fs % Total fraction of exposed skin 
during swimming

kp cm/min Skin permeability coefficient

te min/event Duration per swimming event

se events/
year

Number of swimming events 
per year

Cw mg/cm3 Pharmaceutical concentration in 
surface water

d days/year Number of days in a year (365)

m kg Human body weight
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𝐸𝐸𝐸𝐸𝐸𝐸 1 Extra cancer risk in the environment 
𝐶𝐶𝐶𝐶𝐶𝐶"#$% mg/kg/day Cancer slope factor via oral exposure 

(4) 𝑈𝑈! = ./
𝑦𝑦*
𝑦𝑦%!
𝑈𝑈*1

)

*+,

 

𝑈𝑈! mg/kg/day Total uptake of a pharmaceutical in a lifetime 
𝑈𝑈* mg/kg/day Total pharmaceutical uptake in age group 𝑖𝑖 
𝑦𝑦* year Number of years in an age group 𝑖𝑖 
𝑦𝑦%! 
n 

year 
- 

Human lifetime expectancy (i.e. 80 years) 
Number of age groups 

(5) 𝑈𝑈* = 𝑈𝑈"#$%,* + 𝑈𝑈./#0$%,* 
𝑈𝑈* mg/kg/day Total pharmaceutical uptake in age group 𝑖𝑖 
𝑈𝑈"#$%,* mg/kg/day Total pharmaceutical uptake via oral exposure in age group i 
𝑈𝑈./#0$%,* mg/kg/day Total pharmaceutical uptake via dermal exposure 

(6) 𝑈𝑈"#$% = 𝑈𝑈"1 + 𝑈𝑈.2 + 𝑈𝑈3 

𝑈𝑈"#$% mg/kg/day Total pharmaceutical uptake via oral exposure 
𝑈𝑈"1 mg/kg/day Pharmaceutical uptake after water ingestion during recreational swimming 
𝑈𝑈.2 mg/kg/day Pharmaceutical uptake after ingestion of drinking water 
𝑈𝑈3 mg/kg/day Pharmaceutical uptake after ingestion of fish 

(7) 𝑈𝑈"1 =
𝑞𝑞1 ∙ 𝑡𝑡/ ∙ 𝑠𝑠/ ∙ 𝑓𝑓&' ∙ 𝐶𝐶2

𝑑𝑑 ∙ 𝑚𝑚  

𝑈𝑈"1 mg/kg/day Pharmaceutical uptake after water ingestion during recreational swimming 
𝑞𝑞1 ml/min Rate of water swallowing while swimming 
𝑡𝑡/ min/event Duration per swimming event 
𝑠𝑠/ events/year Number of swimming events per year 
𝑓𝑓&' -% Gastrointestinal absorption fraction 
𝐶𝐶2 mg/ml Pharmaceutical concentration in the swimming water 
𝑑𝑑 days/year Number of days in a year (365) 
𝑚𝑚 kg Human body weight 

(8) 𝑈𝑈.2 =
𝑞𝑞2 ∙ 𝑓𝑓&' ∙ 𝐶𝐶.2

𝑚𝑚  

𝑈𝑈.2 mg/kg/day Pharmaceutical uptake after ingestion of drinking water 
𝑞𝑞2 ml/day Amount of drinking water ingested per day 
𝑓𝑓&' -% Gastrointestinal absorption fraction 
𝐶𝐶.2 mg/ml Concentration in drinking water 
𝑚𝑚 kg Human body weight 

(9) 𝑈𝑈3 =
𝑞𝑞3 ∙ 𝑓𝑓&' ∙ 𝐶𝐶3

𝑚𝑚  

𝑈𝑈3 mg/kg/day Pharmaceutical uptake after ingestion of fish 
𝑞𝑞3 mg/day Daily amount of fish tissue ingested 
𝑓𝑓&' -% Gastrointestinal absorption fraction 
𝐶𝐶3 mg/mg Pharmaceutical concentration in fish tissue 
𝑚𝑚 kg Human body weight 

(10) 𝐶𝐶3 = 𝐶𝐶2 ∙ 𝐵𝐵𝐵𝐵𝐵𝐵 𝐶𝐶3 mg/mg Pharmaceutical concentration in fish tissue 

𝐶𝐶! = 𝐶𝐶" ∙ 𝐵𝐵𝐵𝐵𝐵𝐵 Revised Manuscript [02 December 2021] 

 

𝐶𝐶2 mg/ml Pharmaceutical concentration in surface water 
𝐵𝐵𝐵𝐵𝐵𝐵 ml/mg Pharmaceutical-specific bioconcentration factor 

(11) 𝑈𝑈./#0$% =
𝐴𝐴1 ∙ 𝑓𝑓1 ∙ 𝑘𝑘4 ∙ 𝑡𝑡/ ∙ 𝑠𝑠/ ∙ 𝐶𝐶2

𝑑𝑑 ∙ 𝑚𝑚  

𝑈𝑈./#0$% mg/kg/day Total pharmaceutical uptake via dermal exposure 
𝐴𝐴1 cm2 Human body surface area 
𝑓𝑓1 -% Total fraction of exposed skin during swimming 
𝑘𝑘4 cm/min Skin permeability coefficient 
𝑡𝑡/ min/event Duration per swimming event 
𝑠𝑠/ events/year Number of swimming events per year 
𝐶𝐶2 mg/cm3 Pharmaceutical concentration in surface water 
𝑑𝑑 days/year Number of days in a year (365) 
𝑚𝑚 kg Human body weight 

(12) 𝐴𝐴1 = 73.31 ∙ ℎ5.789 ∙ 𝑚𝑚5.:89 
𝐴𝐴1 cm2 Human body surface area 
ℎ cm Human body height 
𝑚𝑚 kg Human body weight 

(13) 𝑓𝑓1 = 1 + 𝑓𝑓;<= ∙ (𝑆𝑆3 − 1) 
𝑓𝑓1 -% Total fraction of exposed skin during swimming 
𝑓𝑓;<= 1 Human head-to-body surface area 
𝑆𝑆3 - Probability of full body submergence in a swimming event 

(14) 𝑙𝑙𝑙𝑙𝑙𝑙	𝑘𝑘4 = 0.71 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙	𝐾𝐾"2 − 0.0061 ∙ 𝑀𝑀𝑀𝑀 − 6.3 
𝑘𝑘4 cm/min Pharmaceutical skin permeability coefficient 
	𝐾𝐾"2 1 Octanol-water partition coefficient 
𝑀𝑀𝑀𝑀 g/mol Molecular weight of the pharmaceutical 

(15) 𝐻𝐻𝐻𝐻*)! = .M𝐻𝐻𝐻𝐻* ×.𝑓𝑓*> × 𝑀𝑀*>
?!"@!"
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𝑅𝑅𝑅𝑅*)! 1 Interaction-based hazard index of pharmaceutical mixture 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑓𝑓*> 1 Exposure factor of the pharmaceutical pair i and j 
𝑀𝑀*> - Interaction magnitude of the pharmaceutical pair i and j 
𝐵𝐵*> - Binary weight-of-evidence factor of the pharmaceutical pair i and j 
𝜃𝜃*> 1 Relative proportion weighting factor of the pharmaceutical pair i and j 
𝑛𝑛 - Total number of pharmaceuticals in the mixture 

(16) 𝑓𝑓*> =
𝐻𝐻𝐻𝐻>

𝐻𝐻𝐻𝐻$.. − 𝐻𝐻𝐻𝐻*
 

𝑓𝑓*> 1 Exposure factor of the pharmaceutical pair i and j 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑅𝑅𝑅𝑅> 1 Hazard quotient of pharmaceutical j 
𝑅𝑅𝑅𝑅$.. 1 Additivity-based hazard index of pharmaceutical mixture 

(17) 𝐻𝐻𝐻𝐻$.. =.𝐻𝐻𝐻𝐻*

)

*+,

 
𝑅𝑅𝑅𝑅$.. 1 Additivity-based hazard index of pharmaceutical mixture 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑛𝑛 - Total number of pharmaceuticals in the mixture 

(18) 𝜃𝜃*> =
R𝐻𝐻𝐻𝐻* × 𝐻𝐻𝐻𝐻>#

S𝐻𝐻𝐻𝐻* + 𝐻𝐻𝐻𝐻>T × 0.5
 

𝜃𝜃*> 1 Relative proportion weighting factor of the pharmaceutical pair i and j 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑅𝑅𝑅𝑅> 1 Hazard quotient of pharmaceutical j 
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(12) As cm2 Human body surface area

h cm Human body height

m kg Human body weight

(13) fs % Total fraction of exposed skin 
during swimming

fHSA 1 Human head‐to‐body surface 
area

Sf - Probability of full body 
submergence in a swimming 
event

(14) kp cm/min Pharmaceutical skin 
permeability coefficient

Kow 1 Octanol–water partition 
coefficient

MW g/mol Molecular weight of the 
pharmaceutical

(15) HIint 1 Interaction‐based hazard index 
of pharmaceutical mixture

HQi 1 Hazard quotient of 
pharmaceutical i

fij 1 Exposure factor of the 
pharmaceutical pair i and j

Mij - Interaction magnitude of the 
pharmaceutical pair i and j

Bij - Binary weight‐of‐evidence factor 
of the pharmaceutical pair i and j

θij 1 Relative proportion weighting 
factor of the pharmaceutical pair 
i and j

n - Total number of pharmaceuticals 
in the mixture

(16) fij 1 Exposure factor of the 
pharmaceutical pair i and j

HQi 1 Hazard quotient of 
pharmaceutical i

HQj 1 Hazard quotient of 
pharmaceutical j

HIadd 1 Additivity‐based hazard index of
pharmaceutical mixture
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𝐶𝐶2 mg/ml Pharmaceutical concentration in surface water 
𝐵𝐵𝐵𝐵𝐵𝐵 ml/mg Pharmaceutical-specific bioconcentration factor 

(11) 𝑈𝑈./#0$% =
𝐴𝐴1 ∙ 𝑓𝑓1 ∙ 𝑘𝑘4 ∙ 𝑡𝑡/ ∙ 𝑠𝑠/ ∙ 𝐶𝐶2

𝑑𝑑 ∙ 𝑚𝑚  

𝑈𝑈./#0$% mg/kg/day Total pharmaceutical uptake via dermal exposure 
𝐴𝐴1 cm2 Human body surface area 
𝑓𝑓1 -% Total fraction of exposed skin during swimming 
𝑘𝑘4 cm/min Skin permeability coefficient 
𝑡𝑡/ min/event Duration per swimming event 
𝑠𝑠/ events/year Number of swimming events per year 
𝐶𝐶2 mg/cm3 Pharmaceutical concentration in surface water 
𝑑𝑑 days/year Number of days in a year (365) 
𝑚𝑚 kg Human body weight 

(12) 𝐴𝐴1 = 73.31 ∙ ℎ5.789 ∙ 𝑚𝑚5.:89 
𝐴𝐴1 cm2 Human body surface area 
ℎ cm Human body height 
𝑚𝑚 kg Human body weight 

(13) 𝑓𝑓1 = 1 + 𝑓𝑓;<= ∙ (𝑆𝑆3 − 1) 
𝑓𝑓1 -% Total fraction of exposed skin during swimming 
𝑓𝑓;<= 1 Human head-to-body surface area 
𝑆𝑆3 - Probability of full body submergence in a swimming event 

(14) 𝑙𝑙𝑙𝑙𝑙𝑙	𝑘𝑘4 = 0.71 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙	𝐾𝐾"2 − 0.0061 ∙ 𝑀𝑀𝑀𝑀 − 6.3 
𝑘𝑘4 cm/min Pharmaceutical skin permeability coefficient 
	𝐾𝐾"2 1 Octanol-water partition coefficient 
𝑀𝑀𝑀𝑀 g/mol Molecular weight of the pharmaceutical 

(15) 𝐻𝐻𝐻𝐻*)! = .M𝐻𝐻𝐻𝐻* ×.𝑓𝑓*> × 𝑀𝑀*>
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𝑅𝑅𝑅𝑅*)! 1 Interaction-based hazard index of pharmaceutical mixture 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑓𝑓*> 1 Exposure factor of the pharmaceutical pair i and j 
𝑀𝑀*> - Interaction magnitude of the pharmaceutical pair i and j 
𝐵𝐵*> - Binary weight-of-evidence factor of the pharmaceutical pair i and j 
𝜃𝜃*> 1 Relative proportion weighting factor of the pharmaceutical pair i and j 
𝑛𝑛 - Total number of pharmaceuticals in the mixture 

(16) 𝑓𝑓*> =
𝐻𝐻𝐻𝐻>

𝐻𝐻𝐻𝐻$.. − 𝐻𝐻𝐻𝐻*
 

𝑓𝑓*> 1 Exposure factor of the pharmaceutical pair i and j 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑅𝑅𝑅𝑅> 1 Hazard quotient of pharmaceutical j 
𝑅𝑅𝑅𝑅$.. 1 Additivity-based hazard index of pharmaceutical mixture 

(17) 𝐻𝐻𝐻𝐻$.. =.𝐻𝐻𝐻𝐻*

)

*+,

 
𝑅𝑅𝑅𝑅$.. 1 Additivity-based hazard index of pharmaceutical mixture 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑛𝑛 - Total number of pharmaceuticals in the mixture 

(18) 𝜃𝜃*> =
R𝐻𝐻𝐻𝐻* × 𝐻𝐻𝐻𝐻>#

S𝐻𝐻𝐻𝐻* + 𝐻𝐻𝐻𝐻>T × 0.5
 

𝜃𝜃*> 1 Relative proportion weighting factor of the pharmaceutical pair i and j 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑅𝑅𝑅𝑅> 1 Hazard quotient of pharmaceutical j 
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𝐶𝐶2 mg/ml Pharmaceutical concentration in surface water 
𝐵𝐵𝐵𝐵𝐵𝐵 ml/mg Pharmaceutical-specific bioconcentration factor 

(11) 𝑈𝑈./#0$% =
𝐴𝐴1 ∙ 𝑓𝑓1 ∙ 𝑘𝑘4 ∙ 𝑡𝑡/ ∙ 𝑠𝑠/ ∙ 𝐶𝐶2

𝑑𝑑 ∙ 𝑚𝑚  

𝑈𝑈./#0$% mg/kg/day Total pharmaceutical uptake via dermal exposure 
𝐴𝐴1 cm2 Human body surface area 
𝑓𝑓1 -% Total fraction of exposed skin during swimming 
𝑘𝑘4 cm/min Skin permeability coefficient 
𝑡𝑡/ min/event Duration per swimming event 
𝑠𝑠/ events/year Number of swimming events per year 
𝐶𝐶2 mg/cm3 Pharmaceutical concentration in surface water 
𝑑𝑑 days/year Number of days in a year (365) 
𝑚𝑚 kg Human body weight 

(12) 𝐴𝐴1 = 73.31 ∙ ℎ5.789 ∙ 𝑚𝑚5.:89 
𝐴𝐴1 cm2 Human body surface area 
ℎ cm Human body height 
𝑚𝑚 kg Human body weight 

(13) 𝑓𝑓1 = 1 + 𝑓𝑓;<= ∙ (𝑆𝑆3 − 1) 
𝑓𝑓1 -% Total fraction of exposed skin during swimming 
𝑓𝑓;<= 1 Human head-to-body surface area 
𝑆𝑆3 - Probability of full body submergence in a swimming event 

(14) 𝑙𝑙𝑙𝑙𝑙𝑙	𝑘𝑘4 = 0.71 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙	𝐾𝐾"2 − 0.0061 ∙ 𝑀𝑀𝑀𝑀 − 6.3 
𝑘𝑘4 cm/min Pharmaceutical skin permeability coefficient 
	𝐾𝐾"2 1 Octanol-water partition coefficient 
𝑀𝑀𝑀𝑀 g/mol Molecular weight of the pharmaceutical 

(15) 𝐻𝐻𝐻𝐻*)! = .M𝐻𝐻𝐻𝐻* ×.𝑓𝑓*> × 𝑀𝑀*>
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𝑅𝑅𝑅𝑅*)! 1 Interaction-based hazard index of pharmaceutical mixture 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑓𝑓*> 1 Exposure factor of the pharmaceutical pair i and j 
𝑀𝑀*> - Interaction magnitude of the pharmaceutical pair i and j 
𝐵𝐵*> - Binary weight-of-evidence factor of the pharmaceutical pair i and j 
𝜃𝜃*> 1 Relative proportion weighting factor of the pharmaceutical pair i and j 
𝑛𝑛 - Total number of pharmaceuticals in the mixture 

(16) 𝑓𝑓*> =
𝐻𝐻𝐻𝐻>

𝐻𝐻𝐻𝐻$.. − 𝐻𝐻𝐻𝐻*
 

𝑓𝑓*> 1 Exposure factor of the pharmaceutical pair i and j 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑅𝑅𝑅𝑅> 1 Hazard quotient of pharmaceutical j 
𝑅𝑅𝑅𝑅$.. 1 Additivity-based hazard index of pharmaceutical mixture 

(17) 𝐻𝐻𝐻𝐻$.. =.𝐻𝐻𝐻𝐻*

)

*+,

 
𝑅𝑅𝑅𝑅$.. 1 Additivity-based hazard index of pharmaceutical mixture 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑛𝑛 - Total number of pharmaceuticals in the mixture 

(18) 𝜃𝜃*> =
R𝐻𝐻𝐻𝐻* × 𝐻𝐻𝐻𝐻>#

S𝐻𝐻𝐻𝐻* + 𝐻𝐻𝐻𝐻>T × 0.5
 

𝜃𝜃*> 1 Relative proportion weighting factor of the pharmaceutical pair i and j 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑅𝑅𝑅𝑅> 1 Hazard quotient of pharmaceutical j 
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𝐶𝐶2 mg/ml Pharmaceutical concentration in surface water 
𝐵𝐵𝐵𝐵𝐵𝐵 ml/mg Pharmaceutical-specific bioconcentration factor 

(11) 𝑈𝑈./#0$% =
𝐴𝐴1 ∙ 𝑓𝑓1 ∙ 𝑘𝑘4 ∙ 𝑡𝑡/ ∙ 𝑠𝑠/ ∙ 𝐶𝐶2

𝑑𝑑 ∙ 𝑚𝑚  

𝑈𝑈./#0$% mg/kg/day Total pharmaceutical uptake via dermal exposure 
𝐴𝐴1 cm2 Human body surface area 
𝑓𝑓1 -% Total fraction of exposed skin during swimming 
𝑘𝑘4 cm/min Skin permeability coefficient 
𝑡𝑡/ min/event Duration per swimming event 
𝑠𝑠/ events/year Number of swimming events per year 
𝐶𝐶2 mg/cm3 Pharmaceutical concentration in surface water 
𝑑𝑑 days/year Number of days in a year (365) 
𝑚𝑚 kg Human body weight 

(12) 𝐴𝐴1 = 73.31 ∙ ℎ5.789 ∙ 𝑚𝑚5.:89 
𝐴𝐴1 cm2 Human body surface area 
ℎ cm Human body height 
𝑚𝑚 kg Human body weight 

(13) 𝑓𝑓1 = 1 + 𝑓𝑓;<= ∙ (𝑆𝑆3 − 1) 
𝑓𝑓1 -% Total fraction of exposed skin during swimming 
𝑓𝑓;<= 1 Human head-to-body surface area 
𝑆𝑆3 - Probability of full body submergence in a swimming event 

(14) 𝑙𝑙𝑙𝑙𝑙𝑙	𝑘𝑘4 = 0.71 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙	𝐾𝐾"2 − 0.0061 ∙ 𝑀𝑀𝑀𝑀 − 6.3 
𝑘𝑘4 cm/min Pharmaceutical skin permeability coefficient 
	𝐾𝐾"2 1 Octanol-water partition coefficient 
𝑀𝑀𝑀𝑀 g/mol Molecular weight of the pharmaceutical 

(15) 𝐻𝐻𝐻𝐻*)! = .M𝐻𝐻𝐻𝐻* ×.𝑓𝑓*> × 𝑀𝑀*>
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𝑅𝑅𝑅𝑅*)! 1 Interaction-based hazard index of pharmaceutical mixture 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑓𝑓*> 1 Exposure factor of the pharmaceutical pair i and j 
𝑀𝑀*> - Interaction magnitude of the pharmaceutical pair i and j 
𝐵𝐵*> - Binary weight-of-evidence factor of the pharmaceutical pair i and j 
𝜃𝜃*> 1 Relative proportion weighting factor of the pharmaceutical pair i and j 
𝑛𝑛 - Total number of pharmaceuticals in the mixture 

(16) 𝑓𝑓*> =
𝐻𝐻𝐻𝐻>

𝐻𝐻𝐻𝐻$.. − 𝐻𝐻𝐻𝐻*
 

𝑓𝑓*> 1 Exposure factor of the pharmaceutical pair i and j 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑅𝑅𝑅𝑅> 1 Hazard quotient of pharmaceutical j 
𝑅𝑅𝑅𝑅$.. 1 Additivity-based hazard index of pharmaceutical mixture 

(17) 𝐻𝐻𝐻𝐻$.. =.𝐻𝐻𝐻𝐻*

)

*+,

 
𝑅𝑅𝑅𝑅$.. 1 Additivity-based hazard index of pharmaceutical mixture 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑛𝑛 - Total number of pharmaceuticals in the mixture 

(18) 𝜃𝜃*> =
R𝐻𝐻𝐻𝐻* × 𝐻𝐻𝐻𝐻>#

S𝐻𝐻𝐻𝐻* + 𝐻𝐻𝐻𝐻>T × 0.5
 

𝜃𝜃*> 1 Relative proportion weighting factor of the pharmaceutical pair i and j 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑅𝑅𝑅𝑅> 1 Hazard quotient of pharmaceutical j 
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𝐶𝐶2 mg/ml Pharmaceutical concentration in surface water 
𝐵𝐵𝐵𝐵𝐵𝐵 ml/mg Pharmaceutical-specific bioconcentration factor 

(11) 𝑈𝑈./#0$% =
𝐴𝐴1 ∙ 𝑓𝑓1 ∙ 𝑘𝑘4 ∙ 𝑡𝑡/ ∙ 𝑠𝑠/ ∙ 𝐶𝐶2

𝑑𝑑 ∙ 𝑚𝑚  

𝑈𝑈./#0$% mg/kg/day Total pharmaceutical uptake via dermal exposure 
𝐴𝐴1 cm2 Human body surface area 
𝑓𝑓1 -% Total fraction of exposed skin during swimming 
𝑘𝑘4 cm/min Skin permeability coefficient 
𝑡𝑡/ min/event Duration per swimming event 
𝑠𝑠/ events/year Number of swimming events per year 
𝐶𝐶2 mg/cm3 Pharmaceutical concentration in surface water 
𝑑𝑑 days/year Number of days in a year (365) 
𝑚𝑚 kg Human body weight 

(12) 𝐴𝐴1 = 73.31 ∙ ℎ5.789 ∙ 𝑚𝑚5.:89 
𝐴𝐴1 cm2 Human body surface area 
ℎ cm Human body height 
𝑚𝑚 kg Human body weight 

(13) 𝑓𝑓1 = 1 + 𝑓𝑓;<= ∙ (𝑆𝑆3 − 1) 
𝑓𝑓1 -% Total fraction of exposed skin during swimming 
𝑓𝑓;<= 1 Human head-to-body surface area 
𝑆𝑆3 - Probability of full body submergence in a swimming event 

(14) 𝑙𝑙𝑙𝑙𝑙𝑙	𝑘𝑘4 = 0.71 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙	𝐾𝐾"2 − 0.0061 ∙ 𝑀𝑀𝑀𝑀 − 6.3 
𝑘𝑘4 cm/min Pharmaceutical skin permeability coefficient 
	𝐾𝐾"2 1 Octanol-water partition coefficient 
𝑀𝑀𝑀𝑀 g/mol Molecular weight of the pharmaceutical 

(15) 𝐻𝐻𝐻𝐻*)! = .M𝐻𝐻𝐻𝐻* ×.𝑓𝑓*> × 𝑀𝑀*>
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𝑅𝑅𝑅𝑅*)! 1 Interaction-based hazard index of pharmaceutical mixture 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑓𝑓*> 1 Exposure factor of the pharmaceutical pair i and j 
𝑀𝑀*> - Interaction magnitude of the pharmaceutical pair i and j 
𝐵𝐵*> - Binary weight-of-evidence factor of the pharmaceutical pair i and j 
𝜃𝜃*> 1 Relative proportion weighting factor of the pharmaceutical pair i and j 
𝑛𝑛 - Total number of pharmaceuticals in the mixture 

(16) 𝑓𝑓*> =
𝐻𝐻𝐻𝐻>

𝐻𝐻𝐻𝐻$.. − 𝐻𝐻𝐻𝐻*
 

𝑓𝑓*> 1 Exposure factor of the pharmaceutical pair i and j 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑅𝑅𝑅𝑅> 1 Hazard quotient of pharmaceutical j 
𝑅𝑅𝑅𝑅$.. 1 Additivity-based hazard index of pharmaceutical mixture 

(17) 𝐻𝐻𝐻𝐻$.. =.𝐻𝐻𝐻𝐻*

)

*+,

 
𝑅𝑅𝑅𝑅$.. 1 Additivity-based hazard index of pharmaceutical mixture 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑛𝑛 - Total number of pharmaceuticals in the mixture 

(18) 𝜃𝜃*> =
R𝐻𝐻𝐻𝐻* × 𝐻𝐻𝐻𝐻>#

S𝐻𝐻𝐻𝐻* + 𝐻𝐻𝐻𝐻>T × 0.5
 

𝜃𝜃*> 1 Relative proportion weighting factor of the pharmaceutical pair i and j 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑅𝑅𝑅𝑅> 1 Hazard quotient of pharmaceutical j 
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𝐶𝐶2 mg/ml Pharmaceutical concentration in surface water 
𝐵𝐵𝐵𝐵𝐵𝐵 ml/mg Pharmaceutical-specific bioconcentration factor 

(11) 𝑈𝑈./#0$% =
𝐴𝐴1 ∙ 𝑓𝑓1 ∙ 𝑘𝑘4 ∙ 𝑡𝑡/ ∙ 𝑠𝑠/ ∙ 𝐶𝐶2

𝑑𝑑 ∙ 𝑚𝑚  

𝑈𝑈./#0$% mg/kg/day Total pharmaceutical uptake via dermal exposure 
𝐴𝐴1 cm2 Human body surface area 
𝑓𝑓1 -% Total fraction of exposed skin during swimming 
𝑘𝑘4 cm/min Skin permeability coefficient 
𝑡𝑡/ min/event Duration per swimming event 
𝑠𝑠/ events/year Number of swimming events per year 
𝐶𝐶2 mg/cm3 Pharmaceutical concentration in surface water 
𝑑𝑑 days/year Number of days in a year (365) 
𝑚𝑚 kg Human body weight 

(12) 𝐴𝐴1 = 73.31 ∙ ℎ5.789 ∙ 𝑚𝑚5.:89 
𝐴𝐴1 cm2 Human body surface area 
ℎ cm Human body height 
𝑚𝑚 kg Human body weight 

(13) 𝑓𝑓1 = 1 + 𝑓𝑓;<= ∙ (𝑆𝑆3 − 1) 
𝑓𝑓1 -% Total fraction of exposed skin during swimming 
𝑓𝑓;<= 1 Human head-to-body surface area 
𝑆𝑆3 - Probability of full body submergence in a swimming event 

(14) 𝑙𝑙𝑙𝑙𝑙𝑙	𝑘𝑘4 = 0.71 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙	𝐾𝐾"2 − 0.0061 ∙ 𝑀𝑀𝑀𝑀 − 6.3 
𝑘𝑘4 cm/min Pharmaceutical skin permeability coefficient 
	𝐾𝐾"2 1 Octanol-water partition coefficient 
𝑀𝑀𝑀𝑀 g/mol Molecular weight of the pharmaceutical 

(15) 𝐻𝐻𝐻𝐻*)! = .M𝐻𝐻𝐻𝐻* ×.𝑓𝑓*> × 𝑀𝑀*>
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𝑅𝑅𝑅𝑅*)! 1 Interaction-based hazard index of pharmaceutical mixture 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑓𝑓*> 1 Exposure factor of the pharmaceutical pair i and j 
𝑀𝑀*> - Interaction magnitude of the pharmaceutical pair i and j 
𝐵𝐵*> - Binary weight-of-evidence factor of the pharmaceutical pair i and j 
𝜃𝜃*> 1 Relative proportion weighting factor of the pharmaceutical pair i and j 
𝑛𝑛 - Total number of pharmaceuticals in the mixture 

(16) 𝑓𝑓*> =
𝐻𝐻𝐻𝐻>

𝐻𝐻𝐻𝐻$.. − 𝐻𝐻𝐻𝐻*
 

𝑓𝑓*> 1 Exposure factor of the pharmaceutical pair i and j 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑅𝑅𝑅𝑅> 1 Hazard quotient of pharmaceutical j 
𝑅𝑅𝑅𝑅$.. 1 Additivity-based hazard index of pharmaceutical mixture 

(17) 𝐻𝐻𝐻𝐻$.. =.𝐻𝐻𝐻𝐻*

)

*+,

 
𝑅𝑅𝑅𝑅$.. 1 Additivity-based hazard index of pharmaceutical mixture 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑛𝑛 - Total number of pharmaceuticals in the mixture 

(18) 𝜃𝜃*> =
R𝐻𝐻𝐻𝐻* × 𝐻𝐻𝐻𝐻>#

S𝐻𝐻𝐻𝐻* + 𝐻𝐻𝐻𝐻>T × 0.5
 

𝜃𝜃*> 1 Relative proportion weighting factor of the pharmaceutical pair i and j 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑅𝑅𝑅𝑅> 1 Hazard quotient of pharmaceutical j 
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2

(17) HIadd 1 Additivity‐based hazard index of 
pharmaceutical mixture

HQi 1 Hazard quotient of 
pharmaceutical i

n - Total number of pharmaceuticals 
in the mixture

(18) θij 1 Relative proportion weighting 
factor of the pharmaceutical pair 
i and j

HQi 1 Hazard quotient of 
pharmaceutical i

HQj 1 Hazard quotient of 
pharmaceutical j

The lifetime-averaged daily pharmaceutical uptake was estimated by adding the time-
weighted total uptake of five age groups (Table 2—Equation 4) that approximately 
represent distinct developmental stages: infant (0–1 years), toddler (1–5 years), child 
(5–10 years), adolescent (10–18 years), and adult (18–80 years). This subgrouping 
allows us to identify and allocate in more detail the fraction of pharmaceutical uptake 
during fundamental stages of human life. The total exposure of each age group was 
calculated by adding oral and dermal uptake values (Table 2—Equation 5). Human 
exposure to pharmaceuticals via inhalation was not included in this assessment, 
considering the generally very low degree of volatilization of these substances 
(10−30 to 10−1 mmHg at 25 °C) (Kim et al., 2021). Oral uptake of pharmaceuticals was 
considered to occur after (1) accidental ingestion of surface water during recreational 
swimming in the Vecht River, (2) consumption of Vecht-derived drinking water, 
and (3) consumption of fish caught in the Vecht River (Table 2—Equations 6–10). 
Dermal uptake of pharmaceuticals was considered during recreational swimming 
in the Vecht River (Table 2—Equations 11–14). Data analysis and visualizations were 
performed with the statistical software R version (R Core Team,  2019) using the 
packages classInt, cowplot, ggplot2, ggspatial, RColorBrewer, rgdal, rnaturalearth, scales, 
sf, sp, tidyverse, and viridis.

3.4	 API concentrations in surface and drinking water
Table  3 presents API concentrations in Vecht River water and Vecht-derived 
drinking water used in the present study. For Vecht River water, we used the mean 
and maximum API estimated concentrations based on human consumption as 
reported in our previous modeling study. For Vecht-derived drinking water, we used 
measured API concentrations and their corresponding quantification limits obtained 
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𝐶𝐶2 mg/ml Pharmaceutical concentration in surface water 
𝐵𝐵𝐵𝐵𝐵𝐵 ml/mg Pharmaceutical-specific bioconcentration factor 

(11) 𝑈𝑈./#0$% =
𝐴𝐴1 ∙ 𝑓𝑓1 ∙ 𝑘𝑘4 ∙ 𝑡𝑡/ ∙ 𝑠𝑠/ ∙ 𝐶𝐶2

𝑑𝑑 ∙ 𝑚𝑚  

𝑈𝑈./#0$% mg/kg/day Total pharmaceutical uptake via dermal exposure 
𝐴𝐴1 cm2 Human body surface area 
𝑓𝑓1 -% Total fraction of exposed skin during swimming 
𝑘𝑘4 cm/min Skin permeability coefficient 
𝑡𝑡/ min/event Duration per swimming event 
𝑠𝑠/ events/year Number of swimming events per year 
𝐶𝐶2 mg/cm3 Pharmaceutical concentration in surface water 
𝑑𝑑 days/year Number of days in a year (365) 
𝑚𝑚 kg Human body weight 

(12) 𝐴𝐴1 = 73.31 ∙ ℎ5.789 ∙ 𝑚𝑚5.:89 
𝐴𝐴1 cm2 Human body surface area 
ℎ cm Human body height 
𝑚𝑚 kg Human body weight 

(13) 𝑓𝑓1 = 1 + 𝑓𝑓;<= ∙ (𝑆𝑆3 − 1) 
𝑓𝑓1 -% Total fraction of exposed skin during swimming 
𝑓𝑓;<= 1 Human head-to-body surface area 
𝑆𝑆3 - Probability of full body submergence in a swimming event 

(14) 𝑙𝑙𝑙𝑙𝑙𝑙	𝑘𝑘4 = 0.71 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙	𝐾𝐾"2 − 0.0061 ∙ 𝑀𝑀𝑀𝑀 − 6.3 
𝑘𝑘4 cm/min Pharmaceutical skin permeability coefficient 
	𝐾𝐾"2 1 Octanol-water partition coefficient 
𝑀𝑀𝑀𝑀 g/mol Molecular weight of the pharmaceutical 

(15) 𝐻𝐻𝐻𝐻*)! = .M𝐻𝐻𝐻𝐻* ×.𝑓𝑓*> × 𝑀𝑀*>
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𝑅𝑅𝑅𝑅*)! 1 Interaction-based hazard index of pharmaceutical mixture 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑓𝑓*> 1 Exposure factor of the pharmaceutical pair i and j 
𝑀𝑀*> - Interaction magnitude of the pharmaceutical pair i and j 
𝐵𝐵*> - Binary weight-of-evidence factor of the pharmaceutical pair i and j 
𝜃𝜃*> 1 Relative proportion weighting factor of the pharmaceutical pair i and j 
𝑛𝑛 - Total number of pharmaceuticals in the mixture 

(16) 𝑓𝑓*> =
𝐻𝐻𝐻𝐻>

𝐻𝐻𝐻𝐻$.. − 𝐻𝐻𝐻𝐻*
 

𝑓𝑓*> 1 Exposure factor of the pharmaceutical pair i and j 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑅𝑅𝑅𝑅> 1 Hazard quotient of pharmaceutical j 
𝑅𝑅𝑅𝑅$.. 1 Additivity-based hazard index of pharmaceutical mixture 

(17) 𝐻𝐻𝐻𝐻$.. =.𝐻𝐻𝐻𝐻*

)

*+,

 
𝑅𝑅𝑅𝑅$.. 1 Additivity-based hazard index of pharmaceutical mixture 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑛𝑛 - Total number of pharmaceuticals in the mixture 

(18) 𝜃𝜃*> =
R𝐻𝐻𝐻𝐻* × 𝐻𝐻𝐻𝐻>#

S𝐻𝐻𝐻𝐻* + 𝐻𝐻𝐻𝐻>T × 0.5
 

𝜃𝜃*> 1 Relative proportion weighting factor of the pharmaceutical pair i and j 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑅𝑅𝑅𝑅> 1 Hazard quotient of pharmaceutical j 
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𝐶𝐶2 mg/ml Pharmaceutical concentration in surface water 
𝐵𝐵𝐵𝐵𝐵𝐵 ml/mg Pharmaceutical-specific bioconcentration factor 

(11) 𝑈𝑈./#0$% =
𝐴𝐴1 ∙ 𝑓𝑓1 ∙ 𝑘𝑘4 ∙ 𝑡𝑡/ ∙ 𝑠𝑠/ ∙ 𝐶𝐶2

𝑑𝑑 ∙ 𝑚𝑚  

𝑈𝑈./#0$% mg/kg/day Total pharmaceutical uptake via dermal exposure 
𝐴𝐴1 cm2 Human body surface area 
𝑓𝑓1 -% Total fraction of exposed skin during swimming 
𝑘𝑘4 cm/min Skin permeability coefficient 
𝑡𝑡/ min/event Duration per swimming event 
𝑠𝑠/ events/year Number of swimming events per year 
𝐶𝐶2 mg/cm3 Pharmaceutical concentration in surface water 
𝑑𝑑 days/year Number of days in a year (365) 
𝑚𝑚 kg Human body weight 

(12) 𝐴𝐴1 = 73.31 ∙ ℎ5.789 ∙ 𝑚𝑚5.:89 
𝐴𝐴1 cm2 Human body surface area 
ℎ cm Human body height 
𝑚𝑚 kg Human body weight 

(13) 𝑓𝑓1 = 1 + 𝑓𝑓;<= ∙ (𝑆𝑆3 − 1) 
𝑓𝑓1 -% Total fraction of exposed skin during swimming 
𝑓𝑓;<= 1 Human head-to-body surface area 
𝑆𝑆3 - Probability of full body submergence in a swimming event 

(14) 𝑙𝑙𝑙𝑙𝑙𝑙	𝑘𝑘4 = 0.71 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙	𝐾𝐾"2 − 0.0061 ∙ 𝑀𝑀𝑀𝑀 − 6.3 
𝑘𝑘4 cm/min Pharmaceutical skin permeability coefficient 
	𝐾𝐾"2 1 Octanol-water partition coefficient 
𝑀𝑀𝑀𝑀 g/mol Molecular weight of the pharmaceutical 

(15) 𝐻𝐻𝐻𝐻*)! = .M𝐻𝐻𝐻𝐻* ×.𝑓𝑓*> × 𝑀𝑀*>
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𝑅𝑅𝑅𝑅*)! 1 Interaction-based hazard index of pharmaceutical mixture 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑓𝑓*> 1 Exposure factor of the pharmaceutical pair i and j 
𝑀𝑀*> - Interaction magnitude of the pharmaceutical pair i and j 
𝐵𝐵*> - Binary weight-of-evidence factor of the pharmaceutical pair i and j 
𝜃𝜃*> 1 Relative proportion weighting factor of the pharmaceutical pair i and j 
𝑛𝑛 - Total number of pharmaceuticals in the mixture 

(16) 𝑓𝑓*> =
𝐻𝐻𝐻𝐻>

𝐻𝐻𝐻𝐻$.. − 𝐻𝐻𝐻𝐻*
 

𝑓𝑓*> 1 Exposure factor of the pharmaceutical pair i and j 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑅𝑅𝑅𝑅> 1 Hazard quotient of pharmaceutical j 
𝑅𝑅𝑅𝑅$.. 1 Additivity-based hazard index of pharmaceutical mixture 

(17) 𝐻𝐻𝐻𝐻$.. =.𝐻𝐻𝐻𝐻*

)

*+,

 
𝑅𝑅𝑅𝑅$.. 1 Additivity-based hazard index of pharmaceutical mixture 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑛𝑛 - Total number of pharmaceuticals in the mixture 

(18) 𝜃𝜃*> =
R𝐻𝐻𝐻𝐻* × 𝐻𝐻𝐻𝐻>#

S𝐻𝐻𝐻𝐻* + 𝐻𝐻𝐻𝐻>T × 0.5
 

𝜃𝜃*> 1 Relative proportion weighting factor of the pharmaceutical pair i and j 
𝑅𝑅𝑅𝑅* 1 Hazard quotient of pharmaceutical i 
𝑅𝑅𝑅𝑅> 1 Hazard quotient of pharmaceutical j 
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from a measurement campaign by the Dutch water company Vitens (personal 
communication, 1st June 2021). Since only iopamidol was actually detected in drinking 
water, we decided to assume either a zero concentration or a concentration equaling 
the quantification limit. Based on these data, we defined three concentration profiles 
for API concentrations in surface and drinking water: 

(I)	 mean surface water concentrations and zero drinking water concentrations;
(II)	� maximum surface water concentrations and zero drinking water 

concentrations; and
(III)	� maximum surface water concentrations and drinking water concentrations 

equal to the analytical limit of quantification.

