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Chapter 1

General introduction
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I still remember my childhood experience of learning traditional Chinese dancing. 
One day, I told my teacher how much I loved a particular piece and asked if I could 
perform it at a school event. Although I had learned many equally beautiful dances, 
this one stayed with me. The difference was not in the steps or the music, but in the 
fact that I made the choice. That sense of autonomy, in other words, self-regulation of 
one’s experience and actions (Ryan & Deci, 2000b, 2006; Ryan & Deci, 2020), leads to 
stronger and more lasting memory. As Carl Rogers once said, “The only kind of learning 
which significantly influences behaviour is self-discovered, self-appropriated learning.” This 
sentiment illustrates the importance of autonomy in learning and education. Yet, 
it is surprising that the cognitive and neural mechanisms underlying the beneficial 
effect of autonomy on learning and memory remain poorly understood.

In the current chapter, I will introduce the benefits of autonomy on learning, 
along with different ways to satisfy the need for autonomy. Drawing on principles 
from ecological psychology (Favela, 2023; Gibson, 1983; Sims, 2021), I argue that 
investigating the interaction effects between autonomy and other modulating factors 
from micro- to macro-levels would deepen our understanding of how autonomy 
enhances learning. To begin with, I discuss how the beneficial effect of autonomy on 
learning is influenced by the information context surrounding a person. Specifically, 
from the predictive processing perspective (Desantis et al., 2011; Moore & Haggard, 
2008), I highlight how uncertainty in the direct perceptual inputs modulates the 
experience of autonomy. Next, I posit that autonomy is inherently rewarding, like 
food, money, or other external incentives. Grounded in self-determination theory 
(SDT), we synthesize how the intrinsic value of autonomy may be modulated by 
the presence of external rewards, integrating evidence from both behavioural 
and neuroscientific perspectives. In addition, I discuss the role of macro-level 
socio-cultural factors that may shape the effect of autonomy during learning. This 
chapter provides an overview of the key experimental questions that the thesis seeks 
to answer.

1.1 Autonomy benefits learning and memory

Autonomy, defined as self-regulation of one’s experiences and actions, is one of the 
three basic psychological needs (i.e., autonomy, relatedness, and competence) in self-
determination theory (Deci & Ryan, 1985; Deci & Ryan, 1987; Ryan & Deci, 2000b, 
2006; Ryan & Deci, 2017). When people experience a sense of autonomy, they tend 
to be more intrinsically motivated to learn (Deci & Ryan, 1987; Ryan & Deci, 2006; 
Ryan & Deci, 2020). Educational studies have found that students retain information 
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better after autonomous learning, like exploring an aquarium or a museum, than 
those who learn through traditional classroom lectures (Falk, 2006). Hence, it is 
crucial to support autonomy during learning.

1.1.1 Operationalizing autonomy during learning
The need for autonomy could be supported by offering people opportunities to make 
active choices during learning and memory encoding. Extensive empirical studies 
have shown that making active choices boosts memory formation (Baldwin et al., 
2021; Ding et al., 2021; Fantasia et al., 2020; Kennedy et al., 2024; Lima et al., 2023; 
Murty et al., 2015; Rotem-Turchinski et al., 2019). In a commonly used paradigm 
tackling this research question, participants were offered two masked images that 
they might see. In half of the trials, participants could freely choose which image they 
wanted to see (i.e., choice condition), while in the other half, it was a forced-choice 
condition where the image was predetermined for the participants (i.e., no-choice 
condition), and participants were forced to press the indicated button corresponding 
to the assigned image. After pressing a button, the corresponding masked image 
would be revealed, and participants were asked to remember the images as well as 
possible. It was found that under the active choice condition, participants could 
remember the images better compared to the forced choice condition (e.g., Murty et 
al., 2015). Choosing the item appeared to promote greater self-involvement, deeper 
engagement, and a stronger sense of personal relevance during learning, all of which 
enhance memory encoding (Baldwin et al., 2021).

Beyond this binary choice paradigm, making decisions in more naturalistic 
environments also fosters the sense of autonomy. For instance, freely exploring a 
new city similarly fosters stronger memory encoding for its layout compared to 
following rigid, prescribed routes. In these cases, exploration itself can be viewed as 
a continuous series of active choices, fulfilling the need for autonomy. For instance, 
Voss, et al. (2011b) implemented a free-exploration paradigm, in which participants 
viewed a 5×5 grid of images obscured by Gaussian noise. An open window revealed 
the images in this grid one at a time. In some grids, participants could freely control 
the window’s movement, while in other grids, the window followed a fixed trajectory 
that participants were instructed to track using a joystick. They found that active 
exploration enhances memory performance compared to when participants were 
asked to follow a predefined exploration route. This finding has since been replicated 
by subsequent studies employing similar exploration paradigms (Kaplan et al., 2012; 
Markant et al., 2014a; Markant, et al., 2016a; Schomaker et al., 2014; Schomaker & 
Wittmann, 2021; Voss, et al., 2011a; Voss, et al., 2011b).
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Together, these findings suggest that autonomy, expressed through either discrete 
choices or naturalistic exploration, benefits memory encoding. However, despite 
this growing body of evidence, the cognitive mechanisms through which autonomy 
facilitates learning and memory remain poorly understood. In the current thesis, 
two experimental paradigms were employed to address this research topic: one 
involving discrete, binary choices (e.g., Murty et al., 2015) and the other based on free 
exploration (e.g., Voss et al., 2011b).

1.1.2 Autonomy and ecological psychology perspective
To understand the effect of autonomy on learning, it is essential to move beyond merely 
demonstrating its benefits and instead examine the underlying cognitive mechanisms, 
which remain insufficiently understood. Inspired by ecological psychology (Favela, 
2023; Gibson, 1983; Sims, 2021), human behaviours, including motivations in learning, 
are shaped by the dynamic interplay between predictive processes, external micro-
environment, and broader socio-cultural contexts. To start with, integrating with the 
predictive brain perspective, which hypothesizes that our brain is constantly generating 
expectations about future events (Clark, 2013). The act of making a choice has been 
proposed to support the internal active inference about upcoming information, 
reflecting an interplay between volitional action and uncertainty in the environment 
(Friston et al., 2013). Moreover, within cognitive evaluation theory, a branch of SDT, 
intrinsic motivation, like autonomy, could be influenced by external incentives, like 
rewards (Ryan & Deci, 2017), akin to micro-environmental factors. This is because 
the perceived locus of causality was moved from purely internal to external when 
people were rewarded for learning. In other words, people would be dependent on the 
existence of rewards for learning while losing their internal interest or motivation to 
gain knowledge. Furthermore, it has been emphasized that human motivation is also 
shaped by nested socio-environmental influences, from ideological to economic factors 
(Oishi & Choi, 2017; Oishi & Graham, 2010).

By systematically examining factors across three hierarchical levels (Fig. 1.1), the 
current thesis investigates the cognitive and neural mechanisms through which 
autonomy shapes learning and memory. These factors include internal predictions 
towards upcoming information (predictive processing, Chapters 2 and 3), external 
incentives (monetary rewards, Chapter 4), and cultural contexts (Chapter 5). Rather 
than treating these factors as confounds, they are conceptualized as ecologically valid 
moderators that allow us to reveal how autonomy facilitates memory.
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Figure 1.1 Hierarchical structure of the factors that influence the effect of autonomy in memory 
encoding. From an ecological psychology perspective, the beneficial effect of autonomy in memory 
encoding is modulated by multiple sources. These sources include: (1) internal mechanisms such as 
predictive processing of incoming information (grey circle), (2) micro-environmental stimuli like money, 
grades, or rewards (white circle), and (3) macro-environmental forces such as socio-cultural norms that 
shape the value placed on different motivational factors (blue and red circle).

1.2 Internal mechanism: Autonomy and 
predictive processing

To start with, I will introduce how autonomy and predictive processing, which is the 
most fundamental and internal layer of our framework (Fig. 1.1), interact in the brain 
to support learning and memory. According to the predictive coding theory of the 
brain (see Section 1.1.2; Clark, 2013), a prior belief would be generated before making 
an active choice. Then, when human beings make a voluntary action, like a choice, they 
build up a causal relationship between this voluntary action and the appearance of a 
certain outcome following that action (Desantis et al., 2011; Moore & Haggard, 2008). 
In this sense, choices could shape expectations and the perception of information 
input. Based on previous studies, two key mechanisms have been proposed to explain 
how choice interacts with predictive processing during learning. First, individuals are 
thought to engage in choices and actions to reduce uncertainty in the environment, 
and the mere act of making a choice may create a feeling of increased predictability. 
Second, making choices can enhance the attentional alignment, allowing people to 
better adjust their focus toward the upcoming information.

1.2.1 Autonomy and uncertainty reduction
First, it has been proposed that making choices could cause a sense of control over 
the outcomes of their choices (agency; Haggard, 2017; Haggard & Chambon, 2012), 
and that the uncertainty in the environment has been reduced. While this idea has 
been explored in information seeking, it remains underexamined in the context 
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of memory encoding. For instance, active choices appear to optimize learning by 
overweighting perceived information, like perceived direction of a motion or the 
sum of the number shown to them, that is consistent with their choices to reduce the 
uncertainty in the environment (Talluri et al., 2018). Also, making choices modulates 
the learning rates in reward learning (Chambon et al., 2020). It showed that learning 
rates for rewarding outcomes are higher when participants were allowed to make 
choices compared to when choices were predetermined, suggesting that autonomy 
promotes a more active update of reward-related information.

Moreover, when people make choices, they predict that the outcome will align with 
their choices, thereby reducing the prediction error upon receiving information 
(Peterson et al., 2011). Abir et al. (2024) found that human beings initially chose to 
seek out uncertainty but later prefer to reduce it. They suggested that individuals 
initially approach uncertainty to gather sufficient evidence to construct a reliable 
model of the world, thereby enabling them to reduce uncertainty in the future. More 
strikingly, Devine et al. (2024) demonstrated that while individuals generally prefer 
having choices, they abandon this preference when choices no longer provide control 
over outcomes of the choices. Hence, these studies suggest that the value of choice 
emerges from its ability to create a reliable link between actions and outcomes. 
This prompts us to wonder: if this reliable link between choice and the outcome is 
broken (i.e., under conditions of low predictability), meaning that the choices were 
only symbolic but conveying no instrumental information, would the effect of active 
choice on learning diminish?

Taken together, we raise our first research question: How does predictive processing 
modulate the effect of choice on memory encoding? Previously, Katzman and Hartley 
(2020) implemented a paradigm to investigate how memory was influenced by choices 
and the predictability of those choosing behaviours. In their experiment, participants 
explored “galaxies” where one planet had a higher probability of containing treasure 
items, or galaxies where both planets had a random probability of finding treasure 
items. Participants either made a choice or were assigned one planet and were 
instructed to remember the item they encountered. Results showed that memory for 
treasure items was better when participants made the choice themselves, but only in 
galaxies where reward outcomes were not random (Katzman & Hartley, 2020). This 
suggested that when the outcomes of the choices were predictable, making choices 
could enhance memory, whereas unpredictability eliminates this benefit of choices 
on memory, highlighting a close link showing that active choices facilitate predictive 
processing during learning. Notably, although participants’ choices influenced which 
planet they visited, the specific information they had to remember (the items) was 
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not directly tied to their choice. To be more specific, participants could only predict 
the amount of reward associated with the planet they chose, but they could not form 
a causal link between the planet and the information they needed to remember. 
Hence, their study offered an initial glimpse into how active choices enhance 
memory encoding by supporting predictive coding of perceptual information. 
Building on this, Chapters 2 and 3 employed a binary choice paradigm, in which 
choice outcomes were directly tied to the information that participants needed to 
remember. Also, featuring a clear distinction between consistent and inconsistent 
outcomes, the binary design allowed a targeted investigation of how predictive 
mechanisms modulate the difference in memory accuracy of information from visual 
input between choice and no-choice conditions.

1.2.2 Autonomy and attention modulation
Second, since people more actively predict upcoming information when making 
choices for what they want to see, it also enables them to coordinate attention 
in advance, thereby preparing effectively for what they are about to perceive. This 
is supported by previous findings showing that even if people could only control 
or choose when to adjust their attention to the next object, memory was already 
boosted (Kennedy et al., 2024; Markant & Gureckis, 2014; Markant, et al., 2016b). 
This attentional tuning process supports memory encoding and retention before 
information even appears (Gureckis & Markant, 2012). Meanwhile, this was also 
indicated from a neuroimaging study suggesting that when autonomy is supported by 
active exploration, it would engage more attentional control brain regions, including 
the dorsal lateral prefrontal cortex (DLPFC) and the dorsal anterior cingulate cortex 
(Dack) (Dubinsky & Hamid, 2024; Voss, et al., 2011a).

In a study conducted by Luo et al. (2022), it was suggested that attention preparation 
would only happen when the outcome of the choice was predictable. In their 
experimental setting, participants were more concentrated and exhibited faster 
reaction times in the subsequent attentional task when they had chosen and could 
predict the background picture for each trial. However, when participants were 
unable to predict the consequences of their choices for the background pictures in 
the same paradigm, the reaction time of the subsequent task was not accelerated 
by making active choices. Therefore, if choices are not predictive of the outcomes, 
predictive and/or attentional preparation will lose their merits.

Taken together, these findings offer a compelling explanation that autonomy may 
enhance attentional tuning before information is perceived, hence, enhance learning 
and memory. Building on these notions, in Chapter 4, we implemented an exploration 
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paradigm in which people were instructed to remember as many objects as possible 
while their brain activity was recorded with an fMRI (functional magnetic resonance 
imaging) scanner. By comparing blood oxygenation level dependent (BOLD) signals 
between free and forced exploration conditions, we aimed to investigate the neural 
mechanisms underlying learning with autonomy, replicating the involvement of 
attentional control brain regions as reported by Voss, et al. (2011a).

1.3 Micro-environment: Autonomy and rewards

The next layer of our framework considers the micro-environment, particularly the 
role of external rewards in modulating the influence of autonomy on learning (Fig. 
1.1). From the standpoint of motivation science, it has been argued that the reason 
why autonomy, like other intrinsic motivators, could support learning is partly 
because autonomy is rewarding by itself (Leotti & Delgado, 2011). In other words, 
when people perceive autonomy, they feel satisfied. From self-determination theory, 
this has been discussed under the situation of how intrinsic motivation and rewards, 
as extrinsic motivation, work when both of them exist (Ryan & Deci, 2020). In the 
following section, I will summarize previous findings demonstrating that autonomy 
is inherently rewarding, as well as how this is reflected in neural mechanisms. I will 
then outline the existing research gap and provide the rationale for designing a study 
in this current thesis to further investigate this question.

1.3.1 Converging mechanisms of autonomy and rewards during learning
Autonomy, as one of the key sources of intrinsic motivation (Ryan & Deci, 2000b; Ryan 
& Deci, 2020), enhances learning because autonomy is rewarding by itself (Leotti & 
Delgado, 2011). From self-determination theory, choices are internally satisfying and 
motivate people to continue to learn (Ryan & Deci, 2020). This could be supported by 
evidence suggesting that inconsequential choices could enhance memory formation 
(Ding et al., 2021; Murty et al., 2015; Rotem-Turchinski et al., 2019). For instance in 
Murty et al. (2015), participants were offered two masked images that they might 
see. In half of the trials, participants could freely choose which image they wanted 
to see (i.e., choice condition), while in the other half, it was a forced-choice condition 
where the image was predetermined for the participants (i.e., no-choice condition), 
and participants were forced to press the indicated button corresponding to the 
assigned image. After pressing a button, the corresponding masked image would be 
revealed, and participants were asked to remember the images as much as possible. 
With this paradigm, although participants could choose between the left and right 
options, they made their selection without any prior information about the images 
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each option would reveal. Moreover, with a similar design, DuBrow et al. (2019) 
found that people had a stronger preference towards the stimuli associated with the 
choice condition compared to the images related to the no-choice condition. More 
interestingly, it was also demonstrated that making active choices could heighten 
curiosity towards the outcomes of the lotteries (Verdugo et al., 2023). Taken together, 
having the opportunity to choose is fulfilling in and of itself and can enhance 
learning, regardless of the choice outcomes. These findings diverge from previous 
studies (Section 1.2) suggesting that the memory benefits of choice stem primarily 
from its role in modulating predictive processing (e.g., Katzman & Hartley, 2020). 
Extending this distinction, it is possible that choice enhances memory not only by 
supporting prediction of upcoming information but also by eliciting a more positive 
or rewarding affective response toward the chosen content (Leotti & Delgado, 2011).

Although few studies have directly compared the neural mechanisms of autonomy to 
external rewards, research consistently shows that intrinsic and extrinsic motivation 
in learning engage overlapping brain regions. Given that autonomy is a core source 
of intrinsic motivation (Ryan & Deci, 2000a; Ryan & Deci, 2020), insights into its 
neural basis can be drawn by integrating findings from studies on both intrinsic and 
extrinsic motivational processes. To start with, reward-motivated learning could 
elicit functional activation and connectivity among a network of distributed regions, 
including the orbital (OFC) and ventral medial prefrontal cortex (VMPFC) and 
dopaminergic circuitry, i.e., the ventral tegmental area (VTA), midbrain, and ventral 
striatum (Adcock et al., 2006; Cohen et al., 2014; Dubinsky & Hamid, 2024; Haber & 
Knutson, 2010; Schultz, 2015; Sescousse et al., 2013; Shigemune et al., 2014; Wolosin 
et al., 2012). Importantly, learning with intrinsic motivation also elicits activation 
and connectivity of the abovementioned brain regions. For instance, curiosity, as a 
form of intrinsic motivation, is also related to reward-related brain regions (Gruber 
et al., 2014; Gruber et al., 2019; Kang et al., 2009), and making active choices boosts 
curiosity (Verdugo et al., 2023). Thus, we argue that making a choice is rewarding 
because it satisfies a certain need for more information, like satisfying the need for 
rewards (Litman et al., 2005; Marvin & Shohamy, 2016). However, whether autonomy 
specifically enhances dopaminergic circuitry remains underexplored, highlighting 
an important research question for the current thesis.

1.3.2 Undermining intrinsic motivation with extrinsic motivation?
The beneficial effect of autonomy on memory encoding has been found to be 
modulated by rewards (van Lieshout et al., 2023; Xue et al., 2023). This interaction 
can be explained according to the “overjustification” hypothesis (Cameron, 2001; 
Hidi, 2016; Lepper et al., 1973; Murayama et al., 2010). To elaborate, when students 
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were offered external rewards, they would attribute their enjoyment of the learning 
activity to external rewards instead of to the activity itself. Within self-determination 
theory, this phenomenon is also known as the undermining effect, in other words, 
the observation that adding extrinsic motivation where intrinsic motivation is 
already present might harm this intrinsic motivation (Deci & Koestner, 1999; Hidi, 
2016; Houlfort et al., 2002; Kuvaas et al., 2020; Murayama, 2022; Tang & Hall, 2006). 
This undermining effect is usually observed in settings where intrinsic motivation 
is measured before and after the introduction of extrinsic rewards. If there is a 
significant decrease in intrinsic motivation after the removal of extrinsic rewards 
compared to the baseline, people speak of it as an undermining effect (Deci, 1971; 
Lepper et al., 1973; Murayama et al., 2010). However, few studies have directly 
examined the simultaneous effects of autonomy and reward, leaving the interaction 
between these two motivational factors insufficiently understood.

The undermining effect of external rewards on intrinsic motivation may stem 
from overlapping neural mechanisms shared by intrinsic and extrinsic motivation, 
specifically the dopaminergic reward circuitry including the ventral striatum, ventral 
tegmental area, and substantia nigra (Dubinsky & Hamid, 2024; Gruber et al., 2014; 
Kang et al., 2009). One possible explanation is that the presence of external rewards 
already engages the dopaminergic reward circuitry to be activated, limiting the 
additional activation that intrinsic motivation could elicit for these brain regions. For 
example, Murayama et al. (2010) demonstrated that participants who received rewards 
showed higher reward circuitry activation during the task but subsequently exhibited 
lower intrinsic motivation to perform better once the reward was removed. They 
argued that the previous presence of external rewards may overshadow the inherent 
satisfaction of following task engagement, making intrinsic success less salient.

On the other hand, it has also been reported that intrinsic and extrinsic drives 
benefit memory performance independently (Duan et al., 2020). This may reflect the 
recruitment of distinct neural mechanisms in parallel, aligning with notions that 
extrinsic motivation engages reward-related regions, whereas intrinsic motivation 
additionally evokes attentional control networks such as the DLPFC and dACC 
(Murty et al., 2015). Altogether, these findings point to conflicting evidence regarding 
whether or how intrinsic and extrinsic motivational drives interact during learning. 
Notably, there is a lack of studies that simultaneously manipulated both intrinsic and 
extrinsic motivational factors in learning while measuring brain activity.

Taken together, we address our next research question: Does reward modulate 
the beneficial effect of choice on memory, and if so, how? To tackle this research 
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question, we designed a project in Chapter 4, in which we implemented the paradigm 
from Voss, et al. (2011b). Additionally, we added the reward factor parallel with the 
manipulation of autonomy in their design, in which we could then investigate not 
only the effect of autonomy and rewards, but also how reward modulates the impact 
of autonomy on memory encoding and associated brain activity with fMRI scanning 
during task.

1.4 Macro-environment: socio-cultural factors 
modulating the effect of autonomy and rewards 
on learning

There has been an ongoing debate regarding how autonomy is influenced 
by socio-cultural factors, as well as how external rewards may modulate the 
motivation underlying autonomy. We propose that much of this debate arises from 
overgeneralizations in interpreting results without simultaneously considering 
multiple factors. In the current thesis, we aimed to address this gap by examining 
autonomy, reward, and socio-cultural influences together within a unified 
framework. From a social-cognitive perspective (Han, 2017), previous findings have 
shown contradictory evidence regarding the effect of autonomy on learning and 
motivation across different cultural groups, suggesting that the role of autonomy 
may not be universal but context-dependent. In this paragraph, I will specifically 
discuss how socio-cultural factors shape the effect of autonomy, with a particular 
focus on how they may influence the interaction between autonomy and reward 
during learning.

1.4.1 Autonomy and socio-cultural factors
On the one hand, there is sufficient evidence suggesting that the beneficial effect of 
autonomy for learning is universal across Eastern and Western cultures (Chirkov et 
al., 2003; Chirkov, 2009; Chirkov et al., 2010; Helwig, 2006; Nalipay et al., 2020; Ryan 
& Deci, 2006; Vansteenkiste et al., 2006; Vansteenkiste et al., 2020; Vansteenkiste 
et al., 2005; Wichmann, 2011; Yu et al., 2016). Although it is more intuitive to think 
that autonomy is a Western philosophical concept rooted in individualism and self-
development (Christman, 2003), Eastern Confucian culture has also emphasized 
the importance of personal choices (i.e., autonomy) in learning, conceptualized as 
“self-cultivation” (Helwig, 2006; Ryan & Deci, 2017; Zusho, 2005). In Chinese culture, 
Taoism especially emphasizes the sense of autonomy and freedom in personal 
behaviours (Wenzel, 2003). This was also in line with the Basic Psychological Needs 
Theory in self-determination theory, suggesting that autonomy is an instinctive 
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psychological need, and it is not influenced by social contexts (Ryan & Deci, 2017; 
Vansteenkiste et al., 2020).

On the other hand, some studies have suggested that having autonomy is more 
valuable for students from Western cultures than for students from Eastern cultures 
(Iyengar & Lepper, 1999; Markus & Kitayama, 2003; Sastry & Ross, 1998). This could 
be explained by potential differences in the origins of intrinsic motivation to learn 
between Eastern and Western cultures (Liu et al., 2020b). They elaborated that for 
European students, intrinsic motivation usually comes from their own interest in 
learning (i.e., autonomy). However, for Eastern students who were deeply influenced 
by Confucian philosophy, their intrinsic learning motivation comes from the 
internalization of the importance of learning. In other words, they derived a strong 
personal belief that learning is important for their future development, social status, 
and career success, despite their lack of interest in the learning content. These 
differences in values might also shift learning styles and preferences. For example, 
Chinese students embrace teacher-led instructions, aligning with cultural norms of 
respect for guidance, whereas American students often view the same approach as 
constraining and prefer a more self-dependent learning style (Zhou et al., 2012).

However, most existing studies have focused on workplace settings or survey-based 
educational research approaches to investigate the influence of socio-cultural factors 
in learning motivation. In the current thesis, we aim to investigate autonomy as a 
motivator during learning within a controlled but naturalistic learning environment 
for students across different cultural backgrounds. By doing so, we aim to generate 
insights with direct relevance for educational practice, highlighting how fostering 
autonomy can support more effective and culturally responsive learning and 
memory encoding behaviours in real-world educational settings. In Chapter 5, we 
implemented the same exploration paradigm as Chapter 4, in which we compared 
factors of autonomy on learning in both Dutch and Chinese cultural groups, aiming 
to investigate socio-cultural differences in the beneficial effect of autonomy on 
memory encoding.

1.4.2 Overgeneralization of autonomy and rewards: socio-cultural factors
Moreover, findings regarding how rewards influence the beneficial effect of autonomy 
on learning remained inconsistent. Although an undermining effect of rewards on 
autonomy has been proposed (van Lieshout et al., 2023; Xue et al., 2023), there is 
also contradicting evidence that intrinsic motivation in learning is not influenced 
by extrinsic motivation (Duan et al., 2020). The differing results in these studies 
may stem from an overgeneralization of the circumstances (Eisenberg, 2002). It was 
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proposed that the Eastern population might be more intrinsically motivated to work 
with external regulation from other people, whereas the Western population might 
be less intrinsically motivated to work with outside control (Eisenberg, 2002). Hence, 
we propose that the variability in inconsistent findings of the interaction effect 
between autonomy and reward on learning may be due to the lack of consideration for 
additional moderating factors, such as cultural contexts or achievement levels (Han, 
2017). Since the sources of intrinsic motivation differ across cultural backgrounds, 
responses to extrinsic motivation from students with Eastern or Western cultural 
backgrounds may also diverge. For instance, survey studies have found that students 
from Eastern cultures often internalize the value of education as a pathway to future 
development, which may lead them to perceive extrinsic rewards, like achievement, 
rewards, or excellence in certain skills, as supportive. In contrast, Western students 
who are typically driven by personal interest may experience extrinsic motivation 
as controlling (Liu et al., 2020b). However, little research has explored how cultural 
factors shape the interaction between extrinsic and intrinsic motivation in learning 
contexts. Therefore, Chapter 5 of this thesis aims to address this gap by investigating 
how cultural background influences the relationship between autonomy and rewards 
during learning.

1.5 Thesis outline

The current thesis presents four projects designed to investigate the cognitive and 
neural mechanisms underlying the beneficial effect of autonomy on learning. The 
four projects were developed across three levels of analysis: the predictive processing 
of the brain, external motivational influences, and socio-cultural factors. In Chapters 
2 and 3, autonomy was manipulated in a binary choice paradigm, providing a 
straightforward manipulation of internal predictive processing dynamics associated 
with the choices. In Chapters 4 and 5, autonomy was manipulated through an 
exploration paradigm, in which participants were either given the opportunity 
to actively control their exploration route in their learning or were required to 
follow predetermined paths. Chapter 4 examined how extrinsic rewards influence 
the autonomy effect on learning, while Chapter 5 explored how cultural contexts 
modulate the beneficial effect of autonomy on learning.

In Chapter 2, we investigated how the predictability of choice outcomes modulated 
the beneficial effect of choice on memory encoding by employing a binary choice task 
(Murty et al., 2015; Zhang et al., 2024). We manipulated choice and the predictability 
of the choice outcomes in the following way. In half of the blocks, participants could 



22 | Chapter 1

choose which object they wanted to see, while in other blocks, the choices were made 
for them. Meanwhile, in half of the choice and no choice blocks, they would always see 
the selected object, while in other blocks, they had a 50% chance to see the selected 
object. Their memory accuracy was tested using a recognition task. This design 
allowed us to examine how active choices enhance memory encoding by engaging 
stronger predictive processing towards upcoming information.

In Chapter 3, based on the findings from Chapter 2, we implemented a stronger control 
over the choice outcomes by holding predictability constant throughout memory 
encoding and manipulating only the surprise of the choice outcomes on each trial in 
the encoding task. Participants were required to learn associations between colours 
and categories. Then, in the memory encoding phase, participants were asked to choose 
between two category options on each trial or simply press a button following the 
predetermined choice made for them. In half of the trials, participants saw an image 
belonging to the category they chose or assigned for them, while in the other half of the 
trials, they saw an image belonging to a different category from the one they chose or 
assigned for them. We hypothesized that memory accuracy would benefit from active 
choices when participants saw a consistent category to their choice, while it remained 
unknown how active choices would modulate memory accuracy when the prediction of 
the choice outcome was violated by surprising information.

In Chapter 4, we investigated how the beneficial effect of autonomy on learning was 
influenced by monetary rewards. We adapted a well-controlled explorative learning 
paradigm from Voss and colleagues for use in the fMRI scanner (Voss, et al., 2011b). 
In this paradigm, participants were presented with a 5 x 5 grid consisting of object 
images obscured by visual noise except for a (circular) searchlight window. These 
objects could be revealed by moving the searchlight window around the screen. 
Autonomy was manipulated as follows: In the autonomous condition, participants 
were given volitional control over the temporal and spatial trajectory of the searchlight 
window using a joystick. In the non-autonomous condition, participants were 
instructed to follow (mimic with the joystick) an exploration trajectory shown on 
screen. Importantly, we adapted this paradigm by introducing a reward manipulation 
orthogonal to the autonomy manipulation. This was done by offering participants a 
monetary reward for their memory performance for objects from selected autonomous 
and non-autonomous grids, and not for other grids. Participants’ recognition and 
spatial memory performance were assessed in a separate memory task. As such, this 
design allowed us to investigate the effects of autonomy, reward, and their interaction 
on memory accuracy as well as brain activity during learning.
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In Chapter 5, we implemented the same paradigm and design as in Chapter 4, for 
which we collected behavioural data in both Nijmegen, the Netherlands, and Beijing, 
China. We compared the influence of reward on autonomy from different cultural 
groups of interest. Chapter 5 provided a socio-cultural perspective of the motivations 
in learning.

Chapter 6 provides a summary of the main findings of the current thesis, discussing 
the most relevant findings of this thesis and future directions.

In the current thesis, by investigating these various factors, including internal 
predictive processing, external reward, and overall socio-cultural environment, we 
aim to unravel the cognitive and neural mechanisms of the beneficial effect of active 
choice on learning.





Chapter 2

Predictability modulates the beneficial 
effect of choice in memory encoding
This Chapter is adapted from: Zhang, Z., van Lieshout, L., & Bekkering, H. (2024). 
Autonomy in learning: Predictability modulates the beneficial effect of choice on 
learning. psyArxiv. https://doi.org/10.31234/osf.io/j5fzt. This manuscript has been 
accepted for publication.
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Abstract

When people are offered the opportunity to choose, they tend to learn better. However, 
the cognitive mechanisms of the beneficial effect of choice on learning and memory 
encoding have been rarely investigated. On one hand, self-determination theory has 
proposed that choices themselves might be rewarding, even when their consequences 
are not predictable. On the other hand, from a predictive coding perspective, choices 
facilitate learning because they enhance the prediction of upcoming information. 
To delve deeper into these two interpretations, we conducted 2 experiments using 
a memory encoding task in which we independently manipulated choice and 
predictability. In half of the blocks, participants could choose which object they 
wanted to see (choice), while in other blocks, the choices were made for them (no 
choice). Meanwhile, in half of the choice and no choice blocks, they would always see 
the selected object (high predictability), while in other blocks, they had 50% chance 
to see the selected object (low predictability). The memory accuracy was tested by a 
recognition task. In both experiments, we found that the facilitatory effect of choice 
on memory accuracy existed under both high and low predictability. However, this 
effect was smaller under low predictability. These findings provided evidence for both 
interpretations: choices enhance learning because they are rewarding by themselves 
while, at the same time, facilitating prediction processes. This study has important 
implications for education, urging teachers to offer choices to students and to satisfy 
students’ needs in classroom settings.
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2.1 Introduction

The world around us offers an enormous number of possibilities to satisfy our needs. 
For example, when we learn to play the piano, we must decide which music style to 
start with. The fact that you can choose might make you happy in and of itself: simply 
having the opportunity to choose which style to play might delight you. However, 
choices also lead to different consequences. Thus, perhaps the choice itself is not 
rewarding, but the fact that you can predict the outcome of the choice (the music) is. 
The current study aims to investigate how choices affect our learning and memory 
encoding under different predictabilities.

Learning and memory formation can be promoted when people can make their 
own choices. According to the self-determination theory (SDT), autonomy (i.e. the 
freedom to choose), is defined as a key motivational drive for learning. People are 
more likely to continue to learn when their need for autonomy is satisfied (Ryan & 
Deci, 2020). Indeed, a multitude of studies have demonstrated that the freedom to 
choose boosts memory encoding (e.g., Ding et al., 2021; Lima et al., 2023; Murty et 
al., 2015; Rotem-Turchinski et al., 2019). For example, Murty et al. (2015) found higher 
memory accuracy in a condition in which participants could choose which picture 
they would like to see (choice condition), compared with a condition in which the 
choice was made by the computer (no-choice condition). Similar beneficial effects 
of choice on learning performance have been found when choice was manipulated 
as having volitional control over the spatial learning trajectory over a map of objects 
(van Lieshout et al., 2023; Voss et al., 2011b), or as choosing the time of viewing 
object pictures (Markant et al., 2014a). Therefore, the beneficial effect of active 
choices on learning is consistent and stable. Nevertheless, little is known about its 
cognitive mechanisms.

Multiple cognitive processes could drive these choice-related memory benefits. First, 
it might be the case that having a choice is rewarding in and of itself. According 
to Ryan and Deci (2020), choices are internally satisfying and motivate people to 
continue to learn. For example, DuBrow et al. (2019) found that people naturally 
preferred symbols associated with the choice condition compared with the no-
choice condition. These symbols were not linked with the pictures that they were 
asked to remember. Also, a positive correlation was found between the magnitude 
of the choice-induced preference over the symbols and the memory accuracy of the 
pictures shown after the selection of the symbols across participants. These findings 
suggested that inconsequential choices could enhance memory formation (Ding 
et al., 2021; Murty et al., 2015; Rotem-Turchinski et al., 2019) likely by inducing a 
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more pleasant emotional response (DuBrow et al., 2019). Taken together, having 
the opportunity to choose is fulfilling in and of itself and can enhance learning, 
regardless of the choice outcomes.

However, we build up a causal relationship between a voluntary action and the 
appearance of a certain outcome following that action (Desantis et al., 2011; Moore 
& Haggard, 2008). Therefore, another line of reasoning suggests that the beneficial 
effects of choice on learning are due to enhanced predictability of the choice 
outcomes. According to the predictive coding and free energy principle framework 
(Friston et al., 2013), active choices help to predict what you are going to perceive 
(i.e. choices help you to build a prior belief of the upcoming perceptual information). 
More specifically, when people make choices, they predict that the outcome will be 
in line with their choice. These consequential choices reduce the prediction error 
over time (Peterson et al., 2011). On the contrary, if the choices do not predict the 
outcome, the prediction error cannot be reduced, and learning is not enhanced. 
Hence, only choices that are associated with smaller prediction errors will improve 
learning (Peterson et al., 2011). For instance, some studies have suggested that the 
beneficial effects of choice on learning disappear when the choice is not predictive of 
the outcome (Chambon et al., 2020; Katzman & Hartley, 2020; Schneider et al., 2018).

By means of two experiments, we aim to investigate the cognitive mechanisms of 
the beneficial effects of choice on learning. Specifically, we aim to unravel whether 
the beneficial effect of choice on learning stems from the inherent reward from 
choice itself (i.e., independent from the choice outcome) or if it relies on the correct 
prediction of the outcome of the choice (i.e., dependent on the choice outcome). To 
address this inquiry, we designed a learning experiment in which we independently 
manipulated 2 factors: (1) the presence of a choice itself (yes or no), and (2) the 
predictability of the choice outcome (high or low). In each trial, participants were 
presented with two object names. These names corresponded to actual object images 
that participants had to remember. Participants could sometimes choose which 
of these two objects they wanted to learn (choice condition), and sometimes the 
choice was made for them (no-choice condition). After the selection, participants 
saw one of the object images. In high predictability blocks, this object image always 
corresponded to the object name that they chose or that was chosen for them. In 
other words: participants could predict which of the object images they would see. 
In low predictability blocks, participants could not accurately predict which of the 
two object images would be revealed to them. This was the case because participants 
would see the selected object in half of the trials but would see the not selected object 
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in the other half of the trials. Afterwards, participants’ learning performance was 
evaluated by a separate recognition memory test.

Given the two explanations regarding the source of the choice effect outlined above, 
we raise two possible hypotheses. If the choice effect on learning purely comes from 
the inherent reward caused by making a choice, the beneficial effect of choice on 
memory accuracy would be present in both high and low predictability scenarios 
(e.g., Murty et al., 2015). Alternatively, if the positive effect of choice on learning 
solely comes from the effective prediction of choice outcomes, the beneficial effect 
of choice on memory accuracy would be present in high predictability scenarios, 
but not when participants could not predict the upcoming picture (e.g., Katzman & 
Hartley, 2020). These experiments will help us to further understand the beneficial 
effects of choice on learning performance and to better utilize choices in industrial 
and educational contexts.

2.2 Experiment 1

2.2.1 Methods

2.2.1.1 Preregistration & data and code availability
Experiment 1 and its analyses were preregistered on the Open Science Framework 
(https://doi.org/10.17605/OSF.IO/TNQRE). All data and code used for stimulus 
presentation and analyses of both experiments are freely available on the Donders 
Repository (https://data.ru.nl/login/reviewer-2730442050/2T3HWWOJY7CNIAESJ76 
XPFLZVHG7Q23GSSFLCMY).

2.2.1.2 Participants
To determine the sample size of our experiments, we conducted a power analysis 
with MorePower (Campbell & Thompson, 2012). The power analysis suggested that 
we need at least 52 participants to detect a large effect size (partial eta2 = 0.14) with 
80% power for the interaction between choice and predictability conditions using a  
2 x 2 repeated measures ANOVA.

We recruited a total of 58 participants in total, of which 55 participants (age = 22.7 ± 
3.7 (M ± SD), 37 females, 17 males, 1 non-binary) were included for the final analysis. 
One participant (57 years old) was excluded because his age was more than 3 standard 
deviations removed from the average age of the participant sample. Another 
participant was excluded because of a procedural mistake by the experimenter, and 
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one participant was excluded for unavoidable disruption during the learning task. 
Participants all reported their English fluency as “very good” and had normal or 
corrected-to-normal vision.

The experiment was approved by the Ethics Committee of the Faculty of Social 
Sciences (ECSW) at Radboud University, Nijmegen, under the general ethics approval 
for standard studies conducted at the Donders Centre for Cognition (ECSW.2018.115). 
Prior to participation, all participants gave written informed consent according to 
the Declaration of Helsinki and confirmed that they were all over 18 years old.

2.2.1.3 Procedure
To test the effect of choice on memory accuracy under different predictabilities, 
we designed a task consisting of a memory encoding phase and a memory test 
phase. The experiment was performed using Presentation® software Version 23.0 
(Neurobehavioral Systems, Inc., 2023).

For the memory encoding phase of the experiment, 448 pictures of unique objects 
were selected from a database for visual stimuli (Brady et al., 2008). Before object 
presentation, the names of the objects were presented on the screen. These object 
names were taken from the original database. All the names were checked and, 
when necessary, corrected by 2 native English speakers. For each participant, the 
448 objects were randomly combined into 224 pairs. During the memory encoding 
phase, only one object of each pair was made visible to the participants, and the 
participants were instructed to remember these 224 objects as well as possible. 
During the memory test phase, participants were tested on 448 objects, consisting 
of the 224 objects they had seen and the 224 objects they had not seen during the 
memory encoding phase. Participants were asked to indicate whether they had seen 
the object during the memory encoding phase or not.

During the memory encoding phase, the factors “choice” and “predictability” were 
manipulated as follows. For the choice manipulation, participants either choose 
among 2 object name cues representing the object they wanted to see (choice 
condition), or this choice was made for them (no-choice condition). Next, for the 
predictability manipulation, they either always saw the object corresponding to the 
selected name (high predictability condition), or they had a 50% chance to see the 
object corresponding to the selected name and a 50% chance to see the other object 
(low predictability condition). In the low predictability condition, participants were 
not explicitly told that the chance of seeing the selected object was 50%. Instead, they 
were told that “you might have a chance to see the object that you select”. Hence, 
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the whole experiment was a 2 (choice vs no-choice) x 2 (high predictability vs low 
predictability) within-group design.

More specifically, in every trial of the memory encoding phase (Fig 2.1A), participants 
first saw a fixation cross in the centre of the screen with presentation time jittered 
between 500 and 1500 ms (uniformly distributed). Next, 2 object names were 
presented left and right to the fixation cross together with a red up-arrow on the 
screen for a maximum of 5000 ms. In the choice condition, participants would see the 
red up arrow pointing at the fixation cross, indicating that they could select one of the 
objects that they wanted to see by pressing the button on the left or right. In the no-
choice condition, the red up-arrow would already point at one of the object names, 
and the participants were instructed to press the button on that corresponding side. 
As soon as the participants pressed the button, only the selected object name would 
stay on the screen for another 1500 ms. Next, a white screen was presented (1000 ms), 
followed by one of the object pictures presented in the middle of the screen with its 
name above it (1000 ms). In the high predictability condition, participants always 
saw the object picture that they selected or that was selected for them. In the low 
predictability condition, participants had a 50% chance to see the object picture that 
they selected or that was selected for them, and a 50% chance to see the object picture 
corresponding to the other object name. In other words: There was low predictability 
regarding whether they would or would not see the object that was selected before. 
The trial ended with a white screen (700 ms).

During the memory encoding phase, the four conditions (Fig. 2.1B) were presented 
separately in 4 blocks. The order of the conditions was fully randomized and 
counterbalanced across participants. Each block contained 56 pairs of objects, which 
were randomly paired and assigned to one of the conditions beforehand for each 
participant separately. Participants were instructed to remember the pictures that 
were made visible as well as possible in all conditions.

After the 4 blocks of the memory encoding phase, participants performed a 
recognition memory test (Fig. 2.1C). Every trial of the memory test started with a 
fixation cross presented in the middle of the screen (700 ms), followed by a white 
screen with a jittered duration between 500 and 1000 ms (uniformly distributed). 
Then, an object picture was presented on the screen until a button was pressed. 
Participants were asked to press a button to indicate whether they had seen the 
object during the memory encoding phase or not. From left to right, there were four 
buttons corresponding to “Definitely not seen”, “Probably not seen”, “Probably seen”, 
and “Definitely seen”. After pressing a button, a white screen would be presented  
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(700 ms) after which the next trial would start. Participants were instructed to 
perform as accurately as possible.

Before the experiment started, participants underwent a practice session. The 
practice session consisted of all 4 learning conditions, which were presented in the 
same order as the formal learning blocks. There were 4 trials for each condition and 
each condition was presented in a different block. Before each block, participants 
were asked to read the instructions on the screen and summarize them to the 
experimenter. This was done to ensure that they understood each condition. During 
the practice session, we showed participants that, if they failed to press a button 
within 5000 ms after the object names were presented, a “Too late!” message would be 
presented on the screen together with one of the object names (1500 ms). In the choice 
condition, this object name would be randomly selected for them, while for the no-
choice condition, the object name corresponding to the correct selection would stay 
on the screen. If participants pressed the wrong button in the no-choice condition, 
they would see the message “Wrong button!” together with the name corresponding 
to the selection they should have made. In other words, making a wrong response did 
not affect the selection made for them. There was also a short practice of the memory 
test, consisting of 4 trials. In these trials, objects that they saw during the practice 
learning block were presented. It should be noted that the objects used during the 
practice session were not included in the actual experiment.

