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GENERAL INTRODUCTION

The Global Health Challenge: Inequality, Aging, and the Rise of
Chronic Care

The world's aging population presents a significant challenge to healthcare
worldwide. By 2050, the old-age economic dependency ratio, which is the ratio
between the number of individuals aged =65 years and those of working age
(20-64 years), is projected to reach 55% in the European Union, and on average,
52.7% in the member countries of the Organization for Economic Co-operation and
Development (OECD), indicating a trend likely to extend globally (OECD, 2024). This
demographic shift implies that an increased demand for chronic care needs to be
provided by a relatively small working population (OECD, 2024). The healthcare
challenge intensifies when considering the sustainable development goals that
address historic inequalities (United Nations, 2023). These inequalities are evident
in low and middle-income countries where underserved populations lack access to
primary healthcare and have lower general well-being (Kruk et al., 2018).

These challenges are also prominent in hearing healthcare, meaning that both
the growth in the number of older adults with hearing loss and the necessity to
distribute hearing healthcare more equally worldwide will significantly increase the
overall pressure on our hearing healthcare system (Haile et al., 2021). Budgets need
to be distributed more fairly, and fewer personnel will be available relative to the
number of people requiring audiological care.

The Global Burden of Hearing Loss

An estimated 1.5 billion people worldwide are directly affected by hearing loss,
projected to increase by another billion by 2050 (World Health Organization,
2021). Additionally, family members and friends of people with hearing loss are
indirectly affected since hearing loss hampers interpersonal communication and
psychosocial well-being. The estimated global annual cost of untreated hearing loss
exceeds 750 billion US dollars (McDaid et al., 2021). For children, untreated hearing
loss hampers language development and limits educational potential (Lieu et al.,
2020). In adults, it results in higher unemployment rates, missed workdays, social
isolation, and a lower quality of life (Shield, 2019). Hearing healthcare faces various
obstacles, including lack of awareness, lack of motivation and support, stigma,
financial limitations, competing comorbidities, and, in some regions, limited
infrastructure and workforce shortages (Barnett et al., 2017; Kamenov et al., 2021).
For instance, in parts of Africa, there are fewer than one hearing health professional
per million people (Kamenov et al.,, 2021). This results in a gap between the
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400 million people worldwide who might benefit from hearing aids and the 68
million (17%) using them (Orji et al., 2020). Existing audiological services and
technologies cannot address the current need nor the growing need to address
aging and the rise of chronic care. New approaches are needed to overcome the
global obstacles in hearing healthcare.

Computational Audiology to Address the Global Hearing

Health Challenges

Artificial intelligence (Al) can be part of the solution to alleviate the anticipated
pressure on hearing healthcare. Al is the simulation of human intelligence in
machines that are designed to think, learn, and perform tasks autonomously. It
encompasses various technologies, including machine learning, natural language
processing, and robotics, which are used to solve complex problems and enhance
decision-making (S. J. Russell & Norvig, 2016). Al could help us perform tasks and
complement our capabilities (H. J. Wilson & Daugherty, 2018). For the application of
complex models in hearing healthcare practice, we coined the term “computational
audiology,” defined as “the branch of audiology that employs techniques from
mathematics and computer science to improve clinical treatments and scientific
understanding of the auditory system.” Audiology and hearing science have always
been data-driven, mainly involving psychophysical measurements based on models
that capture facets of hearing. Dick Lyon, for example, provides in his book, “Human
and Machine Hearing: Extracting Meaning from Sound,” an extensive history of
the applications of models to describe and mimic aspects of the auditory system
from the first theories of hearing, the use of computers for modeling, up to shallow
neural networks (Lyon, 2017). More recent examples of computational audiology
include enhancing speech processing and intelligibility in hearing aids and cochlear
implants (Bramslgw et al., 2018; Goehring et al., 2019; Y.-H. Lai et al., 2018; D. Wang,
2017) as well as deep learning applied to auditory system modeling (Baby et al.,
2021; A. J. E. Kell et al., 2018). Al has the potential to assist in clinical practices using
efficient testing and simulation platforms (Heisey et al., 2020; Hendrikse et al., 2024;
Lesica et al., 2021; Meyer et al., 2023) and to increase accessibility by applying Al in
inexpensive mobile devices (Slaney et al., 2020). Chapter 2 of this thesis provides
further examples of computational audiology to illustrate how it can be used in
the diagnosis of hearing loss, hearing rehabilitation, and hearing research. In this
chapter, a vision is sketched of how computational approaches combined with
affordable devices, standardization, evidence-based principles, and shared data
applied within a network of distributed expertise can improve access to hearing
healthcare. However, there is still a long way to go before implementing such
approaches at a large scale among audiology clinics worldwide due to barriers,

1



12

| Chapter 1

including the complexity of dealing with privacy issues, data ownership, and lack
of interoperability (Lehne et al., 2019). In addition, there is fear among clinicians of
de-skilling and a need for proper training to use Al (Oremule et al., 2024). Al-based
patient support tools that are more user-centered instead of clinic-centered seem
to be easier to start with before approaches in clinics take off (Slaney et al., 2020).

Al-based Patient Support Tools: Al chatbots and Automated Speech
Recognition for People with Hearing Loss

The most dramatic developments in Al in the last decade have been in image and
speech recognition and, more recently, in large language models, which are now
visibly impacting various sectors. To guide the reader through the relevant recent
progress in Al in hearing healthcare, a brief description of the history of automated
speech recognition (ASR) and chatbot technology is given below. ASR tools might
benefit people with hearing loss and are already available at low cost, even without
a solution for the interoperability and data exchange challenges that medical
applications face within clinics.

ASRis a technology that enables computers to interpret and process human speech
into written text (Jurafsky & Martin, 2009). The development of ASR required a
relatively long ramp-up. In the 1980s, IBM made progress in ASR by introducing
Hidden Markov Models, which enhanced the accuracy and reliability of recognizing
spoken words (Rabiner, 1989). This development laid the foundation for modern
speech recognition technology. In addition, discriminative learning and deep
learning methodologies played a significant role in advancing ASR (Deng & Li,
2013). Progress was slow, and early applications were limited to predictable, well-
controlled environments using a closed set of options. For example, systems like
AT&T's "How May | Help You?" (HMIHY), deployed in the mid-1990s, were among
the first to incorporate speech recognition for handling customer service calls.
These systems were designed to process a limited set of spoken requests in order
to connect callers to the correct services or information (Gorin et al., 1997). Speech
recognition remained a very hard task for machines for a very long time (Juang
& Rabiner, 2005). However, in 2016, major tech companies, including Microsoft
and Google, claimed their machines achieved human parity in conversational
speech recognition (Saon et al., 2017; Xiong et al., 2017). This accomplishment
was underpinned by word error rates similar to those of humans in phone
call transcriptions.

Also, in Al chatbots, technology has progressed slowly toward human performance,
with significant improvements in recent years. An Al chatbot is a software
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application that simulates human conversation through text or voice interactions
(Adamopoulou & Moussiades, 2020). The earliest known chatbot, ELIZA, was
developed in 1966 to act as a psychotherapist, responding to user inputs by
rephrasing them as questions (Weizenbaum, 1966). Decades later, the A.L.L.C.E.
chatbot, created by Richard Wallace in 1995, incorporated natural language
processing to improve interaction capabilities (Wallace, 2009). Significant progress
in chatbot development occurred with the introduction of Transformer deep
learning models (Vaswani et al., 2017), which formed the architecture for large
language models, including BERT and GPT-3 (Brown et al., 2020). By 2021, OpenAl
launched ChatGPT/GPT-3, a large language model based on an astounding
175 billion parameters, quickly becoming renowned for its human-like text
generation capabilities.

What is required to adopt new technologies such as ASR, and what benefits might
they bring? Researchers have estimated that a word recognition accuracy of at least
80-90% is a critical threshold for ASR systems to be widely adopted and to offset
the drawbacks, such as manually correcting errors in poor transcriptions (Jurafsky &
Martin, 2009). Surpassing this minimum accuracy threshold has led to a significant
user base (i.e., achieving a critical mass of users), making ASR commercially
viable. Consequently, this has led to a virtuous cycle of increased data and further
improvement. The evolution of ASR has shown that:

« An enormous set of training data, an improved digital infrastructure, and
better algorithms led to a significant increase in accuracy, making ASR viable
in real applications (Baker et al., 2009). The data were collected from video and
speech recordings, including those with subtitles on platforms like YouTube,
encompassing various voices, accents, and acoustics. By the 2010s, this led to
a jump in quality similar to that seen in image recognition (Xiong et al.,, 2017),
resulting in popular applications, including Google Live Transcribe.

« Certain users, particularly those with profound hearing loss who lacked access to
adequate hearing aids or cochlear implant care, found immediate value in these
advancements (Berke, 2017). As the technology improved, the potential user
base expanded, and our evaluation of ASR apps in 2020, described in Chapter 4,
demonstrated their capability to transcribe speech to support communication
for many individuals with severe to profound hearing loss (Pragt et al., 2022).

« There are broader applications, as similar technology can remove other
communication barriers. Deep learning models can also be trained to recognize
people's hand gestures used in sign language and convert them to text or
speech to communicate more effectively with people who are not proficient in

13
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sign language (Bharathi et al., 2021; Jin et al., 2023). Such models can be trained
on prelingual deaf speech or other atypical speech patterns that are challenging
to capture for those not accustomed to them (i.e., those not trained in it (Biadsy
etal, 2019).

« In cases where ASR solutions failed to meet the minimum required accuracy,
human interpreters could enhance the transcript by manually correcting it
(Gaur et al.,, 2015) or completely taking over the speech transcription process.
This development made high-quality speech-to-text solutions accessible and
affordable for a broader population since machine transcription is cheaper
than human transcription. Today, users can opt for free transcription for
everyday tasks, including meeting notes, and choose higher accuracy options
(paid) for critical communications, such as legal agreements, to minimize
miscommunication risks.

Advancements in Al are progressing rapidly and have significant societal
consequences. Al might accelerate the adoption of new technologies needed to
address the ongoing challenges in hearing healthcare. Free ASR apps that run on
smartphones and tablets are currently used by people with hearing loss in various
communicative settings. These apps help lower communication barriers and enable
better participation at work, in groups, or in private settings (Loizides et al., 2020).
Al chatbots may play a role in accessing and digesting health information and
supporting people with hearing loss, clinicians, and hearing researchers (Chapter
3). Another approach to increase access to hearing healthcare is the development
of remote hearing health care. Building digital infrastructure using the devices
people already own is less expensive, although standardized protocols and
methods to collect data across clinics and countries are also lacking in the digital
realm (D'Onofrio & Zeng, 2022).

Teleaudiology and Self-evaluation of Hearing Status as a Driver for
Al in Audiology

There are various terms that refer to remote hearing health care, for example,
“connected hearing health care,” “teleaudiology,” or “e-audiology” (Young et al.,
2022). The term “remote” seems to be the most obvious choice. However, at this
moment, it only refers to being “remote” from the perspective of the healthcare
provider and overlooks the proximity of the end-user. The term “connected”
hearing healthcare is also not preferable. It may be misinterpreted as doing care
via Bluetooth only. The term “teleaudiology” appears to be the least ambiguous
and is, therefore, the preferred term in the general introduction and discussion of
this thesis. Teleaudiology technologies facilitate the online or at-home delivery of
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hearing care services, encompassing self-administered evaluations, user-directed
fitting adjustments and fine-tuning, and video consultations (Bennett et al., 2024).

Teleaudiology can reduce barriers to seeking care. Travel inconvenience, time, and
cost significantly hinder healthcare access, particularly in rural and developing
areas. Bush et al. (2013) found that patients in rural areas travel on average 100 miles
to audiology clinics compared to 15 miles for patients living in urban areas, with
distance correlating with delays in hearing aid and cochlear implant interventions.
Coco et al. (2016) identified that transportation, motivation, and financial
constraints are major barriers in urban areas, suggesting that teleaudiology could
mitigate these challenges by providing services closer to patients' homes.

Beside the benefits for end-users, teleaudiology may also support professionals.
Self-administered hearing tests reduce the workload for professionals, making
the diagnostic process less dependent on clinical capacity. Applying Bayesian
active learning techniques that select the most informative stimuli instead of a
fixed number of stimuli can reduce the testing time of self-administered tests and
provide room to add other measurements (Heisey et al., 2020). Consequently, self-
fitting and remote fitting of hearing aids and cochlear implants are increasingly
being introduced (Mashmous, 2022; Schepers et al,, 2019). Based on a systematic
review, Mashmous (2022) concluded that remote fitting of hearing aids can
provide results similar to face-to-face programming in the clinic, even for people
with no previous experience with hearing aids. In addition to all the advantages of
teleaudiology, it is also important to be aware of the disadvantages. One significant
drawback of teleaudiology is the loss of direct human contact. When improving
teleaudiology tools, one must consider the loss of direct personal interaction along
with the potential barriers for less digitally proficient people.

Teleaudiology might be a catalyst for a much broader use of Al in audiology for
several reasons:

- More data: teleaudiology enables data collection directly from the end-
user, providing amassed data including telemetry, automated audiometry,
ecological momentary assessments, but also usage data, and users’ environment
(Christensen, Saunders, Porsbo, et al., 2021). This data gathering enables a much-
refined analysis than possible with current data collection in clinics, possibly
leading to even more personalized care;

- More autonomy for the end-user: teleaudiology gives the end-user easy access
to support, which Al chatbots could facilitate. Examples are frequent feedback

15
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on the technical integrity of the device and warnings on possible declines in
device performance;

« Faster adoption: Teleaudiology helps researchers and developers reach out
to early adopters around the globe who already find value in preliminary Al
solutions and involve them in further improving such solutions that may help
address the challenges stated at the beginning of this introduction.

Teleaudiology in Cochlear Implant Care

This thesis focuses on the application of teleaudiology within cochlear implant (CI)
care. The journey of a Cl user is well-suited for exploring teleaudiology due to the
relatively standardized technology employed and the clinics' involvement in every
aspect of the journey from diagnosis, indication, and implantation to life-long
care. Teleaudiology is well-suited to meet the Cl users' demand for 24/7 support
and troubleshooting. It is now possible for Cl users to perform audiometry tests at-
home as part of regular care (Maruthurkkara et al., 2022).

A Cl restores sound perception in people with severe to profound hearing loss who
do not receive sufficient benefit from powerful hearing aids. A Cl system consists of
an external part worn on the ear or head, referred to as a processor, that includes
microphones, a sound processor that converts sounds into patterns of electric
pulses, and a coil to transmit data and power to the internal part. The internal part,
located under the skin, consists of a coil, stimulator, and electrode array; the latter
is located in the cochlea. The internal part provides electric pulses in the cochlea
that, by exciting nerve fibers (i.e., ganglion cells), lead to the perception of sound.
Several well-tested and validated strategies exist to convert sound into electric
patterns, i.e., Continuous Interleaved Sampling (CIS; B. S. Wilson et al., 1993) and
derivations such as ACE (Skinner et al., 2002) and HiRes (Brendel et al., 2008).

Sound is converted into electric patterns in the following way. First, sound is
captured by the microphone(s) and passed through a filter bank, where each filter
band corresponds to an electrode in use. The extracted envelopes per filter band
are presented as amplitude-modulated fixed-rate pulse trains at each electrode
surface. This process takes advantage of the tonotopic organization of the auditory
pathway at the level of the basilar membrane because the electrode surfaces on
the electrode array are located at different positions along the basilar membrane.
Charge injected from electrodes deep in the cochlea stimulates nerve fibers that
typically transmit responses to low-frequency sounds. In contrast, charge injected
by electrodes close to the base of the cochlea stimulates nerve fibers that typically
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transmit responses to high-frequency sounds. Pulses on different electrodes are
interleaved in time to prevent electric field interactions between electrodes.

Even within clinically validated strategies to convert sound into pulses, there are
numerous parameters that can be adjusted to the individual Cl user. This is called
the Cl fitting procedure. The complexity of Cl fitting and the variation in patient
outcomes has led to the development of one of the first medical expert systems
using Al (Meeuws et al., 2017). One way forward is to add more automated
audiometry tests to gain more insights into individual errors. If that reveals
patterns, it could be used in a learning cycle to improve fitting algorithms and
increase individual Cl performance (Battmer et al., 2015; Meeuws et al., 2017; Opstal
& Noordanus, 2023).

Summary of Key Points and Future Directions

The growing demands of an aging population are driving significant capacity
challenges in hearing healthcare, and the development of teleaudiology will play a
critical role in meeting these needs. To address these challenges, new technologies
such as Al and affordable devices are emerging as potential solutions to unmet
needs in enhancing communication abilities for people with hearing loss (Slaney
et al., 2020). In the longer term, more integrated solutions as depicted in Figure 1,
may become part of the clinical pathway. Here, Al can serve as an expert system to
support clinicians (Meeuws et al., 2017), a tool for diagnosis (Heisey et al., 2020),
an interface with patients (Swanepoel et al., 2023), a tool for signal enhancement
(Goehring et al., 2017), and a method to provide precision medicine (Barbour,
2018), among many more applications within hearing healthcare (AlSamhori et
al., 2024). Teleaudiology services empower patients by enabling them to conduct
hearing tests and fit devices remotely, either independently or with professional
oversight, thereby increasing efficiency and reducing dependency on in-person
visits (Convery et al., 2019). In addition, better self-management of hearing aid
care is associated with higher health literacy (Caposecco et al., 2016). Therefore,
feedback from patients and clinicians on the effectiveness and usability of these
new technologies is crucial for further improvement and adoption. For responsible
adoption on a large scale, ethical considerations and potential drawbacks of
implementing Al and teleaudiology need to be addressed to ensure responsible
use. For instance, concerns about data privacy, equitable access to technology,
biases, and how to regulate Al within healthcare must be considered (Gilbert et al.,
2023; Maddox et al., 2019).

17
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Although the adoption of Al-aided teleaudiology remains in its early stages,
rapid developments are occurring. The potential for Al-aided teleaudiology is
considerable, particularly since teleaudiology is entirely digital. Some centers have
already integrated digital tools and remote consultations (Ratanjee-Vanmali et al.,
2020; Siggaard et al,, 2023), setting the stage for more inclusive, accessible, and
affordable audiology care on a global scale.

Figure 1. DALL-E created artwork. Prompt “A thought-provoking and inspiring digital art representation
of the future of audiology. The image shows a futuristic cityscape with advanced technology seamlessly
integrated into healthcare. In the foreground, a diverse group of audiologists and computational scientists
are gathered around a digital interface, analyzing interconnected data from various sources. In the
background, people of different ages and ethnicities are using wearable devices and smartphones for
hearing assessments and treatments, representing accessibility and equity in healthcare. The sky is filled
with abstract visualizations of data streams and algorithms, highlighting the power of computational
sciences. The scene conveys a sense of hope, innovation, and the transformative potential of technology in
advancing healthcare.”
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AIM AND OUTLINE OF THIS THESIS

This thesis, titled "Toward Al-Assisted Teleaudiology," explores various issues
confronting hearing healthcare in the digital age. It is investigated whether
accessibility and quality of hearing healthcare can be improved using teleaudiology
and Al. This work only covers the initial steps, focusing on teleaudiology in Cl
care as a kind of microcosm (or model) for hearing healthcare at large. Although
Cl users are only a small percentage of the people with concerns about their
hearing, teleaudiology and Al-aided tools are wider applicable. The chapters on
diagnosis, ASR, and chatbots are relevant beyond Cl care and may lower barriers to
hearing healthcare.

In Chapter 2 the concept of computational audiology is explored, assessing its
potential in resource-limited hearing healthcare settings and setting out guidelines
and ethical considerations for its implementation. It contains practical advice for
policymakers and clinicians. This chapter addresses the global challenge of hearing
loss in today's digital era and investigates the prospects of artificial intelligence,
big data, and automation. The concept of computational audiology is introduced,
which, in brief, involves applying complex models to hearing healthcare practice.
The potential of computational audiology to improve hearing healthcare in terms
of precision and efficiency is emphasized while acknowledging the challenges and
risks inherent in this digital transition. The need for a responsible implementation
within a framework prioritizing patient safety and autonomy is underscored. Since
this chapter was written in 2019, it only covers some developments that have
emerged since then. However, the surprisingly quick development of Al chatbots is
covered in Chapter 3.

Chapters 3 and 4 focus on Al-based patient supportin hearing healthcare. Chapter 3
explores the rise of Al chatbots, mainly focusing on large language models (LLMs).
More than just providing automated counseling, Al chatbots have the potential to
enhance healthcare accessibility, improve patient outcomes, and support research
by automating various tasks, including administering questionnaires. However, Al
chatbots also pose risks of producing inaccurate outputs known as "hallucinations.”
Chapter 4 assesses the accuracy of ASR apps in transcribing speech tokens from
conventional audiological speech tests compared to human listeners by evaluating
the Word Error Rates (WERs). Additionally, by comparing ASR apps’ performance
between people with normal hearing and those with hearing loss, the populations
that could benefit most from ASR technology in bridging communication gaps
are identified.
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Chapter 5 discusses self-administered assessments of hearing status. This
chapter reviews recent approaches in automated and machine-learning hearing
assessments, focusing on pure-tone audiometry. Building upon a previous
systematic review, the potential of novel self-administered hearing assessments is
assessed according to the guidelines for a scoping review. Automated audiometry's
accuracy, reliability, and time efficiency for clinical applications are also evaluated.
Chapter 6 investigates the impact of factors such as time of day, listener fatigue,
and motivation on test outcomes in experienced Cl users who perform tests at
home. The variability of self-administered tests conducted via smartphones and
tablets is analyzed, providing insights into their usability in cochlear implant care.

Chapter 7 addresses self-evaluation-guided Cl fitting adjustments. It explores
whether the data from self-administered assessments can inform clinical action.
It investigates an approach based on phoneme identification errors for fitting
cochlear implants. Specific phoneme confusions are targeted, and Cl settings
are adjusted at the electrode level to reduce those confusions. The potential and
limitations of this approach are also discussed.

In the concluding Chapter 8, the general discussion of this thesis is presented,
making a case for how Al can assist teleaudiology, leading to more accessible and
affordable hearing healthcare. This chapter synthesizes the results of Al-aided
teleaudiology, highlighting its implications for hearing healthcare and providing
recommendations for future research and applications.
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ABSTRACT

The global digital transformation enables computational audiology for advanced
clinical applications that can reduce the global burden of hearing loss. In this
article, we describe emerging hearing-related artificial intelligence applications
and argue for their potential to improve access to, precision, and efficiency
of hearing healthcare services. Also, we raise awareness of risks that must be
addressed to enable a safe digital transformation in audiology. We envision a
future where computational audiology is implemented via interoperable systems
using shared data and healthcare providers adopt expanded roles within a network
of distributed expertise. This effort should occur in a health care system where
privacy, responsibility of each stakeholder, and patients' safety and autonomy are
all guarded by design.

Keywords: Artificial intelligence, Big data, Computational audiology, Computational
infrastructure, Digital hearing health care, Hearing loss, Machine learning.
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INTRODUCTION

The estimated number of individuals suffering from disabling hearing loss has
been growing ever since global reporting began (Vos et al., 2016; World Health
Organization, 2019), with WHO projections reaching 900 million by 2050 (World
Health Organization, 2019). Besides effects on interpersonal communication,
psychosocial well-being, and quality of life, hearing loss has a substantial socio-
economic impact (Olusanya et al, 2014; World Health Organization, 2017).
Conservative estimates suggest that the overall global annual cost of unaddressed
hearing loss is 750-790 billion US dollars (World Health Organization, 2017). In
children, hearing loss restricts language development, often resulting in a lasting
effect on social and cultural engagement and unfulfilled educational potential. In
adults, hearing loss leads to higher unemployment, missed workdays, and social
isolation (Kramer et al., 2006). Hearing loss is further associated with more rapid
cognitive decline and increased occurrence of dementia-like symptoms (Livingston
et al.,, 2017). Evidence is growing that timely intervention, including hearing aids,
can reduce many of these consequences (Maharani et al., 2018).

The actual problem could be even greater, stressing the need for the computational
approaches we introduce below, since mild hearing loss (20-34 dB Hearing Level or
HL), which is 2-3 times more prevalent than moderate or more severe loss (>35 dB
HL), has recently been recognized as an adverse factor in daily life (according to the
new GBD 2010 classification on grades of hearing loss; Shield, 2019; B. S. Wilson et
al., 2017). Hearing loss is arguably the most prevalent of all impairments in years
lived with disability (YLDs; Vos et al., 2016) if we include all known pathologies that
currently have no clinical consequences for rehabilitation. Examples include slight
or minimal hearing loss (15-20 dB HL; Moore et al., 2020), extended high-frequency
loss (8-20 kHz; Motlagh Zadeh et al., 2019), and suprathreshold deficits related to
understanding speech in noisy situations (Kollmeier & Kiessling, 2018).

Existing audiological services cannot address the global burden of hearing loss due
to inherent barriers, including a dearth of trained professionals, equipment costs, and
required expertise (Swanepoel & Clark, 2019). New approaches that transcend current
models of practice are essential to overcome global access challenges. Computational
augmentation, enhancing and complementing human capabilities by digital tools
(H. J. Wilson & Daugherty, 2018), is an essential strategy given the lack of enough
qualified human experts in ear and hearing care worldwide (World Health Organization,
2013), the large number of people suffering from hearing loss that is currently
underserved, and the growing complexity of high-quality diagnostics and therapeutics.
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Computational approaches are enabled by significant global developments,
including growing computational power, data storage, and artificial intelligence;
a paradigm shift referred to as the fourth industrial revolution (Schwab, 2016).
An essential enabler for this digital transformation is the exponential growth in
internet connectivity in almost every country, exemplified by the broadband
subscription penetration in Africa (currently 81%; Jonsson et al., 2019). Continued
growth is expected worldwide as 4G and 5G mobile networks become increasingly
available. Another catalyst is the tech companies entering the medical market,
applying expertise from algorithms and big data to health problems. There is also
a trend towards the “quantified self” which encourages the continuous use of
personal tracking devices and stimulates the development of future generations
of personal (in-ear) electronics that monitor stress, mental effort, and mental well-
being (Crum, 2019).

Other clinical disciplines have implemented computational approaches to parts of
the clinical care pathway, but this has not yet resulted in a paradigm shift in health
care (Rajkomar et al., 2019). To give a few examples, the field of ophthalmology
has adopted the use of automated diagnostic data collection hardware (Bizios et
al., 2011). Radiology has begun adopting computational image segmentation for
automated diagnoses (Hosny et al., 2018). Genotype information is standardized to
evaluate patient health and effective cancer treatment (Benson et al., 2012). Also,
mobile phones are becoming standard tools in many disciplines, including diabetes
management (Thabit & Hovorka, 2016) and dermatologic diagnoses (Ashique et
al., 2015), among many other applications. These are examples of computational
approaches for diagnosis, self-evaluation, and treatment. Unfortunately, all the
different components identified have developed across different fields - there is
no clear indication that all have been applied to a single field. Therefore, if clinical
audiology adopts most of the principles defining computational audiology, it
can generally become a standard-bearer for modern clinical care delivery. In this
perspective paper, we sketch out how computational approaches may further
develop audiology and illustrate fundamental advances in diagnosis, therapy, and
rehabilitation that could become essential elements in a comprehensive digital
transformation of clinical audiology.

Definition and examples of computational audiology that may
improve precision

Audiology is an exceptionally strong candidate for computational augmentation
and may benefit from the current and novel power of computational science
because of its strong mechanistic theory, numerical nature, measurement-driven
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procedures, and the multitude of clinical decisions to be made. Here, we introduce
the term computational audiology, which we define as:

computational audiology

« The approach to diagnosis, treatment, and rehabilitation in audiology that
uses algorithms and data-driven modeling techniques, including machine
learning and data mining, to generate diagnostic and therapeutic inferences
and to increase knowledge of the auditory system;

- leverages current biological, clinical and behavioral theory and evidence;

« provides or augments actionable expertise for patients and care providers.

The readily quantifiable nature of audiological procedures makes audiology well
suited for modern machine learning and data collection techniques. Translational
reasons to apply computational techniques in audiology include (i) improved
accuracy, increased speed, wider application of (diagnostic) tests and evaluation
(applied to, e.g. audiometry; Schlittenlacher et al.,, 2018b); (ii) objective and
consistent interventions, outcomes, and decisions across clinicians and clinics
(applied to, e.g. Cl-fitting; Meeuws et al., 2017). Over time, algorithms can become
more sophisticated and take over tasks now performed by humans or take on
tasks that are currently not performed due to a lack of resources, time, or clinical
consequences, including screening for milder forms of hearing impairment.
Computational audiology can improve care by dealing with multifactorial
data, including indices of psychosocial well-being, quality of life, co-morbidity,
and patient-centered, individual descriptors of complaints and symptoms. For
example, Palacios et al. (2020) used an unsupervised learning approach to study
heterogeneity of patients suffering from tinnitus by analyzing the complaints
and symptoms described in an online patient forum. In addition to deterministic
methods, it also facilitates the use of probabilistic methods that include uncertainty
and likelihood to cope with the wide variability across people with hearing loss.

The application of algorithms in audiology is not new. Historically, it has been
restricted mainly to cohort-level inference, for example, in understanding the
incidence and degree of hearing loss in the general population (Moscicki et al.,
1985), and the prescription of sound-amplification for different types and degrees
of hearing loss (Byrne et al., 2001). Individual refinement based on learning systems
could be a promising way forward but raises many challenges to perform in an
evidence-based manner (Barbour, 2018).
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Diagnostics. In general, diagnostic procedures in audiology consist of a sequence
of psychometric and physiologic tests. Clinicians may benefit from computational
augmentation because they need to deal with uncertainty, time constraints for
testing, and the individual features of the patient. Clinical experts will typically
evaluate test results visually and from summary statistics (e.g. average HL),
which requires skill and experience but also introduces subjective variability in
interpretation, restricts estimates on the certainty of the overall outcome, and
impedes more advanced (multifactorial) analysis, which is difficult for humans
(Kahneman, 2011).