3.5	 Human behavior
Human behavior determines the extent to which people are in contact with polluted 
water, either directly or indirectly, that is, via recreational swimming, drinking 
water, and fish consumption. We defined five archetypes of human behavior:

(A)	� The “Average” archetype refers to adult individuals whose behavior falls 
within the typical range of expectable behavior in the majority of the 
population;

(F) 	� The “Fisherman” archetype refers to adult individuals with high consumption 
of fish caught in the Vecht River;

(S) 	� The “Swimmer” archetype refers to adult individuals who heavily engage in 
frequent swimming activities in the Vecht River;

(D) 	� The “Drinker” archetype refers to adult individuals who differ from the 
“average” archetype in their unusual high consumption of Vecht-derived 
drinking water; and

(E)	� The “Extreme” archetype refers to adult individuals with combined 
characteristics of the “Fisherman,” “Swimmer,” and “Drinker” archetypes.

The lifetime-averaged daily pharmaceutical uptake of all archetypes was calculated 
assuming typical behavior at nonadult life stages. Human physical and behavioral 
data were mostly informed by the Dutch population characteristics; it was assumed 
that the German population characteristics resemble these.

3.6	 Exposure scenarios
An exposure scenario combines an assumption about the API concentrations present 
in surface and drinking water (I, II, or III) with a distinct type of human behavior (A, 
F, S, D, or E). In total, we calculated exposure and risk for 15 scenarios, that is, three 



Human health risk assessment of pharmaceuticals in the European Vecht River

43

2

environmental exposure levels for each of the five human archetypes. Table 3 presents 
the pharmaceutical-specific input parameters used in the exposure model calculations, 
and in Table 4, the age- and behavior-specific input parameters are presented.

Table 4. Age- and behavior-specific input values for lifetime uptake and hazard estimation

Age 
group

qs (mL/
min)a

te (min/
event)a

se (events/ 
year)a

qw (mL/
day)b

qf (mg/day)b fHSA 

(%)c

Sa h(cm) m(kg)

0–1 0.0 0 0.0 350 0.0 19 59 65.7d 7.2d

1–5 0.5 79 8.0 425 52 600 3 59 91.7d 13.7d

5–10 0.5 79 8.0 583 69 960 3 59 125.6d 25.0d

10–18 0.4 67.9 7.6 951 67 750 3 54 161.7d 49.6d

18–80 0.4A,F,D

0.58 (95th)S,E

54A,F,D

151.8 (95th)S,E

7.0A,F,D

18.8 (95th)S,E

1757A,F,S

4218 (95th)D,E

108 969A,S,D

278 002 (95th)F,E

3 45 174.2e 78.4e

Note: For details on the data input selection and associated assumptions, see the Supporting Information.
Abbreviations: 95th, ninety-fifth percentile; A, “Average” behavior archetype; D, “Drinker” behavior 
archetype; E, “Extreme” behavior archetype; F, “Fisherman” behavior archetype; S, “Swimmer” behavior 
archetype.

aSchets et al. (2011).
bvan Rossum, et al. (2020).
cLivingston and Lee (2000).
dFredriks et al. (2000).
eCBS (2019).

3.7	 Combined effects and risks of APIs
Pharmaceutical mixture risks were estimated by summing individual HQ, implicitly 
assuming that the APIs have a similar mode of action, but do not affect each other's 
toxicity (noninteractive), that is, the (concentration) addition-based hazard index 
(HIadd). However, actual combined effects of APIs could be more than additive 
(synergism, potentiation) or less than additive (antagonism, inhibition, masking) 
(More et al., 2019). To accommodate this, pairwise drug interaction information 
was incorporated into the estimation of risk indices, following the concept of an 
interaction-based hazard index (HIint, Table 2—Equation 15) (USEPA, 2000, 2007). 
Interaction information for each pharmaceutical pair in the mixture was expressed 
by an interaction magnitude (M) and a weight-of-evidence (B) factor. Factor M 
represents the mutual influence of the pair on their combined toxicity. Values of 
M were obtained from Roden et al. (2015) and USFDA (2012), in line with the type 
of interaction severity reported by the Drugbank Interaction Checker© (Wishart 
et al.,  2018). In the present study, all interactions were identified as one-way 
interactions, that is, the interaction effect is exerted by one of the components. 

f
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Factor B represents the quality of the data and the direction of the drug interactions. 
The direction of API pairwise effects is determined by the sign of B, ranging from 
−1 for less than additive interactions, to +1 for more than additive interactions. In 
a mixture with no pairwise interactions (Bij = 0), the additivity assumption prevails 
(HIint = HIadd). In the present study, interaction directions were conservatively 
assumed to be |B| = 1. Hazard index equations are presented in Table 2, and input 
parameters are detailed in Tables S11–S13.

4.	 Results

We generated 4500 age- and route-specific pharmaceutical daily uptake values 
for 15 APIs covering a variety of exposure conditions (Supporting Information). 
Aggregation of these age- and route-specific uptake values resulted in 165 lifetime 
risk estimates for 11 APIs (Supporting Information). The daily uptake of APIs per 
age group is shown in Table 5. The risks calculated for the 11 remaining APIs are 
shown in Figure 3. The combined mixture risks of these 11 APIs, calculated following 
the principles of USEPA's addition- and interaction-based hazard index, are listed  
in Table 6.

Table 5. Geometric mean of pharmaceutical daily uptake per age group and concentration profile for an 
average behavior archetype

Age group (years)
Pharmaceutical daily uptake (mg/kg/day)

I II III

0–1 0 (0%) 0 (0%) 8.86 × 10−7 (25%)

1–5 9.03 × 10−10 (16%) 4.71 × 10−8 (16%) 8.78 × 10−8 (10%)

5–10 6.37 × 10−10 (14%) 3.32 × 10−8 (14%) 6.28 × 10−8 (9%)

10–18 3.19 × 10−10 (12%) 1.66 × 10−8 (12%) 3.56 × 10−8 (8%)

18–80 2.05 × 10−10 (58%) 1.07 × 10−8 (58%) 2.66 × 10−8 (47%)

Note: The uptake values represent the aggregated daily uptake of all pharmaceuticals and exposure routes. 

The total pharmaceutical uptake per age group is presented as a lifetime percentage.
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Figure 3. Human health lifetime hazard quotients (HQ) of studied pharmaceuticals in the Vecht River 
catchment. CBZ, carbamazepine; CIP, ciprofloxacin; CYC, cyclophosphamide; DCF, diclofenac; DOX, 
doxycycline; EE2, 17α-ethinylestradiol; ERY, erythromycin; MEP, metoprolol; MET, metformin; PHE, 
phenazone; VAL, valsartan

DISCUSSION
Three main observations stand out from the results

(Figure 3). First, scenarios of high exposure resulted in the
highest risks, unsurprisingly so due to assuming maximum
surface and drinking water concentrations. Second, fish
consumption was the exposure route that contributed most
to elevated risks. Third, drug interactions only marginally

increase health risks due to simultaneous pharmaceutical
exposure (up to a 4% increase of HIadd). These observations
emphasize that health risks are strongly dictated by phar-
maceutical environmental concentrations, followed by
human behavioral differences.
The high HQ for doxycycline, the only API exceeding its

ISD, is the result of a relatively low ISD (0.03 µg/kg/day). For
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Table 6. Pharmaceutical mixture hazard indices

Concentration profile Hazard Average Fisherman Swimmer Drinker Extreme

I HQmax 2.59 × 10−2 5.34 × 10−2 2.59 × 10−2 2.59 × 10−2 5.34 × 10−2

HIadd 2.92 × 10−2 6.00 × 10−2 2.92 × 10−2 2.92 × 10−2 6.01 × 10−2

HIint 2.98 × 10−2 6.14 × 10−2 2.98 × 10−2 2.98 × 10−2 6.14 × 10−2

dHI 2% 2% 2% 2% 2%

II HQmax 0.97 2.00 0.97 0.97 2.00

HIadd 1.23 2.54 1.23 1.23 2.54

HIint 1.28 2.62 1.28 1.28 2.62

dHI 4% 4% 4% 4% 4%

III HQmax 1.01 2.03 1.01 1.05 2.07

HIadd 1.28 2.58 1.28 1.33 2.64

HIint 1.32 2.67 1.33 1.38 2.72

dHI 3% 3% 3% 3% 3%

Abbreviations: dHI, relative change in hazard index; HIadd, addition-based hazard index; HIint, interaction-
based hazard index; HQmax, highest HQ in mixture (i.e., doxycycline).

The HQ for individual APIs ranged from 10−9 to 2.5 (Figure  3). The antibiotic 
doxycycline consistently had the highest calculated HQ for all exposure scenarios. 
The commonly used over-the-counter drug diclofenac showed the second highest 
HQ. The antibacterials ciprofloxacin and erythromycin were recurrently the third 
highest HQ   (10−4 to 10−1). The fourth highest risk across exposure scenarios was 
consistently calculated for the antihypertensive agents valsartan and metoprolol. The 
HQ estimated in concentration profile II, in comparison with average concentration 
profile I, underwent changes ranging from 34× higher for carbamazepine to 124× 
higher for phenazone. For the majority of pharmaceuticals, however (7 out of 11), 
this change was less than 45×. HQ estimated for the extreme concentration profile 
III, in comparison with concentration profile I, increased from 35× higher for 
carbamazepine to 103× higher for phenazone. With the exception of doxycycline, none 
of the APIs evaluated in this study had an HQ exceeding the risk threshold (HQ = 1), 
not even under extreme exposure conditions, implying that the predicted lifetime 
exposure did not exceed health safety thresholds.

An individual's average daily uptake of APIs showed age dependency (Table 5). Young 
age groups were systematically associated with higher uptake values per kilogram 
body weight. Under average environmental conditions (I), toddlers and adults 
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contribute 16% and 58% to the total lifetime uptake, respectively. Under extreme 
environmental exposure conditions (III), infants and adults contribute 25% and 47% 
to the total lifetime uptake, respectively.

The HI associated with combined exposure to pharmaceutical mixtures showed a 
wide range across the simulated exposure scenarios (Table 6). Pharmaceutical mixture 
risks ranged from 10−2 to 2.6 when assuming additive biological effects (HIadd), and 
from 10−2 to 2.7 when accounting for biological interactions (HIint). The lowest HIadd 
and HIint were associated with the “Average,” “Swimmer,” and “Drinker” archetypes 
under concentration profile I, whereas the highest were associated with the “extreme” 
archetype under concentration profile III. The average differences between HIadd and 
HIint in concentration profiles I, II, and III were 2%, 4%, and 3%, respectively.

5.	 Discussion

Three main observations stand out from the results (Figure 3). First, scenarios of 
high exposure resulted in the highest risks, unsurprisingly so due to assuming 
maximum surface and drinking water concentrations. Second, fish consumption was 
the exposure route that contributed most to elevated risks. Third, drug interactions 
only marginally increase health risks due to simultaneous pharmaceutical exposure 
(up to a 4% increase of HIadd). These observations emphasize that health risks are 
strongly dictated by pharmaceutical environmental concentrations, followed by 
human behavioral differences.

The high HQ for doxycycline, the only API exceeding its ISD, is the result of a 
relatively low ISD (0.03 µg/kg/day). For this particular API, subjective choices 
and interpretations (e.g., relating to the uncertainty factors applied) are known 
to substantially influence the ISD, resulting in differences up to three orders 
of magnitude (Kumar et al., 2010). Here, we used the lowest ISD reported in the 
public literature, resulting in an HQ of 2.1 for the most extreme scenario (E-III). 
Choosing a higher ISD would have resulted in acceptable lifetime risks (HQ < 1), 
even under extreme exposure conditions. Estimated safe reference levels can vary 
widely depending on the derivation procedure, selection of population and health 
endpoints, and their perceived uncertainty. This ambiguity illustrates the impact of 
ISDs in estimated risks. The practical implication is that, next to exposure reduction 
measures, reducing the uncertainty in acceptable exposure levels can improve the 
scientific underpinning for estimating risks, often reducing the need to apply a 
conservative bias to avoid underestimating risks.
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Diclofenac had the second highest HQ (up to 0.4). The concentration of diclofenac in 
surface and drinking water was comparable to the other APIs (Table 3); yet, its lifetime 
uptake estimates were substantially higher. Diclofenac uptake was estimated to occur 
via the skin during swimming. However, for individuals consuming contaminated 
fish, eating becomes the dominant route of exposure (~100%). These observations 
are in line with diclofenac's properties, that is, its very high skin permeability 
coefficient (0.19 mm/min), its relatively high octanol–water partition coefficient, its 
low molecular weight, and its ability to accumulate in fish lipid tissue. Diclofenac's 
estimated bioconcentration factor was 0.275 ml/mg, being in close agreement with 
experimental values (Cuklev et al., 2011).

In most exposure scenarios, pharmaceutical uptake mainly occurred via fish 
consumption, followed, to a small extent, by surface water ingestion and dermal 
absorption during swimming activities. Generally, pharmaceuticals with relatively 
high hydrophilicity were taken up after accidental swallowing of water during 
swimming events (e.g., iopamidol, doxycycline, erythromycin, ciprofloxacin, 
metformin), whereas pharmaceuticals with relatively high hydrophobicity were taken 
up via dermal absorption (e.g., 17α-ethinylestradiol, amantadine, diclofenac).

The risks posed by pharmaceutical mixtures were estimated to be higher than 
any individual pharmaceutical (Table 6). Still, the increased risk was limited, even 
assuming relatively conservative (i.e., high-end exposure) exposures due to the low 
percentage of major drug interaction effects (<7%; Table S14). Estimated HIs did 
not surpass ISDs (HI < 1) under average pharmaceutical concentrations (I). This 
suggests that lifetime health risks due to direct toxicity associated with the intake 
of the 15 selected APIs from the Vecht River would not be expected. However, should 
additional APIs be assessed, risk estimates are likely to become higher.

Despite the improbable occurrence of exceptional exposure conditions (e.g., 
concentration profile III in combination with the “Fisherman” and “Extreme” 
behavior archetypes), these scenarios aid the identification of key exposure factors, 
including risky behaviors. The highest lifetime risks were found to be associated with 
the “Fisherman” and “Extreme” behavior archetypes, where the latter inherited the 
risks of the former, indicating that pharmaceutical uptake via fish consumption could 
be an important exposure route for these individuals (Kumar & Xagoraraki, 2010). 
However, it should be noted that the present study conservatively assumes that all 
consumed fish are sourced from the Vecht River. Consumption of fish from other 
origins will result in different risk estimates, likely to be much lower than those 
reported for concentration profile III (Bean et al., 2018; Rojo et al., 2019). Xie et al. 
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(2019) reported that health risks associated with pharmaceutical contaminated fish 
are negligible, although factors like dietary habits were not accounted for.

When API concentrations in drinking water were assumed to equal the limit of 
quantification (LoQ) (concentration profile III), the lifetime risk for “Drinker” 
archetypes increased by 92%, 91%, and 88% for phenazone, cyclophosphamide, and 
17α-ethinylestradiol, respectively. This indicates the potential importance of drinking 
water as a relevant exposure route (Santos et al., 2020), although the absolute risks 
were still low, which is supported by other studies (Houtman et al., 2014). These 
results also emphasize the importance of increasing the reliability of analytical 
quantification, given that the assumption that drinking water concentrations 
matched the LoQ greatly affected the risk estimates associated with drinking water.

Human metabolites and environmental TPs of APIs are often found in the aquatic 
environment (Ma et al.,  2020). The ecotoxicological effects, environmental fate, 
and risk of these metabolites and TPs are increasingly being studied and assessed 
(Maculewicz et al., 2022; Wang et al., 2021). The present exposure model allows the 
inclusion of these compounds, provided that the necessary parameter adjustments 
are made. However, adverse effect levels for metabolites and TPs in humans, and a 
detailed profiling of these substances in the Vecht River are missing. We therefore 
did not include metabolites and TPs in our assessment. This effectively means 
that we likely underestimate the true human risk, particularly for APIs that are 
extensively metabolized or transformed, and if these metabolites and TPs are toxic 
to humans (de Jongh et al., 2012; Zind et al., 2021). Despite uptake during childhood 
contributing less to lifetime uptake than uptake during adulthood, it represents 
almost half of an individual's total lifetime uptake (Table 5). This can be explained 
by the high body surface to body weight ratio and high energy demand resulting in 
a high contaminant uptake per body mass unit (Ferguson et al., 2017; OECD, 2019). 
These observations point to the potential relevance of understanding age-specific 
susceptibilities of long-term exposure to low levels of APIs such as differences in 
gastrointestinal absorption, skin characteristics, and renal and liver functions 
(Bruckner, 2000). Analysis of other population groupings could also be of interest and 
reveal sensitive subpopulations, such as pregnant and lactating women (Beszterda 
& Frański, 2018).

Risk quantification is typically the result of a reactive approach, from which an 
exposure-based HQ is estimated. However, HQ can be repurposed as a target risk 
value (HQt) in a proactive approach, from which protective exposure limits are 
derived. The latter can be of particular interest to water managers in search of 
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pragmatic tools for risk prevention, mitigation, or reduction. Thus, our exposure 
model can be rearranged in light of risk acceptance criteria. To illustrate this, we 
derived an exemplary equation on the relationship between pharmaceutical 
concentration in surface water (Cw) and fish consumption of a target population (Φ). 
For details on the equation's derivation, see the  Supporting Information. The 
maximum acceptable pharmaceutical concentration in surface water can be 
estimated once the amount of its fish consumed by the target population is 
established, or vice versa (Figure 4). An increase in fish consumption leads to a rapid 
decrease in the permissible concentration of the pharmaceutical in surface water. 
For example, to prevent exceedance of the target risk benchmark (HQt = 1) in a 
population consuming twice as much fish as the national average (Φ = 2), diclofenac 
and doxycycline water concentrations should be kept below 5 and 0.2 µg/L, 
respectively. In other words, Vecht River water concentrations of diclofenac and 
doxycycline can be 228 and 24× higher than present average concentrations before 
the risk is deemed unacceptable. Due to remaining pharmaceutical exposure from 
swimming and drinking water, even in the absence of fish consumption (Φ = 0), 
concentration limits for diclofenac and doxycycline are 58 and 3 mg/L, respectively. 
Conversely, the lifetime consumption of fish from the Vecht River with average 
diclofenac and doxycycline water concentrations would have to be 441 and 40× higher 
than the national average consumption to meet the risk threshold (HQ = 1). By using 
these versatile guides, water managers can readily gain insight into the potential 
human health risks based on minimal information, bypassing unnecessary and 
laborious risk assessment.

Figure 4. Surface water concentrations compared to hazard quotient (HQ) for doxycycline (Cw) in relation 
to the fish consumption of the target population (Φ). The red curve depicts the target hazard quotient of 
1 (HQt = 1).

much lower than those reported for concentration profile III
(Bean et al., 2018; Rojo et al., 2019). Xie et al. (2019) re-
ported that health risks associated with pharmaceutical
contaminated fish are negligible, although factors like di-
etary habits were not accounted for.
When API concentrations in drinking water were assumed

to equal the limit of quantification (LoQ) (concentration profile
III), the lifetime risk for “Drinker” archetypes increased by 92%,
91%, and 88% for phenazone, cyclophosphamide, and 17α‐
ethinylestradiol, respectively. This indicates the potential im-
portance of drinking water as a relevant exposure route
(Santos et al., 2020), although the absolute risks were still low,
which is supported by other studies (Houtman et al., 2014).
These results also emphasize the importance of increasing the
reliability of analytical quantification, given that the assump-
tion that drinking water concentrations matched the LoQ
greatly affected the risk estimates associated with drinking
water.
Human metabolites and environmental TPs of APIs are

often found in the aquatic environment (Ma et al., 2020).
The ecotoxicological effects, environmental fate, and risk of
these metabolites and TPs are increasingly being studied and
assessed (Maculewicz et al., 2022; Wang et al., 2021). The
present exposure model allows the inclusion of these com-
pounds, provided that the necessary parameter adjustments
are made. However, adverse effect levels for metabolites and
TPs in humans, and a detailed profiling of these substances in
the Vecht River are missing. We therefore did not include
metabolites and TPs in our assessment. This effectively
means that we likely underestimate the true human risk,
particularly for APIs that are extensively metabolized or
transformed, and if these metabolites and TPs are toxic to
humans (de Jongh et al., 2012; Zind et al., 2021). Despite
uptake during childhood contributing less to lifetime uptake
than uptake during adulthood, it represents almost half of an
individual's total lifetime uptake (Table 5). This can be ex-
plained by the high body surface to body weight ratio and
high energy demand resulting in a high contaminant uptake

per body mass unit (Ferguson et al., 2017; OECD, 2019).
These observations point to the potential relevance of un-
derstanding age‐specific susceptibilities of long‐term ex-
posure to low levels of APIs such as differences in
gastrointestinal absorption, skin characteristics, and renal and
liver functions (Bruckner, 2000). Analysis of other population
groupings could also be of interest and reveal sensitive
subpopulations, such as pregnant and lactating women
(Beszterda & Frański, 2018).
Risk quantification is typically the result of a reactive ap-

proach, from which an exposure‐based HQ is estimated.
However, HQ can be repurposed as a target risk value (HQt)
in a proactive approach, from which protective exposure
limits are derived. The latter can be of particular interest to
water managers in search of pragmatic tools for risk pre-
vention, mitigation, or reduction. Thus, our exposure model
can be rearranged in light of risk acceptance criteria. To
illustrate this, we derived an exemplary equation on the
relationship between pharmaceutical concentration in sur-
face water (Cw) and fish consumption of a target population
(Φ). For details on the equation's derivation, see the Sup-
porting Information. The maximum acceptable pharma-
ceutical concentration in surface water can be estimated
once the amount of its fish consumed by the target pop-
ulation is established, or vice versa (Figure 4). An increase in
fish consumption leads to a rapid decrease in the permis-
sible concentration of the pharmaceutical in surface water.
For example, to prevent exceedance of the target risk
benchmark (HQt= 1) in a population consuming twice as
much fish as the national average (Φ= 2), diclofenac and
doxycycline water concentrations should be kept below 5
and 0.2 µg/L, respectively. In other words, Vecht River water
concentrations of diclofenac and doxycycline can be 228
and 24× higher than present average concentrations before
the risk is deemed unacceptable. Due to remaining phar-
maceutical exposure from swimming and drinking water,
even in the absence of fish consumption (Φ= 0), concen-
tration limits for diclofenac and doxycycline are 58 and

Integr Environ Assess Manag 2022:1639–1654 © 2022 The AuthorsDOI: 10.1002/ieam.4588

FIGURE 4 Surface water concentrations compared to hazard quotient (HQ) for doxycycline (Cw) in relation to the fish consumption of the target population (Φ).
The red curve depicts the target hazard quotient of 1 (HQt= 1)
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5.1	 Conclusion
Human health risks from direct toxicity associated with the lifetime exposure 
to pharmaceutical residues in the Vecht's River catchment were largely less 
than safe limits. Most individuals in contact with Vecht River water are far from 
exceeding acceptable risk levels (10−2 < HQ < 10−9). Exceptionally, only in high water 
contamination conditions such as river segments immediately downstream a 
wastewater treatment plant's (WWTP) effluent emission point did exposure to the 
antibiotic doxycycline pose an appreciable risk (HQ < 2) to individuals who daily 
consumed 229 g of contaminated fish caught at those locations. The cumulative risk 
of pharmaceutical mixtures also did not exceed safe limits under normal conditions. 
However, long-term daily exposure to highly contaminated sites in the Vecht River 
is discouraged due to the potential health risks (1.3 < RI < 2.6), particularly via 
fish consumption. European regulatory authorities have not issued specific fish 
consumption advisories for APIs, but the EU is currently considering including 
selected APIs on the priority substances list. If this becomes reality, water quality 
standards will be derived covering exposure through fish consumption. From a global 
perspective, pharmaceutical residue concentrations in other world regions have been 
found to be 10 to 104 higher than in the current study (Eike et al., 2019), indicating 
likely higher health risks at those locations.

We show that key human features and activities, and environmental parameters of 
varied complexity can be integrated into a relatively simple deterministic exposure 
model to estimate lifetime health risks of pharmaceuticals in the water environment. 
The exposure model presented is also applicable to metabolites and TPs, provided that 
adjustments are made. The utility of the exposure model still relies on data quality 
and availability, namely, data about the end use of the surface water body of interest. 
A valuable first step would be for water managers to comprehensively survey the 
types of water usage at relevant sites. Once the most relevant water-related activities 
are identified and their associated risks are assessed, risk management strategies 
can then be customized to specific locations, to more efficiently restrict health risks. 
For example, substance prioritization and monitoring could be informed based on a 
substance's bioaccumulation, persistence, or permeability for surface waters often 
used for fishing, drinking water production, or swimming, respectively.

When prioritizing resources to estimate human health risks, we recommend that 
water managers collect basic information on (1) the consumption of fish from 
sites downstream of WWTP facilities, and (2) the consumption and environmental 
releases of diclofenac, doxycycline, or compounds with similar permeability and 
bioaccumulation potential. With increased availability of empirical site-specific 
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information, the screening approach can be turned into a site-specific assessment, 
improving the accuracy of the risk estimates.

Ultimately, the present study renders laborious risk assessments unnecessary by 
proposing a simple method to pragmatically determine whether health standards 
for APIs are likely to be exceeded based on local environmental conditions and 
population behavior.
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Abstract

Millions of people rely on active pharmaceutical ingredients (APIs) to prevent and 
cure a wide variety of illnesses in humans and animals, which has led to a steadily 
increasing consumption of APIs across the globe and concurrent releases of APIs 
into the environment. In the environment, APIs can have a detrimental impact on 
wildlife, particularly aquatic wildlife. Therefore, it is essential to assess their potential 
adverse effects to aquatic ecosystems. The European Water Framework Directive 
sets out that risk assessment should be performed at the catchment level, crossing 
borders where needed. The present study defines ecological risk profiles for surface 
water concentrations of 8 APIs (carbamazepine, ciprofloxacin, cyclophosphamide, 
diclofenac, erythromycin, 17α-ethinylestradiol, metformin, and metoprolol) in the 
Vecht River, a transboundary river that crosses several German and Dutch regions. 
Ultimately, 3 main goals were achieved: 1) the geo-referenced estimation of API 
concentrations in surface water using the geography-referenced regional exposure 
assessment tool for European rivers; 2) the derivation of new predicted-no-effect 
concentrations for 7 of the studied APIs, of which 3 were lower than previously 
derived values; and 3) the creation of detailed spatially explicit ecological risk 
profiles of APIs under 2 distinct water flow scenarios. Under average flow conditions, 
carbamazepine, diclofenac, and 17α-ethinylestradiol were systematically estimated 
to surpass safe ecological concentration thresholds in at least 68% of the catchment's 
water volume. This increases to 98% under dry summer conditions. Environ Toxicol 
Chem 2022;41:648–662. © 2021 The Authors. Environmental Toxicology and Chemistry 
published by Wiley Periodicals LLC on behalf of SETAC.

Graphical abstract
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1.	 Introduction

The discovery and manufacture of active pharmaceutical ingredients (APIs) have 
prompted human and veterinary medicine to a modern era. Many health care and 
agriculture food production systems around the globe rely on APIs to prevent and 
cure a wide variety of illnesses in humans and animals, which has led to a sustained 
consumption of them (Klein et al. 2018). Next to the benefits of APIs, their widespread 
use has also led to unintended consequences such as antimicrobial resistance 
(Young 1993; Hernando-Amado et al. 2019) and environmental pollution (aus der Beek 
et al. 2016). The occurrence of APIs in the environment can have detrimental impacts 
on wildlife (Shultz et al. 2004; Jobling et al. 2006; Saaristo et al. 2018). To guarantee 
a good surface water quality, it is essential to assess potential adverse effects of APIs 
to aquatic ecosystems. The corresponding legal framework comprises the European 
Union's Water Framework Directive (European Commission 2000) and the Priority 
Substances Directive (European Commission 2008). These directives impose the 
protection of water resources on European Union member states, for example, by 
defining environmental quality standards (EQSs) for 45 priority substances. However, 
none of these substances is an API. Instead, a limited set of APIs is covered in a 
biennial watch list of water pollutants that should be carefully monitored because of 
insufficient monitoring data and concerns about their ecological impact. The Water 
Framework Directive calls for a basin approach, moving away from national risk 
assessments (Coppens et al. 2015; Vissers et al. 2017) and complementing it with 
more detailed, in some cases transboundary, catchment-wide risk assessments. 
Determination of the chemical status of a surface water within the context of the 
Water Framework Directive relies on the quantification of risk by integrating 
exposure and effect assessments.

Exposure assessment can be based on measured environmental concentrations 
(MECs), predicted environmental concentrations (PECs) using chemical fate models 
or a combination of both. In the past 30 yr, a variety of models have been developed 
to derive PECs for chemicals, such as ePiE (Oldenkamp et al. 2018), iStream (Kapo 
et al.  2016), a contaminant fate model (Grill et al.  2016), PhATE™ (Anderson et 
al. 2004), STREAM-EU (Lindim et al. 2016), GLOBAL-FATE (Font et al. 2019), and 
the geography-referenced regional exposure assessment tool for European rivers 
(GREAT-ER; Feijtel et al. 1997; Kehrein et al. 2015; Lämmchen et al. 2021), varying in 
complexity and geographical and temporal resolution. The concentration gradient 
along a watercourse is highly dependent on local socioeconomic and environmental 
factors. Therefore, the degree of access to detailed local data (e.g., pharmaceutical 
consumption patterns) and spatiotemporal information (e.g., seasonal hydrological 
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landscape) is an important driver for the accuracy of exposure models at the 
catchment level (Tiedeken et al. 2017; Oldenkamp et al. 2018; Font et al. 2019).

A comprehensive effect assessment requires extensive ecotoxicological information to 
derive safe concentration thresholds for aquatic ecosystems, for example, predicted-
no-effect concentrations (PNECs) or EQSs. To optimize the accuracy of the assessment, 
it is common practice to gather all available toxic effect data on a substance and select 
an extrapolation method that matches the available data. Therefore, the estimation and 
accuracy of useful PNECs is highly dependent on up-to-date ecotoxicological data and 
requires continuous revision to accommodate new evidence.

Riverine ecological assessments conducted in Europe and elsewhere have recurrently 
found APIs and other emerging pollutants to pose a potential risk to freshwater biota 
(Gómez-Canela et al. 2019). A main obstacle to modeling studies of API residues in 
transboundary catchments is the restricted access to detailed national and regional 
API-specific consumption data (Tiedeken et al. 2017). Additional obstacles include 
different national and regional water management strategies, diverse wastewater 
treatment efficiencies, the heterogeneity of the landscape, seasonal variation in 
environmental conditions, and variable demographics (Popelka and Smith 2020).

The main aim of the present study was to construct ecological risk profiles for 
surface water concentrations of 8 environmental residues of APIs in the European 
transboundary Vecht River, a river that crosses several German and Dutch regions. 
Firstly, an exposure assessment was performed by the applying the geo-referenced 
model GREAT-ER, which has a good track record for predicting pharmaceutical 
PECs in river catchments (Schowanek and Webb  2002; Capdevielle et al.  2008; 
Cunningham  2008; Hannah et al.  2009; Alder et al.  2010; Aldekoa et al.  2013; 
Hanamoto et al. 2013; Zhang et al. 2015; Archundia et al. 2018; Caldwell et al. 2019). 
Secondly, an effect assessment was performed based on existing ecotoxicological 
information. This information was used to determine PNECs by incorporating recent 
test results. Finally, PECs and PNECs were coalesced into ecological risk quotients 
(RQs) throughout the Vecht River network under 2 distinct water flow condition 
scenarios. This helps improve our understanding of the risk posed by APIs to local 
freshwater communities and advances the ability to evaluate and prioritize potential 
(local) mitigation strategies before their implementation by competent authorities 
(Government of The Netherlands 2019).
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2.	 Materials and methods

2.1	 Pharmaceuticals
Ecological risks were assessed for 8 selected APIs (Table 1). These represent only 
a subset of APIs detected in the Vecht River catchment (data not shown). The 
selection covers a wide range of consumption patterns, therapeutic classes, chemical 
properties, and levels of data availability (Supplemental Data).

Table 1. Names, Chemical Abstracts Service numbers, Anatomical Therapeutic Chemical codes, and 
therapeutic classes of the 8 active pharmaceutical ingredients assessed in the present study

API CAS no. ATC code Therapeutic class

17α‐Ethinylestradiola 57‐63‐6 G03CA01 Sex hormones

Carbamazepinec 298‐46‐4 N03AF01 Antiepileptics

Ciprofloxacinb 85721‐33‐1 J01MA02 Antibacterials

Cyclophosphamide 50‐18‐0 L01AA01 Antineoplastics

Diclofenaca 15307‐86‐5 M01AB05 NSAID

Erythromycina 114‐07‐8 J01FA01; 
QJ01FA01d

Antibacterials

Metforminc 657‐24‐9 A10BA02 Antidiabetics

Metoprolol 37350‐58‐6 C07AB02 Beta‐blockers
a Substance excluded from the watch list under the Water Framework Directive (Gomez Cortes et al. 2020). 
b Substance included in the watch list under the Water Framework Directive (Gomez Cortes et al. 2020). 
c �Candidate substance suggested by individual member for inclusion for the next watch list under the 

Water Framework Directive (Gomez Cortes et al. 2020). 
d Substance used in human and veterinary medicine. 
API = active pharmaceutical ingredient; CAS = Chemical Abstracts Service; ATC = Anatomical 
Therapeutic Chemical. 

2.2	 Case study area
The study area comprises the catchment area of the German and Dutch transboundary 
Vecht River, a tributary of the Dutch IJssel River. The area is under the influence of 
diverse anthropological stressors (e.g., treated wastewater emissions, water level 
control via pumps and locks; Lulofs and Coenen 2007; Wöhler et al. 2020; Lämmchen 
et al., 2021). The catchment extends over an area of approximately 6100 km². The 
total length of the Vecht River itself amounts to 167 km, of which approximately 
107 km are located in Germany.

The German part of the catchment is located in the western part of Lower Saxony 
and in small sections of North Rhine-Westphalia, comprising the smaller part of the 
total catchment area with a share of 1800 km² (Figure 1). In Germany, the Vecht is a 
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medium-sized river (long-term annual average flow of approximately 18.5 m³/s at 
the German–Dutch border) with many small tributaries, for example, the Steinfurter 
Aa and the Dinkel. The river system is still in an almost natural state in the German 
regions (Lulofs and Coenen 2007), with a few canals (e.g., Ems-Vecht Canal and the 
Nordhorn-Almelo Canal) having negligible influence on river flow. The German part 
is less densely populated (160 inh/km2) than the Dutch part (260 inh/km2) because only 
small towns such as Nordhorn and Gronau (≈50 000 inhabitants) are located in this 
area. In total, emissions from approximately 400 000 inhabitants connected to 25 
sewage treatment plants (STPs) enter the German Vecht. In addition, the wastewater 
of 6 hospitals with approximately 1200 beds in total is treated by the STPs.

Figure 1. Vecht River basin. Kilometer markers start at the confluence of the Vecht tributaries Burloer Bach 
and Rockeler Mühlenbach. STPs = sewage treatment plants.

Wöhler et al. 2020; Lämmchen et al., 2021). The catchment
extends over an area of approximately 6100 km². The total
length of the Vecht River itself amounts to 167 km, of which
approximately 107 km are located in Germany.

The German part of the catchment is located in the western
part of Lower Saxony and in small sections of North Rhine‐
Westphalia, comprising the smaller part of the total catchment
area with a share of 1800 km² (Figure 1). In Germany, the Vecht
is a medium‐sized river (long‐term annual average flow of ap-
proximately 18.5m³/s at the German–Dutch border) with many
small tributaries, for example, the Steinfurter Aa and the Dinkel.
The river system is still in an almost natural state in the German
regions (Lulofs and Coenen 2007), with a few canals (e.g.,
Ems‐Vecht Canal and the Nordhorn‐Almelo Canal) having
negligible influence on river flow. The German part is less
densely populated (160 inh/km2) than the Dutch part
(260 inh/km2) because only small towns such as Nordhorn and
Gronau (≈50 000 inhabitants) are located in this area. In total,
emissions from approximately 400 000 inhabitants connected
to 25 sewage treatment plants (STPs) enter the German Vecht.
In addition, the wastewater of 6 hospitals with approximately
1200 beds in total is treated by the STPs.

Approximately 4300 km² of the transboundary catchment
is located in The Netherlands, namely in the provinces of
Overijssel and Drenthe. This part of the catchment is highly
influenced by anthropogenic activities, which resulted in
canals, sluices, pumps, and river straightening (Lulofs and
Coenen 2007; Lämmchen et al., 2021). Larger cities with more
than 100 000 inhabitants are Enschede, Zwolle, and Emmen. In
total, more than 1 000 000 inhabitants are connected to 32
STPs, as are 7 hospitals with approximately 2000 beds in total.
The Zwarte Water River, a short prolongation of the Vecht River
and an inflow of the Zwarte Meer Lake, was integrated into the
model representation.