Participants spent between 75 and 90 minutes in the lab and were paid 15 euros or an 
equivalent amount of course credits.

2.2.1.4 Data preprocessing
We prepared data with Python 3.11 (Van Rossum, 2023). Only the objects that were 
seen by participants were considered for analysis. If a seen object was rated as 
“probably seen” or “definitely seen” during the memory test phase, this memory trial 
was coded as 1 (accurate). While if a seen object was rated as “probably not seen” or 
“definitely not seen”, this memory trial was coded as 0 (inaccurate). Therefore, for 
each participant, there were at most 224 memory trials considered for the final 
analysis. These objects were categorized according to their learning conditions. 
Objects in the learning trials during which participants did not press a button within 
the maximum object name viewing time (5000 ms) or pressed the wrong button in 
no-choice learning blocks were excluded (12 out of 12320 trials in total, 12308 trials 
left for analysis).
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Figure 2.1. Procedure for Experiment 1. A. In the memory encoding phase, each trial started with a fixation 
cross. Then, in choice conditions, participants would see the red arrow appear in the middle of the screen 
along with 2 names of the objects on the left and right side of the screen. They were instructed to choose 
one of the names by pressing one of the buttons. In no-choice conditions, participants would see a red 
arrow on one side of the screen, indicating that they had to press the corresponding button. After this, only 
the selected name stayed on the screen together with the fixation cross. After the selection stage, in the 
high predictability conditions (black box), participants would always see the object that they selected or 
that was selected for them. In the low predictability conditions (grey box), participants were told that they 
might have a chance to see the selected object. In practice, this meant that the selected object was presented 
in 50% of the trials, whereas the not-selected object was presented in the other 50% of the trials. B. Overview 
of the conditions. The choice or no-choice condition was paired with the high predictability or low 
predictability condition. Hence, we had four conditions that would be presented in 4 separate blocks. The 
order of the blocks was randomized across participants. C. During the memory test phase, participants saw 
a fixation cross followed by an object in each trial. They can press one of the four buttons to indicate whether 
they have seen the object or not. The possible responses were as follows: “Definitely not seen”, “Probably not 
seen”, “Probably seen”, and “Definitely seen”. After pressing the button, the object will disappear, and they 
will see a blank screen. Then the next trial will start. 

Furthermore, we also coded how confident participants were that they had seen the 
object during the memory encoding phase (confident: 1; not confident: 0). Objects 
that participants indicated to have “definitely seen” or “definitely not seen” in the 
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memory test phase were coded as “confident”, and objects indicated as “probably 
seen” or “probably not seen” were coded as “not confident”. In the end, out of the 
12308 trials included in the analyses, there were 9676 trials that participants were 
confident about during the memory test phase and 2632 trials that participants were 
not confident about. The high portion of confident trials suggested an absence of 
guessing and a high-quality memory (Meliss et al., 2022).

2.2.1.5 Data analysis
For the primary analyses, we only considered the confident trials (the 9676 trials 
participants indicated as “definitely seen” or “definitely not seen” in the memory 
test phase). This was done because when participants responded that the object was 
“probably seen” or “probably not seen” during the memory test, it might reflect a guess 
instead of being a signature of actual learning and remembering. This decision was 
based on a meta-analysis suggesting that intrinsic motivation (e.g., choices, curiosity, 
or interest) would improve the actual learning performance instead of guesses during 
the memory test (Cerasoli et al., 2014). In accordance with this argument, it has been 
suggested that intrinsic motivation could boost learning only for the knowledge that 
participants were confident about (Galli et al., 2018; Gruber et al., 2014; Meliss et al., 
2022; Murphy et al., 2021). Consequently, although we preregistered to include all 
valid trials for analyses, we decided to perform our analyses on the confident trials 
alone. The results including only the confident trials are reported in the main text, 
whereas the results of the preregistered analyses including all trials can be found in 
the supplement (see Supplementary Material 1). It should be noted that both analyses 
yielded similar results.

The data were modelled with linear mixed effect modelling (LME) using the glmer 
function of the lme4 package in R (Bates et al., 2015). The main model included 
accuracy as a binomial dependent variable. The independent variables were 
choice (yes/no) and predictability (high/low), for which we both created sum-to-
zero contrasts. The main model included the main effects of “choice (yes/no)” and 
“predictability (high/low)”, as well as the interaction effect between “choice (yes/
no)” and “predictability (high/low)” as fixed effects. The main model included a 
full random effects structure (Barr, 2013; Barr et al., 2013) meaning that a random 
intercept and random slopes for all effects were included per participant. We fitted 
the model with 10,000 iterations (5000 warm-ups) and diagnosed the model with 
DHARMa (Hartig, 2020).

If the interaction effect between “choice (yes/no)” and “predictability (high/low)” was 
significant in the main model, we would perform follow-up analyses to investigate 
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the choice effect (memory accuracy (choice) – memory accuracy (no-choice)) under 
different predictabilities. To this end, we modelled the data of the high predictability 
and low predictability conditions separately. We compared the memory test accuracy 
between choice and no-choice conditions with the emmeans function in R (Lenth, 
2022). In this way, we were able to detect differences in the choice effect under 
different predictabilities. On the other hand, with the same procedure as above, we 
also compared predictability effects (memory accuracy (high predictability) – memory 
accuracy (low predictability)) under choice or no-choice conditions separately.

Furthermore, to delve deeper into the attenuated choice effect under low 
predictability, we conducted secondary analyses by separating the trials in the low 
predictability conditions into “selected” or “not selected” objects. The “selected” 
objects were the ones consistent with the name that participants pressed the button 
on (i.e., selected “ball” and saw the picture “ball”), and the “not selected” objects were 
the ones under the other name that participants did not press the button on (i.e., 
selected “ball” but saw the picture “frog”). The details and results of these secondary 
analyses are described in Supplementary Material 2.

2.2.2 Results
For the primary analysis (Fig. 2.2A & 2.2B), we found a main effect of choice  
(β = 0.29, z = 2.28, p < 0.001) on memory accuracy. This indicated that when people 
could choose, their memory accuracy was higher (M = 84.3%, SD = 12.6%) than in  
no-choice conditions (M = 76.6%, SD = 16.2%). In contrast, there was no significant 
main effect of predictability (β = -0.08, z = -0.71, p = 0.21), indicating that there was 
no difference in memory accuracy under high predictability (M = 81.4%, SD = 13.3%) 
or low predictability (M = 79.7%, SD = 14.6%).

However, we also found a significant interaction effect of choice and predictability 
on memory accuracy (β = 0.42, z = 2.33, p = 0.02). This means that, under the high 
predictability conditions, memory accuracy was significantly higher in the choice 
condition (M = 86.3%, SD = 12.5%) than in the no-choice condition (M = 75.6%,  
SD = 17.4%; β = 0.71, z = 5.28, p < 0.001). The same was true for the low predictability 
conditions. The memory accuracy was higher in the choice condition (M = 81.9%, 
SD = 14.8%) than in the no-choice condition (M = 77.21%, SD = 17.19%; β = 0.29,  
z = 2.28, p = 0.02). However, the difference in memory accuracy between choice and 
no choice conditions under high predictability was larger than this difference under 
low predictability (Fig. 2.2A). Additionally, there was a difference in memory accuracy 
between high and low predictability conditions when people could choose (β = 0.34,  
z = 2.58, p = 0.01), but not when people could not choose (β = -0.08, z = -0.71, p = 0.48).
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To summarize, we found an effect of choice on memory accuracy for both the high as 
well as the low predictability condition. However, this effect appeared to be stronger 
for the high predictability condition compared with the low predictability condition 
(Fig. 2.2A).

Figure 2.2 Results for Experiment 1 & 2. A. For Experiment 1, we found the effect of choice on memory 
accuracy was significant under different predictabilities, albeit larger for the high predictability than the 
low predictability conditions. The black colour represents the high predictability (High Pred) condition and 
the grey colour represents the low predictability (Low Pred) condition. The black or grey coloured lines 
represent the simple effect comparison (choice – no-choice) under different predictabilities. Asterisks next 
to the lines indicate the significance of the effects (***, p<0.001; *, p<0.05). B. Individual variability in the 
effect of choice for high predictability conditions (x-axis) compared with low predictability conditions 
(y-axis). Each dot represents one participant. For high predictability, most participants showed a positive 
choice effect (positive x-values). For low predictability, the choice effect appeared to be less strong (indicated 
by a more even distribution of positive and negative y-values). This reflects the reported interaction 
between choice and predictability on memory accuracy. C. As in Experiment 2, the effect of choice on 
memory accuracy was also larger for the high predictability than the low predictability condition. The 
results pattern was similar to that in Experiment 1. All other conventions are the same as Panel A. D. For 
Experiment 2, the individual variability in the effect of choice under different predictabilities is similar to 
that reported for Experiment 1 (Panel B).
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2.2.3 Discussion: Experiment 1
In the first experiment, we found a significant main effect of choice on memory 
accuracy. Participants showed better memory for objects when they had the 
opportunity to choose than when they could not choose. More interestingly, we 
found a noteworthy significant interaction effect on memory accuracy between 
the manipulated factors of choice and predictability. The improvement in memory 
accuracy attributed to the choice effect was somewhat diminished, but still 
statistically significant under low predictability conditions.

These findings provide evidence that supports both interpretations of the choice 
effect. On one hand, the existence of the choice effect under both high and low 
predictability suggested that choices were rewarding by themselves regardless 
of the consequences (Murty et al., 2015). On the other hand, the interaction effect 
between choice and predictability, indicating that the choice effect diminished under 
low predictability conditions, suggested that choices aided in learning because they 
enabled individuals to predict the outcomes associated with their choices (Katzman 
& Hartley, 2020).

However, these findings left open questions behind. In the current setup, within 
the low predictability conditions, half of the objects that participants saw were not 
the ones they selected, thus creating an inconsistency between the outcome and 
predictions associated with their choices. This inconsistency might cause a worse 
memory of the objects (Frankenstein et al., 2020). Secondary analyses were carried 
out to ascertain whether the presence of these not selected objects was the sole cause 
for the dampening of the choice effect (see Supplementary Material 2). We separated 
the objects under low predictability into “selected” and “not selected”. It was revealed 
that the choice effect on memory accuracy for both selected and non-selected objects 
in the low predictability condition was significant and comparable, albeit noticeably 
attenuated compared to the high predictability condition. In other words, this 
reduction in the choice effect was not limited to not selected objects; it also applied 
to selected objects.

In summary, based on the findings of Experiment 1, we can conclude that the choice 
effect on memory was attenuated when participants could not predict the outcome of 
choices, regardless of whether the outcome was consistent with their choices or not. 
Thus, the choice effect seems to be related to both the satisfaction of having a choice 
and the (sensorimotor) consequences that the choice was associated with.
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2.3 Experiment 2

Nonetheless, a conspicuous distinction existed between the choice and no-choice 
conditions. Making a choice is time-consuming (Supplementary Material 3). As a 
consequence, participants viewed the object names (object name viewing time) longer 
in the choice than in the no-choice condition, and this effect of choice on object name 
viewing time was larger under high than low predictability (Supplementary Material 3,  
Fig. S2.3). Experiment 2 is designed to investigate this fact in more detail since 
these differences in viewing times might explain the reported effects of choice and 
predictability on memory accuracy.

To rule out this possibility, we conducted Experiment 2. To this end, we adjusted the 
paradigm such that (1) the amount of time that the object names were shown to the 
participants was controlled and kept constant between conditions and (2) ensured 
that participants always read both object names before seeing the objects themselves. 
The latter was done by separately presenting each object name for a fixed amount of 
time before participants were asked to make their choice.

If the reported effects of choice and predictability on memory accuracy are 
annihilated when controlling for object name viewing time, it might be the case that 
these object names function similarly to cues that facilitate memory (e.g., Thomson 
& Tulving, 1970). Consequently, longer exposure to these cues might result in better 
memory of the affiliated pictures. However, if we find similar effects on memory 
accuracy as reported for Experiment 1, the main effect of choice on memory accuracy 
and the interaction between choice and predictability on memory accuracy is likely 
not driven by object name viewing time.

2.3.1 Methods

2.3.1.1 Participants
For Experiment 2, we recruited 56 participants (average age = 22.27 ± 2.42, 42 females, 
and 14 males) with the same criteria as Experiment 1.

2.3.1.2 Procedure
In Experiment 2, a similar paradigm was used as in Experiment 1. We made a few 
adaptations to control for differences in object name viewing time between conditions.

Instead of the choice screen shown right after the jittered fixation cross, participants 
would first see one object name at a time. For example, the object names “ball” and 
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“frog” were each presented for 1000 ms (one after the other), separated by a 500 ms 
fixation cross (Fig. 2.3). Following the second object name, another 500 ms fixation 
cross was presented. Next, the choice screen with the object names and the red up-
arrow is presented for a fixed duration of 2000 ms, during which participants had to 
press a button. In this way, we ensured that both object names were visible for a fixed 
amount of time (instead of disappearing after the button press, as was the case in 
Experiment 1). The rest of the trial remained the same as for Experiment 1.

The memory test phase was the same as in Experiment 1. For Experiment 2, 
participants spent between 100 and 110 minutes in the lab and were paid 20 Euros for 
participation or an equivalent amount of course credits.

Figure 2.3 Procedure for Experiment 2 (Choice/High-predictability trial as an example). The paradigm 
from Experiment 1 is adapted to control the amount of time that participants viewed the names 
corresponding to the objects. After the jittered fixation, participants would view the names of the objects 
one at a time for 1000 ms, followed by 500 ms fixation. Since both object names were shown in the middle 
of the screen one by one, we ensured that participants would perceive and process both object names  
(see purple frame). Afterwards, participants were presented with both object names again and were 
asked to respond by pressing one of the buttons (2000 ms). Crucially, both object names were on the 
screen for the full 2000 ms. The rest of the experiment remained the same as Experiment 1. 

2.3.1.3 Data analysis
The data were preprocessed in the same way as for Experiment 1. Over data from 
all the participants, we eliminated 136 (out of 12,544) trials because of wrong or 
too-late responses. Out of the total 12,408 valid trials, there were 10,142 trials for 
which participants were confident (responded with “definitely seen” or “definitely 
not seen”), reflecting high-quality memory in the current experiment (Meliss et al., 
2022). As to Experiment 1, we also omitted the unconfident trials (responded with 
“probably seen” or “probably not seen”) and conducted a main 2 (choice or no-choice) 
× 2 (high predictability or low predictability) LME analysis on memory accuracy. 
As for Experiment 1, the results including all trials are reported in the supplement 
(Supplementary Material 1).
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The same secondary analyses as mentioned for Experiment 1 were conducted 
on the data of Experiment 2. Also, these results can be found in the supplement 
(Supplementary Material 2).

2.3.2 Results
By means of Experiment 2, we have replicated the main findings of Experiment 1  
(Fig 2.2C & 2.2D). First, we found a main effect of choice (β = 0.36, z = 7.52,  
p < 0.001) on memory accuracy. This indicated that when people could choose, their 
memory accuracy was higher (M = 83.7%, SD = 13.9%) than in no-choice conditions  
(M = 74.8%, SD = 16.3%). Second, there was also a significant main effect of predictability  
(β = 0.10, z = 1.74, p = 0.04). It indicated that people remembered objects better 
under high predictability (M = 80.8%, SD = 14.0%) than under low predictability  
(M = 77.7%, SD = 16.9%). Last but not least, as in Experiment 1, there was also a 
significant interaction effect of choice and predictability on memory accuracy  
(β = 0.09, z = 2.08, p = 0.04).

Also, follow-up analyses with emmeans yielded similar results as found in Experiment 1.  
When people could predict the outcome of their choices well (high predictability), 
we found that the accuracy in the choice condition (M = 85.9%, SD = 13.3%) was 
significantly higher than in the no-choice condition (M = 75.5%, SD = 16.9%; β = 0.89, 
z = 6.99, p < 0.001). When people could not predict the outcome of their choices 
well (low predictability), we found that the accuracy under the choice condition  
(M = 81.1%, SD = 16.6%) was also significantly higher than the no-choice condition  
(M = 73.6%, SD = 20.0%; β = 0.53, z = 4.17, p < 0.001). Under the choice condition, 
people remembered objects better when there was high predictability compared with 
low predictability (β = 0.37, z = 2.82, p = 0.005), but this difference was not present in 
the no-choice condition (β = 0.02, z = 0.12, p = 0.91).

To conclude, in Experiment 2, we found an effect of choice in both the high as well as 
low predictability conditions. As in Experiment 1, this effect appeared to be stronger 
for the high predictability condition compared with the low predictability condition 
(Fig. 2.2C).

2.3.3 Discussion: Experiment 2
In Experiment 2, we employed a similar paradigm as in Experiment 1. However, in 
each trial, the object names were presented one at a time before the choice screen. 
Also, the object name viewing time remained the same for 2000 ms across all trials 
(Fig. 2.3). We replicated the main results on memory accuracy from Experiment 1. 
That is, the beneficial effect of choice on memory accuracy always stayed statistically 
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significant under both high and low predictabilities. At the same time, the choice 
effect on memory was notably diminished under low predictability.

In conclusion, in Experiment 2, the main results were replicated, suggesting that 
choice would always help with memory, even when participants could not predict. At 
the same time, this choice effect on memory was attenuated when the choice outcome 
predictability was low. Interestingly, in Experiment 2, the choice effect on memory 
accuracy got smaller for not selected objects, but not for selected objects under low 
predictability. This was different from Experiment 1 (see Supplement Material 2).

2.4 Discussion

In a set of 2 experiments, we aimed to gain a better understanding of the beneficial 
effect of choice on memory. For this purpose, we designed a well-controlled 
experimental paradigm to test the choice effect on memory accuracy under different 
predictabilities. On one hand, if the choice effect on accuracy stayed would be the 
same for high and low predictabilities, we would conclude that choices are rewarding 
by themselves regardless of the outcome (Ding et al., 2021; DuBrow et al., 2019; Murty 
et al., 2015; Rotem-Turchinski et al., 2019). On the other hand, if the choice effect is 
solely present under high predictability, it would suggest that choices are beneficial 
for learning because they facilitate predictive processing (Cockburn et al., 2014; 
Desantis et al., 2011; Gureckis & Markant, 2012; Katzman & Hartley, 2020; Luo et al., 
2022; Markant et al., 2014a; Meng & Ma, 2015; Moore & Haggard, 2008; Schneider et 
al., 2018; Sharot & Sunstein, 2020; Voss et al., 2011b). Based on our results, we found 
evidence for both explanations. We found a facilitatory effect of choice on memory 
accuracy for both high and low predictability conditions. Yet, the choice effect on 
memory accuracy was markedly smaller under low predictability than under high 
predictability. These results together support both hypotheses we raised. In essence, 
choices are internally rewarding by themselves, but they also enhance memory by 
fostering predictive processing.

2.4.1 The rewarding nature of choices
In both experiments, it also was found that participants remembered objects 
better when they could choose than when they could not choose. This main effect 
of choice on memory accuracy maintained statistical significance throughout both 
high and low predictabilities, even for the objects that were not selected in low 
predictability conditions (Fig. S2.2). This finding substantiates the hypothesis that 
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choices (partially) facilitate learning due to the intrinsic reward associated with the 
opportunity to choose.

According to the self-determination theory (SDT), choices enhance the feeling of 
autonomy, one of the three fundamental needs in intrinsic motivation for learning 
(Ryan & Deci, 2020). Autonomy is defined as the feeling of ownership and freedom of 
one’s actions. One of the core arguments in SDT for education is that students would 
feel more engaged and self-related during learning when their need for autonomy 
is satisfied. Students would even show higher emotional arousal during learning 
when their need for autonomy is supported (Streb et al., 2015). Even when the 
subsequent outcome did not align with the choices that participants made, having 
the opportunity to choose by itself already contributed to the facilitation of learning. 
This is in line with previous studies indicating that even inconsequential choices 
boost memory formation (Ding et al., 2021; Murty et al., 2015; Rotem-Turchinski et 
al., 2019). In conclusion, the inherent satisfying and rewarding feelings that choices 
bring for people can already enhance learning processes and performances.

2.4.2 Choices enhance memory encoding by facilitating prediction 
of outcomes
In both experiments, we found that the choice effect on memory accuracy was 
attenuated under low predictability compared with high predictability. This implies 
that part of the advantage that choices bring for learning is due to the more active 
prediction that choices elicit.

To start with, the act of choosing transforms the information process from passive 
perceiving to active predicting. Our brains are not old-fashioned computers that 
can only take passive inputs and produce responses. On the contrary, our brains are 
active inference agents that constantly predict upcoming events in the surrounding 
environments (Friston, 2010; Friston et al., 2016; Friston et al., 2013). Choices could 
enhance active inference, leading to a facilitation of reducing prediction error 
between predicted states and perceived information (Friston et al., 2013). This would 
explain that when participants could not accurately predict the outcome of their 
choices, their prediction was violated. Under this circumstance, the sense of agency 
(i.e., autonomy, the feeling of control when having the chance to choose) would also 
be attenuated (Friston et al., 2013). The loss of sense of agency also results in a feeling 
of losing control over the situation. Such uncontrollability would cause frustration 
and learned helplessness, leading to impaired motivation and learning performance 
(Mineka & Hendersen, 1985; Seligman, 1972). Furthermore, some studies also posit 
that choices would lead to a distortion of the information value after it was perceived. 
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When people are choosing, they might feel that information is more valuable than 
when they could not choose (Meng & Ma, 2015; Sharot & Sunstein, 2020; Dubrow 
et al., 2019; Izuma et al., 2013). For example, it was found that people would have 
a higher expectation of success in a cognitive task that they chose, proven by both 
behavioural and electrophysiological evidence (Meng & Ma, 2015). As a result, the 
choice effect on memory accuracy became smaller under low predictability.

Since people would more actively predict upcoming information when they could 
choose, they could also coordinate their attention beforehand. This was supported 
by previous findings showing that even if people could only control when to adjust 
their attention to the next object, memory would already be boosted (Markant et al., 
2014a). This attentional tuning process supports memory encoding and retention 
before information even appears (Gureckis & Markant, 2012). In a study conducted by 
Luo et al. (2022), it was suggested that attention preparation would only happen when 
the outcome of the choice was predictable. In their experimental setting, participants 
were more concentrated and exhibited faster reaction times in the subsequent 
attentional task when they had chosen and could predict the background picture for 
each trial. However, when participants were unable to predict the consequences of 
their choices for the background pictures in the same paradigm, the reaction time 
of the subsequent task was not accelerated by making active choices. Therefore, if 
choices are not predictive of the outcomes, predictive and/or attentional preparation 
will lose their merits.

These findings can be translated to the experiments described here. If our participants 
chose “ball” by themselves, they might have already adjusted their attention to the 
state of seeing a ball picture later. However, if the “ball” was chosen for them, this 
prior prediction and attention tuning might be less active (Fig. 2.1).

In summary, in the current experiment, we found that the choice facilitatory effect on 
memory diminished under low predictability. This finding supported the hypothesis 
that choice improves learning by enhancing prediction over the consequences. Two 
potential explanations for this attenuation of the choice effect emerge. On one hand, 
choices brought a more active prediction of future information so that people would 
coordinate their attention in advance. On the other hand, choices evoked a sense of 
lower prediction error between the choice and the perceived information.

Taken together, our results support both hypotheses raised in the introduction. 
Firstly, choices contribute to learning with its inherent value and rewards. This 
was supported by the presence of choice effect on memory accuracy under all 



44 | Chapter 2

circumstances. Secondly, choices aid learning by enhancing the prediction of 
subsequent outcomes. This was evidenced by the attenuation of choice effect on 
memory under low predictability.

2.4.3 Consistency between choice and outcome can partially explain the 
choice effect on memory encoding
However, when we dissected the condition of low predictability into selected and 
not selected objects, we found different patterns of results in the two experiments 
(Supplementary Material 2, Fig. S2.2 C&D). To be more specific, the choice effect 
on memory accuracy diminished under low predictability for both selected and not 
selected objects in Experiment 1. In contrast, in Experiment 2, the choice effect on 
memory accuracy did not diminish for selected objects under low predictability.

This discrepancy may be attributed to the fact that in Experiment 2, participants 
were guaranteed to view both object names for a fixed amount of time. This might 
elicit predictions regarding both objects in the low predictability conditions, causing 
confusion and perhaps even false memory. This is consistent with the mechanism of 
proactive interference and divided attention since more encoded cues might cause 
a higher cognitive load (Jacoby et al., 2010; Kane & Engle, 2000). Hence, memory 
accuracy for selected objects in the low predictability condition might be reduced 
when participants had no choice. In contrast, when participants were choosing 
objects by themselves, even under low predictability, they might have constructed 
a stronger anticipation of the selected object (Meng & Ma, 2015). As a consequence, 
memory under choice but low predictability condition might not be confused by 
these multiple predictions. Therefore, the choice effect on memory accuracy for 
selected objects under low predictability was larger in Experiment 2 compared with 
Experiment 1. Based on this result, we could demonstrate that when the upcoming 
information fits the prediction, the choice effect would not be attenuated. These 
findings provided more evidence to the prediction explanation of choice facilitatory 
effect on learning and memory.

2.4.4 Preference was not the only reason for the choice effect on 
memory encoding
Additionally, there might be a possibility that the choice effect on memory accuracy 
is driven by participants’ preferences. When participants had the opportunity to 
choose, they would most likely choose the objects that they preferred (Verdugo et 
al., 2023). This was not the case in the no-choice conditions: participants would be 
allocated to one of the objects randomly and there was no opportunity to follow their 
preferences. Hence, the beneficial effect of choice on memory might also be caused 
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by participants’ higher preference for chosen compared with not chosen objects. 
However, our results mostly rule out this possibility, since we found that choices also 
improved learning when we solely focused on objects that were not the ones that they 
selected and thereby preferred (Supplementary Material, Fig. S2.2D). If preference 
were the driving factor behind the observed effect of choice on memory accuracy, we 
would expect that the choice effect on memory accuracy would disappear for the not-
selected objects under low predictability. However, we found that choices enhanced 
memory accuracy for all conditions.

2.4.5 Future directions
Although the current study elucidated that the beneficial effect of choice on memory 
is modulated by the predictability of choice outcomes, there is still more to be 
investigated under this topic. For example, Luo et al. (2022) found that the facilitatory 
effect of choices on attention allocation (measured by reaction time in an attentional 
task) completely disappeared when the participants had inaccurate predictions over 
the outcome of the choices. On the contrary, in the current study, the choice effect 
on memory remained significant but was smaller under low predictability. Yet, it is 
hard to get a better understanding of these partially conflicting findings with only 
behavioural measures. Therefore, neuroimaging studies are required to delve deeper 
into the mechanisms of how choices facilitate learning by modulating predictions. 
It would be intriguing to implement fMRI scanning along with the same paradigm 
in the future. For instance, based on our findings, it might be the case that having 
a choice is both rewarding in itself, while at the same time helping us to better 
predict future outcomes (i.e. by adjusting our attention to upcoming information). 
Considering both perspectives, we hypothesize that the connectivity between the 
prefrontal cortex and striatum would be stronger in choice than no-choice condition 
(Leotti et al., 2010; Murty et al., 2015), and this choice effect on brain connectivity 
would be attenuated by low predictability.

2.4.6 Limitations
Based on the findings presented in this chapter, we investigated how predictability 
modulates the beneficial effect of choice on memory. Our results suggest that one 
reason choices enhance memory is their consequential link to predictable outcomes. 
However, in the previous experiment, the predictability manipulation introduced 
confounds: in the low predictability condition, participants experienced both 
increased entropy and greater surprise of the information context (details see Chapter 
3.1). For example, when participants expected to see a “frog” but instead saw a “ball,” 
they encountered both an unpredictable context and a prediction error. This design 
makes it unclear whether the reduced choice effect was driven by unpredictability 
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or by surprise itself. Therefore, in the next experiment, we aim to disentangle these 
factors by keeping predictability constant and manipulating surprise directly.

2.5 Conclusion

In conclusion, the current study showed that choices can help people to learn better 
under both high and low predictabilities of the choice outcomes. However, the choice 
facilitatory effect on memory was diminished when the outcomes of the choices could 
not be accurately predicted. Our findings demonstrate that an opportunity to choose 
will help with learning and memory since choices have satisfactory and rewarding 
values by themselves. At the same time, the predictability of upcoming information 
also modulates the facilitatory effect of choice on learning. This indicates that the 
choice effect on learning is partially dependent on prediction processes. These 
results can easily be adapted to educational situations. As an illustration, in the 
context of learning to play the piano, instructors may inquire about students' musical 
preferences and tailor educational plans accordingly. This personalized approach, 
rooted in individual choices, holds the potential to enhance the likelihood of success 
in learning and education.
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2.7 Supplement

2.7.1 Supplement 1: Primary analysis with all trials
Following the preregistration, we conducted the same primary analysis as reported 
in the main text on all trials instead of only the confident trials. We did so for both 
Experiment 1 and Experiment 2.
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2.7.1.1 Results
As reported in the main text, we found an interaction between choice and predictability 
on memory accuracy in Experiment 1 and 2 when only confident trials were 
included. We also found this interaction when including all trials in Experiment 1,  
but the interaction effect did not reach significance in Experiment 2 (see Table S2.1, 
Figure S2.1).

A possible explanation for not finding this effect in Experiment 2 is that the effect 
of choice was attenuated when also considering trials that participants were 
not confident about. This is in line with previous work suggesting that intrinsic 
motivators (e.g., choice or curiosity) boost our learning, but only for information that 
participants were confident about (Galli et al., 2018; Gruber et al., 2014; Meliss et al., 
2022; Murphy et al., 2021).

Table S2.1 Linear Mixed Effect Model from Primary Analyses

Experiment1 Experiment2

Memory accuracy: all trials

Choice β = 0.23, z = 6.10, p < 0.001 β = 0.29, z = 7.38, p < 0.001

Predictability β = 0.06, z = 1.84, p = 0.16 β = 0.06, z = 1.79, p = 0.06

Choice × Predictability β = 0.09, z = 2.47, p = 0.01 β = 0.06, z = 1.57, p = 0.12

Follow-up t-tests:

Choice – No choice (High Pred) β = 0.64, z = 6.04, p < 0.001 -

Choice – No choice (Low Pred) β = 0.29, z = 2.81, p = 0.005 -

High Pred - Low Pred (Choice) β = 0.31, z = 2.81, p = 0.005 -

High Pred - Low Pred (No Choice) β = -0.05, z = -0.52, p = 0.606 -

Memory accuracy: confident trials (as also reported in the main text)

Choice β = 0.29, z = 2.28, p < 0.001 β = 0.36, z = 7.52, p < 0.001

Predictability β = -0.08, z = -0.71, p = 0.21 β = 0.10, z = 1.74, p = 0.04

Choice × Predictability β = 0.42, z = 2.33, p = 0.02 β = 0.09, z = 2.08, p = 0.04

Follow-up t-tests:

Choice – No choice (High Pred) β = 0.71, z = 5.28, p < 0.001 β = 0.89, z = 6.99, p < 0.001

Choice – No choice (Low Pred) β = 0.29, z = 2.28, p = 0.02 β = 0.53, z = 4.17, p < 0.001

High Pred - Low Pred (Choice) β = 0.34, z = 2.58, p = 0.01 β = 0.37, z = 2.82, p = 0.005

High Pred - Low Pred (No Choice) β = -0.08, z = -0.71, p = 0.48 β = 0.02, z = 0.12, p = 0.91

Note: Memory accuracy ~ choice × predictability + (1 + choice × predictability|subject)
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Table S2.2 Descriptive statistics for memory accuracy based on primary analysis

Experiment 1 M ± SD Experiment 2 M ± SD

Accuracy: all trials

Choice main effect Choice 79.3 % ± 11.9% 79.9% ± 13.6%

No choice 71.4% ± 14.3% 70.9% ± 15.4%

Predictability main effect High pred 76.4% ± 11.8% 77.0% ± 13.5%

Low pred 74.7% ± 13.8% 73.8% ± 15.9%

Follow-up comparison Choice (High pred) 81.9% ± 11.6% -

Choice (Low pred) 76.7% ± 14.8% -

No choice (High pred) 70.9% ±15.2% -

No choice (Low pred) 71.8% ± 15.6% -

Accuracy: confident trials (main text)

Choice main effect Choice 84.3% ± 12.6% 83.7% ± 13.9%

No choice 76.6% ± 16.2% 74.8% ± 16.3%

Predictability main effect High pred 81.4% ± 13.3% 80.8% ± 14.0%

Low pred 79.7% ± 14.6% 77.7% ± 16.9%

Follow-up comparison Choice (High pred) 86.3% ± 12.5% 85.9% ± 13.3%

Choice (Low pred) 81.9% ± 14.8% 75.5% ± 16.9%

No choice (High pred) 75.6% ± 17.4% 81.1% ± 16.6%

No choice (Low pred) 77.21% ± 17.19% 73.6% ± 20.0%

Figure S2.1. Main results including all trials. A. Experiment 1. Even including all trials in Experiment 1, we still 
found the significant main effect of choice and interaction between choice and predictability on memory 
accuracy. Participants remember objects better when they could choose than when they could not choose. 
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Meanwhile, the choice effect was stronger under high than low predictability. These results are the same as the 
results including only the confident trials, as reported in the main text. B. Experiment 2. When we controlled 
for object viewing time in Experiment 2, the interaction between choice and predictability was not found in 
memory accuracy including all trials. However, there was still a main effect of choice on memory accuracy. 
This is perhaps unsurprising, given that non-confident guesses likely reflect random guesses instead of actual 
learning, hereby indicating a low quality of memory. As suggested by previous studies (Cerasoli et al., 2014; 
Meliss et al., 2022), low quality memory might be less boosted by intrinsic motivators (i.e. choices). 

2.7.2 Supplement 2: Secondary analyses
For both experiments, we conducted additional analyses to get a better understanding 
of why the choice-related memory benefits are less strong for low predictability 
compared with high predictability. Specifically, we looked at (1) whether the choice 
effect in low predictability conditions was still diminished after omitting the not 
selected objects from the analyses and (2) whether the choice effect on memory 
accuracy differed between selected and not selected objects under low predictability.

2.7.2.1 Inconsistency between selection and perceived information attenuates the choice 
effect on memory
It should be noted that, in low predictability conditions, participants only saw the 
object picture corresponding to the selected object name in 50% of all trials. In the 
other 50% of the trials, participants were presented with the object picture that 
was not selected. In the latter case, there was inconsistency between the selection 
they made (selected object name) and the visual information (object picture) they 
perceived. On the contrary, in the high predictability conditions, all objects that 
participants saw were selected. Therefore, there is a possibility that the reduction of 
choice effect on memory accuracy under low predictability merely resulted from the 
inconsistency in the not selected trials. Two secondary analyses were implemented to 
investigate this assumption.

First, we conducted the same analysis as described for the primary analysis on 
selected trials only, with memory accuracy as the dependent variable. These are all 
trials from the high predictability conditions and half of the trials (trials in which 
the selected object names were consistent with the presented objects) from the low 
predictability conditions. The model included the main effects of “choice (yes/no)” 
and “predictability (high/low)”, as well as the interaction effect between “choice (yes/
no)” and “predictability (high/low)” as fixed effects, as well as a full random effects 
structure per participant (Barr, 2013; Barr et al., 2013). If the inconsistency between 
the selected name and object picture could explain part of the interaction effect 
between choice and predictability in the primary analysis, then omitting the not 
selected trials would lead to insignificance of this interaction effect. Otherwise, the 
results should remain the same as the primary analysis before.
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Second, we compared the choice effect for selected and not selected objects under low 
predictability to validate whether the choice effect only existed for selected objects. 
The model included the main effects of “choice (yes/no)” and “selection (yes/no)”, as 
well as the interaction effect between “choice (yes/no)” and “selection (yes/no)” as 
fixed effects, as well as a full random effects structure per participant (Barr, 2013; 
Barr et al., 2013). If the inconsistency between the selected name and object picture 
could diminish the choice effect, we would find that the choice effect for memory 
accuracy would not exist for not selected objects under low predictability.

2.7.2.2 Results
First, the same 2×2 analysis of choice and predictability effects was conducted as 
the primary analysis after omitting the not selected objects from low predictability 
conditions. In Experiment 1, we found the same main choice effect and interaction 
effect between choice and predictability (Fig. S2.2A, Table S2.3) as the primary 
analysis including both selected and not selected objects. However, in Experiment 
2, the main choice effect was still significant, but the interaction effect was not 
significant anymore after omitting the not selected objects (Fig. S2.2C, Table S2.3). 
In other words, in Experiment 2, with the selected objects only, participants showed 
the same choice effect between high and low predictability.

Second, we separated the objects under low predictability into selected and not 
selected objects. We conducted a 2×2 analysis between choice conditions (choice or 
no-choice) and selection conditions (selected or not selected). In Experiment 1, we 
found the main effects of choice and selection (Fig. S2.2B, Table S2.3). This suggested 
that the decline of choice effect under low predictability in Experiment 1 happened 
for both selected and not selected objects.

However, in Experiment 2, we found the main effect of choice and the interaction 
between choice and selection. This suggested that after controlling object name 
viewing time in Experiment 2, the choice effect got smaller only when they saw a 
not selected object under low predictability (Fig. S2.2D, Table S2.3). It is also 
worth mentioning that the choice facilitatory effect remained significant for not 
selected objects.

2.7.2.3 Summary
In summary, these results indicated that inconsistency between the selected object 
name and object picture could explain part of the reduction of choice effect under 
low predictability. However, even if participants did not see the object they selected, 
they still remembered objects better when they could choose than when they could 
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not choose. By conducting these secondary analyses, we found that the choice effect 
on memory under low predictability declined for both selected and not selected 
objects in Experiment 1. In contrast, the choice effect on memory only declined for 
not selected objects under low predictability in Experiment 2.

In Experiment 1, when people could control how much time they spent viewing 
the object names, under the low predictability condition, both selected and not 
selected objects had a smaller choice effect than under the high predictability 
condition. However, when the object name viewing time could not be controlled 
by the participants (Experiment 2), the choice effect for selected objects under low 
predictability remained the same as high predictability. The choice effect on memory 
did not reduce for the selected objects under low predictability, but it was diminished 
for not selected objects. It is worth noting that for both experiments, choice always 
notably enhanced memory accuracy for objects under high predictability, selected 
and not selected objects under low predictability.
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Table S2.3 Linear Mixed Effect Model from Secondary Analyses

Experiment 1 Experiment 2

Accuracy: primary analysis after omitting not selected objects

Choice β = 0.31, z = 1.94, p < 0.001 β = 0.43, z = 7.69, p < 0.001

Predictability β = 0.19, z = 1.29, p = 0.82 β = 0.05, z = 0.92, p = 0.34

Choice × Predictability β = 0.41, z = 1.96, p = 0.05 β = 0.02, z = 0.41, p = 0.68

Follow-up t-tests:

Choice – No choice (High Pred) β = 0.72, z = 5.36, p < 0.001 -

Choice – No choice (Low Pred) β = 0.31, z = 1.94, p = 0.05 -

High Pred - Low Pred (Choice) β = 0.22, z = 1.54, p = 0.12 -

High Pred - Low Pred (No Choice) β = -0.19, z = -1.29, p = 0.20 -

Accuracy: comparing selected and not selected objects for low predictability

Choice β = 0.27, z = 1.83, p = 0.02 β = 0.27, z = 4.16, p < 0.001

Selection β = 0.20, z = 1.59, p = 0.01 β = 0.09, z = 1.70, p = 0.22

Choice × Selection β = 0.05, z = 0.31, p = 0.76 β = 0.12, z = 2.49, p = 0.013

Follow-up t-tests:

Choice – No choice (Selected) - β = 0.79, z = 4.59, p < 0.001

Choice – No choice (Not selected) - β = 0.31, z = 2.05, p = 0.04

Selected - Not selected (Choice) - β = 0.41, z = 2.69, p = 0.01

Selected - Not selected (No Choice) - β = -0.06, z = -0.50, p = 0.62

Note:
Omitting not selected objects:
Memory accuracy ~ choice × predictability + (1 + choice × predictability|subject)
Selected or not selected objects for low predictability conditions:
Memory accuracy ~ choice × selection + (1 + choice × selection|subject)
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Table S2.4 Descriptive statistics for memory accuracy based on secondary analysis

Experiment 1 M ± SD Experiment 2 M ± SD

Accuracy: omitting not selected objects

Choice main effect Choice 85.7% ± 11.9% 85.3% ± 13.3%

No choice 76.9% ± 16.0% 75.0% ± 16.0%

Predictability main 
effect

High pred 81.4% ± 13.4%) 80.8% ± 14.1%

Low pred 81.6% ± 13.8% 79.1% ± 15.9%

Follow-up comparison Choice (High pred) 86.3% ± 12.6% -

Choice (Low pred) 84.1% ± 13.8% -

No choice (High pred) 75.6% ± 17.5% -

No choice (Low pred) 78.8% ± 17.4% -

Accuracy: selected or not selected objects for low predictability conditions

Choice main effect Choice 81.9% ± 14.9% 81.1% ± 16.7%

No choice 77.2% ± 17.3% 73.6% ± 20.1%

selection main effect Selected 81.6% ± 13.8% 79.1% ±15.9%

Not selected 77.6% ± 16.9% 76.2% ± 19.2%

Follow-up comparison Choice (Selected) - 83.6% ± 16.2%

Choice (Not selected) - 78.4% ± 19.5%

No choice (Selected) - 73.6% ± 20.5%

No choice (Not selected) - 73.4% ± 22.0%
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Figure S2.2. Secondary analyses results.A & B, Experiment 1. A. In this panel, we only included the trials in 
which objects were selected and seen, and the same effects as the primary analysis in Fig 5.2A were found, 
namely the main effect of choice and the interaction effect between choice and predictability on memory 
accuracy. This indicated that the choice effect was larger under high predictability than under low 
predictability. B. Only objects in the low predictability condition were considered, and they were 
categorized as either selected or not selected. We compared the choice effect on memory accuracy for 
selected and not selected objects. It was found that in the low predictability conditions, the selected or not 
selected objects showed similar choice effects. Taken together, in Experiment 1, the reason for the choice 
effect reduction under low predictability was that the choice effect was smaller for both selected and not 
selected objects. C & D, Experiment 2. C. In this panel, akin to Panel A (Experiment 1), we exclusively 
considered the objects that were selected and conducted the same analysis. In contrast to Experiment 1, we 
only found a main effect of choice on memory accuracy. This indicated that the choice effect on memory 
accuracy remained the same between the high and low predictability after omitting objects that were not 
selected. D. In this panel, we analysed the choice effect for selected or not selected objects under the low 
predictability conditions, the same as Panel B (Experiment 1). We found that the choice effect and interaction 
effect between choice and selection conditions were significant. In other words, when object name viewing 
time was controlled, choice had a more pronounced impact on selected objects compared to non-selected 
objects, which differs from the findings of Experiment 1. It is worth mentioning that the choice effect 
remained significantly positive even for the not selected objects. To summarize, in Experiment 2,  
the decline of the choice effect from high to low predictability (Fig. 2.2C, the slope for the dark grey line was 
bigger than the light line) was caused mainly by the not selected objects. 
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2.7.3 Supplement 3: object name viewing time
In Experiment 1, we found that participants remembered objects better in choice 
than in no-choice conditions. Meanwhile, this choice effect on memory accuracy 
was attenuated when participants could not predict the outcome of their choices 
well. However, in Experiment 1, the object names would disappear once participants 
pressed a button (Fig. 1A). Hence, participants could control not only the content 
(which picture they would like to see) but also the object name viewing time (the 
amount of time that each pair of words was presented on the screen). In the current 
setup, object names potentially functioned as cues for the pictures that participants 
needed to remember, which could facilitate memory encoding and formation (Crouse 
& Idstein, 1972; Neumann & Strack, 2000; Thomson & Tulving, 1970). In other words, 
the longer participants could view the object names, the better they would remember 
the objects that the names are attributed.