Limited time for testing is arguably the most significant constraint in collecting
high-quality multi-dimensional data for an individual patient. However, machine
learning allows, in principle, for flexible, efficient estimation tools that do not
require excessive testing time. In an approach known as active learning, new
computational tools actively determine which stimuli would be most valuable to
deliver to converge onto an accurate estimate rapidly. Active learning was recently
applied to diagnostic tests including basic audiometry (Barbour, Howard, et al.,
2019; Schlittenlacher et al., 2018), determination of the edge frequency of a high-
frequency dead region in the cochlea (Schlittenlacher et al., 2018a), and hearing
aid personalization (Nielsen et al., 2014). Also, when multiple factors that share
some relationship are available, an active learning method can learn and exploit
the relationships in real-time. For instance, data from the National Institute for
Occupational Safety and Health (NIOSH) database (Masterson et al., 2013) has
been deployed as Bayesian “prior beliefs” to assess the similarity between ears of 1
million participants. A bilateral audiogram procedure that uses these priors speeds
up testing considerably (Barbour, Howard, et al., 2019).

Principles of computational audiology may be applied to current research and clinical
issues. For example, machine learning approaches to image analyses of otoscopy
of the eardrum demonstrate the potential to supplement audiological tests with a
diagnosis of potential outer and middle ear pathology (Cha et al., 2019; Myburgh et
al., 2018). With a reported accuracy of between 81 to 94% and options for capturing
and receiving diagnosis using mobile phone-based otoscopy, these approaches
provide direct feedback to the clinician and therefore could allow point-of-care
interventions and optimize current care (Cha et al.,, 2019; Myburgh et al., 2018).

Combining self-reported difficulty and genetic data may lead to potential candidate
genes for hearing loss. Such a procedure, applied to the data from 250,000 people,
identified 44 new genetic loci potentially associated with hearing loss (Wells et
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al., 2019). Individual, patient-centered (hearing) health care could become more
comprehensive by collecting more extensive hearing profiles combined with other
patient characteristics beyond the audiogram (Sanchez Lopez et al., 2018). For
example, the genetic profile (Hildebrand et al., 2009) can be used to differentiate
better various underlying causes leading to hearing loss (Dubno et al., 2013). A
probabilistic interpretation of a patient profile can be further refined using auditory
modeling (Verhulst et al., 2018) and Al and, among other applications, form the
basis for prognosis. It is paramount to know the underlying pathology to determine
a specific target therapy or rehabilitation strategy. By combining these examples,
audiology may become a prime example of precision medicine.

Rehabilitation. When fitting cochlear implants or hearing aids, machine learning
may help clinicians optimize parameters by minimizing a cost function. A
recently developed clinical decision support system calculates a utility function
based on a weighted combination of outcome measures (Meeuws et al., 2017).
The utility function is continuously updated as the system learns from previous
outcomes. The system also incorporates active learning by determining which of
the collected outcomes are most clinically useful. Such a system can oversee the
effect of considerably more fitting parameters than those commonly adjusted by
audiologists. It can be used to make more accurate predictions of the expected
outcome, enable cost-benefit evaluation by reducing the time needed by a
trained professional to perform tests, and facilitate a more standardized Cl fitting
(Meeuws et al.,, 2017). In the future, the system might be extended to individualized
cochlear implant surgery based on high-resolution medical images of the cochlea
(Heutink et al., 2020). Also, users' preferences can be collected to make data-driven,
individual adjustments to their cochlear implant or hearing aid. The internet of
things provides suitable interfaces for users to provide feedback under ecologically
valid circumstances (e.g. Ecological Momentary Assessments, EMA; Wu et al., 2015),
but also provides tools that monitor behavior that could serve as a proxy to derive
user preferences (Johansen et al., 2018).

Another example of computational approaches to improve rehabilitation is
applying neural networks to enhance speech-in-noise understanding in cochlear
implant (Cl) users (Goehring et al., 2019). Noisy speech signals were decomposed
into time-frequency units, extracting a set of psychophysically-verified features,
fed into a neural network to select frequency channels with a higher signal-to-
noise ratio. This pre-processing of the input signal significantly increased speech
understanding, even of unfamiliar speakers (i.e. not used to train the network). The
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developers limited the required computational power and memory for their model
to make it implementable on mobile devices.

Hearing research. Machine learning techniques could also lead to better models
of human auditory behavior and a better understanding of the auditory system.
Recently, Ausili (2019) used a neural network to model experience-dependent
sound localization for different hearing impairments. Deep neural networks are
achieving parity with humans for some tasks, and it is possible that these networks
could mimic aspects of representation and functional organization of the human
brain ( Gl¢li & van Gerven, 2017; Huang et al., 2018; Kell & McDermott, 2019).

We can conclude that the trend of applying computational approaches in audiology
could lead to more individualized hearing care and new services, as illustrated in
Example 1. We base this claim on above-cited examples in diagnosis, rehabilitation,
and hearing research, and on computational approaches in audiology already
employed by digital hearing health technologies around the world (Swanepoel
& Hall, 2020). A part of these new services could be provided by companies that
traditionally did not specifically target customers with hearing loss. For example,
speech-to-text apps provide new functionality to people with hearing loss (Pragt et
al., 2020), and AirPods Pro are nearing the functionality of hearing aids (Bailey, 2020)
but do not yet fulfill all FDA requirements and fall short in terms of amplification for
the rehabilitation of people with moderate to severe hearing loss.

Example 1 rehabilitation service (based on Crum, 2019).

A person tests her hearing with an app to find out that her hearing profile is
similar to that of 1.7 million other people in a global database who reported
good results using hearing aids. She buys two hearing aids and signs up for
a service, an app that sends programming instructions and settings to the
hearing aids and asks for feedback to ascertain audibility and judge sound
quality. Indications of momentary and remaining hearing problems, including
expressions like "excuse me" or "what did you say?" are detected using
automatic speech recognition. After a couple of weeks, the system provides
fine-tuning based on her needs and similarity to other cases. It automatically
determines that when entering her local subway station, substantial echo
cancellation is needed. After a few years, the system detects specific changes in
the spectral quality and patterns of sounds when she speaks. After tracking this
trend for several months, the system suggests scheduling an appointment with

a physician because these changes can correlate with heart disease.
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How could computational approaches improve access to hearing
health care?

Hearing health care is challenging to deliver in Low- and Middle-Income
Countries (LMICs) because it currently requires specialized equipment and trained
professionals. Smartphone-mediated telehealth holds great promise to lower many
of these barriers (Swanepoel & Clark, 2019). Smartphone penetration now exceeds
80% in LMICs (Jonsson et al., 2019), and low-cost equipment and robust test
procedures are becoming available to perform audiometric (Potgieter et al., 2018;
Swanepoel & Clark, 2019) and otologic (Chan et al., 2019) diagnostic measures
with acceptable levels of quality and reproducibility. We foresee a considerable
growth in mobile app usage for self-administered hearing tests (Hazan et al., 2020;
Swanepoel et al., 2019) and self-adjustment by hearing aid users (Segaard Jensen
et al., 2019) that in turn could lead to self-fitted hearing aids. In the simplest form
of telehealth, the caregiver and patient are physically separated, and technology
facilitates interaction. However, telehealth can be expanded by distributing
expert knowledge across the health care delivery system, with clinical expertise
incorporated into algorithms employed on devices used by patients or by local
caregivers, making hearing health care possible and affordable in remote and
underserved areas where experts are lacking, as illustrated in Example 2.

Example 2: hearing screening in early childhood (based on Barbour et al.,
2019; Chan et al., 2019; Swanepoel & Clark, 2019).

1. Children in LMICs typically do not have access to hearing screening.
However, a community-based project relying on Al assistance offers
screening, diagnosis, and referral in underserved communities.

2. Screening is conducted via an automated pure-tone-screening test
facilitated on a smartphone for children from 3 to 4 years.

3. Test quality is monitored locally on the smartphone and regionally via
uploaded data on a cloud-based data management portal.

4. If a child fails the screening test, an automated report is generated from
the cloud-based data management portal and sent to caregivers by text
message or email.

5. If the child fails the screening a second time, automated threshold pure-
tone audiometry facilitated by an operator and Al-supported middle-ear
function assessment is carried out. A clinical decision support system
assists local caregivers in diagnosing hearing loss and referring to
specialized care.
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If screening and diagnosis of hearing loss can be improved in LMICs, the next
requirement is to provide specialized care and affordable hearing loss rehabilitation.
Global awareness for hearing loss has recently been spurred by the formation of
a Lancet Commission examining strategies to reduce the burden of hearing loss
(B. S. Wilson et al.,, 2019). Recommendations include stimulating the development
of low-cost hearing prostheses, leveraging smartphone technologies for use as
hearing assistive devices, and equipping a small number of specialist centers for
medical and surgical management of ear disease. Computational audiology as an
emerging field is uniquely positioned to combine inexpensive, ubiquitous hardware
and software (e.g. smartphones with apps) and sophisticated multifactorial (meta)
data modeling. By transforming cheap hardware and equipping it with (Al-based)
software, LMICs can benefit from advanced automated diagnostic tools and
interventions to address hearing loss. The overall cost of devices and services
incurred per user will drop, which is expected to compensate for the resources
needed for building and maintaining the computational infrastructure, defined
here as all hardware, software, protocols, practices, and regulation needed to apply
computational approaches on an international scale (O’Brien, 2020). An interesting
(but solvable) question is how governments, companies, health care providers, and
users will together bear the cost of computational infrastructure, R&D, IP, licenses,
devices (e.g. smartphones), and other indirect costs. How to align the involved
stakeholders together with the potential risks, privacy issues, and technical
requirements are the topics that we consider in the next sections.

Ethical considerations and technical requirements concerning
computational approaches in hearing health care

Whereas Al applications in audiology outlined previously should be considered an
improvement, they may also involve some additional risks.

1. Unauthorized or undesirable use. For example, Al researchers recently introduced
new lip-reading technology to facilitate speech understanding in people
with a hearing impairment. They trained their algorithm on TV footage, and it
outperformed expert lip-readers. This solution could, in theory, allow people
with hearing loss to augment their speech understanding (Shillingford et al.,
2018). However, the technique could also be used for other purposes, including
mass surveillance (Metz, 2018). Footage from closed-circuit TV could be fed
into the algorithm to track conversations of unknowing citizens, invading their
privacy. A similar privacy issue may apply to devices that incorporate tracking
technology. GPS can be used to track a smartphone on a rideshare journey, but it
can also track smart hearing aids. Current hearing aids can log users’ preferences in
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particular environments, monitor adjustments users make in each place, log those
preferences, use GPS to detect when they return to those places, and automatically
or manually reactivate the preferred settings (Wolfgang, 2019). In courts, tracking
the whereabouts of personal devices has already led to erroneous criminal
accusations (Valentino-DeVries, 2019).

2. Bias in the data used to train an Al-system. Buolamwini (2017), for example,
uncovered large gender and racial biases in face recognition systems sold by tech
giants IBM and Microsoft. Errors in gender identification were substantially lower
for lighter-skinned men (1% error rate) than darker-skinned women (35% error
rate). One explanation was that the face recognition systems were trained on
data sets containing many more men with light skin than women with dark skin.
This example shows that real-world biases may translate to inherent biases in the
outcome of Al systems, whether we are aware of those biases or not. As a result,
it might be a risk to apply data collected in, for example, Western countries to
solutions for non-Western regions with other ethnic characteristics, including race
and lifestyle.

3. Violation of privacy. Privacy protection has begun to be taken seriously in recent
years, resulting in the EU’s GDPR (Regulation (EU) 2016/679, 2016). In addition to
general privacy issues, one article of the GDPR explicitly states that individuals
should not be subjected to a decision based on automatic processing, including
profiling, except when explicit consent is given (Goodman & Flaxman, 2017).
Manufacturers of hearing devices and cochlear implants are already collecting
large bodies of data (data profiles) beyond the view of (independent) publicly
funded hearing health care providers and researchers. Clinicians use that data for
counseling purposes, for instance, to evaluate hearing aid usage based on data-
logging (Saunders et al., 2020). However, Mellor et al. (2018) reported that a hearing
aid manufacturer did share a large dataset but did not share possibly relevant
commercially sensitive information, which may limit insights drawn by researchers
from the data. Automatic processing could be problematic with machine learning
and big-data designs, even using anonymous data only. When a database uses many
types of data from individual subjects, it will increase the likelihood that data can be
traced back to individuals (re-identification; Leese, 2014; Rocher et al.,, 2019). Privacy
concerns and the sheer amount of data have led to the development of distributed
learning, an approach that allows for decentralized training (Konecny et al., 2016).
For example, in federated learning, models are trained locally on a local device (e.g.
a smartphone connected to a hearing aid; Szatmari et al., 2020), and only aggregate
meta-data (updated priors) travel from central databases to users and back.
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4. Restricted access and control over data. All human stakeholders must have access to
relevant information to make the right decision about the diagnosis, treatment, or
rehabilitation that affects a patient's health. Data from which relevant information
could be extracted is currently scattered across databases residing with different
stakeholders (i.e. companies, hospitals, research institutions). The data are collected
for distinct purposes and might have a particular status, for example, proprietary or
open. In effect, data are vital for so many processes that control over them may
lead to a strategic advantage in business, clinical care, or science. Companies
might collect data to improve products (proprietary data) or evaluate services,
but also because of legal requirements or for quality assurance. It is mandatory for
health care professionals to keep a medical record that contains all information
needed to provide accountable care according to good clinical practices' (article
454 WGBO; Eijpe, 2014). The Health Insurance Portability and Accountability Act
(HIPAA) in the US and General Data Protection Regulation (GDPR) in the EU provide
the legislative framework that enables patients and care providers access and
control over personal data (Forrest, 2018; Individuals’ Right under HIPAA to Access
Their Health Information, 2016). An individual can request access to his/her data
stored by a health care provider (HIPAA) or any organization (GDPR). Therefore,
in theory, it is possible to create a global system that can access patients' health
history. However, in reality, appropriate data-exchange practices are lacking, which
seriously hampers patients' control over their data. The (re)use of proprietary data
can be restricted and is subject to trade secrets, patents, copyrights, or licenses (e.g.
see for legal rights governing research data; Carroll, 2015; and for property rights;
Stepanov, 2020). Vested interests, a motivation to influence factors for your benefit,
is a considerable barrier to the reuse of proprietary data. Without access to relevant
information, patients cannot make informed (shared) decisions. Clinicians will lack
insight into decision support systems, regulators will be unable to inspect and
audit, and researchers will be unable to appraise outcomes and methods critically.

5. Liability. For anyone working with new Al paradigms, it needs to be clear who is
responsible if anything goes wrong. Is it the scientist who made the algorithm, is
it the health care professional, or is it the patient who is ultimately responsible for
their own decisions? For example, how can a clinician (or a patient) ascertain that
an algorithm's outcome is correct and valid? An explicit example of a potentially
invalid test result is an auditory steady-state response (ASSR) exam performed on a
restless neonate that results in measurement conditions markedly different from the
conditions on which the algorithm was trained (Sininger et al., 2018). The test result
may not be accurate, but this shortcoming might not be noticeable to the clinician.

! For the following examples we chose to apply Dutch law to illustrate a legal framework.
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Oversight and regulation (in general for medicine; Maddox et al., 2019) for hearing-
related Al also needs to be in place. The level of this oversight will need to be
increased in cases of highly autonomous and self-learning clinical decision support
systems operating in highly complex environments and circumstances that have
severe consequences for erroneous actions. Furthermore, Al-based clinical decision
support systems need to be transparent to inspection and audit, and robust for
application in a specified context (in general for health technology; Shuren &
Califf, 2016).

The role of computational audiology in personalized hearing

health care

Al, automation, and remote care will become more widespread and better available
in the coming years. Redesigning the clinical workflow, implementing Al technology,
and changing the clinician's role should become a top priority (Rajkomar et al.,
2019). Below we discuss what role clinicians and other stakeholders might play
in the digital transition and its meaning for patients. Already, remote care has
become more mainstream due to the COVID-19 pandemic that has provided an
unprecedented impetus to develop and employ hearing health solutions that
reduce physical contact (De Sousa, Smits, et al., 2020; Swanepoel & Hall, 2020). This
situation has demonstrated that clinicians can adapt if appropriate benefits are
clear; for example, keeping practice doors open.

Clinicians’ role. Hearing health care professionals, including audiologists, have
valuable insights needed to implement these new approaches successfully.
For instance, algorithmic bias is reduced if a system is trained in a situation
comparable to where it is employed. Therefore, early involvement by hearing care
professionals in the design of algorithms could lead to products that better fit the
clinical pathway. In a concept mapping study, a structured method to produce a
conceptual representation, clinicians from Canada reported that structural training
on implementation and best-practices of remote care is needed (Davies-Venn
& Glista, 2019). Also, the application of Al requires clinicians to have appropriate
training to use Al tools and to be aware of their validity and limitations as well as
how to use them. Clinicians should also use their position (e.g. in a collective) to
advocate for necessary user requirements, including transparency and clarity,
so that, as professionals, they can take responsibility for actions and decisions
supported by those systems.

Not everything valuable in hearing health care is quantifiable and automatable.
Machines do not easily replace a clinician in aspects of care based on clinical
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judgment, soft skills, and the personal touch that help the clinician understand
the patient's needs. Clinicians need to see the patient's perspective while offering
knowledge, creating realistic expectations, providing rehabilitation, and collecting
feedback. They are also the mediators that counsel patients in using remote care
options, translating outcomes to individual cases, and interpreting results from
Al approaches.

Automation of routine diagnostic procedures might free up clinician time to
design more elaborate therapeutic interventions, rehabilitation strategies, or even
patient engagement/education initiatives. Technical tasks, including hearing tests
and hearing aid fitting, will benefit from best practices for accuracy and efficiency
standardized in automated routines. One example could be visual reinforcement
audiometry (VRA) for infants, which currently requires two clinicians to implement:
one that conditions the child while the other selects each stimulus and the timing
of its delivery. Suppose the stimulus selection is optimized through active learning.
In that case, a single clinician could condition the child while also registering
responses and selecting the timing of delivery with a handheld remote. The result
would be more accurate test results with half the labor, potentially enabling a
practice to double its patient throughput. In considering such scenarios, clinician
concerns about becoming marginalized in the face of automation deserve
consideration. Al technology can eventually standardize best practices of efficiency
and effectiveness for all clinicians while preserving the necessary human element
of care that only a person can provide. In no way are these ideas intended to take
clinicians out of the loop or diminish their contribution. On the contrary, their new
ability to reach more patients and provide better care is expected to expand their
clinical impact.

Collaboration among stakeholders. This paper attempts to start the dialogue needed
to create a shared vision among stakeholders regarding computational audiology,
one of the first steps towards effective collaboration. As examples, one could think
of health care decision-making and advocacy groups including health departments;
non-governmental organizations including WHO and patient associations; but
also hearing health care professionals including medical doctors and audiologists;
device manufacturers, insurance companies, and researchers in audiology. The way
to get there could be by stakeholder collaboration, for which Sekhri et al. (2011)
provide successful examples within medicine, which we regard as a necessary step
to implement the current advances in computational audiology on a large scale.
Besides a shared vision, we also need to think about aligning the interests of above
stakeholders. By putting patients’ interests first and creating the proper incentives,
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i.e. rewards that encourage people or organizations to do something, we may
overcome professional inertia, defined here as the resistance to change. For this, we
need to assess and create awareness about vested interests that hamper innovation
(e.g. reimbursement policies, Davies-Venn & Glista, 2019) and find common ground
so that by collaboration, we can jointly overcome the barriers and all benefit fairly
from the forthcoming advances.

An opportunity to further improve diagnostic and therapeutic procedures is to
make anonymous data openly available so that algorithms can train on larger
populations. All stakeholders involved who collect data should apply privacy
guarded-by-design, which requires built-in safety measures to protect patients’
privacy (A&L Goodbody, 2016). These measures should require all stakeholders to
assume responsibility for their specified share within the system. A prerequisite
for collaboration is the standardization of clinical procedures and how data is
stored and annotated within a computational infrastructure. Only then is pooling
of high-quality data possible. The time of small-scale research with small (uniform)
samples should be consigned to the past. Here, we may learn from other fields. For
example, in neuroimaging and genetics, research groups started a consortium to
facilitate data aggregation and sharing on a scale unprecedented in audiology (Bis
etal,2012).

Standardization would help clinicians collect evidence and create independent
outcome measures to assess new tools and comparing them with established and
validated methods and it ensures that clinicians are talking about the same thing
when operating within a network of distributed expertise. Besides, by enabling
interoperability between manufacturers and clinics, clinical procedures can be
more readily adopted. Interoperable systems in combination with licenses to
protect proprietary data will reduce risk and costs for companies (e.g. missing out
on a standard, maintaining a platform, adhering to regulatory requirements). These
systems keep the option open to compete and excel, and tackle the problem of
vendor lock-in that currently limits freedom of choice for clinics and patients.

What does computational audiology mean to patients? For many people worldwide,
the access to screening and diagnosis of hearing impairment will improve.
The complexity of a patient's hearing problem and his / her self-reliance will
determine the required degree of professional guidance. A large group with mild
and moderate hearing loss may be helped with relatively simple devices and may
even apply forms of self-care. More intensified professional help is needed for
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more complex fittings or for people who cannot apply self-care (e.g. those with
specific co-morbidities).

We believe it is still a significant challenge to make self-care by people with hearing
loss possible even for those with sufficient autonomy and health literacy, for reasons
including lack of trust in the transition and how digital information is presented
and exchanged between patients, clinicians, and companies. If information is not
clear to the patient, how can he/she act upon it? Clinicians will play an essential
role in maintaining patient trust in the transition and adapting to new practices.
Hearing health care may evolve to the point where parts of care are organized
remotely, for instance, screening of hearing loss, monitoring the status quo, and
making adjustments to rehabilitation depending on the patient's situation.

The future of audiology

Modernization of audiology towards greater quality, accessibility, and equity
will benefit immensely from the emerging power of computational sciences. We
envision a future where patient well-being is promoted by judicious evaluation
of data shared between interoperable systems of public or private origin. Health
care providers will adopt expanded roles within a network of distributed expertise
that continually updates best practices as they are accumulated and quantified.
Clinicians will be empowered to reach more patients by offloading decisions
about data collection to supportive tools while reserving complex and rare clinical
decisions for human experts. In the next decade, we foresee that widely available
devices, including smartphones, will catalyze the democratization of audiology
and benefit millions of people who suffer from the disabling effects of hearing loss
by helping evaluate and treat them with support and guidance from advanced
algorithms. For this to happen, we must join forces with experts in computational
sciences, agree on global standards and evidence-based procedures, and carefully
consider the possible challenges of big data and Al technology.
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ABSTRACT

In 2022 and 2023, the world witnessed the advent of Al chatbots driven by large
language models (LLMs). These Al chatbots, such as ChatGPT, promise human-
like interactions but are primarily regarded as text generators, lacking a deep
understanding of healthcare intricacies. This brief perspective paper explores the
potential and limitations of Al chatbots in hearing health care, focusing on their
role in providing personalized patient support and aiding hearing healthcare
researchers. Despite their inherent limitations, we speculate that Al chatbots can
enhance healthcare accessibility, improve patient outcomes, and support research.

Contrary to the conventional belief that Al chatbots are limited to text generation,
our findings illuminate their broader healthcare potential. In addition, they can
offer 24/7 health advice, potentially reducing the need for in-person consultations
and contributing valuable data to healthcare research. The emergence of Al
chatbots signifies a paradigm shift in healthcare accessibility and data acquisition.
Collaboration among healthcare professionals, researchers, and policymakers is
essential to maximize their benefits while ensuring ethical design, awareness of
potential biases, and responsible use. This collaborative effort is vital for the ethical,
efficient, and safe implementation of Al chatbots in hearing health care.

Key words: Al Chatbots, Hearing Health Care, Large Language Models (LLMs),
Healthcare Accessibility, Referral and Consultation
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INTRODUCTION

One of the most exciting recent technological innovations has been the deployment
of artificial intelligence (Al) chatbots based on large language models (LLM). Al
chatbots are a type of generative Al that can generate text. Other examples of
generative Al create pictures (e.g., DALL-E or Stable Diffusion; See Figure 1 and 2 for
examples) or music (e.g., Jukebox). In November 2022, OpenAl launched ChatGPT
publicly, an Al chatbot that can engage in conversations in response to questions
from the user, so-called prompts, generating responses to users' questions (i.e.,
prompts) that are almost indistinguishable from those of humans. The launch of
ChatGPT represents a technological revolution, one that could change the face of
healthcare as we know it, including hearing healthcare. ChatGPT is not an isolated
example but part of a global race of who can develop the most compelling Al
chatbot. Besides OpenAl, which is financed by Microsoft, other large corporations
such as Meta, Google, and Tencent have launched similar proprietary products
based on LLM (e.g., LaMDA).

Figure 1. DALL-E created artwork. Prompt “The rise of Al chatbots in hearing healthcare, digital art.”

43




44

| Chapter 3

Al Chatbots and Healthcare
Al chatbots are computer programs that use natural language processing (NLP)

to communicate with humans. They are trained on large collections of language

(e.g., all written books and most of the internet) to predict what response is most

likely to a wide range of queries. For a human user, it may appear as if the system

understands the question and can provide personalized advice, recommendations,

and support. In reality, chatbots have no understanding of the world around them

nor of the human body and its health status. Still, the potential applications for Al

chatbots in healthcare are broad, with use cases for patients, clinicians, researchers,
and training students (T. H. Kung et al., 2023).

Table 1. Al chatbots in hearing health care - applications, risks and research priorities for patients, clinicians

and researchers
Target Potential Potential Risks Examples of Research Priorities
users Applications

Initial screening and
recommendation
of interventions

Inaccurate or misleading
information

Efficacy of Al chatbots in
providing accurate and reliable
information to patients

Education and

Over-reliance on chatbots

Impact of Al chatbots on patient

support for decision making outcomes and satisfaction with care
Patients Reminders and Loss of human touch Effectiveness of chatbots
follow-up and emotional support in improving adherence
to treatment plans
Tele-audiology Potential for technical Feasibility and acceptability
services issues or difficulties of tele-audiology services
with communication assisted by chatbots
Data collection Loss of empathy Integration of Al chatbots with
and analysis and understanding existing healthcare systems
in patient care
Decision support Misdiagnosis or Evaluation of chatbot
Clinicians delayed diagnosis due accuracy and reliability
to chatbot errors
Patient triage Incomplete patient Feasibility and effectiveness
and referral information leading to of chatbots in improving
improper triage or referral  patient triage and referral
Data collection Incomplete or inaccurate Development of standardized
and analysis data collection protocols for chatbot data collection
Open source systems so that one
can better judge how data is used?
Researchers Participant Potential for selection bias ~ Comparison of chatbot-assisted

recruitment

in participant recruitment

and traditional research methods

Cognitive testing
and assessment

Limitations of chatbots
in capturing complex
cognitive processes

Evaluation of the validity and
reliability of chatbot-assisted
cognitive testing and assessment
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The broad trend for the use of Al chatbots in healthcare is to increase accessibility (to
medical knowledge) and affordability of care. Chatbots can provide 24/7 access to
healthcare advice and support, reducing the need for in-person consultations, and
potentially improving patient outcomes. Additionally, Al chatbots could potentially
provide valuable insights and data to healthcare professionals, allowing them to
make more informed decisions about patient care. More transparency on the data
these chatbots have access to and use to produce their output is important and has
been raised as a concern with regards to existing systems (Van Dis et al., 2023).

In hearing healthcare, chatbots could be used to support patients, clinicians, and
researchers (Table 1).

Patients and Al Chatbots

Patients can benefit from Al chatbots in hearing healthcare in various ways.
One potential application is for initial screening and the recommendation of
interventions. For example, a patient could interact with a chatbot that asks about
their symptoms and hearing history and provides recommendations for self-
management of symptoms, further evaluation, or treatment based on the patient's
responses (Wasmann & Swanepoel, 2023). This could be particularly useful in cases
where patients are unsure whether or not they are experiencing hearing loss, or
are hesitant to seek medical attention, or where a profound hearing loss inhibits a
conversation with a clinician. Chatbots can also serve as educational resources, self-
management tools and screening tools for comorbidities, including social needs
(Kocielnik et al., 2020). Patients can receive information about hearing health,
prevention tips, and advice on how to manage hearing conditions. Chatbots can
provide information on the use of management options such as hearing aids, how
to change batteries, and troubleshooting common issues. However, a potential risk
is that chatbots may not provide accurate recommendations, leading to delayed
diagnosis or inappropriate treatment.

Figure 2. DALL-E created artwork. Prompt “A futuristic illustration of the "Planet of the Al chatbots in
hearing health care, a movie about invading an ear that is also an hospital.”
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Clinicians and Al Chatbots

Clinicians can benefit from Al chatbots in hearing healthcare in various ways.
Chatbots can assist with data collection and analysis by collecting data on patients’
hearing health, such as self-reported symptoms or hearing aid usage. Chatbots
can provide summary reports or visualizations to help clinicians make treatment
decisions, such as providing a summary report of a patient's hearing test results,
highlighting areas of concern, and providing recommendations for further
evaluation or treatment. Another potential application is to assist with decision-
making and treatment planning. For medical applications, Google and Deep Mind
developed Med-Palm, a LLM that incorporated clinical knowledge that has been
evaluated using newly developed benchmarks (Singhal et al., 2023). Chatbots that
unlock clinical knowledge could suggest treatment options based on a patient's
hearing health history and symptoms and provide information on the benefits
and risks of each option. For instance, chatbots could suggest a specific type of
treatment based on a patient's hearing test results and preferences. Chatbots can
also support clinicians in their communication of information in more accessible
and person-centered ways.

A potential risk is that chatbots may not provide the same level of clinical judgment
and decision-making as a human healthcare professional. Additionally, there is a
risk that the data collected by chatbots may be inaccurate, incomplete, biased, or
dated, which could lead to misdiagnosis or inappropriate treatment.

Hearing Researchers and Al Chatbots

Researchers can benefit from Al chatbots in hearing healthcare in various ways.
Chatbots can collect large amounts of data from diverse populations, providing
researchers with valuable insights into the prevalence and impact of hearing loss.
For instance, chatbots can potentially collect data on the prevalence of tinnitus in
different countries or regions. Another potential application is to facilitate clinical
trials and research studies. Chatbots can screen potential participants for eligibility,
collect informed consent, and administer study protocols (Kocielnik et al., 2020).
For example, chatbots can collect self-reported data on hearing aid usage and
satisfaction in large-scale clinical trials.