Environmental exposure assessment
The GREAT‐ER model was used to predict environmental

concentrations of the 8 case study APIs. The GREAT‐ER model
was originally developed to predict spatially explicit stationary
exposure concentrations of “down‐the‐drain” chemicals in
surface waters at the catchment level (Feijtel et al. 1997). The
model has been successfully applied to various chemicals in

FIGURE 1: Vecht River basin. Kilometer markers start at the confluence of the Vecht tributaries Burloer Bach and Rockeler Mühlenbach. STPs=
sewage treatment plants.
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Approximately 4300 km² of the transboundary catchment is located in The Netherlands, 
namely in the provinces of Overijssel and Drenthe. This part of the catchment is highly 
influenced by anthropogenic activities, which resulted in canals, sluices, pumps, and 
river straightening (Lulofs and Coenen 2007; Lämmchen et al., 2021). Larger cities with 
more than 100 000 inhabitants are Enschede, Zwolle, and Emmen. In total, more than 
1 000 000 inhabitants are connected to 32 STPs, as are 7 hospitals with approximately 
2000 beds in total. The Zwarte Water River, a short prolongation of the Vecht River 
and an inflow of the Zwarte Meer Lake, was integrated into the model representation.

2.3	 Environmental exposure assessment
The GREAT-ER model was used to predict environmental concentrations of the 8 case 
study APIs. The GREAT-ER model was originally developed to predict spatially explicit 
stationary exposure concentrations of “down-the-drain” chemicals in surface waters 
at the catchment level (Feijtel et al. 1997). The model has been successfully applied to 
various chemicals in different European catchments (Hüffmeyer et al. 2009; Alder 
et al. 2010; Aldekoa et al. 2013; Kehrein et al. 2015). A detailed description of the 
functions of the model and its latest extensions can be found in Kehrein et al. (2015; 
Lämmchen et al., 2021). The model mainly consists of 3 components: the hydrological 
network, the emission model, and the fate model. The hydrological network is the 
centerpiece of the GREAT-ER model. The water network is discretized into river 
segments with a length of up to 2 km. Each segment carries a property vector that is 
used to calculate the chemical's fate and concentration.

2.3.1	 Exposure scenarios
The steady-state model GREAT-ER represents a static hydrological situation over 
time. Two different scenarios were set up for the hydrological network, a low-flow 
condition scenario (mostly dry periods in summer) and an average-flow condition 
scenario (Table  2). This allows for considering the effect of the change of flow 
directions in some parts of the network during dry periods caused by pumping 
systems in the Dutch canals (Lämmchen et al., 2021).

2.3.2	 Model parameterization
A key input parameter is the consumption of APIs in the investigated area. It is well 
known that consumption patterns sometimes vary between countries and regions, which 
holds true for some of the investigated compounds in The Netherlands and Germany 
(Table 3). Regional sales data for the Vecht catchment from 2017 were acquired for the 
regions in Germany and The Netherlands from IQVIA Commercial GmbH & Co. OHG 
(IQVIA, Frankfurt am Main, Germany, unpublished data) and the Dutch Foundation 
for Pharmaceutical Statistics (SFK, The Hague, Netherlands, unpublished data) at the 
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postcode level (Supplemental Data, Table S1). Data include pharmacy sales but not the 
amount dispensed in hospitals, nursing homes, or by general practitioners. Drugs sold 
over the counter are included in the German data set but not in the Dutch data set. 
Annual prescription data were divided by the population number in the respective area, 
resulting in average per-capita consumption values (Supplemental Data, Table S1).

Table 2. Characteristics of the simulated low-flow and average-flow condition scenarios

Dry summer scenario Average condition 
scenario

Applicability Dry periods without rainfall between June  
and September

Humid periods 
throughout the year

Flow rate at the border (m³/s) 2.82 18.5

Flow rate at the Zwarte Water (m³/s) 11.31 63.45

Flow velocity at the border (m/s) 0.22 0.6

Flow velocity at the Zwarte Water (m/s) 0.33 0.85

Pumping activity Yes No

Pumping description 120 d/yr between March and October 
(Netherlands)

—

Pump power “Eefde” (Twente Canal; m³/s) 1.6 (mean), 14 (maximum) —

Changes in flow direction Yes No

Twente Canal, Zijkanaal Almelo, Canal  
Almelo‐De Haandrik, and several emerging 

smaller canals

—

Table 3. Relative percentage differences of prescribed per-capita pharmaceutical masses in the Vecht River 
basin regional area, Germany and The Netherlands

Regional‐to‐national (%) Germany‐to‐Netherlands (%)

Germany Netherlands Within region Between countries

17α‐Ethinylestradiol 12 –2 –75 –78

Carbamazepine –4 16 2 25

Ciprofloxacin 9 10 27 28

Cyclophosphamidea 33 n.a. n.a. n.a.

Diclofenac –2 –2 183 183

Erythromycin 56 –13 1594 853

Metformin –14 6 –26 –9

Metoprolol –8 22 –10 20

a Cyclophosphamide is restricted to clinical use. The Dutch Foundation for Pharmaceutical Statistics 
only collects domestic pharmaceutical consumption. Therefore, no cyclophosphamide is recorded for  
The Netherlands. 
n.a. = not applicable. 
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The contribution of hospitals was considered in terms of a per-bed application. 
This number was different for the 2 countries and was estimated from available 
prescription data of selected hospitals on both sides of the border (Supplemental 
Data, Table S1).

Emission loads into the sewer system of an STP were estimated by multiplying the 
per-capita and per-bed application rates with the number of connected inhabitants 
or hospital beds, respectively. Because most APIs are metabolized after uptake, only 
the excreted fraction was considered (Supplemental Data, Table S2). Metabolites 
such as glucuronides, which react back to the parent compound after release into 
the sewer, were also included (Heberer and Feldmann 2005).

A fraction of the excreted amount is removed during wastewater treatment in STPs. 
In the Vecht River catchment, all STPs are equipped with biological treatment with 
no additional stage for further elimination of micropollutants such as ozonation, 
ultrafiltration, or activated charcoal filtration. Although removal efficiencies may 
depend on the specific operating conditions (Verlicchi et al. 2012), equal removal 
efficiency for each API in all STPs was assumed.

From a comprehensive literature search, removal efficiencies determined in STPs 
equipped with biological treatment collected as composite samples (>24 h) were used 
to calculate median values for the model simulations (Supplemental Data, Table S4).

The estimated load in treated effluents is routed into the receiving rivers at the 
respective discharge points. Cumulated loads are propagated through the river 
network and used to estimate spatially resolved API concentrations (PECs) through 
division of the load by the respective river flow rate. In addition, the fate model 
accounts for physicochemical loss processes such as (bio)degradation, sedimentation, 
and photolysis. Degradation via hydrolysis and dissipation via volatilization were 
not accounted for because of their negligible influence on APIs (Patel et al. 2019). 
A detailed overview of the parametrization of in-stream processes is provided in 
Supplemental Data, Table S5.

2.3.3	 Model evaluation
The model performance was evaluated stepwise by comparison of simulation results with 
monitoring data for selected APIs in STP influents and effluents as well as at selected 
river sites (Figures 2 and 3). A comprehensive description of the sampling strategy is 
provided elsewhere (Heijnsbergen et al., unpublished manuscript). A brief overview and 
details for the chemical analysis are provided in Supplemental Data, S1.1 and S1.2.
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Figure 2. Predicted and measured sewage treatment plant (STP) influent loads of 5 pharmaceuticals (with 
quantification frequency >90%) in German STPs (n = 125) and Dutch STPs (n = 170). Dashed lines indicate 
the 1:3 and 3:1 ratios; dotted lines indicate the 1:10 and 10:1 ratios. SSPB = symmetric signed percentage 
bias; DCF = diclofenac; CBZ = carbamazepine; MET = metformin; MEP = metoprolol; CIP = ciprofloxacin.

Figure 3. Predicted and measured sewage treatment plant (STP) effluent loads of 4 pharmaceuticals (with 
quantification frequency >90%) in German STPs (n = 100) and Dutch STPs (n = 132). Dashed lines indicate 
the 1:3 and 3:1 ratios; dotted lines indicate the 1:10 and 10:1 ratios. SSPB = symmetric signed percentage 
bias; DCF = diclofenac; CBZ = carbamazepine; MET = metformin; MEP = metoprolol.

Model evaluation. The model performance was evaluated
stepwise by comparison of simulation results with monitoring
data for selected APIs in STP influents and effluents as well as at
selected river sites (Figures 2 and 3). A comprehensive de-
scription of the sampling strategy is provided elsewhere
(Heijnsbergen et al., unpublished manuscript). A brief overview
and details for the chemical analysis are provided in Supple-
mental Data, S1.1 and S1.2.

Two model performance quantitative measures were ap-
plied: median symmetric accuracy (ξ) and the symmetric signed
percentage bias (SSPB; Morley et al. 2018),

r
x

xi
i pred

i meas

,

,
= (1)

e% 100 1M ln riξ ( ) = × ( − )(| |) (2)

e sgn M rSSPB % 100 1 lnM r
i

ln i( ) = × ( − ) × ( ( ))|( ( ) | (3)

where ri is the ratio of the predicted/measured pair (e.g., loads),
xi pred, is the predicted value, xi meas, is the corresponding value
from the measurement data, M is the median function, sgn is
the sign function, and i is the index within a subgroup of all
predicted/measured pairs for a single compound, scenario,
country, sampling site, or a combination of these.

The median symmetric accuracy (Equation 2) is a measure of
central tendency that is robust to the presence of outliers and
resistant to data spanning several orders of magnitude. For the
scope of the present study, we consider ξ values up to 100 and
up to 200% as indicative of “good agreement” and “accept-
able agreement” between measurements and predictions, re-
spectively. Values of ξ> 200% indicate “poor agreement”
between measurements and predictions. A ξ= 100% indicates
that the median of the absolute ratios (|ri|) is 2 (i.e., 50% of
predicted values deviate from measured values by less than a
factor of 2). The symmetric signed percentage bias (Equation 3)
can be interpreted similarly to a mean percentage error, but it

TABLE 3: Relative percentage differences of prescribed per‐capita pharmaceutical masses in the Vecht River basin regional area, Germany and
The Netherlands

Regional‐to‐national (%) Germany‐to‐Netherlands (%)

Germany Netherlands Within region Between countries

17α‐Ethinylestradiol 12 –2 –75 –78
Carbamazepine –4 16 2 25
Ciprofloxacin 9 10 27 28
Cyclophosphamidea 33 n.a. n.a. n.a.
Diclofenac –2 –2 183 183
Erythromycin 56 –13 1594 853
Metformin –14 6 –26 –9
Metoprolol –8 22 –10 20

aCyclophosphamide is restricted to clinical use. The Dutch Foundation for Pharmaceutical Statistics only collects domestic pharmaceutical consumption. Therefore, no
cyclophosphamide is recorded for The Netherlands.
n.a.= not applicable.

FIGURE 2: Predicted and measured sewage treatment plant (STP) influent loads of 5 pharmaceuticals (with quantification frequency >90%) in
German STPs (n= 125) and Dutch STPs (n= 170). Dashed lines indicate the 1:3 and 3:1 ratios; dotted lines indicate the 1:10 and 10:1 ratios.
SSPB= symmetric signed percentage bias; DCF= diclofenac; CBZ= carbamazepine; MET=metformin; MEP=metoprolol; CIP= ciprofloxacin.
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penalizes underestimation and overestimation equally. Positive
values indicate a tendency to overestimate predictions,
whereas negative values indicate a tendency to underestimate
predictions. In the present study, absolute values of SSPB up to
50, 100, and 200% were considered as an indication of “small,”
“medium,” and “large” overestimations or underestimations,
respectively. Absolute values >200% were considered “very
large” overestimations/underestimations. An SSPB= –50% in-
dicates that the median of relative ratios (ri) is 50% lower in the
predictions compared to measured data. This implies that 50%
of the predicted values underestimate the measurements by at
least a factor of 1.5.

Predictions of STP emissions were evaluated on a load‐
based approach. Measured concentrations in STP influent and
effluent were multiplied with the annual discharge of the cor-
responding STP and compared to model predictions. The APIs
with a quantification frequency <90% were evaluated semi-
quantitatively. Concentrations below the limits of quantification
(LOQ) were processed as LOQ in the evaluation approach
because they are expected to be close to the LOQ value as a
result of the high quantification frequency.

Surface water PECs were evaluated using the “benchmark”
concept, according to Kunkel and Radke (2012), with which
concentrations of individual APIs are normalized to the con-
centration of a conservative tracer or reference. Thereby, river
flow variations can be excluded from the evaluation process.
Carbamazepine was selected as the conservative reference
compound because of its persistence in the environment
(Aminot et al. 2016). Benchmark ratios from the monitoring
data could only be calculated if the concentration of the
reference (carbamazepine) and that of the respective target API
were above the LOQ. To provide a reliable baseline for
this approach, predicted carbamazepine concentrations
were evaluated by comparison with measured concentrations
(Supplemental Data, S1.3).

Environmental effect assessment
Search strategy. Aquatic ecotoxicity data were compiled
without restrictions from the following databases: ECOTOX
Knowledgebase (US Environmental Protection Agency 2019),
e‐toxBase (Posthuma et al. 2019), Wikipharma (Molander et al.
2009), FASS (Trade Association for the Research‐Based Phar-
maceutical Industry in Sweden 2019), iPiESum (Innovative
Medicines Initiative 2019), and the EU WRC report (Johnson
and Harvey 2002). To further supplement collected data, a lit-
erature review was performed by searching the Web of Science
platform in March 2019 (Supplemental Data, Table S11). The
search was restricted to publications from 2016 or later to
capture information not covered by the other sources. The
search returned 233 publications that were fully assessed.

Data extraction and harmonization. All relevant toxico-
logical information referring to the 8 APIs of interest was ex-
tracted from the databases. Additional toxicity data were
extracted from 40 publications identified in the public literature
search. The following relevant information was extracted and
compiled: substance name, Chemical Abstracts Service
number, taxon, species, life stage and living compartment of
the species tested, toxic effect, exposure type, exposure du-
ration, endpoint type, and endpoint value. This process

FIGURE 3: Predicted and measured sewage treatment plant (STP) effluent loads of 4 pharmaceuticals (with quantification frequency >90%) in
German STPs (n= 100) and Dutch STPs (n= 132). Dashed lines indicate the 1:3 and 3:1 ratios; dotted lines indicate the 1:10 and 10:1 ratios.
SSPB= symmetric signed percentage bias; DCF= diclofenac; CBZ= carbamazepine; MET=metformin; MEP=metoprolol.

TABLE 4: Number of ecotoxicological data entries per source in the
database compiled in the present study

Source Entries

ECOTOXbase 6510
Wikipharma 2802
e‐toxBase 779
Literature 455
iPiESum 270
EU WRC report 140
FASS 74
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Two model performance quantitative measures were applied: median symmetric 
accuracy (ξ) and the symmetric signed percentage bias (SSPB; Morley et al. 2018), 

� (1)

� (2)

� (3)

where ri is the ratio of the predicted/measured pair (e.g., loads), xi,pred is the predicted 
value, xi,meas is the corresponding value from the measurement data, M is the median 
function, sgn is the sign function, and i is the index within a subgroup of all 
predicted/measured pairs for a single compound, scenario, country, sampling site, 
or a combination of these.

The median symmetric accuracy (Equation  2) is a measure of central tendency that 
is robust to the presence of outliers and resistant to data spanning several orders of 
magnitude. For the scope of the present study, we consider ξ values up to 100 and 
up to 200% as indicative of “good agreement” and “acceptable agreement” between 
measurements and predictions, respectively. Values of ξ > 200% indicate “poor agreement” 
between measurements and predictions. A ξ = 100% indicates that the median of the 
absolute ratios (|ri|) is 2 (i.e., 50% of predicted values deviate from measured values 
by less than a factor of 2). The symmetric signed percentage bias (Equation 3) can be 
interpreted similarly to a mean percentage error, but it penalizes underestimation and 
overestimation equally. Positive values indicate a tendency to overestimate predictions, 
whereas negative values indicate a tendency to underestimate predictions. In the present 
study, absolute values of SSPB up to 50, 100, and 200% were considered as an indication 
of “small,” “medium,” and “large” overestimations or underestimations, respectively. 
Absolute values >200% were considered “very large” overestimations/underestimations. 
An SSPB = –50% indicates that the median of relative ratios (ri) is 50% lower in the 
predictions compared to measured data. This implies that 50% of the predicted values 
underestimate the measurements by at least a factor of 1.5.

Predictions of STP emissions were evaluated on a load-based approach. Measured 
concentrations in STP influent and effluent were multiplied with the annual discharge 
of the corresponding STP and compared to model predictions. The APIs with a 
quantification frequency <90% were evaluated semiquantitatively. Concentrations 

Model evaluation. The model performance was evaluated
stepwise by comparison of simulation results with monitoring
data for selected APIs in STP influents and effluents as well as at
selected river sites (Figures 2 and 3). A comprehensive de-
scription of the sampling strategy is provided elsewhere
(Heijnsbergen et al., unpublished manuscript). A brief overview
and details for the chemical analysis are provided in Supple-
mental Data, S1.1 and S1.2.

Two model performance quantitative measures were ap-
plied: median symmetric accuracy (ξ) and the symmetric signed
percentage bias (SSPB; Morley et al. 2018),

r
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i pred

i meas

,

,
= (1)

e% 100 1M ln riξ ( ) = × ( − )(| |) (2)

e sgn M rSSPB % 100 1 lnM r
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where ri is the ratio of the predicted/measured pair (e.g., loads),
xi pred, is the predicted value, xi meas, is the corresponding value
from the measurement data, M is the median function, sgn is
the sign function, and i is the index within a subgroup of all
predicted/measured pairs for a single compound, scenario,
country, sampling site, or a combination of these.

The median symmetric accuracy (Equation 2) is a measure of
central tendency that is robust to the presence of outliers and
resistant to data spanning several orders of magnitude. For the
scope of the present study, we consider ξ values up to 100 and
up to 200% as indicative of “good agreement” and “accept-
able agreement” between measurements and predictions, re-
spectively. Values of ξ> 200% indicate “poor agreement”
between measurements and predictions. A ξ= 100% indicates
that the median of the absolute ratios (|ri|) is 2 (i.e., 50% of
predicted values deviate from measured values by less than a
factor of 2). The symmetric signed percentage bias (Equation 3)
can be interpreted similarly to a mean percentage error, but it

TABLE 3: Relative percentage differences of prescribed per‐capita pharmaceutical masses in the Vecht River basin regional area, Germany and
The Netherlands

Regional‐to‐national (%) Germany‐to‐Netherlands (%)

Germany Netherlands Within region Between countries

17α‐Ethinylestradiol 12 –2 –75 –78
Carbamazepine –4 16 2 25
Ciprofloxacin 9 10 27 28
Cyclophosphamidea 33 n.a. n.a. n.a.
Diclofenac –2 –2 183 183
Erythromycin 56 –13 1594 853
Metformin –14 6 –26 –9
Metoprolol –8 22 –10 20

aCyclophosphamide is restricted to clinical use. The Dutch Foundation for Pharmaceutical Statistics only collects domestic pharmaceutical consumption. Therefore, no
cyclophosphamide is recorded for The Netherlands.
n.a.= not applicable.

FIGURE 2: Predicted and measured sewage treatment plant (STP) influent loads of 5 pharmaceuticals (with quantification frequency >90%) in
German STPs (n= 125) and Dutch STPs (n= 170). Dashed lines indicate the 1:3 and 3:1 ratios; dotted lines indicate the 1:10 and 10:1 ratios.
SSPB= symmetric signed percentage bias; DCF= diclofenac; CBZ= carbamazepine; MET=metformin; MEP=metoprolol; CIP= ciprofloxacin.
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Model evaluation. The model performance was evaluated
stepwise by comparison of simulation results with monitoring
data for selected APIs in STP influents and effluents as well as at
selected river sites (Figures 2 and 3). A comprehensive de-
scription of the sampling strategy is provided elsewhere
(Heijnsbergen et al., unpublished manuscript). A brief overview
and details for the chemical analysis are provided in Supple-
mental Data, S1.1 and S1.2.

Two model performance quantitative measures were ap-
plied: median symmetric accuracy (ξ) and the symmetric signed
percentage bias (SSPB; Morley et al. 2018),
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where ri is the ratio of the predicted/measured pair (e.g., loads),
xi pred, is the predicted value, xi meas, is the corresponding value
from the measurement data, M is the median function, sgn is
the sign function, and i is the index within a subgroup of all
predicted/measured pairs for a single compound, scenario,
country, sampling site, or a combination of these.

The median symmetric accuracy (Equation 2) is a measure of
central tendency that is robust to the presence of outliers and
resistant to data spanning several orders of magnitude. For the
scope of the present study, we consider ξ values up to 100 and
up to 200% as indicative of “good agreement” and “accept-
able agreement” between measurements and predictions, re-
spectively. Values of ξ> 200% indicate “poor agreement”
between measurements and predictions. A ξ= 100% indicates
that the median of the absolute ratios (|ri|) is 2 (i.e., 50% of
predicted values deviate from measured values by less than a
factor of 2). The symmetric signed percentage bias (Equation 3)
can be interpreted similarly to a mean percentage error, but it

TABLE 3: Relative percentage differences of prescribed per‐capita pharmaceutical masses in the Vecht River basin regional area, Germany and
The Netherlands

Regional‐to‐national (%) Germany‐to‐Netherlands (%)

Germany Netherlands Within region Between countries

17α‐Ethinylestradiol 12 –2 –75 –78
Carbamazepine –4 16 2 25
Ciprofloxacin 9 10 27 28
Cyclophosphamidea 33 n.a. n.a. n.a.
Diclofenac –2 –2 183 183
Erythromycin 56 –13 1594 853
Metformin –14 6 –26 –9
Metoprolol –8 22 –10 20

aCyclophosphamide is restricted to clinical use. The Dutch Foundation for Pharmaceutical Statistics only collects domestic pharmaceutical consumption. Therefore, no
cyclophosphamide is recorded for The Netherlands.
n.a.= not applicable.

FIGURE 2: Predicted and measured sewage treatment plant (STP) influent loads of 5 pharmaceuticals (with quantification frequency >90%) in
German STPs (n= 125) and Dutch STPs (n= 170). Dashed lines indicate the 1:3 and 3:1 ratios; dotted lines indicate the 1:10 and 10:1 ratios.
SSPB= symmetric signed percentage bias; DCF= diclofenac; CBZ= carbamazepine; MET=metformin; MEP=metoprolol; CIP= ciprofloxacin.
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Model evaluation. The model performance was evaluated
stepwise by comparison of simulation results with monitoring
data for selected APIs in STP influents and effluents as well as at
selected river sites (Figures 2 and 3). A comprehensive de-
scription of the sampling strategy is provided elsewhere
(Heijnsbergen et al., unpublished manuscript). A brief overview
and details for the chemical analysis are provided in Supple-
mental Data, S1.1 and S1.2.

Two model performance quantitative measures were ap-
plied: median symmetric accuracy (ξ) and the symmetric signed
percentage bias (SSPB; Morley et al. 2018),
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where ri is the ratio of the predicted/measured pair (e.g., loads),
xi pred, is the predicted value, xi meas, is the corresponding value
from the measurement data, M is the median function, sgn is
the sign function, and i is the index within a subgroup of all
predicted/measured pairs for a single compound, scenario,
country, sampling site, or a combination of these.

The median symmetric accuracy (Equation 2) is a measure of
central tendency that is robust to the presence of outliers and
resistant to data spanning several orders of magnitude. For the
scope of the present study, we consider ξ values up to 100 and
up to 200% as indicative of “good agreement” and “accept-
able agreement” between measurements and predictions, re-
spectively. Values of ξ> 200% indicate “poor agreement”
between measurements and predictions. A ξ= 100% indicates
that the median of the absolute ratios (|ri|) is 2 (i.e., 50% of
predicted values deviate from measured values by less than a
factor of 2). The symmetric signed percentage bias (Equation 3)
can be interpreted similarly to a mean percentage error, but it

TABLE 3: Relative percentage differences of prescribed per‐capita pharmaceutical masses in the Vecht River basin regional area, Germany and
The Netherlands

Regional‐to‐national (%) Germany‐to‐Netherlands (%)

Germany Netherlands Within region Between countries

17α‐Ethinylestradiol 12 –2 –75 –78
Carbamazepine –4 16 2 25
Ciprofloxacin 9 10 27 28
Cyclophosphamidea 33 n.a. n.a. n.a.
Diclofenac –2 –2 183 183
Erythromycin 56 –13 1594 853
Metformin –14 6 –26 –9
Metoprolol –8 22 –10 20

aCyclophosphamide is restricted to clinical use. The Dutch Foundation for Pharmaceutical Statistics only collects domestic pharmaceutical consumption. Therefore, no
cyclophosphamide is recorded for The Netherlands.
n.a.= not applicable.

FIGURE 2: Predicted and measured sewage treatment plant (STP) influent loads of 5 pharmaceuticals (with quantification frequency >90%) in
German STPs (n= 125) and Dutch STPs (n= 170). Dashed lines indicate the 1:3 and 3:1 ratios; dotted lines indicate the 1:10 and 10:1 ratios.
SSPB= symmetric signed percentage bias; DCF= diclofenac; CBZ= carbamazepine; MET=metformin; MEP=metoprolol; CIP= ciprofloxacin.
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below the limits of quantification (LOQ) were processed as LOQ in the evaluation 
approach because they are expected to be close to the LOQ value as a result of the high 
quantification frequency.

Surface water PECs were evaluated using the “benchmark” concept, according 
to Kunkel and Radke (2012), with which concentrations of individual APIs are 
normalized to the concentration of a conservative tracer or reference. Thereby, river 
flow variations can be excluded from the evaluation process. Carbamazepine was 
selected as the conservative reference compound because of its persistence in the 
environment (Aminot et al. 2016). Benchmark ratios from the monitoring data could 
only be calculated if the concentration of the reference (carbamazepine) and that of 
the respective target API were above the LOQ. To provide a reliable baseline for this 
approach, predicted carbamazepine concentrations were evaluated by comparison 
with measured concentrations (Supplemental Data, S1.3).

2.4	 Environmental effect assessment
2.4.1	 Search strategy
Aquatic ecotoxicity data were compiled without restrictions from the following 
databases: ECOTOX Knowledgebase (US Environmental Protection Agency 2019), 
e-toxBase (Posthuma et al. 2019), Wikipharma (Molander et al. 2009), FASS (Trade 
Association for the Research-Based Pharmaceutical Industry in Sweden  2019), 
iPiESum (Innovative Medicines Initiative 2019), and the EU WRC report (Johnson 
and Harvey 2002). To further supplement collected data, a literature review was 
performed by searching the Web of Science platform in March 2019 (Supplemental 
Data, Table  S11). The search was restricted to publications from 2016 or later to 
capture information not covered by the other sources. The search returned 233 
publications that were fully assessed.

2.4.2	 Data extraction and harmonization
All relevant toxicological information referring to the 8 APIs of interest was extracted 
from the databases. Additional toxicity data were extracted from 40 publications 
identified in the public literature search. The following relevant information was 
extracted and compiled: substance name, Chemical Abstracts Service number, taxon, 
species, life stage and living compartment of the species tested, toxic effect, exposure 
type, exposure duration, endpoint type, and endpoint value. This process resulted in 
an initial database with a total of 11 029 entries (Table 4). The data were harmonized 
to guarantee their consistency and usability, which included harmonizing the names 
of species, toxic effects, exposure duration and types, end points, and concentration 
units (Supplemental Data, S2).
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Table 4. Number of ecotoxicological data entries per source in the database compiled in the present study

Source Entries

ECOTOXbase 6510

Wikipharma 2802

e‐toxBase 779

Literature 455

iPiESum 270

EU WRC report 140

FASS 74

2.4.3	 Data selection
The information in the database was filtered to obtain only relevant data for analysis. 
Only aquatic or semiaquatic species were included. Entries referring to terrestrial 
species, communities, sediment tests with no reported water concentrations, 
or in vitro tests or with no single species name specified were excluded from the 
analysis. Only population-relevant endpoints were selected, that is, those which can 
adversely affect an organism's survival, ability to maintain its population numbers, 
reproduction, development, growth, or behavior. Effect endpoints with right/left-
censored values (i.e., <, >, ≤, ≥) were excluded. Similarly, identical effect entries 
from the same original source were excluded. Toxicity values for the same species 
and endpoint but originating from different studies were aggregated by taking the 
geometric mean weighted by the number studies with identical endpoints. This 
resulted in a final database containing 169 effect values usable for further analysis.

2.4.4	 Data reliability
To ensure that we only included reliable and relevant toxicity studies in our 
assessment, all studies were assigned a criteria for reporting and evaluating 
ecotoxicity data (CRED) score (Moermond et al. 2016a). Studies classified as unreliable 
(R3), unassignable reliability (R4), irrelevant (C3), or unassignable relevance (C4) 
were excluded from further analysis. We preferably used classification scores from 
official sources, such as the Dutch National Institute for Public Health and the 
Environment and the German Environment Agency. Alternatively, the authors (D.J. 
Duarte, R. Oldenkamp, and A.M.J. Ragas) independently assigned CRED scores to 
critical studies according to Moermond et al. (2016a) after evaluating and discussing 
any inconsistencies (Supplemental Data, Table S12). Exceptionally, experiments on 
17α-ethinylestradiol without classifications from official sources were not evaluated 
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because of the extensive number of studies and additional complexity of assessing 
the quality of ecotoxicological studies testing endocrine-disrupting effects; such an 
exhaustive assessment was considered beyond the scope of the present study.

2.4.5	 PNECs
Two extrapolation methods for the derivation of chronic PNEC values are typically 
used in effect assessment: the species sensitivity distribution (SSD) and the 
assessment factor (European Commission 2000, 2006). According to European Union 
guidance, an SSD-based PNEC requires a considerable amount of data covering at 
least 3 trophic levels (primary producers, plant-eating animals, and predators), at 
least 8 taxonomic groups, and at least 10 effect values (one per species per substance). 
As for the assessment factor approach, at least one short-term median effective 
concentration from each of the 3 trophic levels is the minimum requirement. 
Because the final database did not satisfy SSD data requirements for the derivation 
of PNECs, only the assessment factor approach was implemented (Supplemental 
Data, Table S15). The estimation of a PNEC using this deterministic approach was 
done by dividing the lowest effect concentration by an assessment factor, according 
to the European Union Water Framework Directive guidance for deriving aquatic 
EQSs (European Commission 2018). Depending on the available data, this factor 
varies between 10 and 1000. A collection of PNEC estimates from the literature and 
other sources was gathered for comparison (Supplemental Data, Table S16).

2.5	 Ecological risk
Predicted environmental concentrations and PNECs were used to calculate a site-
specific RQ associated with each API following the equation, 

� (4)

where RQs,p is the RQ at site s for pharmaceutical p, PECs,p (µg/L) is the PEC at site s 
for pharmaceutical p, and PNECp(µg/L) is the PNEC for pharmaceutical p.

Evaluation of PNEC exceedance was performed based on the total river volume 
in the Vecht catchment and for the cumulated flow length of the water bodies in 
the catchment. Because of the steady-state assumption of the GREAT-ER model, a 
constant water volume in the system is assumed for each of the scenarios.

Pharmaceutical mixture risk was calculated based on the conservative approach of 
concentration addition following the equation, 

resulted in an initial database with a total of 11 029 entries
(Table 4). The data were harmonized to guarantee their con-
sistency and usability, which included harmonizing the names
of species, toxic effects, exposure duration and types, end
points, and concentration units (Supplemental Data, S2).

Data selection. The information in the database was filtered
to obtain only relevant data for analysis. Only aquatic or sem-
iaquatic species were included. Entries referring to terrestrial
species, communities, sediment tests with no reported water
concentrations, or in vitro tests or with no single species name
specified were excluded from the analysis. Only population‐
relevant endpoints were selected, that is, those which can ad-
versely affect an organism's survival, ability to maintain its
population numbers, reproduction, development, growth, or
behavior. Effect endpoints with right/left‐censored values (i.e.,
<, >, ≤, ≥) were excluded. Similarly, identical effect entries
from the same original source were excluded. Toxicity values
for the same species and endpoint but originating from dif-
ferent studies were aggregated by taking the geometric mean
weighted by the number studies with identical endpoints. This
resulted in a final database containing 169 effect values usable
for further analysis.

Data reliability. To ensure that we only included reliable and
relevant toxicity studies in our assessment, all studies were
assigned a criteria for reporting and evaluating ecotoxicity data
(CRED) score (Moermond et al. 2016a). Studies classified as
unreliable (R3), unassignable reliability (R4), irrelevant (C3), or
unassignable relevance (C4) were excluded from further anal-
ysis. We preferably used classification scores from official
sources, such as the Dutch National Institute for Public Health
and the Environment and the German Environment Agency.
Alternatively, the authors (D.J. Duarte, R. Oldenkamp, and
A.M.J. Ragas) independently assigned CRED scores to critical
studies according to Moermond et al. (2016a) after evaluating
and discussing any inconsistencies (Supplemental Data,
Table S12). Exceptionally, experiments on 17α‐ethinylestradiol
without classifications from official sources were not evaluated
because of the extensive number of studies and additional
complexity of assessing the quality of ecotoxicological studies
testing endocrine‐disrupting effects; such an exhaustive as-
sessment was considered beyond the scope of the present
study.

PNECs. Two extrapolation methods for the derivation of
chronic PNEC values are typically used in effect assessment:
the species sensitivity distribution (SSD) and the assessment
factor (European Commission 2000, 2006). According to Eu-
ropean Union guidance, an SSD‐based PNEC requires a con-
siderable amount of data covering at least 3 trophic levels
(primary producers, plant‐eating animals, and predators), at
least 8 taxonomic groups, and at least 10 effect values (one per
species per substance). As for the assessment factor approach,
at least one short‐term median effective concentration from
each of the 3 trophic levels is the minimum requirement. Be-
cause the final database did not satisfy SSD data requirements

for the derivation of PNECs, only the assessment factor ap-
proach was implemented (Supplemental Data, Table S15). The
estimation of a PNEC using this deterministic approach was
done by dividing the lowest effect concentration by an as-
sessment factor, according to the European Union Water
Framework Directive guidance for deriving aquatic EQSs (Eu-
ropean Commission 2018). Depending on the available data,
this factor varies between 10 and 1000. A collection of PNEC
estimates from the literature and other sources was gathered
for comparison (Supplemental Data, Table S16).

Ecological risk
Predicted environmental concentrations and PNECs were

used to calculate a site‐specific RQ associated with each API
following the equation,

RQ
PEC

PNECs p
s p

p
,

,
= (4)

where RQs p, is the RQ at site s for pharmaceutical p, PECs p,

(µg/L) is the PEC at site s for pharmaceutical p, and PNECp

(µg/L) is the PNEC for pharmaceutical p.
Evaluation of PNEC exceedance was performed based on

the total river volume in the Vecht catchment and for the cu-
mulated flow length of the water bodies in the catchment.
Because of the steady‐state assumption of the GREAT‐ER
model, a constant water volume in the system is assumed for
each of the scenarios.

Pharmaceutical mixture risk was calculated based on the
conservative approach of concentration addition following the
equation,

RI RQs
i

n

s p
1

,∑=
=

(5)

where RIs is the risk index of a pharmaceutical mixture at site s,
RQs p, is the risk quotient at site s for pharmaceutical p, i is the
summation index, and n is the total number of APIs. The con-
centration addition approach tends to overestimate the mix-
ture risk of dissimilarly acting substances because it assumes a
similar noninteractive mode of action of all mixture compo-
nents. However, there is growing consensus on the pragmatic
and precautious utility of this approach in aggregating risks of
mixture components (European Commission 2012; Backhaus
2016; Posthuma et al. 2018; Hernandez et al. 2019; Kienzler
et al. 2019).

RESULTS AND DISCUSSION
Predicted surface water concentrations

Predicted carbamazepine concentrations were evaluated to
provide a reliable baseline for the benchmark approach (Sup-
plemental Data, S3). Because carbamazepine is consumed
equally throughout the year, evaluation can be performed
using all data without differentiation into the 2 exposure sce-
narios (see above, Exposure scenarios). Figure 4 shows an
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� (5)

where RIs is the risk index of a pharmaceutical mixture at site s, RQs,p is the risk 
quotient at site s for pharmaceutical p, i is the summation index, and n is the 
total number of APIs. The concentration addition approach tends to overestimate 
the mixture risk of dissimilarly acting substances because it assumes a similar 
noninteractive mode of action of all mixture components. However, there is growing 
consensus on the pragmatic and precautious utility of this approach in aggregating 
risks of mixture components (European Commission 2012; Backhaus 2016; Posthuma 
et al. 2018; Hernandez et al. 2019; Kienzler et al. 2019).

3.	 Results and discussion

3.1	 Predicted surface water concentrations
Predicted carbamazepine concentrations were evaluated to provide a reliable baseline 
for the benchmark approach (Supplemental Data, S3). Because carbamazepine is 
consumed equally throughout the year, evaluation can be performed using all data 
without differentiation into the 2 exposure scenarios (see above, Exposure scenarios). 
Figure 4 shows an acceptable overall agreement between PECs and MECs (ξ = 106%), 
with a tendency to being rather overestimated (SSPB = 59%). Approximately 80% 
of the PEC and MEC data differ by less than a factor of 3, so we conclude that 
carbamazepine provided a valid baseline for the application of the benchmark 
approach (Supplemental Data, Figure S3).

The quantification frequency of erythromycin and ciprofloxacin in the river samples 
was <10%. Cyclophosphamide and 17α-ethinylestradiol were not analyzed at all 
because of the expectation of very low concentrations far below the LOQ. Because 
all predicted concentrations of these compounds were below the LOQ, qualitative 
agreement is given. Diclofenac, metformin, and metoprolol concentrations were 
evaluated separately for the 2 exposure scenarios because of obvious seasonal 
differences (see above, Exposure scenarios). Predicted and measured benchmark ratios 
agreed well for both the average condition scenario (ScnAC; ξ = 52%, SSPB = 10%) and 
the dry summer scenario (ScnDS; ξ = 59%, SSPB = 45%), with approximately 80% within 
the range of a factor of 3 (Figure 5).

resulted in an initial database with a total of 11 029 entries
(Table 4). The data were harmonized to guarantee their con-
sistency and usability, which included harmonizing the names
of species, toxic effects, exposure duration and types, end
points, and concentration units (Supplemental Data, S2).

Data selection. The information in the database was filtered
to obtain only relevant data for analysis. Only aquatic or sem-
iaquatic species were included. Entries referring to terrestrial
species, communities, sediment tests with no reported water
concentrations, or in vitro tests or with no single species name
specified were excluded from the analysis. Only population‐
relevant endpoints were selected, that is, those which can ad-
versely affect an organism's survival, ability to maintain its
population numbers, reproduction, development, growth, or
behavior. Effect endpoints with right/left‐censored values (i.e.,
<, >, ≤, ≥) were excluded. Similarly, identical effect entries
from the same original source were excluded. Toxicity values
for the same species and endpoint but originating from dif-
ferent studies were aggregated by taking the geometric mean
weighted by the number studies with identical endpoints. This
resulted in a final database containing 169 effect values usable
for further analysis.