To summarize, if we find similar effects of choice and predictability on object name 
viewing time as for memory accuracy, it might be the case that (part of) the findings of 
memory accuracy can be explained by the object name (cue) viewing time differences.

2.7.3.1 Methods
For this analysis, we used the object name viewing time in Experiment 1 as a dependent 
variable. We conducted the same analysis as the primary analysis (2 × 2 LME model 
including choice and predictability main effect and the interaction effect) described in 
the main text (Barr, 2013; Barr et al., 2013). In accordance with the primary analysis 
on memory accuracy, this analysis on object name viewing time also only included 
confident trials. Before conducting inferential statistical analysis on object name 
viewing time, we log transferred the raw viewing time to gain a normally distributed 
dependent variable.

2.7.3.2 Results and conclusion
Similar to the results on memory accuracy (Fig. 2.2A), we found the main effect of 
choice and the interaction effect between choice and predictability on object name 
viewing time (Table S2.5 & S2.6, Fig. S2.3). Therefore, according to these results, 
we designed Experiment 2 to control the object name viewing time to control the 
strength of the cues, isolate the influence of the cues, and validate our findings.
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Table S2.5 Linear mixed effect model for object name viewing time, Experiment 1

Object name viewing time: confident trials

Choice β = 0.43, t = 9.90, p < 0.001

Predictability β = 0.02, t = 0.75, p = 0.08

Choice × Predictability β = 0.13, t = 3.14, p = 0.003

Follow-up t-tests:

Choice – No choice (High Pred) β = 0.56, t = 12.00, p < 0.001

Choice – No choice (Low Pred) β = 0.43, t = 9.90, p < 0.001

High Pred - Low Pred (Choice) β = 0.15, t = 3.58, p < 0.001

High Pred - Low Pred (No Choice) β = 0.02, t = 0.75, p = 0.46

Note: Object name viewing time ~ choice × predictability + (1 + choice × predictability|subject)

Table S2.6 Descriptive statistics for object name viewing time, Experiment 1

Object name viewing time: confident trials (M ± SD)

Choice main effect Choice 1211ms ± 442ms

No choice 717ms ± 244ms

Predictability main effect High pred 1020ms ± 353ms

Low pred 927ms ± 318ms

Follow-up comparison Choice (High pred) 1295ms ± 510ms

Choice (Low pred) 1122ms ± 428ms

No choice (High pred) 717ms ± 251ms

No choice (Low pred) 717ms ± 264ms
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Figure S2.3. The same analysis as the primary analysis (Fig. 2A) was conducted but with object name 
viewing time as the dependent variable. There was a main effect of choice and no main effect of 
predictability on object name viewing time. Also, the interaction between choice and predictability on 
object name viewing time was found. These results were similar to the results found on memory accuracy 
depicted in the main text (Fig.2). These suggested that participants would view the object names longer 
when they have a choice than no choice, and the choice effect is bigger under high predictability than low 
predictability. In the current paradigm, object names can be seen as cues facilitating memory of the 
pictures. Since longer exposure to cues might result in better memory (e.g., Crouse & Idstein, 1972), the 
object name viewing time should be controlled. We designed Experiment 2 based on this finding. 





Chapter 3

Surprise reduces the beneficial effect  
of choice on memory
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Abstract

When people are offered the opportunity to choose, their memory is enhanced. For 
example, people would be able to remember the map of a new city better if they explore 
by themselves instead of following Google Maps. However, the cognitive mechanisms 
of the beneficial effect of choice on learning have rarely been investigated. From a 
predictive coding perspective, choices facilitate learning because the act of choosing 
modulates the prediction of upcoming information. When the outcome of a choice 
mismatches with the prediction, it creates a surprise. This surprise, in turn, may 
affect how well the chosen information is remembered. To investigate this, we 
conducted a memory experiment, independently manipulating choice and surprise. 
First, in a training phase, participants learned associations between colours and 
object categories by viewing exemplar images cued by coloured circles. For instance, 
a red circle represents the object category “mammals”. Thereafter, participants 
completed a memory encoding task in which they were instructed to remember as 
many images of objects as possible. On each trial, before the object images were 
shown, participants either chose (choice condition) or were assigned a category (no-
choice condition) of objects to view. Categories of objects were cued by the presence 
of the associated coloured circle belonging to each category. In half of the choice 
and no-choice trials, the object shown would match the selected colour (low surprise 
condition), while in the other half of trials, the colour and the object shown would 
be incongruent with the learned association (high surprise condition). The memory 
accuracy was tested by a recognition task after the memory encoding phase. We 
found that choice enhances memory only when choice outcomes are unsurprising 
based on the participants’ choices. Our finding provides insights into the cognitive 
mechanism of the beneficial effect of autonomy, empowered by active choices, in 
memory encoding.
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3.1 Introduction

People tend to remember information better when they are given the opportunity to 
make choices, compared to when they have no choice (e.g., Ding et al., 2021; Lima 
et al., 2023; Murty et al., 2015; Rotem-Turchinski et al., 2019; Zhang et al., 2024). 
For example, we may be more likely to remember a route taken when we are driving 
rather than sitting in the passenger’s seat. When we are driving the car, we are 
making a voluntary choice of where to go. Our brain builds up a causal relationship 
between a voluntary choice and the appearance of a certain outcome following 
that choice (Desantis et al., 2011; Moore & Haggard, 2008; Numan, 2021; Sharot & 
Sunstein, 2020).

In a previous study, we manipulated the predictability of choice outcomes and tested 
whether predictability interacted with the effect of choice on subsequent recognition 
memory (see Chapter 2; Zhang et al., 2024). Specifically, predictability refers to how 
well information can be anticipated before the sensory input is presented (Bubic 
et al., 2010). We demonstrated that when the context was more predictable, the 
act of choosing could improve memory encoding more than when the context was 
unpredictable (see Chapter 2; Zhang et al., 2024). This finding indicated that making 
active choices could enhance learning by facilitating stronger predictions prior to 
the information perceived, in line with active inference theory and predictive coding 
perspectives (Friston et al., 2013). However, it remains unclear which element of 
predictive processing contributes to the facilitative effect of choice on memory.

In the previous experiment, we offered participants two names of the objects that 
they might see (see Chapter 2; Zhang et al., 2024). Sometimes, participants could 
choose between these two objects freely, while sometimes, the choice was made for 
them. Meanwhile, within the high predictability condition, the selected object was 
always presented, allowing participants to generate a single strong prediction with 
no surprise at the outcome. In contrast, within the low predictability condition, 
the presented object could be either the selected or the unselected object, leading 
participants to generate two ambiguous predictions and experience surprise when 
either image was shown. This design inadvertently confounded two core components 
of information contexts: entropy (Procedure, Equation 1) and surprise (Procedure, 
Equation 2; Modirshanechi et al., 2022; Shannon, 1948). Specifically, the low-
predictability condition simultaneously induced high entropy and high surprise, 
whereas the high-predictability condition was associated with no entropy and the 
absence of surprise.
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As a result, although we found that choices enhanced learning more under the high 
predictability condition compared to the low predictability condition, it remains an 
open question whether entropy or surprise in information contexts modulated the 
effect of choices on memory encoding. To address this, the present study aimed to 
disentangle these two closely related but distinct elements of predictive processing 
by isolating the effects of surprise while holding entropy constant, thereby providing 
a more precise understanding of how active choices and predictive processing 
interactively shape recognition memory. Previous studies have investigated either 
the (beneficial) effect of choice or the effect of surprise on memory encoding 
independently. However, to our knowledge, there have not been any studies that 
have manipulated both choice and surprise within the same experimental design. 
Although it is commonly agreed upon that making active choices enhances memory 
encoding (Baldwin et al., 2021; Cheng et al., 2023; Ding et al., 2021; Ding et al., 2024; 
DuBrow et al., 2019; Katzman & Hartley, 2020; Kennedy et al., 2024; Lima et al., 2023; 
e.g., Murty et al., 2015; Rotem-Turchinski et al., 2019; Zhang et al., 2024), it is not 
fully clear how surprise influences memory encoding.

Although some studies have found that surprising information tends to be better 
remembered than non-surprising information (Axmacher et al., 2010; Ben-Yakov 
et al., 2022; Foster & Keane, 2019), a substantial body of studies has suggested that 
memory retrieval is more accurate when information conforms to, rather than 
violates, prior expectations (Frank et al., 2022; Frank et al., 2018; Sinclair & Barense, 
2018; Sinclair et al., 2021). Specifically, Frank et al. (2022) asked participants to learn 
associations between cues and objects, then tested memory by presenting objects 
following either expected or unexpected cues. They found that memory accuracy was 
higher when objects followed expected cues. This suggests that expectation alignment 
highlighted the temporal contingency of the context, enhancing the salience or 
integration of subsequent information. Bein et al. (2023) similarly argued that 
congruent events benefit from stronger contextual reactivation of memory-related 
brain regions at retrieval. In contrast, surprising or incongruent events may disrupt 
the integration of information into the established schema (Sinclair & Barense, 2018; 
Sinclair et al., 2021). Supporting this notion, Sinclair and Barense (2018) showed that 
memory of videos containing surprising information was more vulnerable to being 
intruded by intervening videos, leading to more false memory and impaired recall.

Hence, due to the mixed findings regarding the impact of surprise on memory, a 
critical gap emerged in understanding how active choices interface with surprising 
information during memory encoding. If active choices enhance the prediction of 
upcoming information to facilitate memory formation, then mnemonic benefit 
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from active choices should be strongest when the incoming information aligns 
with those predictions. Towards this aim, we designed a memory encoding task 
in which we independently manipulated two factors: (1) the presence of choice 
(yes or no) and (2) the surprise of the choice outcome (yes or no). Participants first 
learned the correspondence between colours and object categories, in which there 
were seven colours (red, orange, yellow, green, cyan, blue, purple) and seven categories 
(insects, mammals, musical instruments, furniture, clothing, food, vehicles) in a behavioural 
training task (Fig. 3.1A). In the memory encoding task, we ensured that the degree 
of predictability of the choice outcomes was stable while only the surprise elicited 
by choice outcomes was manipulated, adapted from Chapter 2 (Zhang et al., 2024; 
Fig. 3.1B). Similar to the previous experiment, in the memory encoding task, in each 
trial, participants were offered two colours corresponding to two object categories. 
Depending on the choice condition, participants either freely chose one of the two 
object categories that they would like to see (by selecting one of the two colours; 
choice condition), or they were instructed to select one of the object categories by 
means of an arrow pointing towards one of the two colours (no-choice condition) (see 
Fig. 3.1C). After selecting one of the two colours, an image that either matched the 
selected category (low surprise condition) or belonged to a different category (high 
surprise condition). Participants were instructed to remember the images as much 
as possible. Memory performance was later assessed through a separate recognition 
memory test (Fig. 3.1D). Based on the results from Chapter 2, we hypothesized that 
the beneficial effect of choice on memory accuracy would be reduced under the high 
surprise condition as compared with the low surprise condition.

To preview, the results showed that making active choices only enhanced memory 
encoding for images that were consistent with expectations, in other words, the 
low surprise images. These results further elucidate how choice and predictive 
processing, particularly surprise, jointly influence memory encoding. Our results 
supported the hypothesis, indicating that active choices could facilitate memory 
encoding when the perceived information after making a choice was consistent with 
the prediction of the choice outcome.

3.2 Methods

3.2.1 Participants
In the current behavioural experiment, 44 participants were recruited, of whom 36 
provided valid data (age 22.61 years ± 3.00, 25 female, 10 male, and one non-binary). 
One participant was excluded due to a procedural mistake. Two participants were 
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excluded due to low response rates in the memory test (less than 200 out of 336 trials). 
Five participants were removed from the analysis since their accuracy in the memory 
test was lower than 55%(chance level performance being 50%).

All participants gave written informed consent according to the Declaration of 
Helsinki prior to participation. The experiment was approved by the local ethics 
committee (CMO Arnhem-Nijmegen, The Netherlands) under a general ethics 
approval protocol (“Imaging Human Cognition”, CMO 2014/288) and was conducted 
in compliance with these guidelines. Participants were told that they would get 37.5 
euros as standard participation compensation.

3.2.2 Materials
The real-life images used in the current experiment were selected from the Things 
database (Hebart et al., 2019), a large-scale, high-quality image set designed for 
research on object recognition. The images from this database were all well-labelled 
and categorized. The experiment contained three sessions, namely a behavioural 
training session (Fig. 3.1A) during which they learned a correspondence between 
seven colours and seven categories (Fig. 3.1B), a memory encoding task (Fig. 3.1C), 
and a memory test (Fig. 3.1D). A total of seven categories were selected: insects, musical 
instruments, food, vehicles, clothing, mammals, and furniture (Fig. 3.1B). For each category, 
we chose eight objects for the training phase and 8 different objects for the learning 
and memory test. 6 images were chosen for each object, resulting in 336 images for 
the behavioural training session as well as 336 images for the learning and memory 
test. Note that “object” here refers to the type of object within its object category, not 
the individual images themselves. For example, there were eight different insect-
objects shown during the behavioural training, and each of these eight insect-objects 
consisted of six exemplar images. During the encoding phase, participants were 
exposed to all objects. Each participant saw only three exemplars for each object, 
while the remaining three exemplars served as fillers for the memory test. Thus, 
each participant viewed 168 pictures during learning, with the other 168 pictures 
designated as fillers in the memory test.

3.2.3 Procedure
Before the formal experiment started, participants signed an informed consent form 
upon their arrival. Thereafter, they were asked to read the instructions of the whole 
experiment printed on paper and explain the procedure verbally to the experimenters. 
This was done so that the experimenters could confirm that participants understood 
the task. Participants first completed a behavioural training session, followed by a 
practice round of the memory encoding task and memory test, including eight trials 
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with cartoon images generated by an image generator (https://openai.com/index/
dall-e-3/). Noticeably, in the current memory encoding task, we designed it on the 
basis of the paradigm from Chapter 2. In Chapter 2, on top of manipulating the choice 
factor, we manipulated predictability which changed both entropy (Equation 1) and 
surprise (Equation 2) of the information context to cause differences, while in the 
current experiment, we designed it meticulously, changing only surprise (Equation 2) 
but maintain the entropy (Equation 1) to be constant. Participants were informed that 
they did not need to remember these cartoon images. Data from the practice round 
were not used for analyses. Once it was confirmed that participants understood both 
tasks, they proceeded to the formal learning and memory test phases. The tasks 
were programmed with MATLAB 2019a (Mathworks, 2019) and Psychtoolbox 3.0.19 
(Brainard & Vision, 1997; Kleiner et al., 2007, http://psychtoolbox.org/).

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑋) = − ∑i 𝑃( 𝑋i) log 𝑃(𝑋i) � Equation 1

𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑒(𝑋i) = − log 𝑃(𝑋i) � Equation 2

3.2.3.1 Training
Upon arriving at the lab, participants first conducted a training session (Fig. 3.1A). 
The goal of this session was to ensure participants explicitly learned the associations 
between colours and categories (Fig. 3.1B). In each trial, a colour dot appeared at the 
centre of the screen for 500 ms, followed by an image from one of the object categories 
presented for 2000 ms. Participants were instructed to indicate whether the colour 
and object category matched during the image presentation using a button box. The 
button under the index finger corresponded to the left option, while the button under 
the middle finger corresponded to the right option. To counterbalance response 
mapping, odd-numbered participants used the left button for “Match” and the right 
for “No Match,” whereas even-numbered participants used the left button for “No 
Match” and the right for “Match.” After each response, feedback (“correct” or “error”) 
was shown for 500 ms to facilitate learning of the colour-category associations. Then, 
a blank screen with a jittered inter-stimulus interval (ISI) jitter from 500 ms to 1000 ms  
was presented. Participants would gradually obtain the correct pairings between 
each colour and its corresponding category. Each block consisted of 28 trials, 
including four exemplar images from each of the seven categories. After completing 
a block, participants received feedback on their overall accuracy and were instructed 
to improve their performance as much as possible.

Participants completed a minimum of six blocks, and training continued until they 
achieved an accuracy above 85% in a single block, with a maximum of 12 blocks 
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allowed. All participants included in the final analysis reached this accuracy criterion 
within 12 blocks, indicating that they all explicitly learned the pairing matrix of 
colours and categories. For example, in the current case (Fig. 3.1B), participants 
learned specific colour-category associations: red for insects, orange for musical 
instruments, yellow for food, green for vehicles, blue for mammals, and purple 
for furniture. The pairings between colours and categories were randomized and 
counterbalanced across participants to control for potential colour-category biases.

3.2.3.2 Memory encoding task
Once the associations were learned, the same colour-category mapping was 
implemented during this learning task. We orthogonally manipulated two 
experimental conditions for encoding, choice/no-choice and high surprise/low 
surprise (Fig. 3.1B & 3.1C). During this task, in each trial, participants were asked 
either to choose between two colours (indicating the associated object categories) 
or to press a button following the choice made for them between two colours. 
Thereafter, participants saw an image, which they were instructed to try to remember 
as accurately as possible.

Choice manipulation - In the learning task (Fig. 3.1C), each trial began with a fixation 
cross shown for 2000–8000 ms with an average of 3000 ms (jittered), followed by two 
coloured dots presented on the left and right sides of the cross for 1000 ms. Next, the 
cross transformed into double arrows—either the arrows were pointing left and right 
(<>), indicating a choice trial, or the arrows were both pointing to one predetermined 
side (<< or >>), indicating a no-choice trial. In choice trials, participants could select 
which colour (and thus category) they wanted to see. In no-choice trials, the selection 
was made for them, and they had to press the button following the direction of 
the arrow (the colour presented on the left or right). After 1500 ms, the selected or 
assigned colour was displayed alone for 500 ms, followed by another jittered fixation 
cross (2000–8000 ms, with a mean of 3000 ms).

In the choice condition, if participants failed to make a choice within 1500ms, 
a selection was made for them, and they would also see “Too late!” during the 
confirmation of the selected colour. If participants pressed the wrong button under 
the no-choice condition, the message “Wrong button!” appeared, and the correct 
colour selection would still be enforced. Also, if participants failed to make a response 
under the no-choice condition, the message “Too late!” appeared with the correct 
colour selection automatically made for them.
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Surprise manipulation – Following the fixation cross, an image was presented that, 
in 50% of the trials, matched the selected category (low surprise), and in the other 
50%, led to a different category (high surprise), as defined by the participant-specific 
design matrix (Fig. 3.1B). The design matrix used to generate this manipulation 
featured colour-category mappings along the diagonal (low surprise) and 
mismatched pairings off the diagonal (high surprise). For example, a participant 
might learn that red corresponds to insects, orange to musical instruments, yellow to 
food, green to vehicles, blue to mammals, and purple to furniture. Then, if blue was 
selected or assigned, a mammal image would appear in the low surprise condition, 
while an image from any other category (excluding mammals) would be shown in 
the surprise condition. This intentional violation of learned pairings in 50% of the 
trials allowed us to obtain the same number of encoding trials under surprise and 
low surprise conditions. For a more specific example, the mammal category included 
eight objects of alpaca, cat, dog, horse, otter, panda, piglet, and seal, with three images 
per object perceived by each participant during the learning task. Two objects from 
each category were randomly assigned to each of the four experimental conditions: 
choice/low surprise, choice/high surprise, no-choice/low surprise, and no-choice/
high surprise. Thus, if alpaca and cat were assigned to the choice/low surprise 
condition, selecting the corresponding colour (e.g., blue) would reliably lead to one of 
these two mammals. If dog and horse were assigned to the choice/surprise condition, 
choosing a different colour could unexpectedly result in one of these two images 
being shown. This structure of high and low surprise assignment was applied to 
both choice and no-choice conditions. This resulted in six images from each category 
for each experimental condition, leading to a total of 168 images presented to each 
participant. Each image was shown twice under the same experimental condition to 
ensure sufficient exposure for memory encoding.

3.2.3.3 Memory test
After participants finished the learning task, participants would immediately 
complete a memory test. In this memory test (Fig. 3.1D), each trial started with a 
jittered fixation cross presented for 2000 ms to 8000 ms, with a mean of 3000 ms. 
Then, an image was displayed on the screen for 1500 ms, together with four Likert-
scale options under the image, namely “Definitely seen”, “Probably seen”, “Probably 
not seen”, and “Definitely not seen”, arranged from left to the right. Participants 
were instructed to indicate whether they had seen this picture or not during the 
learning task with four buttons under their index, middle, ring, and little fingers 
corresponding to the four options from the left to the right. If a response was made 
in time during the presentation of the image, the selected option would become bold, 
appearing on the screen for 500 ms to confirm the response.



68 | Chapter 3

Figure 3.1. Procedure A. Training procedure. Participants first learned the correspondence between 
seven colours and seven categories, with each colour matching one category. On each trial, they saw a 
colour dot followed by a picture and guessed if the colour matched the category of the picture. Feedback 
(“correct” or “error”) was provided based on their response. Each block had 28 trials, and participants 
aimed for 85% accuracy to end training. Training included up to 12 blocks but stopped early if the 
accuracy threshold was met after six blocks. B. Design matrix for conditions. This design matrix shows 
an exemplar of correspondence between colours and categories that participants might learn during the 
training process in panel A. This correspondence will be the knowledge that participants use in the 
memory encoding phase when they are selecting the categories that they wanted to see. In both CHOICE 
and NO-CHOICE conditions, participants saw pictures paired with colours and categories. During 
encoding, pictures followed colour dots, but only 50% matched the learned category from training (LOW 
SURPRISE), while 50% did not match the learned category from training (HIGH SURPRISE). For 
example, if blue corresponded to mammals, there was a 50% chance of seeing a mammal and a 50% 
chance of seeing another category. While the matching category had the highest chance, trial numbers 
for high and low surprise conditions were balanced. C. In the memory encoding phase, each trial began 
with a fixation cross and two colour-dots. In choice conditions, the fixation cross turned into arrows, 
prompting participants to choose a category by pressing a button. In no-choice conditions, arrows 
indicated the preselected category, requiring participants to press the corresponding button. In LOW 
SURPRISE trials (black box), the image matched the selected category according to the correspondence 
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between colours and categories (panel B) that they learned in the training phase (panel A), while in 
SURPRISE trials (grey box), the image could belong to any other 6 categories but not the matching one 
with the colour that they selected. LOW SURPRISE and HIGH SURPRISE trials each occurred in 50% of 
the trials. D. During the memory test phase, participants saw a fixation cross followed by an object in 
each trial. They pressed one of the four buttons to indicate whether they had seen the object or not. The 
possible responses were as follows: “Definitely not seen”, “Probably not seen”, “Probably seen”, and 
“Definitely seen”. After 2000ms, the object will disappear, and they will see a blank screen. Then the next 
trial will start.

3.2.4 Data preprocessing
Data were prepared with Python 3.6 (Van Rossum et al., 2009). First, each image 
was rated with a memorability score from the THINGS database, which was log-
transformed and used as the factor of image memorability in the analysis (Kramer 
et al., 2023). Additionally, we binned the images based on their log-transformed 
memorability scores, using intervals of 0.1 ranging from -0.6 to 0. Each bin grouped 
images with similar levels of inherent memorability, allowing us to visualize how 
the effects of choice and surprise on memory accuracy varied across different levels 
of image memorability. Then, only the objects that were seen by participants were 
included in the final analysis. Images from trials with no responses during either the 
learning or memory phases, and all filler images were excluded. Finally, the Likert-
based responses were transformed into a dependent variable reflecting weighted 
accuracy inspired by confidence accuracy quotient (https://en.wikipedia.org/wiki/
Confidence_weighting; Ebel, 1965; Lundeberg et al., 1994), which incorporated both 
recognition accuracy and confidence level, providing a more nuanced measure 
of memory performance. If a seen image was rated as “definitely seen” during the 
memory phase, this image was coded as 2 (confident/accurate), while a “probably 
seen” response was coded as 1 (unconfident/accurate). If a seen image was rated as 
“probably not seen”, it was coded as -1 (unconfident/inaccurate), while a “definitely 
not seen” response was coded as -2 (confident/inaccurate).

3.2.5 Statistical Model Constructions
Data were modelled with Bayesian regression modelling (brms) using the brm function 
of the brms package in R (Bürkner, 2017) with weighted memory accuracy as a 
continuous dependent variable. The independent variables were image memorability 
(Kramer et al., 2023), factors of choice (choice/no-choice), and surprise (high-surprise/
low-surprise), for which we all created sum-to-zero contrasts. We fitted the models 
with 10,000 iterations (5000 warm-ups), with four chains. Model 1 included only 
factors of choice and surprise and the interaction effect between factors of choice and 
surprise. The model included random intercepts and random slopes for choice and 
surprise, as well as the interaction effect between choice and surprise effects grouped 
by participant (Barr, 2013; Barr et al., 2013).
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𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑚𝑒𝑚𝑜𝑟𝑦 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ~ 𝑐ℎ𝑜𝑖𝑐𝑒 × 𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒 + (1 + 𝑐ℎ𝑜𝑖𝑐𝑒 × 𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒 |𝑠𝑢𝑏)

Model 2 included the main effects of image memorability, choice, and surprise, along 
with the two-way interaction effect between two of these independent variables, 
and the three-way interaction between factors of memorability, choice, and surprise 
as fixed effects. The model also included random intercepts and random slopes for 
choice and surprise, as well as the interaction effect between choice and surprise 
effects grouped by participant (Barr, 2013; Barr et al., 2013).

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑚𝑒𝑚𝑜𝑟𝑦 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ~ 𝑐ℎ𝑜𝑖𝑐𝑒 × 𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒 × 𝑚𝑒𝑚𝑜𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦
+ (1 + 𝑐ℎ𝑜𝑖𝑐𝑒 × 𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒 |𝑠𝑢𝑏)

Given our primary interest in the effects of choice and surprise on memory accuracy, 
if a significant interaction effect was found between factors of choice and surprise 
in the models, we would prompt follow-up analyses to examine the surprise effect 
respectively within the choice and no-choice conditions. Specifically, we compared 
the weighted memory accuracy between high and low surprise conditions separately 
under choice and no-choice conditions with the emmeans toolbox in R (Lenth, 2022). 
In parallel, with the same procedure as above, we also compared the weighted 
memory accuracy between choice and no-choice conditions under the high or low 
surprise condition separately.

In Model 3, as an exploratory analysis, we aimed to investigate whether participants’ 
subjective preference for object categories would account for more variance in 
memory accuracy. We applied a straightforward probability-based approach to 
compute the subjective value of each category for each participant as a measurement 
for preference, using data from the active choice condition in the learning task. 
Participants were instructed that they would be choosing which colour they wanted 
to see based on the pairings between colours and categories. The design matrix was 
structured to ensure equal exposure to each category so the number of times a colour 
was chosen would be equal. Hence, the number of times a colour was selected could 
not be used as a direct measurement of preference. However, the frequency with 
which participants avoided each colour provides meaningful variation. In every 
choice trial, participants were presented with two colour options and instructed to 
select one, implicitly avoiding the other. Importantly, the avoided colour from each 
trial remained in the pool and reappeared in future trials, ensuring that all colours 
would eventually be chosen the same number of times. As a result, the frequency 
of avoidance reflects relative “dislike” for that category for each participant. We 
calculated the total number of times that each colour, each representing a specific 
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category, appeared on either the left or right side across trials in the choice condition. 
We also counted how many times each colour was avoided, that is, not selected when 
presented. Then, we calculated the probability of avoidance of each colour using 
these values.

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦avoid = 𝑡𝑖𝑚𝑒avoid/𝑡𝑖𝑚𝑒𝑠appear

Afterward, we ranked the avoidance probabilities across the seven categories for 
each participant. Categories with lower avoidance probabilities suggested a higher 
preference, which were assigned with higher rank. Conversely, categories that were 
avoided more frequently received lower ranks. This yielded a personalized ranking 
from 1 to 7 for each participant, reflecting their valuation of the categories. A smaller 
rank number indicated a more preferred category. In an exploratory model (Model 3),  
we extended Model 2 by including the category value rank as an additional control 
factor to account for subjective category preference.

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑚𝑒𝑚𝑜𝑟𝑦 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ~ 𝑐ℎ𝑜𝑖𝑐𝑒 × 𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒 × 𝑚𝑒𝑚𝑜𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 
𝑣𝑎𝑙𝑢𝑒_𝑟𝑎𝑛𝑘 + (1 + 𝑐ℎ𝑜𝑖𝑐𝑒 × 𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒 |𝑠𝑢𝑏)

3.2.6 Model comparison
We compared the three models using the loo function from the looic toolbox to 
evaluate the predictive performance of each statistical model (Pareto Smoothed 
Importance Sampling Leave One Out, PSIS-LOO, Vehtari et al., 2017). Expected 
log predictive density (ELPD) and the effective number of parameters (p_loo) were 
calculated for each model. To assess relative model performance, we calculated the 
difference in ELPD (ΔELPD) between each model and the best-performing model, 
along with the corresponding standard error (SE) of these differences, using the 
loo_compare function. In this comparison, the function automatically designates the 
best-performing model with the highest ELPD as the baseline. As a general rule of 
thumb, a ΔELPD/SE greater than two is considered to reflect a substantial difference 
in model comparison (https://en.wikipedia.org/wiki/68–95–99.7_rule).

3.3 Results

3.3.1 Model comparison
Importantly, we aimed to understand which combination of the factors best explained 
variability in weighted memory accuracy, particularly whether choice, surprise, 
memorability, and category value rank contributed to the statistical model. To this 
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end, we compared the three models using the loo and loo_compare functions from the 
looic toolbox to evaluate their relative predictive performance (Vehtari et al., 2017). 
Among the three models, Model 2, which included memorability, choice, and surprise, 
demonstrated the best fit to the data (Table 3.1). This suggested that the most reliable 
result was the main effect of memorability and the significant interaction between 
choice and surprise on weighted memory accuracy. Model 1, excluding memorability, 
performed significantly worse than Model 2 (Table 3.1). Model 3, which included 
category value rank as an additional predictor, did not explain more variance than 
Model 2. In the end, we focused on Model 2 as the appropriate model, highlighting 
the interaction effect between factors of choice and surprise on weighted memory 
accuracy as the key finding.

Table 3.1 Model comparison

ELPD ∆ELPD SE ∆ELPD/SE p_loo

Model1: choice × surprise -8602.9 -22.4 7.2 -3.1 58.6

Model2: memorability × choice × surprise -8580.5 - - 62.4

Model3: rank + memorability × choice × surprise -8581.4 -0.9 0.5 -1.8 63.3

* Bold font indicates significant effects, ∆ELPD/SE > 2 indicates a significant difference; Model 2, as the 
best model among these three models, was recognized as the baseline.

3.3.2 Behavioural statistical models
In Model 2, we added memorability to the model, involving it as another fully 
structured fixed effect interacting with choice and surprise, with a fully structured 
random effect of the interaction between choice and surprise per participant (Fig. 3.3).  
First, we found the main effect of memorability on weighted memory accuracy. In 
other words, participants were better at remembering the more memorable images. 
Interestingly, we also found an interaction between factors of choice and surprise on 
weighted memory accuracy in Model 2 (Fig. 3.3A; Table 3.2).

In the follow-up analysis disentangling this interaction effect, we found that choice 
improved memory performance only under the low surprise condition (95% CI [-0.250, 
-0.036]; choice/low-surprise, 1.040 ± 0.660, no-choice/low-surprise, 0.898 ± 0.741). 
Under the surprise condition, the beneficial effect of choice on weighted memory 
accuracy was not significant (95% CI [-0.137, 0.072]; choice/high-surprise, 0.860 ± 
0.750, no-choice/high-surprise, 0.841 ± 0.719). Additionally, participants remembered 
images better under the low surprise condition than the high surprise condition only 
when they made active choices on what they wanted to see (95% CI [0.065, 0.285]). No 
significant difference in memory accuracy between high surprise and low surprise 
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conditions was found under the no-choice condition (95% CI [-0.047, 0.168]). This 
was consistent with our previous study investigating predictability and choice effects 
on memory (Chapter 2), suggesting choice would benefit memory more when the 
outcome of the choices was predictable compared to unpredictable. When data was 
visualized by binning objects according to their memorability, a clear and consistent 
difference between high surprise and low surprise conditions was observed under the 
choice condition (Fig. 3.3B). However, this difference was less consistent and more 
variable under the no-choice condition, suggesting a weaker effect of surprise when 
participants had no choice for upcoming information (Fig. 3.3A).

Table 3.2 BRMS results Model 2

Independent variables: choice, surprise and memorability Bayesian statistics

Choice 95%CI [-0.179, 0.007]

Surprise 95%CI [-0.051, 0.138]

Memorability 95%CI [0.866, 1.555]

Choice × Surprise 95%CI [-0.192, -0.005]

Choice × Memorability 95%CI [-0.525, 0.173]

Surprise × Memorability 95%CI [-0.410, 0.276]

Choice × Surprise × Memorability 95%CI [-0.639, 0.059]

* Bold font indicates significant effects

Figure 3.2.Results. A. In this panel, we showed the memory accuracy for images seen under all experimental 
conditions, without separating images into bins according to their memorability. We found the effect of 
choice on memory accuracy was significant only for the images that were seen under the LOW-SURPRISE 
condition. The black colour represents the LOW SURPRISE conditions and the grey colour represents the 
HIGH SURPRISE condition. The black or grey coloured lines represent the simple effect comparison 
(CHOICE – NO-CHOICE) under different predictabilities. The significant effect of choice under LOW 
SURPRISE condition was marked by the horizontal black line, with the Bayesian statistical results noted on 
top. B. This figure shows binned log-memorability levels on the x-axis (higher bins indicate more 
memorable objects) and participant responses on the y-axis. Memory responses were coded from 1 to 4, 
with higher numbers indicating more accurate and confident responses. The black line represents the 
LOW-SURPRISE condition, while the grey line represents the SURPRISE condition. The left panel shows 
NO-CHOICE results, and the right panel shows CHOICE results. Significant main effects of surprise  
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(p < 0.05) and memorability (p < 0.05) were found: participants remembered objects better under LOW-
SURPRISE and recalled more memorable objects more effectively. A significant three-way interaction 
between factors of memorability, choice, and surprise (p < 0.05) revealed that participants remembered 
LOW-SURPRISE pictures better than HIGH-SURPRISE pictures in the CHOICE condition, but only for 
highly memorable objects (p < 0.05).

3.4 Discussion

The current study aimed to examine how surprise modulated the beneficial effect of 
choice on memory. To achieve this, we implemented a well-controlled paradigm in which 
we simultaneously manipulated the freedom of making active choices and the surprise 
associated with the choice outcomes. Although there were no main effect of choice or 
surprise factors on memory accuracy, we observed a significant interaction between 
choice and surprise in the model accounting for memorability, with follow-up analyses 
revealing that choice enhanced memory performance only in the low surprise condition. 
This beneficial effect of choice on memory accuracy was eliminated under the high surprise 
condition, suggesting that unexpected outcomes may disrupt the advantage conferred by 
active choices. Conversely, surprise impaired memory, but only when participants made 
an active choice. As expected, we found the main effect of memorability, indicating that 
more memorable images were recalled with higher accuracy.

Essentially, we extended the findings from Chapter 2 that the act of choice would 
enhance memory encoding for participants, but only when the information was 
consistent with their selections (Zhang et al., 2024). Notably, in the current design, 
participants were only successfully predicting the outcome 50% of the trials, creating 
a situation in which perceived control over outcomes was low. This suggested that even 
under conditions of limited control, participants still engaged in an active prediction 
towards the images, particularly when they were offered the opportunity to choose. This 
finding aligns with the active inference framework, which suggests that people actively 
sample information to support their prior beliefs (Friston et al., 2013; Kaanders et al., 
2022). Meanwhile, human brains constantly calculate information value and compare 
it with their expectations (de Lange et al., 2018). When making active choices, this 
prediction and comparison process was amplified. Some studies have indicated that 
when people make active choices, they might generate a stronger or even distorted 
valuation of information following choices (DuBrow et al., 2019; Izuma & Murayama, 
2013; Meng & Ma, 2015; Sharot & Sunstein, 2020) to reduce the prediction error 
(Peterson et al., 2011). In environments with unpredictable choice outcomes, consistent 
events may stand out due to their temporal consistency, leading to heightened sensory 
acuity (Sainburg et al., 2025), thus becoming more valuable and salient during memory 
encoding (Frank et al., 2022).
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Meanwhile, we found that memory performance was worse for the surprise condition 
as compared with the low surprise condition only when participants were making 
choices freely. Importantly, this is consistent with previous findings indicating that 
surprise diminishes information encoding (Csink et al., 2021; Frank et al., 2022) 
but contrasts with other work reporting enhanced visual representation or memory 
under the high surprise condition compared to the low surprise condition (Filimon et 
al., 2020; Richter et al., 2018). There are three explanations for this discrepancy in the 
direction of the surprise effect on memory or visual representation.

First, the detrimental effect of surprise on memory accuracy under the choice 
condition could be explained by the depth of the violated schema (Bein et al., 2021). 
In our design, the schema, which is the colour-category pairings, was newly formed. 
It was argued that when the strength of the activated schema was weak, the violation 
imposed less cognitive load, making the information easier to process (Schützwohl, 
1998). Similarly, de Bruine et al. (2024) suggested that moderate surprise could not 
boost memory encoding, while consistency and strong surprises both enhanced 
memory. From a developmental perspective, an infant study also showed no surprise 
modulation on memory encoding (Csink et al., 2021), since infants also only had a 
shallow schema towards the world model. Second, this finding can be interpreted 
within the framework of expected and unexpected uncertainty. In our paradigm, 
surprise was induced under expected uncertainty. In our design, participants were 
aware that outcomes could deviate from their choices (Piray & Daw, 2024). In such 
contexts, there was no model update because of the stochasticity of the information 
environment, hence, participants could down-weight the perceived information after 
making the choice, which can impair encoding due to increased cognitive conflict 
or reduced attentional alignment (Luo et al., 2022; Markant et al., 2014a). Last, the 
diminishing effect of surprise on memory encoding under the choice condition may 
also be attributed to the differential influence of surprise on memory processes 
depending on task demands (Frank & Kafkas, 2021; Kafkas & Montaldi, 2018). It was 
found that expected information tends to enhance familiarity, whereas unexpected 
information is more likely to support recollection (Kafkas & Montaldi, 2018). Given 
that the current task primarily tapped into familiarity-based recognition, the observed 
memory encoding benefit for expected information is consistent with this notion. In 
summary, in the current setting, moderate surprise was generated, which diminished 
memory encoding but only when people were making active choices.

Furthermore, the revelation that the memory impairment for surprising outcomes 
emerged only under the choice condition may reflect overlapping neural mechanisms 
between predictive processing and autonomy during memory encoding. Frank et 
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al. (2022) demonstrated that expected objects are better remembered compared 
to unexpected objects, likely due to co-activation of the hippocampus and SN/VTA 
when encountering these temporally consistent events. This suggests that prediction-
consistent information becomes more salient and better integrated into memory. 
This co-activation supports memory integration by reinforcing schema-congruent 
information (Bein et al., 2023). In contrast, prior surprise could disrupt this 
information integration into an established schema (Sinclair & Barense, 2018; Sinclair 
et al., 2021). A similar mechanism has been proposed by studies of active choice, where 
autonomy during learning enhances connectivity between the hippocampus and 
dopaminergic regions (Dubinsky & Hamid, 2024). Memory encoding with autonomy 
also induced higher connectivity between dopaminergic circuitry, like the putamen, 
and the hippocampus (see Chapter 4). Together, these findings suggest that both 
prediction-consistent outcomes and self-directed choices engage overlapping neural 
circuits, potentially explaining the interaction effect between choice and surprise on 
memory encoding.

Interestingly, in the current experiment, the interaction effect between choice and 
surprise on memory accuracy only emerged when memorability was included as a 
control variable in the model. This could be because low-level stimulus-specific 
variances, such as memorability, could obscure higher-level cognitive effects if not 
accounted for (Kriegeskorte & Kievit, 2013). Specifically, memorability was a strong 
predictor of memory (Isola et al., 2011) and omitting it from the statistical model 
perhaps inflated the residual variance, thereby reducing statistical power. As a result, 
meaningful cognitive effects, for example, the interaction effect between choice and 
surprise on memory accuracy, may fail to reach significance due to the contribution of 
uncontrolled stimulus features like memorability. Thus, incorporating memorability 
in the statistical model allowed a more robust estimation of the effects of interest.

As an exploratory analysis, we found that preference for object categories did not 
explain more variance in memory accuracy. One possible explanation is that, in the 
current design, all stimuli were emotionally neutral, resulting in minimal variation 
in subjective value across categories. By contrast, previous studies using emotionally 
charged images have shown that when individuals expect emotionally salient 
content, violations of those expectations elicit stronger contrasts between prediction 
and perception, thereby subjective values would modulate attentional tuning towards 
images (Kaskan et al., 2022).

In the current study, surprise was manipulated while predictability was held constant, 
orthogonal to controlling the factor of choice. As a follow-up of Chapter 2 and the 
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current study, future studies could reverse the current design by manipulating 
predictability of choice outcomes while keeping surprise constant. For example, 
participants could choose between two categories, like mammals and food, with one 
option leading to eight possible images while the other option leading to two possible 
images. In this way, we could always keep surprise low but manipulate high or low 
predictability, allowing isolation of the impact of predictability on the beneficial 
effect of choice on memory encoding. Additionally, while the present study focused 
on behavioural outcomes, future investigations could incorporate neuroimaging 
methods to further disentangle how choice and surprise independently and 
jointly modulate neural processes involved in memory formation (Muttenthaler & 
Hebart, 2021).

3.5 Conclusion

In conclusion, the current study demonstrated that choice and surprise interactively 
influence memory encoding. Specifically, choice enhances memory only when choice 
outcomes are expected based on the participants’ choices. The results extend the 
findings of Chapter 2, leading to important insights into the cognitive mechanism 
underlying active choices in memory encoding and learning. It is suggested that the 
benefits of choice on learning depend not only on inherent rewards but also on predictive 
processing. This has potential implications for educational settings, where providing 
students with purposeful choices may enhance learning and memory encoding.
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Abstract

The freedom to control one’s own behaviour, known as autonomy, can enhance 
learning and memory. As a form of intrinsic motivation, autonomy often coexists 
with extrinsic motivators such as monetary rewards. However, little is known about 
how these motivational factors jointly influence memory encoding, particularly at 
the neural level. To address this, we collected behavioural and functional magnetic 
resonance imaging (fMRI) data from 47 participants who performed an exploratory 
learning task. In this task, participants viewed partially obscured images they were 
later asked to remember. We independently manipulated autonomy, defined as 
volitional control over exploration, and the existence of monetary rewards. Both 
autonomy and rewards independently enhanced memory test performance. Critically, 
only autonomy increased activation in reward-related brain regions, while external 
rewards had no such neural effect. These findings suggest that autonomy serves as 
a more effective motivational factor for enhancing memory encoding than monetary 
rewards. Moreover, exploratory analysis of hippocampal functional connectivity 
revealed greater engagement of attentional control regions during autonomous 
learning, whereas passive learning was associated with increased connectivity to 
lower-level perceptual areas. These findings offer insight into the distinct neural 
mechanisms of intrinsic and extrinsic motivation, with direct implications for 
optimizing learning environments in educational contexts.



| 81Autonomy modulates the reward circuitry in the brain during memory encoding

4

4.1 Introduction

In our everyday lives, we constantly navigate through environments with an 
overload of information, such as landmarks on the way to work or a fleeting image 
of a distinctive car passing by. Our brains must decide which pieces of information 
to encode and integrate into memory, a process often influenced by motivational 
factors. Motivation plays a crucial role in shaping what we learn and remember, yet 
the mechanisms behind this are not fully understood. While intrinsic motivation, 
such as the sense of autonomy, is known to enhance learning (Ryan & Deci, 
2006), it remains unclear how external incentives like monetary rewards interact 
simultaneously with the beneficial effects of intrinsic motivation on learning. 
Using fMRI, this study investigates how intrinsic and extrinsic motivational factors 
affect brain activity during memory encoding, providing new insights into their 
independent and combined roles.