However, a potential risk is that the data collected by chatbots may be incomplete
or biased, particularly if the chatbots are only accessible to certain populations or
if the questions asked by the chatbots are not culturally sensitive or appropriate
for all participants (Van Dis et al., 2023). Additionally, chatbots may inadvertently
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exclude certain populations from research studies, such as individuals who do not
have access to technology or who are not comfortable using it.

Current Priorities

There is an urgent priority to investigate the (clinical) application of Al chatbots in
hearing health care. General guidelines for the appropriate use of Al chatbots by
researchers are being developed in this rapidly changing landscape. Academic journals
have broadly agreed that chatbots may not be co-author on research papers since they
cannot take responsibility for their work (Stokel-Walker, 2023; Van Dis et al., 2023). In
terms of hearing research applications, priority should be given to evaluate the validity
and reliability of chatbots in collecting and analyzing hearing health data. Researchers
and clinicians need to ensure that chatbots can provide accurate recommendations
and treatment options and that the data collected by chatbots is reliable.

Usability is another important research priority to ensure that chatbots are user-
friendly and accessible to as many patients as possible, regardless of their age or
technological literacy. Cultural sensitivity is also important to ensure that chatbots
are culturally sensitive and appropriate for all populations. There are also important
ethical considerations for using chatbots in hearing healthcare, including issues
related to informed consent, data privacy, and data security. Researchers will also
need to assess long-term outcomes of using chatbots in hearing healthcare. This
includes evaluating the impact of chatbots on patient outcomes such as quality of
life, satisfaction, and adherence to treatment. Overall, the research priorities for Al
chatbots in hearing research should focus on ensuring that chatbots are accurate,
reliable, accessible, and culturally sensitive.

Guidelines for appropriate use of Al chatbots by clinicians or patients are not yet
available. As the language models have been trained largely by using text from the
internet, they are likely to have the same general opinions, stereotypes and biases
that are present on the internet. For this reason, we see a task for specialists and
patient organizations to test what prompts yield the best results and provide the
guidelines to avoid misuse or misunderstandings.
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CONCLUSION

The rise of Al chatbots (based on LLMs) represents a significant technological
advancement that has the potential to revolutionize hearing health care. Al chatbots
have the potential to provide personalized advice and support to patients while
also providing valuable insights and data to healthcare professionals. However,
it is important to consider the potential risks and benefits of Al chatbots and to
prioritize further research to ensure that these technologies are used ethically,
effectively, and safely in hearing health care.
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ABSTRACT

Objective: Automated speech recognition (ASR) systems have become increasingly
sophisticated, accurate, and deployable on many digital devices, including
smartphones. This pilot study aims to examine the speech recognition performance
of ASR apps using audiological speech tests. In addition, we compare ASR speech
recognition performance with people with normal hearing and people with hearing
loss and evaluate if standard clinical audiological tests are a meaningful and quick
measure of the performance of ASR apps.

Methods: Four apps have been tested on a smartphone, respectively AVA, Earfy,
Live Transcribe, and Speechy. The Dutch audiological speech tests performed
were speech audiometry in quiet (Dutch CNC-test), Digits-in-Noise (DIN)-test with
steady-state speech-shaped noise, sentences in quiet and in averaged long-term
speech-shaped spectrum noise (Plomp-test). For comparison, the apps' ability to
transcribe a spoken dialogue (Dutch and English) was tested.

Results: All apps scored at least 50% phonemes correct on the Dutch CNC test for a
conversational speech intensity level (65 dB SPL) and achieved 90-100% phoneme
recognition at higher intensity levels. AVA and Live Transcribe had the lowest (best)
signal-to-noise ratio +8 dB on the DIN-test. The lowest signal-to-noise measured
with the Plomp-test was +8 to 9 dB for Earfy (Android) and Live Transcribe (Android).
Overall, the word error rate for the dialogue in English (19-34%) was lower (better)
than for the Dutch dialogue (25-66%).

Conclusion: The performance of the apps was limited on audiological tests
that provide little linguistic context or use low signal-to-noise levels. For Dutch
audiological speech tests in quiet, ASR apps performed similarly to those with
moderate hearing loss. The ASR apps performed more poorly in noise than most
people with profound hearing loss who use a hearing aid or cochlear implant.
Adding new performance metrics, including the semantic difference as a function
of SNR and reverberation time, could help to monitor and further improve
ASR performance.

Key words: automated speech audiometry (automatic speech recognition),
automated speech recognition, (ASR), evaluation metric, hearing loss, speech-to-
text, voice-to-text technology
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INTRODUCTION

Automated Speech Recognition (ASR) has become increasingly sophisticated
and accurate as a result of advances in deep learning, cloud computing, and the
availability of large training sets (Saon et al.,, 2017; Xiong et al., 2017). The software
converts speech into text using artificial intelligence models that have been trained
on vast collections of speech containing millions of words. ASR software is widely
available on most digital devices, including smartphones, tablets, or laptops. It
is primarily used for voice commands (e.g. hey Siri!), at the workplace to create
transcripts, or in class for taking notes. Recently, ASR has become available in online
meetings (e.g. Microsoft teams) and video recordings (e.g. Google’s Youtube) to
provide automatic captions. Also, several ASR-based speech-to-text apps have been
developed for people with hearing loss, providing live captioning of conversations
(Kader et al., 2021; Xiong et al., 2017), showing the potential of automation and
artificial intelligence for hearing healthcare (Lesica et al., 2021; Wasmann et al.,
2021). Early in 2020, we were confronted in our clinic with questions from patients
related to the use of ASR apps for daily communication. These questions were
especially common among patients with severe to profound hearing loss who
visited our outpatient clinic to assess if they were eligible for a Cochlear Implant.
Also, patients who had experienced sudden deafness, but had not yet been fitted
with hearing aids, made use of an ASR app during their appointments. There was
no or little experimental information at the time about the performance and
usability of the ASR apps for people with hearing loss beyond what was shared by
developers. Nor did we have clear criteria for which groups of patients we might
suggest the ASR apps to.

Since 2017, several ASR systems have claimed speech recognition performance
close to that of people with normal hearing (Saon et al,, 2017; Xiong et al., 2017).
The most common metric to express ASR performance, used to underpin these
claims, is the word error rate (WER). WER is calculated by adding the number of
missing, wrong, and inserted words and dividing this by the total number of
words (Jurafsky & Martin, 2009). A lower WER score means better performance.
The performance of ASR will be best for speech similar to the speech on which
it was trained (Koenecke et al., 2020). It is therefore important to understand for
what specific task an ASR is designed for and how it is evaluated. Typically ASRs are
evaluated on well-studied large (>100 hours) collections of speech, referred to as a
corpus. The SwitchBoard corpus and CallHome corpus are well-known collections
of conversational phone calls (Cieri et al., 2004), whereas Librispeech is a corpus
comprising speech from public domain audiobooks. The SwitchBoard corpus
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consists of conversations over the phone between strangers about a given topic
(Godfrey et al., 1992). The CallHome corpus consists of more informal conversations
between friends and family (Cieri et al., 2004). None of these corpora are ideal for
use in acoustically challenging environments. The SwitchBoard and Call[Home were
collected under low noise and low reverberation conditions (Godfrey et al., 1992),
and a large portion of the Librispeech corpus has undergone noise removal and
volume normalization (Panayotov et al., 2015).

In order to obtain estimates of human speech recognition performance that could
be used for comparison with ASR, some researchers have determined the WER
among professional transcribers of speech from the SwitchBoard and CallHome
corpora. Saon et al. (2017) estimated the lowest (best) achievable WER, 5.1% for
SwitchBoard and 6.8% for CallHome, based on the best score taken from three
professional speech transcribers after a quality check by a fourth speech transcriber
(Saon et al., 2017). Xiong et al. (2017) on the other hand, followed more realistic
industry standard procedures, which are similar to how speech is processed by
ASR (Xiong et al., 2017). The reported WERs were 5.9% for SwitchBoard, and 11.3%
for Call[Home.

For some commonly-used ASR systems, WERs of 5.1% (Microsoft) and 5.5% (IBM)
have been reported using the SwitchBoard corpus (Kincaid, 2018), which is close
to the performance of professionals with normal hearing reported above (Saon
et al., 2017; Xiong et al., 2017). Benchmark results of widely used ASR systems
tested on the same corpora are not available to our knowledge. Google reported a
WER of 4.9%, but used a non-public corpus (Kincaid, 2018). Koenecke et al. (2020)
compared the performance of ASR systems from Amazon, Apple, Google, IBM, and
Microsoft to transcribe structured interviews using two recent developed corpora
(CORAAL and AAVE). However, transcribing a structured interview is a very different
task than transcribing a conversation in real-time in acoustically challenging
environments. More ecologically valid tasks are needed that take account the
effects of noise, reverberation, talker accent, and slang, for instance, to provide
a realistic estimate of ASR performance when used for conversations in daily life
under various acoustic conditions.

For people with hearing loss, there are specific user needs to consider when
developing ASR apps. For example, these listeners might use both speechreading
(Bernstein et al., 2000) and text reading of the ASR transcript from a screen.
Speechreading conveys important nonverbal cues and nuances not included in
a transcript and may enhance speech-in-noise abilities (Helfer, 1997). However,
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without careful design, reading a transcript may interfere with someone’s
speechreading ability. Speaker identification cues (e.g by color coding each speaker
a feature in AVA; Coldewey, 2020) may also direct the reader to the face of an active
talker. Other design ideas include the notification of critical environmental sounds
(a feature incorporated in Live Transcribe; Google, 2021), feedback to the speaker of
their intelligibility of the ASR, or feedback to the speaker by making the transcript
readable from two sides (e.g mirrored) so that both the speaker and the listener can
check the results (incorporated in Earfy; Earfy, 2017).

The settings where an ASR Is used may also differ between individuals with
hearing loss or normal hearing. For example, the settings where people with
hearing loss use ASR may be more often in a more homely atmosphere between
family members that might use more colloquial language or slang. That situation
may be similar to closed caption for video series. The most common complaint of
people with hearing loss is the reduced speech perception in complex listening
environments including cocktail parties, restaurants, in conversations with their
doctor, and family gatherings. Adverse acoustic conditions, including low signal-
to-noise, make it difficult for people with normal hearing to understand speech and
make the speech incomprehensible for people with mild to profound hearing loss.
Finally, the speed of translation to accommodate a fluent conversation and the user
interface to make it practical for older users and digitally less proficient users are
factors to consider.

A standardized task that fully captures the skills of humans to recognize speech
does not yet exist, to our knowledge. Such a task would need to account for factors
as background noise, reverberation, accent, and speech impairment. This is needed
to verify claims that ASR speech recognition performance is close to humans (Saon
et al,, 2017; Xiong et al,, 2017) and should be done using diverse training datasets
(Koenecke et al., 2020).

This pilot study aimed to examine the speech recognition performance of ASR
apps using audiological speech tests. We normally administer clinical audiology
tests in patients from normal hearing to profound hearing loss to assess speech
recognition. We tested the hypothesis that our clinical tests might thus provide
objective metrics for performance of ASR systems for people with hearing loss,
helping us to determine what range of hearing losses could benefit from ASR apps.
In addition, we compared ASR results to people with normal hearing and people
with hearing loss and evaluated if standard clinical audiological tests provide a
meaningful and quick measure of the performance of ASR apps.
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METHODS

Four different apps on two smartphones, with various operating systems, were
tested on their ability to transcribe speech. For this project, the iOS operating apps
were tested using an iPhone 6, and for the Android operating apps, a Samsung
A3 was used. Both smartphone devices are widely used. We decided to select
inexpensive ASR apps (<$10) since they would be most widely used by our patients
while the cost for ASR apps is not reimbursed in the Netherlands. The four apps
tested were Ava and Earfy that both run on iOS and Android, Speechy iOS only,
and Live Transcribe Android only. The tested apps were chosen by searching on the
Internet on November 18", 2019, for the best-known speech recognition apps for
people with hearing loss as well as good reviews on the different app-stores. Also,
the apps needed to be suitable to convert English and Dutch speech into text and
inexpensive (less than $10 for a license).

The apps were evaluated in similar test conditions used to assess speech receptionin
human listeners in Dutch Audiology Centers according to best local clinical practice.
The smartphones were placed one meter in front of a speaker in a sound treated
room compliant with ISO 8253-1 (International Organization for Standardization,
2010). Standard clinical calibration protocols were used for all speech material.
The microphone of the smartphone was aimed towards the speaker, which we
assumed to be the optimal microphone orientation, at approximately the height of
a listeners’ ears to resemble testing conditions when tested with human listeners.
The smartphone screen was facing upwards allowing the experimenter to read
the text from the screen. Four different speech reception tests were performed to
evaluate the apps’ ability to convert speech into text.

First, the apps were tested on speech recognition in quiet by converting a list
of single words into text. The standard Dutch speech recognition test for this
purpose was the Dutch CNC-test, which consists of phonetically balanced lists of
twelve monosyllabic Dutch words in quiet (CNC-list, ‘Nederlandse Vereniging voor
Audiologie’; Bosman & Smoorenburg, 1995). The words were played through a
speaker, scored and displayed in a phoneme recognition score. All words consisted
of three phonemes with a consonant-nucleus-consonant (CNC) structure. The
first word was a test word and was not included in the scoring. A human observer
performed the scoring by reading the word from the screen and counting the
number of correct phonemes. Inserted phonemes were subtracted from the
score according to the clinical scoring procedure (Bosman & Smoorenburg, 1995).
If a displayed word changed during the test, the final word was scored. A 100%
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phoneme recognition score was reached if all 33 phonemes of the 11 words were
correct. Several lists were presented at an intensity level of 45, 55, 65, 75, and 85 dB
sound pressure level (SPL) and the speech recognition as a function of presentation
level (known in human listeners as speech audiogram) is plotted for each app. For
comparison, people with normal hearing achieve 100% phoneme recognition at
45 dB SPL (Bosman & Smoorenburg, 1995).

Figure 1. Set-up of the smartphone in front of the speaker.

Second, the Plomp-test (Dutch sentencesin noise) was presented (Plomp & Mimpen,
1979b). The test consists of 13 sentences of 8 to 9 syllables presented in noise with
the same averaged long-term spectrum as the speech. A sentence was scored to
be either correct, if the whole sentence was correctly presented on the screen, or
incorrect, which was according to the conventional scoring procedure in clinical
practice (Plomp & Mimpen, 1979a). The speech recognition threshold (SRT) in noise
was defined as the signal-to-noise ratio (SNR) expressed in dB where on average
50% of the time the sentences were transcribed correctly, following the adaptive
procedure described by Plomp and Mimpen (1979). The test was first performed
without the noise to obtain the SRT in quiet. Afterward, the masking noise level was
set 15-20 dB above the SRT of the apps in the quiet situation, which was 70 dB SPL
for all apps, to determine the speech reception threshold (SRT) in noise.

Third, a DIN-test (Digits-in-Noise) was performed. Digit triplets (e.g. 1 2 5 ) were
presented in a long-term average speech-spectrum noise via a 1-up, 1-down
adaptive SNR procedure. SRT was expressed in dB SNR, where a listener can on
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average recognize 50% of the digit triplets correctly. A test series consisted of 24
triplets. The first four triples were not used to determine the test outcome. The
noise level was set at a fixed level of 60 dB with an initial positive SNR of 6 dB. The
stepsize to adjust the level of the triplets was 2 dB. The DIN-test has a measurement
error in humans of 0.7 dB (Smits et al., 2013).

Finally, a fragment of dialogue in Dutch and English at 72 dB(A) was presented
through the speaker to recreate a more realistic listening setting. The Dutch
dialogue was an introduction video of the Radboudumc with a female voice,
talking clearly and at a normal pace (https://www.youtube.com/watch?v=zBJBD1-
ePRw). For the English dialogue, part of an advanced English tutorial was played.
In this video, a conversation could be heard between a male and female voice
(https://www.youtube.com/watch?v=JtMgw2rCYSo&t=1s). The Dutch dialogue
consisted of 256 words, while the English dialogue consisted of 248 words. After
the whole dialogue was played, scoring was performed on the transcript outputted
by the app. The number of missing, wrong, and inserted words was counted and
expressed in the WER.

In the end, a test-retest was performed to provide insight into the accuracy of the
apps. All apps were retested on the CNC-test. The test-retest reliability on the CNC-
test was visually assessed using a Bland-Altman graph. The best scoring app on
the DIN- and Plomp-test, one for iOS and one for Android, was retested for both
speech-in-noise tests. The root mean square difference (RMSD) was calculated for
these results. No retest was performed for the dialogue.
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RESULTS

The results for all apps on the Dutch CNC-test (words in quiet) are shown in Figure 2.
The Speech Recognition as a function of presentation level was determined per app
by interpolating a line using logistic regression on all available-data points (test and
retest measurements). A 100% phoneme recognition was reached around 80 dB SPL
for all apps except Earfy. Earfy (i0S and Android) scored 90% words correctly around 90
dB SPL. The shape of the apps'“speech audiogram” curves look similar to the s-shaped
psychometric curve of people with normal hearing determined by Bronkhorst et al.
(1993) in 20 university students with normal hearing (Bronkhorst et al., 1993). However,
all apps’ SRT were between 50 and 60 dB SPL, which is 25 to 35 dB poorer than people
with normal hearing who have a SRT around 25 dB SPL (Bosman & Smoorenburg, 1995).
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Figure 2. Speech recognition as a function of presentation level (in human listeners known as speech
audiogram) of all ASR apps tested on an Android and iOS smartphone. The plotted lines are interpolated
using a logistic function through the measured test-retest data-points. Left side: results of the Android apps,
right side: results of the iOS apps.

The speech-in-noise results are shown in Figures 3 and 4. All apps score a signal-
to-noise ratio (SNR) higher than +8 dB on the DIN- and Plomp-test. Live transcribe
(Android), and AVA (Android, iOS) achieved the best results on the DIN-test. Earfy
on Android performed better than on iOS. Live Transcribe (Android) and AVA (iOS)

59




60 | Chapter4

achieved the best result using the Plomp-test. There was a notable difference between
the operating systems for AVA and Earfy when measured with the Plomp-test.
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Figure 3. Digits-in-Noise results expressed in SNR per app. A lower score is better. The error bars represent
the standard deviation of the response of the app within a single list of triplets.

Sentences-in-Noise

20 r
16 | [
= C
Z 12 r l
o | |
i C
S I l I e i0S
= S f l Android
(%] L
s f
o &
Live
Earfy AVA Speechy .
Transcribe

Figure 4. Sentences in noise results expressed in SNR per app. A lower score is better. The error bars represent
the standard deviation of the response of the app within a single list of sentences.
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In figure 5, the WER scores for both the Dutch and English dialogue are shown.
Overall, the dialogue in English (WER 19-34%) was more correctly converted into
words than the Dutch (WER 25-66%) dialogue. Speechy (iOS) had best matching
result for English and Dutch (WER of 19% and 20%). Earfy (iOS) showed the greatest
difference between English and Dutch (WER of 19% and 66%).

Word Error Rate
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(Android)
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Figure 5. Word error rate in percentage of the dialogue in English and Dutch for the different apps.
The test-retest reliability of the CNC-test can be seen in figure 6.

Visual inspection of the Bland-Altman plot for the CNC-test-test did not show signs
of any systematic bias in the relationships between differences and averages. The
test-retest comparison of the CNC-test showed three outliers. Earfy for iOS exhibited
large differences between the measurements at 70 and 90 dB and Live transcribe
(Android) had a large difference between measurements at 50 dB. The test-retest
reliability on the DIN- and Plomp-tests was assessed for one Android and one iOS
app. The test-retest difference expressed in Root-Mean-Square-Difference on the
DIN-test was 0.4 dB iOS Ava and 0.8 dB Android Live Transcribe, which we regard
as acceptable since in people with normal tested monaurally using headphones,
90% of measurements are within 1.4 dB (measurement error is 0.70 dB) for a single
list on the DIN-test (Smits et al., 2013). The Root-Mean-Square-Difference on the
Plomp-test was 0.6 dB iOS Ava and 2.0 dB for Android Live Transcribe.
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Figure 6. Bland-Altman plot displaying the test-retest reliability of the CNC-test.

DISCUSSION

Main results

None of the ASR apps achieved performance close to people with normal hearing
on audiological tests. In quiet, ASR apps performed similarly to people with a
moderate hearing loss. When transcribing speech-in-noise, the ASR apps performed
in the performance range of Cl recipients. Sentences-in-noise provided a quick test
to assess ASR performance since that test material provided more linguistic cues
than digits-in-noise or lists of CNC words.

Performance compared to people

The performance of the ASR apps on speech-in-quiet tests seems comparable to
people with a moderate conductive hearing loss (30-35 dB threshold shift), which
is known as disabling for certain activities in daily life (World Health Organization,
2021). In comparison, Dingemanse & Goedegebure (2019) found a mean score of
82% in 50 adult unilateral Cl-recipients on the Dutch CNC-test tested in free field
at 65 dB SPL, which is the level of conversational speech. This performance may be
an overestimation for the average Cl users since they excluded participants with a
CNC-score below 60%. Kaandorp et al. (2015) determined a mean score in free field
at 65 dB SPL of 95% while using their preferred device in 24 hearing aid users with a
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moderate to severe hearing loss and 80% in 24 Cl recipients. Only for speech at high-
intensity levels, well above the level of conversational speech, do the apps achieve 90
to 100% speech reception. The poor performance at low speech intensity levels may
be caused by hardware limitations, as discussed below in the section on hardware.
The ASR may score lower due to the lack of contextual information provided in the
test. The CNC-test was developed as an auditory test that requires little linguistic skill.
The listener can only use the consonant-vowel-consonant structure and the fact that
the lists contain only familiar existing words. The alternative of using nonsense words,
or nonsense sentences, would probably further deteriorate ASR performance while
being a valid test for assessing auditory function with a lower effect of language skills
by the subject (O'Neill et al., 2020). Most ASR are trained on sentences of realistic
conversations (Cieri et al., 2004). The strength of (deep learning) ASR is based on using
contextual information from a natural language processing model (Deng, 2016). That
contextual information is not available in word testing.

The performance of the ASR apps on the digits-in-noise test was very limited
compared to humans. People with normal hearing achieve on the DIN-test
monaurally using headphones an SNR of -8.8 dB (Smits et al., 2013). Cl recipients
rated on the same criteria as people with normal hearing, typically achieve DIN
scores ranging from +3 to -6 dB. For instance, Kaandorp et al. (2015) found an
average SNR of —1.8 (+2.7) dB in a group of 18 adult unilateral Cl recipients in
free field test conditions. The ASR is at a disadvantage because in the DIN-test,
contextual information is lacking and the priors for the ASR and human are not the
same. When doing a digits-in-noise test, a human will only report digits. For the ASR
it is not a 10-class problem but a problem with several thousand alternatives. The
apps tend to construct sentences rather than separate numbers. For conversations
where it is important to catch a number, such as the price of an item, the DIN-test
might be a useful measure.

The performance of the ASR apps on sentences in noise (Plomp-test) was very
limited and much poorer than in people with a moderate hearing loss (Plomp &
Mimpen, 1979b). People with normal hearing have an SRT at an SNR of -8 to -10
dB (Plomp & Mimpen, 1979b), while the best ASR apps achieved +8 dB scores.
Kaandorp et al. (2015) found mean SRT on Dutch Sentences in noise by scoring
keywords of +2.1 dB for 24 hearing aid users (tested on their preferred ear) with
moderate to severe hearing loss and +8.0 dB for 24 unilateral Cl recipients. In CI-
recipients, evaluation of speech-in-noise is often performed scoring keywords,
instead of full sentences as used in the original procedure by Plomp and Mimpen
(1979; 20). In another study, Kaandorp et al. (2016) found a significant difference of
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1.0 dB in favor of a keyword scoring procedure compared to scoring full sentences.
However, this 1.0 dB keyword effect does not account for the large difference
between the app’s performance and the performance of hearing aid users in noise.
On the Plomp-test, which provides more linguistic information than the CNC- and
DIN-test, the apps’ performance is far below that of the majority of people with
hearing loss and similar to the range of outcomes in Cl-recipients.

Sentences with and without noise (Plomp-test) could be considered as a
performance metric for ASR apps in difficult listening conditions. Possibly with
more natural sentences to provide even more linguistic cues. Testing through
a loudspeaker has the advantage that it takes the effect of room acoustics into
account, making the test condition more realistic. Instead of a sound booth, a room
with more representative acoustics for daily situations (e.g the reverberation time of
a classroom or using babble noise instead of speech-shaped noise) would provide
even more representative results. The current scoring procedure of the Plomp-test,
based on fully correct sentences, leads to very high SNRs that may underestimate
the practical value of ASR for people with hearing difficulties. For instance, if an
ASR in a conversation under noisy conditions provides keywords, it may already
benefit the person with hearing impairment. One could easily adopt the Plomp-
test by determining the WER score on a fixed SNR level to simulate above example.
Or alternatively, accept a higher number of mistakes (compared to none) in the
adaptive test by using keywords (Kaandorp et al., 2016). Besides audiological test
outcomes, the systematically collected feedback by groups of users (e.g. a focus
group) would be very helpful to further improve the accessibility and usability of
ASR apps for people with hearing difficulties.

In longer dialogues, all tested apps provided a running English transcript with a
WER around 19-34%. This roughly corresponds to 60-80% correct word (~1-WER)
scores and this is in the same range as for people with profound hearing loss who
use a cochlear implant (Blamey et al., 2013) and better than hearing aid users with a
profound hearing loss (Flynn et al., 1998). For these groups, the use of the ASR apps
tested here would likely provide benefits.

Hardware and platform variability

A possible explanation for the poor performance at low levels could be the
smartphone’s microphone gain settings and limited dynamic range rendering soft
sounds undetectable (Faber, 2017). We chose a microphone orientation, directing it to
the speaker that we assumed was optimal for the task. However, we did not check the
directionality of the built-in microphones. In actual use, the microphone orientation
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could be suboptimal, for instance, if a listener positions the device such that it enables
better reading of the transcript from the screen. Also in group settings, the user will
likely put the device flat on a table and thus not always point the microphone to the
speaker. We did not investigate the effect of suboptimal microphone orientation.
Another explanation for the level dependence in quiet could be pre-processing. Most
ASR systems usually normalize the input (Jakovljevi¢ et al., 2008). Potentially the ASR
systems classify soft sounds as non-speech or not of interest.

In English, there is not much difference between the apps or between the operating
platforms. Therefore, we do not expect differences in the Dutch version to stem
from hardware differences between the smartphones (e.g., microphone sensitivity)
but from the implementation of the Dutch language in the specific app or the used
training data. The difference between iOS and Android was only visible in Dutch. In
Dutch, Earfy (i0S) and Ava (iOS) score significantly poorer.

There was no consistent difference favoring either iOS or Android versions of the
apps. Earfy performed better on Android, while AVA performed better on iOS. For
prospective users, the performance of the app depends on language, and may
depend on the platform.

Limitations

The administered tests did not include the effect of accents or speech impairments
(e.g. deaf speech; Biadsy et al., 2019; Koenecke et al., 2020). The displayed transcripts
changed during the dialogue, and the transcript was evaluated at the end of the
dialogue instead of in real-time. When reading the transcript in real-time, the
performance of the speech recognition apps might be better or worse due to the
changing words in real-time to construct a logical sentence.

When measuring performance in noise, an adaptive SNR procedure was used. The effect
of noise could be more extensively studied by evaluating ASR by determining the Word
Recognition Score (the convention in the field of audiology) or the Word Error Rate (the
convention in the field of ASR research) on several fixed SNR levels (e.g. -5, 0, +5 and
+10 dB SNR) that correspond to realistic listening conditions for people using a hearing
aid (Christensen, Saunders, Havtorn, et al., 2021). For ecological valid measures, the
effect of different fluctuating noise maskers should be considered (Festen & Plomp,
1990; Francart et al., 2011). Babble-noise or traffic noise is much more realistic than
(artificial) steady-state speech-shaped noise. In the end, the performance of the ASR
must be robust enough that users will put their trust in these apps even in formal
situations such as a conversation with their doctor or audiologist.
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In this study, only (audiological) speech-to-text performance of the apps was
measured. The usability, processing speed, effect on speechreading, and readability
of the transcript were not evaluated. Other researchers looked into requirements for
speed and user interface and concluded that those are important factors to improve
usability (Glasser et al., 2017). We expect that an increasing number of ASR apps will
adhere to accessibility guidelines to improve usability for the elderly and people with
disabilities as promoted by the Web Accessibility Initiative (Initiative (WAI), 2021).

The number of apps tested in this study is limited. We did not perform a
standardized procedures for literature review (e.g. PRISMA) to find and include ASR
apps for this pilot study. In English, more apps may be available than in Dutch and
we did not include expensive state-of-the-art (professional) ASR systems.

Other factors to consider not included in this pilot study are the distance between
speaker and listener, especially in these times of social distancing and the effect of
face masks on a speakers’ voice and intelligibility (Yi et al., 2021). Feedback about
voice quality could help the speaker adopt a more intelligible speaker style. The
errors made by the ASR may be complementary or redundant to the errors made
by people with hearing loss. We did not study the error patterns. A potential way
to determine the complementary effect of ASR could be to evaluate speech-
recognition in noise using an audiovisual presentation mode, instead of the
audio-only mode that was used in this study, in three distinct aided conditions.
1) participants with hearing loss aided with hearing aid or Cl. 2) participants with
hearing loss aided with hearing aid or Cl and using an ASR app, 3) performance
by the ASR app only. Studying the difference between these conditions reveals
the added benefit and may penalize ASR systems not designed for simultaneous
speechreading and text reading.