Data reliability. To ensure that we only included reliable and
relevant toxicity studies in our assessment, all studies were
assigned a criteria for reporting and evaluating ecotoxicity data
(CRED) score (Moermond et al. 2016a). Studies classified as
unreliable (R3), unassignable reliability (R4), irrelevant (C3), or
unassignable relevance (C4) were excluded from further anal-
ysis. We preferably used classification scores from official
sources, such as the Dutch National Institute for Public Health
and the Environment and the German Environment Agency.
Alternatively, the authors (D.J. Duarte, R. Oldenkamp, and
A.M.J. Ragas) independently assigned CRED scores to critical
studies according to Moermond et al. (2016a) after evaluating
and discussing any inconsistencies (Supplemental Data,
Table S12). Exceptionally, experiments on 17α‐ethinylestradiol
without classifications from official sources were not evaluated
because of the extensive number of studies and additional
complexity of assessing the quality of ecotoxicological studies
testing endocrine‐disrupting effects; such an exhaustive as-
sessment was considered beyond the scope of the present
study.

PNECs. Two extrapolation methods for the derivation of
chronic PNEC values are typically used in effect assessment:
the species sensitivity distribution (SSD) and the assessment
factor (European Commission 2000, 2006). According to Eu-
ropean Union guidance, an SSD‐based PNEC requires a con-
siderable amount of data covering at least 3 trophic levels
(primary producers, plant‐eating animals, and predators), at
least 8 taxonomic groups, and at least 10 effect values (one per
species per substance). As for the assessment factor approach,
at least one short‐term median effective concentration from
each of the 3 trophic levels is the minimum requirement. Be-
cause the final database did not satisfy SSD data requirements

for the derivation of PNECs, only the assessment factor ap-
proach was implemented (Supplemental Data, Table S15). The
estimation of a PNEC using this deterministic approach was
done by dividing the lowest effect concentration by an as-
sessment factor, according to the European Union Water
Framework Directive guidance for deriving aquatic EQSs (Eu-
ropean Commission 2018). Depending on the available data,
this factor varies between 10 and 1000. A collection of PNEC
estimates from the literature and other sources was gathered
for comparison (Supplemental Data, Table S16).

Ecological risk
Predicted environmental concentrations and PNECs were

used to calculate a site‐specific RQ associated with each API
following the equation,

RQ
PEC

PNECs p
s p

p
,

,
= (4)

where RQs p, is the RQ at site s for pharmaceutical p, PECs p,

(µg/L) is the PEC at site s for pharmaceutical p, and PNECp

(µg/L) is the PNEC for pharmaceutical p.
Evaluation of PNEC exceedance was performed based on

the total river volume in the Vecht catchment and for the cu-
mulated flow length of the water bodies in the catchment.
Because of the steady‐state assumption of the GREAT‐ER
model, a constant water volume in the system is assumed for
each of the scenarios.

Pharmaceutical mixture risk was calculated based on the
conservative approach of concentration addition following the
equation,

RI RQs
i

n

s p
1

,∑=
=

(5)

where RIs is the risk index of a pharmaceutical mixture at site s,
RQs p, is the risk quotient at site s for pharmaceutical p, i is the
summation index, and n is the total number of APIs. The con-
centration addition approach tends to overestimate the mix-
ture risk of dissimilarly acting substances because it assumes a
similar noninteractive mode of action of all mixture compo-
nents. However, there is growing consensus on the pragmatic
and precautious utility of this approach in aggregating risks of
mixture components (European Commission 2012; Backhaus
2016; Posthuma et al. 2018; Hernandez et al. 2019; Kienzler
et al. 2019).

RESULTS AND DISCUSSION
Predicted surface water concentrations

Predicted carbamazepine concentrations were evaluated to
provide a reliable baseline for the benchmark approach (Sup-
plemental Data, S3). Because carbamazepine is consumed
equally throughout the year, evaluation can be performed
using all data without differentiation into the 2 exposure sce-
narios (see above, Exposure scenarios). Figure 4 shows an
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acceptable overall agreement between PECs and MECs
(ξ= 106%), with a tendency to being rather overestimated
(SSPB= 59%). Approximately 80% of the PEC and MEC data
differ by less than a factor of 3, so we conclude that carba-
mazepine provided a valid baseline for the application of the
benchmark approach (Supplemental Data, Figure S3).

The quantification frequency of erythromycin and cipro-
floxacin in the river samples was <10%. Cyclophosphamide and
17α‐ethinylestradiol were not analyzed at all because of the
expectation of very low concentrations far below the LOQ. Be-
cause all predicted concentrations of these compounds were
below the LOQ, qualitative agreement is given. Diclofenac,
metformin, and metoprolol concentrations were evaluated sep-
arately for the 2 exposure scenarios because of obvious seasonal

differences (see above, Exposure scenarios). Predicted and
measured benchmark ratios agreed well for both the average
condition scenario (ScnAC; ξ= 52%, SSPB= 10%) and the dry
summer scenario (ScnDS; ξ= 59%, SSPB= 45%), with approx-
imately 80% within the range of a factor of 3 (Figure 5).

Based on the successful model evaluation of PECs, simu-
lations for the entire Vecht River catchment were performed. In
the ScnAC, metformin, metoprolol, and carbamazepine had the
highest PECs at watercourses affected by upstream STPs,
with median concentrations of 0.19 (0.01–3.03), 0.07
(2 × 10–3–1.44), and 0.043 (2 × 10–3–0.84) µg/L, respectively.
Similarly, the highest median PECs in the ScnDS were 0.57
(0.01–19.43), 0.25 (4 × 10–3–4.08), and 0.18 (0.01–2.36) µg/L for
metformin, metoprolol, and carbamazepine, respectively. The
preceding median, minimum, and maximum PEC values ex-
clude river segments with a PEC of zero. In previous studies,
these APIs have been predicted or measured at similar con-
centration ranges in Dutch (Oosterhuis et al. 2013; Moermond
et al. 2020) and German (Scheurer et al. 2009; Meyer et al.
2016; Dusi et al. 2019) surface waters. Although metformin is
effectively transformed into guanylurea during wastewater
treatment (Oosterhuis et al. 2013), it exhibited the highest PEC
among the investigated APIs. This is a consequence of the high
consumption of metformin (twelfth highest defined daily
dosage [DDD] and seventeenth most frequently used in The
Netherlands; Dutch National Health Care Institute 2020) and its
relatively high excretion rate. The lowest PECs in watercourses
affected by STP effluents were exhibited by 17α‐Ethinylestradiol
and cyclophosphamide, with median concentrations in ScnAC of
0.02 (3× 10–4–0.82) and 0.37 (0.01–9.64) ng/L, respectively.
As for ScnDS, the concentrations for 17α‐ethinylestradiol and
cyclophosphamide were estimated at 0.05 (2× 10–4–0.99) and
1.17 (2× 10–4–756.98) ng/L, respectively. These results were in
line with the low consumption volumes of these APIs, despite a
considerable fraction being excreted.

FIGURE 4: Comparison of predicted and measured carbamazepine
concentrations in the Vecht catchment (n= 46) at monitoring sites
where reliable gauging data of the corresponding sampling day were
available (i.e., no change in flow direction, resulting in net flow rates of
0m³/s). Measured concentrations were adjusted to the flow rate used in
the simulations. Dashed lines indicate the 1:3 and 3:1 ratios; dotted
lines indicate the 1:10 and 10:1 ratios. SSPB= symmetric signed per-
centage bias.

FIGURE 5: Predicted and measured benchmark ratios of 3 pharmaceuticals at monitoring sites in the whole Vecht River catchment (average
condition scenario n= 80, dry summer scenario n= 81). Dashed lines indicate the 1:3 and 3:1 ratios; dotted lines indicate the 1:10 and 10:1 ratios.
SSPB= symmetric signed percentage bias; DCF= diclofenac; MET=metformin; MEP=metoprolol.

Ecological risk of pharmaceuticals in a european river—Environmental Toxicology and Chemistry, 2022;41:648–662 655

wileyonlinelibrary.com/ETC © 2021 The Authors

 15528618, 2022, 3, D
ow

nloaded from
 https://setac.onlinelibrary.w

iley.com
/doi/10.1002/etc.5062 by D

aniel João D
uarte - R

adboud U
niversity N

ijm
egen , W

iley O
nline Library on [29/06/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

Figure 4. Comparison of predicted and measured carbamazepine concentrations in the Vecht catchment 

(n = 46) at monitoring sites where reliable gauging data of the corresponding sampling day were available 

(i.e., no change in flow direction, resulting in net flow rates of 0 m³/s). Measured concentrations were 

adjusted to the flow rate used in the simulations. Dashed lines indicate the 1:3 and 3:1 ratios; dotted lines 

indicate the 1:10 and 10:1 ratios. SSPB = symmetric signed percentage bias.

Figure 5. Predicted and measured benchmark ratios of 3 pharmaceuticals at monitoring sites in the 
whole Vecht River catchment (average condition scenario n = 80, dry summer scenario n = 81). Dashed 
lines indicate the 1:3 and 3:1 ratios; dotted lines indicate the 1:10 and 10:1 ratios. SSPB = symmetric signed 
percentage bias; DCF = diclofenac; MET = metformin; MEP = metoprolol.
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Vecht River catchment were performed. In the ScnAC, metformin, metoprolol, and 
carbamazepine had the highest PECs at watercourses affected by upstream STPs, 
with median concentrations of 0.19 (0.01–3.03), 0.07 (2 × 10–3–1.44), and 0.043 
(2 × 10–3–0.84) µg/L, respectively. Similarly, the highest median PECs in the ScnDS 
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(ξ= 106%), with a tendency to being rather overestimated
(SSPB= 59%). Approximately 80% of the PEC and MEC data
differ by less than a factor of 3, so we conclude that carba-
mazepine provided a valid baseline for the application of the
benchmark approach (Supplemental Data, Figure S3).

The quantification frequency of erythromycin and cipro-
floxacin in the river samples was <10%. Cyclophosphamide and
17α‐ethinylestradiol were not analyzed at all because of the
expectation of very low concentrations far below the LOQ. Be-
cause all predicted concentrations of these compounds were
below the LOQ, qualitative agreement is given. Diclofenac,
metformin, and metoprolol concentrations were evaluated sep-
arately for the 2 exposure scenarios because of obvious seasonal

differences (see above, Exposure scenarios). Predicted and
measured benchmark ratios agreed well for both the average
condition scenario (ScnAC; ξ= 52%, SSPB= 10%) and the dry
summer scenario (ScnDS; ξ= 59%, SSPB= 45%), with approx-
imately 80% within the range of a factor of 3 (Figure 5).

Based on the successful model evaluation of PECs, simu-
lations for the entire Vecht River catchment were performed. In
the ScnAC, metformin, metoprolol, and carbamazepine had the
highest PECs at watercourses affected by upstream STPs,
with median concentrations of 0.19 (0.01–3.03), 0.07
(2 × 10–3–1.44), and 0.043 (2 × 10–3–0.84) µg/L, respectively.
Similarly, the highest median PECs in the ScnDS were 0.57
(0.01–19.43), 0.25 (4 × 10–3–4.08), and 0.18 (0.01–2.36) µg/L for
metformin, metoprolol, and carbamazepine, respectively. The
preceding median, minimum, and maximum PEC values ex-
clude river segments with a PEC of zero. In previous studies,
these APIs have been predicted or measured at similar con-
centration ranges in Dutch (Oosterhuis et al. 2013; Moermond
et al. 2020) and German (Scheurer et al. 2009; Meyer et al.
2016; Dusi et al. 2019) surface waters. Although metformin is
effectively transformed into guanylurea during wastewater
treatment (Oosterhuis et al. 2013), it exhibited the highest PEC
among the investigated APIs. This is a consequence of the high
consumption of metformin (twelfth highest defined daily
dosage [DDD] and seventeenth most frequently used in The
Netherlands; Dutch National Health Care Institute 2020) and its
relatively high excretion rate. The lowest PECs in watercourses
affected by STP effluents were exhibited by 17α‐Ethinylestradiol
and cyclophosphamide, with median concentrations in ScnAC of
0.02 (3× 10–4–0.82) and 0.37 (0.01–9.64) ng/L, respectively.
As for ScnDS, the concentrations for 17α‐ethinylestradiol and
cyclophosphamide were estimated at 0.05 (2× 10–4–0.99) and
1.17 (2× 10–4–756.98) ng/L, respectively. These results were in
line with the low consumption volumes of these APIs, despite a
considerable fraction being excreted.

FIGURE 4: Comparison of predicted and measured carbamazepine
concentrations in the Vecht catchment (n= 46) at monitoring sites
where reliable gauging data of the corresponding sampling day were
available (i.e., no change in flow direction, resulting in net flow rates of
0m³/s). Measured concentrations were adjusted to the flow rate used in
the simulations. Dashed lines indicate the 1:3 and 3:1 ratios; dotted
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FIGURE 5: Predicted and measured benchmark ratios of 3 pharmaceuticals at monitoring sites in the whole Vecht River catchment (average
condition scenario n= 80, dry summer scenario n= 81). Dashed lines indicate the 1:3 and 3:1 ratios; dotted lines indicate the 1:10 and 10:1 ratios.
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were 0.57 (0.01–19.43), 0.25 (4 × 10–3–4.08), and 0.18 (0.01–2.36) µg/L for metformin, 
metoprolol, and carbamazepine, respectively. The preceding median, minimum, and 
maximum PEC values exclude river segments with a PEC of zero. In previous studies, 
these APIs have been predicted or measured at similar concentration ranges in Dutch 
(Oosterhuis et al. 2013; Moermond et al. 2020) and German (Scheurer et al. 2009; 
Meyer et al. 2016; Dusi et al. 2019) surface waters. Although metformin is effectively 
transformed into guanylurea during wastewater treatment (Oosterhuis et al. 2013), 
it exhibited the highest PEC among the investigated APIs. This is a consequence 
of the high consumption of metformin (twelfth highest defined daily dosage 
[DDD] and seventeenth most frequently used in The Netherlands; Dutch National 
Health Care Institute 2020) and its relatively high excretion rate. The lowest PECs 
in watercourses affected by STP effluents were exhibited by 17α-Ethinylestradiol 
and cyclophosphamide, with median concentrations in ScnAC of 0.02 (3 × 10–4–
0.82) and 0.37 (0.01–9.64) ng/L, respectively. As for ScnDS, the concentrations for 
17α-ethinylestradiol and cyclophosphamide were estimated at 0.05 (2 × 10–4–0.99) 
and 1.17 (2 × 10–4–756.98) ng/L, respectively. These results were in line with the low 
consumption volumes of these APIs, despite a considerable fraction being excreted.

Concentration profiles of the Vecht River main stream are displayed in Figure  6 
for the 8 APIs in the 2 exposure scenarios. The factors that cause differences in the 
PEC profiles observed along the main stream can be manifold and API-dependent. 
Erythromycin's low PECs in the Dutch regions coincide with the Dutch population's 
lower consumption patterns compared with their German counterparts. Persistent 
substances which are equally consumed on both sites of the border, such as 
carbamazepine, show higher PECs in Dutch regions because of the higher population 
density. Dilution ratios of treated effluent after entering the river system are lower 
if more people are connected to rivers with comparable flow rates. The effect of 
dilution is also clearly visible in the PEC profiles of the 2 scenarios: dilution in 
ScnDS is approximately 10 times lower than in ScnAC. Lower flow rates lead to higher 
residence times and lower water levels in the river system, resulting in a larger 
influence of dissipation processes in ScnDS than in ScnAC. As a result, predicted 
summer concentrations of most APIs (17α-ethinylestradiol, carbamazepine, 
cyclophosphamide, erythromycin, metformin, and metoprolol) were on average a 
factor of 4 to 6 times higher than in ScnAC. Among the APIs studied, ciprofloxacin 
was the compound most susceptible to dissipation processes, namely via direct 
photolysis, resulting in drastically lower PECs in ScnDS than in ScnAC. Diclofenac is 
also prone to direct photolysis. This in combination with lower consumption rates in 
The Netherlands helps explain the low PECs downstream of the border in the ScnDS 
compared with ScnAC.
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3.2	 PNECs
In the environmental effect assessment, there was a clear disparity in data 
availability for different substances. The lowest chronic PNEC was exhibited by 
17α-Ethinylestradiol (3.6 × 10–6 µg/L) and metformin the highest (440 µg/L). We 
revised existing chronic PNECs of the 8 APIs, including for diclofenac (0.01 µg/L), 
carbamazepine (0.02 µg/L), and cyclophosphamide (125 µg/L; Figure 7; Supplemental 
Data, Table  S15), which were 2, 2.5, and 4.5 times lower than the lowest PNECs 
reported previously in the literature or regulatory documents (Supplemental Data, 
Table S16). These lower PNECs give cause for concern regarding the environmental 
impact of these APIs and indicate the need to revise proposed EQSs for these 
APIs. For metoprolol and ciprofloxacin, the PNECs estimated in the present study 
were 310 and 78 µg/L, which are 5 and 156 times the highest PNECs found in the 
literature, respectively. It should be stressed that any PNEC can be strongly affected 
by the accessibility of effect data, the thoroughness of the search, and the quality 
assessment procedure (Henning-de Jong et al. 2009; Oelkers 2020). This is illustrated 
by a suggestion we received from one of the anonymous reviewers, that is, to include 
the study of Ebert et al. (2011) in the derivation of the PNEC for ciprofloxacin. This 
is a critical study underlying the low ciprofloxacin PNEC of 0.089 µg/L listed in 
Supplemental Data, Table S16, yet it was not retrieved from any of the sources used in 
the present study. It explains the large difference in derived PNECs for ciprofloxacin 
observable in Figure 7 and illustrates more generally that PNECs and risk assessment 
outcomes based on the assessment factor approach are very sensitive to the effect 
data included in the assessment. Indeed, the differences in PNECs for the same 
API derived by different agencies and assessors range from a factor of 10 to almost 
106 (Figure 7). Keeping this range in mind, it is defendable to use an RQ of 0.1, or 
even smaller, as a potential indicator of risk and as a trigger to critically review and 
potentially improve the assessment procedure. To account for uncertainty in the 
derivation of PNEC values, an assessment factor of 50 was applied to diclofenac 
and 17α-ethinylestradiol, whereas an assessment factor of 10 was applied to 
carbamazepine, ciprofloxacin, cyclophosphamide, erythromycin, metformin, and 
metoprolol. The use of a relatively low assessment factor (instead of 100 or 1000) 
suggests that the PNECs derived in the present study are not overly conservative.
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Figure 6. Predicted environmental concentrations of pharmaceuticals in the Vecht River main 
stream. The vertical black dashed line indicates the Dutch–German border. MET = metformin; 
CBZ = carbamazepine; MEP = metoprolol; ERY = erythromycin; DCF = diclofenac; CYC = cyclophosphamide; 
EE2 = 17α-ethinylestradiol; CIP = ciprofloxacin.

Ecological Risk Assessment of Pharmaceuticals in the Transboundary Vecht River (Germany and The 
Netherlands)

Enviro Toxic and Chemistry, Volume: 41, Issue: 3, Pages: 648-662, First published: 05 April 2021, DOI: (10.1002/etc.5062) 

Figure 7. Predicted-no-effect concentrations (PNECs) from the literature and derived in the present 
study. Salmon-colored squares indicate the PNEC values derived in the present study. Light blue points 
indicate unique PNEC values found in the literature. CYC = cyclophosphamide; MET = metformin; 
MEP = metoprolol; ERY = erythromycin; CBZ = carbamazepine; DCF = diclofenac; CIP = ciprofloxacin; 
EE2 = 17α-ethinylestradiol.

3.3	 Aquatic ecological risk
3.3.1	 Single-substance assessment
In the present study, RQ < 0.1 indicates a reason for no concern in terms of chemical 
pollution, 0.1 < RQ  ≤  10 indicates a potential reason for concern, and RQ > 10 suggests a 
reason for serious environmental concern. The specific boundary value(s) that qualifies 
as a “reason for concern” is malleable, depending on the empirical data that support it 
and personal values. In the present study, we chose to acknowledge the uncertainties 
that blur the meaning of this threshold (RQ = 1). Values of RQ > 1 can trigger follow-
up measures, via either additional ecotoxicity testing or the implementation of risk 
management measures (Posthuma et al. 2019; Zhou et al. 2019).

Concentration profiles of the Vecht River main stream are
displayed in Figure 6 for the 8 APIs in the 2 exposure scenarios.
The factors that cause differences in the PEC profiles observed
along the main stream can be manifold and API‐dependent.
Erythromycin's low PECs in the Dutch regions coincide with the
Dutch population's lower consumption patterns compared with
their German counterparts. Persistent substances which are
equally consumed on both sites of the border, such as carba-
mazepine, show higher PECs in Dutch regions because of the
higher population density. Dilution ratios of treated effluent
after entering the river system are lower if more people are
connected to rivers with comparable flow rates. The effect of
dilution is also clearly visible in the PEC profiles of the 2 sce-
narios: dilution in ScnDS is approximately 10 times lower than in
ScnAC. Lower flow rates lead to higher residence times and
lower water levels in the river system, resulting in a larger
influence of dissipation processes in ScnDS than in ScnAC.
As a result, predicted summer concentrations of most APIs
(17α‐ethinylestradiol, carbamazepine, cyclophosphamide, er-
ythromycin, metformin, and metoprolol) were on average a
factor of 4 to 6 times higher than in ScnAC. Among the APIs
studied, ciprofloxacin was the compound most susceptible to
dissipation processes, namely via direct photolysis, resulting in
drastically lower PECs in ScnDS than in ScnAC. Diclofenac is also
prone to direct photolysis. This in combination with lower
consumption rates in The Netherlands helps explain the low
PECs downstream of the border in the ScnDS compared with
ScnAC.

PNECs
In the environmental effect assessment, there was a

clear disparity in data availability for different substances.
The lowest chronic PNEC was exhibited by 17α‐Ethinylestradiol
(3.6× 10–6 µg/L) and metformin the highest (440 µg/L).
We revised existing chronic PNECs of the 8 APIs, including
for diclofenac (0.01 µg/L), carbamazepine (0.02 µg/L), and

cyclophosphamide (125 µg/L; Figure 7; Supplemental Data,
Table S15), which were 2, 2.5, and 4.5 times lower than the
lowest PNECs reported previously in the literature or regulatory
documents (Supplemental Data, Table S16). These lower PNECs
give cause for concern regarding the environmental impact of
these APIs and indicate the need to revise proposed EQSs for
these APIs. For metoprolol and ciprofloxacin, the PNECs esti-
mated in the present study were 310 and 78 µg/L, which are 5
and 156 times the highest PNECs found in the literature, re-
spectively. It should be stressed that any PNEC can be strongly
affected by the accessibility of effect data, the thoroughness of
the search, and the quality assessment procedure (Henning‐de
Jong et al. 2009; Oelkers 2020). This is illustrated by a sugges-
tion we received from one of the anonymous reviewers, that is,
to include the study of Ebert et al. (2011) in the derivation of the
PNEC for ciprofloxacin. This is a critical study underlying the low
ciprofloxacin PNEC of 0.089 µg/L listed in Supplemental Data,
Table S16, yet it was not retrieved from any of the sources used

FIGURE 6: Predicted environmental concentrations of pharmaceuticals in the Vecht River main stream. The vertical black dashed line indicates the
Dutch–German border. MET=metformin; CBZ= carbamazepine; MEP=metoprolol; ERY= erythromycin; DCF= diclofenac; CYC= cyclo-
phosphamide; EE2= 17α‐ethinylestradiol; CIP= ciprofloxacin.

FIGURE 7: Predicted‐no‐effect concentrations (PNECs) from the
literature and derived in the present study. Salmon‐colored squares
indicate the PNEC values derived in the present study.
Light blue points indicate unique PNEC values found in the liter-
ature. CYC= cyclophosphamide; MET=metformin; MEP=metoprolol;
ERY= erythromycin; CBZ= carbamazepine; DCF= diclofenac; CIP=
ciprofloxacin; EE2= 17α‐ethinylestradiol.
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In the present study, the PECs of 5 APIs were below their safe thresholds (PNECs). 
However, the PECs systematically exceeded PNECs in ascending order for diclofenac, 
carbamazepine, and 17α-ethinylestradiol (Figure 8). This observation holds for the 
average and dry summer scenarios, although risks were considerably higher in 
summer because of reduced dilution under dry weather conditions. Diclofenac, 
carbamazepine, and 17α-ethinylestradiol exceeded the safe PNEC threshold in at 
least 68 to 91% and 26 to 98% of the Vecht River catchment surface water volume 
during average conditions and dry summer conditions, respectively. In terms of the 
total flow length of all water bodies, the same APIs exceeded their PNECs in 31 to 38% 
and 24 to 53% during average conditions and dry summer conditions, respectively 
(Supplemental Data, Figure S4). In the average condition scenario, ciprofloxacin, 
cyclophosphamide, erythromycin, metformin, and metoprolol do not pose a 
concerning risk to the aquatic life (i.e., 93 to 100% of the water volume had RQ ≤ 0.1). 
In the dry summer scenario erythromycin showed concerning risk levels (RQ > 0.1) 
in 17% of the catchment's water volume.

Figure 8. Percentage of the Vecht River catchment water volume at risk of environmental pharmaceutical 
pollution. Vertical black dashed line indicates the safe threshold, risk quotient = 1 (i.e., predicted 
environmental concentrations equal to the predicted-no–chronic effect concentration). In the average 
scenario, ciprofloxacin's risk quotients are <10–8; thus, they are not depicted. Each point depicts the 
relative water volume of a segment of ≤2 km. In the dry summer scenario, concentrations of ciprofloxacin 
<10–8 are also not depicted. EE2 = 17α-ethinylestradiol; DCF = diclofenac; CBZ = carbamazepine; 
ERY = erythromycin; MET = metformin; MEP = metoprolol; CYC = cyclophosphamide; CIP = ciprofloxacin.

17α-Ethinylestradiol exhibits the highest RQs despite showing the lowest PECs 
overall, with 25 and 87% of the catchment water volume showing concerning risk 
levels (RQ > 10) in the average and summer scenarios, respectively (Supplemental 
Data, Table  S17). In the Dutch municipality of Hengelo, 17α-ethinylestradiol 
showed a local risk of serious concern under average conditions in a small brook 
(RQScnAC = 144), whereas under dry summer conditions the risks were highest at local 
canals (<2 km) routing STP effluents into larger streams and canals, for example, 

in the present study. It explains the large difference in derived
PNECs for ciprofloxacin observable in Figure 7 and illustrates
more generally that PNECs and risk assessment outcomes based
on the assessment factor approach are very sensitive to the ef-
fect data included in the assessment. Indeed, the differences in
PNECs for the same API derived by different agencies and as-
sessors range from a factor of 10 to almost 106 (Figure 7).
Keeping this range in mind, it is defendable to use an RQ of 0.1,
or even smaller, as a potential indicator of risk and as a trigger to
critically review and potentially improve the assessment proce-
dure. To account for uncertainty in the derivation of PNEC
values, an assessment factor of 50 was applied to diclofenac and
17α‐ethinylestradiol, whereas an assessment factor of 10 was
applied to carbamazepine, ciprofloxacin, cyclophosphamide,
erythromycin, metformin, and metoprolol. The use of a relatively
low assessment factor (instead of 100 or 1000) suggests that the
PNECs derived in the present study are not overly conservative.

Aquatic ecological risk
Single‐substance assessment. In the present study,
RQ< 0.1 indicates a reason for no concern in terms of chemical
pollution, 0.1 < RQ ≤ 10 indicates a potential reason for con-
cern, and RQ> 10 suggests a reason for serious environmental
concern. The specific boundary value(s) that qualifies as a
“reason for concern” is malleable, depending on the empirical
data that support it and personal values. In the present study,
we chose to acknowledge the uncertainties that blur the
meaning of this threshold (RQ= 1). Values of RQ> 1 can trigger
follow‐up measures, via either additional ecotoxicity testing or
the implementation of risk management measures (Posthuma
et al. 2019; Zhou et al. 2019).

In the present study, the PECs of 5 APIs were below their
safe thresholds (PNECs). However, the PECs systematically
exceeded PNECs in ascending order for diclofenac, carbama-
zepine, and 17α‐ethinylestradiol (Figure 8). This observation
holds for the average and dry summer scenarios, although risks

were considerably higher in summer because of reduced dilu-
tion under dry weather conditions. Diclofenac, carbamazepine,
and 17α‐ethinylestradiol exceeded the safe PNEC threshold in
at least 68 to 91% and 26 to 98% of the Vecht River catchment
surface water volume during average conditions and dry
summer conditions, respectively. In terms of the total flow
length of all water bodies, the same APIs exceeded their
PNECs in 31 to 38% and 24 to 53% during average conditions
and dry summer conditions, respectively (Supplemental Data,
Figure S4). In the average condition scenario, ciprofloxacin,
cyclophosphamide, erythromycin, metformin, and metoprolol
do not pose a concerning risk to the aquatic life (i.e., 93 to
100% of the water volume had RQ≤ 0.1). In the dry summer
scenario erythromycin showed concerning risk levels (RQ> 0.1)
in 17% of the catchment's water volume.

17α‐Ethinylestradiol exhibits the highest RQs despite
showing the lowest PECs overall, with 25 and 87% of the
catchment water volume showing concerning risk levels
(RQ> 10) in the average and summer scenarios, respectively
(Supplemental Data, Table S17). In the Dutch municipality of
Hengelo, 17α‐ethinylestradiol showed a local risk of serious
concern under average conditions in a small brook
(RQScnAC= 144), whereas under dry summer conditions the
risks were highest at local canals (<2 km) routing STP effluents
into larger streams and canals, for example, Bornse Beek
(RQScnDS≤ 274). This synthetic hormone has been shown to
particularly interfere with the endocrine system of fish and
amphibian species, affecting their development, reproduction,
growth, and, ultimately, ability to sustain a healthy population
(Supplemental Data, Table S15). Eight of the 10 most sensitive
species to ethinylestradiol identified in the present study are
fish. Notably, Gobiocypris rarus (commonly known as rare
minnow), a fish species endemic to China, is the most sensitive
species (Zha et al. 2008). However, Rutilus rutilus (commonly
known as roach) is a fish native to most European freshwaters
including the Vecht River and is similarly sensitive (Lange et al.
2009). One study assessed the effect of wastewater estrogen

FIGURE 8: Percentage of the Vecht River catchment water volume at risk of environmental pharmaceutical pollution. Vertical black dashed line
indicates the safe threshold, risk quotient= 1 (i.e., predicted environmental concentrations equal to the predicted‐no–chronic effect concentration).
In the average scenario, ciprofloxacin's risk quotients are <10–8; thus, they are not depicted. Each point depicts the relative water volume of a
segment of ≤2 km. In the dry summer scenario, concentrations of ciprofloxacin <10–8 are also not depicted. EE2= 17α‐ethinylestradiol; DCF=
diclofenac; CBZ= carbamazepine; ERY= erythromycin; MET=metformin; MEP=metoprolol; CYC= cyclophosphamide; CIP= ciprofloxacin.
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Bornse Beek (RQScnDS ≤ 274). This synthetic hormone has been shown to particularly 
interfere with the endocrine system of fish and amphibian species, affecting their 
development, reproduction, growth, and, ultimately, ability to sustain a healthy 
population (Supplemental Data, Table S15). Eight of the 10 most sensitive species 
to ethinylestradiol identified in the present study are fish. Notably, Gobiocypris 
rarus (commonly known as rare minnow), a fish species endemic to China, is 
the most sensitive species (Zha et al.  2008). However, Rutilus rutilus (commonly 
known as roach) is a fish native to most European freshwaters including the Vecht 
River and is similarly sensitive (Lange et al. 2009). One study assessed the effect 
of wastewater estrogen exposure on roach population density in 2 English rivers 
over the span of a decade, finding no noticeable declines (Johnson and Chen 2017). 
Another study analyzed the results of fish samples over a period of 2 decades in 
German rivers and found a decrease in fish population density, although it could 
not attribute it to chemical pollution (Teubner et al. 2019). To our knowledge, there 
are currently no indications that the roach is subject to adverse effects in the Vecht 
River basin. Nonetheless, the results of the present study support the use of more 
sensitive analytical techniques combined with accurately modeled hotspots of 
estrogen pollution and fish species in the Vecht River basin, including the roach. 
Furthermore, considering that the majority of the catchment was predicted to be 
liable to serious environmental risk, chronic effects could be triggered because 
continuous exceedance of an RQ of 1 is very likely under the simulated scenarios. At 
catchment locations, these exceedances can vary substantially, which can provide an 
opportunity for motile organisms to avoid unfavorable conditions or endure them 
for shorter exposure periods.

Carbamazepine exhibited the second highest RQs, with 90% of the catchment water 
volume showing concerning risk levels (RQScnAC > 0.1; Supplemental Data, Table S17). 
Throughout the catchment, carbamazepine showed its highest risk (RQScnDS = 118, 
RQScnAC = 42) in a 7-km tributary segment under high-effluent influence, located 
in the German municipality of Bad Bentheim. Carbamazepine causes a variety of 
toxicological effects at different taxonomic levels. The most sensitive species include 
the insect Stenomena sp. (Jarvis et al. 2014), the crustacean Daphnia similis (Chen et 
al. 2019), the algae Chaetophora sp. (Jarvis et al. 2014), and the fish Pimephales promelas 
(Thomas et al.  2012), for which carbamazepine affects behavior, reproduction 
ability, or population survival. It is unclear whether these species are present in the 
Vecht River, but given carbamazepine's diverse ecotoxicological potential, targeted 
monitoring of its concentration levels and the sensitive Stenomena sp. could help 
determine whether adverse effects occur under field conditions.
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Diclofenac exhibited the third highest RQs, with 90% of the catchment water 
showing concerning risk levels (RQScnAC > 0.1; Supplemental Data, Table S17). At the 
same location in the German municipality of Bad Bentheim, diclofenac showed 
the highest risk quotient (RQScnDS = 754, RQScnAC = 302). Provided the high risk at this 
and other locations along the Vecht River basin, toxicological effects on growth 
and development could be expected on fish and algae. The most sensitive species 
to diclofenac is the widespread invasive bivalve Dreissena polymorpha, which may 
be indicative of the vulnerability of this taxonomic rank (mollusks) and the trophic 
level it represents (primary consumers). These freshwater mollusks provide essential 
ecosystem services, are key elements of the food chain, and play a major role in 
removing contaminants from high volumes of water. At the regional and local scales, 
pharmaceutical pollution could exacerbate the impact on what is already the most 
threatened animal group in Europe (Cuttelod et al. 2011).

In a Dutch governmental report, carbamazepine and diclofenac have previously been 
identified as contaminants of environmental concern to aquatic organism in The 
Netherlands (Moermond et al. 2016b); and, in a revised iteration, 17α-ethinylestradiol 
has also been identified as such, whereas carbamazepine was no longer of concern 
(Moermond et al. 2020). The revised PNECs in the present study suggest that the RQs 
of diclofenac and carbamazepine may be higher than anticipated (underestimated RQ).

Exceptionally, erythromycin was also marginally predicted to occur at concentrations 
above the PNEC in the Vecht River catchment freshwater in a typical summer 
season (RQ = 1.8). In the river's main stream, RQs were low (RQ < 0.1), particularly 
in Dutch territory because of water dilution and lower consumption. Furthermore, 
erythromycin's degradation in the water column is not expected to be substantial 
because of the limited residence time of APIs in the Vecht River main stream of 4 to 12 
d for average and low-flow conditions, respectively (Liu et al. 2019; Li and Cui 2020). 
However, the unaccounted veterinary use of erythromycin in the present study could 
elevate the risks.

Metformin does not stand out from our risk profiling. However, metformin's main 
metabolite, guanylurea, is found in surface waters in quantities of up to 50% of the 
administered parent compound (Oosterhuis et al. 2013). Because guanylurea has a 
lower PNEC (0.16 µg/L) than metformin itself (Caldwell et al. 2019), risk assessment 
of metformin should include the metabolite because it could pose a risk related to 
widespread metformin application. The need to consider transformation products 
in aquatic risk assessment has been stated by other authors (Celiz et al. 2009; Han 
and Lee 2017).
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Overall, 17α-ethinylestradiol, carbamazepine, and diclofenac may pose unacceptable 
environmental risks in at least 31% of the Vecht catchment flow length for average 
conditions. This risk aggravates up to 53% during summer, affecting 1483 out of 
2772 km of total flow length (Supplemental Data, Figure S4). The average RQ increased 
consistently across APIs by approximately 10-fold between the average and dry summer 
scenarios. However, the most striking changes in PEC were observed at the confluence 
of polluted streams, effluent-dominated waters, or segments receiving STP effluents, 
with a few instances in which treated effluent discharge contributed up to 90% of the 
stream's volume. Other studies have also observed that proximity to STPs can more 
heavily influence pharmaceutical PEC than seasonality (Musolff et al. 2009; Balaam et 
al. 2010; Vieno and Sillanpää 2014). Because of human activity near the river source, 
API emissions result in residue concentrations exceeding the PNEC as early as 20 km 
downstream the Vecht River. In agreement with the present study, diclofenac and 
carbamazepine have also been predicted to display a high environmental risk in other 
European and international rivers (Chaves et al. 2020; Palma et al. 2020). The APIs with 
the highest RQs in the present study (17α-ethinylestradiol, carbamazepine, diclofenac, 
erythromycin) have recently been removed from the Water Framework Directive watch 
list, which may lead to losing sight of their ecological impact despite their potential 
risk. This is also emphasized by Burns et al. (2018), who identify these substances as 
common top-priority APIs. In addition, a review on the development in the field of 
substances of emerging concern over the previous 20 yr emphasizes the exceedance 
of EQSs and the need for spatially explicit risk modeling approaches (Tiedeken et 
al. 2017). This review further supports the usefulness of generating spatially explicit 
risk profiles as conducted in the present study. Similar efforts open up the possibility 
for stakeholders to comply with the Water Framework Directive, starting with 
prioritizing APIs so that more refined and locally relevant targeted risk-management 
measures can be applied successfully.

3.3.2	 Substance mixture assessment
In the Vecht catchment, a noticeable difference between the risk index in the average 
scenario and the dry summer scenario was observed (Supplemental Data, Figures S5 
and S6). In the dry summer scenario, the mean risk index was estimated to be 3.4 
times higher than in the average condition scenario. Likewise, the maximum risk 
indices were found in river segments of the Dutch municipalities of Hengelo and 
Coevorden under average and dry summer condition scenarios, respectively. This 
suggests that periods of dry, warm weather conditions in the Vecht River catchment 
may lead to risks to freshwater wildlife communities above the risks estimated for 
average weather conditions.
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In the Vecht River main stream (Figure  9), the predicted cumulative risk in the 
polluted segments (i.e., risk index > 0) ranges between 6 to 22 and 23 to 104 in the 
average scenario and dry summer scenario, respectively. These risk index values in 
the main stream are lower than observed elsewhere in the catchment (Supplemental 
Data, Figures S5 and S6). However, this emphasizes the sustained cumulative risk in 
the Vecht River's main stream, particularly driven by diclofenac in the German region 
and 17α-ethinylestradiol in the Dutch region (Figure 8).