In cognitive science, a distinction is often made between intrinsic and extrinsic 
motivational drives to learn. In this distinction, extrinsic motivation can be 
cognitively described as a drive to acquire rewards from the outside world (Kidd & 
Hayden, 2015; Szumowska & Kruglanski, 2020), like grades in academic exams or 
monetary rewards. However, humans are hardly ever driven by a single source of 
motivation. Intrinsic motivation, for example, can be related to learning driven by 
curiosity (Cervera et al., 2020; Duan et al., 2020; Loewenstein, 1994; van Lieshout  
et al., 2018, 2020) or learning with free choices (Murty & Dickerson, 2016). Many would 
argue that promoting intrinsic motivation is of crucial importance since it supports 
learning and memory (Deci & Ryan, 1985; Duan et al., 2020; Gruber et al., 2014; Gruber 
& Ranganath, 2019; Jepma et al., 2012; Kang et al., 2009; Marvin & Shohamy, 2016). In 
this study, we explicitly focus on autonomy as a drive of intrinsic motivation, which 
is the feeling one has choices about what to do and how to do it (Ryan & Deci, 2000a). 
Thus far, multiple studies have indicated that the feeling of having autonomy benefits 
learning and memory (Ding et al., 2021; DuBrow et al., 2019; Markant et al., 2014a; 
Murty et al., 2015; Rotem-Turchinski et al., 2019; Voss, et al., 2011a; Voss, et al., 2011b; 
Voss, et al., 2011c). In these studies, autonomy has been operationalized in different 
ways. Beneficial effects on memory performance have been found when autonomy 
was defined as simply choosing which button to click (Ding et al., 2021; DuBrow  
et al., 2019; Murty et al., 2015), as well as having the freedom in exploration (Markant 
et al., 2014a; Voss, et al., 2011a; Voss, et al., 2011b; Voss, et al., 2011c). In these types 
of experimental designs, the autonomous condition is compared with an analogous 
non-autonomous condition in which the choice of the participant is impeded. While 
the cognitive links between extrinsic and intrinsic motivation have been explored 
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(e.g., Duan et al., 2020; van Lieshout et al., 2023), the neural mechanisms underlying 
their interaction remain largely understudied.

Synthesizing previous neuroimaging studies focusing on the brain mechanism 
of autonomy in learning, two core systems consistently emerge: the dopaminergic 
reward circuitry and the frontal-parietal network, respectively (Dubinsky & Hamid, 
2024). On the one hand, dopaminergic reward circuitry, such as the striatum, 
and the ventral medial prefrontal cortex (vmPFC) were engaged when having the 
opportunity to choose (e.g., Leotti & Delgado, 2011; Murayama et al., 2015; Murty et 
al., 2015). These brain regions are also typically triggered by external rewards (e.g., 
Adcock et al., 2006; Haber & Knutson, 2010) or encode reward prediction errors 
(Cohen et al., 2014; Di Domenico & Ryan, 2017; Schultz, 2015). It might support the 
notion that autonomy in learning is intrinsically rewarding (Leotti & Delgado, 2011). 
On the other hand, the frontal-parietal network, including OFC, ACC, and dorsal 
lateral prefrontal cortex (dlPFC), related to attentional control, error monitoring, 
and executive functions, were more active under autonomous learning conditions. 
This demonstrated that autonomy not only enhances the affective value of learning 
experiences but also recruits greater cognitive resources toward learning (Kennedy 
et al., 2024; Luo et al., 2022; Voss et al., 2011b). For instance, Voss et al. (2011b) 
demonstrated that the functional connectivity between the hippocampus and a broad 
set of brain regions, including bilateral dorsolateral (dlPFC) and medial prefrontal 
cortex, left ventrolateral parietal cortex, and left cerebellum, was enhanced when 
participants had volitional control over exploration compared to deprivation of 
autonomy. Similarly, Murty et al. (2015) found that both the orbital frontal cortex 
(OFC) and the anterior cingulate cortex (ACC) showed greater activation during visual 
information encoding in free-choice versus no-choice conditions. Importantly, they 
also reported that hippocampal activation was correlated with striatal activation, but 
only when participants had the freedom to choose learning materials. Together, these 
findings suggest that autonomy enhances memory encoding by being inherently 
rewarding and by facilitating attentional engagement during learning.

Although abundant evidence indicates that extrinsic motivators (e.g., monetary 
rewards) also increase learning and memory performance (Adcock et al., 2006; Elliott 
et al., 2020; Mason et al., 2017; Murayama & Kuhbandner, 2011), it has been reported 
that the presence of extrinsic motivation could attenuate the effects of intrinsic 
motivation on learning (Cameron, 2001; Hidi, 2016; Lepper et al., 1973; Murayama 
et al., 2010). This interaction can be explained according to the overjustification 
hypothesis (Lepper et al., 1973): the learner will attribute their enjoyment of the 
activity to external rewards instead of to the activity itself. Within Self-Determination 
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Theory, this phenomenon is also known as the undermining effect, in other words, the 
observation that adding extrinsic motivation where intrinsic motivation is already 
present might harm this intrinsic motivation (Deci, 1971; Deci & Koestner, 1999; Hidi, 
2016; Houlfort et al., 2002; Kuvaas et al., 2020; Lepper et al., 1973; Murayama, 2022; 
Murayama et al., 2010; Tang & Hall, 2006).

The undermining effect of external rewards on intrinsic motivation may stem 
from overlapping neural mechanisms shared by intrinsic and extrinsic motivation, 
specifically the dopaminergic reward circuitry including the ventral striatum, ventral 
tegmental area, and substantia nigra (Dubinsky & Hamid, 2024; Gruber et al., 2014; 
Kang et al., 2009). One possible explanation is that the presence of external rewards 
already engages the dopaminergic reward circuitry to be activated, limiting the 
additional activation that intrinsic motivation could elicit. For example, Murayama 
et al. (2010) demonstrated that participants who received rewards showed higher 
reward circuitry activation during the rewarded task but subsequently exhibited 
lower intrinsic motivation to perform better once the reward was removed. They 
argued that the previous presence of external rewards may overshadow the inherent 
satisfaction of following task engagement, making intrinsic success less salient. 
On the other hand, it has also been reported that intrinsic and extrinsic motivation 
benefit memory performance independently (Duan et al., 2020). This may reflect the 
recruitment of distinct neural mechanisms in parallel, aligning with notions that 
extrinsic motivation engages reward-related regions, whereas intrinsic motivation 
additionally evokes attentional control networks such as the dlPFC and ACC (Murty et 
al., 2015). Altogether, these findings point to conflicting evidence regarding whether 
or how intrinsic and extrinsic motivational systems interact during learning. 
Notably, there is a lack of studies that simultaneously manipulated both intrinsic and 
extrinsic motivational factors during learning while measuring brain activity.

Given the importance of both autonomy and reward on memory performance, we 
specifically investigate whether autonomy and reward aid memory performance 
in an additive or interactive fashion. The novelty of our approach primarily lies 
in our simultaneous and orthogonal manipulation of indicators of intrinsic 
motivation (i.e., autonomy) and extrinsic rewards (i.e., monetary rewards), rather 
than sequentially, with the aim of observing their immediate (interactive) effects. 
By doing so, we provide fresh insights into how these factors interact in affecting 
memory performance.

To this end, we adapted a well-controlled explorative learning paradigm from Voss et 
al., (2011b) for use in the fMRI scanner. We chose this paradigm because it provides 
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a well-controlled, but still relatively natural learning environment and because 
previous results using this paradigm showed robust effects of autonomy on memory 
performance (Markant et al., 2014a; Voss, et al., 2011a; Voss, et al., 2011b; Voss, et al., 
2011c). In this paradigm, participants were presented with a 5 x 5 grid consisting of 
object images obscured by visual noise except for a (circular) searchlight window. 
These objects could be unobscured by moving the searchlight window around 
the screen. Autonomy was manipulated as follows: In the autonomous condition, 
participants were given volitional control over the temporal and spatial trajectory 
of the searchlight window using a joystick. In the non-autonomous condition, 
participants were instructed to follow (mimic with the joystick) an exploration 
trajectory of a previous participant (i.e., the autonomous trajectories were saved and 
replayed, so-called ‘yoking’). Importantly, we adapted this paradigm by introducing 
a reward manipulation orthogonal to the autonomy manipulation. This was done 
by offering participants a monetary reward for their memory performance for 
objects from selected autonomous and non-autonomous grids and not for other 
grids. Participants’ recognition and spatial memory performance were assessed in 
a separate memory task. As such, this design allowed us to investigate the effects of 
autonomy, reward, and their interaction on memory accuracy as well as brain activity 
during learning.

Previous results have demonstrated that autonomy and reward are strongly related 
to the dopaminergic reward circuitry, together with regions such as the vmPFC, 
OFC, dlPFC, and dACC as key components of the frontal-parietal network showing 
strong signal projection to the reward circuitry (Dubinsky & Hamid, 2024; Haber 
& Knutson, 2010). In addition, studies have revealed enhanced activation in the 
hippocampus and parahippocampal gyrus under autonomous compared to non-
autonomous conditions (e.g., Murty et al., 2015; Voss et al., 2011b). Building on these 
findings, the current study focused on a generalized linear modelling (GLM) analysis 
on preselected voxels within a mask that combined these above-mentioned relevant 
brain areas. Complementary region-of-interest (ROI) analyses were performed 
by zooming in on each of the individual structures within dopaminergic reward 
circuitry, hippocampus, and parahippocampal gyrus. Meanwhile, we expect to find 
an interaction effect between autonomy and reward in the reward circuitry in the 
brain. To illustrate, the reward circuitry may be engaged during autonomous learning 
in the absence of external rewards, but this engagement may diminish when extrinsic 
rewards are present, as the intrinsic rewarding value of autonomy could be disrupted. 
Additionally, to extend and optimize the functional connectivity analysis originally 
conducted by Voss et al. (2011b), we implemented a generalized psychophysiological 
interaction (gPPI; Studer & Knecht, 2016) analysis over the whole brain with the 
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hippocampus as the seed region as an exploratory analysis. This approach provided 
insight into how hippocampal functional connectivity across the whole brain was 
modulated by autonomy and reward conditions at the same time. This could elucidate 
how the rest of the brain interacts with the memory system during encoding, 
highlighting information exchange between motivational and memory-related brain 
regions rather than treating them as separate systems. Understanding whether and 
how both motivational factors of autonomy and reward interact simultaneously in 
the brain can help us to support optimal motivation and performance across a range 
of settings, for example, in education, where both autonomy and extrinsic rewards 
are commonly used to motivate students.

4.2 Methods

4.2.1 Participants
The current study is conducted based on a collaboration project aiming at conducting 
cross-cultural comparison of the intrinsic and extrinsic motivation between  
two groups. We aimed for a final sample size of N = 42 in each cultural group to detect 
a medium effect size (partial η2 = 0.09, alpha level p<0.05) with 80% power for the 
three-way interaction among the two within-group factors (autonomy and reward) 
and one between-group factor (cultural group) using a 2×2×2 mixed-measures 
ANOVA (Zhang et al., 2025). In the current chapter, only the data collected in the 
Netherlands were included.

Fifty-seven healthy individuals participated in the experiment (39 female, 18 male; 
age: M = 24.33, SD = 5.32). To implement a yoking design, where each participant 
observed the searchlight trajectory of the previous participant, the study required 
N+1 participants. The first participant's searchlight trajectories were presented to the 
next participant. However, as there was no prior trajectory for the first participant 
to observe, their data were excluded from the main analysis. Ten participants were 
excluded based on the motion artefacts. They showed a larger motion artefact than 
0.3 mm framewise displacement (FD) over time or had a peak motion artefact of 
3mm FD. Therefore, the final sample size was 47 participants (33 female, 14 male; age: 
M = 23.98, SD = 4.69). The majority of participants were right-handed (1 left-handed) 
and all participants used their right hand to control the joystick. All participants had 
normal or corrected-to-normal vision.

All participants gave written informed consent according to the declaration of 
Helsinki prior to participation. The experiment was approved by the local ethics 
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committee (CMO Arnhem-Nijmegen, The Netherlands) under a general ethics 
approval protocol (“Imaging Human Cognition”, CMO 2014/288) and was conducted 
in compliance with these guidelines.

4.2.2 Stimuli and materials
The stimuli and materials used in this experiment were largely consistent with 
prior behavioural work (van Lieshout et al., 2023). Similar to the earlier study, 
participants were presented with a total of 600 images of objects. Those images were 
selected based on their visibility, recognizability, and lack of lettering from the set  
“2400 Unique Objects” from the University of California San Diego’s vision and 
memory lab (Brady et al., 2008). The images were presented in a square grid of  
5 x 5 images. Each image was 120 pixels in height and covered by black and white 
Gaussian noise (SDnoise = 3). This was deemed sufficient such that participants 
could identify the location of the object images, but not their identity (Voss, et al., 
2011b; see Fig. 4.1A). The experiment was programmed using PsychoPy version 3 
(Peirce & MacAskill, 2018). Participants viewed the images on high-quality 32-inch 
IPS LCD screens with a resolution of 1920 x 1080 pixels and a 120Hz refresh rate. In 
the fMRI scanner, the searchlight moved faster compared to in the behavioural lab  
(van Lieshout et al., 2023) due to the higher refresh rate of the screen, allowing more 
flexible and responsive control. The screen was positioned behind the participants 
and visible to them via a mirror mounted on the head coil, allowing them to see the 
display clearly while lying down in the scanner. During the memory encoding phase, 
the searchlight window used to uncover the images had a diameter of 180 pixels 
and was controlled via an HHSC-Tethyx joystick. This joystick is non-magnetic and 
non-electronic, constructed entirely from plastic, ensuring it does not disrupt the 
magnetic field or pose safety concerns in an MR environment.

4.2.3 Procedures
The experiment was divided into two blocks. Each block consists of a memory 
encoding phase and a memory test phase. There was a break after the first block 
(i.e., the first memory test phase; Fig. 4.1A). During both memory encoding blocks, 
participants' brains were non-invasively scanned using functional magnetic 
resonance imaging (fMRI). Although participants also performed the memory tests 
inside the scanner, neural activity was not recorded during these phases.

4.2.3.1 Memory encoding phase
The memory encoding phase of the experiment is the same as in previous behavioural 
work (van Lieshout et al., 2023) and will be repeated here for convenience. Each block 
of the memory encoding phase consisted of six grids. In each grid, 25 images would 
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be presented on the screen, which could be unobscured from the visual noise using 
a searchlight window (Fig. 4.1B). We instructed participants to remember as many 
images as possible.

Autonomy manipulation: The memory encoding phase consisted of an equal amount of 
autonomous and non-autonomous grids (Fig. 4.1C). In autonomous grids (MOVE 
grids), participants could use the joystick to control the (temporal and spatial) 
movement of the searchlight window over the images. In non-autonomous grids 
(FOLLOW grids), participants were told that the searchlight window moved by itself 
and were asked to follow the movements with their joystick. In fact, participants were 
presented with the movements of the previous participant in these non-autonomous 
grids. In other words, the autonomous (MOVE) grids of the previous participant were 
shown as non-autonomous (FOLLOW) grids for the current participant. Similarly, the 
current participant’s autonomous grids were recorded and shown as non-autonomous 
grids to the subsequent participant. This is a commonly used procedure called “yoking”, 
in which stimulus input was identical, but differed in autonomy over the searchlight 
window (see Voss et al., 2011b). The movements for the non-autonomous grids of 
the first participant were generated by a seed participant. This seed participant only 
completed autonomous (MOVE) grids, and we did not use its data for analyses.

Reward manipulation: The participants were instructed that some of the autonomous 
and non-autonomous grids would be rewarded. Participants could earn a maximum 
of 5 euros on top of their standard compensation if they correctly recognized 
images presented during rewarded grids (i.e. 3 cents for each correctly recognized 
rewarded image).

Each grid started with a pre-grid screen that instructed participants about whether 
the next grid would be autonomous (MOVE grid) or non-autonomous (FOLLOW 
grid). In rewarded grids, this instruction was accompanied by a picture of a 5-euro 
banknote in the middle of the screen and the text (“Be aware: images from this trial 
are REWARDED!”) at the bottom of the screen. During the experiment, terms like 
“you control the window”, “the window moves by itself ”, and “MOVE and FOLLOW 
grids” were used. Any use of volitional, voluntary, or autonomous language was 
avoided to keep participants naïve to the manipulation as much as possible. 
Participants were not aware that their FOLLOW grids were generated by the previous 
participants. To ensure that participants paid attention to reward, participants were 
not told how many grids would be rewarded. The focus was solely on the amount of 
5 Euros that they could earn extra during the experiment, and not on the relatively 
small reward per image.
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Within participants, grid types alternated between autonomous and non-
autonomous. The starting grid type alternated across participants, with the first 
participant randomly assigned to begin with an autonomous grid. Rewarded grids 
were evenly distributed across blocks (three per block) and conditions (three MOVE 
grids and three FOLLOW grids). Reward was also maintained across yoking: a 
rewarded MOVE grid for one participant corresponded to a rewarded FOLLOW grid 
for the subsequent participant. The same applied to unrewarded grids. To achieve 
this, each block contained two groups of three grids—one group rewarded and the 
other unrewarded. In one block, there were two rewarded MOVE grids and one 
rewarded FOLLOW grid, while the other block featured one rewarded MOVE grid 
and two rewarded FOLLOW grids. Due to the yoking protocol, this alternation was 
consistent between participants. Within a block, the order of rewarded MOVE grids 
was randomized among the available MOVE grids. The order of rewarded FOLLOW 
grids was then determined by the randomization of the yoked MOVE grids from the 
preceding participant. This approach ensured that while autonomy and reward were 
independently manipulated, any behavioural differences between reward types were 
systematically controlled.

Each grid had a total duration of 60 seconds and was interrupted halfway by a 20 
second break (i.e., after 30 seconds, following Voss et al., 2011b). By dividing the 
grid into two segments, we effectively increase the variation in the predicted blood-
oxygen-level-dependent (BOLD) signal, which is crucial for ensuring statistical 
robustness in an fMRI block design (the total variance in BOLD signal introduced 
by the experimental design determines the detection power). During the break, 
participants paused before resuming the second half of the grid at the point where 
they had left off in the first half. Additionally, each grid began with a pre-grid screen 
lasting 20 seconds, which informed participants whether the upcoming grid was a 
MOVE or FOLLOW grid and whether it was rewarded or unrewarded. Consequently, 
each block of the memory encoding phase had a fixed duration of exactly 10 minutes.

4.2.3.2 Memory test phase
After each block of the memory encoding phase, participants completed a memory 
test to assess their recall of the images presented during the preceding memory 
encoding phase. As a result, two memory tests were administered in total (one after 
each memory encoding phase). Both memory tests combined a recognition memory 
task with a spatial memory task.
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Figure 4.1. Task schematics. A. Experimental design and paradigm. The experiment consisted of two blocks 
that were divided by a break. Each block consisted of a memory encoding phase and a memory test phase. 
We only conducted fMRI scan during the two memory encoding phases, while during the memory test 
phases, we did two structural scans (T1). During the memory encoding phase, participants were presented 
with 6 grids, each containing 25 images presented on a 5 x 5 grid. Participants were instructed to study and 
remember the images (150 per block) as well as they can. The memory encoding phase was followed by a 
memory test phase during which participants were presented with 300 images: the 150 images they studied 
during the memory encoding phase and 150 new images. B. Example grid of the memory encoding phase. 
In each grid, the 25 images were covered by black and white gaussian noise. The images could be uncovered 
using the searchlight window and participants were instructed to remember as many images as possible. 
C. Overview of the conditions in the memory encoding phase. In autonomous (MOVE) grids, participants 
could directly control the movement of the searchlight window using a joystick. In non-autonomous 
(FOLLOW) grids, participants were shown the movements generated by the previous participant and 
instructed to follow the movements along with their joystick. Each grid was either rewarded, meaning that 
participants would receive a bonus for correctly remembering the images of that grid, or unrewarded. 
Before the start of each grid, a screen indicated whether the upcoming grid was an autonomous (MOVE) or 
non-autonomous (FOLLOW) grid and whether the grid was rewarded or not. D. Example grid of the 
memory test phase. After 6 grids of the memory encoding phase, participants had to perform a memory 
test. For each image, they had to indicate whether the image was “Definitely OLD”, “Probably OLD”, 
“Probably NEW” or “Definitely NEW” by moving the joystick in the corresponding direction (recognition 
memory test). If participants indicated that they had seen an image before (“Definitely OLD” or “Probably 
OLD”), they were instructed to place the image on the grid (spatial memory test) before moving on with the 
next image. 
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Recognition memory test: During each memory test, participants were exposed to a total 
of 300 images; 150 of these images were learned during the six grids of the preceding 
memory encoding phase (i.e., old images) and the other half of the images were not 
learned before (i.e., new images or ‘foils’). We asked participants to indicate whether they 
had seen each image during the memory encoding phase or not using a 4-point Likert 
scale (with response options: definitely old, probably old, probably new or definitely new).  
These response options were positioned around the image, and participants could give 
their response by moving the joystick in the corresponding direction (Fig. 4.1D). If a 
participant responded to an image with “definitely old” or “probably old,” they were 
asked to report where on the screen they had seen that image during the preceding 
memory encoding phase (i.e. their spatial memory).

Spatial memory test: To assess participants’ spatial memory, we used a modified version 
of the paradigm used by Markant and colleagues (2014a). If participants indicated 
that an image was “definitely old” or “probably old” during the recognition memory 
test, they were presented with another screen consisting of the exploration grid  
(Fig. 4.1D). The image was initially in the middle, and participants were instructed to 
move the image to the location on the 5 x 5 grid where they thought they had seen it 
during the memory encoding phase. The participants could do so using the joystick 
and confirm their positioning with a button click. We instructed the participants to 
go for their best guess and to try to be as close as possible to the image’s location.

At the end of the experiment, participants were provided with feedback: they 
were shown their performance in terms of hit rate for both blocks separately  
(i.e. correct classification of old images) and how well they performed on the rewarded 
images alone. They also saw how much reward they would receive on top of their 
standard compensation.

4.2.3.3 Training
Before the start of the experiment, participants underwent a short training session 
in a behavioural lab to ensure their understanding of the task. After reading the 
instructions for the experiment, participants verbally explained the purpose of 
the task back to the experimenter. After ensuring that the participant understood 
the task, participants performed a short version of the memory encoding phase 
consisting of four grids (one autonomous unrewarded grid, one non-autonomous 
unrewarded grid, one autonomous rewarded grid, and one non-autonomous 
rewarded grid, respectively). Participants were aware that the reward in the memory 
encoding phase of the training was only exemplary and that their performance during 
this phase would not actually be rewarded. To assure no memory interference could 
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occur during the main experiment, cartoon images (Rossion & Pourtois, 2004) were 
used instead of the object images used during the actual experiment. Following these 
four grids, a short 20-image memory test was conducted to familiarise participants 
with the general procedure of the memory test phase of the experiment. No data were 
recorded during training.

The experiment lasted approximately two hours, depending on participants' response 
times during the memory test. Participants received a standard compensation of  
19 Euros and could earn up to an additional 5 Euros based on their performance in 
the rewarded grids of the memory test. Notably, the standard compensation for 
this fMRI study was higher than that of the previous behavioural lab study (19 Euros 
compared to 14 Euros; van Lieshout et al., 2023). However, the bonus of up to 5 Euros 
remained consistent across both experiments.

4.2.4 fMRI acquisition
The MRI data were collected using a Siemens 3 Tesla (3T) MAGNETOM Prisma scanner 
and a 32-channel head coil. Each scanning session started with a head-localizer. 
The AutoAlign head software by Siemens was used, ensuring a similar field of view 
(FOV) across participants. Fieldmaps were collected before starting the first memory 
encoding phase (TR = 410 ms, TE1 = 2.20 ms, TE2 = 4.66 ms, voxel size of 2.4 x 2.4 x 
2.4 mm, 60 transversal slices, 40° flip angle, interleaved slice acquisition). During both 
memory encoding phases of the experiment, functional images were acquired using 
a multiband imaging sequence (TR = 1200 ms, TE = 34.2 ms, voxel size of 2.4 x 2.4 x  
2.4 mm, 60 transversal slices, 65° flip angle, multiband acceleration factor of 4, 
interleaved slice acquisition). Dummy scans were acquired before the start of each 
BOLD run to reach scanner equilibrium. These volumes were not saved. After each 
memory encoding phase, anatomical images were acquired using a T1- MPRAGE 
sequence, using a GRAPPA acceleration factor of 2 (TR = 2300 ms, TE = 3.03 ms, voxel 
size of 1 x 1 x 1 mm, 192 sagittal slices, 8° flip angle, interleaved slice acquisition), 
resulting in two anatomical images per participant.

4.2.5 Preprocessing

4.2.5.1 Preprocessing of behavioural data
General data preparation - Data were prepared using Python 3.6 (Van Rossum et al., 
2009). All 600 images were classified as either non-autonomous unrewarded, non-
autonomous rewarded, autonomous unrewarded, autonomous rewarded, or foil 
(meaning that they were not presented during the memory encoding phase) for each 
participant. During the memory encoding phase, images were coded as “seen” if the 
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searchlight window overlapped any pixels with an image’s associated grid square 
(120 x 120 pixels) for at least 200 milliseconds. All episodes were pooled to generate 
the cumulative time spent on each image. Any image presented during the memory 
encoding phase that was uncovered for less than 200 milliseconds was reclassified 
as a foil image, as it was assumed that the image was not studied by the participants 
or their subsequent yoker (see Markant et al., 2014b). It should be noted that a 
substantial proportion of all images (99.76%) was coded as “seen” during the memory 
encoding phase of the experiment and included in the final analyses. In total, 44 out 
of 14,100 images were coded as “not seen” and reclassified as foils, representing an 
average of 299.03 images per participant.

Recognition memory weighted accuracy – The measurement for recognition memory was 
calculated in two different ways, respectively recognition memory weighted accuracy 
and sensitivity.

Recognition memory weighted accuracy was calculated for all objects. If the Likert 
response for a “seen” object was rated as “definitely OLD”, it was assigned a weighted 
accuracy of 2; “probably OLD” was assigned 1; “probably NEW” was assigned -1; 
“definitely NEW” was assigned -2. For the foil objects, the coding for weighted 
accuracy was reversed: “definitely OLD” was assigned a weighted accuracy of -2; 
“probably OLD” was assigned -1; “probably NEW” was assigned 1; “definitely NEW” 
was assigned 2.

Then, we employed signal detection theory to calculate d’ to measure sensitivity 
of recognition memory test responses (Hautus et al., 2021). According to signal 
detection theory, d’ represents the discriminability/sensitivity. The higher the d’ 
is, the better the participant is at discriminating between old and new objects. To 
calculate d’, we first converted the Likert response from the recognition memory test 
into binary accuracy codes for each image. If a “seen” image was presented during 
the memory encoding phase and correctly recognized (“definitely OLD”, “probably 
OLD”), this image was classified as a hit, whereas other unrecognized “seen” images 
were classified as a miss (“probably NEW”, “definitely NEW”). For each grid, the 
recognition hit rate was calculated by dividing the number of hits per grid by the total 
number of “seen” images in that grid.

If a foil image was recognized as “OLD”, this image was classified as a false alarm. If 
a foil image was recognized as “NEW”, this image was classified as correct rejection. 

𝐻𝑖𝑡 𝑟𝑎𝑡𝑒 =
𝐻𝑖𝑡 𝑜𝑏𝑗𝑒𝑐𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 𝑝𝑒𝑟 𝑔𝑟𝑖𝑑Old 

𝑂𝑏𝑗𝑒𝑐𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 𝑝𝑒𝑟 𝑔𝑟𝑖𝑑Old 
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The memory encoding phase of the experiment was divided into two runs. In each 
run, each participant learned six grids with a total of 150 objects, divided into  
25 objects per grid, followed by a memory test including these 150 objects intermixed 
with 150 filler objects (foils). Hence, a false alarm for each run could be calculated.

𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 =
𝐻𝑖𝑡 𝑜𝑏𝑗𝑒𝑐𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 𝑝𝑒𝑟 𝑟𝑢𝑛Foil  

𝑂𝑏𝑗𝑒𝑐𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 𝑝𝑒𝑟 𝑟𝑢𝑛Foil

Eventually, we calculated d’ for each grid. We implemented z transformation for hit 
rate (ZH) for each grid and false alarm (ZFA) for the corresponding run for each grid. 
Then, d’ for each grid was computed as follows.

𝑑 = 𝑍 − 𝑍

Spatial memory - The spatial memory hit rate was calculated for the “seen” images that 
were correctly recognized as “OLD” in the recognition memory test since the spatial 
memory test was skipped for the “seen” images that were recognized as “NEW”. The foil 
images were also excluded since there were no correct locations for these images during 
encoding. We coded the spatial memory responses into a binary variable. We counted 
the spatial memory test trial as “hit” if participants identified the object image’s location 
at the correct location or all 8 locations surrounding that correct location (Fig. 4.2). On 
the contrary, if they put the object to the rest 16 locations from these nine locations, 
we counted that trial as a “miss” (general spatial memory score as 0). In this way, we 
tolerated a range of errors for participants in the spatial memory test.

4.2.5.2 Preprocessing of fMRI data
DICOM images were converted into Niftii files in BIDS format (the brain imaging 
data structure, https://bids.neuroimaging.io) with BIDscoin (Zwiers et al., 2021). In 
the BIDSIDS folder for each participant, there were two T1-weighted (T1w) images, 
one fieldmap estimation, and two functional BOLD runs collected during memory 
encoding tasks.

We preprocessed fMRI data with fMRIPrep 24.0.0 (Esteban et al., 2019). A field 
map was estimated from the phase-drift map(s) measure with two consecutive GRE 
(gradient-recalled echo) acquisitions. The corresponding phase-map(s) were phase-
unwrapped with a prelude. An anatomical T1w-reference map was computed after 
registration of two T1w images (after INU-correction) using mri_robust_template 
(FreeSurfer 7.3.2, Reuter, Rosas, and Fischl 2010). Brain surfaces were reconstructed 
using recon-all (FreeSurfer 7.3.2, RRID: SCR_001847, Dale, Fischl, and Sereno 
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1999), and the brain mask was refined with a custom variation of the method to 
reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical grey-
matter of Mindboggle (RRID: SCR_002438, Klein et al. 2017). Volume-based spatial 
normalization to the MNI152NLin6Asym standard space with a resolution of 2 x 2 
x 2 mm was performed through nonlinear registration with antsRegistration (ANTs 
2.5.1), using brain-extracted versions of both T1w reference and the T1w template 
(Evans et al., 2012, RRID: SCR_002823; TemplateFlow ID: MNI152NLin6Asym). 
The estimated MNI152Nlin6Asym brain mask was used to conduct brain extraction 
after preprocessing. The functional data was smoothed using a Gaussian kernel of 5 
mm (FWHM).

Figure 4.2 General spatial memory score calculation. In the memory test, participants were asked to put 
the OLD objects back to the locations they saw the object during memory encoding. When computing the 
general spatial memory score, a margin of error was permitted. Specifically, an object was classified as a 
“hit” in the spatial memory test if participants positioned it either at the designated location (i.e., where 
the rubber duck was initially placed) or within any of the eight surrounding locations marked by red 
stars. If the object is put to the rest 16 locations on the grid (i.e., without any mark), we would count that 
trial as a “miss” in the spatial memory test. If the correct location of the object is on the corner, only three 
locations around the corner would be tolerated as “hit” locations. When the correct location of the object 
is on the border, only five locations around the correct location will be included as “hit” locations.

For each of the two BOLD runs found per subject (across all tasks and sessions), the 
following preprocessing was performed. The estimated fieldmap was aligned with rigid 
registration to the target EPI (echo-planar imaging) reference run. The field coefficients 
were mapped onto the reference EPI using the transform. The BOLD reference was then 
co-registered to the T1w reference using bbregister (FreeSurfer), which implements 
boundary-based registration (Greve and Fischl 2009). Co-registration was configured 
with six degrees of freedom. Several confounding time series were calculated based on 
the preprocessed BOLD: framewise displacement (FD), temporal derivatives variance 
series (DVARS), and three region-wise global signals. FD was computed using two 
formulations following the absolute sum of relative motions from Power et al. (2014) 
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and the relative root mean square displacement between affines from Jenkinson et al. 
(2002). FD and DVARS were calculated for each functional run, using Nipype (following 
the definitions by Power et al. 2014). We excluded participants who exhibited an average 
FD larger than 0.3 mm or a peak FD larger than 3 mm.

Three global signals were extracted within the cerebrospinal fluid (CSF), the white 
matter (WM), and the whole-brain masks (Behzadi et al., 2007). Principal components 
were estimated after high-pass filtering the preprocessed BOLD time series (using a 
discrete cosine filter with 128 s cut-off) for the anatomical noise components (aCompCor) 
within the CSF, WM, and CSF+WM masks. For each CompCor decomposition, the 
k components with the largest singular values are retained, such that the retained 
components’ time series are sufficient to explain 50 percent of variance across the 
nuisance mask (CSF, WM, or combined). The remaining components were dropped 
from consideration. Among the noise confounds, we included the global signal from 
the whole brain and the first five anatomical noise components to remove physiological 
noise. Additionally, we included all the cosine regressors as nuisance regressors to 
conduct highpass filtering for the fMRI data. Then, we preprocessed the data with the 
same argument with fmriprep 23.0.2 but with ICAroma (Pruim et al., 2015). All the ICA-
Aroma components that were recognized as motion were also included in the nuisance 
regressor file to remove motion artefacts.

4.2.6 Statistical analyses

4.2.6.1 Behavioural data analyses
We conducted statistical analyses on the three dependent variables, recognition 
memory weighted accuracy, d’ calculated from recognition memory accuracy, and the 
spatial memory hit rate, respectively, using both lme4 (Bates et al., 2015) and brms 
(Bürkner, 2017) to validate our results across frequentist and Bayesian frameworks 
R (R core team, 2022). For recognition memory and d′—both continuous measures—
we employed linear mixed-effects models using the lmer function from the lme4 
package with a Gaussian family. For spatial memory hit rate, a binary variable, we 
used generalized linear mixed-effects models via the gamer function with a logistic 
link function. Corresponding models were also implemented in brms using the 
same specifications for each dependent variable. The independent variables were 
the factors autonomy (MOVE, autonomous encoding; FOLLOW, non-autonomous 
encoding) and reward (REWARD; NO REWARD). Both autonomy and reward factors 
were within-participant manipulations. We created sum-to-zero contrasts for all the 
factors. In the model, we included autonomy and reward main effects as fixed effects. 
The model also included the two-way interaction effect between autonomy and 
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reward as fixed effects. Additionally, the model had a full random effects structure, 
meaning that a random intercept and random slopes for all within-subject effects 
were included per participant (Barr, 2013; Barr et al., 2013). The LME model was fitted 
with 10,000 iterations and diagnosed with DHARMa (Hartig, 2020).

Similarly, we implemented the brm function of the package BRMS in R (Bürkner, 2017) 
to model recognition memory weighted accuracy, recognition memory sensitivity, 
and spatial memory hit rate as dependent variables with the same model structure. 
We used the default priors of the BRMS package (Cauchy priors and LKJ priors for 
correlation parameters). The model was fit running four chains with 10000 iterations 
each (5000 warm-ups) and inspected for convergence. Coefficients of the effects were 
deemed statistically significant if the associated 95% posterior credible intervals were 
non-overlapping with zero.

4.2.6.2 fMRI data analyses
GLM analysis within targeted brain mask - For each run for each participant, 
preprocessed fMRI data from the whole brain was modelled using an event-related 
GLM as the first-level analysis. We built the regressors by extracting time series 
based on the moment when a picture was revealed, and this picture was successfully 
recognized in the memory test. We defined events as occurring when the centre of 
the searchlight was located within 90 pixels (the searchlight radius) of the centre of 
an image. This ensured that events reflected only moments when participants were 
viewing complete images rather than navigating between images. Then, we separately 
modelled the events during which the picture was not successfully recognized during 
the memory test in the GLM, apart from the images that were remembered. These 
forgotten images were not included in the construction of the contrasts between 
experimental conditions. We constructed regressors respectively for each of the four 
encoding conditions: MOVE/REWARD, MOVE/NO-REWARD, FOLLOW/REWARD, 
and FOLLOW/NO-REWARD. Additionally, we included a regressor including all 
events corresponding to images that were not recognized in the memory test, labelled 
as FORGOTTEN. All five regressors for events were convoluted with double-gamma 
hemodynamic response function (HRF) in FSL. Eventually, the nuisance regressors, 
including the global signal, the five anatomical noise components, cosine regressors, 
and the motion components from ICA-Aroma, were included in the design matrix for 
each run.

Next, we conducted second-level analyses by combining the two runs for each 
participant, yielding contrast images for each condition, as well as for main effects, 
interaction effects, and post hoc comparisons. These participant-level contrasts were 
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then entered into a third-level (group-level) analysis across all participants. Group-
level results were thresholded at the voxel level with z > 3.1 (p < 0.001), followed by 
cluster-level family-wise error (FWE) correction at p < 0.05 within a mask of regions 
of interest (ROIs) based on previous studies. The current study aims to focus on 
the brain regions related to reward circuitry (Dubinsky & Hamid, 2024; Haber 
& Knutson, 2010). To define this mask, we combined regions identified in both 
studies as either core components of the reward system or as modulatory regions. 
The overlapping areas primarily comprised subcortical structures central to reward 
processing, including the substantia nigra (SN), ventral tegmental area (VTA), 
putamen, nucleus accumbens, and caudate. Additional regions known to modulate 
reward circuitry included the medial frontal cortex, orbitofrontal cortex, middle 
and superior frontal gyri, hippocampus, parahippocampal gyrus, and amygdala. 
We extracted probabilistic masks of these anatomical regions from the Harvard-
Oxford cortical and subcortical structural atlases (Makris et al., 2006; Frazier et al., 
2005; Desikan et al., 2006; Goldstein et al., 2007) from FSL using a 25% probability 
threshold (Craddock et al., 2012). Then, we binarized these masks by coding the 
voxels showing a probability for this specific region higher than or equal to 25% as 
“1” while the voxels with a probability below 25% as “0”. We combined the binarized 
masks into a single mask encompassing all selected ROIs. Third-level analyses were 
conducted exclusively from within this combined mask. Note that the third-level 
analysis within the whole brain mask was conducted as well, and the results were put 
in Supplementary Material 4.1.

ROI analysis – To further confirm how each sub-region within the reward circuitry 
is involved in intrinsic and extrinsic motivation during learning, we conducted 
region-of-interest (ROI) analyses focusing on key reward-related regions separately 
(Dubinsky & Hamid, 2024; Haber & Knutson, 2010), including putamen, caudate, 
nucleus accumbens, VTA, and SN. Additionally, we included the hippocampus and 
parahippocampal gyrus since the current study focuses on memory encoding (Voss 
et al., 2011b). We used the same probabilistic anatomical masks as in earlier analyses, 
applying a 25% threshold. We extracted second-level z-values within each of these 
anatomical masks, separately. To account for spatial probability, we computed 
a weighted mean activation for each region by averaging the z-values of voxels 
weighted by their corresponding probabilistic values within the anatomical mask. 
These weighted mean z-values were then entered into an LME model to compare 
average activation across conditions for each brain region (Bates et al., 2015), 
including the main effect of autonomy and reward, the interaction effect between 
factors of autonomy and reward, and a random intercept to account for variability 
across participants.
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ROI activation ~ autonomy × reward+(1 |sub)

gPPI analysis – We then sought to characterize how memory system interacts with 
the rest of the brain depending on our manipulation of intrinsic and extrinsic 
motivations. Hence, a generalized psychophysiological interaction (gPPI) analysis 
was conducted, extending the approach used by Voss et al. (2011b), which focused 
solely on functional connectivity. Given our 2×2 factorial design, introducing 
both autonomy (MOVE vs. FOLLOW) and reward (REWARD vs. NO-REWARD) 
and interaction between these two factors, gPPI was more appropriate, since this 
allowed us to model both psychological conditions of autonomy and reward, and 
their interactions simultaneously with the dependent variable as the functional 
connectivity with the seed region as bilateral hippocampus.

For each subject and run, we constructed a gPPI design matrix beginning with 
five psychological regressors corresponding to the task conditions: MOVE/
REWARD, MOVE/NO-REWARD, FOLLOW/REWARD, FOLLOW/NO-REWARD, and 
FORGOTTEN. To define our seed region, we extracted the bilateral hippocampal 
time series using the same anatomical probabilistic mask from the Harvard-Oxford 
atlas, thresholded at 25%. Voxels exceeding this threshold were included in the mask. 
The time series for each voxel within the mask was multiplied by its corresponding 
probability value, and a weighted average was computed across spatial dimensions, 
yielding a single time series for the bilateral hippocampus. This signal was then 
mean-centred (demeaned) for each run and served as the physiological regressor.

Next, we generated psychological-physiological interaction (PPI) regressors by 
multiplying the mean-centred hippocampal time series with each of the convolved 
psychological regressors, resulting in five PPI regressors. Altogether, the design 
matrix included 11 regressors: five psychological regressors, the physiological 
regressor from hippocampus activity, and five PPI regressors. Nuisance regressors 
identical to those used in the original GLM analysis within targeted brain mask were 
also included.

The gPPI GLM was implemented within the whole brain, excluding the hippocampus 
itself. First-level (within-run), second-level (within-subject), and third-level (group) 
analyses were then performed. Group-level results were thresholded using a voxel-
wise threshold of z > 2.3, p < 0.01, followed by cluster-level correction with FWE at  
p < 0.05. This relatively liberal threshold was chosen because gPPI is generally weak 
in power and more susceptible to false negatives (O'Reilly et al., 2012).
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4.3 Results

4.3.1 Behavioural results
We conducted the same statistical analyses using LME and BRM with the dependent 
variables as weighted hit rate and d’ for recognition memory and the spatial hit rate 
(Table 4.1 & 4.2, Fig. 4.3). Using LME model, we found a significant main effect of 
autonomy across all three dependent variables, indicating that participants encoded 
both the images and their locations better when they could MOVE the searchlight 
by themselves compared to when they FOLLOW the searchlight with the joystick. 
Moreover, there was a significant main effect of reward on both weighted accuracy 
and d’ calculated for recognition memory. This suggested that recognition memory 
performance was enhanced by extra monetary rewards. In contrast, the main effect of 
reward on spatial memory hit rate was only marginally significant. We did not find an 
interaction effect of autonomy and reward on any of the measurements. We obtained 
similar results using Bayesian regression modelling, with the exception that the main 
effect of reward on spatial memory hit rate reached significance as well (Table 4.1).