Metrics to evaluate personalized ASR performance

Instead of the quick audiological tests we performed here, a more conventional and
elaborate evaluation method would be to record several hours of conversations
with people (including realistic lexicon and acoustics) via a smartphone while the
screen is oriented such that the user can read the transcript. Subsequently, one
could create transcripts of the recordings by human transcriptions as ground truth,
pass the recordings through several ASR apps and determine a performance rating
based on WER and other automated metrics such as the semantic distance between
the ASR transcript and ground truth (Kim et al., 2021).
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ASR may benefit from domain-specific evaluation tools and have domain-specific
applications. For instance, Miner et al. (2020) developed a metric based on
symptom-focused language in psychotherapy. A domain-specific, or even person-
specific factor is that prelingually deaf people often have a speech impairment,
leading to lower comprehensibility both for people with normal hearing who are
not accustomed to deaf speech and for ASR apps that are not specifically trained on
deaf speech. Fortunately, generic ASR models can be used as a pre-trained model
that subsequently is trained on a particular task including a-typical speech, accents,
or acoustic conditions without incurring the cost of training a full model (W.-C.
Huang et al., 2019). Recently, researchers from Google started a project, called
Parrotron, to create personalized models which could better convert deaf speech
than generic ASR systems. WER dropped from 89.2% for the generic ASR to 32.7%
for the finetuned ASR for a single prelingually deaf subject (Biadsy et al., 2019). In
addition, the Parrotron system can synthesize the speech of a speech impaired
person with impaired speech (i.e. voice conversion) to make the speech sound
more natural and comprehensible to the untrained ear.

Metrics as, for example, the WER (SNR, RT), or semantic difference (SNR, RT), as
functions of signal-to-noise ratio and reverberation time (RT) can provide more
ecologically valid estimates of the benefits ASR apps could provide in daily life.
Representative SNR values could include -5, +10, +30 (quiet) dB SNR. For ecological
valid measures, realistic fluctuating noise masker should be used (Festen & Plomp,
1990; Francart et al., 2011). Reverberation times typically encountered in daily life to
consider are 0, 0.5, and 2.5 seconds, which corresponds to ideal, classroom (Knecht
et al, 2002), and church (Desarnaulds et al., 2002) room acoustics. Presenting
the ASR performance using the WER (SNR, RT) reduces the need to study the
characteristic of the corpus on which the ASR was trained and or evaluated.

Future benefits for audiologists

ASR apps can provide benefits in conversations between patients and their
audiologists (Berenger, 2021). In addition, ASR technology, when further
developed, can play a role in computational approaches to audiology (Wasmann
etal., 2021). For instance, if personalized ASR apps further develop so that atypical
speech is better captured, and if ASR achieves normal hearing performance on
audiology tests it may provide another use case: patients could perform self-
testing (i.e. automated speech audiometry) by repeating the speech they hear to
an ASR system trained on their particular voice replacing or enhancing the task of
the professional in the audiology center (Venail et al., 2016). Manual calculation of
complex evaluation metrics is not suitable in clinical settings given the excessive
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time required and may lead to inter-rater variability (Smith et al., 2019). Automated
speech audiometry using algorithms to score performance can be a valuable
complement to automated pure-tone threshold audiometry (Wasmann et al.,
2022). For example, Vinail et al (2016) validated a semi-automatic speech procedure
using customized word-lists, in part, provided by the subject to include familiar
words. The customized word-lists were recorded with the subject’s own voice to
incorporate personalized acoustic and articulatory parameters. Speech recognition
was evaluated on the customized word-list using an algorithm to determine
automatically the number of correctly repeated phonemes. In addition, the use of
ASR could open venues to improved (automated) scoring methods in audiology
tests. Ratnanather et al. (2021) demonstrated how one can automate the alignment
of phonemes based on the minimum edit distance between the source speech and
the utterances of the subject in real time. Visualizing this alignment may provide
insights to clinicians about what phonological errors are made.

A factor of variability in rating procedures is that in many speech-in-noise tests, the
test is made easier for Cl recipients by only scoring correct keywords rather than full
sentences (Kaandorp et al., 2016; O'Neill et al., 2020). Although scoring keywords
makes the test accessible to a larger population, it reduces the discriminative
power between higher- and lower-educated native listeners (Kaandorp et al,
2016). An ASR could facilitate an automated scoring procedure that differentiates
between errors. For instance, using semantic difference between the ASR transcript
and ground truth, errors that lead to semantically similar sentences are weighted
favorably, leading to a better outcome measure in terms of how well people with
hearing loss can participate in a conversation under adverse circumstances.

CONCLUSION

None of the ASR apps achieved performance close to people with normal hearing
on audiological tests. No app stood out from the others on performance level. On
audiological speech tests in quiet, ASR apps performed similarly to people with a
moderate hearing loss. When transcribing speech-in-noise, the ASR apps performed
in the performance range of Cl recipients. Sentences-in-noise provided a quick test to
assess ASR performance. Additional performance measures are needed to evaluate
ASR apps. Besides the speech material also type of noise and the presentation mode
audio-only versus audiovisual need to be considered. Adding new performance
metrics including the semantic difference as a function of SNR and reverberation
time can help to monitor and further improve ASR performance. Clinicians can use
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benchmarks based on such metrics to counsel prospective users and may benefit
from automated procedures. Several people with hearing loss, especially Cl recipients,
report that they benefit from the apps in certain situations (Berenger, 2021), which is
in accordance with the results of converting a dialogue into text and may stem from
complementary error patterns of ASR not investigated here. Personalized ASR could
increase the number of people enjoying the benefits of ASR.
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ABSTRACT

Background: Hearing loss affects 1in 5 people worldwide and is estimated to affect
1in 4 by 2050. Treatment relies on the accurate diagnosis of hearing loss; however,
this first step is out of reach for >80% of those affected. Increasingly automated
approaches are being developed for self-administered digital hearing assessments
without the direct involvement of professionals.

Objective: This study aims to provide an overview of digital approaches in
automated and machine-learning assessments of hearing using pure-tone
audiometry and to focus on the aspects related to accuracy, reliability, and time
efficiency. This review is an extension of a 2013 systematic review.

Methods: A search across the electronic databases of PubMed, IEEE, and Web
of Science was conducted to identify relevant reports from the peer-reviewed
literature. Key information about each report's scope and details was collected to
assess the commonalities among the approaches.

Results: A total of 56 reports from 2012 to June 2021 were included. From this
selection, 27 unique automated approaches were identified. Machine learning
approaches require fewer trials than conventional threshold-seeking approaches,
and personal digital devices make assessments more affordable and accessible.
Validity can be enhanced using digital technologies for quality surveillance,
including noise monitoring and detecting inconclusive results.

Conclusions: In the past 10 years, an increasing number of automated approaches
have reported similar accuracy, reliability, and time efficiency as manual hearing
assessments. New developments, including machine learning approaches, offer
features, versatility, and cost-effectiveness beyond manual audiometry. Used within
identified limitations, automated assessments using digital devices can support
task-shifting, self-care, telehealth, and clinical care pathways.

Key words: audiology; automated audiometry; automatic audiometry; automation;
digital health technologies; digital hearing health care; machine learning; remote
care; self-administered audiometry; self-assessment audiometry; user-operated
audiometry; digital health; hearing loss; digital hearing; digital devices; mobile
phone; telehealth.
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INTRODUCTION

Hearing loss affects 1.5 billion persons globally and is expected to increase by another
billion by 2050 (Haile et al., 2021; World Health Organization, 2021). Hearing testing is
the first step towards appropriate and timely treatment. Unfortunately, most affected
persons are unable to access hearing assessments with less than one hearing health
professional for every million people in regions such as Africa (Kamenov et al., 2021;
World Health Organization, 2021). Increasingly automated approaches (all aspects
of the method associated with automated audiometry), including machine learning,
are being developed and made available that provide self-administered hearing
assessment. The term automated audiometry refers to all hearing tests that are self-
administered from the point the test starts. More specifically in this review, we define
automated audiometry as calibrated pure-tone threshold audiometry in any setting
(i.e. hearing health care, occupational health and community settings) that is self-
administered from the point the test starts. Machine learning refers to model based
approaches that learn from examples (data) instead of being programmed with
rules (Rajkomar et al., 2019). Since professionals’ direct involvement is not required,
automated approaches enable health care pathways with the potential to increase
accessibility, efficiency and scalability. Digital (health) technologies, including
apps, smartphones, tablets and wearables, can acquire data remotely, expand the
reach and precision of clinicians, and facilitate more personalized hearing health
care within a network of distributed expertise (K. I. Taylor et al., 2020; Wasmann et
al., 2021). Recent examples of automated hearing assessments include clinical-
and consumer-grade applications (Swanepoel et al., 2019). General global health
trends suggest that increased availability of diagnostic tools could lower healthcare
costs while improving quality of life (World Economic Forum, 2021). For example,
in Parkinson’s disease, remote care based on wearables provides ecologically valid
methods for monitoring and evaluating symptoms (Bloem et al., 2019; Gatsios et al.,
2020). In tuberculosis screening in low-resource settings, automated diagnosis can
increase sensitivity of identifying persons at risk while reducing cost (Philipsen et
al., 2019). Self-assessment using eHealth vision tools improves access to diagnosis
and facilitates timely diagnosis, although consistent criteria for referring to the
clinical pathway and validity and reliability of eHealth tools are still a concern
(W.K.Yeung et al.,, 2019).

Timely detection and treatment of hearing loss is essential to enable optimal
outcomes and quality of life across the life course (World Health Organization,
2021). Untreated hearing loss restricts language development and educational
potential in children and is associated with more rapid cognitive decline in adults
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(B.S.Wilson et al., 2017). It may lead to social isolation, lower socioeconomic status,
increased social disparities and decreased health, resulting in lower quality of life
at the individual level and substantial costs at the community level (McDaid et al.,
2021; Tsimpida et al., 2021). Importantly, treating hearing loss in mid-life has been
identified as the largest potentially modifiable risk factor for developing dementia
in later life (Livingston et al., 2017). The global annual cost of untreated hearing
loss is $980 million (McDaid et al., 2021). Global health investment models indicate
a significant return of investment both in hearing diagnosis and treatment (World
Health Organization, 2021). The capacity of the entire clinical pathway should be
increased since a bottleneck looms if the accessibility of diagnosis is increased
faster than the availability of affordable treatment and rehabilitation.

Automated self-test options are important for detecting and diagnosing hearing
loss to direct timely and appropriate treatments. The overwhelming majority of
treatments are for permanent age-related and noise-induced hearing loss, but a
significant portion of the population requires medical treatment for hearing loss
(Haile et al., 2021). The onset of COVID-19 has further emphasized the importance
of self-test approaches (Manchaiah et al., 2021; Saunders & Roughley, 2021).
Automation on digital devices is a powerful enabler for alternative diagnostic
pathways that can include home-based testing, low-touch service models outside
traditional clinic settings, and decentralized community-based models that rely on
task-shifting to minimally trained facilitators (Eksteen et al., 2019).

Automation in hearing assessment is not a new concept and dates back more than
seven decades (Békésy, 1947). In recent years, it has resurged with the convergence
of digital technologies and machine learning approaches. The primary tool for
hearing assessment is pure-tone audiometry which describes the degree of
hearing loss relative to normal hearing persons expressed in decibels Hearing
Level (dB HL) across specific frequencies (125 - 8000 Hz). Pure-tone audiometry can
also differentiate the type of hearing loss, i.e. sensorineural or conductive, when
bone conduction and air conduction transducers are used. Machine learning-
based threshold seeking approaches, known as Bayesian active learning, have
demonstrated their potential to optimise efficiency and increase automated
hearing assessments’ precision (Barbour, Howard, et al., 2019). The increased
efficiency comes from these methods’ ability to target trials to those areas of the
frequency space where the estimation has greatest uncertainty (Gardner et al,,
2015; Schlittenlacher et al., 2018b).
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In 2012, a systematic review that included 29 reports on automated audiometry
showed that automated procedures have comparable accuracy as manual
procedures when performing air conduction audiometry. However, few validated
automated procedures that included automated bone conduction audiometry had
been reported, machine learning based audiometry approaches were not reported
yet, and approaches were rarely validated in children or hard-to-test populations
(Mahomed et al., 2013). Since 2012, there has been significant work and innovation
in this area, which calls for an update and extension of the previous review. This
scoping review aims to provide the current status of automation and machine
learning approaches in hearing assessment using validated pure-tone audiometry
with potential indicators of accuracy, reliability and efficiency of these approaches.

METHOD

We conducted a systematic scoping review of peer-reviewed literature on automated
and machine learning approaches to validated pure-tone threshold audiometry
using digital technologies, by considering accuracy, reliability, and efficiency. This
review followed the methodological framework outlined in Arksey & O’Malley (2005).

Identifying potentially relevant records

A search across the electronic databases from PubMed, IEEE, and Web of Sciences
was conducted to identify relevant reports from peer-reviewed literature.
Complementary and redundant search terms were applied to ensure thorough
coverage and cross-checking of search findings. In the PubMed database, medical
subject headings and relevant keywords were collected to determine all records
relating to the study aim. The following synonyms of, and closely related terms
to, automated audiometry were used: automatic audiometry, self-administered
audiometry, self-assessment audiometry, and user-operated audiometry. The
complete set of terms and applied search strategy are provided in the supplemental
materials, Table 1. The IEEE database is engineering-oriented, and only relevant
keywords based on audiometry were used since it was assumed that any result
in audiometry would be highly associated with automated audiometry. The Web
of Science database is known to index the PubMed and IEEE databases and was
explored using similar search terms as for the PubMed search. After preliminary
explorations to identify appropriate keywords, we conducted a search on 8 July
2020 and updated it on 12 January 2021 and 6 July 2021. The search included all
reports that meet the inclusion criteria published from 1 January 2012 until 30 June
2021. The start date was chosen as we regard this scoping review as an extension
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and generalisation of a previous (systematic) review by Mahomed et al. (2013),
which included studies up to 20 July 2012.

Selecting relevant records

There were three inclusion criteria the reports had to meet; (i) the report had to
be about automated or machine learning, pure-tone frequency-specific threshold
audiometry; (ii) written in English; (iii) the automated threshold audiometry had to
be compared against the gold standard or reasonable standard. The gold standard
is defined as manual audiometry in a sound booth according to ISO standards.
The automated audiometry also needed to be performed inside a sound booth,
and results needed to be compared to the gold standard. A reasonable standard
for validation was defined as either a within-subject comparison between the gold
standard and automated audiometry in an unconventional setting (for example,
a quiet room), or a within-subject comparison between a validated automated
audiometry approach and an experimental approach of audiometry in the same
unconventional setting.

We excluded reports on screening audiometry (e.g. gave pass/refer as an outcome)
rather than threshold audiometry, review papers and studies reporting approaches
that were not compared to the gold or reasonable reference standard.

The first phase of the screening was based on title. If the title indicated that content
was within the scope of the research question (i.e. automated or machine learning
approaches in diagnostic hearing assessment), the report was included into the
second screening phase. In the second phase, the remaining reports’ abstracts were
assessed using the inclusion and exclusion criteria stated above.

Two authors (LP and JWW) conducted the abstract screening. They were blinded from
each other to avoid confirmation bias. After the screening, the authors discussed any
disagreements to reach an agreement. When in doubt, the report was admitted to
the third, full-text review phase. In this phase, all remaining reports were reviewed in
full to determine if the inclusion criteria were met. As can be seen in the PRIMSA flow
diagram, Figure 1, the resulting selection of reports was complemented by additional
reports. After some reports were clustered as having identical approaches (explained
under the heading “Collating approaches, summarizing, and reporting the results”),
additional reports were added to avoid missing validation data of these clustered
approaches. These reports were published before the inclusion date criteria (from
before 1 January 2012) or did not appear in the search and were added based on the
reference lists of the already included reports.
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Figure 1. PRISMA flow diagram of the screening process.

Extracting data items

A template for grading the reports was agreed upon by all authors (supplementary
materials, Table 2). Two authors (LP and JWW) independently extracted the
information directly relevant to the scoping review question. In cases of
disagreement, a consensus was reached after discussion between these two
authors. The compulsory data fields were: test frequency and intensity range;
response method; test equipment including the type of transducers; calibration;
hardware; test quality control; accuracy; reliability; efficiency; validation; and test
population. In the report of Mahomed et al. (2013), accuracy and reliability of
manual and automated approaches demonstrated equivalent performance. Time
efficiency had primarily been reported by comparing the testing time of manual
and automated audiometry (Heisey et al.,, 2020; Swanepoel et al., 2010; van
Tonder et al., 2017). The reports on machine learning audiometry explicitly use the
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number of trials/stimuli needed to converge to a certain precision (e.g. 5 dB) as a
performance outcome (Heisey et al., 2020; Schlittenlacher et al., 2018b). Therefore,
we added time-efficiency as a necessary parameter. Where available, accuracy and
reliability were expressed in decibels (dB) using the overall root-mean-square-
deviation (RMSD) between the automated approach and the gold (or reasonable)
standard. Based on the work by Margolis et al. (2010) and the minimum acceptable
accuracy recommended by clinical guidelines (American Speech-Language-Hearing
Association, 2005), a RMSD of 6 dB and 10 dB was chosen as criteria for desired and
minimal accuracy, respectively. In order to establish a benchmark for acceptable
test duration, the mean testing time for conventional manual bilateral audiometry
(air seven and bone five frequencies) was estimated (see supplementary material
Table 4). For manual bilateral air conduction, a mean testing time of 5-10 minutes
was considered acceptable, and 10-20 minutes for manual bilateral air & bone
conduction. If testing times exceeded these ranges by more than 5 minutes, time-
efficiency was assessed as a potential issue.

The data collected from the reports provided key information about each report’s scope
and details, enabling the authors to assess commonalities between the approaches.

Collating approaches, summarizing, and reporting the results

When multiple reports described the same underlying approach, these reports
were pooled in one approach-cluster. The first report describing an approach and
subsequent studies that validated or extended that approach were included. The
name of the approach, citations to the initial report and/or common authorships
were used to cluster the reports. The grading table was completed for each cluster
separately to provide a structure for the subsequent content analysis. In the last
part of the grading table, under the heading “validation approach,” all validation
studies are described together. For every approach-cluster a key contribution for
the audiological field was derived from the associated report(s). A key contribution
is a finding or claim made by the author(s) significant for the approach in general,
stated in either the conclusion or discussion of a report in accordance with
their objective.



Digital Approaches to Automated and Machine Learning Assessments of Hearing: Scoping Review |

RESULTS

A total of 64 reports were included in this study. Fifty-six of the 64 reports were
included according to the inclusion- and exclusion criteria, and eight reports were
added to the approach-clusters. After clustering identical approaches, 27 approach-
clusters remained including two that used machine learning. Extracted data items
and grading of results on approaches are provided in the supplemental material,
Table 3. Specifications of the reported accuracy, reliability, and time-efficiency are
described in Table 1.

Table 1. Review of the accuracy, test-retest reliability, and time-efficiency for automated and machine
learning audiometry approaches 2012 - 2021.

Type of Accuracy Reliability (test- Time-Efficiency
transducer retest)
N Reported N Reported N  Reported Finding
finding finding
Air conduction 4 RMSD<6dB 4 RMSD<6dB 10 Acceptable testing time per
(n=23 approach- 7 RMSD < 10dB 1 RMSD<10dB (partial) audiogram
clusters) 9  Statistical 9  Statistical 2 Acceptable testing time and
equivalence equivalence number of trials per audiogram
3 No statistical 9 Notreported 1 Acceptable testing time and
equivalence number of trials per frequency
1 Testing time potential burden
9  Notreported
Bone conduction 1 Statistical 1 Test-retest not 1 Notreported
(n=1 approach- equivalence reported
cluster)
Both air and Air conduction Air conduction Air conduction
bone conduction 2 RMSD < 6 dB 1 RMSD<6dB 2 Acceptable testing time per
(n=3 approach- 1 RMSD<10dB 2 RMSD<10dB audiogram
clusters) Bone conduction Bone conduction Air and bone conduction
1 RMSD<10dB 1 RMSD<6dB 1 Acceptable testing time per
2 Statistical 2 Test-retest not audiogram
equivalence reported
Accuracy

The accuracy is represented as a comparison against the gold standard or
reasonable standard. The majority of the automated techniques (n=14) expressed
the accuracy in RMSD. Other types of analyses used average differences and
standard deviation (n=10), average thresholds and standard deviation (n=1; Patel
etal, 2021), linear regression and correlation coefficients (n=1; Dewyer et al., 2019)
and ANOVA analysis (n=1; Corry et al., 2017). The types of analysis used can be seen
in supplemental material, Table 5.
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Test-Retest Reliability

Test-retest reliability were reported for some automated and machine learning
audiometry approaches. Seventeen of the twenty-seven approaches did not report
on test-retest reliability. Seven approaches expressed it in RMSD. Other statistical
methods used were average differences and standard deviation (n=6), Pearson
Product moment correlation coefficients (n=2; Colsman et al., 2020; Manganella
et al., 2018), standard of variance (n=1; Schmidt et al., 2014) and repeated ANOVA
(n=1; Corry et al., 2017).

Test efficiency

Seventeen approaches reported a measure for test efficiency based on test
duration. Test efficiency expressed in testing time seems to be a standard metric,
similar across studies defined as the time from presenting the first stimulus until
the final response of the subject, expressed in seconds or minutes. However, there
was no agreement between reports on what to include in the measurement and
what groups to use as a reference. Reported time-efficiency measures included
the recorded time per frequency, recorded time per unilateral or bilateral air
conduction audiogram (between 2 to 7 frequencies) in normal hearing or hearing
impaired persons, or full air and bone conduction audiograms in hearing impaired
persons. Thirteen approach-clusters reported an acceptable testing time. Three
approach-clusters also indicated the number of trials in addition to the testing
time for either a bilaterally masked air audiogram (Heisey et al., 2020), unilateral
air audiogram (Schlittenlacher et al., 2018b) or per frequency (Vinay et al.,, 2015).
One approach-cluster that applied Bekesy tracking did report the testing time, but
was not in the acceptable range (Poling et al., 2016). Ten approach-cluster did not
report anything about test-time.

Test parameters and specifications

Tests were all self-administered from the point the test started. Four approaches
had the option to switch to a manual audiometry mode. Table 2 summarises an
overview of test parameters and specifications of the 27 approach-clusters, and
Table 3 highlights key contributions. Most of the approaches used adaptive
procedures that rely on the previous response only (here referred to as partially
adaptive procedures). The most common example was the (modified) Hughson-
Westlake staircase procedure (n=20), which is based on the classical method of
limits (Gescheider, 2013). Other partially adaptive procedures applied the method
of adjustment, such as the Bekesy tracking method (Poling et al., 2016) or the
‘coarse-to-fine focus’ algorithm (Chen et al.,, 2019). There was a single report of
an approach that did not define the threshold seeking method, but had a built in
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protocol to alternate between ears during testing (Manganella et al., 2018). Fully
adaptive procedures, in contrast, use the complete set of all previous responses.
Examples include Bayesian active learning procedures (also referred to as machine
learning audiometry; n=2; Barbour, Howard, et al., 2019; Schlittenlacher et al.,
2018b) and maximum likelihood estimation (n=2; Schmidt et al., 2014; Vinay et
al., 2015). All the machine learning audiometry methods applied active Bayesian
model selection, which is a type of shallow machine learning that uses individual
models. They apply supervised learning since every data point is labelled by the
subject (Gardner et al., 2015).

Most of the approaches used conventional calibration (20/27) according to I1SO-
standards. Six approaches used an unconventional calibration technique. Patel
et al. (2021) determined a reference equivalent threshold level (RETSPL) for
air conduction for the specific phone-headphone combination using manual
audiometry as a reference. Masalski et al. (2016) used reference levels for calibration
for smartphone and transducer combinations, collected in uncontrolled conditions
in normal-hearing persons. Other calibration techniques set the volume of the
device to 50% (Szudek et al., 2012), comparing and adjusting the output level to
the input using a sound level meter (Corry et al., 2017; Foulad et al., 2013) or using
Thévenin-equivalent probe calibration (Poling et al., 2016).

Twenty-two approaches were validated on normal-hearing and hearing-impaired
people. Four studies were performed using normal-hearing subjects (Colsman
et al., 2020; Corry et al., 2017; Vinay et al., 2015). One approach-cluster was only
validated in a hearing-impaired population, using hearing aids as transducers (Chen
et al., 2019). Automated audiometry was applied across a range of populations. All
approaches were applied to adults except for Patel et al. (2021) who only included
children in their study. Eight approaches were validated in children, including
four approaches that designed a child-friendly user-interface (B. Kung et al., 2021;
Margolis et al., 2011; Patel et al., 2021; J. C. Yeung et al., 2015). Other test populations
were elderly (Maclennan-Smith et al., 2013), veterans (Margolis et al., 2016),
and persons exposed to occupational noise (Henriksen et al., 2014) or ototoxic
substances (Jacobs et al., 2012). Automated audiometry has also been applied as
an alternative in low-resource environments for traditional manual audiometry
(Kelly et al., 2018; Sandstrom et al., 2020; Visagie et al., 2015). The user-interface
plays an important role in making self-testing feasible in all populations and may
require an iterative design process (including clinical pilot-studies) (Sandstrom et
al., 2016, 2020).
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Table 2. Description of test parameters and specifications for automated audiometry approaches 2012 - 2021.

Test parameters & specifications

Descriptions of approach clusters (n=27)

Threshold seeking method
Underlying algorithm to determine the thresholds

20 (modified) Hughson-Westlake
2 machine learning

1 Bekesy tracking

4 other method

Test range
Limits of the frequency that can be tested

18 full frequency range 125 - 8000 Hz
4 extended high frequencies 125 - 16000 Hz
5 reduced frequency range

Test range
Limits of intensity that can be tested

14 Intensity range 0 - 100 dB HL
10 reduced intensity range
3 intensity range not reported

Masking
Needed to prevent responses from the non-test ear
and obtain the true threshold of the test ear

9 automated masking

1 manual masking

13 no masking

4 masking not reported

Response method
Method of recording subject's responses to test
stimuli

9 forced-choice

13 single response

3 forced-choice and single response
2 not reported

Transducers
Method of presenting stimuli, e.g. insert phone or
supra or circumaural headphone

23 air conduction transducers
3 air- and bone conduction transducers
1 only bone conduction transducer

Calibration
Unconventional calibration methods are explained
in the text

20 conventional calibration
6 unconventional calibration
1 calibration not reported

Digital devices
Reported Hardware needed to run the test.

2 portable audiometer

9 computer-based

1 web-based (requires connectivity)
15 smartphone- or tablet-based

Quality control measures
Indicators of the reliability of the test

5 detect false-responses

6 have noise control

7 detect false-responses and have noise control
9 quality control measures not reported

Validation
Highest level of validation reported for each
approach-cluster

22 gold standard
4 reasonable standard
1 proof-of-concept

Test Population
Hearing status

3 Normal hearing only
1 Hearing loss only
23 Normal hearing & Hearing loss

Test Population
Age

17 Adults only
1 Children only
9 Adults & Children
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Table 3. key contributions of the automated and machine learning approaches to the audiological
field; a smartphone-based hearing test application, not yet commercialized; b automated hearing test

commercialized by hearX™ group.

Approach-Cluster (first author, year,

publications, approach name)

Key contribution(s) to the field

Bean et al., 2021, OtoKiosk

Has the potential to be used in test environments like exam
rooms as a clinical tool for identifying hearing loss via air
conduction separating persons with normal and impaired
hearing.

Chenetal, 2019, SHSA

A demonstration smartphone-based hearing self-
assessment (SHSA) that runs on a hearing aid which has
statistical equivalence to manual audiometry

Colsman et al., 2020

Portable devices that use calibrated headphones result in
much higher accuracies than the uncalibrated devices.

Corry etal., 2017

The reliability of audiometer apps should not be assumed.
Issues of accuracy and calibration of consumer headphones
need to be addressed before such combinations can be
used with confidence.

Dewyer et al., 2019, Earbone

A proof of concept for smartphone-based bone conduction
threshold testing.

Foulad et al., 2013; Kelly et al,, 2018;
Saliba et al., 2017, Eartrumpet

An iOS-based software application for automated
pure-tone hearing testing without need for additional
specialized equipment, yielding hearing test results that
approach those of conventional audiometry.

Jacobs et al.,, 2012; Dille et al., 2013,
Oto-ID

Automated (remote) hearing tests to provide clinicians
information for ototoxicity monitoring.

B.Kung et al., 2021, Kids Hearing
Game

Tablet based audiometry using game-design elements that
can be used to test and screen for hearing loss in children
who may not have adequate access to resources for
traditional hearing screening.

Liu et al., 2015

An interactive hearing self-testing system, consisting of
a notebook computer, sound card, and insert earphones
is a valid, portable and sensitive instrument for hearing
thresholds self-assessment.

Manganella et al., 2018, Agilis

An application that detects increased levels of ambient
noise, when it is programmed to stop the testing.

Margolis et al., 2007; 2010; Eikelboom
et al,, 2013; Margolis & Moore, 2011;
Margolis et al., 2011, AMTAS

Designed to fit into the clinical care pathway including

air and bone conduction, and incorporates a quality
assessment method (QUALIND") that predicts the accuracy
of the test.

Margolis et al., 2016, 2018; Mosley et
al, 2019. Home Hearing Test

Developed and well suited to provide increased access to
hearing testing and support home telehealth programs.

Masalski & Krecicki, 2013; Masalski et
al., 2016, 2018

An automated method that uses smartphone model-
specific reference sound levels for calibration in the
app. Biological reference sound levels were collected in
uncontrolled conditions in normal-hearing persons.
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Table 3. continued

Approach-Cluster (first author, year,
publications, approach name)

Key contribution(s) to the field

Meinke et al., 2017; Magro et al., 2020,
WHATS

A mobile wireless automated hearing-test system in
occupational audiometry for obtaining hearing thresholds
in diverse test locations without the use of a sound booth

Patel et al., 2021, HearTest*

A novel subjective test-based approach was used to
calibrate a smartphone-earphone combination with
respect to the reference audiometer.

Poling et al,, 2016

Specific Bekesy tracking patterns are identified in subjects
who experienced difficulty converging to a reliable
threshold.

Schlittenlacher et al., 2018

Bayesian active-learning methods provide an accurate
estimate of hearing thresholds in a continuous range of
frequencies.