Figure 9. Risk index along the Vecht River main stream under typical dry summer (orange) and average 
weather (red) conditions. Eight pharmaceutical active ingredients are integrated in the risk indices 
depicted. Dashed vertical line demarks the German–Dutch border. Solid vertical lines depict sewage 
treatment plants (gray) and tributary confluences (turquoise).

3.4	 Limitations
The present study embodies the ongoing attempt to predict API concentrations in 
freshwater and the associated risk of biological functional disturbance in regional 
ecosystems. Despite the advancements achieved, data scarcity, knowledge gaps, and 
procedural limitations often hamper the accuracy and significance of exposure and 
effect assessments. The sources of variability and uncertainty that can affect PECs 
and PNECs are manifold. The PEC can be affected by the excretion rate, sampling 
method, analytical chemistry technique, unaccounted point and diffuse emission 
sources, in-sewer (bio)transformation, disposal of unused medicine in the toilet, or 
household wastewater (van Nuijs et al. 2015). For example, there are uncertainties 
linked to the German consumption rate of erythromycin, which seems to have been 
overestimated. Furthermore, erythromycin and ciprofloxacin PECs are associated 
with higher uncertainties because these were not sufficiently detected in the Vecht 
water system to allow for a corroboration with measurements. Similarly, the accuracy 
of model predictions for cyclophosphamide and 17α-ethinylestradiol could not be 
firmly determined because of analytical limitations. Indeed, concentrations of these 

the development in the field of substances of emerging con-
cern over the previous 20 yr emphasizes the exceedance of
EQSs and the need for spatially explicit risk modeling ap-
proaches (Tiedeken et al. 2017). This review further supports
the usefulness of generating spatially explicit risk profiles as
conducted in the present study. Similar efforts open up the
possibility for stakeholders to comply with the Water Frame-
work Directive, starting with prioritizing APIs so that more re-
fined and locally relevant targeted risk‐management measures
can be applied successfully.

Substance mixture assessment. In the Vecht catchment, a
noticeable difference between the risk index in the average
scenario and the dry summer scenario was observed (Supple-
mental Data, Figures S5 and S6). In the dry summer scenario,
the mean risk index was estimated to be 3.4 times higher than
in the average condition scenario. Likewise, the maximum risk
indices were found in river segments of the Dutch municipal-
ities of Hengelo and Coevorden under average and dry
summer condition scenarios, respectively. This suggests that
periods of dry, warm weather conditions in the Vecht River
catchment may lead to risks to freshwater wildlife communities
above the risks estimated for average weather conditions.

In the Vecht River main stream (Figure 9), the predicted
cumulative risk in the polluted segments (i.e., risk index > 0)
ranges between 6 to 22 and 23 to 104 in the average scenario
and dry summer scenario, respectively. These risk index values
in the main stream are lower than observed elsewhere in the
catchment (Supplemental Data, Figures S5 and S6). However,
this emphasizes the sustained cumulative risk in the Vecht
River's main stream, particularly driven by diclofenac in the
German region and 17α‐ethinylestradiol in the Dutch region
(Figure 8).

Limitations
The present study embodies the ongoing attempt to predict

API concentrations in freshwater and the associated risk of
biological functional disturbance in regional ecosystems. De-
spite the advancements achieved, data scarcity, knowledge
gaps, and procedural limitations often hamper the accuracy
and significance of exposure and effect assessments. The
sources of variability and uncertainty that can affect PECs and

PNECs are manifold. The PEC can be affected by the excretion
rate, sampling method, analytical chemistry technique, un-
accounted point and diffuse emission sources, in‐sewer (bio)
transformation, disposal of unused medicine in the toilet, or
household wastewater (van Nuijs et al. 2015). For example,
there are uncertainties linked to the German consumption rate
of erythromycin, which seems to have been overestimated.
Furthermore, erythromycin and ciprofloxacin PECs are
associated with higher uncertainties because these were not
sufficiently detected in the Vecht water system to
allow for a corroboration with measurements. Similarly, the
accuracy of model predictions for cyclophosphamide and
17α‐ethinylestradiol could not be firmly determined because of
analytical limitations. Indeed, concentrations of these APIs in
surface water were often below their limits of detection and
quantification. This is particularly important for assessing the
risks associated with substances like 17α‐ethinylestradiol be-
cause of its very low safe PNEC. Therefore, under such ana-
lytical limitations, the crucial contribution of predictive models
is self‐evident. The sensitivity of derived PNECs to data avail-
ability (e.g., effect studies that are missed, differently quality‐
assessed, or newly performed) is a typical feature of the as-
sessment factor method. The alternative SSD method is less
affected by this phenomenon because it uses the 5th percentile
of the cumulative distribution function. As such, the sensitivity
of PNECs to data availability also partly relates to the strict
criteria on data availability that the European Union set for
applying SSDs.

CONCLUSION
The present study achieved 3 main goals: 1) estimation of

API surface water concentrations using the GREAT‐ER model in
the Vecht catchment; 2) derivation of new safe ecological
threshold concentrations for 8 APIs, of which 3 were the lower
than found in the literature; and 3) the creation of detailed,
spatially explicit ecological risk profiles of APIs in a trans-
boundary (sub‐)catchment under 2 different seasonal scenarios.
The exceedance of the acceptable ecological risk threshold
in the Vecht River was found to be mainly driven by
17α‐ethinylestradiol, diclofenac, and carbamazepine. These
substances are among the most consumed APIs in The Neth-
erlands. 17α‐Ethinylestradiol predominantly contributed to the

FIGURE 9: Risk index along the Vecht River main stream under typical dry summer (orange) and average weather (red) conditions. Eight phar-
maceutical active ingredients are integrated in the risk indices depicted. Dashed vertical line demarks the German–Dutch border. Solid vertical lines
depict sewage treatment plants (gray) and tributary confluences (turquoise).
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APIs in surface water were often below their limits of detection and quantification. 
This is particularly important for assessing the risks associated with substances 
like 17α-ethinylestradiol because of its very low safe PNEC. Therefore, under such 
analytical limitations, the crucial contribution of predictive models is self-evident. 
The sensitivity of derived PNECs to data availability (e.g., effect studies that are 
missed, differently quality-assessed, or newly performed) is a typical feature 
of the assessment factor method. The alternative SSD method is less affected by 
this phenomenon because it uses the 5th percentile of the cumulative distribution 
function. As such, the sensitivity of PNECs to data availability also partly relates to 
the strict criteria on data availability that the European Union set for applying SSDs.

3.5	 Conclusion
The present study achieved 3 main goals: 1) estimation of API surface water 
concentrations using the GREAT-ER model in the Vecht catchment; 2) derivation 
of new safe ecological threshold concentrations for 8 APIs, of which 3 were the 
lower than found in the literature; and 3) the creation of detailed, spatially explicit 
ecological risk profiles of APIs in a transboundary (sub-)catchment under 2 different 
seasonal scenarios. The exceedance of the acceptable ecological risk threshold in 
the Vecht River was found to be mainly driven by 17α-ethinylestradiol, diclofenac, 
and carbamazepine. These substances are among the most consumed APIs in The 
Netherlands. 17α-Ethinylestradiol predominantly contributed to the aggregated risk 
profile and systematically exceeded the PNEC by at least one order of magnitude. 
This substance is the API with the twenty-third highest DDD and has seen a 4% 
increase from 2018 to 2019 (Dutch National Health Care Institute 2020). This prospect 
emphasizes the need for better pharmaceutical emission reduction strategies (e.g., 
wastewater treatment technology, hotspot analysis, and preventive health care) and 
continue to monitor its use and presence in surface waters (Government of The 
Netherlands 2019), including the Vecht River. The present study suggests that the 
Vecht River catchment is vulnerable to pharmaceutical pollution, with 26 to 98% of its 
surface waters and 24 to 53% of its length under potentially unacceptable ecological 
risk (RQ > 1), particularly during a dry summer season. European regulation demands 
that national and regional authorities take action in securing water bodies' good 
status. To this end, the present study demonstrated the value of tailor-made regional 
models and the continuous revision of ecotoxicological information. Furthermore, it 
highlighted the importance of assessing off-site risks of pharmaceutical emissions 
using (sub-)catchment modeling across national borders, therefore emphasizing the 
imperative for international cooperation. Ultimately, these results should encourage 
further cross-boundary action and initiative from local authorities to comply 
with environmental standards via feasible and locally relevant risk-management 
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strategies. Otherwise, risk reduction implementations in international river 
networks may not be sufficiently effective.

3.6	 Supplemental Data
The Supplemental Data are available on the Wiley Online Library at https://doi.
org/10.1002/etc.5062.
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1.	 Abstract 

The successful treatment of infectious diseases heavily relies on the therapeutic usage 
of antibiotics. However, the high use of antibiotics in humans and animals leads 
to increasing pressure on bacterial populations in favour of resistant phenotypes. 
Antibiotics reach the environment from a variety of emission sources and are being 
detected at relatively low concentrations. Given the possibility of selective pressure 
to occur at sub-inhibitory concentrations, the ecological impact of environmental 
antibiotic levels on microbial communities and resistance levels is vastly unknown. 
Quantification of antibiotic-resistance genes (ARG) and of antibiotic concentrations 
is becoming commonplace. Yet, these two parameters are often assessed separately 
and in a specific spatiotemporal context, thus missing the opportunity to investigate 
how antibiotics and ARGs relate. Furthermore, antibiotic (multi)resistance has been 
receiving ever growing attention from researchers, policy-makers, businesses and 
civil society. Our aim was to collect the limited data on antibiotic concentrations and 
ARG abundance currently available to explore if a relationship could be defined in 
surface waters, sediments and wastewaters. A metric of antibiotic selective pressure, 
i.e. the sum of concentrations corrected for microbial inhibition potency, was used to 
correlate the presence of antibiotics in the environment to total relative abundance 
of ARG while controlling for basic sources of non-independent variability, such as 
country, year, study, sample and antibiotic class. The results of this meta-analysis 
show a significant statistical effect of antibiotic pressure and type of environmental 
compartment on the increase of ARG abundance even at very low levels. If global 
environmental antibiotic pollution continues, ARG abundance is expected to 
continue as well. Moreover, our analysis emphasizes the importance of integrating 
existing information particularly when attempting to describe complex relationships 
with limited mechanistic understanding. 

Keywords: Antibiotic pollution; Antibiotic resistance; Environmental risk;  
Gene abundance; Linear mixed-effects models.
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• Environmental antibiotic pollution has
unknown effects on resistance gene
levels.

• Selective pressure was evaluated in sur-
face waters, sediments and wastewa-
ters.

• Gene abundance was correlated with
antibiotic pressure using linear mixed-
models.

• Worldwide resistance gene abundance
correlates with antibiotic selective pres-
sure.

• Antibiotic pressure and matrix should
be considered in resistance risk
assessment.
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resistant phenotypes. Antibiotics reach the environment from a variety of emission sources and are being de-
tected at relatively low concentrations. Given the possibility of selective pressure to occur at sub-inhibitory con-
centrations, the ecological impact of environmental antibiotic levels on microbial communities and resistance
levels is vastly unknown. Quantification of antibiotic-resistance genes (ARG) and of antibiotic concentrations is
becoming commonplace. Yet, these two parameters are often assessed separately and in a specific spatiotempo-
ral context, thus missing the opportunity to investigate how antibiotics and ARGs relate. Furthermore, antibiotic
(multi)resistance has been receiving ever growing attention from researchers, policy-makers, businesses and
civil society. Our aim was to collect the limited data on antibiotic concentrations and ARG abundance currently
available to explore if a relationship could be defined in surface waters, sediments and wastewaters. A metric
of antibiotic selective pressure, i.e. the sum of concentrations corrected for microbial inhibition potency, was
used to correlate the presence of antibiotics in the environment to total relative abundance of ARGwhile control-
ling for basic sources of non-independent variability, such as country, year, study, sample and antibiotic class. The
results of this meta-analysis show a significant statistical effect of antibiotic pressure and type of environmental
compartment on the increase of ARG abundance even at very low levels. If global environmental antibiotic pol-
lution continues, ARG abundance is expected to continue as well. Moreover, our analysis emphasizes the impor-
tance of integrating existing information particularly when attempting to describe complex relationships with
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2.	 Introduction

Due to their ability to inhibit growth and eliminate microorganisms, antibiotics play 
a crucial role against disease and infection over the last few decades. Unfortunately, 
overuse and misuse of antibiotics, combined with bacterial capability to acquire 
antibiotic resistance genes (ARG), have significantly contributed to the escalation 
of life-threatening infections leading to worldwide antimicrobial resistance 
(Davies and Davies, 2010). According to current trends, resistant microorganism 
infections will claim 10 million lives by 2050, more than cancer and diabetes 
combined (O’Neill, 2016). In such a scenario, severe economic costs reminiscent of 
the 2008 financial crisis might be expected (Adeyi et al., 2017). This problem is most 
prevalent in artificial clinical and veterinary settings with high selective pressure. 
However, the elevated occurrence of antibiotics and resistance genes in the (semi-)
natural environment is also spawning concern and has prompted governments and 
international organizations to promote the One Health approach (EU, 2017; Spellberg 
et al., 2016; UN, 2016).

The emission of antibiotics to the environment occurs primarily via wastewater 
treatment plant (WWTP) effluent discharges, hospitals, and industrial facilities, 
but also from agriculture, aquaculture and livestock (Fick et al., 2009; Harnisz et 
al., 2015; Ji et al., 2012; Rodriguez-Mozaz et al., 2015). From here, these substances 
partly reach natural water bodies (Marti et al., 2014), where they can spread and 
potentially subject microbial communities to resistance selection (Costerton et al., 
1987; Engemann et al., 2008; Tello et al., 2012; Walters et al., 2003). Simultaneously, 
ARGs which undergo strong selection as a result of human activity (e.g. hospital 
health care) are released into the environment via these pathways (Li et al., 2016; 
Rizzo et al., 2013).

Despite their natural presence (D’Costa et al., 2011), resistance genes can be 
considered an environmental pollutant when abundant in the environment above 
background levels (Rothrock et al., 2016). ARGs can provide operational resistance 
to bacterial cells after a mutation or horizontal gene transfer events (Bengtsson-
Palme et al., 2018; von Wintersdorff et al., 2016). The latter is of graver concern since 
it allows the mobilization of ARGs across bacterial species and environments. This 
capability allows the surge of bacteria resistant to multiple antibiotics, including 
those of last resort (Drali et al., 2018; Oliveira et al., 2014). Clinically relevant genes, 
previously thought to be pervasive only in health care facilities, are recurrently found 
in the environment at the global scale (Cantón and Coque, 2006). Animal pathogens 
can infect humans and ARGs can in this way circulate between species with the 
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environment acting as an evolutionary breeding ground for potential infectious 
agents (Forsberg et al., 2012; Hu et al., 2016). Ultimately, this changes the resistome 
landscape and may pose a risk to humans from exposure to resistant bacteria in the 
environment (Ashbolt et al., 2013; Huijbers et al., 2015; Manaia, 2017).

Measured concentrations of antibiotics in the environment are relatively low, as 
most antibiotics are readily biodegradable and there are considerable differences in 
bioavailability. However, intricate bacterial compensatory mechanisms, population 
dynamics and long-term persistence can lead to resistance gene emergence and 
enrichment (Händel et al., 2013; Ibanez de Aldecoa et al., 2017; Kussell et al., 2005; 
Lee et al., 2010). Moreover, weak evolutionary selection of high resistance and 
horizontal gene transfer can occur at levels far below the traditional minimum 
inhibitory concentrations (MIC) (Gullberg et al., 2011; Jutkina et al., 2016). The effects 
of antibiotics on the emergence and spread of resistance in environmental bacterial 
populations under complex conditions are mostly unknown.

The causal relationship between the presence of antibiotics and that of bacterial 
sub-populations carrying ARGs has been consistently demonstrated under controlled 
experimental settings. However, such relationship is yet to be demonstrated in the 
natural environment. Given the complexity of this relationship, there are numerous 
potential factors that can influence gene transfer and abundance, e.g. temperature, 
metals, pH and salinity (Headd and Bradford, 2018; Liang et al., 2013; Miller et 
al., 2014; Seiler and Berendonk, 2012). Moreover, environmental co-occurrence 
of antibiotics and ARGs does not necessarily indicate a causal relationship, since 
they are generally emitted into the environment simultaneously and follow similar 
environmental pathways. Additionally, the mechanisms of gene transfer under field 
conditions are still poorly understood (Chamosa et al., 2017), and only a minority of 
environmental studies simultaneously quantify antibiotic residues and associated 
ARGs to control for temporal and spatial variability. This hampers the identification, 
quantification, and justification of a causal relationship. The lack of fundamental 
biological understanding hinders the construction of self-containing predictive 
mathematical models of resistance (Hellweger et al., 2011; Murphy et al., 2008; 
Opatowski et al., 2011; Wu et al., 2014). Alternatively, the use of statistical regression 
techniques does not require mechanistic understanding to investigate whether any 
significant relationship between antibiotic concentrations and ARG abundance in 
the environment exists. This would also allow a better assessment of the potential 
of these matrices as sources of antibiotic resistant bacteria (Larsson et al., 2018).
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In this study, the relationship between antibiotics and ARG abundance in global 
environmental matrices was assessed. To this end, empirical data on their 
environmental co-occurrence were compiled via a systematic review of the scientific 
literature, and were then used to develop a number of linear mixed-effect models.

3.	 Data and methods

3.1	 Search strategy
A literature review was performed by searching the Web of Science platform in May 
2018. The titles, abstracts, and keywords were screened using the following search 
string “antibiotic* AND ARG$ AND *water”. The symbol “$” represents zero or one 
character, while “*” represents any group of characters, including no character. The 
publication year was coerced to equal or <2017 as to encompass complete years. The 
search returned 428 publications.

3.2	 Selection criteria
The suitability of the publications was first assessed by scanning the titles and 
abstracts. Publications were selected for data extraction only when antibiotic 
concentrations and resistance genes abundance were measured simultaneously in 
the samples. Different techniques are currently employed to detect environmental 
DNA but only publications using quantitative polymerase chain reaction (qPCR) were 
considered since it has been widely applied and allows gene quantification. This 
study focused on three main environmental matrices, i.e. surface water, wastewater 
and sediment. Non-original research publications (e.g. reviews) were not considered 
but used as a source for cross-references. This process resulted in the selection of 42 
publications for data extraction.

3.3	 Data extraction
The following data were extracted and compiled: antibiotic concentrations, 
antibiotic-resistance gene copy numbers, environmental matrix type, sampling year, 
country. The data were collected from tables and texts. Data expressed in figures 
were extracted by use of WebPlotDigitizer 3.12 (Rohatgi, 2017). When not possible, 
the authors were contacted to request the numerical data. The mean or median 
values of replicates from the same samples were collected. Aggregated samples over 
time or space were excluded. If both descriptors were available, the mean value was 
selected over the median, given its extensive use. Reported concentrations below the 
limits of detection or quantification were not considered for analysis. Data from the 
same samples partitioned into separate publications were also recovered. A total of 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/polymerase-chain-reaction
https://www.sciencedirect.com/science/article/pii/S0048969718350964?via%3Dihub#bb0270
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256 environmental samples were identified containing 87 antibiotics, 63 ARGs and 3 
mobile genetic elements.

3.4	 Data structure
3.4.1	 ARG abundance
For each sample, if not reported in the study, the total 16S rRNA copy number was 
used to calculate the relative abundance of individual ARGs (Eq. (1)), as well as the 
total ARG abundance (TARG; Eq. (2)).(1)

where rARGx, j is the relative abundance of antibiotic-resistance gene x in sample 
j, ARGx is the number of copies of gene x, 16S rRNAj is the number of copies of 16S 
ribosomal RNA gene in sample j, and TARGy, j is the total relative abundance of genes 
x in sample j which confer resistance against antibiotics belonging to therapeutic 
class y (x ∈ y).

3.4.2	 Resistance mapping and antibiotic classification
Individual resistance genes were linked to the individual antibiotics which they 
confer resistance against, according to the Comprehensive Antibiotic Resistance 
Database (Jia et al., 2017). Then, these antibiotics were grouped following the 
Anatomical Therapeutic Chemical (ATC) classification system (Table 1). Certain 
genes allow phenotypic resistance to more than one specific antibiotic, like 
extended-spectrum β-lactamase genes such as blaCTX. In such cases, these genes were 
assumed to be associated with all individual antibiotics belonging to a class (Table 1). 
Antibiotic transformation products suspected of antibacterial activity were included 
in the analysis (e.g. dehydrated erythromycin). Besides individual rARGs, the relative 
abundance of genetic elements intI1, intI2 and tnpA was also considered because of 
their important role as facilitators of gene mobilization and spread of antibiotic 
resistance (Boerlin and Reid-Smith, 2008).

currently employed to detect environmental DNA but only publications using quantitative 
polymerase chain reaction (qPCR) were considered since it has been widely applied and allows 
gene quantification. This study focused on three main environmental matrices, i.e. surface water, 
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where rARGx, j is the relative abundance of antibiotic-resistance gene x in sample j, ARGx is the 
number of copies of gene x, 16S rRNAj is the number of copies of 16S ribosomal RNA gene in 
sample j, and TARGy, j is the total relative abundance of genes x in sample j which confer 
resistance against antibiotics belonging to therapeutic class y (x ∈ y). 
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Table 1. Overview of genes that confer resistance to one or more antibiotics belonging to the same ATC 
class. Antibiotics not classified under the ATC system are indicated in italic. Integrons intI1 and intI2, and 
transposon tnpA have been mapped to all classes.

ATC class Antibiotics Antibiotic-resistance genes

Aminoglycosides Gentamicin aacC2, aac(6′)-Ib

Carbapenems Imipenem blaCTX, blaKPC, blaNDM, blaSHV, blaOXA, 
blaTEM, blaVIM

Cephalosporins Cefalexin, cefapirin, cefazolin, cefepime, 
cefotaxime, ceftazidime, ceftiofur, cefuroxime, 
cephalosporin

blaCTX, blaKPC, blaNDM, blaSHV, blaOXA, 
blaTEM, blaVIM, OXA-10

Fluoroquinolones Cinofloxacin, ciprofloxacin, danofloxacin, 
enoxacin, enrofloxacin, levofloxacin, 
marbofloxacin, norfloxacin, ofloxacin, 
orbifloxacin

oqx(A), oqx(B), qnr(B), qnr(C), 
qnr(D), qnr(S), qep(A), gyrA, par(C)

Glycopeptides Vancomycin vanA, vanB

Lincosamides Clindamycin, lyncomycin ermA, ermB, ermC, ermE, ermF

Macrolides Azithromycin, clarithromycin, erythromycin, 
erythromycin-H2O, leucomycin, roxythromycin, 
spiramycin, tilmicosin, tylosin

ere(A), ere(B), ermA, ermB, ermC, 
ermE, ermF, mefA, mefA/mefE

Penicillins Amoxicilin, ampicillin, ampicillin b, oxacillin, 
penicilin g, penicillin v, piperacillin, tazobactam

blaCTX, blaKPC, blaNDM, blaSHV, blaTEM, 
blaVIM, blaOXA-1, blaOXA-10

Phenicols Chloramphenicol, florfenicol, thiamphenicol cat1, cmlA, fexA, fexB, floR

Phenols Triclosan gyrA

Puinolones Cinoxacin, flumequine, nalidixic acid, oxolinic 
acid, pipemidic acid

qnr(B), qnr(C), qnr(D), qnr(S), 
qep(A), gyrA, par(C)

Sulfonamides n-Acetylsulfamerazine, n-acetylsulfamethazine, 
n-acetylsulfamethoxazol, sufacetamide, 
sulfabenzamide, sulfachloropyridazine, 
sulfadiazine, sulfadimethoxine, sulfadimidine, 
sulfamerazine, sulfamethizole, sulfamethoxazole, 
sulfamethoxipiridazine, sulfametoxydiazine, 
sulfamonomethoxine pyridazine, sulfanitran, 
sulfapyridine, sulfaquinoxaline, sulfathiazole, 
sulfisomidin, sulfisoxazole

sul(1), sul(2), sul(3)

Tetracyclines Anhydrotetracycline, 4-epitetracycline, 
chlortetracycline, demeclocyline, 
doxycyclinehyclate, doxycyline, meclocycline, 
oxytetracycline, tetracycline

tet(A), tet(B), tet(C), tet(E), tet(G), 
tet(H), tet(L), tet(M), tet(O), tet(Q), 
tet(S), tet(T), tet(W), tet(X), tet(Z), 
tet(A/P), tet(B/P)

Trimethoprims Trimethoprim dfrA1, oqx(A), oqx(B)
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3.4.3	 Antibiotic selective pressure
All antibiotics were standardized to concentrations of ng/l for surface water and 
wastewater, and ng/kg dw for sediment. Concentrations of individual antibiotics were 
used to determine the resistance selection pressure potential by applying representative 
PNEC values, according to Bengtsson-Palme and Larsson (2016) (Eq. (3)). Sediment 
PNEC values were calculated using organic carbon-normalized sorption coefficients 
estimates from the software KOCWIN v2.01 (EPA, 2015) at an assumed 5.8% organic 
carbon content (RIVM, 2015). To allow a coherent comparison across samples, a 
measure of total selection pressure potential was calculated (Eq. (4)).

where ASPi, j is the selection pressure potential of antibiotic i in sample j, MECi, j 
is the measured environmental concentration of antibiotic i in sample j, PNECi is 
the predicted no effect concentration for selection of resistance by antibiotic i, and 
TASPy, j is the total selection pressure potential in sample j of antibiotics i belonging 
to therapeutic class y (i ∈ y).

3.4.4	 Environmental matrices
Samples of WWTP influents, hospital wastewater, urban sewage and industrial 
wastewater origin were classified as ‘wastewater’. Water samples collected from 
rivers, estuaries, water reservoirs, bays, lakes and creeks were classified as ‘surface 
water’. The environmental matrix ‘sediments’, includes sediment samples from 
rivers, estuaries, lakes, water reservoirs, bays and coast. Wastewater was included 
in this study for comparability since it is a heavily antibiotic and ARG loaded matrix 
of anthropogenic origin.

3.4.5	 Database
A final database was created comprising 342 unique entries for each antibiotic 
class nested by sample and study. These represent 26 studies (Study), 11 countries 
(Country), 3 environmental matrices (Matrix), 197 samples (Sample), 10 sampling years 
(Year) and 11 antibiotic classes (Class).
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genes 

blaTEM, blaVIM, blaOXA-
1, blaOXA-10 

Phenicols Chloramphenicol, florfenicol, thiamphenicol cat1, cmlA, fexA, 
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where ASPi, j is the selection pressure potential of antibiotic i in sample j, MECi, j is the measured 
environmental concentration of antibiotic i in sample j, PNECi is the predicted no effect 
concentration for selection of resistance by antibiotic i, and TASPy, j is the total selection pressure 
potential in sample j of antibiotics i belonging to therapeutic class y (i ∈ y). 
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Samples of WWTP influents, hospital wastewater, urban sewage and industrial wastewater 
origin were classified as ‘wastewater’. Water samples collected from rivers, estuaries, water 
reservoirs, bays, lakes and creeks were classified as ‘surface water’. The environmental matrix 
‘sediments’, includes sediment samples from rivers, estuaries, lakes, water reservoirs, bays and 
coast. Wastewater was included in this study for comparability since it is a heavily antibiotic and 
ARG loaded matrix of anthropogenic origin. 

2.4.5. Database 

A final database was created comprising 342 unique entries for each antibiotic class nested by 
sample and study. These represent 26 studies (Study), 11 countries (Country), 3 environmental 
matrices (Matrix), 197 samples (Sample), 10 sampling years (Year) and 11 antibiotic classes 
(Class). 

2.5. Data analysis 
2.5.1. Model architecture 

The final database was used to construct a suite of linear mixed-effects models (LMMs), an 
extension of the classical linear regression model. As opposed to simpler linear regression 
models, where only the usual fixed effects or population parameters are accounted for, LMMs 
allow the flexible incorporation of random effects to account for cluster-correlated data from 
distinct sources of variability (Harrison et al., 2018). An initial model was constructed with 
TARG as response variable. TASP and Matrix were used as the explanatory variables since these 
were determined key elements of interest in this study. Variables Class, Year, Study, Sample, and 
Country were included as covariates. These were embedded as dummy variables because of their 
categorical nature. The full mixed-effects model for the estimation of TARG was 
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3.5	 Data analysis
3.5.1	 Model architecture
The final database was used to construct a suite of linear mixed-effects models 
(LMMs), an extension of the classical linear regression model. As opposed to simpler 
linear regression models, where only the usual fixed effects or population parameters 
are accounted for, LMMs allow the flexible incorporation of random effects to 
account for cluster-correlated data from distinct sources of variability (Harrison et 
al., 2018). An initial model was constructed with TARG as response variable. TASP 
and Matrix were used as the explanatory variables since these were determined key 
elements of interest in this study. Variables Class, Year, Study, Sample, and Country 
were included as covariates. These were embedded as dummy variables because of 
their categorical nature. The full mixed-effects model for the estimation of TARG was

where TASP and Matrix compose the fixed effects structure, (1| Country) and (1| Year) 
are crossed random factors, (Matrix| Class) is a term allowing random intercepts for 
each Matrix to vary among levels of the Class grouping factor, (1| Study/Sample) is a 
nested term allowing random intercepts varying among Study, and Sample within 
Study, ε is the random error term. A supplementary analysis was conducted by 
modelling individual genes (ARGx, j) in each matrix using simple linear regressions. 
All antibiotics i from any class y to which gene x confers resistance against (i ∈ y) 
were used as predictor (TASPy, j). A natural log-transformation was applied to both 
TARG and TASP.

3.5.2	 Model selection and evaluation
To find the most parsimonious model that explains TARG in function of TASP and 
matrix, all potential models were created by variant combinations of the terms 
from the full model (Fig. A1). These candidate models were fitted using restricted 
maximum likelihood (REML) estimations. For the exclusion of random terms, the 
corrected Akaike Information Criterion (AICc) was used. Then, the significance of 
each fixed term was evaluated using F tests with Kenward-Roger approximations. 
Interaction effects between the fixed terms were also assessed. The uncertainty of 
the fixed and random estimates was computed using parametric bootstrapping 
and expressed as 95% confidence intervals. Finally, the marginal and conditional 
coefficients of determination for the best fitting model were determined. Data 
analyses (Item A1) and graphics were performed using the packages ‘lme4’, ‘pbkrtest’, 
‘MuMIn’ and ‘ggplot2’ with the statistical software R version 3.4.2 (RCoreTeam, 2018).
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where ASPi, j is the selection pressure potential of antibiotic i in sample j, MECi, j is the measured 
environmental concentration of antibiotic i in sample j, PNECi is the predicted no effect 
concentration for selection of resistance by antibiotic i, and TASPy, j is the total selection pressure 
potential in sample j of antibiotics i belonging to therapeutic class y (i ∈ y). 

 

2.4.4. Environmental matrices 

Samples of WWTP influents, hospital wastewater, urban sewage and industrial wastewater 
origin were classified as ‘wastewater’. Water samples collected from rivers, estuaries, water 
reservoirs, bays, lakes and creeks were classified as ‘surface water’. The environmental matrix 
‘sediments’, includes sediment samples from rivers, estuaries, lakes, water reservoirs, bays and 
coast. Wastewater was included in this study for comparability since it is a heavily antibiotic and 
ARG loaded matrix of anthropogenic origin. 

2.4.5. Database 

A final database was created comprising 342 unique entries for each antibiotic class nested by 
sample and study. These represent 26 studies (Study), 11 countries (Country), 3 environmental 
matrices (Matrix), 197 samples (Sample), 10 sampling years (Year) and 11 antibiotic classes 
(Class). 

2.5. Data analysis 
2.5.1. Model architecture 

The final database was used to construct a suite of linear mixed-effects models (LMMs), an 
extension of the classical linear regression model. As opposed to simpler linear regression 
models, where only the usual fixed effects or population parameters are accounted for, LMMs 
allow the flexible incorporation of random effects to account for cluster-correlated data from 
distinct sources of variability (Harrison et al., 2018). An initial model was constructed with 
TARG as response variable. TASP and Matrix were used as the explanatory variables since these 
were determined key elements of interest in this study. Variables Class, Year, Study, Sample, and 
Country were included as covariates. These were embedded as dummy variables because of their 
categorical nature. The full mixed-effects model for the estimation of TARG was 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + (1|𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) + (1|𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌) + (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀|𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) + (1|𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)

+ 𝜀𝜀		(5) 
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4.	 Results and discussion

The data showed that global TASP positively correlates with increasing levels of 
resistance genes abundance. The best regression model describing this relationship 
(Tables A1–2) indicated that both TASP and matrix significantly impacted TARG even 
though these only accounted for 17% of the variance (Table 2). Such percentage is not 
surprising given the biochemical complexity of the samples analysed and the existing 
high variance between the different studies (Table A3). This indicates the existence 
of other possible factors influencing the extent of TARG, as for example metal (Xu 
et al., 2017) and faecal pollution (Karkman et al., 2018). Nonetheless, our model 
could explain 92% of TARG variance when the random variables were accounted for, 
indicating that the variability engrained in the gathered data might be explained 
by a number of random factors. The total antibiotic selective pressure has been 
calculated for surface waters, sediments and wastewater in order to analyse which 
compartment exerted greater influence in total resistance gene abundance.

Table 2. Fixed predictor estimates of the best model. SE, standard error. CI95, lower and upper boundaries 
of bootstrapped 95% confidence interval after 1000 simulations.

Fixed effects Coefficients SE t-value LCI95 UCI95

Intercept

Sediment −5.307 1.424 −3.726 −8.034 −1.529

Surface water −7.842 1.540 −5.091 −11.211 −4.911

Wastewater −4.962 1.155 −4.296 −7.501 −2.620

Slope

Sediment 0.231 0.126 1.833 −0.022 0.491

Surface water 0.226 0.145 −0.036 −0.326 0.226

Wastewater −0.336 0.167 −3.386 −0.980 −0.202

R2-marginal 0.17

Separately, total antibiotic selective pressure and type of matrix significantly 
affected the total resistance gene abundance (Table A2). A combined approach with 
interaction effects provided a significantly superior measure for estimating TARG 
(p < 0.05). TASP dictated the incrementing rate of TARG while the type of matrix 
determined the scale at which gene abundance occurs. TARG increased continuously 
but at ever lowering rates, i.e. more sudden effects are expected at lower TASP. For 
example, for 1 ≤ TASP ≤ 2 the average rate of increase of TARG in sediment, surface 
water and wastewater is 17%, 17% and −21%, respectively, whereas for 2 ≤ TASP ≤ 10 it 

https://www.sciencedirect.com/science/article/pii/S0048969718350964?via%3Dihub#t0010
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decreases to 3%, 2% and −4%. This coincides with our understanding that antibiotic 
exposure of bacteria, including to sub-inhibitory concentrations, favours the growth 
of resistant strains over sensitive ones via weak selection (Davies et al., 2006; Jutkina 
et al., 2018; Pena-Miller et al., 2013). However, an opposite TARG trend is observed in 
wastewaters, a main medium for disposal of excreted antibiotics as well as human 
and animal microbiota. One hypothesis is that the concentrations of antibiotics and 
other contaminants in wastewaters reach sufficiently high toxic levels that prevent 
the development and survival of resistant microbes. Matrices influence the level of 
TARG at different magnitudes (Fig. 1). Surface waters exhibited the lowest baseline 
levels of resistance genes, likely due to its hydrological characteristics. Lower levels 
of ARGs are expected to be found in this compartment as suspended biological 
material, nutrients and antibiotics are prone to be diluted, transported elsewhere 
or deposited by gravitation. In this environmental compartment, only the resistance 
gene qnr(S) and mobile element intI1 were found to be significantly correlated with 
TASP (Table A4). Sediments are a uniquely steady substrate for the deposition and 
further accumulation of molecules from its surroundings. Given the temporal and 
spatial coverage of this meta-analysis, average ARG values were estimated to be 
thirteen-fold higher in sediments than in the water column. Simple regressions 
revealed that tet(B) and sul(3) were negatively correlated with TASP while oqx(B) 
was positively correlated (Table A4). In wastewaters, the average levels of resistance 
genes, at the resistance selection risk threshold of TASP = 1, were higher than in 
environmental surface waters (eighteen-fold) but slightly lower than in sediments 
(seven tenths-fold). The only resistance gene found to be significantly correlated with 
TASP in wastewaters was tet(Q) (Table A4). Wastewater is a potential source of ARG 
pollution in sediments (Czekalski et al., 2014) which may in some cases be a cause of 
environmental risk concern for antibiotic resistance development.

Antibiotics are often classified according to their similar molecular structure, mode 
of action and therapeutic application, easing extrapolations about the effects of large 
numbers of antibiotics on environmental resistance. In this study, four out of the 
ten classes (macrolides, sulfonamides, tetracyclines, fluoroquinolones) represent 
92% of the analysed cases (Fig. 2). It is unclear whether this is a true representation 
of prevailing classes in the environment or an artefact caused by the preferential 
interest of the authors of the original studies. Samples containing sulfonamides and 
macrolides were mostly found in surface waters with a few occurrences in sediment. 
Fluoroquinolones were similarly represented in surface water and sediment and 
slightly more in wastewater. Interestingly, tetracyclines were present in a substantial 
number of sediment samples which agrees with its strong tendency to adsorb to 
sediments and suspended particles (Hektoen et al., 1995; Ji et al., 2016; Tamtam et 
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al., 2008). Despite the analogous distribution range of TASP across matrices, all 
classes consistently exerted a selective pressure above the risk threshold in sediments 
with the exception of sulfonamides (Fig. 2). TARG variability due to antibiotic class 
within matrices was considerably different, i.e. in surface water and wastewater the 
variance between classes was high whereas in sediment this value was much lower, 
σ2 = 16, 6 and 4, respectively (Table A3). This indicates that in sediments, equal TASP 
levels of different antibiotic classes are more likely to result in similar estimated 
ARG levels. This lack of class-specific influence suggests that gene abundance 
estimation in surface water and wastewater is less reliable than in sediments. A 
possible explanation is the ability of sediments to maintain their biogeochemical 
properties unchanged over time, in contrast with the unstable nature of surface 
water and wastewater (Karkman et al., 2018; Lekunberri et al., 2018; Pruden et al., 
2012; Sabri et al., 2018).