Table 4.1 Behavioural results on recognition memory, d’ and spatial memory tests

Dependent variables LME/gLME Bayesian statistics

Recognition memory: weighted accuracy β t Chisq p Credible interval

Autonomy -0.29 -8.95 82.49 <0.001 95%CI [-0.457, -0.289]

Reward -0.05 -2.52 7.10 0.008 95%CI [-0.116, -0.003]

Autonomy × Reward 0.002 0.17 0.03 0.86 95%CI [-0.049, 0.051]

Recognition memory: d’ β t Chisq p

Autonomy -0.37 -9.02 81.64 <0.001 95%CI [-0.354, -0.223]

Reward -0.06 -2.05 4.25 0.04 95%CI -[0.093, -0.009]

Autonomy × Reward 0.001 0.05 0.002 0.96 95%CI [-0.025, 0.029]

Spatial memory: hit rate β z Chisq p

Autonomy -0.13 -4.78 23.25 <0.001 95%CI [-0.184, -0.077]

Reward -0.05 -2.04 3.70 0.05 95%CI [-0.101, -0.001]

Autonomy × Reward -0.03 -1.36 1.86 0.17 95%CI [-0.084, 0.015]

Note: There are 2 factors included in this LME model, autonomy (MOVE/FOLLOW) and reward 
(REWARD/NO REWARD). Bold font indicates significant effects
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Table 4.2 Descriptive statistics of weighted memory accuracy, d’, and spatial memory hit rate

Weighted accuracy d' Spatial memory hit rate

Main factors M SD M SD M (%) SD

MOVE 1.02 0.59 0.37 1.18 74.63 9.73

FOLLOW 0.45 0.70 -0.37 1.26 69.50 11.37

REWARD 0.78 0.63 0.06 1.21 73.08 10.98

NO REWARD 0.68 0.62 -0.06 1.20 71.73 9.41

Autonomy × Reward M SD M SD M (%) SD

MOVE/ REWARD 1.07 0.60 0.43 1.21 74.79 10.84

MOVE/NO REWARD 0.97 0.62 0.31 1.19 74.32 9.96

FOLLOW/REWARD 0.50 0.73 -0.43 1.29 70.78 12.96

FOLLOW/NO REWARD 0.40 0.72 -0.31 1.29 68.69 12.61

Figure 4.3 Behavioural results. Results from three measurements of memory (i.e., recognition memory 
weighted accuracy, d’, and spatial memory hit rate) are shown as a function of the two factors of interest: 
autonomy and reward. A. Recognition memory weighted accuracy is plotted as a function of autonomy 
and reward. The dark blue colour represents the reward condition, while the light blue colour represents 
the no reward condition. B. As in A, d’ is plotted as a function of autonomy and reward. The dark blue 
colour represents the reward condition, while the light blue colour represents the no reward condition. 
C. As in A, the spatial memory hit rate is plotted the same for the Dutch group. The dark blue colour 
represents the reward condition, while the light blue colour represents the no reward condition. In all 
panels, the error bars represent the standard error of the mean. Since the two-way interaction between 
the factors of autonomy and reward was not significant, we did not perform post hoc comparisons on the 
difference between autonomy conditions within reward or no reward conditions. 

4.3.2 Neuroimaging results

4.3.2.1 Masked GLM analysis
First, we examined whether autonomy modulates brain activity within the mask from 
previous studies (Dubinsky & Hamid, 2024; Haber & Knutson, 2010). We found that 
among cortical regions, the right middle frontal gyrus, bilateral anterior cingulate 



| 101Autonomy modulates the reward circuitry in the brain during memory encoding

4

cortex, and bilateral parahippocampal gyrus were activated more under the MOVE 
condition compared to the FOLLOW condition. Meanwhile, among the subcortical 
regions associated with reward processing (Haber & Knutson, 2010), we found that 
the right caudate and bilateral putamen were activated more under MOVE compared 
to the FOLLOW condition (Table 4.3, Fig. 4.4A). Additionally, there was greater 
activation under the FOLLOW condition compared to the MOVE condition in the 
right orbitofrontal cortex, bilateral middle frontal gyrus, bilateral superior frontal 
gyrus, and right amygdala. No significant clusters were observed in subcortical 
regions of the reward circuitry when comparing FOLLOW with MOVE conditions 
(Table 4.3, Fig. 4.4A).

Table 4.3 Brain regions showing differential activation in MOVE vs. FOLLOW in GLM analysis within 
targeted brain mask

Cluster Size zMax p x y z Hemisphere Anatomical Region

MOVE - FOLLOW

36 4.41 0.035 30 36 42 Right middle frontal gyrus

1151 7.19 <0.001 8 22 36 Bilateral anterior cingulate

67 4.32 0.003 -24 -42 -12 Left parahippocampal gyrus

78 4.42 0.001 32 -28 -20 Right parahippocampal gyrus

58 4.46 0.006 18 0 20 Right caudate

596 6.06 <0.001 -24 4 8 Left putamen

452 5.74 <0.001 22 12 -2 Right putamen

FOLLOW - MOVE

107 6.14 <0.001 50 30 -8 Right frontal orbital cortex

119 4.35 <0.001 -40 4 54 Left middle frontal gyrus

359 6.21 <0.001 50 6 52 Right middle frontal gyrus

70 5.39 0.002 -12 -2 70 Left superior frontal gyrus

74 3.86 0.002 6 40 44 Right superior frontal gyrus

43 3.89 0.019 14 2 70 Right superior frontal gyrus

74 5.07 0.002 22 -6 -14 Right amygdala

Note: Coordinates correspond to the standard Montreal Neurological Institute (MNI) brain. We used a 
primary voxel threshold of z > 3.1, p < .001 (uncorrected) and a cluster-level correction of p < .05 (FWE).
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Figure 4.4 Brain regions showing differential activation in MOVE vs. FOLLOW in GLM analysis within 
targeted brain mask. A. Brain clusters showing significantly greater (orange) or reduced (blue) activation 
for the contrast MOVE > FOLLOW. We used a primary voxel threshold of z > 3.1, p < .001 (uncorrected) 
and a cluster-level correction of p < .05 (FWE) and displayed in standard MNI space. Colours indicate the 
direction of the effect (orange = MOVE > FOLLOW; blue = FOLLOW > MOVE), with intensity representing 
the z-statistic. The target brain mask is contoured with the pink lines. Neuroimaging data are plotted 
using nilearn toolbox (Abraham et al., 2014) with Python. B. Brain clusters showing significantly greater 
(orange) or reduced (blue) activation for the contrast MOVE > FOLLOW under the REWARD condition only. 
Other conventions are the same as Panel A. C. Brain clusters showing significantly greater (orange) or 
reduced (blue) activation for the contrast MOVE > FOLLOW under the NO-REWARD condition only. Other 
conventions are the same as Panel A. 



| 103Autonomy modulates the reward circuitry in the brain during memory encoding

4

To investigate whether autonomy modulates brain activity differently under the 
presence or the absence of monetary rewards, we conducted separate comparisons 
between MOVE and FOLLOW conditions within both the reward and no-reward 
conditions. When people were told that they would receive extra money for 
remembering the objects in a given grid, greater activation was observed in the 
right middle frontal gyrus, bilateral anterior cingulate, and bilateral putamen when 
comparing the MOVE condition to the FOLLOW condition (Table 4.4, Fig. 4.4B). In 
contrast, the right orbitofrontal cortex, right middle frontal gyrus, and bilateral 
superior frontal gyrus showed greater activation in the FOLLOW condition compared 
to the MOVE condition (Table 4.4, Fig. 4.4B). Meanwhile, under the absence of reward, 
we found higher activation of bilateral anterior cingulate and bilateral putamen when 
comparing the MOVE condition to the FOLLOW condition (Table 4.4, Fig. 4.4C). Also, 
the right frontal orbital cortex, bilateral middle frontal gyrus, bilateral superior 
frontal gyrus, and right amygdala were more activated when comparing the FOLLOW 
condition to the MOVE condition (Table 4.4, Fig. 4.4C).

Interestingly, although the putamen exhibited greater activation in the MOVE 
condition compared to the FOLLOW condition during memory encoding regardless of 
the reward condition, the putamen clusters identified in the MOVE versus FOLLOW 
contrast were noticeably larger under the absence of reward than with the presence 
of reward (Table 4.4, Fig. 4.4B & 4.4C). In contrast, the dorsal anterior cingulate 
cortex (dACC) was also significantly activated under MOVE versus FOLLOW in both 
reward and no-reward conditions, but with a larger cluster observed under the 
reward condition in this contrast compared to under the no-reward condition. These 
differences in cluster size for the putamen and dACC suggest that while autonomy 
engages both reward-related (putamen) and attentional control-related (dACC) 
regions, the relative involvement of these cognitive and neural mechanisms may vary 
depending on the presence or absence of rewards.
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Table 4.4 Brain regions showing differential activation in MOVE vs. FOLLOW separately for reward 
and no-reward contexts in GLM analysis under targeted mask

Cluster Size zMax p x y z Hemisphere Anatomical Region

REWARD

MOVE - FOLLOW

81 4.39 <0.001 30 36 42 Right middle frontal gyrus

1069 7.03 <0.001 6 22 34 Right anterior cingulate

218 4.79 <0.001 -26 4 2 Left putamen

148 4.7 <0.001 22 12 -4 Right putamen

FOLLOW - MOVE

44 4.5 0.015 50 30 -8 Right frontal orbital cortex

267 6.2 <0.001 50 6 52 Right Middle frontal gyrus

81 5.72 <0.001 -10 -4 70 Left superior frontal gyrus

50 4.09 0.009 14 0 72 Right superior frontal gyrus

NO REWARD

MOVE - FOLLOW

665 6.24 <0.001 4 22 36 Right anterior cingulate

536 6.38 <0.001 -26 -14 8 Left putamen

372 5.38 <0.001 22 12 0 Right putamen

FOLLOW - MOVE

109 5.53 <0.001 48 32 -8 Right frontal orbital cortex

109 4.57 <0.001 -40 4 52 Left Middle frontal gyrus

315 5.74 <0.001 48 6 54 Right Middle frontal gyrus

33 4.57 0.040 -14 -2 70 Left superior frontal gyrus

128 4.34 <0.001 6 42 42 Right superior frontal gyrus

61 4.57 0.003 28 -6 -22 Right amygdala/hippocampus

Note: Coordinates correspond to the standard Montreal Neurological Institute (MNI) brain. We used a 
primary voxel threshold of z > 3.1, p < .001 (uncorrected) and a cluster-level correction of p < .05 (FWE).
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4.3.2.2 ROI Results
In addition to the masked GLM analyses, we conducted statistical comparisons on 
brain activity extracted from ROIs, including nucleus accumbens, caudate, putamen, 
SN, VTA, hippocampus, and parahippocampal gyrus (Table 4.5). First, we found that 
the interaction between autonomy and reward was significant only in the activity 
extracted from the nucleus accumbens (Fig. 4.5A), suggesting a unique sensitivity of 
this region to the combined influence of intrinsic and extrinsic motivation. As a next 
step, we compared the activation in the nucleus accumbens between reward and no-
reward conditions separately under MOVE or FOLLOW condition. Pairwise t-tests 
revealed that under the FOLLOW condition, reward slightly increased activation 
in the nucleus accumbens (β= 0.16, t = 1.64, p = 0.36), whereas under the MOVE 
condition, reward appeared to slightly suppress activation of nucleus accumbens  
(β = -0.14, t = 1.44, p = 0.48). Under the reward condition, autonomy (MOVE > 
FOLLOW) was associated with reduced activation in the nucleus accumbens  
(β = -0.25, t = -2.52, p = 0.06), exhibiting a marginally significant effect. In contrast, 
under the no-reward condition, autonomy led to no measurable effect on nucleus 
accumbens activation (β = 0.06, t = 0.56, p = 0.95). Moreover, autonomy was associated 
with increased activation in the caudate, SN, VTA, and putamen (Fig. 4.5B-E).  
However, no significant main effect of reward was observed in any of these reward-
related brain regions. In addition, the interaction effect between autonomy and 
reward was not significant for activation from any other brain regions. Finally, we 
found that autonomy led to greater activation in the parahippocampal gyrus but not 
in the hippocampus (Fig. 4.5F-G).

Table 4.5 Results from ROI analyses using LME model 

Nucleus accumbens β t Chisq p

autonomy 0.03 1.39 1.93 0.17

reward -0.003 -0.15 0.02 0.88

autonomy × reward -0.05 2.14 4.59 0.03

Caudate

autonomy -0.09 -4.42 19.50 <0.001

reward 0.003 0.15 0.02 0.89

autonomy × reward -0.01 -0.77 0.59 0.44

Substantia nigra

autonomy -0.06 -5.54 30.73 <0.001

reward -0.001 0.05 0.002 0.96

autonomy × reward 0.01 1.07 1.14 0.29
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Nucleus accumbens β t Chisq p

Ventral tegmental area

autonomy -0.04 -5.07 25.73 <0.001

reward -0.01 -1.23 1.52 0.22

autonomy × reward 0.003 0.42 0.17 0.68

Putamen

autonomy -0.25 -7.85 61.56 <0.001

reward 0.005 0.15 0.02 0.88

autonomy × reward -0.06 -1.71 2.93 0.09

Hippocampus

autonomy 0.008 0.58 0.33 0.57

reward 0.000 0.004 0.000 0.997

autonomy × reward -0.004 -0.28 0.08 0.78

Parahippocampal gyrus

autonomy -0.02 -3.58 12.79 <0.001

reward -0.006 -1.01 1.02 0.31

autonomy × reward 0.005 0.69 0.47 0.49

Note: There are 2 factors included in this LME model, autonomy (MOVE/FOLLOW) and reward 
(REWARD/NO REWARD). Bold font indicates significant effects

Table 4.5 Continued
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Figure 4.5 Results from ROI anlayses. Results from all the activation from each ROI are shown as a 
function of the two factors of interest: autonomy and reward. A. Activation of the nucleus accumbens is 
plotted as a function of autonomy and reward. The dark blue colour represents the reward condition, while 
the light blue colour represents the no reward condition. We found that the interaction between autonomy 
and reward on the activation of the nucleus accumbens is significant. We compared the activation between 
MOVE and FOLLOW under REWARD and NO-REWARD conditions separately, and we found that 
autonomy decreased the activation of the nucleus accumbens only when there were external rewards  
(β = -0.2528, t = -2.522, p = 0.0609; +, p<0.1). B. As in A, activation of the ventral tegmental area (VTA) is 
plotted as a function of autonomy and reward. C. As in A, activation of substantia nigra is plotted as a 
function of autonomy and reward. D. As in A, activation of the caudate is plotted as a function of autonomy 
and reward. E. As in A, activation of the putamen is plotted as a function of autonomy and reward. F. As in 
A, activation of the hippocampus is plotted as a function of autonomy and reward. G. As in A, activation of 
the parahippocampal gyrus is plotted as a function of autonomy and reward.
Note: In all panels, the error bars represent the standard error of the mean. Also, the dark blue colour 
represents the reward condition, while the light blue colour represents the no reward condition. We 
found autonomy was associated with increased activation in the VTA, substantia nigra, caudate, 
putamen, and parahippocampal gyrus. However, as no significant interaction effects were observed for 
these regions, no further comparisons of their activation were conducted.
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4.3.2.3 gPPI results
Moreover, we examined how motivational factors of autonomy and rewards modulated 
hippocampal connectivity during memory encoding, extending the analysis by Voss 
et al. (2011b) to investigate how reward influences the autonomy-related functional 
connectivity patterns surrounding the hippocampus. As an exploratory analysis, 
we conducted a gPPI analysis to examine how functional connectivity between 
the hippocampus and brain regions across the whole brain was modulated by 
experimental conditions of autonomy and rewards with the current design. We 
found that functional connectivity between the seed region, bilateral hippocampus, 
and the left inferior frontal gyrus, as well as the bilateral supramarginal gyrus, was 
significantly stronger in the MOVE condition compared to the FOLLOW condition 
(Table 4.6, Fig. 4.6A). Conversely, comparing the FOLLOW condition to the MOVE 
condition, we found stronger functional connectivity between the hippocampus and 
the left temporo-occipital fusiform cortex, lateral occipital cortex, cuneal cortex, and 
cerebellum (Table 4.6, Fig. 4.6A). In addition, reward manipulation did not yield any 
significant changes in functional connectivity.

Table 4.6 Results from gPPI analysis using the hippocampus as seed region for MOVE vs. 
FOLLOW conditions

Cluster 
Size

zMax p x y z Hemisphere Anatomical Region

MOVE - FOLLOW

454 4.22 <0.001 -52 10 14 Left inferior frontal gyrus

301 4.23 <0.001 -60 -30 34 Left supramarginal gyrus

254 3.91 0.001 62 -44 36 Right supramarginal gyrus

FOLLOW - MOVE

422 4.74 <0.001 -34 -52 -20 Left temporal occipital fusiform cortex

333 3.66 <0.001 -32 -88 6 Left lateral occipital cortex

229 4.33 0.003 -26 -80 24 Left cuneal cortex

239 4.11 0.002 10 -68 -20 Right cerebellum, VI

Note: Coordinates correspond to the standard Montreal Neurological Institute (MNI) brain. We used a 
primary voxel threshold of z > 2.3, p < .01 (uncorrected) and a cluster-level correction of p < .05 (FWE).
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Figure 4.6 Brain Regions Showing Differential Functional Connectivity with the Hippocampus in MOVE 
vs. FOLLOW (gPPI Analysis). A. Brain clusters showing significantly increased (orange) or decreased 
(blue) functional connectivity with the hippocampus seed for the contrast MOVE > FOLLOW across all 
conditions. A primary voxel-wise threshold of z > 2.3, p < .01 (uncorrected) was applied, with cluster-level 
correction at p < .05 (FWE). Maps are displayed in standard MNI space. Colour hue reflects the direction 
of the effect (orange = greater connectivity during MOVE; blue = greater connectivity during FOLLOW), 
with intensity reflecting the z-statistic. The analysis was restricted to a targeted brain mask, outlined in 
pink. Plots were generated using the Nilearn toolbox (Abraham et al., 2014) in Python. B. Brain clusters 
showing condition-specific connectivity differences for the contrast MOVE > FOLLOW under the 
REWARD condition. Thresholding and conventions follow Panel A. C. Brain clusters showing condition-
specific connectivity differences for the contrast MOVE > FOLLOW under the NO-REWARD condition. 
Thresholding and conventions follow Panel A.
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Next, we assessed functional connectivity differences between the MOVE and 
FOLLOW conditions in the gPPI analysis separately for reward and no-reward grids. 
With the presence of monetary rewards, we found increased functional connectivity 
between the hippocampus and the inferior frontal gyrus and decreased functional 
connectivity between the hippocampus and the left temporal/occipital fusiform 
cortex, bilateral lateral occipital cortex, as well as the left cerebellum comparing the 
MOVE condition to FOLLOW condition (Table 4.7, Fig. 4.6B). In contrast, we found 
that the left superior frontal gyrus and inferior frontal gyrus exhibited stronger 
functional connectivity with the hippocampus, comparing MOVE to FOLLOW under 
no reward condition (Table 4.7, Fig. 4.6C). With the absence of reward, no brain 
regions demonstrated stronger functional connectivity with the hippocampus, 
comparing the FOLLOW to the MOVE condition (Table 4.7, Fig. 4.6C).

Table 4.7 gPPI analysis results using the hippocampus as the seed region:  
reward vs. no-reward conditions

Cluster 
Size

zMax p x y z Hemisphere Anatomical Region

REWARD

MOVE - FOLLOW

225 3.69 0.003 -56 14 8 Left inferior frontal gyrus

FOLLOW - MOVE

599 4.09 <0.001 -32 -50 -14 Left temporal occipital fusiform cortex

628 4.26 <0.001 -38 -88 18 Left lateral occipital cortex

169 3.88 0.023 32 -82 36 Right lateral occipital cortex

157 4.05 0.036 -2 -80 -22 Left Cerebellum Vermis VI

NO REWARD

MOVE - FOLLOW

180 3.82 0.015 -12 0 70 Left superior frontal gyrus

161 3.59 0.031 -54 20 8 Left inferior frontal gyrus

FOLLOW - MOVE

-

Note: Coordinates correspond to the standard Montreal Neurological Institute (MNI) brain. We used a 
primary voxel threshold of z > 2.3, p < .01 (uncorrected) and a cluster-level correction of p < .05 (FWE).
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4.4 Discussion

Our study sheds light on the cognitive and neural mechanisms of how autonomy and 
reward simultaneously influence memory encoding. Behaviourally, both autonomy 
and reward independently enhanced memory encoding. However, the results from 
brain activity provided a more nuanced and integrated picture. First, we noticed the 
presence of autonomy led to stronger activation of ACC, subcortical reward circuitry, 
and parahippocampal gyrus. However, no subcortical reward circuitry was observed 
when comparing the no-autonomy to autonomy condition. Surprisingly, we did not 
find any significant discrepancies in brain activation comparing reward to no-reward 
conditions within reward-related ROIs. Second, although reward did not influence 
the beneficial effect of autonomy on memory accuracy, we observed a subtle shift 
in the neural signature of autonomy under different reward contexts. Specifically, 
in the masked GLM analysis, the presence of autonomy elicited a larger ACC cluster 
but a smaller putamen cluster activation under monetary reward compared to the 
no-reward condition. Third, exploratory functional connectivity analysis revealed 
involvement of frontal attentional control mechanisms alongside hippocampal 
activation during autonomous memory encoding and perceptual information 
integration between the visual cortex and the hippocampus during non-autonomous 
memory encoding.

4.4.1 Autonomy enhanced activation of reward-related brain regions 
during memory encoding
Firstly, the comparison between autonomy and no-autonomy conditions revealed 
significantly stronger BOLD activation in the caudate, putamen, ACC, and 
parahippocampal gyrus. Unsurprisingly, this pattern aligns with existing evidence 
that autonomous memory encoding, as a form of active learning, recruits the core 
components of the dopaminergic reward circuitry (Stuber, 2023), regions involved in 
modulation of the dopaminergic circuitry, namely the cortico-basal ganglia circuit, 
together with the memory system like the parahippocampal gyrus (Duan et al., 2020; 
Dubinsky & Hamid, 2024; Leotti & Delgado, 2011; Murty et al., 2015; Ripolles et al., 
2016; Voss et al., 2011b). To start with, enhanced activation in the parahippocampal 
gyrus comparing autonomy to no-autonomy condition, together with reward 
circuitry, highlights the interplay between motivational and mnemonic processes 
during autonomous exploration. Notably, Kang et al. (2009) also found that the 
parahippocampal gyrus was related to memory encoding, and its activity was evoked 
during states of curiosity.
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Moreover, Dubinsky and Hamid (2024) proposed a functional organization of cortical 
regions modulating reward circuitry, categorizing these brain regions into medial 
regions, intermediate regions, and lateral regions. Intermediate regions, like ACC, 
are related to cognitive functions like conflict monitoring, attentional control, and 
information valuation. This statement is consistent with recent work suggesting that 
active learning or making choices facilitates prediction processing toward upcoming 
information or solving uncertainty in learning contexts (Monosov & Rushworth, 2022). 
Additionally, lateral regions, like the superior frontal gyrus and the inferior frontal 
gyrus, are more commonly associated with sensorimotor control (Dubinsky & Hamid, 
2024). However, we did not find significant activation in vmPFC comparing autonomy 
to no-autonomy condition. It was also indicated that vmPFC is primarily about 
emotional processing rather than in general memory encoding (Dubinsky & Hamid, 
2024). Alternatively, vmPFC may be more prominent in paradigms where participants 
were required to remember the association between reward and stimuli, involving 
online processing of reward prediction error, rather than in tasks solely encoding 
images (Grabenhorst & Rolls, 2011; Wimmer et al., 2018).

When comparing no-autonomy to autonomy, we only found activation predominantly 
in the frontal lobe, including inferior and superior frontal gyri, with no engagement 
of subcortical dopaminergic reward circuitry. This pattern may be explained by the 
task demands in the FOLLOW (no-autonomy) condition, where participants were 
required to follow pre-determined movements, resulting in error monitoring and 
motor control. The presence of heightened activation in superior and inferior frontal 
gyri, located in the dlPFC, may reflect increased cognitive monitoring or control rather 
than heightened motivational drive under the no-autonomy condition compared to the 
autonomy condition (Duncan & Owen, 2000; Fu et al., 2023; Schall et al., 2002). Taken 
together, these findings contribute to evidence indicating that autonomy in memory 
encoding elicited intrinsic motivation during learning, which recruited reward-related 
processes and attentional control networks, supporting a dual role in promoting 
memory encoding.

Surprisingly, we did not observe any significant activation change in reward circuitry 
comparing the reward to the no-reward condition. One possible explanation is the 
temporal delay of reward in our task, which was only delivered after the memory 
tests. This is known to be a factor diminishing reward-related neural responses (Haber 
& Knutson, 2010; Kobayashi & Schultz, 2008). However, our ROI analyses revealed a 
significant interaction between factors of autonomy and reward in solely the activation 
of nucleus accumbens. Specifically, the reward effect in activation of the nucleus 
accumbens was more pronounced in the no-autonomy condition than in the autonomy 
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condition. This pattern could provide evidence suggesting that external rewards may 
have a greater impact when there is no intrinsic motivation (van Lieshout et al., 2023).

4.4.2 Exploratory analysis showed the brain mechanisms of autonomy 
might be modulated by reward
Furthermore, there was no strong evidence that reward modulated the effect of autonomy 
in terms of brain activity. We examined brain responses to autonomy compared to  
no-autonomy conditions separately under reward and no-reward contexts. While both 
putamen and dACC were activated stronger by autonomy under both reward and no-
reward conditions, we observed a notable difference in the cluster size showing different 
activations related to autonomy under reward and no-reward conditions. Specifically, 
autonomy elicited a larger bilateral putamen cluster under no-reward condition, 
suggesting that autonomy may be experienced as more inherently rewarding in the 
absence of external rewards. Conversely, dACC exhibited activation related to autonomy 
with a greater cluster size under reward conditions. Together, these resultthees support 
the view that the relationship between reward and autonomy should be conceptualized 
beyond the dichotomy of whether reward and autonomy, as motivations, are either 
additive or undermining behaviourally (Bardach & Murayama, 2025). Instead, it may be 
more appropriate to posit that distinct neural mechanisms underpin different types of 
motivational drives. These patterns could demonstrate a potential neural mechanism 
shift. Under no-reward conditions, autonomy may primarily engage reward circuitry 
(Leotti & Delgado, 2011), while under reward conditions, it may rely more heavily on 
cognitive control networks such as the dACC (Kennedy et al., 2024). However, since these 
observations of the cluster size in putamen and dACC showing activation differences 
were not supported by direct statistical comparisons, they should be interpreted with 
caution. Future work should investigate this further through conjunction or disjunction 
analyses or by directly comparing cluster sizes across conditions at the participant level 
to confirm whether these apparent neural shifts are robust.

A minor but noteworthy finding emerged from the ROI analyses, in which we found 
that autonomy could lead to deactivation of the nucleus accumbens, a key region in 
the reward circuitry, when monetary rewards were present. In contrast, this effect was 
not observed in the absence of monetary rewards. Such a pattern may partially align 
with the overjustification effect proposed by Lepper et al. (1973), demonstrating that 
intrinsic motivation, such as autonomy, could be diminished when extrinsic motivation 
was salient (Deci & Koestner, 1999). However, as this effect was limited to the nucleus 
accumbens and did not appear in other reward-related regions, this result alone should 
not be taken as conclusive evidence for undermining effect of extrinsic motivation on the 
intrinsic motivation during learning and memory encoding.
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4.4.3 Exploratory functional connectivity analysis: attentional control in 
autonomy vs. perceptual processing in no-autonomy
To mirror the functional connectivity analysis that Voss et al. (2011b) conducted, we 
implemented an exploratory gPPI analysis with the hippocampus as the seed region. 
When comparing functional connectivity with the hippocampus under autonomy 
to no-autonomy conditions, we found increased hippocampal connectivity with 
frontal regions, including middle and inferior frontal gyri (Badre & Wagner, 2007; 
Eichenbaum, 2017; Tomita et al., 1999; Voss et al., 2011b; Zheng et al., 2021) and the 
supramarginal gyrus (Cristoforetti et al., 2022; Das & Menon, 2024; Guidali et al., 
2019; Yue & Martin, 2021). These findings align with previous studies indicating that 
attention-related frontal-parietal networks enhance cognitive resource allocation 
during memory formation with active exploration (Voss et al., 2011b). In contrast, the 
reverse contrast comparing no-autonomy to autonomy revealed increased hippocampal 
connectivity with the occipital cortex, indicating a greater exchange of low-level 
perceptual information between visual and mnemonic brain regions (Bosch et al., 2014; 
Ranganath et al., 2005). This suggests that the presence of monetary incentives may 
have driven participants to process the visual stimuli, even when they lacked volitional 
control during learning. This could also be supported by the enhanced visual cortex 
activation found in whole-brain analysis (Supplementary material, Table S4.1&4.2). 
Notably, this enhanced low-level perceptual information exchange between the visual 
cortex and hippocampus brought by autonomy only existed with the existence of 
reward. However, when autonomy and reward were both deprived, participants likely 
had minimal engagement with the memory task, resulting in shallow perceptual 
processing and reduced hippocampal connectivity with the visual cortex.

4.4.4 Limitation
Whole-brain analyses were conducted and reported in the supplementary materials. 
As expected, differences in brain activation were observed in motor control regions, 
including the parietal lobe and cerebellum. This pattern is likely a result of the task 
design. In the autonomy conditions, participants naturally engaged in more motor 
activity to explore, while in the no-autonomy condition, they may have exerted less 
effort in following the movement of the searchlight window with the joystick. Further 
analyses should incorporate kinematic move regressors to determine whether activity 
in these motor control regions can be effectively regressed out, allowing for better 
control of potential motor-related confounds.

Second, the current chapter indicates an observation of a shift in cluster size within 
the putamen and ACC when comparing autonomy across reward and no-reward 
contexts. While suggestive, these observations were not supported by formal 
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statistical comparisons. Future studies should test these effects more rigorously, for 
instance, by directly comparing cluster sizes across conditions at the participant level. 
Additionally, we used a relatively liberal threshold for the gPPI analysis. This decision 
was supported by previous studies suggesting that gPPI could be a relatively insensitive 
method, potentially leading to false negative results (O'Reilly et al., 2012). Although 
our approach closely followed the analysis conducted by Voss et al. (2011b), hence was 
hypothesis-driven. Nevertheless, future studies would benefit from incorporating 
more advanced connectivity analysis, which may allow for the capture of large-scale 
dynamic brain connectivity.

4.5 Conclusion

In conclusion, the current chapter demonstrated that autonomy during learning, as 
a form of intrinsic motivation, not only engaged dopaminergic reward circuitry but 
also activated brain regions associated with attentional control. Interestingly, the 
current study observed no modulation of reward on the beneficial effect of autonomy 
in memory accuracy, but there was a subtle neural shift: under no-reward conditions, 
autonomy engaged a larger size of subcortical reward regions, while under reward, 
dACC activation was more widely spread. Rather than supporting a strict dichotomy 
in which rewards either diminish or not with intrinsic motivation, this might point 
to a flow of motivation between intrinsic and extrinsic sources beyond a simple 
dichotomy. Last, the functional connectivity analysis indicated greater attentional 
control modulation between the hippocampus and the frontal lobe in the autonomy 
condition, while under no-autonomy condition, the brain exhibited more perceptual 
information exchange between the hippocampus and the visual cortex. Our findings 
hope to point out a future direction in conceptualizing extrinsic and intrinsic 
motivation as components of a dynamical system rather than opposing drives. In 
educational settings, both forms of motivation could be supported concurrently, 
with an emphasis on fostering intrinsic motivation, like autonomy, to promote more 
meaningful and sustainable learning.
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4.7 Supplement– Whole brain GLM analyses

4.7.1 Methods
In Chapter 4, Section 4.2.7.2, we described a GLM analysis conducted within a 
targeted brain mask. To complement this, we also performed the same analysis 
across the whole brain to examine whether autonomy elicited brain regions outside 
of the predefined regions of interest to be activated. This supplementary whole-brain 
analysis allowed us to explore additional activation patterns beyond the targeted 
mask. Full methodological details are provided in Section 4.2.7.2.

4.7.2 Results
Specifically, we found extensive brain regions outside of the regions of interest from 
the main text to be activated by autonomy. All brain regions engaged by autonomy 
are listed in Tables S4.1 & S4.2. Importantly, we did not find any brain region to be 
activated by rewards throughout the whole brain.

Table S4.1 Brain regions showing differential activation in MOVE vs. FOLLOW in GLM analysis within 
whole brain

Cluster 
Size

p zMax x y z Hemisphere Anatomical Region

MOVE - FOLLOW

6261 <0.001 8,06 -2 -64 -10 left/right cerebellum

2576 <0.001 7,19 8 22 36 right paracingulate/anterior cingulate gyrus

1343 <0.001 6,14 -38 -12 54 left precentral gyrus

1060 <0.001 6,06 -24 4 -8 left putamen

943 <0.001 5,74 22 12 -2 right putamen

727 <0.001 5,36 -44 -64 -4 left lateral occipital cortex

550 <0.001 5,46 -20 -82 46 left lateral occipital cortex

379 <0.001 5,08 28 -68 34 right lateral occipital cortex

264 <0.001 5,12 34 -50 62 right superior parietal lobule

236 <0.001 5,09 -18 -44 -48 left cerebellum

219 <0.001 5,18 24 -10 66 right precentral gyrus
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Cluster 
Size

p zMax x y z Hemisphere Anatomical Region

188 <0.001 6,85 40 -12 52 right precentral gyrus

149 <0.001 4,36 -48 -82 22 left lateral occipital cortex

148 <0.001 4,22 -18 -60 22 left precuneus cortex

118 <0.001 4,43 28 -98 -6 left occipital pole

100 0.003 4,07 24 -58 18 right precuneus cortex

84 0.007 4,59 -24 -54 56 left superior parietal lobule

80 0.01 4,1 -4 -24 -4 left thalamus

62 0.04 4,41 30 36 42 right frontal pole/middle frontal gyrus

61 0.04 3,89 -28 54 12 left frontal pole

61 0.04 5 4 -38 -42 right brain stem

FOLLOW - MOVE

5443 <0.001 7,62 60 -56 10 right middle temporal gyrus

3882 <0.001 6,47 -52 -60 10 left middle temporal gyrus

2013 <0.001 6,4 56 14 18 right inferior frontal gyrus

684 <0.001 5,91 -16 -74 -38 left cerebellum

655 <0.001 4,74 14 -38 78 right postcentral gyrus

207 <0.001 4,34 54 4 -16 right superior temporal gyrus

202 <0.001 4,14 -58 12 12 left inferior frontal gyrus

170 <0.001 4,35 -40 4 54 left middle frontal gyrus

98 0.003 3,86 6 40 44 right anterior cingulate

80 0.01 5,39 -12 -2 70 left superior frontal gyrus

80 0.01 5,07 22 -6 -14 right amygdala

77 0.01 4,67 40 0 -16 right insular cortex

Note: Coordinates correspond to the standard Montreal Neurological Institute (MNI) brain. We used a 
primary voxel threshold of z > 3.1, p < .001 (uncorrected) and a cluster-level correction of p < .05 (FWE).

Table S4.1 Continued
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Table S4.2 Brain regions showing differential activation in MOVE vs. FOLLOW separately for reward 
and no-reward contexts in GLM analysis within whole brain

Cluster 
Size

p zMax x y z Hemisphere Anatomical Region

REWARD

MOVE - FOLLOW

4544 <0.001 7,25 2 -76 -34 right cerebellum

1851 <0.001 7,03 6 22 34 right paracingulate/anterior cingulate gyrus

324 <0.001 4,41 -32 -36 66 left postcentral gyrus

324 <0.001 5,98 -36 -14 50 left precentral gyrus

318 <0.001 4,33 -42 -64 -6 left LOC/ITG

313 <0.001 4,91 -24 -80 44 left lateral occipital cortex

304 <0.001 6 -8 -22 46 left precentral/posterior cingulate gyrus

270 <0.001 4,79 -26 4 2 left putamen

180 <0.001 4,7 22 12 -4 right putamen

169 <0.001 4,99 -16 -44 -48 left cerebellum

138 <0.001 4,22 30 -70 34 right lateral occipital cortex

133 <0.001 6,38 44 -10 56 right precentral gyrus

124 <0.001 4,39 30 36 42 right frontal pole/middle frontal gyrus

119 <0.001 4,69 32 -48 62 right superior parietal lobule

98 0.002 4,38 24 -10 66 right precentral gyrus/superior frontal gyrus

FOLLOW - MOVE

4858 <0.001 7,13 56 -42 10 right supramarginal gyrus

3033 <0.001 6,37 -52 -40 30 left supramarginal gyrus

559 <0.001 5,54 58 22 18 right inferior frontal gyrus

498 <0.001 6,2 50 6 52 right middle frontal gyrus

462 <0.001 5,52 -16 -76 -40 left cerebellum

339 <0.001 5,22 52 36 -12 right frontal pole

283 <0.001 4,16 -52 2 20 left precentral gyrus

100 0.002 5,72 -10 -4 70 left superior frontal gyrus

81 0.007 4,23 2 -54 60 right precuneus cortex

77 0.01 4,05 12 -38 78 right postcentral gyrus

71 0.02 4,02 54 4 -14 right superior temporal gyrus

61 0.03 4,06 -10 -50 56 left precuneus cortex

61 0.03 4,38 40 -10 -12 right planum polar

56 0.05 3,97 2 -36 66 right postcentral gyrus
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Cluster 
Size

p zMax x y z Hemisphere Anatomical Region

NO REWARD

MOVE - FOLLOW

4524 <0.001 0 7,63 -66 -10 left/right cerebellum

1521 <0.001 4 6,24 22 36 right paracingulate/anterior cingulate gyrus

1015 <0.001 -38 6,17 -10 54 left precentral gyrus

834 <0.001 -26 6,38 -14 8 left putamen

709 <0.001 22 5,38 12 0 right putamen

419 <0.001 34 4,75 -50 62 right superior parietal lobule

374 <0.001 -20 4,78 -82 44 left lateral occipital cortex

313 <0.001 -48 5,01 -60 -10 left LOC/ITG

170 <0.001 40 6,63 -12 52 right precentral gyrus

160 <0.001 26 4,56 -8 66 right precentral gyrus/superior frontal gyrus

152 <0.001 -28 4,74 -38 66 left postcentral gyrus

114 <0.001 -26 4,46 -56 56 left superior parietal lobule

93 0.003 -26 4,39 -98 -14 left occipital pole

92 0.003 28 4,53 -96 -6 right occipital pole

85 0.005 30 4,8 -34 60 right postcentral gyrus

FOLLOW - MOVE

4157 <0.001 50 7,19 -42 22 right supramarginal gyrus

2858 <0.001 -52 6,66 -60 10 left middle temporal gyrus

771 <0.001 48 5,53 32 -8 right frontal orbital cortex

528 <0.001 48 5,74 6 54 right middle frontal gyrus

436 <0.001 -14 5,48 -80 -32 left cerebellum

175 <0.001 6 4,34 42 42 right superior frontal gyrus

145 <0.001 -40 4,57 4 52 left middle frontal gyrus

114 <0.001 16 4,14 -42 72 right postcentral gyrus

112 <0.001 -4 3,97 -42 58 left postcentral gyrus/precuneus cortex

85 0.005 54 4,23 2 -16 right superior temporal gyrus

61 0.03 28 4,57 -6 -22 right right amygdala/right hippocampus

Note: Coordinates correspond to the standard Montreal Neurological Institute (MNI) brain. We used a 
primary voxel threshold of z > 3.1, p < .001 (uncorrected) and a cluster-level correction of p < .05 (FWE).
LOC: lateral occipital cortex
ITG: inferior temporal gyrus

Table S4.2 Continued
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A cross-cultural comparison of  
intrinsic and extrinsic motivational 
drives for learning
This chapter is adapted from:

Zhang, Z., van Lieshout, L. L., Colizoli, O., Li, H., Yang, T., Liu, C., Qin, S., & 
Bekkering, H. (2025). A cross-cultural comparison of intrinsic and extrinsic 
motivational drives for learning. Cognitive, Affective, & Behavioral Neuroscience, 
25(1), 25-44.
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Abstract

Intrinsic motivational drives, like the autonomous feeling of control, and extrinsic 
motivational drives, like monetary reward, can benefit learning. Extensive research 
has focused on neurobiological and psychological factors that affect these drives, but 
our understanding of the sociocultural factors is limited. Here, we compared the 
effects of autonomy and rewards on episodic recognition memory between students 
from Dutch and Chinese universities. In an exploratory learning task, participants 
viewed partially obscured objects that they needed to subsequently remember. We 
independently manipulated autonomy, as volitional control over an exploration 
trajectory, as well as the chance to receive monetary rewards. The learning task 
was followed by memory tests for objects and locations. For both cultural groups, 
we found that participants learned better in autonomous than non-autonomous 
conditions. However, the beneficial effect of reward on memory performance was 
stronger for Chinese than for Dutch participants. By incorporating the sociocultural 
brain perspective, we will discuss how differences in norms and values between 
Eastern and Western cultures can be integrated with the neurocognitive framework 
about dorsal lateral and ventral medial prefrontal cortex and dopaminergic reward 
modulations on learning and memory. These findings have important implications 
for understanding the neurocognitive mechanisms in which both autonomy and 
extrinsic rewards are commonly used to motivate students in the realm of education 
and urge more attention to investigate cultural differences in learning.
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5.1 Introduction

Learning is a crucial aspect of life: it is the ability to acquire knowledge and skills that 
are essential for personal and professional development. Motivation is the driving 
force that initiates and sustains learning efforts (Murayama & Jach, 2024; Ryan & 
Deci, 2017). Considerable research has only concentrated on exploring the biological 
and psychological aspects influencing motivation for learning (e.g., Di Domenico & 
Ryan, 2017) but not on the equally crucial sociocultural factors, even though cultural 
backgrounds shape both behaviour and brain development (neuroplasticity) by 
changing values, beliefs, expectations, and cognitive processes (Han et al., 2013; 
Kitayama & Salvador, 2024; Park & Huang, 2010; Qu et al., 2021). In the current study, 
we aim to fill this research gap by investigating how diverse cultural backgrounds, 
taking Chinese and Dutch cultures as examples, interact with the beneficial effects of 
intrinsic and extrinsic motivation on learning.

One of the key theories about motivation, Self-Determination Theory (SDT), 
proposed to see motivation as a continuum ranging from extrinsic motivation to 
intrinsic motivation (Ryan & Deci, 2000; Ryan & Deci, 2020). Extrinsic motivation 
comes from external sources (e.g., monetary reward) and can improve learning 
performance (Adcock et al., 2006; Duan et al., 2020; Elliott et al., 2020; Mason et al.,  
2017; Murayama & Kuhbandner, 2011). Intrinsic motivation, in contrast, refers to 
the internal desire and enjoyment derived from engaging in an activity (Ryan & 
Deci, 2000a) and can also enhance learning performance (Duan et al., 2020; Gruber  
et al., 2014; Gruber & Ranganath, 2019; Jepma et al., 2012; Kang et al., 2009; Ripolles 
et al., 2016). Intrinsic motivation can be fostered by satisfying our basic psychological 
needs (i.e., the need for autonomy, competence, and relatedness; Deci & Ryan, 1985). 
Among these needs, autonomy, referred to as self-controllable to choose, stands out 
as a particularly critical element, since autonomy not only supports but also initiates 
behaviours (Leotti et al., 2010). Fulfilling the need of autonomy helps with learning 
and memory (Bramley et al., 2016; DuBrow et al., 2019; Izuma et al., 2010; Kaplan 
et al., 2012; Markant et al., 2014a; Markant et al., 2014b; Murty et al., 2015; Rotem-
Turchinski et al., 2019; Voss & Cohen, 2017; Voss, et al., 2011a; Voss, et al., 2011b; 
Voss, et al., 2011c). In learning experiments, autonomy can be fostered by giving 
participants the choice of which button to press (Ding et al., 2021; DuBrow et al., 
2019; Murty et al., 2015) or by allowing them to freely control their learning trajectory 
(Kaplan et al., 2012; Markant et al., 2014a; Markant et al., 2014b; Voss et al., 2011b).

Although Self-Determination Theory (SDT) posits that motivation can be categorized 
into intrinsic and extrinsic types, human functional neuroimaging research has 
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revealed that the underlying mechanisms of both intrinsic and extrinsic motivation 
exhibit both dissociation and overlap. Reward-motivated learning could elicit 
functional activation and connectivity among a network of distributed regions, 
including the orbital (OFC) and ventral medial prefrontal cortex (VMPFC) and 
dopaminergic circuitry, including the ventral tegmental area (VTA), midbrain, and 
ventral striatum (Adcock et al., 2006; Sescousse et al., 2013; Shigemune et al., 2014; 
Wolosin et al., 2012). Autonomy-motivated learning, in contrast, not only elicits 
activation and connectivity of the abovementioned brain regions but also engages 
higher-order prefrontal network including the dorsal lateral prefrontal cortex (DLPFC; 
Murty et al., 2015; Voss, et al., 2011b). These findings suggest a complex interplay where 
motivational types are not entirely distinct but share common neural substrates. While 
there is considerable evidence investigating the mechanism of extrinsic and intrinsic 
motivation in learning, discourse on how cultural factors shape these motivational 
factors remains inconclusive, as these studies yielded diverse results.