Schmidt et al., 2014

A user-operated two-alternative forced-choice in
combination with the method of maximum likelihood does
not require specific operating skills and the repeatability is
acceptable and similar to conventional audiometry.

Song et al., 2015; Barbour et al., 2019;
Heisey et al,, 2018, 2020,
MLAG

Bayesian active-learning method which determines the
most informative next tone leading to fast audiogram
procedure and threshold estimation in a continuous
range of frequencies with potential to measure additional
variables efficiently.

Sunetal, 2019

Active noise control technology to measure outside the
sound booth.

Swanepoel et al.,, 2010; Brennan-Jones
et al., 2016; Govender & Mars, 2018;
Maclennan-Smith et al., 2013; Storey
etal., 2014;

Swanepoel & Biagio, 2011; Swanepoel
deetal, 2015; Visagie et al., 2015,
KUDUwave

An automated portable diagnostic audiometer using
improved passive attenuation and real-time environmental
noise monitoring making audiometry possible in
unconventional settings.

Swanepoel et al., 2014; Bornman et al.,
2019; Brittz et al., 2019; Corona et al.,
2020; Rodrigues et al., 2020; Sandstrom
et al., 2016, 2020; van Tonder et al.,
2017, HearTest®

A smartphone-based automated hearing test applicable in
low resource environments.

Szudek et al., 2012; Handzel et al.,
2013; Khoza-Shangase & Kassner, 2013,
Uhear

An approach that is applicable to the initial evaluation of
patients with sudden sensorineural hearing loss before a
standard audiogram is available.

Van Tasell & Folkeard, 2013

Method of adjustment and the Hughson-Westlake method
embedded in automated audiometry can be considered
equivalent in accuracy to conventional audiometry

Vinay et al., 2015; Henriksen et al.,
2014, NEWT

The New Early Warning Test (NEWT), which is incorporated
inside an active communication earplug, serves as a reliable
and efficient method to measure auditory thresholds,
especially in the presence of high background noise




Digital Approaches to Automated and Machine Learning Assessments of Hearing: Scoping Review |

Table 3. continued

Approach-Cluster (first author, year, Key contribution(s) to the field
publications, approach name)

Whitton et al., 2016 A proof of concept study of a several self-administered,
automated hearing measurements at home, showing
statistical equivalency to conventional audiometry in the

clinic.
J. C.Yeung et al,, 2015; Bastianelli A method for threshold hearing assessments outside
etal, 2019; Thompson et al., 2015; conventional sound booths and with an interface suitable

Vijayasingam et al., 2020; Yalamanchali  for children.
etal,, 2020; J. Yeung et al,, 2013,
Shoebox

DISCUSSION

In 2012 evidence for automated audiometry demonstrated similar reliability and
accuracy as manual audiometry, but especially for children and bone conduction
the number of reports was limited (Mahomed et al., 2013). In less than a decade,
twenty-two novel approaches and developments across five existing approaches
had appeared in 56 publications, adding to the 29 published prior to 2012.
Promising new developments include machine learning techniques for more time-
efficient hearing assessment (n=2), use of tablets or smartphones as audiometer
interface (n=15), and child-friendly user-interfaces (n=4) including game-design
elements. The number of approaches that include bone conduction is still limited
(n=4), only two more than were reported in 2012 (Mahomed et al., 2013).

Accuracy

The required accuracy, reliability, and efficiency depend on the clinical aims and
consequences. The ultimate aim for automated hearing assessment is to deliver
clinically actionable estimates of hearing status (i.e. the clinician or patient acts
appropriately for treatment given the diagnostic test results). In fully adaptive
procedures, the level of precision and confidence needed to conclude the
assessment can be set to any level by choosing the proper termination criteria,
resulting in different trade-offs. Schmidt et al. (J. H. Schmidt et al., 2014), for
instance, aimed for high accuracy and reliability, whereas Heisey et al. (2020) aimed
with their machine learning audiometry for high efficiency. Overall, a shift in the
type of analysis to demonstrate accuracy is observed. In this review, the two major
type of analysis included were RMSD (n=14) and average differences and standard
deviation (n=10). In the report by Mahomed et al. (2013), the accuracy was primarily
expressed in average differences or thresholds and standard deviation (both n=11).
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In our view, RMSD is the preferred indicator for accuracy with clinical relevance
(American Speech-Language-Hearing Association, 2005), assuming it has already
been demonstrated that there is no bias between the automated and manually
determined hearing thresholds (e.g. signed differences). In traditional clinical terms,
automation is equal in accuracy to manual audiometry if the difference is within 6
dB RMSD. Six of the twenty-seven automated approaches meet this strict accuracy
criterion. For many applications, however, the less strict 10 dB RMSD criterium is
sufficient, which was achieved by seven additional automated approaches.

For bone conduction measurements, the accuracy was inherently lower than air
conduction measurements due to conductor placement (Margolis et al., 2010).
However, this accuracy is typically sufficient to address the clinical question of
whether conductive/mixed hearing loss is present and to choose and evaluate
appropriate treatment. The technical feasibility of bone conduction assessments
outside of a clinical setting (sound booth) remains difficult. Alternatively, this
clinical question can be addressed with other tests, including tympanometry,
otoscopy, or a combination of air conduction thresholds for tone and speech
stimuli (De Sousa, Swanepoel, et al., 2020). At least 13 automated techniques had
accuracy comparable to traditional manual air conduction audiometry as expressed
in RMSD. Eighteen of the twenty-seven approaches did not report on test-retest
accuracy or used a measure of statistical equivalence that does not allow us to
assess the accuracy.

One limit to the impact of achieved test accuracy is the high variation in the
interpretation of audiograms by clinicians, regardless if those audiograms are
determined using an automated or manual approach (Brennan-Jones et al., 2018).
Automation can assist clinicians and patients to interpret the measurement by
data-driven automated reporting of accuracy and reliability (including signalling
for suspicious outcomes) such as QUALIND’ (Margolis et al., 2007) or by automated
classification for diagnostic purposes (including type and degree of hearing loss).
Examples of automated classification include AMCLASS (Margolis & Saly, 2008),
Autoaudio (Crowson et al.,, 2020), and data-driven audiogram classification (Charih
et al., 2020).

Reliability

RMSD is also increasingly used as a measure in test-retest reliability. Seven
approaches used RMSD as a measure, whereas in 2012 this was only used in two
studies. Advances in automated audiometry that increase reliability included
procedures to identify invalid responses (n=5), monitoring environmental
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noise (n=6), or both (n=7) to warn for invalid test conditions, making these tests
applicable in more populations and environments. The reliability can be increased,
for instance, by alternative response methods including the forced choice paradigm
(J. H. Schmidt et al., 2014) or by using machine learning to account for lapses of
attention (Schlittenlacher et al,, 2018b). Digital (health) technologies, including
smartphones and tablets, lend themselves to quality control measures for increased
reliability with the host of integrated sensors (K. I. Taylor et al., 2020).

Efficiency

A fair indicator of efficiency is the overall time required to conduct a test. Most
approaches (n=20) used the modified Hughson-Westlake procedure, of which
seven showed a similar test duration to manual audiometry. Maximum likelihood
procedures demonstrated a 45% reduction in test time in normal hearing persons
(Vinay et al., 2015). Bayesian active learning methods can be extended by adding
variables that share some interrelationship using a conjoint estimator that exploits
nonlinear interactions between the variables (Barbour, DiLorenzo, et al., 2019). The
resulting machine learning based automated procedures had demonstrated a 30-
70% reduction in test time compared to manual audiometry for air conduction
audiograms both in normal and hearing impaired persons (Heisey et al., 2020). No
machine learning approaches had incorporated bone conduction yet. Therefore,
time-efficiency gains compared to full audiogram procedures are not available but
one can assume these will yield similar time-efficiency gains. Another indicator
for test efficiency is the number of stimuli required to reach the desired accuracy.
This indicator is helpful to optimise the threshold seeking part of the approach.
Reporting the equivalent time gains under operational conditions is recommended
since this can be readily compared to other efficiency gains, including the reduced
travelling time if a visit to the outpatient clinic can be replaced for an at-home
test, or time savings by automating other parts of the clinical care pathway such as
interpretation of the outcome. Other aspects of efficiency beyond time that should
be considered are the cost reductions when enabling task-shifting of professionals
or the ability to test outside the sound booth.

Future developments required

To get an overall indicator of the technical maturity of an approach, developers
should be encouraged to use the technology readiness level (TRL) to report the
development phase of a technology. Technology readiness levels were initially
developed in aerospace to estimate the maturity of technology from basic concept
to flight-proven product (Héder, 2017). To apply TRLs to automated audiometry, one
could make further adjustments to fit the hearing healthcare sector to the version of
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biomedical TRLs created by the United States Army Medical Research and Materiel
Command (Office of the Director, Defense Research and Engineering (DDR&E),
2009). For those approaches that are ready for operational use, certification (e.g.
CE and FDA) can further stimulate clinical adoption and iterative improvements
based on clinical feedback. In order to be cost-effective, timely and responsive,
certification for digital self-care approaches may need to be less stringent than
for clinical care. W. K. Yeung et al. (2019) proposed alternative procedures for (fast)
certification to keep up with the rapidly developing field of visual eHealth tools, for
example. Their recommendations might also be applicable to automated hearing
assessments, including a rating by health agencies or NGOs (e.g. a repository
of trusted approaches, see Psyberguide as an example of mental health apps
reviewed by experts (Garland et al., 2021)) or adopting the Clinical Laboratory
Improvement Amendments (CLIA) model to ensure that approaches comply with
basic requirements of usability, privacy, and security (W. K. Yeung et al., 2019).
Following similar certification procedures in the visual and auditory domain may
facilitate diagnosis across medical domains. In addition, standards on minimum
quality, and consensus on what meta-data are needed in health applications to
describe the test conditions and facilitate interpretation are currently missing.

Limitations

This scoping review included peer-reviewed reports taken from widely used
and recognized scientific databases. A potential limitation is that some of the
commercialized automated approaches may have been developed without peer-
reviewed reports. Some automated approaches could therefore be more mature
than reported. There is no gold standard for reporting audiometry validation
studies, which limits a consistent comparison among approaches. Lastly,
automated procedures may well be embraced by early adopters first, which could
lead to projections on suitability that are overly optimistic for users with poorer
digital proficiency.

Conclusion and recommendations

Since 2012 an increasing number of automated audiometry approaches on
digital devices demonstrate similar accuracy, reliability and time-efficiency as
conventional manual audiometry. New developments offer features, versatility, and
cost-effectiveness beyond manual audiometry. Fully adaptive procedures, including
machine learning techniques, seek hearing thresholds more efficiently. Inexpensive
digital devices such as smartphones can be turned into audiometers, increasing
accessibility and availability. Higher reliability is achievable by signalling invalid
test conditions, and child-friendly user-interfaces offer a solution to the hard to test
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population. These approaches can be implemented in the clinical care pathway,
remote or virtual hearing healthcare, community-based services, and occupational
healthcare to address the global need for accessible hearing loss diagnosis.

For successful adoption, standardized measures of accuracy, reliability, and
efficiency are needed for comparative purposes. Certification and independent
reviews may help prospective users in selecting trustworthy approaches. Further
reliability can be achieved by determining which difficult to test populations
may not be appropriate for automated testing and how to detect and then triage
these patients to specialized centres. More user-friendly and failsafe procedures
that include remote surveillance and quality control can support automated
hearing assessment at-scale in specific populations and in concert with diagnostic
assessments in other medical domains, including visual health and mental
wellbeing (Garland et al., 2021; W. K. Yeung et al., 2019). Further contextual
information, e.g. standardized meta-data, is needed to help clinicians interpret test
outcomes' context and limitations. If researchers and clinicians deal carefully with
its limitations, automated hearing assessments can be designed such that they
form an effective part of service delivery for many people who have or are at risk of
hearing loss. Automated audiometry can be part of existing care pathways but also
enable new service models, including task-shifting to community health workers
delivering decentralized care, virtual hearing healthcare, and over-the counter or
direct-to-consumer hearing aid dispensing.
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ABSTRACT

Research Question: What is the stability of remote testing in cochlear implant
care? We studied the influence of time-of-day, listener fatigue, and motivation
on the outcomes of the aided threshold test (ATT) and digit triplets test (DTT) in
cochlear implant (Cl) recipients using self-tests at-home on a smartphone or tablet.

Design: A single-center repeated measures cohort study design (n = 50 adult Cl
recipients). The ATT and DTT were tested at-home ten times, with nine of these
sessions planned within a period of eight days. Outcomes were modeled as a
function of time-of-day, momentary motivation, listeners' task-related fatigue,
and chronotype (i.e., someone's preference for morning or evening due to the
sleep-wake cycle) using linear mixed models. Additional factors included aided
monosyllabic word recognition in quiet, daily-life fatigue, age, and Cl experience.

Results: Out of 500 planned measurements, 407 ATTs and 476 DTTs were completed.
The ATT determined thresholds and impedances were stable across sessions. The
factors in the DTT model explained 75% of the total variance. Forty-nine percent of
the total variance was explained by individual differences in the participants' DTT
performance. For each 10% increase in word recognition in quiet, the DTT speech
reception threshold improved by an average of 1.6 dB. DTT speech reception
threshold improved, on average, by 0.1 dB per repeated session and correlated with
the number of successful DTTs per participant. There was no significant time-of-day
effect on auditory performance in at-home administered tests.

Conclusions: This study is one of the first to report on the validity and stability
of remote assessments in Cl recipients and reveals relevant factors. Cl recipients
can be self-tested at any waking hour to monitor performance via smartphone or
tablet. Motivation, task-related fatigue, and chronotype did not affect the outcomes
of ATT or DTT in the studied cohort. Word recognition in quiet is a good predictor
for deciding whether the DTT should be included in an individual's remote test
battery. At-home testing is reliable for cochlear implant recipients and offers an
opportunity to provide care in a virtual hearing clinic setting.

Key words: Automated audiometry, Chronotype, Circadian rhythm, Cochlear implant,
Fatigue, Hearing impairment, Self-test, Speech-in-noise, Remote care, Time-of-day
effect, Virtual hearing clinic.
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INTRODUCTION

Severe hearing loss is a chronic disability requiring lifelong care (Haile et al., 2021;
World Health Organization, 2021). The accessibility and affordability of high-quality
care for chronic diseases are challenging for traditional care provider models that are
typically organized within specialized centers (Abegunde et al., 2007). The need for
specialized centers is a barrier to care delivery and a source of inequity for those who
cannot regularly travel to specialized care centers far from home. New service models
that use remote monitoring are required to reduce clinical visits and overcome
capacity and accessibility problems. Remote monitoring has several advantages,
including greater autonomy and lower medical costs for the patient, and more
frequent data collection (K. I. Taylor et al., 2020). It could lead to fewer clinical visits,
less travel time, and a lower carbon footprint (L. B. Russell et al., 2008; Swanepoel &
Hall, 2020; Wasmann & Laat, 2022).

Cochlear implants (Cls) can improve hearing in individuals with severe hearing
loss who cannot be sufficiently rehabilitated with conventional hearing aids. The
number of cochlear implantations is growing worldwide (Sorkin & Buchman, 2023),
leading to a need for increased capacity in specialized aftercare. Aftercare includes
equipment maintenance, performance monitoring, and, when needed, adjustment
of the Cl fitting (i.e., the setting of the Cl). Most Cl recipients are well-suited for
remote testing during the aftercare phase due to the controlled and calibrated
streaming of audio signals from a smartphone to their processor. Additionally, the
limited residual hearing in most Cl recipients renders the impact of environmental
sounds negligible, making remote testing a viable option and potentially paving
the way for the development of virtual hearing clinics.

Recently, a Remote Check app was developed and validated by Cochlear Ltd.
(Sydney, Australia). The app facilitates a clinician to remotely monitor the long-
term auditory performance of Cl recipients, examine implant status, and query
whether the Cl recipient experiences any issues in daily usage (Maruthurkkara et
al., 2021, 2022). The Remote Check app includes the aided threshold test (ATT), the
digit triplets test (DTT), and two questionnaires. The aided thresholds indicate a Cl
recipients’ ability to hear soft everyday sounds. While, DTT outcome indicates how
well the Cl recipient understands speech in more adverse listening situations and
is considered a suprathreshold measure of auditory functioning, complementary
to the ATT. Furthermore, remote testing technology also permits two distinct
functions for Cl recipients during the aftercare phase: evaluating the impedance,
which refers to the electrical conductance of the electrode contacts, and taking a
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photo of the implant area to check skin integrity around the implant area. In a pilot
study carried out by Cochlear Ltd. in Australia and the UK, it was found that the app
identified 94% of issues encountered during a clinical visit and could be used for
triaging in-clinic visits (Maruthurkkara et al., 2021). Almost all issues were revealed
via the questionnaires.

In at-home monitoring applications, Cl recipients often choose the time-of-day they
want to perform the test. This prompts the question of whether aided threshold or
speech-in-noise tests are affected by the time-of-day, in which they are performed.
Maruthurkkara et al. (2022) did not consider time-of-day effects in their Remote
Check follow-up validation study, and started evaluations with in-clinic sessions.
Although the literature lacks consensus regarding time-of-day effects on auditory
performance, research suggests that such effects are minimal during office hours
and instead may be linked to factors including aging and chronotype. Chronotype
refers to an individual's preference for morning or evening based on their circadian
rhythm, which is characterized by fluctuations in physiological markers, including
core body temperature and melatonin, commonly known as the “sleep hormone”
(C. Schmidt et al., 2007). The importance of chronotype may become particularly
relevant in the context of at-home testing.

A previous study found age-related differences in auditory performance and
time-of-day effects, with older normal-hearing participants scoring better in gap
detection (silent intervals within a sound) at 9:00 am than at 11:30 am or 3:30 pm.
However, time-of-day did not affect cognitive performance, including memory tasks
(Ezzatian et al., 2010). Another study found time-of-day effects in younger adults
with normal hearing (20-28 years) who performed better on a speech-in-noise task
in the evening (i.e., after 5:00 pm) than in the morning (i.e., before 10:00 am), while
no effect was found in older participants (66-78 years; Veneman et al. 2013).

The aim of this study was to investigate the potential impact of time-of-day effect
and chronotype on the outcomes of at-home measurements in cochlear implant (Cl)
recipients. While performing tests outside of regular office hours can be advantageous,
itis currently unclear whether time-of-day effect or chronotype affects test outcomes.
Time-of-day effects could potentially be influenced by various factors, including
chronotype, attention, task-related fatigue, and long-term fatigue or learning effects
(Hornsby et al., 2016; Pichora-Fuller et al., 2016). In this study, daily-life fatigue refers
to chronic or long-term fatigue, while task-related fatigue refers to short-term fatigue
experienced during or directly after an activity (Y. Wang et al., 2018). Listening effort
and fatigue may be more pronounced in Cl recipients compared to normal hearing
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listeners. This is because adults with hearing loss often report higher levels of fatigue
compared to individuals with normal hearing (Alhanbali et al., 2017). However, no
significant differences were found in self-reported daily-life fatigue (Y. Wang et al.,
2018) or in objective indicators of fatigue, such as cortisol levels in groups with
different hearing status (Dwyer et al., 2019). Additionally, motivation to perform the
test could also impact the results of self-administered tests. In clinical settings, the
tester can observe lack of motivation and intervene when necessary.

This study hypothesized that aided thresholds and speech-in-noise test performance
in self-testing at-home could be impacted by various factors, including momentary
motivation, task-related fatigue, and chronotype, in light of unknowns regarding time-
of-day effects. The objective of this study was to improve the accuracy and reliability
of at-home monitoring applications for Cl recipients by identifying the optimal time-
of-day for self-testing. The findings of this study may have implications for remote care
implementation, particularly in monitoring Cl recipients during the aftercare phase.

MATERIALS AND METHODS

The study was set up following a single-center repeated measures cohort study
design.The ATT and DTT were tested ten times, including nine sessions within eight
days. For benchmarking and long-term stability purposes, participants performed
the first and final sessions at times they chose freely. The other eight sessions
followed a strict schedule, as detailed in Table 1, to ensure an appropriate selection
of times-of-day were tested.

Participants

Fifty participants were recruited from the outpatient clinic of the Radboud
university medical center in Nijmegen, the Netherlands (Radboudumc). Participants
were recruited via general notices and during regular visits at the Radboudumc
audiology center. The inclusion criteria were: i) a minimum age of 16 years, ii) a
Cochlear Ltd. (Sydney, Australia) cochlear implant (excluding the Cl24M, CI24R,
and N22 implants as these are not compatible with Remote Check), and iii) an N7
or Kanso2 processor. Further, iv) participants had to have access to an appropriate
iPhone, iPod touch, or iPad, v) at least six months of experience with the Cl, and
vi) an aided monosyllabic word recognition score (Consonant Nucleus Consonant;
CNCQ) greater than 40% was required. The CNC scores of the participants at 65 dB
SPL at 12 months post-implantation were collected from their medical records. If a
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12-month evaluation was missing from the medical history, the last measurement
from the medical records was selected. Table 2 provides demographic details of
the participants.

Table 1. Test Schedule for the study. Sessions are indicated by TO - T9.

Time-of-Day Day 1 Day 2 Day 3 Day 4 Day 8 3 Months
<2 Hour of T,Morning . .
awakening T, Morning T.Morning  T,Moming

3 Hour awake T, T,Noon T,Noon T,

<2 Hour before

bedtime T,Night T,Night
Full Remote Same as
Test battery Check + MM + Short Remote Check + MM T,,end-
Chronotype + CIS evaluation

Day 1 was always scheduled on a Monday. The full Remote Check consisted of photographs, questionnaires
(55Q-12), the aided threshold test (ATT) and digit triplet test (DTT) and impedance measurement. At each
session, participants completed the Momentary Motivation (MM) questionnaire. The short Remote Check
included only ATT, DTT, and impedance measurements. Additionally, at TO and T9, participants completed
the Checklist of Individual Strength (CIS) questionnaires. The end evaluation at T9 included a questionnaire
to assess satisfaction with the Remote Check.

Table 2. Demographic characteristics of the participants.

Number of participants 50
Gender
Male 21
Female 29
Mode of hearing
Unilateral Cl 45
Bilateral Cl 5
Cause of deafness
Unknown 17
Genetic (confirmed) 11
Meningitis / Encephalitis 9
Sudden deafness 7
Otosclerosis 3
NF2 / Acoustic neuroma 2
Mastoid fracture 1
Age at testing (yrs, mean median, range) 58.2,67 (18-79)

Experience with CI (yrs mean median, range) 7.8,4(0.5-31)
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The research protocol was submitted to the Medical Research Ethics Committee at
the Radboud university medical center Nijmegen, and they considered the study
not subject to the Medical Research Involving Human Subjects Act. The study was
performed in accordance with good clinical practice and signed informed consent
forms were obtained from all participants.

Technical errors and problems reported were collected from the conversations over
the messenger system between the participants and the researchers, the warnings
in the Cochlear clinician’s portal, and by inspecting the test results.

Study procedures

Participants carried out all listening tests at-home using the commercial Remote
Check implementation (a module of the Nucleus Smart App), and the Cl settings
they used in daily life. Most participants had already installed the app as a remote
control, either independently or with assistance from their clinician. During the
ATT and DTT, direct streaming of the signal to the processor resulted in electric
stimulation of the implanted cochlea, eliminating the possibility of crossover.
Bilateral Cl recipients completed the questionnaires once and did the listening tests
one ear at a time, while the processor of the contralateral ear was inactive. Testing
always started on the right side. The time taken to perform a Remote Check was
approximately 10-20 minutes per ear. Only the results of the best ear of bilateral Cl
recipients were included in the analysis.

A long-term follow-up session was conducted three months after the initial nine
measurements, which were performed within eight days. Some of the first ten
participants had technical issues that jeopardized the strict test schedule. Therefore,
from the 11th participant onwards, a practice Remote Check was provided one
week before the start of the test schedule to ensure that participants understood
the test procedure and that technical issues were addressed in advance. A detailed
description of the Remote Check test battery can be found in a previous report
(Maruthurkkara et al., 2022).

Sessions

Participants were instructed to strictly follow testing at the time-of-day indicated
on the test schedule (Table 1). T,-T, were time-of-day sensitive sessions. At sessions
T, and T,, the participants were allowed to test at any time they preferred. The
morning sessions (T,, T, T,, and TG) were scheduled between 6:00 and 10:00 am and
had to be done within two hours after waking up. The noon sessions (T,, T.) started
after a subject was at least three hours awake, typically between 10:00 am and 12:00
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noon, and had to be started before 1:00 pm. The afternoon session was scheduled
close to noon because some research suggests a decline in performance level on
cognitive tasks and a dip in alertness after lunchtime (Abdullah et al., 2016; Monk et
al., 1997). The night sessions (T, T,) started two hours before (individual) bedtime,
typically between 8:00 pm and 12:30 am. On day 2, two consecutive sessions were
acquired for test-retest purposes, and T, was measured 10-15 minutes after T,
allowing participants to take a short break in between.

Once a session started, the participant had to complete it without breaks. If a
participant was unable to carry out the session according to the schedule, the
session was rescheduled to another day at the same time-of-day as initially planned.
The Remote Check was not rescheduled if data were missing due to a failed test. All
tests were initiated remotely, and (synchronous) support and troubleshooting were
performed by J.-W.A.W & D.B. via a messenger system or by phone. They acted as
the troubleshooting support team and received technical support from Cochlear
Ltd. when needed. Here, synchronous support means the researcher was directly
available online to help the participant, while asynchronous support means the
researcher provided feedback before or after the participant performed the tasks.
Participants received a reminder at the beginning of the day. They had to indicate
to the researchers when they planned to do the test in order to organize remote
support availability.

Aided Threshold Test (ATT)

For a complete description of the ATT, the reader is referred to the previous
validation study (Maruthurkkara et al., 2022). In short, a two-alternative forced-
choice paradigm was used to determine the aided auditory threshold. Participants
were required to indicate whether a sound was heard by swiping to the right (heard)
or left (not heard). They controlled the presentation of the stimuli by pushing a
button in the middle of the screen.

The threshold search algorithm followed a staircase procedure with a stepsize that
decreased from 8 to 1 dB near the threshold. The test order of frequencies was 1000,
2000, 4000, 6000, 250, 500, and again 1000 Hz. The presentation level decreased
when a participant correctly heard the tone and increased if the participant did
not. The algorithm presented silent trials in 33% of the trials. This percentage
was adjusted depending on the false-positive rate of the participant’s previous
responses. When a false-positive response was given, the participant received a
message that there was no sound in some trials, and that the participant should
swipe to the left. The algorithm stopped with a conclusive threshold when the
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difference between the lowest audible and highest non-audible level converged
to 1 dB. The algorithm stopped with an inconclusive threshold when either the
maximum of 30 trials was reached or when there had been three negative responses
at the maximum presentation level of 62 dB HL or three positive responses at the
minimum level of 10 dB HL.

Digit Triplets Test (DTT)

In this study, the Dutch version of the DTT was used. The implementation of this
test is derived from the work by de Graaff et al. (2016) and Smits et al. (2013). For
a complete test description, the reader is referred to the previous validation study
(Maruthurkkara et al., 2022). These authors describe the English implementation,
which is similar to the Dutch version except for the digits included and the masking
noise accompanying the triplets. In the Dutch version, all digits (i.e.,, 0 - 9) are
included. The steady-state noise has the same long-term spectrum as the included
Dutch triplets. The signal-to-noise ratio (SNR) expresses the ratio between the
sound level of the triplets and the noise. The combined sound level of the triplets
and noise remained fixed at 65 dB SPL. At an SNR of '0' dB, the triplets presented at
62 dB SPL were combined with noise at 62 dB SPL. As the doubling of the power
increased the level by 3 dB, the combined presentation level was 65 dB SPL. The
signal level was lowered at lower SNRs, and the noise level was increased. For
example, when the SNR was reduced to -2 dB, the triplets were presented at a lower
level of 60.9 dB SPL and the noise at 62.9 dB SPL.

During testing, the participant was asked to enter the three numbers heard on the
numerical keypad of their device. If the response was correct for all three items, the
SNR was reduced by 2 dB; otherwise, the SNR was increased by 2 dB. The test began
at an SNR of-6 dB. The Speech Reception Threshold (SRT), which is the SNR with
50% correct responses, was determined based on the average DTT of two blocks
of 8 triplets after the first correct response. This DTT SRT score was displayed in
the Cochlear clinician’s portal. Subsequently, if the standard deviation of the SNR
across both blocks exceeded 3 dB, the test was flagged as unreliable; in that case,
the test was repeated once. If the standard deviation exceeded 3 dB in the second
run, the DTT test was stopped, and the result “Participant’s responses unreliable”
was displayed in the Cochlear clinician’s portal. Each time a participant started the
DTT test, a short practice session was performed, during which the participants
received visual feedback to indicate whether the responses were correct. In
addition, the participants had to correctly identify all digits at least once before the
actual test started. Otherwise, the test was aborted, and the next part of the test
battery was presented.
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Questionnaires

In addition to the ATT and DTT, participants completed a number of questionnaires.
Daily-life fatigue was administered at T, and T, with the Checklist Individual
Strength (CIS) questionnaire to evaluate daily-life fatigue (Vercoulen et al., 1994).
During these sessions, participants also filled out the 12-item version of the
Speech, Spatial, and Qualities of Hearing scale (SSQ-12 questionnaire) as part of the
complete Remote Check. The Momentary Motivation (MM) questionnaire was used
to assess short-term task-related fatigue in every test session (see supplemental
appendix A for details of the MM questionnaire, including the list of questions). The
Chronotype, CIS, and MM questionnaires were filled out online by the participants
using their iPhone, iPad, or PC (Castor EDC, 2022).

Chronotype

The chronotype category expresses whether participants consider themselves a
morning person, evening person, or neither. Participants were asked at T and T, to
rate themselves on a Visual Analogue Scale (VAS) with a 0-10 range as morning-type
(0-3), neither (4-6), or evening-type (7-10). They also indicated at what time during
the week they typically woke up and went to bed. This sleep pattern was used to
plan the morning (T, T,, T, T, and night (T, T) tests. At the start of each morning
test, participants had to fill out what time they had woken up. Test moments were
labelled as 1 = morning, 2 = noon, 3 = night. The interaction between the test
moment and chronotype was tested to assess whether the self-rated chronotype
affected the outcome at a specific moment. For instance, do morning persons

perform better in the morning than the evening?