Previous studies have measured environmental antibiotic concentrations or 
quantified the presence of genes, while only a small fraction assessed the two 
parameters simultaneously. This smaller subset of studies analysed such information 
independently and within a particular spatiotemporal context. Moreover, studies 
are biased towards the measurement of antibiotics and genes of greater concern, 
scientific interest or whose presence in the sampled locations is suspected. To our 
knowledge the present study is the first that integrated this sparse empirical data 
and described their overall relationship using linear mixed models. In addition, 
individual antibiotic concentrations were corrected for their specific resistance-
selective effects providing a simple aggregated risk metric of selection potential. 
Nevertheless, these estimates are based on a limited number of studies, each with 
its own design and methodology, thus explaining the limited predictive power of 
the model and high uncertainty. Also, antibiotic selective pressure values have been 
calculated by means of PNECs derived from MICs, which in themselves are mainly 
biased towards antibiotics and microbial taxonomic groups of concern to human 
health (Bengtsson-Palme and Larsson, 2016). Finally, the regression model does 
not allow for mechanistic explanations in regards to the fluctuations in resistant 
microbial profiles in the environment caused by antibiotic pollution. It is well-known 
that antibiotics can trigger resistance mechanisms and transmission, but such a 
relationship could also result from a coincidental fate process, e.g. the simultaneous 
discharge and dispersal of antibiotics and ARGs contained in faecal waste. In spite of 
these limitations, the results reported in this study contribute to our understanding 
of how global antibiotic resistance might be progressing and, more importantly, 
help to inform interested parties on resistance inducing factors that deserve their 
attention. Future field and modelling efforts are suggested to integrate additional 
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Fig. 1. Total antibiotic selective pressure and total antibiotic-resistance genes in sediments, surface 
water and wastewater. Unique database entries are expressed as dots and the model predictions using 
unconditional (population-level) values are expressed as solid lines. TASP equal to 1 (risk threshold) is 
indicated by the dashed vertical lines.

Fig. 2. Total antibiotic selective pressure and total antibiotic-resistance genes stratified by therapeutic class 
and matrix. Each panel corresponds to a class and the coloured lines to each matrix (brown, sediment; blue, 
surface water: purple, wastewater). Sample data is expressed in isocontours after two dimensional Gaussian 
kernel density estimation. TASP equal to 1 (risk threshold) is indicated by the dashed vertical lines.

wastewater. Interestingly, tetracyclines were present in a substantial
number of sediment samples which agrees with its strong tendency to
adsorb to sediments and suspended particles (Hektoen et al., 1995; Ji
et al., 2016; Tamtam et al., 2008). Despite the analogous distribution
range of TASP acrossmatrices, all classes consistently exerted a selective
pressure above the risk threshold in sediments with the exception of
sulfonamides (Fig. 2). TARG variability due to antibiotic class within

matrices was considerably different, i.e. in surface water and wastewa-
ter the variance between classes was high whereas in sediment this
value was much lower, σ2 = 16, 6 and 4, respectively (Table A3). This
indicates that in sediments, equal TASP levels of different antibiotic clas-
ses are more likely to result in similar estimated ARG levels. This lack of
class-specific influence suggests that gene abundance estimation in sur-
face water and wastewater is less reliable than in sediments. A possible
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(risk threshold) is indicated by the dashed vertical lines.
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biotic and abiotic parameters (e.g. nutrients), resistance co-selection agents 
(e.g. metals) and pollution types (e.g. faecal pollution), consider the use of new 
technologies (e.g. epicPCR), account for left-censored data (e.g. data imputation), 
distinguish between intracellular and extracellular DNA and screen for pathogens 
in local bacterial communities.

In summary, a collection of reported data from literature has been used in a meta-
analysis to investigate the relationship between antibiotic concentrations and 
resistance gene abundance in the environment. The study revealed that antibiotic 
pressure and type of environmental compartment can be used to predict the overall 
abundance of resistance genes.
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1.	 Abstract

A detailed study was conducted in the city of Nijmegen, The Netherlands, to 
characterize various urban sources of antibiotics and antibiotic resistant genes 
(ARGs) in wastewater. Prevalence of ermB, tetW, sul1, sul2, intl1, and 16S rRNA was 
determined at 10 locations within the sewer system. Sampling locations included a 
nursing home, a student residence, a hospital and an industrial area, among others. 
Wastewater concentrations of 23 antibiotics were measured using passive sampling. 
Additionally, excreted loads of 22 antibiotics were estimated based on ambulatory 
prescription and clinical usage data. Genes sul1 and intl1 were the most abundant 
ARGs across most locations. Ciprofloxacin and amoxicillin together contributed over 
92% of the total estimated antibiotic selective pressure at all sampling points. The 
present study highlights the prominent role of hospitals in the prevalence of ARGs 
in urban wastewater. 

Graphical abstract
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2.	 Introduction  

The spread of antibiotic resistant microorganisms is increasing globally and 
putting pressure on the long-term effectiveness of antibiotics. At the same time, 
the development of new antibiotics is slow, resource-intensive and at odds with 
the development of more profitable pharmaceuticals [1]. Antibiotics are the most 
important pharmaceuticals for controlling bacterial infections and therefore 
widely used in human health care as well as livestock production and aquaculture. 
Prolonged or frequent consumption of antibiotics can affect the gut microbiota of 
mammals and lead to the development of antibiotic-resistance genes (ARGs) and 
bacteria (ARBs) [2, 3]. 

ARGs, ARBs and antibiotic residues are excreted via faeces and urine, and emitted 
into the environment either directly (e.g. by free-ranging livestock, combined 
sewer overflows, lacking sewer infrastructure) or indirectly (e.g. via Waste Water 
Treatment Plants, WWTPs) [4]. While the European use of antibiotics in animal 
production typically fluctuates with infection rates, WWTP outlets in urban areas 
are a steady source of antibiotics and ARG pollution [5]. Since most WWTPs were 
designed to remove macropollutants from wastewater, micropollutants such as 
pharmaceuticals are only partially removed. Moreover, recent studies suggest that 
urban sewer systems might act as a reservoir for ARGs and facilitate horizontal gene 
transfer (HGT) across pathogenic bacteria [6, 7]. 

Several studies have assessed the regional role of point sources like hospitals and 
WWTPs in the spread of antibiotics, ARBs and ARGs to the environment (e.g. [8-10]), 
whereas other studies approached the issue on a global scale (e.g. [11]). However, a 
better understanding of local sources of ARGs and antibiotics dissemination could 
help to assess the efficacy of decentralized waste management strategies [12, 13].

The main aims of the present study were to (1) describe the presence of ARGs and 
antibiotics across distinct locations within an urban sewer system, (2)  characterize 
location-specific profiles in terms of relative ARG abundance and antibiotic potential 
to select for ARGs; and (3) identify in-sewer emission hotspots at a city-scale. 
Emission reduction strategies are discussed in the light of water management and 
European policy to help contextualize the findings. 
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3.	 Data and methods

3.1	 Study area
The city of Nijmegen is located in the southeast of the Netherlands and counts c.a. 
180,000 inhabitants. There are two hospitals (~600 beds each), one university (~24,000 
students), two higher education facilities (~ 16,700 students in total; ROC, 2020) 
and an industrial area (around 3,701 employees in 2018; personal communication 
with Municipality of Nijmegen, 14th November 2019). The sewer system is mainly 
composed of gravity sewers with a length of 595 km, of which 352 km are combined 
sewers containing wastewater and surface run-off. The estimated average sewer 
residence time within the city is approximately 2.5 hours (maximum 5 hours). The 
municipal WWTP has a capacity of 400,000 population equivalents (p.e.) and also 
treats wastewater from 11 neighboring villages. Treatment steps include primary and 
secondary treatment (activated sludge). Within this particular WWTP, wastewater is 
heated, resulting in relatively constant water temperatures around 15°C in winter and 
28°C in summer. More details on the treatment steps and wastewater composition can 
be found in the Supplementary Information (Section S1).

3.2	 Antibiotic-resistance genes
3.2.1	 Selection of ARGs
In the present study, four antibiotic-resistance genes were targeted: sulfonamide 
resistance genes (sul1 and sul2), tetracycline resistance gene (tetW) and a macrolide 
resistance gene (ermB) (Table 1). They represent the most widely studied ARGs in 
environmental science, are well-characterized and have been associated with 
phenotypic resistance against crucial antibiotic classes used in human and veterinary 
medicine. Among others, [14] suggested these four genes to be used as indicators to 
assess the antibiotic resistance status in environmental settings. As an increasingly 
accepted proxy for antibiotic pollution [15, 16], the mobile genetic element class 1 
integron-integrase gene (intI1) was also targeted in the present study. This gene is 
often associated with genetic mobility within and between bacterial populations and 
species, which is strongly associated with the acquisition of ARGs and accelerated 
resistance evolution [17, 18]. In addition, the gene coding for the conservative 
prokaryotic 16S ribosomal RNA subunit component (16S rDNA) was targeted as an 
indicator of bacterial cell abundance.
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Table 1. Overview of genes and antibiotics against which these confer resistance. 

Gene ATC  group Antibiotic

ermB Macrolides erythromycin, roxithromycin, clarithromycin, telithromycin, tylosin, 
spiramycin, azithromycin, dirithromycin, oleandomycin, josamycin, 
chalcomycin, midecamycin, mycinamicin, megalomycin, narbomycin, 
kitasamycin, carbomycin, rosaramicin, niddamycin, methymycin, 
pikromycin, rokitamycin, solithromycin

Lincosamides lincomycin, clindamycin, celesticetin

Streptogramins streptogramin A, streptogramin B

tetW Tetracyclines soxycycline, glycylcycline, minocycline, chlortetracycline, demeclocycline, 
oxytetracycline, omadacycline, eravacycline, tetracycline

sul1, sul2 Sulfonamides sulfadiazine, sulfadimidine, sulfadoxine, sulfamethoxazole, 
sulfisoxazole, sulfacetamide, mafenide, sulfasalazine b, sulfamethizole

intI1a - -

a intI1 was assumed to confer resistance to all antibiotics belonging to the studied classes via its 
ability to facilitate gene mobility. b Sulfasalazine is a codrug structurally composed of mesalazine 
and sulfapyridine. It is indicated as a nonsteroidal anti-inflammatory drug. However, release of 
sulfapyridine as a metabolite is possible [19]. ATC, Anatomical Therapeutic Chemical group according to 
the Comprehensive Antibiotic Resistance Database [20]. Antibiotics not classified under the ATC system 
are indicated in italics. Antibiotics analysed in the present study are indicated in bold.

3.2.2	 Sampling for ARGs
For this study, a preparatory pre-screening campaign was conducted in September 
2019 at four sampling locations (industrial area, residential area, rainwater pit and 
WWTP effluent). Subsequently, two target campaigns were conducted in May and 
September 2020 that included 6 additional sampling locations (Table S1, Figure S1). 
Sampling locations were selected to represent a diversity of urban wastewater sources, 
namely an academic hospital, elderly home, student complex, city center, industrial 
park, residential area, rainwater pit and WWTP (influent and effluent). A sewer model 
provided by the municipality of Nijmegen was used to identify sample collection 
points closest to the wastewater sources of interest. This way, the influence of in-
sewer fate processes was minimized, and sampled wastewater originated mainly from 
the intended source. Since the hospital has two sewer connections, both sites were 
sampled. The measuring site H1 refers to the main sewer outlet in which most hospital 
wastewater is discharged (~75%), including most of the clinical departments’ waste. The 
measuring site H2 receives ~25% of the hospital’s wastewater, which originates mainly 
from the administration, radiology and dental departments.

While the pre-screening campaign was conducted before the global spread of the 
coronavirus disease of 2019 (COVID-19), both target campaigns took place during 
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the COVID-19 pandemic. Briefly, the sampling campaign in May 2020 was conducted 
during the first lockdown in the Netherlands in which only essential shops were 
open. In September 2020, schools and non-essential shops were open again but 
restaurants remained closed.

Grab samples were collected in duplicate from each sampling location. Samples were 
collected with a plastic bucket and transferred to 1-liter autoclaved glass bottles using 
a glass funnel. Both bucket and funnel were rinsed with wastewater from the location 
before collecting samples. After sampling, the bucket and the funnel were disinfected 
with 96% ethanol and rinsed with drinking water to prevent cross-contamination 
of samples between sites. All samples were stored in a cool and dark environment, 
transported directly to the lab and analyzed the next day. To assess potential 
variations over time, samples were taken during the pre-screening campaign on 
day 1, 7 and 42 at each location. Since the results showed no major changes in ARG 
abundance across these time steps, duplicate samples were only taken once per 
location during both target campaigns (Figure S9).

3.2.3	 ARG analysis
For the microbiological analysis, water samples were filtered via vacuum filtration 
(0.2 µm polycarbonate filter, 47 mm, Merck Millipore, Ireland). Filters were stored 
at -80 °C until DNA extraction. Using the DNeasy powersoil kit (Qiagen), DNA was 
extracted from the filters, according to the manufacturer’s protocol. The extracted 
DNA was stored at -80 °C until further analysis. The (absolute) abundance of ARGs 
and microorganisms was quantified using quantitative PCR (qPCR) analysis. All 
qPCR assays were performed as described by [21] on a CFX 384 Touch Real-Time PCR 
detection system (Bio-Rad Laboratories, Canada) and recorded by a CFXManager 
(Biorad, version 3.1). Outlier identification and disposition were identified using 
default parameterization of BioRad CFX Maestro software. Extreme outlier removal 
from subsequent data analysis was performed in combination with expert-based 
judgment. Primers and probes are listed in Table S2. All samples were run in 
duplicate. All assays were performed with triplicate reactions. Hence repeatability 
was tested and dealt with, within each assay. Each assay included a serial dilution of 
the relevant synthetic standard of known quantity and with molecular-grade water as 
a negative control. The NTC (no template control) was negative for all assays within 
this range. The standard was used to calculate the number of copies of respective 
genes in each sample. 
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3.2.4	 ARG relative abundance 
To compare ARG abundance among different measuring locations, the absolute 
abundance of each targeted ARG was normalized against the total abundance of 
microorganisms (16S rDNA). The resulting relative abundance was calculated 
according to Equation 1:

(Eq. 1)

where  is the relative abundance of antibiotic-resistance gene  in sample  [ARG 
copies/16S rDNA copies],  is the number of copies of gene  [copies/L], and is the number 
of copies of the 16S ribosomal RNA gene in sample  [copies/L]. A measure of total 
relative gene abundance (TARG) was calculated as the sum of all rARG at each location.

3.3	 Antibiotics 
3.3.1	 Measured and modelled antibiotics
In the present study, 23 antibiotics were empirically analyzed, including seven 
antibiotics predominantly used as veterinary pharmaceuticals (Figure S4). The 
16 antibiotics authorized for human consumption represent about half of the 
antibiotics prescribed in 2020 in the Netherlands, i.e. 26.8 million of defined daily 
doses (DDD) in total [22]. See Table S6 for details. Given the variable reliability of 
the measured antibiotic concentrations (see Section 3.2), excretion of 22 antibiotics 
was also estimated based on national ambulatory prescription and local clinical 
usage data to complement measurement data (see Section S4). National ambulatory 
prescription data was collected from the GIPdatabank [22] and clinical usage data 
was directly provided by the academic hospital. In total, wastewater concentrations 
of 22 antibiotics were modelled, including 16 antibiotics that were also measured 
(Figure S4). Together, measured and modelled antibiotics in the present study cover 
about 80% of annual prescriptions for ambulatory use in the Netherlands. 

3.3.2	 Sampling of antibiotics
One set of passive samplers (Speedisks©) containing DVB-HBL adsorption material 
was deployed at each measuring site. To allow direct contact between sampler and 
wastewater, the outer rim of the Speedisk© was removed (Figure S2). Furthermore, 
the samplers were attached to a metal rod to weight them down and keep them 
submerged (Figure S3). At locations with low water levels, samplers were deployed 
facing downwards so that they would remain wet even at minimum water discharge. 
Samplers for all locations were exposed for 7 days, except for 2 locations during 
pre-screening, i.e. the WWTP effluent basin and rainwater pit, at which samplers 

161 Hence repeatability was tested and dealt with, within each assay. Each assay included a serial 

162 dilution of the relevant synthetic standard of known quantity as a positive control and with 

163 molecular-grade water as a negative control. The NTC (no template control) was negative for all 

164 assays within this range. The standard was used to calculate the number of copies of respective 

165 genes in each sample. 

166

167 2.2.4. ARG relative abundance 

168 To compare ARG abundance among different measuring locations, the absolute abundance of each 

169 targeted ARG was normalized against the total abundance of microorganisms (16S rDNA). The 

170 resulting relative abundance was calculated according to Equation 1:

171

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥,𝑗𝑗 =
𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥

16𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑗𝑗
(Eq. 1)

172

173 where  is the relative abundance of antibiotic-resistance gene  in sample  [ARG 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥,𝑗𝑗 𝑥𝑥 𝑗𝑗

174 copies/16S rDNA copies],  is the number of copies of gene  [copies/L], and  is 𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 𝑥𝑥  16𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑗𝑗

175 the number of copies of the 16S ribosomal RNA gene in sample  [copies/L]. Bootstrap sample 𝑗𝑗

Page 14 of 42

ACS Paragon Plus Environment

ACS ES&T Water

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Chapter 5

120

were exposed for 6 weeks. The weather during the pre-screening and both target 
campaigns was dry, so it is reasonable to assume that only wastewater was retrieved. 
Samplers were stored in cool and dark glass jars, and immediately transported to 
the laboratory.

3.3.3	 Chemical analysis of antibiotics
Upon arrival, samplers were frozen in the dark at -18C. Analysis was performed 
following SANTE/11813/2017 and SANCO /825 guidelines by the European Commission 
and according to the same protocol as described in [23]. In short, samples and 
internal standards were analyzed using Agilent 1260 series high-performance 
liquid chromatography coupled with an Agilent 6460 triple quadrupole LC/MS with 
Jetstream Electron Spray Ionisation (ESI) and multiple reaction monitoring (MRM). 
The target compounds were determined with one precursor ion and two product 
ions. For information about mass-to-charge ratios, retention times and ratios see 
Table S3. Calibration was done before measuring the samples with known amounts 
of the analytes in nine steps with concentrations ranging between 0 and 50 ng mL-1. 
The limit of detection (LOD) and limit of quantification (LOQ) of the analytes were 
determined with signal-to-noise ratios of 1:3 and 1:10, respectively. More information 
on the methods used as well as the resulting average recoveries and concentrations 
for the LOD and LOQ are given in S2. The method resulted in LOQ values ranging 
between 0.5 and 1 ng mL-1 of extract. Results were reported as load of antibiotics 
per set of samplers. Water concentrations of antibiotics were derived following the 
method described in [23], assuming an average sampling rate of 50mL per sampler 
per day [24]. 

3.3.4	 Antibiotic selective pressure
To compare the selective pressure among different measuring locations, the 
concentration of each antibiotic was converted using predicted no effect 
concentrations for selection of resistance [25]. The resulting antibiotic selective 
pressure [26] was calculated according to Equation 5:

(Eq. 2)

where  is the selection pressure potential of antibiotic  in sample j,  is the measured 
environmental concentration of that antibiotic in sample j [ng/L],  is the predicted 
no effect concentration for selection of resistance by the antibiotic [ng/L]. Values of  
were lacking for chlortetracycline, doxorubicin, sulfadimidine and sulfadiazine, thus 
these were extrapolated by calculating the geometric mean of  values of antibiotics 

224 recoveries and concentrations for the LOD and LOQ are given in S3. The method resulted in LOQ 

225 values ranging between 0.5 and 1 ng mL-1 of extract. Results were reported as load of antibiotics 

226 per set of samplers. Water concentrations of antibiotics were derived following the method 

227 described in [28], assuming an average sampling rate of 50 mL per sampler per day [29]. Reported 

228 antibiotic concentrations are therefore local time-weighted average concentrations for the duration 

229 of the respective sampling campaign. 

230

231 2.3.4. Antibiotic selective pressure

232 To compare the selective pressure among different measuring locations, the concentration of each 

233 antibiotic was converted using predicted no effect concentrations for selection of resistance [30]. 

234 The resulting antibiotic selective pressure [31] was calculated according to Equation 2:
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
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238 measured environmental concentration of that antibiotic in sample j [ng/L],  is the 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
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belonging to the same chemical class. A measure of total antibiotic selective pressure 
(TASP) based on consumption was calculated as the sum of ASPs at each location. Due 
to their high analytical recovery rates (>60%), sulfamethoxazole and trimethoprim 
were selected as benchmarks with sewer measurements. 

3.4	 Data analysis 
3.4.1	 Sewer profiling
To assess the similarity between the unique Antibiotic Selective Pressure (ASP) 
and relative ARG profiles of each sampled location, an agglomerative hierarchical 
cluster analysis was performed. This analysis allows the grouping of each sewer 
location according to how similar their associated measured data are. Thus, sewer 
locations with similar ARG and antibiotic concentration profiles are likely identified 
as belonging to the same profile cluster, whereas dissimilar locations are likely 
identified as belonging to separate profile clusters. 

To perform this analysis, data were first subset into an ASP matrix and a rARG 
matrix. For each location, values were standardized, i.e. mean-centered and 
scaled by dividing the centered values by the standard deviation. The resulting 
standardized matrix was converted to a Euclidean distance matrix to quantify 
dissimilarities between antibiotic concentrations and ARG profiles per location 
(Table S8). Agglomerative hierarchical clustering analysis was performed on the set 
of profile dissimilarities by applying the Ward’s squared criterion and minimum 
variance method. Clustering uncertainty was quantified via bootstrap resampling 
(10 000 replicates) from which p values per cluster were obtained [27]. Two types of p 
values were obtained: the approximately unbiased (AU) p value based on multiscale 
bootstrap resampling, and the bootstrap probability value based on ordinary 
bootstrap resampling. The value of p ranges from 0 to 1, indicating how strongly 
each cluster is supported by the measured data, should the number of observations 
increase. Clusters were deemed as stable if the AU p value was above 0.95. The 
influence of sampling errors associated with each p value was also evaluated (Figure 
S12 and Figure S16). To assess the strength of the similarity between antibiotic 
selective pressure profiles and relative ARG abundance profiles across locations, a 
Mantel permutation test was performed.

3.4.2	 Profile determinants
To determine which antibiotics and genes are strongly associated with individual 
sewer locations and constitute important drivers of each profile cluster, a 
principal component analysis (PCA) was performed. Zero-variance profiles were 
excluded from the PCA. Amoxicilin, flumequine, oxytetracycline, roxithromycin, 
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sulfachlorpyridazine and tylosin could not be quantified (<LoQ) during all sampling 
campaigns and at all locations (zero variance), and were thus excluded from the 
PCA. Eigenvalues and variance ratios of each dimension were calculated (Figures 
S18, Figure S19).

3.4.3	 Software 
Data analyses and plotting were accomplished using the packages ‘readxl’, ‘tidyverse’, 
‘corrplot’, ‘factoextra’, ‘boot’, ‘mclust’, ‘pvclust’, ‘ggpubr’ and ‘stats’ and ‘ggplot2’ with 
the statistical software R version 3.6.0 [28].

4.	 Results and discussion

4.1	 ARG abundances
The absolute abundances of ARGs and 16S rDNA were on average 1.7 and 3.5 orders of 
magnitude higher in the 2020 campaigns than in the 2019 pre-screening campaign 
(Figure S8). The absolute ARG abundances ranged from 102 to 108 copies/mL. Samples 
originating from the residential and industrial areas contained high average ARG 
abundances of 55 198 and 10 642 copies/mL, respectively, whereas samples from the 
WWTP effluent basin and rainwater pit had average abundances of 1 456 and 984 
copies/mL, respectively. The observed increase in abundance of ARGs compared to 16s 
rDNA between samples taken in 2019 and May 2020 potentially indicates resistance 
gene enrichment across the sewage system. In September 2020, ARG and 16S rDNA 
abundances were marginally higher than in May 2020.  This suggests a stabilization 
of the total ARG abundance in the sewage by September 2020 [29]. These results 
could imply adaptation of bacterial communities and their genotypic background to 
withstand higher antibiotic exposure [30, 31]. Otherwise, enrichment via co-selective 
processes could be at play due to exposure to other pollutants or selective environments 
[32].  The origin and taxonomy of these bacteria communities were not evaluated in the 
present study but most likely they originate from the human gut. 

The relative ARG abundances varied across wastewater samples from 10-5 up to 2 
copies/16S rDNA depending on the sewer site and time of sampling (Figure 1). The 
highest relative abundances of sul1 and intI1 were found in May 2020 at the main hospital 
outlet (H1) with 2.1 and 1.4 copies/16S rDNA, respectively. Indeed, sul1 and intI1 were the 
most relatively abundant across all locations in May 2020. However, in September 2020 
this dominance shifts in favor of tetW and ermB. . The ermB was only found to be the 
most abundant ARG at the industrial site in September 2020 (0.07 copies/16S rDNA). 
In the same timestamp, the highest relative abundance was associated with tetW in 
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the residential area (0.35 copies/16S rDNA). Gene copy numbers were found to be lower 
than in previous studies for similar water conditions [33-35]. This is in line with the 
restrictive antibiotic consumption in The Netherlands compared to other countries 
[36]. Nonetheless, it is interesting to observe that the relative abundance levels in 2019, 
preceding the COVID19 pandemic, increased in 2020 across locations by more than two 
orders of magnitude. The average log rARG across locations was 0.5, 0.83 and 0.82 for 
the pre-screening, campaign 1 and campaign 2, respectively. It is tempting to consider 
the COVID19 pandemic as a contributing factor, by affecting the typical consumption 
pattern of antibiotics across the population and its gut microbiome makeup [37]. For 
example, at the present hospital, early treatment regimens diverged from standard 
procedures probably out of precaution due to misperceived bacterial co-infection in 
patients on presentation [38], although nationwide antibiotic prescription for common 
infections did not increase [39]. However, the present study was designed unsuspecting 
the upcoming COVID19 crisis, thus the number of assessed locations and timestamps 
does not allow for a reliable interpretation. 

Figure 1. Relative gene abundance. The vertical red line depicts the maximum estimated relative abundance 
in September 2019.
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The most abundant targeted genes across all samples were sul1, intI1 and tetW with 
average relative abundances of 0.19, 0.15 and 0.06 copies/16S rDNA, respectively. 
Notably, intI1 and sul1 were consistently found to be the most abundant in water 
samples from the collection pit, influent, effluent, hospital, nursing home, and 
rainwater well. Relying on 16S rDNA as a proxy for bacterial count, bacteria were 
less abundant in WWTP effluent and rainwater pit samples (106-107 copies/mL), 
than in untreated wastewater (107-109 copies/mL). Abundance of bacteria in hospital 
wastewater was similar to other locations. In accordance with previous studies [40, 
41], intI1, sul1 and sul2 were found to be positively correlated (Spearman’s ρ > 0.83, 
p-value = 10-6) as well as ermB and tetW (Spearman’s ρ = 0.88, p-value = 10-6) across all 
water samples. The strong correlation between intI1 and sul genes further suggests 
that co-selection, in particular of these genes, is plausible [33].

Location-specific ARG profiles across the sewage were grouped into three clusters 
according to their degree of similarity (Figure S11). The first cluster representing 
sites with highest observed abundance (hospital main outlet and student residence 
in September 2020). The second cluster represents sites with lowest abundance 
and therefore comprises all samples collected at the rainwater pit at the WWTP 
effluent basin, but also 2019 samples from the residential and industrial areas. The 
third cluster includes all remaining sampling locations and represents the overall 
contribution of ARGs into wastewater by the urban community at large. The second 
and third clusters were not estimated to be substantially dissimilar (p-value < 
0.95). However, it is acceptable to deem these as distinct groups given their distinct 
makeup, high within-cluster similarities and the exceptional distortion created by 
the inclusion of hospital samples in the same analysis, which inflates the degree of 
similarity between the second and third cluster. These three clusters demonstrate 
that clustering of sampling locations was mainly driven by the source of wastewater 
and less so by the sampling moment suggesting that absolute ARG abundance is 
stable across time. 

4.2	 Measured antibiotic concentrations 
Analytical recoveries of the antibiotics measured in wastewater varied substantially. 
Of the 23 antibiotics quantified in the present study, only 6 showed mean recoveries 
of ≥60% based on positive control experiments in the lab. These were chloramphenicol 
(88%), clarithromycin (64%), flumequine (87%), sulfamethazine (99%), 
sulfamethoxazole (113%) and trimethoprim (60%). While low mean recoveries could 
explain why some of the antibiotics were not measured at any location, including the 
most abundantly used amoxicillin (3%), other antibiotics were measured in relatively 
high concentrations despite their low mean recoveries. Cefuroxime, for example, 
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showed a mean recovery of only 1% even though this compound was measured at the 
overall highest concentration of 39.9 µg/L at the main hospital outlet and 1.3 µg/L 
at the residential area during sampling in May 2020. Similarly, ciprofloxacin (10%) 
was measured at 16 of 20 locations in year 2020 in concentrations ranging from 0.01 
µg/L to 20.4 µg/L. One potential explanation could be the complex composition of 
urban wastewater leading to matrix effects such as ion suppression, which is less 
pronounced in the drinking water-based recovery tests [42]. Overall, this indicates 
that measuring results can be ambiguous, therefore requiring critical assessment 
before use. Furthermore, it supports the utility of complementing empirical 
measurements with modelled estimates. 

Observed antibiotic concentrations in wastewater varied widely (Figure S13). 
Cefuroxime represents the highest measured concentration (39.9 µg/L) at the main 
hospital outlet (H1) in May 2020. Azithromycin, trimethoprim and ciprofloxacin were 
the most frequently detected antibiotics in 84, 67 and 63% of samples, respectively, in 
concentrations up to 21, 13 and 20 µg/L, respectively. Interestingly, the concentration 
values of ciprofloxacin at the student residence showed a substantial increase 
from May 2020 (<LoD) to September 2020 (20.4 µg/L). Doxorubicin was 
recurrently found to occur at the lowest concentrations (between LoD and LoQ). 
Overall, the highest antibiotic concentrations were associated with the main hospital 
outlet. At the WWTP inlet, concentrations for most antibiotics were 1 to 2 orders of 
magnitude lower than at the main hospital outlet, with the exception of azithromycin 
being twice as high. No antibiotics could be quantified in the rainwater pit in any 
of the sampling campaigns. In the WWTP effluent, azithromycin was measured in 
the highest concentrations during both sampling campaigns (0.995 and 1.3 µg/L), 
followed by sulfamethoxazole (0.37 and 0.63 µg/L) and trimethoprim (0.18 and 0.19 
µg/L). Concentrations for azithromycin were 2-3 times higher than in seven other 
European countries, whereas sulfamethoxazole and trimethoprim were similar [43]. 
During wastewater treatment, antibiotics were removed to varying extents (Table 
S5). For the majority of samples, more antibiotics and higher concentrations were 
quantified in September 2020 compared to sewage samples collected in May 2020. If 
the same ciprofloxacin excretion levels continue, the student residence could become 
an important urban source of multidrug resistant bacteria such as ESBL-producing 
Klebsiella sp. [9].

4.3	 Sewer profiling
Antibiotic selective pressure (ASP) (Figure S14) was strongly associated with relative 
ARG abundance (rARG) (Figure S10) across locations (Mantel statistic R = 0.69, p = 
0.002), indicating that the selective potential of antibiotics in wastewater positively 
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correlates with the prevalence of ARGs. The grouping of locations according to 
their profile similarity led to one singleton, a small and a large cluster (Figure 2). By 
inspecting Figure S17, some differences between these clusters can be explained by 
which antibiotics and genes are driving those differences. 

The ASP-rARG profile singleton in Figure 2 represents the profile of the hospital 
wastewater (H1) collected in May 2020 being distinct in its considerably higher 
ASP and rARG than any other sewage location. The main contributors to the high 
ASP were levofloxacin, sulfamethoxazole, trimethoprim, ofloxacin, clarithromycin 
and cefuroxime of which the latter is a hospital-specific antibiotic. Relative ARG 
abundance was mainly determined by sul1, sul2 and intl1. The high ASP indicates 
differences in antibiotic usage in the clinical setting compared with ambulatory care, 
in part associated with the administration of distinct antibiotics (Figure S6), routes of 
intake, higher antibiotic dosages or longer treatment periods. Especially prolonged 
administration could lead to higher exposure of the gut microbiome and, consequently, 
an elevated selective pressure over resistant gut microorganism [44-46].

The small ASP-rARG profile cluster relates to the high similarity between wastewater 
samples from the residential area and the student residence in September 2020. 
Doxycycline, tetracycline and ciprofloxacin seem to have uniquely contributed to the 
antimicrobial promotion of ermB and tetW in wastewater (Figure S17). This indicates 
that excretion and likely consumption of antibiotics was similar at both sites, 
despite the demographic differences. An explanation could be seasonal changes in 
diseases or therapeutic needs possibly influenced by the COVID19 health crisis [38]. 
Lockdown restrictions might explain the observed differences in wastewater sampled 
in September 2020 in comparison with May 2020. However, these explanations are 
speculative and difficult to confirm. 

The large ASP-rARG profile cluster contains most other samples taken. Together, these 
samples were substantially different from the small cluster and the singleton, but an 
explanation for the differences within the cluster is not clear (Figure S17). As expected, 
selective pressure by antibiotics in none of the rainwater samples was apparent.

The distinct ASP-ARG profiles and pollution levels assessed present an opportunity 
to identify emission hotspots and prioritize intervention options to limit ARG 
spread from urban wastewater and the environment. Even though the contribution 
of hospitals to the overall load of both ARGs and antibiotics in WWTP influent is 
typically low [23, 47], hospital wastewater can be an important contributor to the 
enrichment and dissemination of antimicrobial resistance, thus an important target 
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of emission reduction strategies [12]. Within clinical care, these strategies could 
for instance focus on replacing antibiotics with equivalent therapeutic value, yet 
with lower resistance selective ability. Additionally, novel routes of administration 
for antibiotics could limit the development of ARGs in patients [48]. Though still 
under debate, intravenous administration might limit ARG development by causing 
less disturbance of the gut microbiome compared to oral intake and allow a faster 
restoration of the gut microbiome after treatment [49, 50]. Technologically, installing 
advance filtration technologies in the wastewater treatment pipeline [51-53], 
applying biodegradation-based field remediation [54] and following antimicrobial 
stewardship guidelines [55, 56] could further help to reduce ARG emissions from 
hospitals to municipal wastewater. 

4.4	 Total antibiotic selective pressure and gene abundance 
The total antibiotic selective pressure (TASP) and total antibiotic-resistance gene 
relative abundance (TARG) at each sewer location were calculated solely based on 
consumption data (Figure S20). Estimated loads for benchmarking compounds 
sulfamethoxazole and trimethoprim were within a 4-fold deviation from measured 
loads at the hospital, collection pit and WWTP influent (Figure S7), suggesting that 
consumption-based excretion estimates offer a reasonably reliable alternative for 
sewer measurements. 

The values of TASP and TARG were most extreme at the hospital and rainwater 
pit. Hospital wastewater showed the highest values for TARG (1.8) and TASP (5.5), 
whereas rainwater showed the lowest values for TARG (0.02) and TASP (0). For all 
other sampling locations, TARG values ranged from 0.06 to 0.26 and TASP values 
from 0.41 to 0.95 (Figure S20). Only at the nursing home, TASP is higher than at 
most locations (2.1), yet the TARG is not necessarily greater (0.18). The high TASP 
at the nursing home is not directly related to higher consumption of antibiotics by 
its inhabitants because half of them use diapers implying the discard of excreted 
antibiotics and ARGs via municipal solid waste. Instead, the group of non-
inhabitants outnumber the inhabitants by a factor of 3.8. Both the use of diapers 
by inhabitants and the age distribution of non-inhabitants were considered when 
calculating the TASP. Consequently, the age group 45-64 is the largest contributor 
to wastewater even when accounting for the limited time non-inhabitants spent 
working, volunteering or visiting at the nursing home and despite the higher per 
capita consumption of inhabitants (>74 age group, see Figure S5). 

Ciprofloxacin and amoxicillin accounted for 92-97% of the TASP. Ciprofloxacin 
contributed the most to TASP (60-77%), due to its low predicted no effect 
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concentration for selection of resistance (64 ng/L). Even though estimated amoxicillin 
loads in wastewater were four to nine times higher than loads of ciprofloxacin, due 
to the higher PNEC (250 ng/L) of amoxicillin it contributes less (18-34%) to the overall 
TASP than ciprofloxacin. At the hospital, excretion of amoxicillin and cefuroxime 
were similarly high, but contribution to TASP was still higher for amoxicillin (18%) 
than for cefuroxime (4%) due to the different resistance PNECs of both antibiotics 
(250 and 500 ng/L respectively). This shows that intervention measures targeting 
specific antibiotics could reduce selective pressure in wastewater and the sewer 
system substantially. However, it remains unclear if reducing TASP would directly 
decrease TARG as the summed selective pressure exerted by antibiotics was not found 
to be correlated with total ARG relative abundance. This observation deviates from 
relationships previously found between particular antibiotics and ARGs (e.g. [34]).  

Genes sul1 and intl1 were the greatest contributors to TARG with a combined 48% 
(student residence and industrial area) to 93% (hospital). Both genes were the most 
abundant across all locations, with the exception of tetW in wastewater from the 
student residence and residential area representing 29% and 30% of the total relative 
gene abundance, respectively. Gene ermB contributed the least to TARG ranging 
from 0.3% (EF) to 17% (industrial area). The industrial site showed the second lowest 
TARG among the sampling locations, but the targeted ARGs contributed evenly to 
TARG (14% tetW to 24% sul1 and sul2). The ubiquity of intl1 and sul1 suggests that 
regardless of the selective ability of the antibiotics present, the abundance of these 
genetic sequences might be less informative as previously suggested. Alternatively, in 
support of the approaches used in the present study (see Section 3.3), assessing gene 
abundance ratios is potentially more informative by means of better discriminating 
ARG pollution signatures between locations.

WWTP treatment reduced TARG by 65%. In absolute numbers, bacteria abundance 
(16S rDNA) was reduced to a lesser extent (1.7 to 1.8 log units) than targeted ARGs (1.1 
to 3.4 log units). ErmB and tetW were better removed (3.2 to 3.4 log units, respectively) 
than intl1, sul1 and sul2 (1 to 1.8 log units). These values are comparable to those found 
at other Dutch WWTPs for the same genes [21, 35].

4.5	 Implications for research and policy 
The present study highlights the role of hospitals in the proliferation of ARGs within 
an urban sewer catchment [57]. Even though on city-scale the absolute consumption 
of antibiotics in clinical healthcare is much smaller as compared to ambulatory 
consumption (Figure S6), continuous excretion to hospital wastewater results in a 
markedly different composition in terms of ARGs and antibiotics compared to other 
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sampling sites. As of recently, humans consume for the first time higher amounts 
of antimicrobials than food-producing animals [58], thus anthropological impacted 
wastewaters are likely to remain a key contributor to the emission of antibiotics 
and ARGs. Furthermore, tackling antimicrobial resistance is slowly gaining political 
momentum, raising awareness and stimulus for similar scientific research to be 
intensified [59-61].