There has been abundant evidence suggesting that cultural backgrounds can alter 
how people perceive extrinsic motivators, for example, monetary rewards. This 
was mostly discussed under the premise of working environments. For instance, 
Chinese employees would become more devoted to their tasks when their monetary 
income increased, while for American employees, their devotion to their jobs was 
not relevant to their income (Huang, 2013). Similarly, Tang et al. (2003) also found 
that Chinese employees had higher respect for money compared to American and 
British employees. Furthermore, it has been observed that individuals who identify 
themselves more closely with collectivistic cultures tend to be extrinsically motivated 
to achieve their career goals (Arshad et al., 2019). This finding was also validated by 
ample educational studies investigating differences in motivation for learning between 
Eastern and Western cultures. In Eastern educational contexts, factors that come from 
external environments are more emphasized than in Western educational contexts, 
like materialistic rewards, academic achievement, expectancy of success, and group 
benefits (Blevins et al., 2023; Chen et al., 2005; Iyengar & DeVoe, 2003; Telzer et al., 
2017). This could result in students from the East exhibiting anxiety about their learning 
performance and achievement motivation (Essau et al., 2008). In contrast, the anxiety 
of students from Germany was found not correlated with learning performance. 
Years of emphasis on these different forms of external drives might lead to a stronger 
adoption of extrinsic motivation for students from Eastern culture. For instance, it was 
found that extrinsic motivation contributed to the achievement level in mathematics 
of Eastern students whereas it even had a detrimental effect on the achievement level 
of mathematics of Western students (Zhu & Leung, 2011). A neuroimaging study 
demonstrated that the activation and connectivity between the inferior frontal gyrus 
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and the ventral striatum (part of the dopaminergic circuitry) exhibit greater stability 
and persistence among Asian students compared to American students. This was 
observed in response to a boring go/no-go task where Asian and American participants 
were asked to improve their performance. In the American group, this neural coupling 
and activation tended to decrease over time (Telzer et al., 2017). This was also in line 
with the neuroplastic theory of culture-brain interaction. Specifically, the cultural 
environment might have impact on top-down modulation of subcortical regions (e.g., 
dopaminergic circuitry) during emotional or motivational processes (Chiao, 2015).

However, recent studies have addressed that in some situations, Western participants 
might be more sensitive to rewards than Eastern participants (Liu et al., 2020a; 
Medvedev et al., 2024). For example, Medvedev et al. (2024) found that the drive for 
monetary rewards on task performance was stronger for participants from Western 
countries than those from Eastern countries. Furthermore, it was also found by one 
neuroimaging study that reward circuitry activation did not differ between cultural 
groups when participants received monetary rewards (Blevins et al., 2023). Therefore, 
the consensus on how extrinsic motivation influences behaviours across cultures is not 
uniform, prompting further exploration into this complex topic.

Similarly, evidence regarding cross-cultural differences in intrinsic motivation for 
learning presents a varied perspective. Some studies have suggested that personal 
choices are more valuable for students from Western cultures than for students from 
Eastern cultures (Iyengar & Lepper, 1999; Markus & Kitayama, 2003; Sastry & Ross, 
1998). This could be explained by potential differences in the origins of intrinsic 
motivation to learn between Eastern and Western cultures (Liu et al., 2020a). They 
elaborated that for European students, intrinsic motivation usually comes from their 
own interest in learning (i.e., autonomy). However, for Eastern students who were 
deeply influenced by Confucian philosophy, their intrinsic learning motivation comes 
from the internalization of the importance of learning. In other words, they derived a 
strong personal belief that learning is important for their future development, social 
status, and career success, despite their lack of interest in the learning content. These 
differences in values also might shift learning styles and preferences. For example, 
Chinese students embrace teacher-led instruction, aligning with cultural norms of 
respect for guidance, whereas American students often view the same approach as 
constraining and prefer a more self-dependent learning style (Zhou et al., 2012).

Alternatively, there is sufficient evidence suggesting that the beneficial effect of 
autonomy for learning is universal across Eastern and Western cultures (Chirkov et 
al., 2003; Chirkov, 2009; Chirkov et al., 2010; Helwig, 2006; Nalipay et al., 2020; Ryan 
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& Deci, 2006; Vansteenkiste et al., 2006; Vansteenkiste et al., 2020; Vansteenkiste et 
al., 2005; Wichmann, 2011; Yu et al., 2016). Although it is more intuitive to think that 
autonomy is a Western philosophical concept, Eastern Confucian culture has also been 
emphasizing the importance of personal choices (i.e., autonomy) during learning, 
conceptualized as “self-cultivation” (Ryan & Deci, 2017). This was also in line with the 
Basic Psychological Needs Theory in SDT suggesting that autonomy is an instinctive 
psychological need, and it is not influenced by social contexts (Ryan & Deci, 2017; 
Vansteenkiste et al., 2020). In summary, further research is required to understand if 
there is a cultural difference in intrinsic motivation for learning between Eastern and 
Western cultures.

Interestingly, the interaction between extrinsic and intrinsic motivation on learning 
has been controversial. On one hand, several studies suggested that extrinsic 
motivation can undermine intrinsic motivation for learning (Deci & Koestner, 1999; 
Hidi, 2015; Murayama et al., 2010; van Lieshout et al., 2023), and vice versa. For 
instance, Murayama & Kuhbandner (2011) found that the effect of extrinsic motivation 
on learning would also be undermined when students are learning interesting content. 
This negative interaction between intrinsic and extrinsic motivation during learning 
was proposed by the over-justification hypothesis (Lepper et al., 1973). This hypothesis 
states that when people are rewarded externally for their behaviour, they lose interest 
and joy in their task (Deci & Koestner, 1999). This interaction between intrinsic and 
extrinsic motivation also corroborates the discovery of overlapping neural mechanisms 
engaged in both types of motivation (Voss, et al., 2011b; Wolosin et al., 2012). In other 
words, intrinsic and extrinsic motivation would influence each other because they 
engage a similar brain mechanism. When the reward circuitry is already activated 
by external stimuli, the additional enhancing effect of intrinsic motivation on brain 
activation becomes redundant. On the other hand, there is also abundant evidence 
supporting the notion that intrinsic and extrinsic motivation improve learning 
independently. That is, people feel intrinsically engaged in learning tasks regardless 
of external stimulants (Duan et al., 2020). The differing results in these studies may 
stem from an overgeneralization of the circumstances (Eisenberg, 2002). For instance, 
Cerasoli et al. (2014) found that rewards salient to task performances (e.g., end-of-
year bonuses) could undermine intrinsic motivation, while rewards not related to task 
performances (e.g., basic salary) do not undermine intrinsic motivation. It was also 
proposed that the Eastern population might be more intrinsically motivated to work 
with external regulation from other people, whereas the Western population might be 
less intrinsically motivated to work with outside control (Eisenberg, 2002). However, 
there is still a research gap regarding how cultural backgrounds shape the interaction 
between extrinsic and intrinsic motivation within learning environments.
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In the current study, we aimed to address a gap in the literature concerning how 
culture may interact with our motivation to learn. To do so, we investigated how 
intrinsic and extrinsic motivation improve learning under different cultural 
backgrounds, taking Chinese students and Dutch students as samples. An 
exploratory learning task from Voss et al. (2011b) was adopted, in which participants 
viewed partially obscured images that they needed to subsequently remember. The 
learning task was followed by a separate recognition memory test. Crucially, Voss 
et al., (2011b) found a robust main effect of autonomy on memory performance, 
comparing the condition when participants had control over their learning trajectory 
(MOVE, autonomous) with the condition in which they were asked to follow the 
exploratory trajectory of another participant (FOLLOW, non-autonomous). With this 
manipulation, we were able to control the visual information displayed as well as the 
movements of the joystick during the autonomous and non-autonomous conditions. 
In addition to the main effect of autonomy, we introduced an additional reward 
manipulation. Participants had the chance to receive additional monetary rewards 
for correctly remembering the objects during half of the exploratory learning task 
(extrinsic motivation; van Lieshout et al., 2023). In this way, we compared the effects 
of these two motivational factors (i.e., autonomy and reward) on learning between 
the two cultural groups of interest.

To preview, we found that extrinsic motivation (i.e., rewards) improved recognition 
memory for Chinese students more than for Dutch students. Furthermore, it was 
observed that the beneficial effect of autonomy on learning performance did not 
differ between Dutch and Chinese students. Lastly, based on previous literature (Liu 
et al., 2020b), we conducted exploratory analyses by separating each cultural group 
into high achievers and low achievers based on their memory test performance. For 
Chinese students, extrinsic motivation was beneficial for both high and low achievers 
regardless of the existence of intrinsic motivation. In contrast, for Dutch students, 
extrinsic motivation did enhance learning except for high achievers when they had 
autonomy during learning.

In summary, investigating how intrinsic and extrinsic motivational drives affect 
recognition memory performance across cultures can deepen our comprehension 
of individual differences in how these motivational factors shape learning and 
behaviour. This understanding can also shed light on how educational settings can be 
optimally improved by considering the impact of cultural background on motivation 
for learning. Our findings also spur debate about the neurocognitive mechanisms 
that underpin motivational drives and memory modulation in different cultures 
from the perspective of neuroplasticity and the socio-cultural brain (Han et al., 2013).
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5.2 Methods

5.2.1 Preregistration and data availability
The study was preregistered on the Open Science Framework (osf.io/5bkte). All data 
and code used for the experimental procedure and data analyses are freely available 
on the Donders Repository (https://data.ru.nl/login/reviewer-2751056670/4ANH
BXAEY7OVOMKNMOXKMO5SI2VHQIGWY6WCAQY). Part of the data on Dutch 
students came from the data collected by van Lieshout et al. (2023). We collected more 
data to match the power analysis for between-group comparison. The experimental 
procedure was repeated at Beijing Normal University, Beijing, China.

5.2.2 Participants
A power analysis was conducted to determine the sample size of the current study 
with MorePower (Campbell & Thompson, 2012). The power analysis suggested that 
we need at least 42 participants in each cultural group so that we can detect a medium 
effect size (partial η2 = 0.09, alpha level p<0.05) with 80% power for the three-way 
interaction among the two within-group factors (autonomy and reward) and one 
between-group factor (cultural group) using a 2×2×2 mixed measures ANOVA.

Data from 37 Dutch participants were from van Lieshout et al. (2023), among which 
one participant exhibited a recognition memory test accuracy of lower than three 
standard deviations from the mean of the Dutch group. Additionally, we recruited  
10 more Dutch participants to match the power analysis, among which one participant 
was excluded due to being reported as not attentive in the experiment. In the final 
analysis, 45 Dutch participants were included (age = 24.36 ± 5.18 years, female = 29, 
male = 15, non-binary = 1). Most participants were right-handed (eight left-handed, 
one ambidextrous). All Dutch participants had normal or corrected-to-normal vision. 
All Dutch participants gave written informed consent according to the declaration 
of Helsinki prior to participation. The experiment was approved by the local ethics 
committee (CMO Arnhem-Nijmegen, The Netherlands) under a general ethics 
approval protocol (“Imaging Human Cognition”, CMO 2014/288) and was conducted 
in compliance with these guidelines. Participants were told that they would get 14 
euros as standard participation compensation, while they might earn a maximum 5 
euros extra based on their task performance. All participants in the Dutch group are 
living, studying or working in the Netherlands when they participated. According to 
official demographic information data on students at Radboud University, Nijmegen  
(https://www.ru.nl/en/about-us/organisation/facts-and-figures/education), we could 
estimate that about 90% of the Dutch participants in this dataset were local Dutch 
people and the rest 10 % with a majority of German students.
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In Beijing, China, we recruited 55 participants, among which we excluded 11. Seven 
of these excluded participants only saw less than 2/3 of the objects in one of the 
conditions. Three participants were excluded due to being reported as not attentive 
in the experiment. We included 45 participants (age = 22.36 ± 1.92 years, female = 28, 
male = 17) in the final analysis for the Chinese group. All Chinese participants were 
right-handed and had normal or corrected-to-normal vision. All Chinese participants 
gave written informed consent according to the declaration of Helsinki prior to 
participation. The experiment was approved by the ethics committee of Beijing 
Normal University (ICBIR_A_0071_017). Participants were told that they would get 
90 RMB as standard participation compensation, while they might earn a maximum 
of 30 RMB extra based on their task performance. Participant compensation 
adhered to the standard rates established by each university's regulations, with 
the remuneration provided in Beijing being marginally lower than that in the 
Netherlands. All participants in the Chinese group were local Chinese students.

During the experiment, there was a FOLLOW condition in which participants were 
asked to move the joystick following the searchlight trajectory shown on the screen. 
The trajectory in FOLLOW condition was the recorded searchlight trajectory in 
MOVE condition from the previous participant. This is the “yoking” system in the 
current design. Therefore, in each cultural group, the very first participant was 
considered a "seed” participant, (i.e., Participant 0) and this participant only did the 
MOVE condition. Their searchlight trajectory was shown to Participant 1, but data 
from Participant 0 was not included in the final analysis.

5.2.3 Materials
Six hundred images were selected for visibility, recognizability, and lack of lettering 
from the set “2400 Unique Objects” from Brady et al. (2008). These images were 
presented on 24-inch full HD LED thin-film-transistor liquid-crystal display screens 
(1920 × 1080 pixels) in a square 5×5 grid consisting of 25 images. Experimental 
conditions, such as the refresh rate of the screens used for presenting stimuli, were 
closely matched across the test environments in China and the Netherlands. The 
images were 120 pixels in height and covered by black and white Gaussian noise  
(SD = 3). The searchlight window that uncovered the images during the learning phase 
was a circle with a diameter of 180 pixels. Participants could control the searchlight 
window with a Logitech® Attack™ 3 joystick. The experiment was programmed using 
PsychoPy version 3 (Peirce & MacAskill, 2018).
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5.2.4 Procedure
The procedure was kept the same between the Netherlands and China. The experiment 
was divided into two blocks (Fig. 5.1A). In each block, there was a learning phase and a 
recognition memory phase. Each learning phase consisted of six learning grids, during 
which participants were instructed to remember as many objects as possible. In the 
recognition memory phase, all objects in these six learning grids were tested, along with 
the same amount of filler objects that were not presented during this learning phase.

The current study implemented an exploration learning task (Fig. 5.1B; Voss, et al., 
2011b) as described in a recent study by van Lieshout et al. (2023). In each learning 
grid, participants were shown a 5×5 grid of objects covered with Gaussian noise. 
There was an opening (“searchlight”) that moved around to uncover the objects. Each 
participant was presented with 6 MOVE grids and 6 FOLLOW grids. In the MOVE 
condition (autonomous grids), participants were told that they could control the 
movement of this searchlight window by moving the joystick to explore the object 
grid. In a FOLLOW condition (non-autonomous grid), participants were told to 
follow the searchlight window (which would “move on its own”) using the joystick. 
This is a commonly used procedure called “yoking” (e.g., Voss, et al., 2011b), meaning 
that the trajectory of the MOVE condition of the last participant was recorded and 
presented in the FOLLOW condition for the next participant. As such, the temporal 
and spatial movement of the searchlight windows were kept identical across MOVE 
and FOLLOW conditions. The learning task requirement was to remember as many 
objects as possible. The MOVE or FOLLOW condition came up one after another. The 
sequence of MOVE or FOLLOW grids was counterbalanced.

At the same time, REWARD or NO REWARD conditions were allocated to MOVE or 
FOLLOW learning grids randomly and equally between the two blocks. In each block, 
there would be three REWARD learning grids and three NO REWARD learning grids. 
In the REWARD grids, participants were told that if they remembered and successfully 
recognized the objects in these grids, they would get additional money (up to five 
euros in the Netherlands and 30 RMB in China) on top of the standard participation 
compensation. In the NO REWARD grids, participants were told that they still should 
try to remember these objects, but they would not get extra money for recognizing 
these objects.

Before each learning grid, participants would see an instruction screen indicating 
whether this was a MOVE (autonomous learning) or FOLLOW (non-autonomous 
learning) condition. In addition, for the REWARD condition, a picture of a 5-Euro 
banknote would be presented in the middle of this instruction screen with the text 
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(“Be aware: images from this grid are REWARDED!”) below the banknote. In China, 
participants would see a picture of a combination of a 20-RMB and a 10-RMB banknote 
with the same text. During the experiment, participants would not hear words like 
“volitional”, “voluntary” or “autonomous”, but instead, they would be told that “You 
can move/control the window by yourself ”. Each of these instruction screens before 
each learning grid lasted for 20 seconds. Participants had 60 seconds in each learning 
grid, and each learning grid was divided into two parts of 30 seconds. In between the 
two parts, participants had 20 seconds to rest. Each block of the learning phase lasted 
exactly 10 minutes.

In each learning block, there were three REWARD and three NO REWARD conditions. 
Consequently, there would be two MOVE/REWARD grids and one FOLLOW/
REWARD grid in one block, whereas there would be one MOVE/REWARD grid 
and two FOLLOW/REWARD grids in the other block. The trajectory from a MOVE/
REWARD grid would be yoked to a FOLLOW/REWARD grid to the next participant. 
The same was the case for the NO REWARD grids. Hence, due to the nature of the 
yoking procedure, the condition allocation of MOVE/FOLLOW alternated between 
participants. Within one block, the order of rewarded grids was randomised over 
the MOVE grids. The order of the rewarded follow grids was determined by the 
randomisation over the previous (yoked-to) participant’s remaining move grids.

After every six learning grids, participants were presented with a recognition 
memory test, consisting of a recognition memory test and a spatial memory test. 
During the recognition memory test, participants were tested on the 150 objects 
(“old” objects) presented in the last six learning grids (Fig. 5.1D), as well as an equal 
amount of foil objects (“new” objects). In each grid of the memory test, participants 
had to give a response on a 4-point Likert scale using the joystick (Fig. 5.1D). The 
four possible responses were “Definitely OLD”, “Probably OLD”, “Probably NEW”, 
and “Definitely NEW”. If participants responded to an object as “Definitely OLD” 
or “Probably OLD”, participants were presented with a trial of the spatial memory 
test. During this test, participants were asked to put the object at the location on the 
grid where they saw it during the learning phase (Fig. 5.1D; Markant et al., 2014a). In 
each trial of the spatial memory test, the object was initially presented in the middle 
of the screen with the 5×5 grid in the background (Fig. 5.1D). They could move the 
joystick to move the object to the correct location and had to confirm the positioning 
of the object by clicking the trigger button on the joystick with their index finger. The 
accuracy of the spatial memory test was not considered in the additional monetary 
reward calculation. Participants were only instructed to try their best and to go with 
their best guess of the position of each object.
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Participants completed 12 learning grids, during which they were presented 
with a total of 300 objects. They also completed two memory tests (each test was 
administered after 6 grids), during which they were presented with 300 old and 300 
new objects in total. At the end of the experiment, participants were informed how 
many objects they successfully recognized in the memory phases of the experiment 
(i.e., hits). They were also informed about the number of correctly recognized 
objects of the rewarded grids (i.e., rewarded hits) and the corresponding amount of 
extra monetary reward that they have won during the experiment. The calculation 
of the monetary rewards did not take the results of the spatial memory test into 
consideration. These numbers were presented on the screen.

The extra monetary reward was calculated as follows:

Before the formal experiment started, participants signed an informed consent 
form upon their arrival. Then, they were asked to read the instructions of the whole 
experiment printed on paper and explain the procedure verbally to the experimenters. 
This was done so that the experimenters could confirm that participants understood 
the task. Afterwards, participants performed a practice session, during which they 
were presented with four learning grids in a fixed order (one grid from each learning 
condition, a MOVE/NO REWARD grid, a FOLLOW/NO REWARD grid, a MOVE/
REWARD grid and a FOLLOW/REWARD grid). The pictures presented during the 
practice session were cartoon images (Rossion & Pourtois, 2004), so that interference 
of memory would not occur between the practice session and the actual experiment. 
Afterwards, participants completed 20 practice trials of the memory test to ensure 
they understood the task, including both recognition memory and the spatial 
memory test. Participants were instructed to try their best to remember both the 
objects and the locations. No data was recorded during this practice session.

5.2.6 Data preparation
Data were prepared using MATLAB® R2019a (MathWorks, 2019). As mentioned before, 
participants were tested with 300 old objects (objects they had seen before) and 300 
new objects (foil objects) during the memory phase of the experiment. All foil objects 
were deleted before the final analysis. Next, we calculated the viewing time duration 
of each object presented during the learning phases. Specifically, the viewing time 
duration was the amount of time that the searchlight window overlapped with an 
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Figure 5.1 Experiment schematics. The figure is the same as Fig1 in van Lieshout et al. (2023).  
A. Experimental procedure. The whole experiment is divided into 2 blocks. Each block included one 
learning phase and one memory phase. In each learning phase, participants were shown 6 learning grids, 
and each learning grid was formed by a 5×5 grid containing 25 objects. After each learning phase, there 
would be a memory phase, in which participants would be shown 300 objects, including 150 presented 
objects in the last learning phase and 150 foil/new objects. B. Learning grid example. The paradigm was 
adapted from Voss, et al. (2011b) and previously used as described here in van Lieshout et al., (2023). In each 
learning grid, the 5×5 grid was covered by black-and-white Gaussian noise. The grid could be explored and 
uncovered by a moving searchlight window. Participants were told that they needed to remember as many 
objects as possible. C. Conditions in the learning phase. In MOVE (autonomous learning) grids, participants 
were instructed to control the searchlight window by moving the joystick. In FOLLOW (non-autonomous 
learning) grids, participants were told that the searchlight would move by itself, and they needed to use the 
joystick to follow the trajectory of the searchlight. Note that the trajectory of the searchlight in a FOLLOW 
grid was a MOVE grid trajectory recorded from the previous participant (according to a commonly used 
procedure called “yoking”). A learning grid might be REWARDED, in which participants would earn extra 
monetary rewards for recognizing the objects in that grid in the memory phase. If a learning grid was a NO 
REWARD grid, participants would not earn extra money for remembering these objects. Before each 
learning grid, participants would be shown an instruction screen, on which participants would be informed 
whether the following learning grid will be MOVE or FOLLOW and REWARD or NO REWARD. D. Memory 
trial example. Following the learning phase, there would be a memory phase in each block. In each memory 
phase trial, participants were asked to indicate whether the object was “Definitely OLD”, “Probably OLD”, 
“Probably NEW”, or “Definitely NEW”. During this recognition memory test, 4 reactions were located in  
4 directions of the object, and participants could react by moving the joystick in the corresponding 
direction. If participants reacted such that the current object is “Definitely OLD” or “Probably OLD”, a 
spatial memory test would be generated for this object. Participants would need to move the joystick to put 
the object back to where they saw it in the grid during the learning phase.
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object picture (120 × 120 pixels) on the exploration grid. If the viewing time duration 
was smaller than 200 milliseconds, this object would also be recognized as “not seen” 
during the learning phase. These objects would be excluded from the final analysis. 
Consequently, all objects that were seen by the participants during the learning phase 
were included in the final analysis.

After removing the filler objects in the memory test, both the Chinese dataset as well 
as the Dutch dataset consisted of a total of 13,500 recognition memory test trials (over 
all participants). In the Chinese dataset, we identified 450 trials in which the objects 
were not seen by the participants during the learning phase. Consequently, 13,050 trials  
from the recognition memory test were valid and included in the final analyses. For  
Dutch participants, 441 objects were not seen by the participants. Therefore, we included 
13,059 trials from the recognition memory test in the final analysis.

We calculated three dependent variables to quantify memory performance. For the 
primary analyses (as reported in the main text), we focused on recognition memory 
(i.e., whether objects were correctly identified as old objects). To this end, the Likert 
responses of the seen objects were collapsed into a binary variable. For all the seen 
objects, if participants responded with “Definitely OLD” or “Probably OLD”, they 
would be marked as 1 (hit). If they responded to these objects as “Probably NEW” or 
“Definitely NEW”, these objects would be marked as 0 (miss). Additionally, the spatial 
memory test performance was measured with two variables, spatial hit and spatial 
error. Data analysis protocols and results of spatial memory tests are reported in the 
Supplementary Material 1.

“Hit rate” was used as the performance measure to be consistent with previous 
studies with a similar paradigm (Markant et al., 2014a; Voss, et al., 2011b; Voss, et al., 
2011c). The current experimental design precluded calculating false alarms for each 
experimental condition. In the memory test of each block (Fig. 5.1A), participants 
were shown all learned objects in random order, intermixed with an equal number of 
filler objects. These filler objects could not be assigned to any of the 4 experimental 
conditions. Therefore, it is not feasible to distinguish between condition-specific 
false alarms, prohibiting us from calculating d’ (hit rate – false alarm) for each 
condition with signal detection theory (Hautus et al., 2021). However, to address 
the concern of group differences in response biases, d’ (hit rate – false alarm) and C 
(-1/2[hit rate + false alarm]) were calculated and compared between cultural groups. 
Details were reported in the Supplementary Material 2.
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5.2.7 Data analysis

5.2.7.1 Primary analysis
We conducted linear mixed effect (LME) modelling with lme4 toolbox (Bates et al., 
2015) in R (R core team, 2022). The dependent variable of the model was “recognition 
memory accuracy”, a binomial variable. The independent variables were autonomy 
(MOVE, autonomous learning; FOLLOW, non-autonomous learning), reward 
(REWARD; NO REWARD) and cultural group (CHINESE; DUTCH). Among the 3 
factors, autonomy and reward factors were within-participant manipulations, while 
the cultural group was a between-participant condition. We created sum-to-zero 
contrasts for all the factors. In the model, we included all three main effects as fixed 
effects, autonomy, reward and cultural group, respectively. The model also included 
two-way interaction effects between either two of these factors and the three-way 
interaction effect among all three factors as fixed effects. Additionally, the model had 
a full random effects structure, meaning that a random intercept and random slopes 
for all within-subject effects were included per participant (Barr, 2013; Barr et al., 
2013). The LME model was fitted with 10,000 iterations and diagnosed with DHARMa 
(Hartig, 2020).

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀	𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎	~	𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

+ (1 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟	|𝑠𝑠𝑠𝑠𝑠𝑠) 

 
5.2.7.2 Exploratory analysis
Additionally, previous findings indicated that both Chinese and Western students 
with higher levels of intrinsic motivation outperformed their less intrinsically 
motivated peers in learning tasks. However, it was found that extrinsic motivation 
appears to bolster learning performance only when the task performance level is low 
for Chinese students, who were less willing to learn (Liu et al., 2020b). Moreover, 
a comparable result was also yielded on European students in a previous study 
(Murayama & Kuhbandner, 2011). It was found that for German students, their 
memory would only be boosted by money for boring materials, in other words, 
when they had no willingness to learn. These suggested that the effect of extrinsic 
motivation on learning may vary according to the learning performance of students 
or the willingness to learn. Hence, to explore the dataset, we separated each cultural 
group into two groups based on their performance on the recognition memory test 
(i.e., high achievers and low achievers). To split the participants by achievement level, 
we calculated the recognition memory hit rate for each participant as follows:

𝐻𝐻𝐻𝐻𝐻𝐻	𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁	𝑜𝑜𝑜𝑜	ℎ𝑖𝑖𝑖𝑖	𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁	𝑜𝑜𝑜𝑜	𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠	𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
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People who showed a higher or equal recognition memory hit rate than the median of 
their cultural group would be identified as high achievers, while people who showed 
a lower recognition memory hit rate than the median of their cultural group would 
be identified as low achievers. Consequently, we would have 23 participants in each 
cultural group as high achievers and 22 participants in each cultural group as low 
achievers. We will implement the same data analysis procedure as described for the 
full dataset on high achievers and low achievers separately.

5.3 Results

The current study aimed to investigate how intrinsic and extrinsic motivation improve 
learning under different cultural backgrounds. In an exploratory learning task, 
Chinese and Dutch participants viewed partially obscured images that they needed to 
subsequently remember. We compared the effects of autonomy (as volitional control 
over the exploration trajectory) and monetary reward on the subsequent recognition 
memory of the objects viewed between the two cultural groups of interest.

5.3.1 Primary results
Main effects and interactions between the factors of interest, autonomy (MOVE 
vs. FOLLOW), monetary reward (REWARD vs. NO REWARD), and cultural group 
(CHINESE vs. DUTCH), were assessed in a three-way LME model on the dependent 
variable of recognition memory accuracy. The model results with statistics are 
reported in Table 1 and the data are plotted in Fig. 5.2. The mean and standard 
deviation of recognition memory accuracy for the conditions of interest are reported 
in Table 2.

We found a main effect of autonomy and reward on recognition memory accuracy 
(Table 1). This indicated that participants learned better in the MOVE condition 
than in the FOLLOW condition. Also, participants learned better in the REWARD 
condition than in the NO REWARD condition. We did not find a main effect of 
cultural group on recognition memory accuracy. This suggested that Dutch students 
had a similar performance as Chinese students in the recognition memory test. For 
the two-way interaction effects of interest, we did not find an interaction between 
autonomy and reward on recognition memory accuracy. This indicated that, if we 
view the two cultural groups as one sample, the beneficial effect of autonomy on 
memory would not be affected by external rewards (Fig. 5.2). Interestingly, we found 
a significant two-way interaction effect between factors of reward and cultural 
group on recognition memory accuracy (Fig 5.3A-C). We did not find a two-way 
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interaction effect on recognition memory accuracy between factors of autonomy and 
cultural group (Fig. 5.3D-F). This suggested that the beneficial effect of autonomy on 
recognition memory accuracy was similar between the Chinese and Dutch cultural 
groups. We also did not find a significant three-way interaction among autonomy, 
reward, and cultural groups.

Figure 5.2 Primary results on recognition memory accuracy. Recognition memory (i.e., percentage of the 
correctly remembered objects) results are shown as a function of the three factors of interest: autonomy, 
reward, and cultural group. A. For the Chinese group, recognition memory is plotted as a function of 
autonomy and reward. The red colour represents the Chinese cultural group. The dark red colour 
represents the reward condition, while the light red colour represents the no reward condition. B. As in 
A, recognition memory is plotted the same for the Dutch group. The blue colour represents the Dutch 
cultural group. The dark blue colour represents the reward condition, while the light blue colour 
represents the no reward condition. In all panels, the error bars represent the standard error of the 
mean. Since the three-way interaction between the factors of autonomy, reward and cultural group was 
not significant, we did not conduct post hoc comparisons on the two-way interaction between autonomy 
and reward within each cultural group. 

Table 5.1 Primary results on recognition memory accuracy

Effect of interests β z p

Autonomy -0.27 -8.74 <0.001***

Reward -0.18 -5.81 <0.001***

Cultural group -0.15 -1.81 0.41

Autonomy × Reward -0.02 -1.09 0.29

Reward × Cultural group -0.09 -2.85 0.004**

Autonomy × Cultural group 0.03 0.96 0.22

Autonomy × Reward × Cultural group 0.02 1.59 0.11

Note. There are 3 factors included in this LME model, autonomy (MOVE/FOLLOW), reward (REWARD/
NO REWARD), and cultural groups (Chinese/Dutch).
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To disentangle the interaction between reward and cultural group further, we 
compared memory accuracy for the REWARD and NO REWARD conditions 
respectively for the Dutch group and the Chinese group (Fig. 5.3A) with the emmeans 
package in R (Lenth, 2022). It was found that the facilitatory effect of reward 
(REWARD – NO REWARD) on recognition memory was significant for both the 
Chinese group (β = 0.55, z = 6.14, p < 0.001) and the Dutch group (β = 0.19, z = 2.11,  
p = 0.03). Moreover, this reward effect on memory was found stronger for the Chinese 
group compared with the Dutch group (Fig. 5.3A). This difference between cultural 
groups is also apparent when plotting the reward effects of each participant in the 
Chinese (Fig. 5.3B) and Dutch group (Fig. 5.3C). Alternatively, we also compared 
recognition memory accuracy between the Chinese and Dutch groups under both 
REWARD and NO REWARD conditions respectively (Fig. 5.2). It was found that under 
reward conditions, the Dutch group and the Chinese group performed similarly  
(β = -0.11, z = -0.73, p = 0.47) in the recognition memory test. However, under the  
NO REWARD condition, the Dutch group performed better than the Chinese group 
(β = -0.47, z = -2.48, p = 0.01) in the recognition memory test.

For completeness, we also plotted the autonomy effect between cultural groups 
(Fig. 5.3D). The individual variability of autonomy effect on memory accuracy for 
the Chinese group is plotted in Fig. 5.3E. The same was done for the Dutch group in 
Fig. 5.3F.

Table 5.3 Statistical results of recognition memory accuracy from high achievers and low achievers

High achievers Low achievers

Effect of interests β t p β t p

Autonomy -0.29 -6.32 <0.001*** -0.24 -6.06 <0.001***

Reward -0.11 -3.64 <0.001*** -0.27 -5.26 <0.001***

Cultural group -0.09 -1.10 0.29 -0.21 -3.64 0.002**

Autonomy × Reward -0.02 -0.74 0.50 -0.02 -0.92 0.36

Reward × Cultural group -0.04 -1.53 0.16 -0.14 -2.76 0.005**

Autonomy × Cultural group 0.04 0.88 0.16 0.02 0.41 0.66

Autonomy × Reward × Cultural group 0.05 2.06 0.04* 0.01 0.26 0.80

Note. There are 3 factors included in the LME models above, autonomy (MOVE/FOLLOW), reward 
(REWARD/NO REWARD), and cultural groups (Chinese/Dutch).
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5.3.2 Exploratory results: High achievers and low achievers
Additionally, we performed exploratory analyses to investigate whether the reported 
primary results differ based on participants’ task performance. This was done 
because previous research has indicated that extrinsic motivation appeared to 
improve learning performance among Chinese students when their task performance 
was initially suboptimal (Liu et al., 2020b). However, for Western students, extrinsic 
motivation equally boosted learning for students regardless of task performance. 
This suggested that the reported effect of extrinsic motivation on learning might 
be modulated by both cultural group and task performance. To this end, we divided 
the Chinese and Dutch cultural groups into “high achievers” and “low achievers” and 
applied the same model used for the primary analysis to the high and low achiever 
groups separately.

When focusing on the high achievers only, we found a significant three-way interaction 
between the factors of autonomy, reward, and cultural group on recognition memory 
accuracy. To dig deeper into this three-way interaction, we compared the recognition 
memory accuracy between the two cultural groups under each condition of reward 
and autonomy with emmeans package in R (Lenth, 2022). We did not find significant 
differences between Chinese and Dutch high achievers (Chinese – Dutch) under the 
MOVE/REWARD condition (β = -0.08, z = -0.34, p = 0.74), FOLLOW/REWARD condition 
(β = -0.11, z = -0.58, p = 0.56), and FOLLOW/NO REWARD condition (β = -0.09,  
z = -0.49, p = 0.63). However, only for the MOVE/NO REWARD condition, we found 
that the Chinese high achievers exhibited a lower recognition memory accuracy than 
the Dutch high achievers (β = -0.44, z = -2.19, p = 0.03). Additionally, we also compared 
the reward effect on recognition memory accuracy (REWARD – NO REWARD) under 
either MOVE or FOLLOW conditions for each cultural group separately. For Chinese 
students, we found that reward improved learning under both MOVE (β = 0.36,  
z = 3.33, p = 0.001) and FOLLOW (β = 0.24, z = 2.36, p = 0.02) conditions (Fig. 5.4A). For 
Dutch participants, however, extra rewards only improved learning under the FOLLOW 
condition (β = 0.26, z = 2.57, p = 0.01) but not under the MOVE condition (β = 0.01,  
z = 0.06, p = 0.96; Fig. 5.4B).

Second of all, when focusing on the low achievers, we found a significant two-way 
significant interaction effect between reward and cultural group on memory accuracy 
(Fig. 5.4C & 5.4D). This was consistent with the results of the primary analysis. 
When breaking down this interaction effect, it was found that the facilitatory effect 
of reward on memory accuracy was larger for the Chinese low achievers (β = -0.83,  
z = -5.66, p < 0.001) than for the Dutch low achievers (β = -0.26, z = -1.77, p = 0.08). 
Alternatively, we also found that, under the REWARD condition, Dutch and Chinese 
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Figure 5.3. Individual variability in the beneficial effect of reward and autonomy based on recognition 
accuracy. In all graphs, the red colour represents the Chinese cultural group, while the blue colour 
represents the Dutch cultural group. A. The beneficial effect of reward on memory accuracy (Reward – 
No reward) is stronger for the Chinese group than for the Dutch group. The bars (y-axis) represented the 
beneficial effect of reward on recognition memory. The error bars represent the standard error of the 
mean of reward effect. Asterisks on the bars represent the significance of the beneficial effect of reward 
on the recognition memory accuracy of each group. ***p < 0.001; *p < 0.05. B. Chinese group individual 
variability in mean recognition memory accuracy for the REWARD condition (y-axis) compared with the 
NO REWARD condition (x-axis). Each dot represents a participant. Most dots tend to lie above the 
diagonal, illustrating that most of the Chinese participants had a higher recognition memory accuracy 
in the REWARD condition than in the NO REWARD condition. C. Dutch group individual variability in 
mean recognition memory accuracy for the REWARD condition (y-axis) compared with the NO REWARD 
condition (x-axis). Each dot represents a participant. While the dots lie close to the diagonal, more dots 
still lie above the diagonal. This illustrates the significant but smaller beneficial effect of reward on 
recognition memory than in the Chinese group. D. The beneficial effect of autonomy on learning did not 
differ between the Chinese and Dutch groups.The bars (y-axis) represented the beneficial effect of 
autonomy (MOVE – FOLLOW) on recognition memory. The error bars represent the standard error of the 
mean. E. Chinese groupindividual variability in mean recognition memory accuracy for the MOVE 
condition (y-axis) compared with the FOLLOW condition (x-axis). Each dot represents a participant. 
Most dots tend to lie above the diagonal, illustrating that most of the Chinese participants had a higher 
recognition memory accuracy in the MOVE condition than in the FOLLOW condition. F. Dutch group 
individual variability in mean recognition memory accuracy for the MOVE condition (y-axis) compared 
with the FOLLOW condition (x-axis). The distribution of the dots is similar to Fig. 5.3E, suggesting a 
similar beneficial effect of autonomy on learning between two cultural groups.
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low achievers performed similarly (β = -0.14, z = -1.01, p = 0.31). However, under the 
NO REWARD condition, Dutch low achievers performed better in the recognition 
memory test than Chinese low achievers (β = -0.71, z = -4.11, p < 0.001).

To summarize, we found that reward improved memory accuracy for Dutch high 
achievers under FOLLOW condition (no autonomy), but not under MOVE condition. 
However, for Chinese high achievers, the reward effect was present for both MOVE 
and FOLLOW conditions. Meanwhile, Chinese low achievers were motivated to learn 
by monetary rewards more compared with Dutch low achievers. It was also evident 
that Chinese low achievers only performed less effectively compared to Dutch low 
achievers when without rewards.

5.4 Discussion

In our study, we delved into the impact of intrinsic and extrinsic motivation on 
learning across diverse cultural contexts, by focusing on the comparisons between 
Chinese and Dutch student populations. Participants engaged in an exploratory 
learning activity wherein they were presented with partially obscured images, which 
they were required to recall later. We manipulated autonomy (representing intrinsic 
motivation) by granting participants control over their exploration trajectory, 
and we also varied the opportunity for monetary rewards (representing extrinsic 
motivation) independently. Throughout the experiment, participants were tasked 
with memorizing as many objects as possible, followed by a subsequent memory 
assessment. By administering the same learning experiment to Chinese and Dutch 
students, the current study aimed to gain a better understanding of the cultural 
differences in intrinsic and extrinsic motivation for learning.

There are three key novel findings in this experiment. First, we found that the 
beneficial effect of extrinsic motivation (i.e., monetary reward) on memory encoding 
was stronger for Chinese students than for Dutch students (e.g., Zhu & Leung, 2011). 
Second, we found that there was no difference in the beneficial effect of intrinsic 
motivation (i.e., autonomy) on learning between Chinese and Dutch students 
(e.g., Ryan & Deci, 2006). Third, when including all participants, we did not find 
an interaction effect between autonomy and reward on learning in either cultural 
group, different from previous studies (e.g., van Lieshout et al., 2023). However, in 
an exploratory analysis taking learning achievement into account, we found that for 
Dutch high achievers, the beneficial effect of reward was diminished in autonomous 
learning compared to non-autonomous learning conditions (Fig. 5.4B; van Lieshout et 



| 143A cross-cultural comparison of intrinsic and extrinsic motivational drives for learning

5

 

Figure 5.4 Results on recognition memory accuracy after splitting each cultural group into high and low 
achievers. A. For the Chinese high achievers, recognition memory is plotted as a function of autonomy 
and reward. The red colour represents the Chinese high achievers. The dark red colour represents the 
reward condition, while the light red colour represents the no reward condition. The coloured lines 
represent the effect comparison (MOVE FOLLOW) under REWARD or NO REWARD conditions. 
Asterisks near the red comparison lines indicated the significance of (MOVE – FOLLOW) under different 
reward conditions. Asterisks next to the black comparison lines indicated the significance of (REWARD 
– NO REWARD) under different autonomy conditions. The error bars represent the standard error of the 
mean (SEM). (***: p < 0.001; *: p < 0.05) B. For the Dutch high achievers, recognition memory is plotted 
the same. The blue colour represents the Dutch cultural group. The dark blue colour represents the 
REWARD condition, while the light blue colour represents the NO REWARD condition. The rest of the 
conventions were the same as in Fig. 5.4A. (***: p < 0.001; *: p < 0.05; n.s.: p > 0.05) C. Recognition 
memory accuracy for Chinese low achievers. All conventions are the same as in Fig. 5.4A. D. Recognition 
memory accuracy for Dutch low achievers. All conventions are the same as in Fig. 5.4B. 
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al., 2023). In contrast, reward improves learning regardless of autonomy for Chinese 
high achievers (see Fig. 5.4A). These results together support the idea that intrinsic 
motivation for learning may be culturally universal, while extrinsic motivation for 
learning is stronger for Chinese students than for Dutch students. Furthermore, 
the interaction effect between intrinsic and extrinsic motivation on learning needs 
to be discussed under different cultural groups and concerning different levels of 
learning outcomes.

5.4.1 The effect of reward on learning was stronger for Chinese than for 
Dutch students
In both cultural groups, participants remembered more objects in the reward 
condition than in the no-reward condition. However, Chinese students exhibited a 
stronger effect of reward on memory than Dutch students, indicated by a significant 
interaction effect between factors of reward and cultural group (Fig. 5.3A). When 
delving deeper into this interaction effect, it was found that Chinese students 
remembered fewer objects compared with Dutch students when there was no 
monetary reward. Students from the two cultural groups performed equally well for 
the rewarded objects.