Checklist Individual Strength questionnaire

The Checklist Individual Strength (CIS) is a validated questionnaire comprising
20 statements concerning daily-life fatigue (Vercoulen et al., 1994). For each
statement, the participant rated on a seven-point scale (1-7) how well it applied
to their situation and state of mind over the last two weeks. This study used an
aggregate score collected at the start and end of the survey (range: 20-140). Scores
greater than 76 were indicative of chronic fatigue.

Momentary Motivation Questionnaire

The momentary motivation (MM) is a six-item questionnaire developed for this
study to determine motivation, hearing status, and perceived listening effort at
each moment of testing (see Appendix A for the list of questions). Four questions
reflected the restedness, motivation, and hearing status before testing, and two
questions reflected the difficulty and tendency to give up. Participants indicated
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their mood directly before and after the measurement on a VAS (range: 0-10).
After four questions, participants were instructed to start a Remote Check via the
Cochlear app. Directly after completing the Remote Check, participants answered
the remaining two questions. As was done for the CIS, an aggregate score was used
(range: 0-60).

Analysis

Data from the online questionnaires were pseudo-anonymously stored in Castor
EDC (Castor EDC, 2022). The Remote Check data were stored within the Cochlear
clinician’s portal. The measurements from these two databases were merged using
the Statistical Package for Social Sciences (SPSS) [version 28] and manually verified.

To investigate the impact of time-of-day and fatigue on the ATT, DTT SRT, and
impedances, three separate linear mixed models (LMMs) were developed. LMMs
are ideal for analyzing repeated measures while considering shared variance
within subjects and modeling between-subject differences. The models featured

Subject ID as a random factor and the other factors as fixed factors, with early
morning, noon, and night categorized as time-of-day. To fit the models, the
Imer function in RStudio's LME4 package [version 1.1-30] was used in RStudio
[version 2022.07.1+554].

Since separate LMMs were created, potential collinearity that might result from
a simultaneous decrease in hearing performance reflected in ATT, DTT SRT, and
impedance was excluded from the analysis. The factors (abbreviated in parenthesis)
included in the models were: Session, Momentary Motivation (MM), Test Moment
(TM), Chronotype Category (CC), Consonant Nucleus Consonant word recognition
score (CNC), Checklist of Individual Strength (CIS), Age, and Cl experience (Cl exp).
Random intercepts were incorporated to account for individual differences in
absolute ATT, DTT SRT, and impedances.

The significance of factors was assessed by inspecting the effect size, t-values, and
R-squared explained variance. Multicollinearity within the model (i.e., dependence
between factors) was determined by computing the generalized variance inflation
factor (GVIF) using the car package [version 3.1-0] in R. As a rule of thumb, values of
GVIF < 5 indicate acceptable independence of factors (Tsagris & Pandis, 2021). Effect
sizes and confidence intervals were based on the restricted maximum likelihood
(REML) estimates (Bates et al., 2015) and were plotted using the sjPlot package in R
[version 2.4.1.9000] (Lidecke, 2018).
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RESULTS

Hearing performance of Cl recipients was evaluated at-home by repeatedly
administering the streamed ATT and DTT using the commercial version of the
Remote Check app on an iPhone or iPad. A total of 519 Remote Checks were
collected from 50 participants during sessions T - T,. To investigate the impact of
time-of-day and fatigue on the ATT, DTT SRT, and impedance, three separate linear
mixed models (LMMs) were developed. After removing double entries (incomplete
first entries removed) due to rescheduled measurements, 500 Remote Checks
were analyzed.

Reported (technical) difficulties

The main (technical) issues encountered during testing are listed in Table 3. In 37%
(183/500) of the tests, technical difficulties resulted in failure to complete (parts
of) the test. Critical issues, defined as those resulting in significant delays, missing
data, or requiring additional actions by the participant or researcher, were detected
in 151 out of 183 technical difficulties encountered. Delays were considered critical
if they resulted in a starting time more than 2 hours later than intended.

Table 3. Reported issues encountered while completing the Remote Check.

Reported technical issues Number reported  Relative (%)

Connectivity & delay 31 31 out of 500 (6.2%)

Inability to take a photo and / or 28 28 out of 100 (28%)

to proceed to the next test

Inability to complete the DTT 31 31 out of 500 (6.2)

Inability to complete the ATT on all tested frequencies 93 93 out of 500 (18%)

Identified as critical issues (e.g excluding 151 168 out of 500 (30%)

photos and brief delays)

Total number of issues 183 183 out of 500 (37%)
ATT Analysis

The mean ATT threshold was calculated using the mean across all determined
thresholds (at 250, 500, 1000, 2000, 3000, 4000, and 6000 Hz). The mean ATT
threshold per participant per session is shown in Supplemental Figure B2.
Only complete ATT measurements, defined as having thresholds completed
on all seven test frequencies, were included (n = 407). Figure 1 (left) shows
example measurements.
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Figure 1. Mean aided thresholds and digit triplet test speech reception threshold (DTT SRT) per session for a
selection of participants. The participant number is indicated at the top of each graph. The left panel
displays the mean aided thresholds across all tested frequencies determined via the aided threshold test
(ATT), while the right panel illustrates the DTT SRT.

The mean aided thresholds were stable across sessions. The linear mixed model
showed no significant association between ATT and session (b = -.04, SE =.03,
t = -1.28, p =.2); see Figure 4 middle panel. In 22 of the 50 participants, all ATT
tests were completed on all seven test frequencies. If one clinically accepts
audiograms with reliable responses on at least five out of seven frequencies, then
31 participants completed all ATT accordingly. The overall success rate at each
measured frequency was 89%. The success rate per clinical audiogram was 82%
(453 out of 550). All participants, except participant #31, were able to successfully
complete the ATT test at least once. Ten participants produced at least two clinically
incomplete audiograms, meaning they completed fewer than five frequencies.
Additionally, four participants, identified as #15, #31, #33, and #37 generated
clinically incomplete audiograms in at least half of their attempts.

The test-retest accuracy for the ATT was determined by calculating the overall root
mean square deviation (RMSD) per complete aided audiogram at different sessions.
The mean RMSD repeated within the morning (T, versus T) was 3.6 dB, and that
between sessions in the morning (T,-T,) was 3.1 dB. The reliability falls within the
6 dB RMSD criterion recommended for clinically validated automated audiometry
approaches (Wasmann et al., 2022). Thus, no clinically relevant differences were
observed between and within the sessions.
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Impedance Analysis

The mean Cl electrode impedance across the array (referenced to the common
ground) per participant per session was inspected (see Supplemental Figure B4). No
effect of time-of-day was observed. The linear mixed model showed no significant
associations between impedance and session (b =.01, SE =.01, t =.78, p =.4) or test
moment (b =-.02, SE =.06, t = -.39, p =.7), see Figure 4 right panel.

DTT versus CNC, ATT, and Incomplete Tests

For inspecting the DTT results, the DTT SRT per participant per session is displayed
in supplemental Figure B3. Example measurements are shown in Figure 1 (right).
Participants with higher (worse) DTT SRTs showed significantly more missing DTT
data, as shown in Figure 2 (right). Poorer Cl performers (participants with aided
CNC scores < 70%) had more difficulties in passing the practice session and could
not complete the DTT more often. Based on this, at least one missing DTT score was
expected, see e.g., Figure 2 (left panel).
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Figure 2. The relationship between median digit triplet test speech reception threshold (DTT SRT) plotted
against aided consonant-nucleus-consonant (CNC) speech reception score, median aided threshold, as
well as the number of sessions with missing DTT measurements. All median scores are calculated per
participant. The left panel displays the long-term mean aided CNC scores in relation to the median DTT SRT
scores (b =-0.17, p <.001), with the vertical dotted black line indicating the audiological inclusion criterion
for participation in the study and the vertical dashed red line projecting the median CNC score at 0 decibel
signal-to-noise ratio (dB SNR). The middle panel displays the median ATT versus DTT SRT for each
participant (b = 0.23, p <.001). The right panel shows the number of sessions with incomplete DTT
measurements plotted against the median DTT SRT per participant (b = 1.9, p <.001).

The median DTT SRT was predicted using a simple linear regression model based on
the mean aided CNC results. The median DTT SRTs were significantly related to the
mean CNC score taken from the medical records (Figure 2, left panel), and improved
by an average of 1.6 dB for each 10% increase in CNC score, see equation 1.

DTT (dB) = 10.36 — 0.16 x CNC(%) (1)
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For excellent Cl performers with word reception scores of 100% at normal
conversation level, the maximum score was -5.6 dB. The predicted DTT SRT
upper limit suffered from a ceiling effect in CNC scores. The lower limit had to
be extrapolated for two reasons: 1) It is impossible to identify digits without
speech recognition, and 2) an inclusion criterion was applied during participant
recruitment (greater than 40% CNC), which, according to the linear regression
model, corresponds to a DTT SRT of +4.0 dB.
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Figure 3. Box plots of the digit triplet test reception threshold (DTT SRT) for each participant. The outcomes
are arranged in ascending order of median DTT SRT, including all ten sessions. The red dots denote the first
session (T0) and the blue dots indicate the last session (T9).

The median DTT SRT across all participants and sessions was -3.3 dB SRT. According
to the Shapiro-Wilk normality test, the overall (p =.001) and individual (<.001) DTT
SRT scores were not normally distributed. The difference between the best (-7 dB)
and poorest (+8 dB) scoring participants, was larger than the difference within
participants (Figures 2-3). The individual interquartile range, that is, the difference
between the first and third quartile, varied from approximately 1 to 5 dB with a
median value of 1.6 dB. The mean individual total range of the DTT [min - max] was
3.9 dB, with 90% of this range within 3.4 dB (here calculated as p,-p,).

The median absolute test-retest differences between DTT tests repeated within
the morning (T, versus T ) was 1.3 dB (IQR 0.6-2.1). The median absolute test-retest
differences between sessions in the morning (T,-T,) was 1 dB (IQR 0.6-2). Similarly,
the mean absolute test-retest difference between DTT tests repeated between
sessions around noon (T -T,) was 1.4 dB (IQR 0.7-2), and between night (T,T))
was 1.5 dB (IQR 0.5-2.4). The test-retest differences were not normally distributed
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due to outliers. The Shapiro-Wilk normality test was significant for all test-retest
differences. When a subset of the 37 best performers (CNC scores at 65 dB SPL
> 80%) was analyzed, the test-retest distributions remained non-normal.

Checklist Individual Strength

The Checklist Individual Strength (CIS) questionnaire was used to measure
daily-life fatigue at two timepoints (TO and T9). The median CIS score at T, was 51
(IQR 33-66). At T, the mean score was 50 (IQR 35-69). According to the normative
data, the scores were within the normal range at both timepoints (Vercoulen et al.,
1994). There was a subgroup with scores around 20 (indicating no daily-life fatigue)
and a subgroup with scores around 60 (indicating moderate daily-life fatigue), as
shown in Supplemental Figure B1. At baseline, seven out of 50 participants had
scores greater than 76, indicative of chronic fatigue. The linear mixed model below
revealed a correlation between CIS and DTT SRT, but it was not deemed clinically
relevant since a significant change of 8 points in CIS score would result in only a
0.16 dB change in DTT SRT. The linear mixed models showed no significant
associations between CIS scores and ATT or Impedance.

Momentary Motivation

The aggregate Momentary Motivation (MM) score was stable across sessions
(see supplemental Figure B5). Of the factors comprising the Momentary Motivation
(i.e., restedness, motivation, hearing status before the test, effort, and tendency to
give up during the test), only restedness changed with time-of-day. As expected,
the participants felt tired when they performed the night session just before
bedtime. This demonstrates that the effect of fatigue was elicited using the test
schedule. Based on the CIS and MM questionnaires, it was concluded that the
cohort was representative in terms of daily-life fatigue and that daily-life fatigue
varied between test moments and, therefore, could be studied as a factor that
impacted the results.

Chronotype and Test Moment

Based on the self-reported VAS scores, participants were grouped into three
categories: 1) morning persons (Chronotype score 1-3, N = 14, 28%), 2) neither
morning nor evening persons (Chronotype score 4-6, N = 24, 48%), and 3) evening
persons (Chronotype score 7-10, N = 12, 24). The outcomes at the three tested
times-of-day (also referred to as test moment) were compared to assess its effect
on test outcome, taking into account the participants’ self-rated chronotype. The
timestamps of the completed tests verified participants’ adherence to the pre-
determined test moments. No evident differences were observed in outcomes
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in the morning, noon, or night, nor were differences between the groups with
different chronotypes (see Figure 4 for the effect size and confidence interval of all
factors, including test moment).

Description of Linear Mixed Models

The effect estimates of the three separate LMMs are plotted in Figure 4. Given the
absence of significant predictors in the ATT and impedance models, the analysis
below centers on the DTT model, in which the factors explained 75% of the total
variance (conditional R?). The marginal R?, which is the proportion of variance
explained by the fixed effect (Nakagawa & Schielzeth, 2013), explained 49% of
the variance. In the DTT model, the marginal R? corresponds to the individual
differences in participants’ DTT SRT performance (conditional R? =.75, marginal
R? =.49, Observations = 301, Npamdpants
301 of 500 observations and 48 of the 50 participants were included.

= 48, p =.003). Due to missing data, only
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cc 0.6 033 0.5
CNC 0157 -0g2 o1
cis 02" og 0p2
Age o 0ge 0gs
Clexp 2 agt 099
™ * CC —008 £0J0 092
-1 0.5 0 0.5 i -1 05 0 05 1 15 2 -2 -1 0 1 2
Estimates Estimates Estimates

Figure 4. Effect estimates of the linear mixed models predicting DTT SRT, ATT and Impedance based on
repeated sessions T1 — T8. The included factors (abbreviated in parenthesis) are: Session, Momentary
Motivation (MM), Test Moment (TM), Chronotype Category (CC), Consonant Nucleus Consonant word
recognition score (CNC), Checklist of Individual Strength (CIS), Age, and Cl experience (Cl exp). Factors that
increase the outcome are represented in blue, while those that decrease the outcome are represented in red.
Significance is indicated by asterisks (*p =.038, **p =.007, ***p <.001).

The DTT model showed a small but significant effect of session on DTT (b = -.1,
SE =.04, t = -2.7, p =.007), with the DTT SRT improving on average by 0.1 dB with
each subsequent session. This was a small but significant learning effect. Removing
sessions T or T, did not affect the results; there was a gradual improvement in DTT
over time (see Figure 4). The DTT model also indicated a strong effect of CNC scores
(b =-.15,SE =.02, t =-8.38, p <.001), as a 10% increase in CNC was associated with
a 1.5 dB improvement in the DTT SRT (see, e.g., Equation 1), and a small effect of
the Checklist Individual Strength (CIS) score (b =.02, SE =.01, t = 2.09, p =.038). The
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GVIF of session, CNC, and CIS was < 1.5, indicating negligible collinearity within
the model. None of the other factors were significant predictors of the DTT SRT,
including time-of-day, chronotype, its interaction with time-of-day, momentary
motivation, daily-life fatigue, impedances, aided threshold, and Cl experience.

DISCUSSION

The primary goal of this study was to investigate the effect of time-of-day, fatigue,
motivation, and chronotype on auditory performance in at-home measurements
in Cl recipients, focusing on the thresholds (ATT), impedances, and the speech
perception in noise (DTT). Contrary to the hypothesis, the results indicated that
time-of-day effects, chronotype, momentary motivation, and task-related fatigue
do not significantly impact the aided thresholds, impedances, and speech-in-noise
test performance during self-testing at home. The data collected showed that
Remote Checks provide a reliable snapshot of auditory performance, exhibiting
acceptable test-retest characteristics. Stable results were observed over time for
participants; differences of > 4 dB in DTT SRT rarely occurred within the studied
cohort. Thus, a change exceeding 4 dB from baseline in DTT may indicate the need
for additional assessment, aligning with the clinically significant difference of
3.1 dB identified in prior research (Maruthurkkara et al., 2022).

Remote Checks can be performed remotely at-home, at work, or even while
traveling abroad, without problems or the need for synchronous support from a
clinician. Using the ATT, determining streamed aided thresholds with the Cl was
straightforward. Only four out of the 50 participants had problems conducting the
test. Approximately one in five ATTs was not fully completed, possibly because the
algorithm aborts the test when the participant responds to stimuli below 10 dB HL.
In cases in which the electric thresholds (i.e., T-levels) are fitted at levels higher than
the actual thresholds for Cl stimulation, (very) soft stimuli may become audible.
Consequently, the algorithm might erroneously terminate the test if the thresholds
of streamed stimuli fall below the 10 dB HL limit. This phenomenon could explain
the failed ATT tests observed in participants with otherwise good hearing (for
example participants #31 and #33, as illustrated in Supplemental Figure B3). To
address test length and participant concentration issues, future improvements
can be made by adapting the test paradigm. For instance, utilizing a fully adaptive
threshold-seeking algorithm can be particularly advantageous. Such algorithm
takes into account all previous responses across frequencies to infer thresholds,
unlike the current partially adaptive procedure that relies on responses from a
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single test frequency (Wasmann et al., 2022). Six of the 50 participants had multiple
incomplete DTT measurements. Poorer DTT scores were associated with a higher
number of failed DTTs. Almost all participants in the studied cohort had streamed
aided thresholds of 20 dB HL or better, averaged across sessions (see middle panel
of Figure 2). Unfortunately, there are too few measurements with an ATT greater
than 20 dB HL to assess whether increased aided thresholds leads to poorer DTT,
as was predicted in the model by de Graaff et al. (2020). Please note that in the
model by de Graaff et al. (2020), the thresholds were determined using a different
threshold-seeking method and stimuli were presented via free field instead
of streaming.

While hearing tests are useful tools, they may not capture all the nuances or issues
that Cl recipients may experience (e.g. loudness imbalance between frequency
bands, poor battery capacity, difficulties to engage at meetings at work, etc.)
and that could be identified during face-to-face conversations with trained
clinicians during aftercare (Maruthurkkara et al., 2021). Based on interactions the

researchers had via the messenger system, it is advisable to add to the hearing
tests questionnaires that query personal matters (including open questions such as
“What matters to you?” or “Did you experience important changes in your life”) and
to provide resources for online counseling (for Q&A and troubleshooting) leading
to more personalized and engaging remote care in the future.

The linear mixed model approach showed that the DTT SRT varied substantially
between participants; 49% of the total variance was explained by baseline
differences between participants. A learning effect was observed in repeated DTTs.
Unlike naive normal-hearing listeners, Cl recipients showed a prolonged training
effect beyond the initial sessions. In contrast to the study by (Smits et al., 2013),
most participants in our study had prior experience with the DTT. Kropp et al. (2021)
suggest that additional test runs can reduce procedural learning effects, despite
the potential fatigue it may incur. Moreover, an auditory training effect similar to
that described by Oba et al. (2011) might occur with repeated DTT administration,
possibly improving Cl recipients' speech discrimination in noise. Oba et al. (2011)
found that extensive auditory training, using a closed-set digit recognition task,
significantly improved speech recognition and retained benefits for up to a month
post-training. Thus a prolonged learning effect may be explained by a combination
of above factors.

The CNC and CIS scores were the other significant factors determining the DTT
score; for each 10% increase in CNC score, the DTT SRT improved on average by 1.6
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dB, and for each 5-point increase in CIS score, the DTT deteriorated by 1 dB. The CNC
score is a good indicator of whether a Cl recipient will be able to perform the DTT
successfully (see Figure 2). Based on the findings of this study, it is recommended
(in a Dutch setting) to use the Dutch DTT only in Cl recipients when one expects
a DTT SRT of 0 dB or better (corresponding to a CNC > 65% at 65 dB SPL) to avoid
frustration in (relatively poorly performing) Cl recipients who are unable to pass
the test successfully. The > 65% criterion recommended based on in this study is
more strict than the > 40% CNC score previously recommended by Kaandorp et
al. (2015). The main reason for this discrepancy may be that poorer-performing
participants had difficulty passing the practice session during the Remote Check,
and their DTT SRTs were more frequently flagged as unreliable (greater than 3
dB standard deviation across the trials within the session). Unfortunately, the
commercial Remote Check implementation does not display all test details, and the
test log files are only temporarily stored on the participant’s device. Therefore, it
was not possible to more thoroughly investigate the root causes of the problems
encountered when performing the ATT and DTT.

Limitations of this study

Firstly, the pre-determined timeslots might not have been ideal for task performance
due to individual chronotypes. Morning sessions may have been too early for
"morning-type" participants, while the test moment for "evening-type" participants
could have been too close to bedtime. This assumption is supported by reports from
evening-type participants, who mentioned feeling tired during the evening tests. To
improve accuracy, it is recommended to consider participants' peak moments and
adjust the test schedule accordingly. Secondly, the design was planned to balance
the testing order, thereby nullifying potential learning effects by always having
the morning session (e.g., T) before the night session (T,). However, it did not
control for a potential learning effect in noon sessions, which were always after a
morning session. Nor did the design control for a distinct learning effect in bilateral
Cl participants; the number of bilateral Cl recipients was too small to assess this
specific form of learning. Thirdly, to limit the burden of questionnaire completion for
participants, a brief self-reported chronotype instead of the established Morning-
Evening type Questionnaire (MEQ) was used. Nevertheless, the distribution of
chronotype categories was similar to that of the general population, of which 60%
had no particular preference between the morning and evening (Merikanto et al.,
2012). Fourthly, the study ran from January 2021 until April 2022, while COVID-19
restrictions were in place, including advice to stay at-home as much as possible,
work remotely, curfew, and a reduced number of visitors one could receive at-home.
The COVID-19 restrictions, but also seasonal changes due to variations in daylight
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hours, may have affected the participants’ daily routines and sleep patterns. No
effect of time-of-day on DTT was found, nor was an interaction between the time-
of-day and chronotype. Therefore, alternative methods to determine chronotype
are not expected to lead to a different conclusion. Fifthly, only subjective measures
were used to assess workload or fatigue. This may have led to outliers in the DTT
caused by daily-life or task-related fatigue that participants were unaware of and
therefore did not report in the subjective MM. However, the influence of subjective
(or objective) task-related fatigue may be counteracted by increased attention
and listening effort during the relatively short task. Notably, the cohort of adult Cl
recipients reported similar daily-life fatigue as normal or hearing-impaired listeners
on the CIS questionnaire (Vercoulen et al., 1994; Y. Wang et al., 2018). The median
scores were comparable to those reported previously and did not significantly differ
from those of normal hearing or hearing-impaired (Y. Wang et al., 2018). CIS and DTT
SRT did not correlate with self-reported listening effort. Therefore, although only
self-reported listening effort or fatigue was determined, these factors did not affect
auditory performance over time. Auditory tasks other than the DTT are needed to

study the effect of listening effort and fatigue at-home. Sixth, an early commercial
version of the Remote Check app was used. Technical issues or difficulties occurred
in 20-40% of the measurements. Initial in-clinic instructions might have prevented
some of the challenges experienced by the participants. Fortunately, many of the
technical issues were solved during this study. The photograph feature of the app
was not essential for the purposes of this study. However, because we used an early
commercial version of the Remote Check app, it was not possible to exclude photos
from the Remote Check test battery. Meanwhile, a more flexible and improved
version of the Remote Check has become available for clinical use in both iOS and
Android devices.

Despite the COVID-19 pandemic, when in-clinic visits were not possible, a large
amount of data was collected in a relatively short period of time. Our findings
suggest that remote assessments can be performed successfully anywhere and
anytime. This may lower barriers to large-scale data collection and the creation of
data lakes, allowing for the detection of patterns that may not be evident in smaller
monocenter cohorts. However, other important factors, such as how to deal with
algorithmic bias, risk of re-identification, data ownership, what data to transfer
when referring (including when to refer), and how to share data appropriately, were
beyond the scope of this work but need particular attention in future (see for a
discussion of those topics Wasmann et al. 2021).
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CONCLUSION AND RECOMMENDATIONS

This study is one of the first to examine the validity and stability of remote
assessments in Cl recipients and identify important factors (e.g., speech perception
in quiet at 65 dB SPL) and those that are not (e.g., time of day, fatigue, motivation,
and chronotype). A Remote Check is a relevant tool for Cl recipients to monitor
their auditory performance over time. For clinicians, automated procedures to
flag suspicious results will become essential to organize their workflow efficiently.
Future steps involve establishing referral criteria for when performance declines,
and defining the appropriate support for specific inquiries, such as assistance from
the clinic, the CI manufacturer, or a hearing-aid dispenser partnering with the Cl
manufacturer. The ultimate step is to empower Cl recipients with their data.

Cl recipients are able to initialize remote at-home measurements to monitor their
performance anywhere and anytime. Motivation, daily-life fatigue, or chronotype do
not affect the outcomes of the ATT or DTT, and the test-retest falls within clinically
acceptable limits. If needed, deviating tests can be repeated (after additional
instruction) and interpreted in concert with accompanying questionnaires before
making clinical decisions. Based on the findings of this study, it can be concluded
that at-home testing is reliable for cochlear implant recipients and offers an
opportunity to provide care in a virtual hearing clinic.
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ABSTRACT

Background: Traditional speech recognition testing in Cochlear Implant (Cl) care
primarily captures aggregate speech recognition performance, often overlooking
detailed phoneme identification errors. This feasibility study introduces a fitting
approach focusing on individual Cl users’ phoneme difficulties identified through
self-testing paradigms.

Methods: Twenty-three postlingually deaf, experienced Cl users underwent fitting
adjustments based on Phoneme Recognition in Quiet test outcomes. A basic fitting
check was followed by advanced fitting adjustments that ranged from generic
(7 out of 23) to specific adjustments targeting specific phonemes (16 out of 23).

Results: The new MAP was preferred by 74% (18 out of 23) of participants, yet the
aggregate phoneme identification performance showed no significant change
between the pre- and post-fitting visits. However, a positive trend in targeted
phoneme identification was noted (t(22) = -2.3, p =.03), approaching but not
reaching conventional significance after Bonferroni-Holm correction (adjusted
p =.09). Asignificantimprovement in targeted phoneme identification was observed
in the subgroup that adhered to a targeted fitting (t(11) = -3.3, P =.006, adjusted
p =.03, Cohen’s d =.88).

Conclusion: Using phoneme identification evaluations in the Cl fitting process in
experienced adult Cl users is feasible.

Keywords: Cochlear Implant, Speech Perception, Cochlear Implant Fitting, Phoneme
Identification, Self-Administered Testing
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INTRODUCTION

Background

Improving speech recognition is an important goal for adult cochlear implant (Cl)
users, reflecting their desire to achieve better communication in their daily lives. A
Cl offers enhanced audibility of everyday sounds post-fitting, which involves fine-
tuning the parameters of the Cl system followed by a period of acclimatization and
auditory training. Typically, it provides improved speech recognition in both quiet
and (in practice to a lesser extent) noisy environments, often leading to a notable
enhancement in quality of life (McRackan et al., 2018). However, it is worth noting
that a significant degree of variability in performance among Cl users has been
documented (Holden et al., 2013). To limit this variability, acquiring detailed data
on performance is a prerequisite. In most clinical care centers, only the aggregate
scores in speech recognition performance tests are recorded, without specifying
which phonemes are difficult to identify (Buchman et al., 2020). The variability
and lack of detailed insights underscore a critical knowledge gap: the challenge
in adequately determining whether each Cl user has achieved the most optimal
rehabilitation that suits their potential.

Clinical Cl fitting practices

In this paper, we focus on the Cochlear™ Nucleus® system so naming conventions
and fitting procedures may be biased towards that system, however, the general
principles remain valid for all cochlear implant systems. Fitting involves setting
electrical T-levels (just audible levels) and C-levels (most comfortable levels) per
electrode, typically through methods including threshold-seeking, loudness
scaling, or loudness balancing across electrodes (Skinner et al., 1995). Threshold
Neural Response Telemetry (T-NRT) levels offer another fitting approach. Although
the correlation between T-NRT and individually set C-levels is moderate to low,
the shape of the T-NRT profile appears to correlate with the shape of the C-level
profile (Botros & Psarros, 2010; W. K. Lai et al., 2009). Individual variability in T- and
C-levels stems from factors such as cochlear anatomy and electrode positioning,
affecting the spread of excitation (Stickney et al., 2006). Audiologists also consider
the Cl user’s hearing history and behavioral aspects, which, along with the personal
preferences of both the Cl user and the audiologist, can potentially influence fitting
outcomes (Vaerenberg et al., 2014). In most Cl centers, parameters other than
T- and C-levels are typically set to “default” (Vaerenberg et al., 2014) or are adjusted
based on “informal” feedback from the Cl user in terms of sound quality, auditory
and non-auditory sensations (e.g., facial nerve stimulation, pain or dizziness).
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Based on surveys among clinicians, Vaerenberg et al. (2014) and Browning et al.
(2020) found a high degree of variability in Cl fitting procedures among clinicians
and centers. There is still no consensus on what constitutes good clinical practice
(Wathour et al., 2021), although efforts to reach consensus and create international
guidelines are progressing (Buchman et al., 2020). Given the variability in outcomes
with Cl, it may be important to include other input than just single channel
loudness to guide T- and C-level fitting procedures, as described in the next section.
Additionally, evidence-based procedures on how to fit those parameters are needed.

Speech-based Fitting strategies

Instead of fitting based on T-and C-levels, some fitting approaches explicitly use
speech recognition outcomes to guide fitting. Baskent et al., (2007) applied genetic
algorithms to optimize settings in hearing aid and Cl fitting based on participants’
rating of speech intelligibility. Holmes et al. (2012) used the “Clarujust optimization”
method of CI fitting. The exact details of Clarujust were proprietary, but they
describe that they systematically varied pulse rate, loudness growth and Frequency
Allocation Table (FAT) based on the outcome of vowel-consonant-vowel stimuli
tests and evaluated the effect on speech in quiet (CVC) and sentences in noise
(BKB-SIN) test outcomes. The method of Holmes et al. (2012) did improve outcomes,
reporting that optimal parameters varied between individuals without a clear
pattern on how to adjust parameters, meaning it is based on trial and evaluation.
Noteworthy is that distinct combinations of parameter settings resulted in similar
outcomes in speech recognition.