The profiles of antibiotic selective pressure and relative antibiotic-resistant gene 
abundance identified in the present study are potentially comparable to other 
European urban sewer catchments. For example, Nijmegen is representative of a 
typical medium-sized city with similar demographics and health care facilities, the 
antibiotic consumption differences between Dutch regions are marginal (https://
vzinfo.nl), diseases are generally treated with antibiotics belonging to the same 
therapeutic group, and the human core microbiome is highly consistent in Europe [62] 
with medication strongly associated with microbiome variations [63], and the sewage 
system evaluated in the present study is analogous to other European cities [64].

The COVID19 pandemic affected the ambulatory prescription and clinical usage of 
antibiotics in The Netherlands. While antibiotic consumption by the public decreased 
by 10.5% in 2020 [65], clinical usage increased by 8.2% between 2019 and 2020 [66]. Our 
results highlight that even short-term changes in the therapeutic regimen prescribed 
in hospitals can translate into shifting ARG patterns in hospital wastewater (Figure 
1 and Figure S10). For example, higher relative ermB abundance at the main hospital 
outlet (H1) observed in September 2020 compared to May 2020 could be explained by 
the substantially higher (24-29%) oral consumption of macrolides between July and 
September compared to May 2020. This suggests that intervention measures tackling 
the spread of ARGs would be most effective at the source of the problem, i.e. reducing 
antibiotic consumption and preventing ARGs from entering municipal wastewater 
[67]. On-site treatment of hospital wastewater has been shown to effectively decrease 
ARG abundance not only at the hospital outlet itself but also at the receiving WWTP 
[68]. This suggests that decentralized wastewater treatment at emission hotspots 
specifically targeting ARGs and antibiotics could improve surface water quality 
under dry weather flow and occasionally during extreme weather events.

Sewer systems could act as breeding grounds for ARGs, thus any direct release of raw 
wastewater to the environment might pose a risk to public health especially when 
water streams are small and used for recreation [69, 70]. Consequently, combined 
sewer overflows [71, 72], particularly if located downstream to a hospital outlet, and 
sewer leakages require special attention by local water managers. In some cases, 
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these routes can be temporally more important as compared to WWTP effluent [73]. 
For example, one fifth of sewage pipes in Germany exfiltrate generated wastewater, 
with the highest estimated exfiltration rates occurring in urbanized regions [74]. This 
renders the possibility of groundwater contamination due to sewer leakage, further 
justifying the need to investigate the prevalence of sewerage antibiotics and ARGs. 
More generally, research into the spread of ARGs to the environment could take 
advantage of wastewater surveillance systems installed at many WWTPs worldwide 
to monitor COVID-19 prevalence. Expanding global wastewater monitoring efforts to 
include ARBs and ARGs, as to assess potentially relevant wastewater parameters like 
temperature [75] could improve mechanistic understanding of ARG proliferation. 

In an international context, this study emphasizes the role of health care in general 
and hospitals in particular, in achieving the goals of the antimicrobial stewardship 
[36, 76]. The Netherlands are forerunner in terms of restrictive use of antibiotics 
having for years in a row one of the lowest prescription rates among European 
countries. Thus, it is conceivable that current antibiotic selective pressure and 
antibiotic-resistance gene relative abundance in other cities’ wastewater are higher. 

The present study advances our understanding of urban emissions of pharmaceuticals 
and ARGs and its potential impact on receiving environmental surface waters. 
Additionally, it emphasizes the unique advantages of characterizing urban emission 
hotspots while considering the diverseness of human activities and population 
composition. Ultimately, the present study offers supporting information to help 
guide further research and targeted emission reduction strategies by local, regional 
and national decision-makers, particularly from the health care sector.

4.6	 Supporting information
Information on sampling locations and experimental set-up; analytical information 
on ARG primers and chemical analysis; information on WWTP characteristics 
including observed removal efficiencies for antibiotics; information on method and 
results of emission estimation of antibiotics; additional results for ARGs, antibiotics 
and data analysis.
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1.	 General Discussion

Human health and environmental risk assessment of pharmaceuticals underwent 
important scientific and regulatory developments, namely from a mostly unexplored 
subject to an increasingly active scientific research field (Halling-Sorensen et al., 
1998; Kumirska, 2020; Vasquez et al., 2014), and from a non-legal requirement 
to regulatory guidelines on how to conduct risk assessments for new medicinal 
products (European Medicines Evaluation Agency, 1996; European Medicines 
Evaluation Agency, 2006). However, risk assessment of pharmaceuticals remains 
underdeveloped and of limited applicability (Agerstrand et al., 2015; Kittery and 
Miettinen). Risk estimates of pharmaceuticals are strongly dependent on reliable and 
relevant direct toxicity information, which is often sparse and scarce. In addition, 
risk assessments frequently neglect potentially determining spatiotemporal and 
behavioural factors. The modernization of risk assessment requires ongoing 
investigating and plasticity to accommodate the ever-growing complexity of 
integrating direct and indirect effects (Miettinen and Khan, 2022; Vignali et al., 
2022). Great attention has recently been given to the development of antimicrobial 
resistance in the natural environmental, as a critical indirect effect of pharmaceutical 
pollution. The findings of the present dissertation, i.e., which risks pharmaceuticals 
pose to human health, ecosystems and antibiotic resistance development, are further 
integrated and discussed here.

Three main observations stand out from the results presented in this dissertation. 
First, pharmaceutical residues in the transboundary Vecht River are potentially 
affecting the aquatic community, whereas human health effects are unlikely 
(Section 6.1.). Second, antimicrobial resistance correlates with environmental 
pharmaceuticals in wastewater, surface water and sediment on both a global and local 
level (Section 6.2.). Third, risk assessment principles supported by mathematical and 
statistical modelling are a powerful approach to support decision-making in cases 
where the available data are limited and the circumstances are site-specific (Section 
6.1. and Section 6.2.). In the overwhelming absence of data, the best use of existing 
data is warranted. Anchored to empirical data, statistical models may improve the 
assessment of human health and ecological risk of pharmaceuticals. These main 
observations are further discussed in the proceeding subsections.

1.1	 Risk assessment of pharmaceuticals
1.1.1	 Riverine ecology under harmful stress
European regulation demands that national and regional authorities take action 
in securing water bodies' good quality status. In Chapter 3, we performed a 
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comprehensive ecotoxicological risk assessment on the Vecht River catchment. 
Our exposure assessment was based on validated model outputs representing a 
static hydrological situation over time, and our effect assessment was based on a 
thorough collection and evaluation of recent ecotoxicological studies. Ultimately, 
it allowed the creation of detailed, spatially explicit ecological risk profiles of 
APIs in the transboundary Vecht River catchment under 2 different seasonal flow 
scenarios. In our study, 24 to 53% of the river’s length was estimated to be under 
potentially unacceptable ecological risk, particularly during a dry summer season. 
It was estimated that under average flow conditions, carbamazepine, diclofenac, 
and 17α-ethinylestradiol are systematically above safe ecological concentration 
thresholds in at least 68% of the Vecht River catchment's water volume. Under dry 
summer conditions, safe concentrations are further exceeded up to 98% of the water 
volume. Erythromycin was also estimated to show concerning risk levels (RQ > 0.1) in 
dry summer conditions but to a lesser extent (17%). The resulting risk estimates are 
worrisome considering the potential unacceptable ecological risk (RQ > 1) associated 
with unassessed and pharmacologically-similar APIs. Despite the local and regional 
focus of our assessment, the findings are comparable with studies conducted at 
other locations. In a study on watersheds with distinct land-cover characteristics 
and range of WWTP effluent discharge, Pronschinske et al. (2022) found that 
pharmaceutical prevalence is larger during low-flow conditions than in high flow 
conditions. Furthermore, a substance identified in our study to be systematically 
above the safe threshold, carbamazepine, was also classified as a high-priority 
pharmaceutical pollutant in water research and management.

To the best of our knowledge, this work constitutes the most up-to-date 
ecotoxicological risk assessment for the Vecht River catchment. As in other 
environmental risk assessments, some limitations must be mentioned: (1) the 
assessment did not account for potentially relevant non-human emission sources 
(e.g., livestock production systems), (2) the assessment relies on the quality of the 
underlying empirical data and assumptions, resulting in variability and uncertainty 
in the final risk predictions (Holmes et al., 2022), and (3) it requires continuous 
revision of input data to accommodate the latest evidence on pharmaceutical 
consumption, environmental fate and ecotoxicology. In addition, in our study acute 
toxicity data have been excluded. However, it incrementally limits the maximal use 
of what already is a scarce number of ecotoxicity information in our risk assessment. 
According to Posthuma et al. (2019), it is acceptable to extrapolate acute toxicity 
endpoints (i.e., EC50) to chronic toxicity endpoints (i.e., NOEC) applying a scheme of 
multiplication or division factors of 1 to 10. Hiki and Iwasaki (2020) argue that acute 
data may be similarly used to directly derive chronic hazardous concentrations for 5% 
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of species (HC5) by simply multiplying by a factor of 0.1. This would be a particularly 
pragmatic approach; however, pharmaceuticals’ specific mode of action may differ 
between types of exposure (acute, chronic), concentrations (low, high), organisms 
(mammals, invertebrates, plants), and pharmaceutical residues are mostly data-poor 
on ecotoxicity information (Christen et al., 2010; Sengupta et al., 2013). 

Despite its limitations, the presented assessment is useful to local water managers 
by providing the most reliable local-specific risk profiles of pharmaceutical 
residues in a typical European transboundary river. To put it in perspective, 44% 
of river locations globally are expected to have ecotoxicological effect-inducing 
concentrations of pharmaceuticals (Bouzas-Monroy et al., 2022). Our work 
highlights the importance of assessing off-site risks of pharmaceutical emissions 
using (sub-)catchment modelling across national borders, therefore emphasizing 
the urgent need for international cooperative behaviour and good water governance 
(Baranyai, 2019; OECD, 2018). Although transboundary waters account for 60% of 
the world’s freshwater flows and 153 countries have territory within at least one 
transboundary river, only 24 countries report that all their transboundary river 
basins are covered by cooperative arrangements (UN-Water, 2021). Ultimately, these 
results should encourage further cross-boundary action from local authorities 
to comply with environmental standards via feasible and local-to-international 
relevant risk management strategies. Otherwise, in view of the implementation of 
the WFD and the ‘upstream-downstream’-interdependencies between Germany and 
The Netherlands, risk reduction implementations in shared international riparian 
networks may not be sufficiently effective.

1.1.2	 Human behaviour may worsen pollution effects
In Chapter 2, human toxicological risks estimated from direct toxicity associated 
with the lifetime exposure to pharmaceutical residues in the Vecht River catchment 
were largely negligible. Similar observations in major river basins worldwide 
have been made (Cunningham et al., 2010; Dai et al., 2021). Most individuals 
in contact with Vecht River water are far from exceeding acceptable risk levels 
(10−9 < HQ < 10−2). Risks were estimated to be strongly dictated by pharmaceutical 
environmental concentrations, followed by human behavioural differences. Under 
normal environmental circumstances, pharmaceuticals seem to pose a negligible 
health risk. However, extreme conditions, such as long-term daily exposure to highly 
contaminated sites in the Vecht River, pose potential health risks (1.3 < HI < 2.6), 
particularly via fish consumption. Despite the improbable occurrence of such 
conditions and the probable overestimation of risk, these exposure scenarios aid 
the identification of key exposure-contributing factors, including risky behaviours. 
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Furthermore, studies assessing a wider set of pharmaceuticals in relatively 
high contaminated locations worldwide, too suggest that human health could 
be potentially at risk under extreme conditions (Dong et al., 2019; Sengar and 
Vijayanandan, 2022). This information is also relevant for risk reduction in the 
context of water emergency preparedness and response planning. 

We have estimated that higher pharmaceutical intake occurs via fish consumption 
over drinking water, which has also been previously suggested (Dai et al., 2021). 
The low risks expected from pharmaceutical intake via drinking water consumption 
estimated in the present study is supported by other studies (Houtman et al., 
2014; Khan et al., 2016; Zainab et al., 2020). However, it should be kept in mind the 
insufficient improvements in the quality of drinking water sources in recent years 
in the Netherlands, which could lead to more than half of the sources to face quality 
or quantity problems in the future(van Driezum et al., 2021; Wuijts et al., 2018). 
In fact, the top 10 substances found in Dutch surface water abstraction sites were 
shown to be mainly pharmaceuticals, often at concentrations larger than 0.1 µg/L. 
Uptake of pharmaceuticals via the skin during swimming activities was not found 
to be of particular concern in the long-term. Yet, higher exposure levels during 
acute exposure events and exposure to substances with high skin permeability 
may deserve further investigation. Furthermore, in addition to the direct effects 
of pharmaceutical exposure, indirect effects of antibiotics such as antimicrobial 
resistance infections, should also be thoroughly investigated (Graham et al., 2014). 
This may be of particular interest considering that quality of inland surface water 
in The Netherlands is among the lowest in the EU, with 1 in 20 bathing waters 
having ‘poor’ quality compared with 1 in 200 in Germany (European Environment 
Agency, 2021). In fact, it has been estimated that almost 1 in 10 bathing sites in 
the Vecht River catchment, exceeds the threshold for good bathing water quality 
(van Heijnsbergen et al., 2022). Of note, these bathing water quality criteria are 
reliant on two parameters of faecal bacteria, disregarding the impact of many 
pollutants of potential concern, such as pharmaceuticals (European Commission, 
2021). When prioritizing resources to estimate human health risks, we recommend 
that water managers collect basic information on (1) the consumption of fish from 
sites downstream of WWTP facilities, and (2) the consumption and environmental 
releases of diclofenac, doxycycline, or compounds with similar permeability and 
bioaccumulation potential (Zhu et al., 2022).

To the best of our knowledge, we performed the most detailed site-specific human 
health risk assessment on the transboundary Vecht River basin up to now. Moreover, 
we have uniquely integrated human behavioural archetypes and features, with 
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environmental exposure conditions of varied complexity (Woodruff et al., 2023). 
This allowed for more accurate estimates of age-stratified and lifetime health risks 
posed by pharmaceuticals in the water environment. A critical consideration is 
that our model does not provide clues about the effects of acute exposure (short-
term, high concentration), e.g. during storm water overflows. This may imply an 
underestimation of risks by our model, despite some conservative assumptions. 
Some studies have used probabilistic methods to explicitly account for and quantify 
uncertainty and variability of exposure parameters into final risk estimates 
(Oldenkamp et al., 2016; Xu et al., 2021). This approach provides valuable scientific 
information, formalizes inherent stochasticity of chemical exposure events and 
can identify unsuspecting sources of uncertainty. However, probabilistic results 
are often hard to frame into decision-making, thus the practical utility for non-
experts is not immediately obvious. Our assessment provides a relatively simple 
deterministic exposure model, which can more easily be interpreted and adopted by 
diverse stakeholders, such as water managers and regulators. Still, the assessment 
could be improved or repurposed for the inclusion of other relevant factors 
(Vandenberg et al., 2023). For example, our model accounted for pharmaceutical 
co-exposure, but potential interactive mixture effects with other pollutants classes 
were ignored (Riviere and Brooks, 2011). Our assessment did uniquely evaluate 
how human behaviour contributes to increased exposure of particular groups of 
individuals but such considerations about typically vulnerable subpopulations was 
not assessed in detail (e.g., lactating women). The assessment was performed on 
pharmaceuticals representing diverse therapeutic classes and of key medicinal 
relevance, but it neglected other potentially pertinent APIs, metabolites and 
environmental transformation products. Our assessment was based only on 
measured pharmaceutical concentrations in an attempt to provide well-founded 
risk estimates, but technical limitations (e.g., limit of quantification) prevent a full 
account of the number and concentrations of pharmaceutical residues. Lastly, we 
have derived reference levels for ‘safe’ exposure, such as Internal Safe Dose (ISD) 
values, using accessible reference dose (RfD) values from the public domain and 
scientific literature. A RfD is used as an exposure reference level, often based on a 
no-observed adverse effect level (NOAEL) as point-of-departure and divided by a 
‘safety’ factor (Galli et al., 2008). However, most RfD values were pharmacologically-
based, i.e., based on therapeutic effects. This is not a measure of toxic adverse side 
effects and can overlook the onset of early biological effects which may occur at 
lower concentrations (Brehm and Flaws, 2019; Fent et al., 2006; Vandenberg, 2014). 
Furthermore, safe reference levels are mainly based on adult life stage research. 
A correction for intraspecies sensitivity differences is generally applied but is not 
always sufficient, particularly for young children with distinct metabolic systems 
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(Dorne, 2010). Safe reference levels can vary widely depending on the derivation 
procedure, selection of population and health endpoints, and their perceived 
uncertainty (Kumar et al., 2010). Ultimately, the limitations mentioned above affect 
the adequacy of human health risk assessments.

1.1.3	 Risk assessment shackled to ecotoxicity databases 
The predicted no-effect concentrations (PNECs) derived in Chapter 3 are among the 
most thorough and up-to-date values accessible in the public domain, which risk 
assessors and other stakeholders can benefit from. Risk quantification is typically 
predicated on an exposure-to-effect ratio, derived from empirical toxicity studies. 
Reference values, such as PNECs, provide valuable information to set up values that 
can be pragmatically used by risk assessors and more easily understood by non-
experts. However, this dependency on comprehensive empirical studies and the 
adequacy and accessibility of ecotoxicity data poses a major limitation in prioritizing 
pharmaceuticals for preventive actions (Pronschinske et al., 2022). For example, 
Gunnarsson et al. (2019) stated that 88% of drugs targeting human proteins do not 
have comprehensive environmental toxicity data. The reliability and relevance of 
ecotoxicity studies is often not evaluated. When evaluating a study, it is hard to 
discern if a study is poorly reported or has a flawed design. Therefore, it is of critical 
importance that authors, particularly those conducting experimental ecotoxicity 
studies, use quality reporting criteria such as CRED to improve consistency of 
risk assessments (Moermond et al., 2016). More rigorous reporting requirements 
in scientific journals could help improve the reporting quality of peer-reviewed 
ecotoxicity studies. In some journals this is already common practice, e.g., the 
Minimum Information for Publication of Quantitative Real-Time PCR Experiments 
(MIQE) guidelines (Bustin et al., 2009), and failing to comply may justify the rejection 
of manuscripts for publication (Lowry et al., 2020). In fact, an example is presented 
in Chapter 5.

Continuing efforts are being made to create reliable, relevant and publicly accessible 
ecotoxicity databases. However, despite the critical impact of such data sources, 
it became obvious during our study that similar risk assessment exercises are 
vulnerable to numerous hurdles and biases (Agerstrand et al., 2015). For example, 
one of the most recent databases is EnviroTox (Connors et al., 2019), a promising 
source of high-quality aquatic toxicity data. However, there is limited access 
to the curation process, as the method used as framework for the data selection 
and curation (Beasley et al., 2015) is behind a $42 paywall. Databases used in 
our research, including the “authoritative” ECOTOXicology Knowledgebase, 
are publicly accessible (Olker et al., 2022). However, this does not mean that the 
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underlying study references, such as peer-reviewed scientific papers and privately 
owned reports, are openly accessible to public scrutiny. Furthermore, ecotoxicity 
databases are often duplicated and subjected to diverse data curation steps and 
experts’ value judgements, which may lead to lack of trust on any single dataset or 
faulty assumptions about their completeness and reliability (Mie and Ruden, 2022). 
Consequently, this can have a drastic impact on the outcome of a risk assessment, as 
highlighted in Chapter 3 and by the ongoing disagreements about the evidence used 
in ERAs (Brock et al., 2021; Gunnarsson et al., 2019; Holmes et al., 2022). Therefore, 
it is fundamental to create a global, fully accessible, and comprehensive raw database 
in the public domain under decentralized control. I think that applying modern 
public distributed ledger technology to circumvent the abovementioned critical 
limitations, for example through the creation of a blockchain-based ecotoxicity 
database, could be an interesting solution to a long overdue open science problem 
in the regulatory environmental risk assessment field (Brock et al., 2021; Martin 
et al., 2019; Mohammadipanah and Sajedi, 2021; Van Norman, 2016; Vazquez et 
al., 2022). This could be accompanied by advanced (meta)data preservation, while 
following FAIR principles (Wilkinson et al., 2016), which would include information 
on provenance, circumstances of the production, identifiers, integrity, authenticity, 
fixity and rights. Current attempts are being made to consolidate the representation 
of (meta)data in various fields, e.g., genetics (The Gene Ontology Consortium, 2019), 
ecology (Jones M.B., 2019), geospatial science (ISO), and media resources (W3C, 
2012). Hopefully, environmental risk assessment is next in line.

1.1.3.1	 Diclofenac
The most concerning pharmaceuticals in our human risk assessment were identified 
to be doxycycline, diclofenac and ciprofloxacin (Chapter 2), whereas in our 
environmental risk assessment the most concerning pharmaceuticals were identified 
as being 17α-ethinylestradiol, carbamazepine and diclofenac (Chapter 3). The 
environmental risks of the antibiotic doxycycline could not be determined due to the 
absence of ecotoxicological studies conducive to the estimation of environmentally 
safe threshold values (e.g., PNEC). As a result, it is apparent that diclofenac stands 
out from our assessments as the pharmaceutical of greater concern for both humans 
and wildlife. 

A PNEC provides an important step in the derivation of an EQS and is sometimes 
identical to the EQS, for example, if the EQS is equal to the quality standard for 
freshwater ecosystems (QSfw, eco). In some cases, this is due to the same estimation 
procedure of Annual Average Quality Standards for freshwater ecosystems (AA-QSfw, 

eco) and PNEC (European Commission, 2018). In 2012, an AA-EQS for diclofenac in 
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freshwater of 0.1 µg/L was proposed (European Commission, 2012). In 2018, a value 
of 0.05 µg/L was proposed. Currently, in 2022, an updated value of 0.04 µg/L is being 
considered (Maack et al., 2022). In our study, we proposed a more conservative value 
of 0.01 µg/L, two times lower than the lowest chronic PNEC reported in other studies. 
The trend towards a lower diclofenac PNEC at the EU level increases our confidence 
in the relevance of the PNEC derived in our work. In our assessment, the variation in 
PNEC values originating from different sources is not very large, whereas for other 
pharmaceuticals, PNEC values varied up to almost 106 (e.g., EE2, see Chapter 3). 
However, other authors argue in favour PNEC derivation methods leading to higher 
PNEC values for diclofenac (Leverett et al., 2021). This illustrates the sensitivity of 
PNEC estimation to data availability and methodology. The resulting variation in 
PNEC values for the same substance reflects the lack of consensus among scientists, 
leaving risk estimation more vulnerable to biases, delayed risk management 
decisions and inadequate protection of the environment. 

At the time of writing of the present dissertation, interestingly, the new proposal 
by the European Commission for a revised Urban Wastewater Treatment Plant 
(UWWTP) Directive, requires diclofenac, among other pharmaceuticals, to be 
monitored and a minimum of 80% removal for quaternary treatment of discharges 
from all UWWTP of ≥100 000 population equivalent (European Commission, 2022c). 
This recent policy development reiterates the timely relevance of our research. 
Identifying diclofenac as a pharmaceutical of great concern in our assessments is not 
to say it is the pharmaceutical of greatest concern for humans and the environment 
at large. In fact, considering the universe of hundreds of pharmaceuticals 
residues prevalent in the environment, the present dissertation does not qualify 
as sufficiently representative. However, it motivates action via prioritization in 
determent of management paralysis due to the great uncertainty and analytical 
limitations (e.g., limits of quantification). Furthermore, it supports the hypothesis 
that the majority of expected ecotoxicological effects are due to the minority of 
pollutants (Backhaus, 2014). Importantly, our studies did not evaluate the effects of 
pharmaceutical metabolites and other transformation products, which may be an 
important contributor to overall toxicity (UBA, 2022). Parent pharmaceuticals can be 
modified in the liver, in the gut, in the sewer, in the WWTP and in the environment. 
Their inclusion in risk assessment has been long been suggested (Lienert et al., 
2007), yet the ecotoxicity profile of these metabolites and transformation products 
remains vastly unknown (Maculewicz et al., 2022). The main focus of researchers, 
risk assessors and regulators has been on APIs and ‘one product – one assessment’ 
in the European medicines marketing authorisation procedure. However, this may 
well reveal to be a critical oversight considering the much larger and diverse set of 
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same-API deriving substances and pervasiveness of APIs across medicinal products. 
It has long been suggested at least 25 years ago, to take into account not only 
consumption of a product undergoing the marketing authorization procedure but 
all products containing the same API or which result in the same active metabolites 
(Henschel et al., 1997). A broader case could be made to include unlicensed API 
preparations, commonly used in regular Dutch clinical practice by the hundreds 
to meet medical needs (de Wilde et al., 2018). There has been growing consensus 
that the pharmaceutical and chemical risk assessment frameworks should move 
towards a ‘one substance – one assessment’ (van Dijk et al., 2021), yet regulatory 
implementation remains to be seen. 

1.1.4	 Prospective risk assessment: premise to promise
In a retrospective risk strategy, one can only choose to adopt responsive actions 
when faced with unavoidable past exposure events (reactive approach), whereas in a 
prospective risk strategy, one can also choose to adopt anticipatory actions to avoid 
future exposure events (proactive approach). Risk quantification is often the result 
of a reactive approach (action in response to), from which an exposure-based Hazard 
Quotient (HQ) is estimated. In Chapter 2 we repurposed the HQ as a target risk 
value (HQt) in a proactive approach (action in anticipation to), from which protective 
exposure limits are derived (Figure 1). The latter can be of particular interest to water 
managers in search of pragmatic tools for risk prevention, mitigation, or reduction. 
Thus, we have also rearranged our exposure model in light of risk acceptance criteria. 
For example, by rearranging our exposure model we demonstrated that the maximum 
acceptable pharmaceutical concentration in surface water can be estimated once 
the amount of its fish consumed by a target human population is established, or 
vice versa. This way, specific protective exposure limits are derived from an HQt 
in anticipation to exposure events, contrasting with the typical derivation of HQ 
values from exposure data. This sort of demonstration strengthens the case in 
favour of further advancing prospective risk assessments using locally relevant 
models, and support the application of the ‘precautionary principle’ detailed in EU 
primary law and supported by experts (European Commission, 2016). Unfortunately, 
there are numerous cases of a lack of proactive and precautious behaviour, despite 
early warnings, to prevent harm to human health and the environment (European 
Environment Agency, 2001). For example, the WFD suggests the use of retrospective 
environmental risk assessments, for example, to determine EQSs. However, this 
approach is predicated on a reactive attitude towards adverse effects that already 
occurred. The EMA guideline details the use of prospective environmental risk 
assessments, which have also failed in several occasions by often underestimating 
the actual occurrence of substances, although, conceptually, the retrospective and 
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prospective approaches should have the same outcome (Knacker et al., 2008). The 
bounded use of retrospective rather than a prospective approach in the WFD may be 
a contributing factor for its limited ability to reduce river basin pollutant emissions 
(Undeman et al., 2022). The Netherlands has the lowest water quality status ranking 
in the EU and, under increasing conflicts among some stakeholders, will likely 
fail to comply with the WFD by the third round of river basin planning deadline 
in the year 2027 (van den Brink G., 2022; Wiering et al., 2020; Wuijts et al., 2018). 
In Germany, the situation is not as critical but there are also no appropriate legal 
instruments enforcing the compliance to risk mitigation measures intended to 
improve environmental protection by capping or reducing risks of pharmaceuticals 
(Liebig et al., 2014). Retrospective and prospective assessments can certainly be used 
together within a weight-of-evidence method (Diamond et al., 2018). Nevertheless, 
this does not contravene the particular need to improve the quality of prospective 
approaches if we ought to further reduce risk uncertainty and achieve strategic 
environmental goals (Oldenkamp et al., 2022). This can be aided through the use of 
statistical modelling, full public disclosure of monitoring and ecotoxicity data, and 
balanced risk management contingency plans.

Figure 1. Risk assessment approaches for human and environmental protection. Case A, illustrates a case 
of responses towards an incurred/ongoing environmentally harmful event, namely retrospective (assess 
incurred harm) and reactive approaches (act upon incurred harm). Case B, illustrates a case of responses 
towards a potential environmentally harmful event, namely prospective (assess potential harm) and 
proactive approaches (act upon potential harm).

1.2	 Environmental dimension of antibiotic resistance
The environmental dimension of antimicrobial resistance of pathogens is increasingly 
recognized as a worrying indirect effect of antibiotic pollution. However, mechanistic 
understanding of resistance development is poor and basic knowledge scaffolding 
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setting a framework for a risk assessment guidance is missing. Furthermore, the 
early underpinning of the most relevant urban emission sources of antibiotic 
resistance genes and their prevalence across sewer wastewater can yield important 
insights on the parallelism between antibiotic and gene contamination.

1.2.1	 Resistance genes under selective pressure by antibiotic pollution
In Chapter 4 we suggest that in the global natural environment, the total relative 
abundance of ARGs (TARG) is related to the joint selective pressure of antibiotics 
(TASP) and environmental matrix. Considering the complex biological mechanisms 
involved in community-wide antibiotic resistance development, it is interesting to 
attest that only two factors were able to capture up to 17% of the variance observed 
in gene abundances at the global scale. This indicates that the variability engrained 
in the environmental samples appear to be explained by a surprisingly low number 
of factors. Furthermore, our model was able to interpolate TARG estimates within 
a factor of 10 of the observed TARG values (Figure 2). This demonstrates that 
statistical modelling provides an important tool to overcome the current lack of 
mechanistic understanding of AMR in the environment and can contribute to the 
early-development stages of AMR risk assessment. However, it should be noted that 
for equal selective pressure values, the gene abundance still varies considerably, 
which calls for careful interpretation of extrapolations and for further research. 
Nonetheless, this demonstrates the promising utility of statistical modelling in 
facilitating first descriptions of global dynamics between replicative biological 
material such as DNA, and chemical substances like pharmaceuticals. It is more 
reasonable to think that high levels of resistant genes could be a consequence of 
selective pressure than the other way around. Such directionality supports the notion 
that antibiotic concentrations might play a significant role in the global resurgence 
or maintenance of certain genes in microbial populations. Moreover, different 
communities under identical selective pressure might undergo evolutionary selective 
pathways with unanticipated resistance profiles. 

In the natural environment, more often than not, antibiotics occur at very low 
concentrations over extended periods of time and space. The type of environmental 
compartment (i.e., surface water, sediment, and wastewater) was found to exert 
significant influence of varying magnitude in the level of TARG. This can create 
conditions that selectively favour resistant phenotypes (Cho et al., 2020; Hughes 
and Andersson, 2017). In fact, our results indicate that rapid increases of ARG 
abundance occur at lower ranges of cumulative antibiotic selective pressure, whereas 
it tends to plateau at higher ranges. This suggests that sub-inhibitory conditions 
may generally be more favourable the (co-)selection of ARG than supra-inhibitory 
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conditions. Shun-Mei et al. (2018) suggest that sub-inhibitory concentrations are also 
associated with higher conjugation frequency. To a certain degree, the presence of 
antibiotics can even provide subsistence to a set of phylogenetically diverse bacteria 
(Dantas et al., 2008). Weak selection and constant selective pressure of antibiotics 
can facilitate high-level resistance (Wistrand-Yuen et al., 2018). However, it remains 
unclear how long and short-term exposure events affect the relationship between 
TASP and TARG.

Figure 2. TARG values estimated at group-level, i.e., conditioned on the random effects. Solid line 
indicates the identity line (adjusted R2 = 0.87) and dashed lines indicate ten-fold margins. Blue circles 
depict surface water; brown circles, depict sediments; purple circles, depict wastewater.

1.2.1.1	 Surface waters
Surface waters exhibited the lowest baseline levels of resistance genes, likely due 
to its hydrological characteristics. Lower levels of ARGs are expected to be found in 
this compartment, since suspended biological material, nutrients and antibiotics are 
prone to be diluted, transported elsewhere or deposited. The level of anthropogenic 
impact heavily influences the abundance of ARGs in waterways (Jiang et al., 2018; 
Proia et al., 2018; Pruden et al., 2012). In Chapter 5, distinct local anthropogenic 
influences at a city-wide scale were explored in more detail, including TARG and 
TASP values, in treated wastewater effluent. The heterogeneity of surface water 
across the globe was also observed in our analysis, as surface water showed the 
greatest ARG abundance variation in comparison with sediments and wastewater. 
ARGs seem to persist in surface water samples for extended periods of time even 
after substantial reductions in antibiotic use (Christaki et al., 2020; Stoll et al., 
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2012). This is an interesting observation that supports the weak selection pressure 
hypothesis via sub-inhibitory concentrations. Weak selection at sub-inhibitory 
concentrations has been conceived as a plausible process for decades despite the 
lack of evidence. However, this phenomenon has recently been demonstrated and is 
gaining attention beyond the medical and microbiology fields (Bottery et al., 2021; 
Spagnolo et al., 2021). In particular, scientists are ramping up their efforts to better 
understand the development and selective mechanisms of antibiotic resistance 
which may compromise environmental quality and public health (Andersson and 
Hughes, 2014).

1.2.1.2	 Sediments
Sediments are increasingly considered a reservoir of antibiotic residues in the aquatic 
environment and a stable matrix for the accumulation of ARGs in bacteria. In our 
study, sediments recurrently showed high values of TASP and most antibiotic classes 
were found to exert selective pressure above the risk threshold (RQ > 1). Therefore, 
our study suggests that sediments are more likely to be at higher risk of favouring the 
development of resistant microbiota, with tetracyclines and macrolides exerting the 
strongest selective pressure. Our study indicates that class-specific gene estimation 
is more reliable in sediment than in surface water or wastewater. It should be noted 
that the physicochemical properties of sediments play an important role in the 
distribution of antibiotics via sorption-desorption processes (Kummerer, 2009). 
Fluctuations in the residues chemical state are dictated by their partition coefficients 
and environmental conditions. Total organic content, composition and pH are some 
of the factors that influence the sorption levels of antibiotics (Harrower et al., 2021).  
This could indicate a possible overestimation of the calculated antibiotic selective 
pressures in our study since the bioavailability of residues in sediment can be relatively 
low. However, the contribution of sub-inhibitory concentrations, ARGs maintenance 
and biofilms should not be overlooked (Sengupta et al., 2013). Local microbial 
communities can still be exposed to the desorbed fraction and eventually subjected to 
significant selective pressure (Tello et al., 2012). Additionally, estimation of biological 
contaminants in sediments, including extracellular DNA (eDNA) of microbial origin, 
may serve as a stable indicator for long-term water quality (Devarajan et al., 2016). 
Extracellular DNA has been shown to be highly stable in sediments for extended 
periods of time (Calero-Caceres et al., 2017; Ibanez de Aldecoa et al., 2017; Zou et al., 
2022). In some studies, concentration of eDNA was higher than intracellular DNA 
in multiple environmental samples, including river sediment (Mao et al., 2014; Zou 
et al., 2022). Just like antibiotics, eDNA is also subjected to adsorption to sediment 
particles. Interestingly, it has been demonstrated that genetic transformation rates 
were faster in sediments than in the water column. In our study, given the temporal 
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and spatial coverage, average ARG values were estimated to be thirteen-fold higher 
in sediments than in the water column. Some studies indicate that ARG abundance 
in sediments vary greatly compared with water from the same sampling site (Dong 
et al., 2019; Luo et al., 2010). However, our results show an equally broad variation in 
both compartments across the globe even at low antibiotic selective pressure. This 
provides further indication that ARGs prevail in the natural environment regardless 
of the antibiotic fluxes. Contaminants may persist in sediments following cessation 
of active inputs and remobilisation of sediment-associated contaminants can 
occur (e.g., flooding, navigation, dredging, wind, seism) leading to dispersal and 
accumulation of contaminants up to hundreds of kilometres downstream (Bancon-
Montigny et al., 2019; Eggleton and Thomas, 2004; Ghinassi et al., 2019; Mao and 
Chen, 2020). This makes the sedimentary phase a potentially key matrix to explore 
further regarding antibiotic pollution and development of resistant bacteria. In fact, 
the relevance of sediments in EU legislation (e.g., WFD) and its proper management 
has only recently been well recognized (European Commission, 2022b).

1.2.1.3	 Wastewater
Wastewater is a potential major source of ARG contamination in surface water 
and sediment (Amos et al., 2015; Czekalski et al., 2014). Our study showed highest 
average abundance of ARGs in wastewaters compared to surface waters and 
sediments. Interestingly, our results suggest a negative TASP-TARG correlation 
exists in wastewater globally, i.e., higher antibiotic selective pressure correlated with 
lower total antibiotic resistance genes. On one hand, the high antibiotic selective 
pressure is not surprising given that consumed antibiotics are mostly disposed of 
in urine and faecal waste into the sewage system. On the other hand, a build-up of 
ARG abundance would also be expected considering that antibiotic exposure of the 
gut microbiome, including to sub-inhibitory concentrations, favours the growth of 
resistant bacterial strains over sensitive ones via weak selection (Anthony et al., 2021; 
Davies et al., 2006; Jutkina et al., 2018; Pena-Miller et al., 2013). One hypothesis for 
the negative TASP-TARG correlation observed in wastewater may be that in-sewer 
concentration of antibiotics or other additional contaminants are sufficiently high 
to suppress the development and survival of resistant microbes. For example, as 
tetracycline degrades, the competitive advantage conferred to bacteria by resistance 
not only diminishes, but reverses to become a prolonged disadvantage due to the 
activities of more stable degradation products, for example anhydrotetracycline, 
which induces expression of costly tetA efflux pump (Palmer et al., 2010). A second 
hypothesis, could be that waste composition in terms of antibiotic selective pressure 
and ARG relative abundance at various sewerage locations vary substantially (e.g., 
industrial waste versus hospital waste) (Hubeny et al., 2021). For example, under 



Chapter 8

154

certain conditions, antibiotic resistance mutation rates in wastewater leading 
to ciprofloxacin resistance in S. Typhimurium may be strongly influenced by non-
antimicrobial pharmaceuticals, such as carbamazepine and valsartan (Birosova et al., 
2020). A third hypothesis, may be that the average sewer residence time is too short 
for antibiotics, active metabolites and other substances to exert observable selective 
pressure over in-sewer microbial communities in favour of resistant phenotypes 
(Kaeseberg et al., 2018).