This is consistent with findings from previous studies suggesting that people from a 
collectivistic cultural background would be more motivated by external sources (Huang, 
2013). In our current setting, one of the goals was to obtain extra monetary rewards. 
However, the goals participants pursue do not necessarily have to consist of monetary 
rewards (e.g., Huang, 2013; Zhu & Leung, 2011); they can also encompass group 
benefits (Salili et al., 2012), or achievements (Telzer et al., 2017). Distinct from Western 
philosophy, Chinese cultural contexts emphasize academic success and attainment 
(Dekker & Fischer, 2008). The pursuit of education is traditionally intertwined with 
collective aspirations, such as upholding family honour and contributing to the broader 
society (Salili et al., 2012). This ethos stems from the Confucian principle of "Rushi" (
入世) which promotes self-improvement and contribution to societal prosperity (Hao, 
2018). In Confucian culture, factors that come from external environments are more 
emphasized than in non-Confucian Western educational contexts, like materialistic 
rewards, academic achievement, expectancy of success, and group benefits (Blevins 
et al., 2023; Chen et al., 2005; Iyengar & DeVoe, 2003; Telzer et al., 2017). Students 
with Confucian cultural backgrounds develop an intrinsic passion and commitment 
to learning after understanding the importance of learning in life-building and self-
development (e.g., Liu et al., 2020a; Liu et al., 2020b), while in Western culture, 
learning is usually driven by interest. Furthermore, after separating participants into 
high and low achievers, it was observed that the cultural difference in the beneficial 
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effect of reward on memory only existed for low achievers, but not for high achievers. 
This also matches with previous findings suggesting that students with a Confucian 
cultural background and low performance in learning showed a higher sense of extrinsic 
motivation for learning (Liu et al., 2020b).

To specify, Eastern culture deems norms of extrinsic motivation as more meaningful and 
essential compared with Western culture (Tao & Hong, 2013), shaping reward circuitry 
activity underlying specific behaviours. From the sociocultural brain perspective, neural 
responses toward external stimuli are shaped by both short- and long-term dynamic 
cultural experiences (Han, 2017; Han et al., 2013). For instance, previous studies have 
found that cultural backgrounds shape the activation of the ventral striatum toward 
monetary rewards (Kim et al., 2012). People with Eastern cultural backgrounds 
would have persistent reward circuitry activation even when the reward is delayed. 
Moreover, compared with American participants, Chinese participants showed more 
sustained reward circuitry activation (in the ventral striatum) during a go/no-go task 
when their goal was to improve their accuracy in this task (Telzer et al., 2017). In this 
situation, Chinese students were more motivated by gaining higher task achievement 
than American students were. This observation is consistent with the cultural valuation 
of achievement, which is notably higher for Chinese students compared to Western 
students (Tao & Hong, 2013). Integrating our findings and the sociocultural brain 
perspective, culture plays a critical role in shaping one's sensitivity towards various 
motivational factors, which is closely tied to the functioning of the reward system. In 
contrast, the cultural influences might not extend to the biological underpinnings of the 
reward system, such as dopamine receptors (Glazer et al., 2020).

Interestingly, there was a study specifically indicating that monetary reward does not 
cause different levels of activation on reward circuitry between different cultural groups 
(Blevins et al., 2023). However, it is crucial to emphasize that upon closer examination 
of their results, our current findings are in alignment with theirs. Although in their 
study, there were no differences in reward circuitry activation between Chinese and 
American groups when they received monetary rewards, American participants showed 
higher nucleus accumbens (NAcc) activity compared to Chinese participants when 
they received NO monetary rewards during the target-hitting task (Blevins et al., 2023; 
Supplementary material, Section 11, page 26). These findings resonate with the results 
presented in the current study, as we observed that Chinese participants demonstrated 
weaker recall for objects that were not rewarded in comparison to Dutch participants. 
Yet, this discrepancy was absent when rewards were involved. Hence, we hypothesize 
that cultural norms can shape functional engagement of certain brain systems during 
learning phase in the absence of rewards. From the perspective of neuroplasticity that is 
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formed due to learning of culture norms (Han, 2017; Han & Ma, 2014), Chinese students 
might tend to use relatively more external-driven strategies during learning, leading 
them to exhibit a lower baseline activation in reward circuitry when they are learning 
for NO external drives or purposes. However, this hypothesis requires future research to 
be substantiated.

In summary, extrinsic motivation is universally recognized for enhancing behavioural 
performance. This is likely due to the regulatory effect of extrinsic motivation on activity 
in the reward circuitry (e.g., striatum). Our study further clarifies that this effect 
is more pronounced in Chinese individuals compared to Dutch individuals during 
learning tasks, suggesting cultural variability in cognitive and neural responses to 
extrinsic motivators.

5.4.2 The beneficial effect of reward on learning can be affected 
by context
In the current study, we found that only for Dutch high achievers, the effect of reward 
on learning was not present when their intrinsic motivation (autonomy) was invoked. 
However, the reward effect on learning always existed for Chinese high achievers. This 
finding aligned with the previous notion that the interaction between intrinsic and 
extrinsic motivation in learning is not always present and has been over-generalized 
(Eisenberg, 2002). One possible interpretation of the diminishing reward effect in 
Dutch high achievers with autonomy is that they do not need rewards to heighten their 
motivation, because autonomy as an intrinsic motivator is already sufficient (Cameron, 
2001). Similar to results from Murayama and Kuhbandner (2011), when German students 
were learning interesting content (with intrinsic motivation to learn), money does not 
boost learning performance. Instead, money only improved learning when the content 
was boring. This notion is also supported by our finding, such that Dutch high achievers 
performed better than Chinese high achievers when they were learning autonomously 
but were not rewarded for their performance. However, their learning performance was 
equally high when both autonomy and rewards were provided. To rephrase, autonomy 
alone may suffice as a significant motivational driver for Dutch high achievers, enabling 
them to learn to the best of their ability. Conversely, for Chinese high achievers, the 
presence of autonomy does not fully maximize their motivational potential for learning, 
indicating that their learning motivation has not yet reached its peak.

An alternative interpretation is that the effect of autonomy is diminished in the presence 
of rewards compared to the absence of rewards for Dutch high achievers. This could be 
caused by the fact that Dutch high achievers perceived extrinsic rewards as controlling, 
which stands in stark contrast to experiencing autonomy during learning. Therefore, 
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the advantageous impact of autonomy on the learning process is potentially diminished 
(i.e., overjustification; Hidi, 2015; Lepper et al., 1973). This is in line with educational 
studies indicating that extrinsic motivation is detrimental for academic achievement 
for Western students, while both intrinsic and extrinsic motivators are beneficial for 
Chinese students (Zhu & Leung, 2011).

Additionally, we also found that the beneficial effect of rewards on learning was 
stronger for Chinese students, but only for low achievers (Fig. 5.4C & 5.4D). This 
discovery aligns with the findings of prior research, suggesting that the influence 
of rewards on performance might be modulated by levels of achievement (Liu et al., 
2020b). On the contrary, there are recent studies suggesting that the effect of rewards 
on behavioural performance is stronger for Western than for Eastern culture (Liu 
et al., 2020b; Medvedev et al., 2024). This was likely caused by the nature of their 
measurements, which were imbued with social or external values (i.e., helping the 
researcher to build up a machine-learning model or learning math). As we stated 
before, different fragments of motivation are stated and perceived as more meaningful 
in different cultural backgrounds. For instance, in the setting of Medvedev et al. (2024), 
a sense of relatedness (i.e., one of the components that foster intrinsic motivation, 
according to self-determination theory) was induced. Relatedness, defined as a feeling 
of connection with others, might be more meaningful for Chinese culture than for 
Western culture (e.g., Walker et al., 2020). Therefore, when relatedness is elicited, 
Chinese participants might rely less on additional extrinsic motivators than Western 
participants. This supports our claim that various intrinsic motivators can affect 
extrinsic motivation differently, depending on the cultural context.

Taken together, in line with the sociocultural brain perspective, for high achievers 
with Dutch cultural backgrounds, intrinsic motivation (i.e., autonomy) can reduce the 
effectiveness of extrinsic motivation on learning outcomes and vice versa. However, 
this interaction effect between intrinsic and extrinsic motivation on learning did not 
exist for Chinese participants nor Dutch low achievers. This highlights the mutual 
influence of various motivators throughout the learning process. Our findings align 
with and extend the sociocultural brain perspective (Han et al., 2013), highlighting 
that learning motivation is shaped not only by the cultural environment but also by 
levels of achievement in learning contexts.

5.4.3 Autonomy improved learning in both cultural groups
Furthermore, we did not find cultural differences in the beneficial effect of intrinsic 
motivation on learning. This was indicated by the strong effects of autonomy on 
memory performance, which were present for both Chinese and Dutch students. 
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These findings are congruent with the assertions of self-determination theory (SDT), 
which posits that autonomy is a fundamental psychological need and, akin to biological 
drives, is a universal phenomenon across different cultures (Helwig, 2006; Ryan & Deci, 
2017). Moreover, intrinsic motivation, particularly autonomy, is closely linked to the 
pursuit of personal challenges (Di Domenico & Ryan, 2017). While intrinsic motivation 
and self-improvement are often highlighted in Western ideologies, these concepts are 
also deeply valued in Eastern tradition. For instance, Confucian philosophy emphasizes 
the importance of self-cultivation and personal reflection (Zusho, 2005), and Taoism 
emphasizes the sense of autonomy and freedom in personal behaviours (Wenzel, 2003).

Our study also corroborates neuroscientific evidence that both Chinese and Western 
individuals exhibit strong motivational brain responses linked to autonomy. For 
example, in both cultures, feedback-related negativity was stronger for self-relevant 
rewards compared to rewards relevant for others (Kitayama & Park, 2014; Zhu et al., 
2016). Similarly, increased activation in the medial prefrontal cortex and anterior 
cingulate cortex is observed during self-related personality judgment tasks among 
participants from both Chinese and Western cultural backgrounds (Zhu et al., 2007). 
In our current setup, when participants were autonomously exploring the grid with 
objects, their personal connection to those objects was likely heightened. This might 
result in stronger brain activity in the dorsal lateral prefrontal cortex under autonomous 
conditions, thereby improving learning outcomes across diverse cultural backgrounds.

From a neuroscientific perspective, intrinsic motivation, like autonomy, might trigger 
not only activation and connectivity among a network of distributed brain regions 
including the OFC and VMPFC, subcortical dopaminergic circuitry, and hippocampus, 
but also enhance engagement of the dorsolateral prefrontal cortex (DLPFC), which 
is associated with attentional control (Voss, et al., 2011b). In contrast, extrinsic 
motivation, like monetary rewards, tends to specifically engage modulation from 
VMPFC and dopaminergic circuitry (e.g., VTA) influencing the hippocampus (Adcock 
et al., 2006; Wolosin et al., 2012). Combining with our current behavioural findings, 
we could hypothesize that cultural background shaped functional activation and 
connectivity among distributed regions including VMPFC, dopaminergic circuitry, and 
hippocampus of Eastern students to be more sensitive to rewards in learning tasks. 
However, with intrinsic motivation exerted on top of extrinsic motivation, DLPFC 
becomes engaged with a higher level of attentional control over this reward-related 
brain network, diminishing the cultural difference in intrinsic motivation. Interestingly, 
this also aligned with a meta-analysis on brain activity focusing on social cognitive 
processes, for instance, self-reflection tasks where people rate descriptions of their 
personalities. They found that East Asians exhibited a stronger activity in DLPFC, while 
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Westerners exhibited stronger activation in VMPFC (Han & Ma, 2014) in these social 
cognitive processes.

Taken together, our behavioural findings might shed light on both overlap (i.e., VMPFC, 
OFC, reward circuitry, the hippocampus) and potential dissociations (i.e., DLPFC) of the 
brain mechanism of intrinsic and extrinsic motivations in learning.

5.4.4 Future directions and limitations
In the end, there is still a lack of studies investigating brain mechanisms underlying 
the overlap, distinctions, and interactions between extrinsic motivation and intrinsic 
motivation on learning, particularly regarding the modulation of this process by 
individual differences. In the future, conducting the current behavioural study in 
conjunction with functional magnetic resonance imaging (fMRI) could provide 
valuable insights into the neural underpinnings of cultural differences affecting the 
interplay between extrinsic and intrinsic motivation during learning. To start with, 
our current findings, combined with previous neuroimaging studies, indicated that 
there might be cultural differences in both their behavioural performance and brain 
activation when participants are extrinsically motivated to learn. Previous research 
showed that extrinsic motivation elicits more connectivity among VMPFC, midbrain, 
VTA, and hippocampus (e.g., Adcock et al., 2006). We hypothesize that the beneficial 
effect of reward on this brain connectivity would be stronger for Chinese students 
compared to Dutch students. Second, we found that autonomy could enhance learning 
equally across cultural groups. Additionally, Voss, et al. (2011b) found that autonomous 
control (intrinsic motivation) could provoke connectivity between the hippocampus 
and brain areas related to attentional coordination, like the DLPFC. Hypothetically, 
this brain connectivity between the DLPFC and hippocampus might remain the same 
across cultural groups. Third, we found that the interaction effect between intrinsic 
and extrinsic motivation on learning does not uniformly apply across all participants. 
Regarding cultural differences in motivation, research indicated that Western 
individuals showed increased activity in both brain regions related to attentional 
control (i.e., DLPFC) and reward circuitry (i.e., VTA) during experiences of self-control. 
Conversely, Eastern individuals demonstrated similar brain activation patterns in 
scenarios where they felt under control from others (Freeman et al., 2009). As we 
discussed before, cultural backgrounds may shape individuals to perceive varying 
motivators as more meaningful. This revelation suggests that both the reward circuitry 
and the prefrontal cortex, related to different types of motivation, might be activated 
differently depending on cultural context. Hence, it would be intriguing to utilize the 
current design in an fMRI study to explore motivation-related connectivity among 
reward circuitry, the prefrontal cortex, and the hippocampus across cultures.
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Regarding limitations, the current study did not collect questionnaires assessing 
the cultural norms and values of each participant. Therefore, we were unable to 
analyse which specific cultural perspectives might have contributed to the observed 
differences in learning motivation between cultural groups. Future research in this 
area should consider incorporating such assessments to deepen the understanding of 
these cultural attributions.

5.5 Conclusions

To summarize, our study yielded three significant insights. Firstly, extrinsic motivation 
was more beneficial for learning in Chinese compared with Dutch students. Secondly, 
intrinsic motivation positively impacted learning across both Western and Eastern 
cultures. Thirdly, while extrinsic motivation did not enhance learning for high-achieving 
Dutch students when their intrinsic motivation was fulfilled, it always enhanced learning 
for low-achieving Dutch students. In contrast, extrinsic motivation consistently improved 
learning for Chinese students, irrespective of their performance level. These outcomes 
enhance our comprehension of how cultural nuances affect our motivation to learn and 
underscore the importance of considering these differences in educational strategies.
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5.7 Supplement

5.7.1 Supplementary Material 1: Spatial memory results

5.7.1.1 Methods
In the current experiment, during each trial of the memory test in which participants 
responded to an object as “Definitely OLD” or “Probably OLD”, they were additionally 
asked to put the object at the location where they saw it during the learning phase. 
This part of the memory test was called the spatial memory test. In this spatial 
memory test, there were three dependent variables calculated to represent the 
spatial memory performance, the spatial hit, the spatial error, and a general spatial 
test score.

The spatial hit was calculated and used as a binomial dependent variable, like the 
recognition accuracy described in the primary results. If participants managed to 
correctly put the object back to where they saw it during the learning phase, that 
trial would be counted as a “hit” (spatial hit as 1) in the spatial memory test. On the 
contrary, if they put it to a different location from the correct one, we counted that 
trial as a “miss” (spatial hit as 0).

Additionally, a spatial error was calculated, defined as the Euclidian distance 
between the responded location and the correct location. Hence, spatial error was a 
continuous variable.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆	𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 	,(𝑋𝑋!"#$%&' − 𝑋𝑋(%!!"())* + (𝑌𝑌!"#$%&' − 𝑌𝑌(%!!"())* 

We applied a logarithmic transformation to the spatial errors (after adding 1 to each 
value to avoid 0 in this variable) to achieve a normal distribution for the dependent 
variable in our inferential statistical analysis.

Last, we calculated a general spatial memory score by labelling objects where 
participants put back to the correct location and all 8 locations surrounding that 
correct location (Fig. S5.1) as “hit” (general spatial memory score as 1). On the 
contrary, if they put the object to the rest 16 locations from these 9 locations, we 
counted that trial as a “miss” (general spatial memory score as 0).
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Figure S5.1 General spatial memory score calculation. In the memory test, participants were asked to put 
the OLD objects back to the locations they saw the object during learning. When computing the general 
spatial memory score, a margin of error was permitted. Specifically, an object was classified as a “hit” in 
the spatial memory test if participants positioned it either at the designated location (i.e., where the 
rubber duck was initially placed) or within any of the eight surrounding locations marked by red stars. If 
the object is put to the rest 16 locations on the grid (i.e., without any mark), we would count that trial as a 
“miss” in the spatial memory test. If the correct location of the object is on the corner, only 3 locations 
around the corner would be tolerated as “hit” locations. When the correct location of the object is on the 
border, only 5 locations around the correct location will be included as “hit” locations.

We conducted the same models with LME toolbox as the primary results only with 
spatial hit, spatial error, and general spatial memory score as the dependent variables 
(Barr, 2013; Barr et al., 2013; Bates et al., 2015). However, these models could not 
pass model diagnostics. For instance, the residuals of the models do not fit a normal 
distribution. Therefore, we implemented the brm function of the package BRMS in R 
(Bürkner, 2017) to model spatial hit, spatial error, and general spatial memory score 
as dependent variables. We used the default priors of the BRMS package (Cauchy 
priors and LKJ priors for correlation parameters). The model was fit running four 
chains with 10000 iterations each (5000 warm-ups) and inspected for convergence. 
Coefficients of the effects were deemed statistically significant if the associated 95% 
posterior credible intervals were non-overlapping with zero.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆	ℎ𝑖𝑖𝑖𝑖/𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆	𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒/𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺	𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠	𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚	𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠	~	𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

× 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + (1 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟	|	𝑠𝑠𝑠𝑠𝑠𝑠) 

 
To match the analysis with recognition memory accuracy, this same model was 
also conducted on the data set including all participants, high achievers and low 
achievers respectively.

5.7.1.2 Results
All results for the spatial memory test can be found in Table S5.1-5.3. The effects 
found significant with the models will be described in detail.
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Spatial hit – When all participants were included, we found largely similar results for 
spatial memory (i.e. spatial hit) as for recognition memory (reported in the main text). 
Specifically, we found a significant autonomy effect, reward effect, and interaction 
effect between reward and cultural group on spatial hit (Table S5.1; Fig. S5.2A & 
S5.2B). This indicated that the presence of autonomy was beneficial for spatial hit. 
The same was true for the presence of rewards, also when dividing each cultural 
group into high and low achievers (Table S5.2; Fig. S5.3A-D). However, different from 
the recognition memory results reported in the main text, we also found a cultural 
group difference in spatial hit: the Chinese group had a lower spatial hit than the 
Dutch group. Since we also found an interaction effect between reward and cultural 
group on spatial hit, we conducted follow-up analyses with the emmeans package in R 
(Lenth, 2022). It was observed that the Chinese group performed worse on spatial hit 
than the Dutch group when they did not receive rewards (95%CI [-0.704, -0.140]), but 
not when they received rewards (95%CI [-0.443, 0.065]; Fig. S5.1).

Spatial error – When looking at spatial error (Table S5.1; Fig. S5.2C & S5.2D), we 
found similar results for the main effects of autonomy, reward, and cultural group 
as for spatial hit. Compared with the results on spatial hit, there was also no 
interaction between cultural group and reward on spatial error. Additionally, we also 
implemented the same model after dividing participants into high and low achievers 
based on their recognition memory accuracy (Table S5.3; Fig. S5.3E-H), and similar 
results were yielded with the analysis including all participants.

General spatial memory score — When looking at the general spatial memory score, 
we found all 3 main effects of cultural group, autonomy, and rewards (Table S5.1;  
Fig. S5.2E & S5.2F) when including all participants. These effects remained 
significant after splitting each cultural group into high and low achievers (Table S5.4; 
Fig. S5.3I-L). Different from results with memory accuracy as the dependent variable, 
the Dutch group (63.16% ± 10.09) performed better on spatial memory tests than the 
Chinese group (56.55% ± 10.19).

5.7.1.3 Conclusions
Taken together, the results of the spatial memory test largely mirror the results of 
the recognition memory test reported in the main text. To be more specific, the 
beneficial effect of reward on memory was stronger for Chinese students than for 
Dutch students, whereas the influence of autonomy on memory demonstrated a 
uniform effect across different cultural groups. However, the results on spatial 
memory tests deviated from the results on recognition memory in one respect: 
we found Dutch students performed better than Chinese students in the spatial 



154 | Chapter 5

memory test. This group difference between Chinese and Dutch students on spatial 
memory performance might be explained by a finding that over-challenging tasks 
usually weaken learning motivation of Chinese students but not of Western students 
(Moneta, 2004). In our case, the spatial memory test was more difficult than the 
recognition memory test. This might explain why Chinese students had a worse 
performance than the Dutch students in the spatial memory test, but not in the 
recognition memory test.

Table S5.1 BRMS results with Spatial memory as the dependent variable

Effect of interests All participants High achievers Low achievers

Dependent variable: Spatial hit 

Autonomy 95%CI [-0.100, -0.026] 95%CI [-0.108, -0.017] 95%CI [-0.134, 0.003]

Reward 95%CI [-0.168, -0.077] 95%CI [-0.136, -0.050] 95%CI [-0.272, -0.079]

Cultural group 95%CI [-0.261, -0.001] 95%CI [-0.278, 0.018] 95%CI [-0.367, 0.075]

Autonomy × Reward 95%CI [-0.042, 0.026] 95%CI [-0.053, 0.032] 95%CI [-0.072, 0.060]

Reward × Cultural group 95%CI [-0.094, -0.005] 95%CI [-0.058, 0.028] 95%CI [-0.199, -0.007]

Autonomy × Cultural group 95%CI [0.003, 0.075] 95%CI [0.002, 0.093] 95%CI [-0.045, 0.090]

Autonomy × Reward × Cultural group 95%CI [-0.023, 0.043] 95%CI [-0.037, 0.047] 95%CI [-0.051, 0.079]

Dependent variable: Spatial error 

Autonomy 95%CI [0.011, 0.029] 95%CI [0.009, 0.032] 95%CI [0.005, 0.036]

Reward 95%CI [0.021, 0.045] 95%CI [0.016, 0.037] 95%CI [0.019, 0.069]

Cultural group 95%CI [0.006, 0.077] 95%CI [0.000, 0.086] 95%CI [-0.011, 0.100]

Autonomy × Reward 95%CI [-0.002, 0.014] 95%CI [-0.005, 0.016] 95%CI [-0.007, 0.020]

Reward × Cultural group 95%CI [-0.001, 0.023] 95%CI [-0.008, 0.013] 95%CI [-0.001, 0.049]

Autonomy × Cultural group 95%CI [-0.018, 0.001] 95%CI [-0.021, 0.000] 95%CI [-0.021, 0.011]

Autonomy × Reward × Cultural group 95%CI [-0.013, 0.003] 95%CI [-0.014, 0.006] 95%CI [-0.020, 0.007]

Dependent variable: General spatial test score 

Autonomy 95%CI [-0.115, -0.029] 95%CI [-0.127, -0.028] 95%CI [-0.150, 0.011]

Reward 95%CI [-0.148, -0.060] 95%CI [-0.149, -0.051] 95%CI [-0.205, -0.032]

Cultural group 95%CI [-0.330, -0.076] 95%CI [-0.358, -0.030] 95%CI [-0.410, -0.030]

Autonomy × Reward 95%CI [-0.067, 0.004] 95%CI [-0.087, 0.015] 95%CI [-0.087, 0.025]

Reward × Cultural group 95%CI [-0.077, 0.011] 95%CI [-0.071, 0.027] 95%CI [-0.143, 0.034]

Autonomy × Cultural group 95%CI [-0.022, 0.063] 95%CI [-0.009, 0.089] 95%CI [-0.087, 0.025]

Autonomy × Reward × Cultural group 95%CI [-0.009, 0.063] 95%CI [-0.019, 0.085] 95%CI [-0.040, 0.071]

* Bold font indicates significant effects
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Figure S5.2 Results on spatial hits and spatial error (Table S5.1). A. For the Chinese group, the spatial hit 
is plotted as a function of autonomy and reward. The red colour represents the Chinese cultural group. 
The dark red colour represents the reward condition, while the light red colour represents the no reward 
condition. The error bars represent the standard error of the means (SEM). B. As in A, the spatial hit is 
plotted as a function of autonomy and reward for the Dutch group. The blue colour represents the Dutch 
cultural group. The dark blue colour represents the reward condition, while the light blue colour 
represents the no reward condition. Other conventions are the same as in Fig. S5.1A. C. For Chinese 
students, spatial error is plotted as a function of autonomy and reward. It should be noted that a lower 
spatial error reflects better spatial memory performance. All conventions are the same as in Fig. S5.1A.  
D. For the Dutch group, spatial error is plotted the same as in Fig. S5.1B. E & F. The conventions are the 
same as the panel of A & B, only with the y-axis representing general spatial memory score instead of 
spatial hit.
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Figure S5.3 The results respectively on high and low achievers are listed in Table S3. All conventions are 
the same as in Fig. S5.1. A. For the Chinese high achievers, the spatial hit is plotted as a function of 
autonomy and reward. B. For the Dutch high achievers, the spatial hit is plotted as a function of 
autonomy and reward C. For Chinese low achievers, the spatial hit is plotted the same as in Fig. S5.2A.  
D. For the Dutch low achievers, the spatial hit is plotted the same as in Fig. S5.2B. E-H. The conventions 
are the same as the panel of A & B & C & D, only with the y-axis representing spatial error instead of 
spatial hit. I-J. The conventions are the same as the panel of A & B & C & D, only with the y-axis 
representing general spatial memory score instead of spatial hit. 
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5.7.2 Supplementary Material 2: signal detection theory based analysis

5.7.2.1 Methods
Meanwhile, there might be cross-cultural differences in response biases (Leger 
& Gutchess, 2021). This difference in response bias might contribute to the 
differences in reward effect on memory accuracy between cultural groups. To rule 
out this possibility, we employed signal detection theory to calculate both d’ and C 
parameters, as detailed by Hautus et al. (2021; https://camel.psyc.vt.edu/models/
recognition/index.shtml). In the current experiment, both the manipulation of 
autonomy (MOVE/FOLLOW) and rewards (REWARD/NO REWARD) were within-
subject. Only the comparison of cultural groups was between-subject. In the learning 
phase of the experiment, each participant learned a total of 300 objects, divided into 
75 objects per experimental condition. During the memory test, these objects were 
presented in random order, intermixed with 300 filler objects (foils). Since these foil 
items do not belong to any of the four conditions, we could only calculate d’ and C at 
for overall performance at a participant level, but not per condition.

In order to compute d’ and C, we first calculated the hit rate and false alarm for 
each participant.

𝐻𝐻𝐻𝐻𝐻𝐻	𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐻𝐻𝐻𝐻𝐻𝐻	𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜	𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛	"#$/𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇	𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜	𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛"#$  

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐻𝐻𝐻𝐻𝐻𝐻	𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜	𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛	%&'/𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇	𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜	𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛%&' 

 
 

𝑑𝑑( = 	𝑍𝑍) − 𝑍𝑍*+ 

𝐶𝐶 = 	−1/2[𝑍𝑍) + 𝑍𝑍*+] 

 

We implemented z transformation for Hit rate (ZH) and False alarm (ZFA) for each 
participant. Then, d’ and C for each participant were computed as follows.

𝐻𝐻𝐻𝐻𝐻𝐻	𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐻𝐻𝐻𝐻𝐻𝐻	𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜	𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛	"#$/𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇	𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜	𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛"#$  

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐻𝐻𝐻𝐻𝐻𝐻	𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜	𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛	%&'/𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇	𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜	𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛%&' 

 
 

𝑑𝑑( = 	𝑍𝑍) − 𝑍𝑍*+ 

𝐶𝐶 = 	−1/2[𝑍𝑍) + 𝑍𝑍*+] 

 
According to signal detection theory, d’ represents the discriminability/sensitivity. 
The higher the d’ is for a participant, the better the participant is at discriminating 
between old and new objects. C represents the bias. If C is higher than 0, this 
suggests that participants had a conservative bias, meaning that participants tended 
to guess objects were NEW in the memory test. If C is lower than 0, this indicates 
that participants had a liberal bias, meaning that participants tended to guess objects 
were OLD in the memory test. With d’ and C as dependent variables, we respectively 
conducted independent sample t-tests between Dutch and Chinese groups.
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5.7.2.2 Results
In the results of t-tests, we found that the Dutch group (1.96 + 0.50) showed a higher 
d’(discriminability) than the Chinese group (1.51 + 0.58), t (86.40) = 3.90, p < 0.001. 
This suggests that Dutch students were better at discriminating between OLD and 
NEW objects than Chinese students. We also did the same analysis for C (bias) and 
found no difference between cultural groups (Dutch group: 0.40 + 0.30; Chinese 
group: 0.34 + 0.43.), t (78.67) = -0.79, p = 0.43. This suggested that there were no 
group differences in response bias, validating that our findings regarding the 
different effects of reward on memory accuracy between cultural groups could not be 
explained by bias alone.

The results partially aligned with previous work Leger and Gutchess (2021), in which 
they found that participants from North America were better at discriminating 
between OLD and NEW objects (d’) than participants from East Asia. They also found 
that participants from North America had a higher bias to respond to an object as 
OLD than East Asian participants. Moreover, in our study, we did not find differences 
in response bias (C) between cultural groups. To summarize, the cross-cultural 
differences in the reward effect might not be caused by differences in response 
bias between cultural groups. The current study builds upon the findings of Leger 
& Gutchess (2021), demonstrating that cultural differences extend beyond memory 
specificity also to include the effects of intrinsic and extrinsic motivation on memory.

5.7.3 Supplementary Material 3: Analysis of Recognition Memory Confidence

5.7.3.1 Methods
In the main manuscript, we labelled responses 1 and 2 were labelled as 'New,' and 
responses 3 and 4 were labelled as 'Old.' This binary classification was chosen to 
simplify the statistical analysis and to focus on the primary (preregistered) research 
question of whether participants could accurately distinguish between new and old 
items. In other words: it allows for a more straightforward interpretation of the 
recognition memory performance.

In this supplementary analysis, we implemented the same model as the main analysis 
on recognition memory accuracy on the Likert scale for memory confidence. We 
labelled “Definitely Old” -> 4, “Probably Old” -> 3, “Probably New” -> 2, “Definitely 
New” -> 1. Instead of using the glmer toolbox in R, we used the clmm toolbox (https://
search.r-project.org/CRAN/refmans/ordinal/html/clmm.html) since the dependent 
variable was ordinal. In this way, the higher the Likert scale is, the more confident 
the participants are in remembering the objects. We did not report this in the main 
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manuscript, since the results were very similar to the results using the binary format, 
but the results can be found in Supplementary Material 3.

5.7.3.2 Results
We also found the main effects of autonomy and reward and the interaction between 
the factor of cultural groups and rewards on the Likert scale. We did not report this 
in the manuscript since the results highly mirrored the results on memory accuracy. 
The results from this model are reported in tables here. These codes are also available 
in the open access codes for future researchers to check.

Table S5.5 CLMM results with the Likert scale for recognition memory as the dependent variable

Effect of interests β z p

Autonomy -0.23 -7.33 <0.001***

Reward -0.17 -5.68 <0.001***

Cultural group -0.12 -1.62 0.11

Autonomy × Reward -0.02 -1.48 0.19

Reward × Cultural group -0.08 -2.56 0.01*

Autonomy × Cultural group 0.04 1.25 0.21

Autonomy × Reward × Cultural group 0.02 1.29 0.14

*, p< 0.05; ***, p<0.001

Table S5.6 Mean and standard deviation for the Likert scale for recognition memory

Chinese Dutch

Main factors M SD M SD

MOVE 3.07 0.40 3.27 0.36

FOLLOW 2.85 0.44 2.98 0.41

REWARD 3.11 0.36 3.18 0.34

NO REWARD 2.82 0.52 3.08 0.37

Autonomy × Reward M SD M SD

MOVE/EXTRA REWARD 3.21 0.38 3.29 0.37

MOVE/NO EXTRA REWARD 2.93 0.53 3.24 0.38

FOLLOW/EXTRA REWARD 3.00 0.41 3.06 0.43

FOLLOW/NO EXTRA REWARD 2.71 0.56 2.91 0.44

Notes: The dependent variable for this model is the Likert scale (e.g., “Definitely Old” -> 4, “Probably 
Old” -> 3, “Probably New” -> 2, “Definitely New” -> 1). The higher the Likert scale is, the more confident 
participants are that the objects were seen in the learning task.
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To follow up, we also compared the Likert scale for the REWARD and NO REWARD 
conditions respectively for the Dutch group and the Chinese group with the emmeans 
package in R (Lenth, 2022). It was found that the facilitatory effect of reward 
(REWARD – NO REWARD) on Likert scale was significant for both the Chinese group 
(β = 0.48, z = 5.82, p < 0.001) and the Dutch group (β = 0.19, z = 2.23, p = 0.03). This 
reward effect on Likert scale was stronger for the Chinese group compared with 
the Dutch group. Alternatively, we also compared Likert scale between the Chinese 
and Dutch groups under both REWARD and NO REWARD conditions respectively 
(Fig. S5.5 & S5.6). It was found that under reward conditions, Likert scales were at 
a similar level between the Dutch and Chinese groups (β = 0.09, z = 0.61, p = 0.54). 
However, under the NO REWARD condition, the Dutch group performed with 
a higher confidence than the Chinese group (β = 0.39, z = 2.20, p = 0.03) in the 
recognition memory test.

In summary, the results of the CLMM model with Likert scale of recognition 
memory as the dependent variable mirrored the results from the main manuscript, 
where we used the binary dependent variable, recognition memory accuracy, as the 
dependent variable.
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General discussion
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Although I learned traditional Chinese dance for eight years and practiced many 
different pieces, the only one I still vividly remember, even after 15 years, is the 
piece I chose to learn myself. This illustrates the power of autonomy, the regulation 
of one’s own actions and experiences, in learning. When people take ownership of 
their choices, the resulting memory of the learning content becomes much stronger. 
The current thesis comprises four projects examining the cognitive and neural 
mechanisms that support the beneficial effect of autonomy on learning. Adopting 
an ecological psychology perspective (Vigliocco et al., 2024), the studies span three 
levels of analysis that could modulate the impact of autonomy on memory encoding: 
the internal predictive processing of the brain, external motivators, and socio-
cultural contexts.

6.1 Main findings

In Chapters 2 and 3, autonomy was operationalized through a binary choice paradigm, 
combined with manipulations of predictability and surprise of the choice outcomes. 
Together, these two chapters focused on how making active choices influences memory 
encoding through its interaction with predictive processing. In Chapters 4 and 5, 
autonomy was manipulated through an exploration paradigm, in which participants 
were either allowed to actively explore a grid of objects or were required to follow 
predetermined paths. Monetary reward was concurrently manipulated for each 
exploration grid. Participants were asked to remember as many objects as possible in 
all the grids. Chapter 4 implemented this paradigm in an fMRI scanner to examine how 
intrinsic and extrinsic motivational factors independently and interactively modulate 
brain activity during memory encoding, while Chapter 5 explored how cultural contexts 
modulate the beneficial effect of autonomy and reward on learning. In this chapter, I 
will summarize the main findings from Chapters 2-5, discuss and integrate the most 
relevant findings, and highlight the relevance for future research directions.

In Chapter 2, we designed a binary choice paradigm to test the beneficial effect of 
autonomy on memory accuracy under different predictabilities of the choice outcomes. 
We found a significant beneficial effect of autonomy on memory accuracy for both high 
and low predictability conditions of choice outcomes. Importantly, the autonomy effect 
on memory accuracy was markedly smaller under the low predictability condition than 
under high predictability. In essence, these results are consistent with the hypothesis 
that making active choices enhances memory by fostering predictive processing.
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In continuation of work from Chapter 2, Chapter 3 introduced an experiment with 
more restricted control over predictive processing dynamics (Fig. 6.1A). Based on 
information theory, in Chapter 3, we held the entropy of the informational context 
constant, ensuring that participants were generally unable to predict which image 
would appear following their choice throughout the memory encoding session. Instead, 
we selectively manipulated Shannon surprise, the log probability of the category of the 
presented image being consistent or inconsistent with their prediction (Modirshanechi 
et al., 2022). We observed a significant interaction between autonomy and surprise in 
the model accounting for the memorability of the individual images. Follow-up analyses 
revealed that making active choices enhanced memory performance only in the no-
surprise condition. This beneficial effect of choice on memory accuracy was eliminated 
under the surprise condition, suggesting that unexpected outcomes may disrupt the 
advantage conferred by autonomy.

In Chapter 4, we investigated the cognitive and neural mechanisms of how autonomy 
and reward, considered to be the micro-environment level in our framework (Fig. 6.1B), 
simultaneously influence learning. Participants engaged in a learning task wherein they 
were presented with grids of obscured images. We manipulated autonomy by granting 
participants control over their exploration trajectory over those grids of images, while 
we also varied the opportunity for monetary rewards for each image grid. Throughout 
the experiment, participants were tasked with memorizing as many objects as possible, 
followed by a subsequent memory assessment. Behaviourally, we found that both 
autonomy and reward independently enhanced learning, consistent with previous 
findings suggesting that intrinsic and extrinsic motivation operate in parallel without 
modulating one another (Duan et al., 2020). However, the results from brain activity 
provided a more nuanced picture. First, we noticed that the presence of autonomy led 
to stronger activation of dorsal anterior cingulate cortex (dACC), subcortical reward 
circuitry, and parahippocampal gyrus. However, no subcortical reward circuitry was 
observed when comparing the brain activity under the no-autonomy condition to the 
autonomy condition. Second, although reward did not influence the beneficial effect 
of autonomy on memory accuracy, we observed a subtle shift in the neural signature 
of autonomy under different reward contexts. Specifically, the presence of autonomy 
elicited a larger dACC cluster but a smaller putamen cluster activation under the reward 
compared to the no-reward condition. However, this result was not confirmed through 
statistical analysis; therefore, future studies are needed to investigate this mechanism 
further. We interpret our current findings with caution. Third, exploratory functional 
connectivity analysis revealed possible attentional modulation between the frontal 
cortex and the hippocampus during autonomous learning and more active perceptual 



168 | Chapter 6

information integration between the visual cortex and the hippocampus during non-
autonomous learning.

In Chapter 5, by administering the same learning experiment in Chapter 4 to 
Chinese and Dutch students, this study aimed to gain a better understanding of how 
autonomy and rewards simultaneously influence memory encoding under different 
cultural contexts, which is considered to be the macro-level in our framework 
(Fig. 6.1C). There are three key novel findings in this project. First, we found that 
the beneficial effect of monetary rewards on learning was stronger for Chinese 
students than for Dutch students. Second, we found that there was no difference in 
the beneficial effect of autonomy on learning between Chinese and Dutch students. 
Third, consistent with Chapter 4, we confirmed that the interaction between 
intrinsic and extrinsic motivation is not significant. This could indicate that when 
intrinsic and extrinsic motivators exist simultaneously, they have an additive effect, 
enhancing learning beyond the influence of either factor alone (Duan et al., 2020).

6.2 Interpretation of the findings

6.2.1 Autonomy supports learning by facilitating prediction over 
upcoming information
Taking Chapters 2 and 3 together, we could conclude that making active choices, 
as a form of autonomy, supports memory encoding by facilitating prediction over 
upcoming information. This is supported by the attenuation of the beneficial effect 
of choice in memory encoding under the low predictability of choice outcomes. 
Also, it was found in Chapter 3 that choices could only enhance learning when the 
image was presented under a no-surprise condition, while choices could not enhance 
learning when it was the surprise condition. Moreover, Chapter 4 indicated results 
that autonomy could induce higher activation in dACC and enhanced functional 
connectivity between the hippocampus and attention-related frontal-parietal 
networks, including the inferior frontal gyrus and supramarginal gyrus. This also 
aligns with the notion that making active choices facilitates attentional tuning in 
anticipation of upcoming information, thereby enhancing the encoding process. 
Collectively, the findings from Chapters 2 to 4 allow us to address the research 
question posed in Chapter 1, Section 1.2: whether and how internal predictive 
processing modulates the beneficial effect of autonomy on memory encoding, and 
how this is reflected in the brain.
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Figure 6.1 Summary of main findings relating back to the hierarchical structure of the factors that could 
influence autonomy and memory encoding. A. Combining findings from Chapters 2 and 3, we conclude 
that the internal mechanism of predictive processing interacts with autonomy to influence memory 
encoding. B. Based on Chapters 4 and 5, we find that the micro-environmental factor of reward does not 
modulate the effect of autonomy. However, autonomy and reward independently enhance memory 
encoding. Crucially, only autonomy increases activation in reward-related brain regions during 
encoding, while reward does not. C. Chapter 6 reveals that macro-environmental socio-cultural factors 
shape how reward influences memory encoding, but do not affect the impact of autonomy. Nevertheless, 
both autonomy and reward continue to independently support memory performance.
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6.2.1.1 Predictability modulates the choice effect in memory encoding
Across two experiments in Chapter 2, we found that the choice effect on memory 
accuracy was attenuated under low predictability compared to high predictability. 
This result echoes findings from educational research arguing that choice enhances 
motivation only under certain conditions (Katz & Assor, 2006). Specifically, autonomy 
enhances learning most effectively when the choices are made based on information 
that is meaningfully related to the content students will subsequently be exposed to, 
rather than being arbitrary or unrelated to the learning material. Our findings can be 
interpreted through three theoretical perspectives.

To start with, the act of choosing transforms the information process from passive 
perceiving to active predicting. Our brains are not old-fashioned computers that 
can only take passive inputs and produce responses. On the contrary, our brains 
are considered to be active inference agents that constantly predict upcoming 
events in the surrounding environments (Friston, 2010; Friston et al., 2016; Friston 
et al., 2017; Friston et al., 2013). Choices could enhance active inference, leading to 
a facilitation of reducing prediction error between predicted states and perceived 
information (Friston et al., 2013). Hence, when participants could not accurately 
predict the outcome of their choices, the sense of autonomy would also be attenuated 
(Friston et al., 2013). Meanwhile, there are also studies indicating that maybe just 
making a choice would bring an illusory sense of control (Sullivan-Toole et al., 2017). 
This is supported by our findings in Chapter 2, which showed that even under low 
predictability, when participants could not accurately anticipate the outcomes of 
their choices, making a choice still enhanced memory encoding, though the effect 
was notably weaker compared to the high-predictability condition.

Second, some studies also posit that choices would lead to a distortion of the 
information value after it was perceived. When people are choosing, they might 
feel that information is more valuable than when they could not choose (Assor et 
al., 2002; DuBrow et al., 2019; Izuma & Murayama, 2013; Meng & Ma, 2015; Sharot 
& Sunstein, 2020). Making an active choice could create a stronger information 
bias towards the positive valence of information (Chambon et al., 2020). As a result, 
the beneficial effect of choice emerged only when the information aligned with 
predictions before images appeared, as demonstrated in Chapters 2 and 3. However, 
the current design did not account for the subjective value or preference associated 
with the information. Future studies could incorporate individual preferences to 
examine how value influences memory encoding. In the present study, all stimuli 
were largely neutral in content.
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Third, since people would more actively predict upcoming information when 
they could choose, they could also coordinate their attention beforehand. This is 
consistent with the mechanism of proactive interference and divided attention since 
more encoded cues might cause a higher cognitive load (Jacoby et al., 2010; Kane & 
Engle, 2000; Luo et al., 2022). This was supported by previous findings showing that 
even if people could only control when to adjust their attention to the next object, 
memory would already be boosted (Gureckis & Markant, 2012; Markant et al., 2014a). 
When comparing functional connectivity with the hippocampus under autonomy 
to no-autonomy conditions, we found increased hippocampal connectivity with 
frontal regions, including middle and inferior frontal gyri (Badre & Wagner, 2007; 
Eichenbaum, 2017; Tomita et al., 1999; Voss et al., 2011b; Zheng et al., 2021) and the 
supramarginal gyrus (Cristoforetti et al., 2022; Das & Menon, 2024; Guidali et al., 
2019; Yue & Martin, 2021). These findings align with previous studies indicating that 
attention-related frontal-parietal networks enhance cognitive resource allocation 
during memory formation with active exploration (Voss et al., 2011b). As a result, 
the choice effect on memory accuracy became smaller under low predictability, in 
other words, when attentional tuning could not be successfully deployed due to the 
unpredictability of the upcoming content.