The Fitting to Outcome eXpert system (FOX; Otoconsult NV, Antwerp, Belgium) is
an Artificial Intelligence (Al) based decision support system for fitting cochlear
implants. It calculates a utility function based on a weighted combination of outcome
measures, including aided thresholds, loudness growth, phoneme discrimination,
and speech recognition (CVC), to predict and evaluate fitting settings (Meeuws et
al., 2017; Wathour et al., 2023). The exact details of the FOX system, including how
the outcome measures are weighted, are proprietary. On average, FOX system-based
Cl fittings lead to clinical outcomes comparable to traditional fitting approaches
(Waltzman & Kelsall, 2020) and may reduce variability across Cl centers (Battmer et
al., 2015). However, it is hard to pinpoint how a specific speech perception error leads
to a specific fitting intervention (traceability of how the utility function is defined
and updated) or how each fitting intervention influences speech perception errors
on a phoneme level. So, while fitting approaches exist based on speech outcomes,
it remains unclear how exactly a change of fitting parameters leads to a change in
speech perception and how fitting procedures can be improved based on these data.
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Our Fitting Approach and Hypothesis

In this feasibility study, we systematically examined which phonemes experienced
Cl users find difficult to identify. We adjusted the fitting based on these findings
and evaluated the effect by utilizing self-testing paradigms. At the start of the
study, participants’ performance on the Phoneme Recognition in Quiet (PRQ)
test (Migliorini et al., 2024) was measured using their preferred Cl fitting, i.e.,
MAP. Based on this, up to three of the largest systematic vowel and/or consonant
confusions were selected for each participant. A confusion is a {stimulus, response}
phoneme pair, indicating that a specific phoneme {stimulus} was misidentified as
phoneme {response}. The data were collected and visualized using tools specifically
developed for this study.

We aimed to explore the effect of fitting adjustments based on individualized
phoneme errors made in the PRQ test. We hypothesized that the perception of
the most systematically confused phoneme pairs could be improved by adjusting
stimulation patterns within our control, i.e., by adjusting the MAP. First, a fitting
check was performed following standard clinical care practices. Subsequently,
advanced fitting procedures were performed to improve the fitting based on the
individual phoneme error patterns of each participant. Those advanced fitting

procedures ranged from generic adjustments (not targeting a specific phoneme
confusion such as a Pulse Rate change) to more specific adjustments targeting
the largest systematic phoneme confusions. Immediately after adjusting the MAP,
the effect per newly created MAP was measured using a reduced version of the
PRQ test. Based on the test outcome and participants’ willingness to use the new
settings, a preferred MAP was selected (referred to as take-home MAP) and used
for two weeks in daily life after which a new evaluation followed. If advanced fitting
approaches alter PRQ performance, this might lead to future fitting approaches
that potentially improve PRQ results and subsequently lead to better speech
recognition performance.

METHODS

Study Design and Setting

This feasibility study was conducted using a single-center pre-post
interventional design and performed at the Radboud university medical center’s
outpatient clinic in Nijmegen, The Netherlands (Radboudumc). The local
ethics committee of the Radboudumc approved the study (METC, file number
2022-13495). This study is part of the Auditory Diagnostics and Error-based
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Treatment (AuDiET) trial, additional information on that study can be found
at https://clinicaltrials.gov/study/NCT05307952.

Participants

Twenty-seven adults (14 males, 13 females with a mean age of 69+11 years) with a
post-lingual onset of severe hearing loss were included in the AuDiET study. Of these
participants, twenty-three completed the fitting part of the study. Participants were
recruited via general notices, via email, and during regular visits at the Radboudumc
audiology center. Recruitment and testing took place between 2022 and 2023,
with the first visit on the 30" of May 2022 and the last visit on the 4™ of December
2023. Inclusion criteria were a minimum age of 18 years and at least one year of
experience with a Cochlear® Ltd. Cl implant (model Cl422, CI512, CI522, CI532, CI24M,
CI24R, or CI24RE). Exclusion criteria were abnormally formed cochleae, severe pre-
implantation ossification, severe cognitive disorders, intense facial nerve stimulation,
unaddressed tip fold over, or more than four deactivated electrodes. Participants’
aided audiometric thresholds, baseline phoneme scores measured using CVC words,
and demographic details are detailed in Table 1 by Migliorini et al. (2024).

Equipment, Calibration / Experimental Setting

The experimental setup consisted of a laptop (Lenovo Thinkpad T440, Hong Kong)
connected to an RME Fireface UC audio card (Fireface UC, RME intelligent audio
solutions, Haimhausen, Germany) via USB2.0. The audio output from the Fireface UC
was presented via a Direct Audio Cable. The participants used a Cochlear™ Nucleus®
6 loaner processor during the session. The equipment was calibrated by monitoring
the Digital Signal Processor (DSP) input levels of the Nucleus 6 processor using a
proprietary tool from Cochlear Ltd. This calibration procedure involved comparing
the audio streamed to the processor with reference levels obtained from a similar
processor placed on a mannequin in a calibrated free-field environment within a
soundproof room. The calibration ensured that test signals via the soundcard were
delivered at a 65 dBA equivalent level. Since stimuli used in the PRQ and CVC tests
were directly streamed to the participants’ speech processor (audio-input only) and
participants had limited or absent bilateral residual hearing, acoustically shielded
rooms were not deemed necessary.

During the PRQ test, participants listened to Dutch triphones streamed directly
to the Nucleus 6 processor. The triphones had a /hVt/ or /aCa/ structure, where V
denotes a vowel (q, a, au, €, e, €i, 9,1, 1,9, u, 0, Y, ey, y) and C a consonant (b, d,
f,y,h j kI mmn, prs,t v w, z). The participants were instructed to select on
the laptop screen what triphone they heard from all possible options, with vowels
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and consonants being assessed separately. The next stimulus was presented as
soon as the participant responded. Therefore, participants could not correct their
responses. The stimuli were presented in randomized order, with each consonant
being presented eight times and each vowel six times. In the reduced version of the
test, both vowels and consonants were presented only twice. The average testing
time for the full PRQ was approximately ten minutes, while the reduced version
of the test took about three minutes to complete. The test software, specifically
designed for this study, was developed in Python 3, and further details can be
found in Migliorini et al. (2024).

In the full CVC test, the participants listened to fifteen word lists. Due to constraints
in overall testing time and listening effort, a reduced CVC test was created in which
only two lists were presented. Each list contained twelve meaningful Dutch CVC
words from an NVA word list in randomized order (Bosman & Smoorenburg, 1992).
Participants knew they listened to short existing meaningful words. They were
instructed to type what word was heard and, in case of doubt, make their best
guess. The responses were automatically parsed into triplets of phonemes to allow
for a detailed analysis of phonemic errors. The software for the CVC test, developed
by Cochlear Ltd., has been previously validated in a clinical setting, as reported by
de Graaff et al. (2018).

All tests were conducted in consultation rooms at the ENT department normally
used for Cl and hearing aid fitting, conforming to NVKF norms (Dingemanse et al.,
2023). Pure tone audiometry was tested using narrow-band noise in a free field
setup in a non-soundproof room using a speaker placed 1 meter in front of the
participant, tested in the Cl-only condition using the Nucleus 6 loaner processor.
The contralateral hearing aid was switched off and the contralateral ear was
covered with an earmuff in case of significant residual hearing in that ear.

Initial Assessment

Participants underwent a comprehensive test battery during the first visit
using their daily MAP (from now on referred to as original MAP) on a Nucleus 6
processor with preprocessing switched off (e.g. autosensitivity control (ASC) and
adaptive dynamic range optimization (ADRO)) and in audio-input only mode. The
relevant part of the test battery for assessing the Cl fitting included: aided pure
tone audiometry using a Hughson-Westlake staircase procedure and the self-test
versions of the full PRQ and full CVC test. Based on our goal of using phoneme
identification and the results of the Visit 1 analysis (Migliorini et al., 2024), it was
decided only to use PRQ as our primary endpoint.
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Confusion matrices

The outcomes of the PRQ test were summarized in confusion matrices (Miller & Nicely,
1955; Remus et al., 2007). These square matrices plot the target phonemes against
the responses, with a 17x17 matrix for consonants and a 15x15 matrix for vowels.
Within these matrices, cell values represent the response ratio out of the total times
a phoneme was presented, with diagonal entries reflecting the correct identification
rates per phoneme. As an illustrative example, the confusion matrices of Participant
25 based on the PRQ test at visit 1 are shown in the results section in Figure 4.

The confusion matrices provided a quick way for the audiologist to assess phoneme
confusions. Using the confusion matrix, up to three of the largest systematic vowel
and/or consonant confusions were selected for further analysis based on the error
distribution. Systematic errors typically involve confusion between a phoneme and
one or two alternatives, suggesting they stem from distinct perceptual features
potentially modifiable through fitting adjustments.

Electrodograms

The differences in Cl activity for vowel and consonant confusions were analyzed
by comparing electrodograms. These are electrode-output visualizations of
the electrical activity per electrode over time of the sounds captured by the
Cl processor. The electrodograms were created by processing WAV files of the
phonemes from the PRQ test using the Nucleus® Matlab Toolbox (NMT; Swanson &
Mauch, 2006) in Matlab R2022a. The NMT software simulated the signal processing
of the participant’s implants using the following parameters: ACE™ strategy, default
FAT, PR=900 pps, maxima (n=10).

By comparing the electrodograms of the presented versus responded phonemes,
the differences at the electrode level for default Cl parameters were assessed.
Before the advanced fitting, the electrodograms were visually inspected by two
audiologists to determine the maximum contrast between phoneme confusions,
which is the maximum difference in electrode activity, illustrated by the red circles
in Figure 1. This contrast was manually determined because the onsets and duration
of the PRQ stimuli were not aligned, making it difficult to automate this assessment.
The use of electrodograms in the fitting procedure was introduced to visually guide
the audiologist during fitting sessions. There were no specific guidelines that had
to be followed.

Based on the identified contrasts, several manipulations to increase the contrast
were proposed. For instance, a targeted intervention to increase the contrast
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between HOT-HAT, emphasizing HOT for a default FAT, could be to increase the
C-level of electrode 21, and decrease the C-levels of electrode 13 and 12 due to their
correspondence to the largest visible differences observed in the electrodograms.
Other generic interventions included lowering the pulse rate, increasing the
C-level over a broad range of electrodes either all apical or basal, or deactivating
electrodes. In case a participant did not have a default FAT (11 out of 23 subjects
did not have a default FAT), the audiologist manually looked up the frequency band
corresponding to the electrode of the default FAT versus the actual FAT.
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Figure 1. Electrodograms of the stimuli ‘hot’ (left) and ‘hat’ (right). The horizontal lines show the Cl-output
in terms of pulses per electrode in time. The amplitude of the pulses is modulated by the slow-varying
envelope of the speech signal and determined by the signal processing of the Cl. The difference in presented
versus responded vowels is visible around 200 ms. The red circles indicate the electrodes with the highest
contrast between /9/ (‘hot’) and /a/ (‘hat’).

Formant Deviations

Formant analysis was conducted to examine peaks in the vowel frequency spectrum,
comparing the formants of presented vowels to the formants of the participants’
responses. This comparison was visualized in a formant deviation graph. The
formants were depicted from the WAV files of the vowels of the PRQ test using
PRAAT (version 6.1.16) (Boersma, 2001). PRAAT extracts the formant frequencies at
any given time in an audio file; the first two formants were taken from the vowel
part in all the /hVt/ audio files used in testing and plotted on a cartesian graph. The
blue lines represent each electrode’s upper and lower frequency limit as extracted
from each participant’s MAP. From the vowel confusions, deviations of the first and
second formants were studied, shown for example in Figure 2.



124 | Chapter 7

E22 E21 E20 E19 EI18 E17

£ m
E10 o

2063 - J p:i E"
— Q
R R ElL =
-

S 1563 a E12 _-‘;I;
5 1313 E13 &
E 1185 - E14 =
L 10631 yel E15 <
938 gt El6 ©

L R SR E17 >

313 438 563 688 813 =

Formant 1 (Hz)

Figure 2. Formant deviation graph. Example of hot - hat (9-a) confusion. The vertical lines delineate the
frequency band between electrodes E22 to E17, which is the part of the spectrum where the first formant is
expected, and the horizontal lines delineate the frequency band between E10 and E17. Red dots represent
correct formant responses, while blue dots indicate deviant formant responses. The arrows illustrate
deviation from the target formant.

Fitting Procedure

At the second visit, a standard clinical fitting, referred to as a basic fitting check (see
supplementary material A for more details), was conducted to ensure that optimal
clinical Cl fitting care was achieved before advanced fitting (visit 2). Based on the
participants’ error patterns from the PRQ test obtained at visit 1, the audiologist
selected up to three phoneme pairs with the largest systematic errors for each
participant. The audiologist aimed to address these errors both during basic fitting
and, more explicitly in the advanced fitting.

The basic fitting involved a check of fitting parameters, including impedance,
compliance, T and C-levels, and electrode functionality, ensuring sounds were
audible and stimulation was comfortable. Speech perception changes were
evaluated using a reduced CVC test, guiding the choice between continuing with
the new basic fit MAP or reverting to the original MAP.

Consequently, advanced fitting aimed to directly target phoneme confusions
was employed starting with either the original MAP or the new basic fit MAP
as described in the previous paragraph. Advanced fitting employed generic
adjustments (e.g. Pulse rate changes, low- or high-frequency boosts) or specific
targeted interventions for the largest systematic errors. These approaches were
individually tailored based on clinical experience and consensus discussions
between experienced audiologists, utilizing electrodograms and formant
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deviations to create intervention proposals. Fitting adjustments were implemented
based on participant feedback, focusing on parameters including T- & C-levels, FAT,
electrode (in)activation, and Pulse Rate adjustments. Adjustments were guided by
live feedback on sound quality and outcome on the reduced CVC and PRQ test.

In summary, the order of activities is:
1) Basic fitting
i)  Perform reduced CVC
ii) Decide which MAP to continue with

2) Advanced fitting
i)  Repeat per variant reduced CVC + PRQ
ii) Decide which MAP to take home

The flow diagram in Figure 3 shows the type of intervention participants received,
targeted (n=16) or generic (n=7) and the adherence to the new MAPs. After visit 2,
all participants were provided with the new take-home MAP but the original MAP
was stored in program slot 2, so they retained the option to revert to their original
MAP at any time. Two weeks later at visit 3, performance with the new take-home

MAP was evaluated.
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Figure 3. Flow diagram showing the type of intervention, targeted versus generic, and adherence to the
new MAPs.

From Participant 13 onward, a modified procedure was implemented, utilizing
an improved confusion matrix tool (version 2.0) for the immediate assessment of
phoneme confusions. In addition, the audiologist now repeatedly presented the
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targeted phoneme pairs with live voice to the participants, and based on their
subjective feedback—whether the contrast had improved, worsened, or remained
unchanged—the audiologist adjusted parameters such as the C-level for targeted
electrodes. This fitting-evaluation loop aimed to directly address participant-
specific phonemic confusions more effectively. However, a potential weakness of
the live fitting-evaluation loop was that the live spoken phonemes differed from
the recorded material used in the PRQ test. The most obvious difference was
that the audiologist’s voice was male, as opposed to the female voice, which was
implemented in the PRQ material. Simultaneously fitting the Cl and streaming
PRQ stimuli was not possible, and programming every single fitting adjustment to
the ClI processor was too time-consuming. Despite these challenges, the decision
regarding which MAP to take home was made based on outcomes from the
confusion matrix and participant preferences, rather than on aggregate PRQ scores.
The aggregate PRQ scores were monitored to ensure no significant performance
decrease occurred.

Statistical methods

To assess the impact of the fitting intervention, PRQ test outcomes from visits 1 and 3
were compared. Following a post-hoc analysis that confirmed the data was within
acceptable agreement of a normal distribution (Shapiro-Wilk Normality tests),
paired t-tests were applied for statistical comparison, with a Bonferroni correction
implemented to mitigate the risk of Type | errors due to multiple comparisons
(Nosek & Lakens, 2014). While Bonferroni correction is commonly used to manage
the familywise error rate, the exploratory nature of this study also required
the incorporation of effect sizes and confidence intervals for a more nuanced
understanding of the impact of our interventions (Rubin, 2017).

In addition to aggregate performance metrics, performance on the targeted phoneme
pairs was analyzed in depth separately for each participant. For each targeted
phoneme pair, which included two distinct stimuli, a sub-score was calculated for
these stimuli, referred to as a sub-score of targeted phonemes. In case three phoneme
pairs were targeted, the sub-score of the combined six targets was calculated. If a
participant had fewer targeted phoneme pairs—two participants had one, four had
two, four had three, and one (Participant 25) was an exception who had four targeted
pairs due to combining b-p and s-z in a single intervention—the sub-score of targeted
phonemes was based on the corresponding number of presentations.

Due to time constraints and to minimize the burden for participants, only the
reduced version of the CVC test was performed at visits 2 and 3. The data collection
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and subsequent analyses were conducted using Python 3, supported by the
SciPy package. Graphical representations were predominantly generated through
Matplotlib, except the flow diagram and the estimation plots, which were created
with R (RStudio [version 2022.07.1+554]; dabestr version 2023.9.12; Ho et al., 2019)).
For statistical tests (t-test, Bonferroni-Holm, Shapiro-Wilk), the rstatix package
[version 0.7.2] was employed, and for effect sizes, the dabstr package was utilized.

RESULTS

This study explored Cl fitting adjustments based on PRQ test outcomes in experienced
Cl users. A basic fitting according to clinical practice was performed, followed by
advanced fittings. The advanced fittings ranged from generic adjustments to specific
adjustments targeting individualized phoneme pair confusions.

Eighteen participants preferred the (new) take-home MAP at the end of the study,
while five reverted to their original MAP. Participants reported one or multiple of
the following subjective reason(s) for not accepting the take-home MAP: discomfort
at higher C-levels in basal electrodes (n = 2), annoyance from environmental

sounds or their own voice after changes to apical electrodes (n = 1), or a decrease in
perceived sound quality and performance (n = 4). These complaints prevailed even
after at least two weeks of trying.

An example of the confusion matrices is shown in Figure 4, displaying the phoneme
identification results for Participant 25 during visit 1. This participant consistently
confused the phoneme /y/ (as in the Dutch word ‘huut’) with /Y/ (as in ‘hut’).
Additional confusions for vowels and consonants were also identified, including
but not limited to /Y/ with /¢/ and /o/ with /a/, as well as the consonant pairs I-n,
b-p, and v-f.

Phoneme contrasts identified in the electrodograms (maximum difference between
electrodes) differed from those found in formant deviation graphs (difference
in F1/F2). The electrodograms and formant deviations provided distinct insights,
guiding the advanced fitting procedure’s approach for vowels differently at the
electrode level.
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Figure 4. Example of confusion matrices of vowel confusions (top) and consonant confusions (bottom) of
Participant 25 at visit 1. The values in the cells show the ratio of responses to the total instances a particular
phoneme was presented. The values on the diagonal indicate the ratio of correct responses for each
corresponding phoneme. Vowels were presented six times and consonants eight times and are presented
in separate confusion matrices. For example, when the consonant /z/ was presented, the participant replied
/s/ in five (0.62) instances and /z/ in three (0.38) instances. The aggregate accuracy rates for vowels and

consonants were 80% and 69%, respectively.

Following data collection, a post-hoc analysis of targeted electrodes was
conducted. This analysis, informed by electrodograms rather than the formant
deviations, compared the targeted electrodes (using the targeted phoneme
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confusions that were implemented in the take-home MAP) and the actual changes
(compounded effect of basic fitting and explorative versions of advanced fitting
that utilized both electrodograms and formant deviations). The analysis revealed
inaccuracies in the phoneme enhancements due to electrodogram creation errors
and interpretation issues. An illustrative example of the standardized assessment
method (electrodogram) is shown in Figure 1 in the methods section.

Table 1A in Appendix A outlines the proposed C-level changes (increase or decrease)
that should be made for the targeted phoneme pairs per participant based on
the standardized electrogram analysis for default FATs. It only includes the 12
participants who adhered to the take-home MAP (to ensure that only interventions
acceptable in daily life were included) and who received a targeted fitting. For
instance, for Participant 20, HOT-HAT was a targeted phoneme pair incorporated in
Table 1A, therefore, the recommendation was to increase E21 (+) and decrease E12 (-)
and E13 (-)to enhance the contrast (illustrated in Figure 1). Combinations of targeted
phoneme pairs could lead to conflicting fitting information (indicated by - +).
This occurs when phoneme pair A points at an electrode to an increase in c-level
(indicated by the + sign), while phoneme confusion pair B points to a decrease

in C-level (indicated by the - sign) at that same electrode. Table 1B in Appendix
A shows the difference between the actual adjustments across the full electrode
array in the take-home MAPs, which are the combined results of the basic fit and
advanced fitting.

Interestingly, participant 12 found the take-home MAP too sharp and uncomfortable
upon return (after two weeks of using it), but preferred it after completing the
training intervention at the end of the AuDIET study (visit 5), underscoring the need
for an extensive adaptation period (at least six weeks) with new MAPs. The generic
fitting adjustments in participants 06, 07, 08, 09, 11, 13, and 14 precluded the
identification of specifically targeted phoneme pairs included in their take-home
MAP and have been left out of the analysis shown in Tables 1A and 1B.

Effect of (Advanced) Fitting on PRQ Outcomes

The difference in PRQ outcomes, between visits 1 using the original MAP and visit 3
using the take-home MAP, for all participants is shown in Figure 5A. This figure
displays the aggregate PRQ accuracy results per participant at visit 1, shown as
baseline, and the changes measured at visit 3. The average baseline accuracy score
of PRQ tests at the group level was 66% at visit 1, and 68% at visit 3. Here, accuracy
refers to the percentage of correctly identified phonemes (also known as an error
rate). A within-participant comparison of PRQ scores using a Paired t-test, showed
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no significant change (t(22) =-1.2, p =.24). The mean effect size was 1.8 percentage
points, with a 95% Confidence Interval ranging from -8 to 11 percentage points
improvement, as detailed in Figure 7A). Figure 5A shows that changes were not
related to baseline performance or affected by a ceiling effect.
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Figure 5. Difference in PRQ scores between visit 1 and visit 3 for aggregate scores (A) and targeted
phonemes sub-scores (B) sorted by baseline performance. Superscript (T) denotes those who received
targeted interventions, and (G) denotes those who received generic interventions. Asterisks indicate
participants who after testing at visit 3 reverted to their original MAP.
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Effect of (Advanced) Fitting on Targeted Phonemes

The sub-scores of targeted phonemes are shown in Figure 5B. The baseline scores
represent performance on the targeted phoneme pairs per individual at visit 1. The
average baseline score across the group was 50%, which is substantially lower than
in Figure 5A, reflecting participants’ difficulty with these phonemes. The average
accuracy after the intervention was 57%. The mean effect size was 6.8 percentage
points, with a 95% Confidence Interval ranging from -0.8 to 16 percentage points
improvement, as detailed in Figure 7B. An examination of performance on the
targeted phonemes between visits 1 and 3 revealed a trend that did not reach
statistical significance at the 0.05 level after Bonferroni-Holm correction (t(22) =-2.3,
p =.03, adjusted p =.09), which hints at potential efficacy in the fitting intervention
for these targeted phonemes (illustrated in Figure 5B and 7B). Since the generic
fitting adjustments did not specifically target phoneme pairs in participants 06, 07,
08,09, 11, 13, and 14, the observed effect might be underestimated.

In the subgroup of participants who received a targeted intervention and who
adhered to the take-home MAP after the conclusion of the study (labelled ‘Adhered
to Targeted Fitting, n=12), a larger effect of the fitting adjustment was observed,
with average aggregate accuracy changing from 73% at baseline to 76% after the

intervention (Figure 6A), which translates to a mean effect size of 3.0 percentage
points with a 95% Confidence Interval ranging from -10 to 15 percentage points
improvement, as detailed in Figure 7C. Analysis showed non-significant changes in
aggregate PRQ scores (t(11) = -1.64, p =.13, adjusted p =.25). The average accuracy
on targeted phonemes increased from 50% to 62% (Figure 6B). The mean effect
size was 12 percentage points, with a 95% Confidence Interval ranging from 2.4 to
12 percentage points improvement, as detailed in Figure 7D). Paired t-test on the
sub-scores of targeted phonemes showed a significant effect (t(11) =-3.36, p =.006,
adjusted p =.03), which remained significant after Bonferroni-Holm correction for
multiple testing. The standardized effect size expressed as Cohen’s d was .88.
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intervention (participants labelled (T) in Figure 5).
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DISCUSSION

In this feasibility study, phoneme identification performance was measured via a
self-testing paradigm (PRQ-test) to inform fitting adjustments in experienced adult
Cl users. We hypothesized that the largest systematic phoneme confusions can be
reduced by adjusting the MAP. First, at visit 1, an initial assessment of performance was
done. Then, at visit 2 a basic fitting check took place, directly followed by an advanced
fitting procedure. These variants ranged from generic adjustments (e.g. Pulse Rate
change) to adjustments targeted to individualized phoneme pair confusions.

Results showed in the full cohort a trend toward improved phoneme identification
performance in targeted phonemes when using the new take-home MAP. Although
there was variation between participants (Figure 7B), the results suggest that
PRQ outcomes can be informative in fitting interventions, even in an experienced
cohort of adult Cl users. The average targeted phoneme identification performance
increased (Cohen’s d 0.88) in the subgroup that adhered to the targeted fitting. This
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result suggests that targeted interventions could be more impactful than generic
interventions, but a preregistered confirmatory study is required to draw more
definitive conclusions (Wagenmakers et al., 2012). However, Table 1B shows that
the effect is caused by a mix of basic fitting and advanced fitting. This means that
there is potential to make the interventions more targeted.

Given that there is no effect on aggregate score, our approach may be more
suitable for the “finishing touch,” i.e. fine-tuning a few phoneme identification
difficulties. In poorer performing Cl users who struggle with identifying many
phonemes, resulting in numerous systematic and random phoneme errors, those
phoneme errors may lead to conflicting suggestions on how to change the MAP.The
conflicting directions in Table 1A show limitations in a targeted approach when one
phoneme confusion pair results in a suggested increase in C-level at an electrode,
while another phoneme confusion pair results in a suggested decrease in C-level at
that same electrode or vice versa. In other words, if those suggested interventions
are implemented, improving one phoneme confusion error will deteriorate the
other, and vice versa. Therefore, for poorer-performing Cl users, the outcomes of
other test paradigms may be more informative, including tone-decay, a test which
has been revisited in recent years and is more sensitive to retrocochlear lesions
(F. H. Schmidt et al., 2024; Wasmann et al., 2018).

Interestingly, 18 out of 23 participants preferred to continue using the new fitting
(n=12 targeted, n=6 generic fitting) at the end of the study. It remains unclear
whether participants based their preference on the effect of the intervention
on speech recognition performance or other criteria. For instance, participants
8 and 13 preferred the new fitting despite their lower phoneme identification
after the intervention. Browning et al. (2020) did not explicitly study if conflicting
information from objective versus subjective evaluations accounts for variability in
fitting procedures across centers, but this could be an implicit factor. Interestingly,
Vaerenberg et al. (2014) stated that most clinics rely only on subjective feedback to
guide the Cl fitting procedure.

In this study, we primarily targeted vowel confusions. Out of the 37 targets included
in the adhered targeted fittings, 24 were vowel pairs and 13 were consonant pairs.
This approach was inspired by vocoder studies from DiNino et al. (2016) and Kasturi
et al. (2002), which suggested that vowel confusions might arise from compromised
frequency selectivity near the electrode-cochlea interface. In comparison,
consonant confusions may instead depend more strongly on the temporal envelope
structure. In our fitting approach, we had more options to manipulate spectral
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cues (e.g. changing C-levels or the Frequency Allocation Table (FAT)) than options
to manipulate temporal cues (e.g. pulse rate or strategy). Therefore, we expected
to have a stronger impact on vowel than consonant identification. The distinction
could be subtle, as exceptions exist. For example, the contrast between /s/ and /z/
relies on spectral cues, as is generally the case for voiced/unvoiced consonants.
Previously, Migliorini et al. (2024) showed that within participants the vowel and
consonant performance scores were similar. The effect of our fitting interventions
was too small, and the number of targeted vowels versus consonants was too
unbalanced to differentiate between effects on vowels or consonants.

Limitations

Even though the outcomes of this feasibility study show that in experienced adult
Cl users the fine-tuning of the MAP matters, the exploratory nature also requires
cautious interpretation (Rubin, 2017). The study has several limitations:

1) The small selection of targeted phoneme pairs per participant provides little
room for improvement on the aggregate PRQ score and may be subject to a higher
degree of test-retest variability. In addition, there is a risk of priming due to the
selection of targeted phoneme pairs since participants may have realized which

phonemes were targeted, however, the random presentation order of phonemes in
the PRQ test likely minimized this effect.

2) Improving Cl outcomes is inherently difficult. Multiple fitting approaches may
lead to similar outcomes (Waltzman & Kelsall, 2020), making it difficult to work
incrementally towards an‘optimal’fitting, as radically different approaches may lead
to similar speech performance outcomes, as currently measured within standard
clinical care. There is no gold standard to compare against, and it is uncertain
whether there is room for improvement (Wathour et al., 2021). In addition, the
inclusion criteria had to be widened to include relatively better performers with
less room for improvement since the experienced poorer performers were difficult
to recruit and often did not meet our inclusion criteria.

3) There was no strictly defined fitting protocol. The fitting adjustments were
made during a single visit without time for acclimatization per fitting variant. The
fact that multiple fitting interventions were layered (basic and multiple advanced)
led to the inability to disentangle the effects of basic fitting from more targeted
advanced fitting interventions. So, while we observe some potential improvements,
attributing these directly to the different parts of each fitting intervention is
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impossible. A pre-registered confirmatory study with strictly defined actions based
on objective outcomes is needed to confirm our results (Wagenmakers et al., 2012).