The results obtained in Chapter 5, which refer to a circumscribed city-wide 
assessment of urban wastewater, indicated a positive relationship between TASP 
and TARG. Interestingly, this appears to contradict the results of our global meta-
analysis in Chapter 4. The discrepancy may be the consequence of the larger 
heterogeneity and number of samples used in the global analysis, whereas the local 
analysis may express associations mostly relevant in national or European contexts 
and in which co-emission of antibiotics and ARGs becomes pronounced. Thus, 
Chapters 5 may not necessarily represent an overarching relationship between 
selective pressure and gene abundance in global urban environments. In the global 
scale analysis presented in Chapter 4, we have attempted to control the variability 
associated with samples’ country of origin (Chapter 4, see Equation 5).  However, the 
hypothetical discrepancy between Chapter 4 and Chapter 5, would require a distinct 
and detailed analysis of our global data to ascertain if refining the statistical models 
at city-scale would render similar results, which would also require an even larger 
dataset. Our global dataset was built after pre-screening a total of 428 publications 
retrieved from a query performed in the year 2017. Approximately 10% of these 
publications contained relevant data, i.e. 42 publications. Since then, an additional 
>2100 studies have been published in the scientific literature, of which 210 studies 
are potentially relevant. This is an enormous increase in the pool of new data, which 
would help corroborate our results, disentangle multi-scale differences and further 
explore the TASP-TARG relationship.

1.2.2	 Antibiotics in city sewage linked to resistance gene levels
Wastewater is particularly important for some categories of pollutants, namely 
pharmaceuticals and ARGs, as these are discharged mostly in an urban environment. 
Still, the local contributions of different waste sources in urban sewer catchments 
remain limitedly characterized in the scientific literature. In Chapter 5, we have 
profiled and identified key waste sources of antibiotics and ARGs to wastewater 
at different locations in the city of Nijmegen, The Netherlands. We found that 
antibiotic selective pressure was strongly associated with relative ARG abundance 
across locations, whereas other studies have shown a correlation between the high 
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concentrations of specific antibiotics and the resistance phenotypes of the colonizing 
bacteria to be less obvious (Sib et al., 2019). Our results also suggest that clinically 
influenced wastewater, in particular hospital wastewater, had a prominent role 
in the proliferation of ARGs at the city scale. Studies performed in other Dutch 
cities have found that hospital wastewater contained more antibiotics (25%) and 
gene concentrations (0.4-1.8 fold) than communal wastewater (Paulus et al., 2019). 
A meta-analysis performed by Zhang and colleagues (Zhang et al., 2020) further 
supports that hospital wastewater is an important reservoir of diverse ARGs in which 
higher abundances in the sewerage can be found. The outstanding profile of hospital 
wastewater in our study was further emphasized by the changes observed in ARG 
profiles due to short-term therapeutic regimens related to the COVID19 pandemic 
(Karami et al., 2021). Our study revealed that up to 60-77% of the total antibiotic 
selective pressure was attributed to ciprofloxacin across all sewer locations, followed 
by amoxicillin. Sib et al. (2020) have shown that bacteria posing the highest risk, 
including bacteria resistant to ciprofloxacin, were mainly disseminated by hospitals. 
Ciprofloxacin has been proposed to be a good indicator for the presence of multidrug 
resistant P. aeruginosa and extended spectrum beta-lactamase (ESBL)-producing 
Klebsiella spec., Enterobacter spec., and Citrobacter spec. (Voigt et al., 2020). Interestingly, 
resistance rates in sewage Escherichia coli have been found to be strongly correlated 
with resistance rates in corresponding clinical E. coli, with the highest correlation 
observed between hospital sewage and clinical urine isolates (Hutinel et al., 2019). 
This further emphasizes the prominent role of clinically influenced wastewater in 
the prevalence of antibiotic-resistance in the sewage.

From an upstream emission mitigation perspective, source separation of urine has 
been proposed almost 20 years ago as a simple sustainable solution to the problem 
of losses of untreated pollutants to the environment, including pharmaceuticals 
(Larsen et al., 2004). In principle, this same waste design approach could help tackle 
the simultaneous in-sewer emission of antibiotics, ARGs and resistant bacteria, in 
particular at primary care facilities. Despite the presence of resistance bacteria 
in low numbers in municipal wastewater, research continues to demonstrate the 
dissemination of ARGs and ARG-carrying organisms from hospitals to the environment 
via WWTPs (Al Salah et al., 2020; Alexander et al., 2020; Loudermilk et al., 2022; Rowe 
et al., 2017). In our study, water treatment at the WWTP reduced TARG by 65%, which 
from an emission reduction standpoint is a positive indication. However, it remains 
unclear if reducing TASP is causally linked to lower TARG. Furthermore, sampling 
was performed at three timestamps with grab samples for the ARGs, whereas passive 
sampling was used for antibiotics, limiting the ability to integrate and interpret the 
data (Valenzuela et al., 2020). Nonetheless, our preliminary results are an insightful 
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attempt to assess in-system contributions to the antibiotic selective pressure and 
antibiotic-resistance gene abundance at diverse city locations. It is acknowledged that 
specific waste sources may be a particularly important factor in the release of ARGs 
to the environment and the alteration of local microbial communities’ resistome (de 
Santana et al., 2022; Quintela-Baluja et al., 2019). 

Our research signals the need to consider modernizing legislation to accommodate 
the latest knowledge on local pharmaceutical emission profiles, the complexity of 
the wastewater composition, treatment of potentially harmful pollutants, and urban 
in-sewer antibiotic resistance gene prevalence. In Europe, the Urban Wastewater 
Treatment Directive makes it a legal requirement to clean the wastewater from 
communities of more than two thousand population equivalent (p.e.) and also 
sets the rules on how stringent the treatment must be. Over the last 30 years, we 
have witnessed interesting advancements in water treatment technologies and the 
upgrade up to tertiary treatment throughout most European WWTPs (European 
Environment Agency, 2020; Herraiz-Carbone et al., 2021). However, most WWTPs 
have not been designed to remove pharmaceuticals and the adequate removal of waste 
stills poses a major challenge (Siles and Michan, 2020). For example, the average 
removal rate of antibiotics is approximately 50% (Deblonde et al., 2011). This is a 
concerning observation considering that the pharmaceutical and cosmetic sectors 
are jointly responsible for 92% of toxic load in European wastewater (European 
Commission, 2022a). Globally, 48% of produced wastewater is estimated to be 
released to the environment untreated (Jones et al., 2021). The resulting widespread 
prevalence of ARGs associated with human pathogens is also demonstrated in our 
global study in Chapter 4. Furthermore, the legislation has not changed in the 
past 30 years to accommodate accumulated knowledge and the development of 
a sustainable future. Taking this together with our findings, we emphasize that 
local characterization of urban sewage systems for ARG hotspot identification and 
prioritization can inform ARG risk management plans and help reduce emissions 
at hospital point sources (Lienert et al., 2011). Studies like ours are an important 
contribution to how we come to slowly understand the underappreciated global 
role of poor local water quality, namely pharmaceutical pollution, on selection and 
dissemination of antibiotic resistance (Graham et al., 2014). At the time of writing of 
the present dissertation, the European Commission adopted an impact assessment 
on the proposed revision of the UWWTP Directive (European Commission, 2022c). 
In alignment with conclusions derived from our research, some important proposals 
have been advanced: (1) member states will be required to monitor and track at 
source non-domestic pollution, (2) quaternary treatment should primarily focus on 
organic micro-pollutants (including, medicinal products) based on the precautionary 
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approach, (3) the obligation to find optimal wastewater management solutions to 
protect the environment based on a risk-based approach and (4) the obligation to 
monitor antimicrobial resistance at the inlets and outlets of urban WWTPs.

1.2.3	 Antimicrobial resistance in risk assessment
Human health risk assessment of antimicrobial resistance via the environment 
is still in its infancy. While actual risks cannot yet be quantified accurately, the 
precautionary principle dictates that potential risks associated with environmental 
sources and societal activities cannot be disregarded (Manaia, 2017). The replicative 
nature and biodynamics of genes renders classical risk assessment hard to frame. 
Currently, the European ERA guideline for medicinal products proposes that 
a tailored risk assessment should be conducted for antibiotics. Yet, due to the 
particular antibacterial mode of action of these substances, standardized testing 
may apply only to estimating effects on lower trophic levels, such as bacteria, algae 
and aquatic invertebrates. This guideline does not yet provide guidance on how to 
expand the risk approach to include the antimicrobial resistance selection potential 
of such antibiotics. Moreover, safety values are established based on the effects 
of antibiotic toxicity, overlooking their role in the spread of ARGs and resistant 
infections (Niegowska et al., 2021). As for the establishment of EQS or PNEC values 
for antimicrobial resistance selection, there seems to exist no formal impediment 
for their derivation in the WFD and EQS directives (Agerstrand et al., 2023). Present 
scientific knowledge on antimicrobial resistance development, spread and potential 
threat to human health, together with the growing concerns expressed by various 
(inter)national stakeholders, leads to the unequivocal necessity to move towards 
establishing early standardized guides on prospective antimicrobial risk assessment 
(Berendonk et al., 2015). 

Regulation and policy are slow-paced and hardly capable of keeping up with 
new scientific developments (Woodruff et al., 2023). Russell and Gruber (1987) 
emphasized 35 years ago that risk assessments governed by guidelines provide for 
consistency and orderly decision-making, and do not necessarily provide greater 
accuracy in the scientific sense. Science-based policy is in itself an admission 
that policy is intricately dependent on scientific advancements. In Ecotoxicology, 
science and regulation have been historically tightly intertwined, and sometimes 
exerting asymmetrical influence in favour of regulatory requirements (Jager, 2012). 
A few methodological choices in this dissertation, including the use of some NOEC 
values in Chapter 3, also illustrate the strong incentive to perform normative risk 
assessments to increase their utility in the regulatory realm. Nonetheless, we must 
continue to support scientific progress and its ability to spearhead the advancement 
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of risk assessment of pharmaceuticals and other contaminants, in particular for 
novel threats like antimicrobial resistance. Considerations for improved AMR risk 
assessment are shared in the sections that follow.

1.2.3.1	 Total antibiotic selective pressure
According to our research presented in Chapter 4 and Chapter 5, total antibiotic 
selective pressure (TASP), the type of environmental matrix, and clinical sources 
of antibiotic pollution should be considered as eligible factors to take regard 
in antimicrobial resistance risk assessment. TASP accounts for all quantified 
antibiotics, their relative risk for ARG selection and integrates their joint risk into 
a single value. In mixture toxicity risk assessment, there are two main concepts 
underlying compounded risk calculations:  concentration addition (CA) and response 
addition (RA). The former applies to active substances with similar mode of action, 
whereas the latter applies to substances with independent modes of action. Joint CA/
RA mixture models have also been proposed and explored (De Zwart and Posthuma, 
2005; Escher et al., 2020). In our studies, due to the lack of data and insufficient 
understanding about antibiotic resistance development under complex mixtures 
of antimicrobials, a concentration addition-based TASP was used. Nonetheless, 
TASP values were aggregated according to antibiotics’ distinct ATC groups, in an 
attempt to acknowledge the different organs or systems on which they act and 
their therapeutic, pharmacological and chemical properties (see Chapter 4 for 
details). We found that TASP significantly affects the prediction of ARG abundance 
and both are positively related. According to Sengar and Vijayanandan (2022), in 
countries where high levels of pharmaceutical pollution has been measured, most 
antibiotics evaluated were estimated to present a concerning selective pressure 
over antimicrobial resistance phenotypes. This suggests that the maintenance and 
enrichment of ARGs in microbial ecosystems is likely a global trend. Our results 
support this supposition despite spatial and temporal variations. Indeed, we suggest 
that a simple metric of cumulative selective pressure of antibiotic mixtures (TASP) 
may be an important factor to consider in the development of new risk assessment 
approaches. Thus, TASP is an easy and potentially useful metric to support risk 
characterization of antimicrobial resistance. The increase in ARG abundance does 
not necessarily represent an immediate health risk to humans and animals since they 
also have to be harboured by vector bacteria strains, followed by clinically relevant 
exposure and infective doses (Manaia, 2017). Still, it sets a precedent for a scenario 
in which a pathogen acquires resistance and opportunistically infects vulnerable 
humans. High ARG abundance should not be used as a direct indication of the 
presence of a dominant resistant bacterial subpopulation. Nonetheless, it may lead to 
an increased probability of an encounter with naturally competent microorganisms 



General discussion

159

6

and possible DNA uptake within or between clades (Mell and Redfield, 2014). 
Recently, van Heijnsbergen et al. (2022)  estimated that up to 61 CFU of antibiotic-
resistant ESBL-producing E. coli could be ingested per swimming event in the Vecht 
River catchment, which may increase the risk of antimicrobial resistance infections 
in humans. Not only swimming may be an overlooked source of antibiotic and ARG 
exposure (Niebaum et al., 2023; Uijtewaal A., 2021), but also consumption of fish due 
to the high bioaccumulation potential of antibiotics in aquatic organisms (Nappier 
et al., 2020; Zhu et al., 2022).

1.2.3.2	 Resistance selection threshold
Similar to the PNEC used in chemical risk assessment, environmental exposure 
limits for resistance selection (PNECresistance) have been proposed (Bengtsson-Palme 
and Larsson, 2016). PNECresistance values were derived from theoretically determined 
minimum selective concentrations (MSCs) based on observed minimum inhibitory 
concentrations (MICs). The PNECs used in the study provide a measure of 
drug susceptibility by determining the sample size-adjusted predicted lowest 
concentration at which bacterial growth of sensitive wild-type strains is halted. 
However, the instances in which these values have been determined, demands 
sensible consideration in the context of this study. As emphasized by the authors, 
it should be kept in mind that these MICs comprise several time periods, countries 
and are biased towards certain antibiotics as well as microbial taxonomic groups 
and strains (e.g., wild-type vs resistant-type, clinically-relevant vs environmentally-
relevant). Furthermore, these measures could be underestimated since the minimum 
selective concentration (MSC), the lowest sub-MIC at which resistant strains assume 
a competitive advantage over sensitive strains populations based on growth rates, 
have been reported to be 1/230 to ¼ of the MIC (Gullberg et al., 2011). In more 
realistic scenarios, these values may be even lower considering that frequencies 
of mutation in the course of an infective process are probably much higher than 
those determined in vitro (Martinez and Baquero, 2000).  Therefore, care should be 
taken interpreting the ecotoxicological metrics used in resistance risk quotients. 
More recently, a pragmatic new method to establish Predicted Minimal Selective 
Concentrations (PMSC) for antibiotics have been presented (European Food Safety 
Authority et al., 2021). Once more, as for the case of MSCs, the authors underline 
the challenges of performing reliable assessments for many antibiotic classes due 
to considerable lack of data on how low concentrations select for resistance. Emara 
et al. (2023) interestingly proposed to apply the species sensitivity distributions 
(SSD) approach to derive resistance selective concentrations based on MSC values. 
Still, the derivation of threshold values may become particularly challenging upon 
reflecting on the fitness cost of antibiotic resistance dependent on non-essential 



Chapter 8

160

genomic regions and the regulation of cost-compounding and cost-mitigating genes 
in complex environmental matrices (Klumper et al., 2019; Rasouly et al., 2021).

1.2.3.3	 Resistance genes in environmental compartments
Upcoming regulatory developments in antimicrobial resistance risk assessment 
ought to consider environmental compartments in its framework. Exposure to 
ARGs and resistant pathogens via surface water may be exacerbated by the release 
of inadequately treated wastewater and persistence in the sedimentary compartment 
(Chapter 4 and Chapter 5). Sediments can be of particular interest as a more 
favourable environment for antimicrobial resistance development than natural 
water, by harbouring up to 1000 fold more bacteria than the adjacent water and 
acting as a sink of antibiotics (Hendricks and Morrison, 1967; Poté et al., 2010; Zhu et 
al., 2022). Our results suggest that gene estimation in surface water and wastewater 
is less reliable than in sediments. This likely derives from the natural tendency 
of many bacteria to develop communities attached to surfaces forming biofilms 
rather than liquid culture. These biofilm formations are an important environment 
for resistance dissemination, long-term sustenance of bacterial populations and 
plausible mobilization of ARBs and ARGs by resuspension (Cook and Dunny, 2014; 
Costerton et al., 1987; Hess et al., 2018; Reisner et al., 2006; Subirats et al., 2018). 
For example, sulfonamide-resistant bacteria are suspected to remain stable in the 
aquatic environment for 5–10 years (Gao et al., 2012). We found tetracyclines to be 
overrepresented in sediments which is in line with the fact that these substances 
extensively adsorb to sediments and suspended particles (Hektoen et al., 1995; 
Kaeseberg et al., 2018; Tamtam et al., 2008). In contrast, sulphonamides were mainly 
quantified in water samples matching their known high solubility rates, although 
having a wide range of mobility in the environment (Harrower et al., 2021). In 
Europe, drinking water abstracted from surface water is largely considered to be safe 
to drink (e.g., Webb et al. (2003) and Houtman et al. (2014)). However, under certain 
environmental, climate and socioeconomic conditions, pharmaceutical residues and 
antimicrobial resistance may still render this resource a threat to public health if not 
properly monitored and managed (Huang et al., 2021; Liguori et al., 2022; Schijven 
et al., 2016; Troger et al., 2021). Globally, this may be particularly consequential 
considering that half of all wastewater flows into ecosystems without any form of 
treatment and the remaining treated wastewater still contains pharmaceuticals and 
pathogens (Jones et al., 2021; UN-WWAP, 2017).

1.2.3.4	 Non-antimicrobials and gene transfer
Horizontal gene transfer (HGT) was not investigated in the present work. Also, the 
role of non-antimicrobial pharmaceuticals in ARG selection in the environment 
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was not contemplated. However, I still wish to underline that future attempts to 
assess the contributions of ARG transfer mechanisms in combination with non-
antimicrobial pharmaceuticals under favourable environmental conditions should 
be pursued. All samples analysed in our studies can be reasonably assumed to 
have contained a complex mixture of chemicals besides antimicrobials. Non-
antimicrobial pharmaceuticals can also promote antibiotic resistance, for example, 
via conjugative plasmid transfer (Birosova et al., 2020); therefore, their role should 
not be overlooked. For example, Wang et al. (2019) have found that carbamazepine 
can induce upregulation of genes related to reactive oxygen species generation, the 
SOS response, cell permeability and, interestingly, pilus generation. More recently, 
similar responses triggering HGT have also been associated with widely used 
ibuprofen, naproxen and propranolol (Wang et al., 2022). Comparisons of ARG and 
MGE diversities are also of interest, with the logic that greater variety in ARGs and 
mobile genetic elements (MGEs) result in increased opportunities for transfer to 
pathogens (Vikesland et al., 2017; Zhao et al., 2020). Other important aspects of ARG 
mobility and maintenance in the environment should be evaluated and potentially 
integrated in future studies, such as bacteriophages (Anand et al., 2016; Sun et al., 
2022) and viromes (Colombo et al., 2017). Metals are also of interest as they play an 
important role as co-selection agents of ARGs (Baker-Austin et al., 2006; Di Cesare 
et al., 2016). In our studies, we did not propose to disentangle the contributions of 
non-antibiotic pharmaceuticals and other substances to the total antibiotic selective 
pressure. However, the above mentioned findings impels us to reflect whether 
the ARG selective potential of non-antimicrobial pharmaceuticals, in addition to 
antibiotics, should be incorporated in risk assessment.

1.2.4	 Synthesizing evidence on antimicrobial resistance
The present dissertation is an attempt to aid future efforts supporting decision-
making in regards to environmental monitoring of resistance gene occurrence and 
risk assessment. Our research was based on a limited number of studies and data, 
each with its own design and methodology, thus our statistical models still carry 
limited predictive power and considerable uncertainty. Still, our research provides 
insight into global risk of resistance by antibiotic pollution and the occurrence of 
resistance genes in some of the most relevant environmental compartments (Chapter 
4 and Chapter 5). It does not provide clear evidence for the environmental selection 
of ARGs by polluting antibiotics but rather additional signs that a causal relationship 
should not yet be discarded. According to a recent review identifying research gaps 
relevant to the global effort to combat antimicrobial resistance, Chapter 4 is one 
of only 2% and 1% of studies in the scientific literature particularly concerned in 
synthesizing evidence on antimicrobial resistance using in silico modelling and the 
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effects of antimicrobials on the development of resistance within environmental 
reservoirs, accordingly (Bulteel et al., 2021). Certainly, our main findings deserve 
further scientific corroboration by future research. Nonetheless, the results we 
reported contribute to our understanding of how urban and global antibiotic 
resistance might be progressing and, more importantly, help to inform stakeholders 
on resistance inducing factors that warrant their attention.
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Pharmaceutical residues in the environment have been demonstrably linked to 
direct effects in wildlife, whereas consequences to human health remain subject 
of continued debate and scientific research. Thus, assessing the human health and 
ecological risks posed by pharmaceutical residues in the environment is of critical 
relevance. Furthermore, complex considerations regarding the indirect effects of 
pharmaceutical residues ought to be investigated, such as in the development of 
antimicrobial resistance. In the present work we aimed to improve the contextual 
utility of ecological, human and antimicrobial resistance risk assessment under 
time and local-specific conditions (tailored risk assessment) to support relevant 
decision-making via statistical modelling as a solution to scarcity of data, resources 
and mechanistic understanding.

We aimed to answer four main research questions, each handled in the individual 
chapters of this dissertation. Succinctly, in Chapter 2, we asked if pharmaceutical 
residues and their mixtures in a transboundary river basin can pose an unacceptable 
lifetime risk to humans via drinking water, swimming and fishing. Our research 
suggests that human health risks from direct exposure to pharmaceutical residues 
in the Vecht River catchment are low. However, extreme exposure conditions can lead 
to unacceptable risks, mostly dictated by high environmental concentrations and fish 
consumption. In Chapter 3, we asked if pharmaceutical residues and their mixtures can 
pose an unacceptable risk to the ecosystem of a transboundary river’s freshwater. Our 
research revealed that ecological effects due to pharmaceutical pollution in the Vecht 
River catchment cannot be ruled out, particularly during a dry summer season.  In 
Chapter 4, we asked if antibiotic-resistance gene abundance correlate with antibiotic 
selective pressure in surface water, sediments and wastewater. Our research revealed 
that these environmental compartments and antibiotic selective pressure can be used 
to partially estimate abundance of resistance genes. In Chapter 5, we asked if antibiotic 
concentration and ARG abundance data can be used to identify in-sewer emission 
hotspots and improve the prioritization of emission reduction strategies. Our research 
revealed that by combining information on these two variables, emission hotspots can 
be identified in an urban environment, of which hospitals play an influential role in 
ARG presence and dissemination in urban wastewater. 

In addition to the main findings, the following main conclusions can be also drawn: 

(1)� Modelling pollution. Statistical and mathematical modelling is a critical, pragmatic 
and viable tool to complement our limited understanding of pharmaceutical and 
antibiotic resistance-gene fate and behaviour in the environment.
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(2) �Ecological risk profiles. Exposure and effect models of pharmaceuticals in surface 
waters allow the creation of detailed spatially-explicit ecological risk profiles in 
transboundary river basins under different seasonal scenarios.

(3) �Human lifetime exposure. Human features and activities, and environmental 
parameters of varied complexity can be integrated into a relatively simple 
deterministic exposure model to estimate lifetime health risks of pharmaceuticals 
in the water environment. 

(4) �Pharmaceutical co-exposure. A comprehensive account and understanding of 
accrued effects from pharmaceutical co-exposure in the environment, including to 
other pollutants (e.g., metals, biocides, industrial chemicals), remains mediocre.

(5) �International collaboration. Borderless environmental pharmaceutical and antibiotic 
resistance-gene pollution poses a critical political and managerial challenge, which 
requires immediate consensual co-management across national borders.

Throughout the conduction of the present dissertation, some pervasive obstacles 
have been recognized: 

(1) �Data. Utility of human pharmaceutical exposure models relies on data quality and 
availability, namely, data about the usage of the surface water body of interest 
(e.g., drinking water, swimming).

(2) �Assessments. Accuracy and significance of exposure and effect assessments are 
hampered by data scarcity, knowledge gaps, or procedural limitations.

(3) �Reporting. Important developments in the standardization of derived 
toxicological threshold values have been made, although these still strongly 
depend on how risk assessors classify the relevance or reliability of the studies.

(4) �Confidence. Disparity in public accessibility to (eco)toxicity data of substances 
undermines the confidence in and utility of risk assessments.

On a closing note, and gathering from what we have learned with the research reported 
in the present dissertation, we propose the following general recommendations for the 
advancement of future risk assessments and improvement of environmental quality: 
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(1) �Encourage full access. All existing raw ecotoxicological data ought to be de-centrally 
controlled and fully accessible to the public to allow broad and transparent scrutiny.

(2) �Embrace modelling. European legislators and regulators are urged to be 
increasingly receptive to empirically-based statistical modelling.

(3) �Reduce emissions. Targeted pharmaceutical and antibiotic resistance-gene 
emission reduction strategies by local authorities ought to be encouraged, in 
particular at non-residential sites (e.g., hospitals, WWTPs).

(4) �Be proactive. Environmental and human health risk assessments ought to be 
increasingly framed in proactiveness rather than reactiveness, and its applicability 
should be expanded to emerging threats, such as antimicrobial resistance.

(5) �Understand collaterals. Future scientific research and policy should rapidly 
acknowledge and support the inclusion of indirect impacts of pharmaceutical 
pollution in risk assessment guidelines, such as antimicrobial resistance development.
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Summary

Pharmaceuticals are an indispensable tool against disease and morbidity in 
humans and animals. However, their use also poses some challenges and can lead 
to undesirable consequences, some of the most concerning of which are increased 
environmental pollution and antimicrobial resistance. The assessment of the 
environmental and human health risks posed by pharmaceuticals is a critical exercise 
to help make the best use of available knowledge to identify data gaps and prioritize 
strategies holding most promise.  

The goal of this dissertation was to assess the risks posed by pharmaceutical 
pollution to the aquatic system and humans via environmental exposure. The 
pharmaceutical concentrations and human activities in the transboundary European 
Vecht River were used to demonstrate this idea. In addition, the selective pressure 
potential of antibiotics over antibiotic-resistance genes was investigated in artificial 
and natural environments. 

In Chapter 2, to the best of our knowledge, we provided the first detailed human 
health risk profile of eleven APIs under distinct environmental and behavioural 
conditions in the Vecht River basin. In this manuscript, we have estimated lifetime 
risks using a human exposure model. In this respect, the model integrated exposure 
under two water concentration profiles (average and maximum) and via two routes 
(oral and dermal), three activities (swimming, fish and drinking water intake), 
and five human behavioural archetypes. Our results suggest that doxycycline and 
diclofenac pose the highest risk, yet far below the risk threshold under normal 
conditions for typical individuals. This study advances our understanding of 
pharmaceutical river pollution and its potential impact on human health in the 
long-term. Additionally, it emphasizes the unique advantages of comprehensive risk 
assessment in overcoming practical limitations of assessing local lifetime health risks 
and facilitating the creation of simple guiding criteria. Our results suggest current 
API emissions in the Vecht River basin do not pose a concerning threat to human 
health. However, sporadic extreme exposure conditions should not be ignored when 
strategizing risk reduction measures. 

In Chapter 3, to the best of our knowledge, we provided the first detailed spatially 
explicit ecological risk profile of eight APIs under two distinct climate scenarios in 
the Vecht River basin. In this chapter, we estimated surface water concentrations 
of APIs using a detailed hydrological, emission and fate model. We also reviewed a 
wealth of ecotoxicological studies to derive eight environmentally safe thresholds 
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for the studied APIs, of which three were estimated to be lower than previous studies. 
Our results suggest that 17α-ethinylestradiol, carbamazepine and diclofenac pose 
the highest risk to freshwater wildlife. This study advances our understanding of 
pharmaceutical river pollution and its potential ecological impact on aquatic life. 
Additionally, it emphasizes the unique advantages of region-targeted spatial modelling 
in overcoming practical limitations of assessing the ecological risks at multiple 
locations lacking empirical measurement data. Our results suggest current API 
emission reduction strategies in the Vecht River basin are insufficient. Furthermore, 
the continued (or increased) consumption of some APIs raise some concern about 
their subsequent emission to river’s surface water and other water bodies subjected to 
similar conditions. We hope that this study will guide further research and targeted 
risk management decisions by local, regional and national authorities.

In Chapter 4, we ventured into the global stage by using empirical data from the 
published literature on worldwide co-occurrence of antibiotics and antibiotic 
resistance genes (ARGs) in three different compartments (surface water, sediment and 
wastewater). It provides the first integrated assessment of how worldwide antibiotic 
selective pressure relates to ARG abundance after controlling for the variability in 
the studies. We show that antibiotic pressure and the type of compartment are 
important variables when estimating abundance of ARGs. An increase in antibiotic 
pressure correlates with an increasing rate of ARG abundance while the type of 
compartment defines the magnitude of this effect. In addition, insight is provided 
in the antibiotic pressure and gene abundance variations across the compartments, 
grouped by antibiotic class. Sediment is the environmental compartment where levels 
of antibiotic pressure most frequently exceed the defined resistance selection risk 
threshold, partially influence by tetracyclines. This study furthers our understanding 
of antibiotic pharmaceutical pollution and its suspected role in the environmental 
resistome landscape. Our results suggest a global positive average trend in antibiotic 
resistance with increasing antibiotic presence. Furthermore, levels of ARGs seem to 
escalate rapidly at very low antibiotic selective pressure, which raises some concern 
about the impact of inconspicuous sub-inhibitory concentrations.

In Chapter 5, we provided a detailed and broad assessment of antibiotic and antibiotic-
resistance gene prevalence in an urban sewage system. To the best of our knowledge, 
this constitutes the first of such studies conducted in the Dutch city of Nijmegen. 
In this study, we have quantified antibiotic concentrations and antibiotic-resistance 
gene (ARG) copies. The former were converted into a measure of antibiotic selective 
pressure (ASP) favouring resistance phenotypes, whereas the latter were converted 
into a measure of relative abundance indicating overall antibiotic-resistance gene 
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prevalence. Information on ASP and relative ARG abundance was coupled to construct 
unique location-specific profiles. Our results further build on increasing evidence that 
hospitals and clinical settings alike are relevant urban emission sources of ARGs and 
antibiotics to the sewerage. This study advances our understanding of urban emissions 
of pharmaceuticals and ARGs and its potential impact on receiving environmental 
surface waters. Additionally, it emphasizes the unique advantages of assessing 
urban emission hotspots while considering the diverseness of human activities, 
pharmaceutical consumption and population composition.

Taken together, in this dissertation we demonstrate how risk assessment remains 
a resourceful tool to support targeted emission and exposure reduction strategies 
by (local) responsible authorities. Using, statistical and mathematical modelling, 
we contributed to the advancement of tailored human and environmental risk 
assessment of pharmaceuticals and antimicrobial resistance in the environment.
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Samenvatting

Geneesmiddelen zijn onmisbaar in de strijd tegen ziekten en morbiditeit bij mens 
en dier. Het gebruik ervan brengt echter ook een aantal uitdagingen met zich 
mee en kan tot ongewenste gevolgen leiden, waaronder milieuverontreiniging en 
antimicrobiële resistentie. De beoordeling van risico's voor het milieu en potentiele 
negative govolgen voor de gezondheid van de mens die door geneesmiddelen worden 
veroorzaakt, is van cruciaal belang om de beschikbare kennis zo goed mogelijk te 
benutten, gegevenshiaten te identificeren en veel belovende toekomststrategieën te 
priotoriseren.

Het doel van dit proefschrift was het beoordelen van risico's van farmaceutische 
vervuiling voor aquatisch systemen en de mens via blootstelling van het milieu. De 
farmaceutische concentraties en menselijke activiteiten in de grensoverschrijdende 
Europese rivier de Vecht werden gebruikt om dit idee aan te tonen. Daarnaast werd het 
selectieve drukpotentieel van antibiotica ten opzichte van antibioticaresistentiegenen 
onderzocht in kunstmatige en natuurlijke omgevingen.

In Hoofdstuk 2 hebben we, voor zover ons bekend, het eerste gedetailleerde 
risicoprofiel voor de menselijke gezondheid van elf API's onder verschillende milieu- 
en gedragsomstandigheden in het stroomgebied van de Vecht gepresenteerd. In dit 
manuscript hebben we levenslange risico's geschat met behulp van een menselijk 
blootstellingsmodel. In dit opzicht integreerde het model blootstelling onder twee 
waterconcentratieprofielen (gemiddeld en maximaal) en via twee routes (oraal 
en dermaal), drie activiteiten (zwemmen, vissen en drinkwateropname) en vijf 
menselijke gedragsarchetypen. Onze resultaten suggereren dat doxycycline en 
diclofenac het grootste risico vormen, maar de ingeschatte risicos waren ruim onder 
de risicodrempelwaarde in normale omstandigheden en voor typische individuen. 
Deze studie vergroot ons begrip over farmaceutische rivierverontreiniging en de 
potentiële impact ervan op de menselijke gezondheid op de lange termijn. Bovendien 
benadrukt het de unieke voordelen van een uitgebreide risicobeoordeling bij het 
overwinnen van praktische beperkingen binnen het beoordelen van lokale levenslange 
gezondheidsrisico's en het vergemakkelijken van het opstellen van eenvoudige 
leidende criteria. Onze resultaten suggereren dat de huidige API-emissies in 
het stroomgebied van de Vecht geen zorgwekkende bedreiging vormen voor de 
menselijke gezondheid. Sporadische extreme blootstellingsomstandigheden mogen 
echter niet worden genegeerd bij het bepalen van risicobeperkende maatregelen.
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In Hoofdstuk 3 hebben we, voor zover ons bekend, het eerste gedetailleerde 
ruimtelijk expliciete ecologische risicoprofiel van acht API's bepaald onder twee 
verschillende klimaatscenario's in het stroomgebied van de Vecht. In dit hoofdstuk 
hebben we de oppervlaktewaterconcentraties van API's geschat met behulp van een 
gedetailleerd hydrologisch, emissie- en fate-model. We hebben ook een overvloed aan 
ecotoxicologische onderzoeken beoordeeld om acht milieuveilige drempelwaarden 
af te leiden voor de bestudeerde API's, waarvan er drie lager werden geschat 
dan eerdere onderzoeken. Onze resultaten suggereren dat 17α-ethinylestradiol, 
carbamazepine en diclofenac het grootste risico vormen voor zoetwaterdieren. 
Deze studie bevordert ons begrip van farmaceutische rivierverontreiniging en de 
potentiële ecologische impact ervan op het waterleven. Bovendien benadrukt het de 
unieke voordelen van regiogerichte ruimtelijke modellering bij het overwinnen van 
praktische beperkingen binnen het beoordelen van ecologische risico's op meerdere 
locaties zonder empirische meetgegevens. Onze resultaten suggereren dat de huidige 
API-emissiereductiestrategieën in het stroomgebied van de Vecht onvoldoende 
zijn. Bovendien geeft het aanhoudende (of toegenomen) verbruik van sommige 
API's aanleiding tot enige bezorgdheid over de daaropvolgende emissie naar het 
oppervlaktewater van rivieren en andere waterlichamen die aan vergelijkbare 
omstandigheden worden blootgesteld. We hopen dat deze studie als leidraad zal 
dienen voor verder onderzoek en gerichte risicobeoordelingen door lokale, regionale 
en nationale autoriteiten.

In Hoofdstuk 4 waagden we ons op het wereldtoneel door gebruik te maken 
van empirische gegevens uit de gepubliceerde literatuur over het wereldwijd 
gelijktijdig voorkomen van antibiotica en antibioticaresistentiegenen (ARG's) in 
drie verschillende compartimenten (oppervlaktewater, sediment en afvalwater). 
Het biedt de eerste geïntegreerde beoordeling van hoe wereldwijde selectieve druk 
van antibiotica zich verhoudt tot ARG-abundantie na correctie voor de variabiliteit 
in de onderzoeken. We laten zien dat de antibioticadruk en het type compartiment 
belangrijke variabelen zijn bij het schatten van de hoeveelheid ARG's. Een toename van 
de antibioticadruk correleert met een toenemende mate van ARG-abundantie, terwijl 
het type compartiment de omvang van dit effect bepaalt. Daarnaast wordt inzicht 
gegeven in de variaties in antibioticadruk en genovervloed tussen de compartimenten, 
gegroepeerd per antibioticumklasse. Sediment is het milieucompartiment waar 
de antibioticadruk het vaakst de gedefinieerde risicodrempelwaarde voor selectie 
van resistentie overschrijdt, gedeeltelijk beïnvloed door tetracyclines. Deze studie 
bevordert ons begrip van antibiotica-farmaceutische vervuiling en de vermoedelijke rol 
ervan in het omgevingsresistentielandschap. Onze resultaten suggereren gemiddeld 
wereldwijd een positieve trend in antibioticaresistentie met toenemende aanwezigheid 
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van antibiotica. Bovendien lijken de niveaus van ARG's snel te escaleren bij een zeer 
lage antibioticaselectieve druk, wat enige bezorgdheid oproept over de impact van 
onopvallende subremmende concentraties.

In Hoofdstuk 5 hebben we een gedetailleerde en brede beoordeling opgesteld 
van de prevalentie van antibiotica en antibioticaresistentiegenen in een 
stedelijk rioleringssysteem. Voor zover ons bekend is dit de eerste van dergelijke 
onderzoeken die in de Nederlandse stad Nijmegen zijn uitgevoerd. In deze studie 
hebben we de antibioticumconcentraties en antibioticaresistentie-gen (ARG)-
kopieën gekwantificeerd. Het eerste werd omgezet in een maat voor antibiotica-
selectieve druk (ASP) die resistentiefenotypes begunstigt, terwijl het  tweede 
werd omgezet in een maat voor relatieve overvloed die de algehele prevalentie 
van antibioticaresistentie-genen aangeeft. Informatie over ASP en relatieve ARG-
abundantie werd gekoppeld om unieke locatiespecifieke profielen te construeren. 
Onze resultaten bouwen voort op toenemend bewijs dat zowel ziekenhuizen als 
klinische omgevingen relevante stedelijke emissiebronnen zijn van ARG's en 
antibiotica in de riolering. Deze studie bevordert ons begrip van stedelijke emissies 
van geneesmiddelen en ARG's en de potentiële impact ervan op ontvangend 
oppervlaktewater in het milieu. Bovendien benadrukt het de unieke voordelen van 
het beoordelen van stedelijke emissiehotspots, rekening houdend met de diversiteit 
van menselijke activiteiten, farmaceutische consumptie en bevolkingssamenstelling.

Alles bij elkaar laten we in dit proefschrift zien hoe risicobeoordeling een 
vindingrijk instrument blijft ter ondersteuning van gerichte emissie- en 
blootstellingsreductiestrategieën door (lokale) verantwoordelijke autoriteiten. Met 
behulp van statistische en wiskundige modellen hebben we een bijgedragen geleverd 
aan de vooruitgang van op maat gemaakte risicobeoordelingen voor mens en milieu 
van geneesmiddelen en antimicrobiële resistentie in het milieu.
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