In summary, in Chapter 2, we found that the choice facilitatory effect on memory 
diminished under low predictability. This finding supported the hypothesis that 
choice improves learning by enhancing prediction over the consequences. Three 
potential explanations for this attenuation of the choice effect emerge. First, choices 
induced a more active prediction towards information. Second, choices evoked a 
sense of lower prediction error between the choice and the perceived information. 
Third, choices facilitated the attention coordination before the information was 
presented. This explanation was also supported by neuroscientific findings from 
Chapter 4, which showed greater engagement of the attentional control network 
during memory encoding when participants experienced autonomy compared to 
when they did not. In addition, one should observe that making choices still enhanced 
memory even under low predictability conditions (see Chapter 2), suggesting that the 
effect of choice was robust. This implies that choice may induce an illusion of control, 
enhancing memory even when outcomes are unpredictable.

6.2.1.2 Choice works only when it is not a surprise
Chapters 2 and 3 collectively demonstrate that the memory-enhancing effect of active 
choice depends on consistency between the choice and its outcome. In Experiment 2 
of Chapter 2, the choice benefit disappeared for objects that were not selected under 
low predictability. Likewise, Chapter 3 showed that choice only improved memory in 
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the no-surprise condition; when the outcome violated expectations, the advantage of 
making a choice was entirely abolished.

Comparing the two experiments, Chapter 2 showed that when participants viewed 
both object names for a fixed duration, they may have formed competing predictions 
under low predictability, particularly in the no-choice condition. This could have 
led to confusion or false memory, reducing accuracy. In contrast, when participants 
actively made a choice, even under low predictability, they may have formed a 
stronger anticipatory representation of the selected object, mitigating the effect of 
competing predictions (Meng & Ma, 2015). Based on this result, we could demonstrate 
that when the upcoming information fits the prediction, even when the predictability 
was low, the choice effect on memory accuracy would not be attenuated. In Chapter 
3, however, participants could only expect to see a consistent category, not specific 
items, thus forming weaker anticipatory predictions. Under these conditions, the 
memory benefit of choice was entirely eliminated. This aligns with previous findings 
suggesting that moderate violations of prediction can impair encoding (Csink et 
al., 2021; de Bruine et al., 2024; Frank et al., 2022). Together, these results support 
the interpretation that active choice enhances memory by strengthening predictive 
processes—a conclusion consistent with predictive coding accounts (Friston et al., 
2013; Meng & Ma, 2015).

6.2.2 Reward does not influence the choice effect on memory behaviourally
Furthermore, in Chapter 1, we raised a second research question concerning the 
direct micro-environment, specifically, whether and how rewards modulate the 
beneficial effect of autonomy during memory encoding. To address this, we first 
examined the behavioural outcomes in Chapters 4 and 5. However, we did not find 
a significant interaction between autonomy and reward on memory performance. In 
other words, autonomy and rewards showed an additive rather than an undermining 
relationship in learning. That is, people feel intrinsically engaged in learning tasks 
regardless of external stimuli (Duan et al., 2020). Although some previous studies 
have found that the advantageous impact of autonomy on the learning process is 
potentially diminished by extrinsic motivation (i.e., overjustification; Hidi, 2016; 
Lepper et al., 1973; Murayama & Kuhbandner, 2011), the differing results in these 
studies may stem from an overgeneralization of the circumstances (Eisenberg, 2002). 
Cerasoli et al. (2014) proposed that extrinsic rewards are more likely to undermine 
intrinsic motivation when they are directly tied to task performance. Applied to our 
context, this would suggest that the beneficial effect of intrinsic motivation might 
be diminished if rewards were administered during the memory test phase rather 
than the encoding phase. However, in both our experiment and that of Duan et al. 
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(2020), intrinsic and extrinsic motivators were present simultaneously during the 
encoding phase. Under these conditions, we observed that autonomy and rewards 
enhanced memory in parallel, with no evidence of interference, thereby supporting 
the view that the timing and relevance of extrinsic incentives are critical moderators 
of motivational interactions.

Moreover, the interaction between intrinsic and extrinsic motivation should be 
interpreted in light of cultural context and individual differences in learning 
outcomes. One possible explanation for our findings is that the effect of autonomy 
may be diminished by the presence of rewards among Dutch high-achieving 
students. This may reflect their perception of extrinsic incentives as controlling, 
which undermines the sense of volition essential to autonomy. This interpretation 
aligns with educational research suggesting that extrinsic motivation can negatively 
impact academic achievement in Western contexts, whereas both intrinsic and 
extrinsic motivators contribute positively to learning outcomes in Chinese students 
(Zhu & Leung, 2011).

In summary, intrinsic and extrinsic motivation tend to operate in parallel for 
most individuals. However, among high-achieving students from Western cultural 
backgrounds, extrinsic rewards may be perceived as controlling, thereby undermining 
the beneficial effect of autonomy on learning. These findings underscore the 
importance of tailoring educational approaches to individual differences. As 
Confucius aptly noted, “Teaching in accordance with individual aptitude.”

6.2.3 Autonomy enhances memory encoding by eliciting reward 
circuitry activation
To further explore how autonomy and rewards jointly influence learning, we examined 
their interaction at the neural level in Chapter 4. It is worth mentioning that we did 
not observe any brain region activated by monetary rewards, while only observed that 
the reward circuitry was activated higher under the autonomy condition compared 
to the no-autonomy condition, even though we found main effect of autonomy and 
reward in behavioural results, suggesting that both motivational factors could boost 
memory encoding. The comparison between autonomy and no-autonomy conditions 
revealed significantly stronger BOLD activation in the caudate, putamen, ACC, and 
parahippocampal gyrus. Unsurprisingly, this pattern aligns with existing evidence 
that autonomous memory encoding, as a form of active learning, recruits the core 
components of the dopaminergic reward circuitry (Stuber, 2023), regions involved in 
modulation of the dopaminergic circuitry, namely the cortico-basal ganglia circuit, 
together with the memory system like the parahippocampal gyrus (Duan et al., 
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2020; Dubinsky & Hamid, 2024; Leotti & Delgado, 2011; Murty et al., 2015; Ripolles 
et al., 2016; Voss et al., 2011b). The divergent results from brain activation indicated 
that autonomy, as an intrinsic motivator, is more important and salient than monetary 
rewards during learning.

Although no behavioural evidence suggested that autonomy was more rewarding 
in the absence of external rewards, our exploratory neuroimaging results provided 
preliminary support that autonomy elicited a larger cluster of activation in reward-
related regions, particularly the bilateral putamen, under no-reward conditions 
compared to reward conditions. While both the putamen and dorsal anterior cingulate 
cortex (dACC) were more active under autonomous conditions across reward contexts, 
their patterns diverged. Specifically, putamen activation associated with autonomy was 
more extensive in the no-reward condition, suggesting that autonomy may be perceived 
as more inherently rewarding in the absence of extrinsic incentives. Conversely, 
autonomy-related activation of the dACC was larger under reward conditions, pointing 
toward a shift in neural engagement from motivational (reward-related) to cognitive 
control (attentional and monitoring) systems depending on the reward context 
(Kennedy et al., 2024; Leotti & Delgado, 2011). However, since these observations of the 
cluster size in putamen and dACC showing activation differences were not supported 
by direct statistical comparisons, they should be interpreted with caution.

Taken together, these findings highlight the limitations of the traditional dichotomy, 
which views intrinsic and extrinsic motivation as either strictly additive or mutually 
exclusive (Bardach & Murayama, 2025). Thus, we advocate for a reconceptualization 
of motivational interactions that transcends the simple binary of enhancement versus 
undermining. While our neuroimaging findings point toward a potential shift in 
the underlying neural mechanisms of autonomy depending on the reward context, 
these conclusions remain exploratory. Because the observed cluster size differences 
in putamen and dACC were not supported by direct statistical comparisons, they 
should be interpreted tentatively. Future studies should incorporate conjunction or 
disjunction analyses and directly compare cluster sizes across participants to validate 
the robustness of these neural shifts.

6.2.4 Autonomy boosts learning universally across cultures, but external 
reward does not

6.2.4.1 Autonomy effect on learning does not differ between cultural groups
Furthermore, we did not find cultural differences in the beneficial effect of intrinsic 
motivation on learning. This was indicated by the strong effects of autonomy on 
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memory performance, which were present for both Chinese and Dutch students. These 
findings are congruent with the assertions of self-determination theory (SDT), which 
posits that autonomy is a fundamental psychological need and, akin to biological drives, 
is a universal phenomenon across different cultures (Helwig, 2006; Ryan & Deci, 2017). 
Moreover, intrinsic motivation, particularly autonomy, is closely linked to the pursuit 
of personal challenges (Di Domenico & Ryan, 2017). While intrinsic motivation and 
self-improvement are often highlighted in Western ideologies, these concepts are also 
deeply valued in Eastern traditions. For instance, Confucian philosophy emphasizes the 
importance of self-cultivation, life building, self-development, and personal reflection 
(Liu et al., 2020a; Zusho, 2005), and Taoism emphasizes the sense of autonomy and 
freedom in personal behaviours (Wenzel, 2003).

6.2.4.2 Reward effect on learning is stronger for Chinese students compared to 
Dutch students
In both cultural groups, participants remembered more objects in the reward 
condition than in the no-reward condition. However, Chinese students exhibited a 
stronger effect of reward on memory than Dutch students, indicated by a significant 
interaction effect between factors of reward and cultural group (Fig. 5.3A). When 
delving deeper into this interaction effect, it was found that Chinese students 
remembered fewer objects compared with Dutch students when there was no 
monetary reward. Students from the two cultural groups performed equally well for 
the rewarded objects.

This is consistent with findings from previous studies suggesting that people from 
a collectivistic cultural background would be more motivated by external sources 
(Huang, 2013). Distinct from Western philosophy, Chinese cultural contexts emphasize 
academic attainment (Dekker & Fischer, 2008) and family honour (Salili et al., 2012). 
This ethos stems from the Confucian principle of "Rushi" (入世), which promotes 
self-improvement and contribution to societal prosperity (Hao, 2018). In Confucian 
culture, factors that come from external environments are more emphasized than in 
non-Confucian Western educational contexts, like materialistic rewards, academic 
achievement, expectancy of success, and group benefits (Blevins et al., 2023; Chen et 
al., 2005; Iyengar & DeVoe, 2003; Tao & Hong, 2013; Telzer et al., 2017).

From the sociocultural brain perspective, neural responses toward external stimuli 
are shaped by both short- and long-term dynamic cultural experiences (Han, 2017; 
Han & Ma, 2014; Han et al., 2013). For instance, compared with American participants, 
Chinese participants showed more sustained reward circuitry activation (in the 
ventral striatum) during a go/no-go task when their goal was to improve their 
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accuracy in this task (Telzer et al., 2017). In this situation, Chinese students were 
more motivated by gaining higher task achievement than American students were. 
This observation is consistent with the cultural valuation of achievement, which is 
notably higher for Chinese students compared to Western students (Tao & Hong, 
2013). Integrating our findings and the sociocultural brain perspective, culture plays 
a critical role in shaping one's sensitivity towards various motivational factors, which 
is closely tied to the functioning of the reward system.

In summary, extrinsic motivation is universally recognized for enhancing behavioural 
performance. This is likely due to the regulatory effect of extrinsic motivation on 
activity in the reward circuitry (e.g., striatum). Our study further clarifies that this 
effect is more pronounced in Chinese individuals compared to Dutch individuals 
during learning tasks, suggesting cultural variability in cognitive responses to 
extrinsic motivators. These results together support the idea that intrinsic motivation 
for learning may be culturally universal, while extrinsic motivation for learning is 
stronger for Chinese students than for Dutch students.

6.3 Limitations, Future Directions, and Implications

6.3.1 Limitations and Future Directions
One of the central findings of this thesis is that autonomy enhances learning by 
facilitating active predictions about upcoming information. While the current 
studies operationalized predictability and surprise through Shannon’s information 
theory, future research could adopt more dynamic frameworks. For instance, 
incorporating models of stochasticity and volatility, as proposed by Piray and Daw 
(2024), may allow for a more nuanced understanding of how contextual uncertainty 
shapes the effect of choice on memory encoding. These computational approaches 
could be further complemented by neuroimaging methods such as fMRI and EEG 
to examine how brain activity is modulated by the interaction between autonomy 
and predictive processing during learning. Another potential approach would be to 
introduce specific emotional valence during the act of making active choices (Kaskan 
et al., 2022), allowing for a more precise examination of how the predictability of 
informational value interacts with active choice in shaping memory encoding.

Further analysis would offer deeper insights into the neural mechanisms underlying 
the effects observed in this thesis. For instance, future studies could implement 
advanced brain connectivity techniques such as BrainGNN (Li et al., 2021) to explore 
how autonomy shapes large-scale, dynamic brain networks. Incorporating such 
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graph theory-based models may enable a more comprehensive understanding of how 
distributed neural systems interact during autonomous learning. Also, in Chapter 4, 
whole-brain analyses were conducted and reported in the supplementary materials. 
As expected, differences in brain activations were observed in motor control regions, 
including the parietal lobe and cerebellum. This pattern is likely a result of the task 
design. In the autonomy conditions, participants naturally engaged in more motor 
activity to explore, while in the no-autonomy condition, they may have exerted less 
effort in following the movement of the searchlight window with the joystick. Further 
analyses should incorporate kinematic move regressors to determine whether 
activity in these motor control regions can be effectively regressed out, allowing for 
better control of potential motor-related confounds.

In future research involving rewards, particularly when comparing cultural groups, 
it is important to assess how individuals value monetary incentives. The present 
study did not include questionnaires evaluating participants’ cultural values or 
personal attitudes toward money, limiting our ability to interpret which specific 
cultural perspectives influenced learning motivation. To better understand the 
role of cultural norms and values in modulating motivational processes, future 
studies should incorporate such psychometric assessments as part of their design. 
Additionally, with the growing trend of large-scale population studies conducted via 
online platforms, it would be valuable to extend the study from Chapter 5 online to 
gather data from a broader range of cultural groups, enabling a deeper investigation 
into how cultural norms specifically shape learning motivations.

6.3.2 Practical Implications
In the domain of education and learning, on one hand, our findings indicate that 
the benefits of choice for learning depend on the meaningfulness and manageability 
of the options. In educational settings, this suggests that when offering students 
choices, educators should ensure that options are not overwhelming or arbitrary. For 
instance, in educational settings, teachers should consider providing students with 
opportunities to structure their own study schedules. Allowing more autonomous 
study time may enhance learning and facilitate the reconsolidation of acquired 
knowledge. However, offering too many choices in class can lead to confusion and a 
sense of unpredictability, which may render students’ decisions less meaningful and 
ultimately hinder their learning. Moreover, when students are given the autonomy 
to plan their studies, it is beneficial for teachers to first provide structured guidance 
or foundational information. This scaffolding enables students to form expectations 
about the material, promoting a greater sense of control and thereby supporting 
more effective learning. Crucially, learners must perceive that their selections have 
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genuine consequences. In other words, frequent violations of their choices may 
undermine the motivational value of autonomy.

On the other hand, our results point to autonomy as a more stable and universally 
beneficial motivational force, whereas the effect of extrinsic rewards appears to be 
more context-dependent and variable. The influence of rewards may fluctuate based 
on individual valuation and environmental framing. In this light, while rewards 
should be implemented with caution, autonomy emerges as a more robust and 
reliable foundation for supporting learning. Thus, from an applied perspective, 
educators and caregivers are encouraged to prioritize the cultivation of autonomy, 
as its positive impact on engagement and memory encoding appears to be consistent 
and enduring. This principle can also be extended to parenting practices. For 
example, rather than using external incentives such as offering extra screen time 
to motivate children to complete their homework, parents might instead foster 
autonomy by allowing children to choose the book or subjects they want to focus 
on. Supporting such autonomy can promote intrinsic motivation and lead to more 
sustainable learning engagement. While this approach may require additional 
effort from parents in terms of guidance and structure, the long-term benefits to 
the child’s motivation and self-regulated learning are likely to be more meaningful 
and enduring.

Extending beyond the field of education and learning, our findings also offer insights 
into workplace motivation and strategies for promoting sustainable work practices. 
With the rise of remote and flexible working arrangements, providing employees 
with greater autonomy—such as allowing them to structure their own schedules—
may enhance productivity and motivation. However, this approach warrants further 
investigation, particularly regarding how flexibility interacts with external incentives 
in professional contexts. Moreover, cultural differences must be taken into account, 
as our results suggest that the interplay between autonomy and rewards may vary 
significantly across socio-cultural backgrounds.

6.4 Conclusion

The current thesis is structured around three key findings, based on two 
operationalizations of autonomy, respectively, binary choices and active exploration. 
First, we show that active choices enhance learning by facilitating predictive 
processing for upcoming information in Chapters 2 and 3. Second, in Chapter 4, 
while behavioural results indicate that autonomy and reward operate independently, 
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neural data reveal a more nuanced interaction: autonomy elicited stronger activation 
in reward-related brain regions when no external reward was present, and greater 
engagement of attentional control regions when rewards were introduced. Third, 
in Chapter 5, although the effect of autonomy on learning was not influenced by 
cultural context, the motivational value of rewards was. Specifically, students from 
Eastern cultural backgrounds demonstrated greater sensitivity to reward-based 
motivation than those from Western backgrounds. Together, these findings offer 
a comprehensive account of the cognitive and neural mechanisms supporting 
autonomy during learning, framed within an ecological psychology perspective.
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Rewards can be costly: extrinsic rewards are not beneficial during autonomous learning. 
PsyArXiv. https://doi.org/10.31234/osf.io/2ga8j

Van Rossum, G. (2023). The Python Language Reference.  Python Software Foundation.  
https://docs.python.org/3/

Vansteenkiste, M., Lens, W., Soenens, B., & Luyckx, K. (2006). Autonomy and Relatedness among 
Chinese Sojourners and Applicants: Conflictual or Independent Predictors of Well-Being and 
Adjustment? Motivation and Emotion, 30(4), 273-282. https://doi.org/10.1007/s11031-006-9041-x

Vansteenkiste, M., Ryan, R. M., & Soenens, B. (2020). Basic psychological need theory: 
Advancements, critical themes, and future directions. Motivation and Emotion, 44(1), 1-31.  
https://doi.org/10.1007/s11031-019-09818-1

Vansteenkiste, M., Zhou, M., Lens, W., & Soenens, B. (2005). Experiences of Autonomy and Control 
Among Chinese Learners: Vitalizing or Immobilizing? Journal of Educational Psychology, 97(3), 468-483.  
https://doi.org/10.1037/0022-0663.97.3.468

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out 
cross-validation and WAIC. Statistics and Computing. 27(5), 1413–1432. doi:10.1007/s11222-016-9696-4.  
Online, arXiv preprint arXiv:1507.04544.

Verdugo, P. R., van Lieshout, L., de Lange, F. P., & Cools, R. (2023). Choice Boosts Curiosity. Psychological 
Science, 34(1), 99-110.



194 |

Vigliocco, G., Convertino, L., De Felice, S., Gregorians, L., Kewenig, V., Mueller, M. A. E., 
Veselic, S., Musolesi, M., Hudson-Smith, A., Tyler, N., Flouri, E., & Spiers, H. J. (2024). 
Ecological brain: reframing the study of human behaviour and cognition. R Soc Open Sci, 11(11), 
240762. https://doi.org/10.1098/rsos.240762

Voss, J. L., & Cohen, N. J. (2017). Hippocampal-cortical contributions to strategic exploration during 
perceptual discrimination. Hippocampus, 27(6), 642-652. https://doi.org/10.1002/hipo.22719

Voss, J. L., Galvan, A., & Gonsalves, B. D. (2011a). Cortical regions recruited for complex active-learning 
strategies and action planning exhibit rapid reactivation during memory retrieval. Neuropsychologia, 
49(14), 3956-3966.

Voss, J. L., Gonsalves, B. D., Federmeier, K. D., Tranel, D., & Cohen, N. J. (2011b). Hippocampal brain-
network coordination during volitional exploratory behavior enhances learning. Nature Neuroscience, 
14(1), 115-120. https://doi.org/10.1038/nn.2693

Voss, J. L., Warren, D. E., Gonsalves, B. D., Federmeier, K. D., Tranel, D., & Cohen, N. J. 
(2011c). Spontaneous revisitation during visual exploration as a link among strategic 
behavior, learning, and the hippocampus. Proceedings of the National Academy of Sciences, 
108(31). https://doi.org/10.1073/pnas.1100225108

Walker, G. J., Yan, N., & Kono, S. (2020). Basic psychological need satisfaction and intrinsic 
motivation during leisure: A cross-cultural comparison. Journal of Leisure Research, 51(4), 489-510.  
https://doi.org/10.1080/00222216.2020.1735973

Wenzel, C. H. (2003). Ethics and Zhuangzi: Awareness, Freedom, and Autonomy. Journal of Chinese 
Philosophy, 30(1), 115-126. https://doi.org/10.1111/1540-6253.00109

Wichmann, S. S. (2011). Self‐determination theory: The importance of autonomy to well‐being across 
cultures. The Journal of Humanistic Counseling, 50(1), 16-26.

Wimmer, G. E., Li, J. K., Gorgolewski, K. J., & Poldrack, R. A. (2018). Reward Learning over Weeks Versus 
Minutes Increases the Neural Representation of Value in the Human Brain. J Neurosci, 38(35), 7649-7666.  
https://doi.org/10.1523/JNEUROSCI.0075-18.2018

Wolosin, S. M., Zeithamova, D., & Preston, A. R. (2012). Reward modulation of hippocampal subfield 
activation during successful associative encoding and retrieval. Journal of cognitive neuroscience, 24(7),  
1532-1547.

Xue, J., Jiang, T., Chen, C., Murty, V. P., Li, Y., Ding, Z., & Zhang, M. (2023). The interactive 
effect of external rewards and self-determined choice on memory. Psychol Res, 87(7), 2101-2110.  
https://doi.org/10.1007/s00426-023-01807-x

Yu, S., Chen, B., Levesque-Bristol, C., & Vansteenkiste, M. (2016). Chinese Education 
Examined via the Lens of Self-Determination. Educational Psychology Review, 30(1), 177-214.  
https://doi.org/10.1007/s10648-016-9395-x

Yue, Q., & Martin, R. C. (2021). Maintaining verbal short-term memory representations in non-
perceptual parietal regions. Cortex, 138, 72-89. https://doi.org/10.1016/j.cortex.2021.01.020

Zhang, Z., van Lieshout, L., & Bekkering, H. (2024). Autonomy in learning: Predictability modulates the 
beneficial effect of choice on learning. PsyArXiv.

Zhang, Z., van Lieshout, L. L. F., Colizoli, O., Li, H., Yang, T., Liu, C., Qin, S., & Bekkering, H. (2025). A 
cross-cultural comparison of intrinsic and extrinsic motivational drives for learning. Cogn Affect Behav 
Neurosci, 25(1), 25-44. https://doi.org/10.3758/s13415-024-01228-2

Zheng, L., Gao, Z., McAvan, A. S., Isham, E. A., & Ekstrom, A. D. (2021). Partially overlapping spatial 
environments trigger reinstatement in hippocampus and schema representations in prefrontal 
cortex. Nat Commun, 12(1), 6231. https://doi.org/10.1038/s41467-021-26560-w



| 195References

R

Zheng, L., Gao, Z., McAvan, A. S., Isham, E. A., & Ekstrom, A. D. (2021). Partially overlapping spatial 
environments trigger reinstatement in hippocampus and schema representations in prefrontal 
cortex. Nat Commun, 12(1), 6231. https://doi.org/10.1038/s41467-021-26560-w

Zhou, N., Lam, S.-F., & Chan, K. C. (2012). The Chinese classroom paradox: A cross-cultural 
comparison of teacher controlling behaviors. Journal of Educational Psychology, 104(4), 1162-
1174. https://doi.org/10.1037/a0027609

Zhu, X., Wang, L., Yang, S., Gu, R., Wu, H., & Luo, Y. (2016). The Motivational Hierarchy between 
the Personal Self and Close Others in the Chinese Brain: an ERP Study. Front Psychol, 7, 1467.  
https://doi.org/10.3389/fpsyg.2016.01467

Zhu, Y., & Leung, F. K. (2011). Motivation and achievement: Is there an East Asian model? International 
Journal of Science and Mathematics Education(9), 1189-1212.

Zhu, Y., Zhang, L., Fan, J., & Han, S. (2007). Neural basis of cultural influence on self-representation. 
Neuroimage, 34(3), 1310-1316. https://doi.org/10.1016/j.neuroimage.2006.08.047

Zusho, A. (2005). Religion, motivation, and schooling in East Asia and The United States. In M. L. Maehr 
& S. A. Karabenick (Eds.), Motivation and Religion (Vol. 14). Emerald Group Publishing Limited

Zwiers, M. P., Moia, S., & Oostenveld, R. (2021). BIDScoin: A User-Friendly Application 
to Convert Source Data to Brain Imaging Data Structure. Front Neuroinform, 15, 770608.  
https://doi.org/10.3389/fninf.2021.770608





Summary



198 |

Nederlandse samenvatting

Al op jonge leeftijd, toen ik traditionele Chinese dans leerde, was ik gefascineerd 
door het feit dat ik alleen plezier beleefde aan het leren van de dansstukken die ik 
zelf had gekozen. Wanneer een dans was toegewezen voor een wedstrijd of examen, 
verloor ik mijn interesse. Nu, jaren nadat ik ben gestopt met dansen, herinner ik me 
nog steeds levendig de choreografie van het stuk dat ik zelf had gekozen om te leren. 
Dit illustreert de blijvende kracht van autonomie – het zelf reguleren van je eigen 
handelingen en ervaringen – in het leerproces. Zoals Carl Rogers ooit zei: “The only 
kind of learning which significantly influences behaviour is self-discovered, self-
appropriated learning.” Deze uitspraak onderstreept de centrale rol van autonomie 
in leren en onderwijs. Toch is er verrassend weinig bekend over de cognitieve en 
neurale mechanismen die ten grondslag liggen aan de voordelen van autonomie bij 
geheugenopslag en leren. Mijn proefschrift heeft als doel om te onderzoeken hoe 
het gevoel van autonomie het coderen van informatie in het geheugen beïnvloedt, in 
samenhang met andere omgevingsfactoren die mensen omringen, met een focus op 
zowel cognitieve als neurale processen.

Om deze onderzoeksvraag te beantwoorden, heb ik een ecologisch psychologisch 
perspectief aangenomen om te betogen dat het begrijpen van de interactie tussen 
autonomie en andere modulerende factoren – variërend van interne mechanismen 
tot micro- en macro-omgevingsinvloeden – ons inzicht in hoe autonomie leren 
ondersteunt, kan verdiepen. Ik richt me specifiek op drie niveaus: (1) interne 
predictieve verwerking van aankomende informatie, die nauw samenhangt met 
welke kennis in het geheugen wordt opgeslagen; (2) het micro-omgevingsniveau, 
waaronder externe beloningen zoals geld of cijfers vallen die bedoeld zijn om leren te 
stimuleren; en (3) het macro-omgevingsniveau, dat bredere sociaal-culturele normen 
vertegenwoordigt die de motivatie en leertradities van mensen vormgeven.

In de hoofdstukken 2 en 3 onderzocht ik de interactie tussen autonomie en predictieve 
verwerking bij geheugenopslag. Wanneer mensen de mogelijkheid krijgen om 
te kiezen, verbeteren hun leerresultaten doorgaans. Toch zijn de onderliggende 
cognitieve mechanismen van dit effect zelden onderzocht. In Hoofdstuk 2 
voerde ik twee experimenten uit met een geheugentaak waarin keuzevrijheid en 
voorspelbaarheid onafhankelijk van elkaar werden gemanipuleerd. In de helft van 
de blokken konden deelnemers kiezen welk object ze wilden zien (keuze), terwijl 
in de andere helft de selectie voor hen werd gemaakt (geen keuze). Daarnaast 
was in de helft van de blokken het getoonde object altijd het gekozen object (hoge 
voorspelbaarheid), terwijl in de overige blokken slechts 50% kans bestond dat het 
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gekozen object werd getoond (lage voorspelbaarheid). Geheugen werd vervolgens 
getest met een herkenningstaak. De resultaten lieten zien dat keuze het geheugen 
verbeterde onder zowel hoge als lage voorspelbaarheid, hoewel het effect kleiner 
was bij lage voorspelbaarheid. Deze bevindingen suggereren dat keuze leren 
bevordert door zowel intrinsiek belonend te zijn als door predictieve verwerking 
te ondersteunen.

Al snel realiseerden we ons echter dat de manipulatie van voorspelbaarheid in 
Hoofdstuk 2 zowel entropie als verrassing beïnvloedde in de informatiecontext, 
zoals gedefinieerd in de informatietheorie. Hierdoor konden we niet bepalen of 
het verminderde keuze-effect werd veroorzaakt door verminderde entropie of door 
verhoogde verrassing. In Hoofdstuk 3 ontwikkelden we daarom een paradigma 
dat verrassing isoleerde, terwijl entropie constant werd gehouden. Deelnemers 
voerden opnieuw een geheugentaak uit, met dezelfde autonomie-manipulatie 
als in Hoofdstuk 2. De resultaten toonden aan dat autonomie het geheugen alleen 
verbeterde wanneer de uitkomsten consistent waren met de verwachtingen van de 
deelnemers; wanneer uitkomsten verrassend waren, verdween het voordeel van 
keuze. Samen suggereren Hoofdstuk 2 en 3 dat predictieve verwerking samenwerkt 
met autonomie om geheugenopslag te ondersteunen: keuze vergemakkelijkt 
voorspellingen, en voorspellingen versterken het leren wanneer ze worden bevestigd.

In Hoofdstukken 4 en 5 richtte ik me op het micro-omgevingsniveau, specifiek op 
de interactie tussen autonomie en extrinsieke motivatie, zoals geldelijke beloning. 
In Hoofdstuk 4 voerde ik een studie uit met gedrags- en fMRI-gegevens van 
47 deelnemers die een exploratieve leertaken uitvoerden. Deelnemers bekeken 
gedeeltelijk verhulde beelden die ze later moesten onthouden. Zowel autonomie 
(vrijheid om het exploratiepad te bepalen) als beloning (wel of geen geldelijke prikkel) 
werden onafhankelijk van elkaar gemanipuleerd. De resultaten toonden aan dat zowel 
autonomie als beloning het geheugen onafhankelijk van elkaar verbeterden. Cruciaal 
was dat alleen autonomie verhoogde activiteit veroorzaakte in beloningsgerelateerde 
hersengebieden tijdens het leren, terwijl de beloningsmanipulatie geen invloed 
had op hersenactiviteit. Dit suggereert dat autonomie een krachtigere motivator 
is dan externe beloningen. Bovendien bleek uit exploratieve functionele 
connectiviteitsanalyses dat autonomie gepaard ging met verhoogde connectiviteit 
tussen de hippocampus en aandachtsregio’s, terwijl passief leren leidde tot meer 
connectiviteit met lagere perceptuele gebieden. Deze bevindingen benadrukken de 
verschillende neurale mechanismen van intrinsieke versus extrinsieke motivatie en 
geven waardevolle inzichten voor het ontwerpen van effectieve leeromgevingen.
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Tot slot onderzocht ik in Hoofdstuk 5 het macro-omgevingsniveau door middel van 
een crossculturele studie met studenten van Nederlandse en Chinese universiteiten. 
Met hetzelfde paradigma als in Hoofdstuk 4 onderzocht ik of sociaal-culturele context 
de invloed van autonomie en beloning op leren modereert. De resultaten lieten zien 
dat beide cultuurgroepen baat hadden bij autonomie in het leerproces, wat suggereert 
dat het positieve effect van autonomie universeel is. De effecten van beloning 
daarentegen verschilden: Chinese deelnemers lieten een sterker geheugenvoordeel 
zien van beloning dan Nederlandse deelnemers. Deze bevindingen onderstrepen het 
belang van sociaal-culturele context in hoe mensen reageren op motivatie en pleiten 
voor meer aandacht voor culturele diversiteit in onderwijsonderzoek.

Deze dissertatie presenteert vier empirische studies die systematisch de cognitieve 
en neurale mechanismen onderzoeken waarmee autonomie het leren en geheugen 
versterkt. Gebaseerd op een ecologisch psychologisch kader onderzocht ik hoe 
interne voorspellende processen, micro-omgevingsfactoren en sociaal-culturele 
invloeden samen met autonomie de leerresultaten beïnvloeden. Over verschillende 
operationalisaties van autonomie – binaire keuzes en actieve exploratie – laten de 
resultaten consequent zien dat: (1) autonomie leren bevordert via voorspellende 
verwerking (Hoofdstukken 2 en 3); (2) autonomie beloningsgerelateerde 
hersengebieden actiever maakt dan geldelijke prikkels (Hoofdstuk 4); en (3) culturele 
achtergrond de effectiviteit van externe beloningen beïnvloedt, maar niet die van 
autonomie (Hoofdstuk 5). Samen dragen deze bevindingen bij aan een genuanceerder 
begrip van motivatie in leren en onderstrepen ze dat autonomie, als intrinsieke 
motivatie, een stabiel en krachtig effect heeft op geheugenopslag. In praktische zin 
pleiten deze resultaten voor onderwijsmethoden die studenten meer autonomie 
geven in hun leerproces, omdat dit kan leiden tot dieper en langduriger leren.
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English summary

Even as a child learning traditional Chinese dance, I was fascinated by how I 
only enjoyed learning the pieces I chose myself. When a dance was assigned for a 
competition or exam, I would lose interest. Today, years after I stopped dancing, I still 
vividly remember the choreography of the one piece I chose to learn, demonstrating 
the lasting power of autonomy, the self-regulation of one’s actions and experiences, 
in learning. As Carl Rogers famously said, “The only kind of learning which significantly 
influences behaviour is self-discovered, self-appropriated learning.” This sentiment captures 
the central role of autonomy in learning and education. However, surprisingly little 
is known about the cognitive and neural mechanisms underlying the benefits of 
autonomy in memory encoding and learning. My dissertation aims to investigate 
how the sense of autonomy influences memory encoding, in conjunction with other 
environmental factors that surround individuals, focusing on both cognitive and 
neural mechanisms.

To address this research question, I adopted the perspective of ecological psychology 
to argue that understanding the interaction between autonomy and other 
modulating factors, spanning from internal mechanisms to micro- and macro-level 
environmental influences, can deepen our understanding of how autonomy supports 
learning. Specifically, I focused on three levels: (1) internal predictive processing 
of upcoming information, which is closely tied to what knowledge will be encoded 
into memory; (2) the micro-environmental level, which includes external rewards 
such as money or grades that are designed to encourage learning; and (3) the macro-
environment, representing broader socio-cultural norms that shape motivational 
priorities and learning traditions.

To begin with, Chapters 2 and 3 examined the interaction between autonomy 
and predictive processing in memory encoding. When individuals are offered the 
opportunity to choose, learning outcomes typically improve. Yet, the underlying 
cognitive mechanisms of this effect have been rarely studied. In Chapter 2, I 
conducted two experiments using a memory encoding task that independently 
manipulated choice and predictability of the choice outcomes. In half of the blocks, 
participants could choose which object to view (choice), while in the other half, 
selections were made for them (no choice). Additionally, in half of the blocks (both 
choice and no-choice), the image participants saw was always the one selected 
(high predictability), while in the remaining blocks, there was only a 50% chance 
of seeing the selected object (low predictability). Memory was then tested with a 
recognition task. Results showed that choice enhanced memory under both high and 
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low predictability conditions, though the effect was smaller when predictability was 
low. These findings suggest that choice benefits learning both by being intrinsically 
rewarding and by supporting predictive processing.

However, we soon realized that the manipulation of predictability in Chapter 2 
affected both entropy and surprise in the informational context, as defined by 
information theory. This made it difficult to determine whether the diminished 
choice effect in low-predictability blocks was due to reduced entropy or to induced 
surprise when information was encountered. Chapter 3 addressed this by designing 
a paradigm that isolated surprise while holding entropy constant. Participants again 
performed a memory encoding task, with autonomy manipulated as in Chapter 2. 
Results revealed that autonomy enhanced memory only when the outcomes were 
consistent with participants’ expectations; when outcomes were surprising, the 
benefit of choice disappeared. Together, Chapters 2 and 3 suggest that predictive 
processing interacts with autonomy to support memory encoding: choice may 
facilitate prediction, and predictions, in turn, strengthen learning when they 
are confirmed.

In Chapters 4 and 5, I turned to the micro-environmental level, specifically examining 
how autonomy interacts with extrinsic motivators such as monetary rewards. In 
Chapter 1, I conducted a study using behavioural and functional magnetic resonance 
imaging (fMRI) data from 47 participants who performed an exploratory learning 
task. Participants viewed partially obscured images they needed to remember, with 
both autonomy (volitional control over exploration) and reward (presence or absence 
of monetary incentives) independently manipulated. Results showed that both 
autonomy and reward independently enhanced memory performance. Crucially, 
only autonomy elicited increased activation in reward-related brain regions during 
memory encoding, while the reward manipulation did not affect activation of the 
brain. This suggests that autonomy may be a more salient motivator than external 
rewards. Additionally, exploratory functional connectivity analyses revealed that 
autonomy was associated with increased connectivity between the hippocampus and 
attentional control regions, while passive learning was linked to greater connectivity 
with lower-level perceptual regions. These findings highlight distinct neural 
mechanisms underlying intrinsic and extrinsic motivation and provide valuable 
insights for designing effective educational environments that combine these 
motivational factors.

Finally, in Chapter 5, I investigated the macro-environmental level by conducting a 
cross-cultural study comparing results yielded from students in Dutch and Chinese 
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universities. Using the same paradigm as in Chapter 4, I examined whether socio-
cultural context modulates the influence of autonomy and reward on learning. Results 
showed that both cultural groups benefited from autonomy to learn more efficiently, 
indicating that its positive impact on learning is universal. However, the effect of 
rewards differed: Chinese participants showed stronger reward-based memory 
enhancement than Dutch participants. These findings underscore the importance 
of socio-cultural context in shaping how individuals respond to motivational factors 
and call for greater attention to cultural diversity in educational research.

Altogether, this thesis presents four empirical projects that systematically investigate 
the cognitive and neural mechanisms by which autonomy enhances learning 
and memory. Drawing on an ecological psychology framework, I examined how 
internal predictive processes, micro-environmental motivators, and socio-cultural 
factors interact with autonomy to influence learning outcomes. Across different 
operationalizations of autonomy—binary choices and active exploration—the 
findings consistently show that: (1) autonomy enhances learning through predictive 
processing (Chapters 2 and 3); (2) autonomy activates reward-related brain regions 
more reliably than monetary incentives (Chapter 4); and (3) cultural background 
influences the effectiveness of external rewards but not of autonomy (Chapter 5). 
Together, these findings contribute to a more nuanced understanding of motivation 
in learning and emphasize that autonomy, an intrinsic motivator, has a stable and 
powerful effect on memory encoding. In practical terms, these results advocate for 
educational practices that empower students with more autonomy in their learning 
process, as doing so may foster deeper and longer-lasting learning.
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Research data management

This research followed the applicable laws and ethical guidelines. Research data 
management was conducted according to the FAIR principles. The paragraphs below 
specify in detail how this was achieved.

Ethics
This thesis is based on the results of human studies, which were conducted in 
accordance with the principles of the Declaration of Helsinki. The experiments 
conducted in Chapter 2 was approved by the Ethics Committee of the Faculty of 
Social Sciences (ECSW) at Radboud University, Nijmegen, under the general ethics 
approval for standard studies conducted at the Donders Centre for Cognition 
(ECSW.2018.115). Chapters 3-5 included data collected at Donders Centre for 
Neuroimaging, Nijmegen, the Netherlands, which were approved by the local ethics 
committee (CMO Arnhem-Nijmegen, The Netherlands) under a general ethics 
approval protocol (“Imaging Human Cognition”, CMO 2014/288) and were conducted 
in compliance with these guidelines. Chapter 5 included data collected in Beijing, 
China, which was approved by the ethics committee of Beijing Normal University 
(ICBIR_A_0071_017). Informed consent was obtained on paper following the Centre 
procedure. The forms are archived in the central archive of the Centre for 10 years 
after termination of the studies.

Data collection and privacy
During this PhD trajectory, data collection was performed at the Doners Centre for 
Cognitive Neuroimaging (behavioural data and fMRI data), the Donders Centre for 
Cognition, and Beijing Normal University in China. A unique participant code was 
created for each participant, warranting the privacy of the participants. The code and 
data are stored separately.

Data storage
The table below details where the data and research documentation for each chapter 
can be found on the Radboud Repository.

Chapter DAC RDC DSC

2 di.dcc.DAC_2025.00058_980 di.dcc.RDC_2025.00058_053 di.dcc.DSC_2023.00164_093

3 di.dccn.DAC_3018082.01_365

4 di.dcc.DAC_2024.00007_065 di.dcc.RDC_2024.00152_683

5 di.dcc.DAC_2023.00152_046 di.dcc.RDC_2023.00152_377 https://doi.org/10.34973/tccj-j019
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Interoperable, Reusable
The raw data are stored in the DAC in their original form. For RDC and DSC long-
lived file formats (e.g., .csv, .tif) have been used ensuring that data remains usable 
in the future. Results are reproducible by the provision of the descriptions of the 
experimental setup, raw data and analysis scripts or pipelines.

The data will be saved for 10 years after termination of the studies (2025).
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Getting Ready for Your First Grant Application (2025) Radboud University 32

Conferences & Summerschools
Course Location

NvP Winter Conference (2022) Egmond aan Zee, the Netherlands

NvP Winter Conference (2023) Egmond aan Zee, the Netherlands
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Neuro-AI Summer School (2024) Amsterdam, the Netherlands

Information Theory Workshop (2024) Amsterdam, the Netherlands

Donders Discussion (2024) Nijmegen, the Netherlands
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Teaching activities
Internship supervision Study program Hours

Parker Winkel (2022) Bachelor Psychology 4 months

Markéta Mičková (2022) Bachelor Psychology 4 months

Natasza Adamus (2025) Master Cognitive Neuroscience 8 months

Mingyao Sun (2025) Master Cognitive Neuroscience 8 months

Teaching Activity Study Program

Brain and Cognition: I (2022) Bachelor Psychology

Committees
Member of Education Committee, PhD Organization Nijmegen (PON, 2022-2023)

Outreach & Societal Impact
Organizer of Pint of Science, Nijmegen (2023)
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For a successful research Institute, it is vital to train the next generation of scientists. 
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with cognitive and behavioural analysis at the other end. We ask all PhD candidates 
within the Donders Graduate School to publish their PhD thesis in de Donders Thesis 
Series. This series currently includes over 600 PhD theses from our PhD graduates 
and thereby provides a comprehensive overview of the diverse types of research 
performed at the Donders Institute. A complete overview of the Donders Thesis 
Series can be found on our website: https://www.ru.nl/donders/donders-series

The Donders Graduate School tracks the careers of our PhD graduates carefully. In 
general, the PhD graduates end up at high-quality positions in different sectors, for 
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Furthermore, there are PhD graduates who continue to work as researchers 
outside academia, for instance at non-profit or government organizations, or in 
pharmaceutical companies. There are also PhD graduates who work in education, 
such as teachers in high school, or as lecturers in higher education. Others continue 
in a wide range of positions, such as policy advisors, project managers, consultants, 
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data scientists, web- or software developers, business owners, regulatory affairs 
specialists, engineers, managers, or IT architects. As such, the career paths of 
Donders PhD graduates span a broad range of sectors and professions, but the 
common factor is that they almost all have become successful professionals.

For more information on the Donders Graduate School, as well as past and upcoming 
defences please visit:

http://www.ru.nl/donders/graduate-school/phd/
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