4) A limitation arises from the phoneme confusions being based on a single speaker’s
voice, as formant frequencies can vary significantly across different speakers, so
optimizing for one speaker may not generalize to better phoneme identification in
general. DiNino et al. (2016) showed that vocoders will process some vowels (e.g.
HID, HUD, HOOD) differently for male and female voices. Also, the method suffers
from regional differences since dialects can lead to different perceptions of vowels
(Wright & Souza, 2012). This means that in the limiting case, such an approach may
optimize the MAP for a certain speaker and a limited number of utterances without
generalization of the benefit. In principle, this could be tackled by introducing tests
with a large number of speakers, different prosodic contexts etc. However, this
approach would significantly increase (already long) testing time and introduce
more conflicting suggestions. In this study, we deliberately choose a single speaker
to minimize complexity and first test the feasibility of the method.

5) A more general limitation of using phoneme confusion is evident from Table 1A,
showing that changing targeted phoneme contrasts may inadvertently reduce
contrast or performance on other phonemes, which may explain the lack of
improvement in aggregate scores. Another approach to increase phoneme
contrasts without a negative effect on other phonemes could be a new Cl strategy
that compensates for the spread of excitation leading to more focused electrical
stimulation patterns known as SPACE (Bolner et al., 2020).

Recommendations

The goal of this feasibility study was to explore the potential impact of fitting
interventions based on individual phoneme identification errors on the performance
of experienced adult Cl users. Our data seems to suggest that such an approach
could be beneficial for experienced Cl users. However, given the exploratory nature
of our findings, replication in a pre-registered larger clinical study using a strict
fitting protocol is necessary to provide stronger evidence. To improve the advanced
fitting methodology, we suggest implementing targeted interventions sequentially
over multiple visits to facilitate acclimatization. It is recommended to carefully
consider the overall changes across the electrode array, as fitting adjustments may
involve conflicting targets that require distinct approaches.

In the future, experienced Cl users who are motivated to refine their current MAP
might use a remotely administered version of the PRQ. An automated, potentially
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Machine Learning based approach, that targets the electrodes associated with
their most frequent systematic confusions, could then deliver micro-interventions.
This approach may entail relatively low risk, similar to the self-fitting that Cl users
can already perform (Vroegop et al, 2017). The effectiveness of these micro-
interventions could be remotely assessed at convenient times for users, following
a period of acclimatization and at the time of day they prefer (Wasmann et al.,
2024). This iterative cycle of adjustment and evaluation could progressively
implement beneficial adjustments. Such an approach would empower Cl users
to actively participate in their post-implantation care, collecting valuable data on
the impact of micro (minor) adjustments on speech recognition, and enabling the
use of ecological momentary assessment (EMA) in the day-to-day context of the Cl
user (Holube et al., 2020). As has been demonstrated in the self-fitting of hearing
aids, it is important to empower end users, making them confident in their own
capabilities and assuring them of the many tasks they can handle by themselves
(Convery et al., 2019). In addition, data-driven (Machine Learning based) fitting
approaches may alleviate the clinical workload for audiologists and could be part
of a more streamlined clinical protocol where less time is devoted by the clinician
to optimize MAPs. If these approaches are also feasible in newly implanted Cl
users, these new users might start with a first fit based on a population mean and

subsequently receive fine-tuning with above-mentioned approaches.

Overall Conclusion

This feasibility study demonstrated the viability of using precise evaluations of
phoneme identification performance in fitting procedures. Experienced Cl users
may benefit from targeted interventions based on specific phoneme identification
errors that remain invisible when using only aggregate phoneme identification
performance. The exploratory fitting approach resulted in modest improvements in
sub-scores of targeted phonemes for the subgroup that received the most targeted
interventions. The clinical relevance of these findings in experienced Cl users may
be modest because participants were potentially already close to an “optimal MAP”
in terms of aggregate phoneme and speech perception through their clinical
pathway. Now that feasibility has been demonstrated, a more systematic approach,
based on the lessons learned from this study, may lead to a stronger effect.
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This thesis explored how Al and teleaudiology can unlock benefits to improve
affordable and accessible hearing health care. When writing our computational
audiology perspective paper in 2019, we scarcely anticipated that large language
models would soon enable nearly natural chat interactions between humans
and machines, approaching the capability to pass the Turing test. Based on these
recent advances, one can envision that in the future, individuals conduct hearing
tests at home while consulting chatbots for support during the test and afterward
for interpreting the results and their implications. In this general discussion, we
will reflect on the findings of the studies conducted in this thesis as steps toward
achieving such a vision, and we will address some of the remaining challenges we
still have to overcome to achieve optimal implementation of Al in audiology.

THE NEED FOR AND POTENTIAL OF
COMPUTATIONAL AUDIOLOGY

With the increasing pressure on healthcare in general and audiology in particular,
the necessity for the further development and implementation of computational
audiology will grow within the field of hearing care in the coming years (Chapter 2).
These advancements also give rise to new challenges across various domains,
including privacy, data management, and responsibility. To address these
challenges, computational audiology will require increased collaboration across
disciplines. The intersection of Al and audiology brings together audiologists,
engineers, and data scientists to create patient-centered solutions and empower
patients to use their own data. Chapter 2 presents a case for improving access,
precision, and efficiency of hearing healthcare services through computational
audiology. Ethical implications of using Al, such as liability when algorithms
make errors and the consequences of biases in large datasets, are examined.
We learned that there is still a long way to go. An active role from professional
societies is essential to mitigate risks and address challenges for a safe transition
to greater adoption of Al within audiology. One advisable approach would involve
establishing interoperable systems and implementing shared data policies (FAIR)
in computational audiology. This ensures that patients receive support based on
high-quality data wherever they are located.

Based on ideas presented in our perspective paper about computational audiology,
several initiatives have emerged internationally to promote the adoption and
development of computational audiology. For example, the Computational Audiology
Network (CAN) and its Virtual Conference on Computational Audiology (VCCA)
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conferences bridged the gap between disciplines by encouraging interdisciplinary
discussion and knowledge sharing. In the autumn of 2023, CAN was formalized as a
professional network. In February 2024, CAN became a member of the World Hearing
Forum (Wasmann, 2024). The high interest in the VCCA meetings indicates that the
field of computational audiology is being embraced. Today, more than 1,500 people
have attended one of the VCCA conferences. In addition, the publication of numerous
papers in a dedicated Frontiers Special Issue (Meng et al., 2022) demonstrates the
dynamic discourse and progress within this interdisciplinary domain.

Al CHATBOTS IN HEARING HEALTHCARE

Early 2023, we explored the potential of large language model-based Al chatbots for
people with hearing loss or tinnitus, outlining opportunities to improve accessibility
by counseling people with hearing loss and assisting clinicians (see Chapter 3).
After experimenting with prompts to simulate patient conversations and creating a
simple Al chatbot using an OpenAl model (Wasmann, 2023), we suggested research
priorities to develop Al chatbots responsibly, such as addressing risks related to
missing or incorrect information provided by these chatbots (Swanepoel et al.,
2023). Within a year, the paper by Swanepoel et al. was followed by new studies
showcasing the use of Al chatbots in tinnitus management (Jedrzejczak et al.,

2023), counseling before and after Cl surgery (Aliyeva et al., 2024), evaluating Al
chatbots on professional audiology exams (S. Wang et al., 2023) and their use in
audiology training programs (Sooful et al., 2023). There was a quickly increasing
amount of literature discussing the opportunities and risks associated with using
Al chatbots. For instance, the response variability among Al chatbots was reported
depending on the large language model utilized (Jedrzejczak & Kochanek, 2023).
Strategies were investigated to improve Al chatbots’ responses by forcing the
model to primarily use Wikipedia as a resource (Matos et al., 2024), to name a few
examples recently appearing as preprints or conference papers.

To ensure the successful implementation of new technology, it is crucial to
engage all stakeholders in its development and application (see also Chapter 2).
This certainly holds true in the development and deployment of Al chatbots. Now
that several applications have been developed, as mentioned above, innovative
audiologists will be important for exploring the first steps in integrating Al chatbots
into audiological care. Low-risk scenarios for using Al chatbots in hearing health
care could include an Al chatbot responding to difficulties patients experience with
using their hearing aid or cochlear implant, as illustrated in the examples below.
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Low-risk examples of using Al chatbots with patients

Technical Support for Connectivity Issues:

- Example Question: "How can | connect my hearing aid via Bluetooth to
my phone?"

+ Al Chatbot Response: The chatbot can guide the patient step-by-step
through the process of pairing their hearing aid with their smartphone,
including checking if Bluetooth is on, ensuring the hearing aid is in pairing
mode, and selecting the device on their phone. This can greatly reduce
frustration and improve the patient’s experience.

Maintenance Guidance:

- Example Question: "How do | replace the microphone filters on my
hearing aid?"

- Al Chatbot Response: The chatbot can provide simple, clear instructions
or videos on how to replace microphone filters, ensuring the patient can
maintain their device properly without needing a clinician visit. It can also
remind users of necessary maintenance tasks based on time intervals or
usage patterns.

Troubleshooting Common Problems:

- Example Question: "My hearing aid is not working properly. What should
I do?"

+ Al Chatbot Response: The chatbot can run through a checklist of common
issues and solutions, such as checking if the device is on, if the battery needs
to be replaced or recharged, or if the device needs to be reset. This helps
patients troubleshoot quickly and effectively.

Usage Optimization Tips:

- Example Question: "What settings should | use in a noisy environment?"

- Al Chatbot Response: The chatbot can suggest optimal settings or
adjustments to the hearing aid for different environments, enhancing the
user experience without needing a clinician’s immediate intervention.

Quickly solving these problems at home can significantly impact successful daily
use. Solving connectivity problems is a tedious task that most clinicians will
probably be happy to hand over to a chatbot with endless patience. However,
innovative clinicians will need clear guidance from other stakeholders to align
their efforts with patient-centered care, data privacy, and ethical standards.
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This guidance should address the specific challenges of LLMs, such as adapting
workflows, ensuring data security, and maintaining meaningful patient interactions.
Equipping these pioneers with knowledge and best practices, such as case studies,
implementation toolkits, and peer networks, can create the basis for wider Al
chatbot adoption and further development. We may also learn from interactions
with Al chatbots in the process (see Figure 1). Higher risk applications including
interacting with people with acute ear infections or those at risk of suicide due to
various factors including tinnitus, will require more involvement from clinicians
and appropriate level of oversight. Therefore, collaboration among healthcare
professionals, researchers, patient associations, and policymakers is essential.
Practical actions include forming interdisciplinary committees and developing
shared ethical guidelines to ensure the ethical design and use of Al chatbots.

| 4
»
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Figure 1. DALL-E created artwork. Prompt “A surreal scene of a friendly audiologist and a humanoid robot
facing each other and testing each other’s hearing in a sound booth. The audiologist, a middle-aged person
with a warm smile, is seated at a desk, wearing red headphones on the right ear and blue headphones
on the left ear, holding a response button in hand. Directly across, a humanoid robot with sleek metallic
features and a digital display face is facing the audiologist, also wearing matching headphones and
holding a response button, listening intently. The sound booth is detailed with acoustic panels, various
audiology equipment, and a computer screen showing sound waveforms, creating a thought-provoking
atmosphere of advanced technology and human collaboration.”
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TOWARD INTERACTIONS NOT LIMITED BY
HEARING STATUS

Speech transcription is a valuable tool for individuals with hearing loss. It can be applied
in specific contexts, such as watching television, participating in online meetings, or
during appointments with clinicians. ASR technology is quickly adopted around the
globe, and the number of use cases is growing (Loizides et al., 2020). For instance,
Google’s Live Transcribe is a widely used application that instantly converts speech
and ambient sounds into text on smartphones, aiding people with hearing difficulties
(Slaney et al., 2020). The app supports over 80 languages, identifies various sound
types, and includes a sound level indicator for users’ spatial awareness. The availability
of ASR in meeting platforms like MS Teams and innovations, including Speaksee, which
uses multiple microphones to facilitate the participation of people with hearing loss
in groups (Hazelebach, 2023), illustrates the technology's advancement. Another use
case within audiology is that ASR can potentially automate the scoring of speech
recognition performance in standard clinical audiological tests (Venail et al., 2016).

In the assessment of ASR apps, described in Chapter 4, we found that speech
recognition performance, as measured by standard audiological tests, was on par
with the speech recognition performance of people with moderate hearing loss in
low noise conditions. However, in test conditions with competing noise, the ASR
apps performance declined compared to the low noise condition. This difficulty in
transcribing speech in noise emphasizes the need to position the microphone close
to the talker in challenging listening situations, as one would expect from decades
of experience with remote microphone systems (Fitzpatrick et al., 2009; Jerger et al.,
1996). Furthermore, how and where to display the transcript to the users is a crucial
factor for the practical usage of ASR. Several ways to present the text have been
researched and tested (Chavez et al., 2024). One example is the use of augmented
reality applications in glasses (Jin et al., 2023). This may seem like a good solution,
but projecting the text without confusing the user or hindering social interaction is
difficult (Rzayev et al., 2020). Another aspect we encountered while evaluating ASR
apps is the need for a fast and stable internet connection to avoid missing parts of the
conversation or losing lip-sync. For a new evaluation of ASR apps in 2023 (published
in a Dutch report), we repeated the transcription of the English dialogue using Live
Transcribe. With a more stable internet connection, we measured a WER below 5%
instead of the previously estimated 34% (see Figure 5 in Chapter 4) in 2020 using a
less stable internet connection (Hazelebach et al., 2023; Pragt et al., 2022). Thus, in an
audiology center’s consultation room, acoustics and fast, reliable internet bandwidth
must be considered to facilitate conversations between clinician and patient.
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During my PhD trajectory, | had the opportunity to connect with developers from
the National Acoustic Laboratories. They developed a speech-to-text solution using
the Apple speech-to-text engine specifically for audiology centers. Adding Dutch as
a language turned out to be easy. Within a year, the Dutch version was downloaded
more than 500 times in the Apple App Store, presumably for use at hearing aid
dispenser shops, audiology centers, and at home. Notably, with the right contacts,
specific applications can progress unexpectedly rapidly.

AUTOMATED TELEDIAGNOSTICS ANYWHERE
AND ANYTIME

The scoping review of self-administered pure-tone audiometry approaches
presented in Chapter 5 is an update and extension of a systematic review
by Mahomed et al. (2013). In this review, we identified six approaches for air
conduction audiometry that met clinical diagnostic standards, meaning the test
outcome was comparable to clinic-based assessments performed by clinicians.
Of the 64 reports included in this review, those that used similar approaches were
clustered, and the resulting 27 unique approaches were assessed based on clinically
relevant criteria. New features found in the literature to increase reliability included
monitoring background sound levels and automatically flagging invalid responses.

We estimated that the test duration of thirteen approaches was similar to manual
assessment; in one approach, the testing time was a potential burden, while ten
approaches did not report testing time. In addition, a maximum likelihood-based
approach and two Bayesian active learning approaches reported shorter test
durations due to more efficient threshold-searching algorithms. Based on our
scoping review findings, we identified an opportunity to make these approaches
more child-friendly by adding game-design elements and more clinically
acceptable by incorporating bone conduction transducers.

Despite the potential of home testing and home care as future solutions using self-
administered testing paradigms, the reliability and practicality of home testing remain
uncertain. The primary reason is that it is harder to control the home environment
and to know under what conditions the test was performed, which may affect its
validity. Previous studies of at-home assessments in Cl recipients showed that it was
feasible to perform but did not consider time-of-day effects and started evaluations
in a controlled environment, that is, within the clinic (Cullington et al., 2018; de Graaff
et al., 2018; Maruthurkkara et al., 2022). The next step was to look at the possible
effect of time-of-day and chronotype on assessments carried out at home in Cl users



146 | Chapter 8

without prior experience with the test battery. In Chapter 6, we assessed auditory
performance at various times of day, including beyond regular office hours. Time of
day, fatigue, motivation, or chronotype did not affect the aided thresholds test and
outcomes in the digits-in-noise test. Differences of > 4 dB in the digits-in-noise test
outcome were rare, which seems to agree with the clinically significant difference of
3.1 dB determined by Maruthurkkara et al. (2022). Although we demonstrated the
reliability of at-home cochlear implant performance monitoring, not all participants
were able to complete the digits-in-noise test. The speech recognition in quiet score
was a good predictor of whether a participant could perform the digits-in-noise
test (see Chapter 6, Figure 2). To increase the success rate of the test battery, we
recommended including the digits-in-noise test only when a participant’s speech
recognition in quiet was at least 65% at 65 dB SPL, which is a bit more stringent than
the > 40% score recommended by Kaandorp et al. (2015).

It is reasonable to conclude that remote testing can be integrated into a virtual
clinic model since at-home assessments are reliable and feasible for many Cl users,
in line with findings from previous research (Cullington et al., 2018; de Graaff et al.,
2018; Maruthurkkara et al., 2022). This may make the Cl aftercare for clinics more
efficient since routine check-ups in the clinic can be replaced by specific visits
based on problems identified at home. However, during the remote assessments,
it was important to address questions and issues promptly via easily accessible
communication channels, given that our participants had no prior experience with
the test battery and that unexpected problems could arise at home. Interacting
with our participants via a messenger system helped keep everybody engaged and
facilitated quick problem-solving (e.g., in 37% of remote assessments, participants
experienced technical difficulties; see Table 3, Chapter 6). However, in practice,
synchronous teleaudiology will not provide time-saving benefits to professionals and
limits the freedom for Cl users to perform the tests at any time. Having Al chatbots to
encourage and help Cl users complete remote assessments at any time, such as the
aided thresholds and digits-in-noise test, as well as administering questionnaires, is
the next step one can envision. Such Al chatbots could subsequently summarize test
outcomes both for patients and clinicians. Al chatbots would thereby help clinicians
reduce their workload by making summaries and highlighting abnormal outcomes.
Interacting with Al chatbots may make remote assessment more “enjoyable” while
allowing clinicians to dedicate more time to complex cases and less to routine
tasks. We should train Al chatbots on audiological data to make their responses and
interpretation of test outcomes more reliable.
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TOWARD AUTOMATED CI FITTING

Within the field of cochlear implants, computational audiology can also be
applied in meaningful ways. Adjusting the parameters of the Cl system requires
knowledge and expertise. However, the precise justification for adjusting the Cl
system is still lacking (Wathour et al., 2021). When we gain more insight into the
effects of fitting adjustments that can be made to the Cl system based on hearing
performance errors, the process of fitting the processor will ultimately become
more data-driven (or outcome-driven), which in turn provides opportunities to
do more efficiently using automation. It was shown in Chapter 7 that phoneme
identification performance may provide useful information to the audiologist in
refitting experienced adult Cl users. Our exploratory fitting method appeared
promising regarding effect size on targeted phonemes by enhancing the contrast
between those targeted phonemes. However, there was no effect on overall speech
performance. One limiting factor was that the subset of targeted phonemes (2 to
6) per participant had only a limited weight in the aggregate score of all phonemes
(32 phonemes, 17 consonants, and 15 vowels). Another reason could be that the
increased contrast between targeted phonemes by adjusting C-levels may reduce
the contrast between non-targeted phonemes, thereby introducing new errors
(see Table TA, Appendix A). New Cl strategies to increase phoneme contrasts, such
as SPACE instead of ACE (Bolner et al., 2020), might be a better approach with the
additional benefit that it does not affect loudness balance across electrodes. Follow-

up confirmatory studies are required to provide more substantial evidence of our
fitting approach and discern the effects of clinical fitting adjustments from those of
more targeted fitting adjustments. In future work, collecting performance data in a
teleaudiology setting could further facilitate the development of more outcome-
driven fitting approaches. Remotely administered tests may motivate Cl users
to improve their current MAP, resulting in a more extensive dataset than can be
practically collected in laboratory studies. A safe start with Al-powered automated
Cl programming tools would be low-risk micro-interventions similar to existing
self-adjustment tools. Although still speculative, incremental improvements might
be achievable by encouraging users to assess their performance with tests after
acclimatization to a Cl fitting. This process of sequential interventions may gather
valuable insights into the effects of micro-interventions on speech recognition.
Additionally, it may facilitate evaluations and interventions in real environments
that Cl users encounter in daily life instead of the less representative setting of the
ClI clinic. This could be further supported by tools such as ecological momentary
assessments (EMAs) to evaluate how changes are experienced in daily usage
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situations (Holube et al., 2020). Most importantly, teleaudiology tools enable CI
users to play a more active role in their post-implantation care management.

TOWARD INTEGRATED TELEAUDIOLOGY SERVICES

Teleaudiology experienced a peak during COVID-19 due to lockdowns and social
distancing, but in-person care has reverted to pre-COVID-19 levels (Chong-White et
al., 2023). Despite technological readiness, societal and user acceptance appear to
be barriers. In March 2024, the topic of teleaudiology was discussed at a meeting
organized by the Dutch Association of Cochlear Implant Users (OPCl in Dutch). It was
an opportunity to meet a large group of Cl users who receive care from Cl Centers
across the Netherlands, present them with teleaudiology tools, and administer a
survey about their perception of the opportunities and barriers associated with
teleaudiology. More than 60 Dutch Cl users filled out the survey. The data have not
yet been published, but here are several takeaways. The results show that a large
group of Cl users (around 90% of respondents) is open to teleaudiology; however:

« Many are afraid that their Cl system may break down when there is a glitch when
receiving teleaudiology services;

« Many worry whether communication with the clinician during a teleaudiology
session will be adequate;

« Many worry whether the quality will be on par with in-person care;

- Some do not want teleaudiology (around 10% of respondents) or need help to
use it. For instance, they may be unable to perform all tasks at home alone, such
as replacing a defective part due to dexterity problems.

Also, surveys among clinicians have identified concerns about teleaudiology
provision, including how it may negatively affect the relationship between
professional and client (Parmar et al., 2022) and the reliability of remote
assessments (Bennett et al., 2023). A pre-pandemic systematic review singled out
logistical barriers such as the infrastructure and the billing system (Ravi et al., 2018).

Addressing these worries is vital so that enough end-users feel at ease trying
these technologies and so that we may reach the critical mass necessary to
make teleaudiology viable as routine clinical care for reasons beyond dealing
with lockdowns.
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LIMITATIONS OF THIS THESIS

Currently, even the most advanced Al chatbots using LLMs are at risk of
hallucinating. It is not clear where they retrieve information from, their reliability
is uncertain, and there is no regulatory oversight yet for medical use (Gilbert et al.,
2023), which means that we need to be cautious when providing unsupervised
chatbots to patients. There have been calls for open-source LLM that can be used
for public services (Editorial, 2023). However, even then, with open-source LLMs,
regulating these models is complex given the near-infinite range of inputs and
outputs these models can generate and the lack of established methods to mitigate
all risks (Gilbert et al., 2023). Therefore, we may need to wait until these issues are
resolved, and some have urged not to use Chatbots in clinical practice (Au Yeung et
al., 2023; Ethics Review Committee (ERC), 2024). Nevertheless, right now, patients
are already using search engines to retrieve medical information, and these are
increasing using LLMs. Ideally, we should develop best practices as a field to help
pioneers move forward with acceptable risks.

Another limitation is that developments in Al are progressing very rapidly.
Publications from four years ago (e.g., Chapters 2 and 4) are already outdated.
Also, the ASR study was a preliminary study using suboptimal evaluation methods.
We primarily used standard audiological tests typically used to assess auditory

performance of people with hearing loss. These tests are not explicitly designed
to assess speech transcription performance. As a result, neither the potential effect
on speechreading nor the readability of the transcript was evaluated. Therefore,
we suggested evaluation metrics that reflect a more realistic usage situation than
only the word error rate in an ideal listening situation. Better evaluation methods
are needed, given the growing adoption of ASR (Szymanski et al., 2020). We can
assume that the accuracy of currently available speech transcription apps has
further improved since developments are progressing quickly. However, even in the
Word Error Rate (WER), there is room for improvement, especially regarding speaker
accents, background noise, and spontaneous conversations (Ferraro et al., 2023).

In the Remote Check study (Chapter 6), we were restricted to working with the
clinically available application, implying that we could not make changes to
improve it, even as a scientific tool. Only self-reported measures were used to
assess workload or fatigue. Participants may have misjudged their task-related
fatigue. In addition, the influence of task-related fatigue may have been overcome
by increased attention during the relatively short task, so perhaps it was not
measurable in the digits-in-noise anyway. Therefore, although the Remote Check
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app could not assess the effect of fatigue or listening effort, the advantage is that
this makes it more robust for assessments at any time. Potential improvements to
better probe listening effort could include adding more demanding tests, such as
the Digit Span Test (S. Wang & Wong, 2024), sentences in noise, or dual-tasks.

Another restriction in our Remote Check study was that, at the time, it could only
be carried out with Apple devices. Not being able to recruit Cl users with Android
smartphones may have led to a bias since people with lower incomes are more
likely to own an Android device (Jamalova & Milan, 2019). Furthermore, our sample
likely included people more inclined to use teleaudiology, although the age range
of the studied group (median age 67) was similar to the adult population of our
clinic, and as the survey mentioned above among Dutch Cl users revealed, the
large majority is willing to use teleaudiology. Digital innovations promise enhanced
accessibility. However, the cost and actual availability of these technologies for
all patient demographics, especially in under-resourced areas, remain significant
barriers. Teleaudiology may reduce the cost of lifelong aftercare for Cl users but
will not change the cost of surgery, implants, and Cl processors (D’Onofrio & Zeng,
2022). Fortunately, all CI manufacturers are investigating remote monitoring and
remote fitting options on Android and iOS devices, which means there is increasing
potential for teleaudiology to become integrated into clinical pathways without
cutting off large groups of people.

The most important limitation of the AuDIET study presented in Chapter 7 was
its exploratory nature and broad scope. Within a single project we included
new diagnostic tests, new fitting procedures and more individualized training
approaches. This lead to interdependencies that made the execution of the project
quiet complex. Regarding the fitting part of the project, we investigated many Cl
fitting adjustments and tested multiple hypotheses, resulting in less-than-desirable
statistical rigor. The compounded effect of all implemented fitting interventions
was evaluated per Cl user, which made it impossible to disentangle the impact of
each intervention. Another limitation was that we did not give Cl users time for
acclimatization to the distinct fitting interventions. A more extensive, standardized
preregistered replication focusing only on fitting interventions is needed to confirm
and expand our findings.
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RECOMMENDATIONS

Teleaudiology holds promise and will see increased adoption in the future.
However, the specific implementation in clinical practice needs further refinement.
During this implementation phase, there are several recommendations to consider.
Clinicians, for example, need to design service delivery models that align with the
needs and experiences of individual patients and, thus, meet the human scale. This
means that the interests of the end-user are given a central position. For instance,
how does the service impact the end-user personally? Can we design simple
solutions? Can we adapt the technology to the user instead of vice versa? This calls
for a design approach that prioritizes end-user involvement, a strategy successfully
adopted in Australia, leading to innovations such as NALscribe and C2Hear (Convery
et al,, 2020; Ferguson et al., 2018; Young et al., 2022). NALscribe is an ASR system
whose interface was developed based on input from potential users and clinicians
and was subsequently tested in audiology clinics (Shang, 2023). Additionally,
counseling prospective users about these technologies is very important. For
instance, people reported fear that teleaudiology might corrupt their Cl system.
Fortunately, this is not a valid concern, but developers and clinicians should be
aware of and address such concerns in their interaction with potential users. These
examples underscore the value of placing the end-user behind the steering wheel,
empowering them to participate actively in their hearing healthcare pathway.

Another recommendation is that teleaudiology tools should be provided in
settings that promote comfort and trust. Our commitment as clinicians to creating
a welcoming physical environment in our audiology clinics - complete with
clear signage, ample parking, reception desks, and amenities like coffee - should
be mirrored in the digital space (see Figure 2 for an impression of the current
situation). This ensures patients feel supported online and at ease when accessing
teleaudiology services. When patients fail to log in or encounter difficulties later in
the process, we need the equivalent guidance available in person to help them get
started and feel welcome in a virtual hearing clinic. The high number of technical
difficulties encountered during Remote Checks (Chapter 6) shows that there is
room to improve such apps and that support from the clinic is needed to make this
a success. It takes effort and resources to reach an adequate level of comfort and
trust, for which the appropriate reimbursement programs are required in order to
give the right incentives to clinicians and end-users.
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Login failed

—Please try again,

Figure 2. DALL-E created artwork. Left-hand side: Prompt “A four-panel cartoon depicting a patient's visit
to an audiology clinic. 1. First panel: A patient arrives at an audiology clinic with a friendly exterior. The
clinic has ample parking space with clear signage that reads ‘Audiology Clinic! A clinician is outside, smiling
and waving to the patient. 2. Second panel: The patient walks into the clinic, greeted by a welcoming
reception area. A receptionist behind the desk smiles warmly, and there are clear signs pointing to different
areas of the clinic. 3. Third panel: The patient sits in a comfortable waiting area, enjoying a cup of coffee
from a small coffee station. There are informational posters about hearing health on the walls, and a sense
of comfort and hospitality is evident. 4. Fourth panel: A friendly clinician guides the patient down a well-lit
hallway towards the examination rooms. The environment looks professional yet cozy, with artwork and
plants enhancing the welcoming atmosphere.” Right-hand side: A cartoon image of a person sitting at
home, wearing wireless earbuds, trying to log in for an online test on their smartphone. The person appears
frustrated and confused, with a furrowed brow and a slightly open mouth, expressing annoyance. They
are holding a smartphone that clearly displays an error message saying 'Login Failed - Please Try Again.'
The background features a cozy living room with a comfortable sofa, a small coffee table, and a plant,
highlighting a typical home setting. The wireless earbuds are visible in the person's ears, not connected with
any wires to the smartphone."

Teleaudiology should also be accompanied by patient education and professional
training. As digital tools become increasingly integral to hearing healthcare, the
importance of patient education cannot be overstated. Patients must be well-
informed about the capabilities and advantages of these technologies to increase
adoption and effective use. Positive reinforcement can lead to better outcomes and
might be feasible using teleaudiology. Research shows that patients who have more
knowledge and skills relating to their hearing aids obtain better outcomes (Bennett
et al,, 2018). The same likely holds for Al-driven tools. However, patients will need
to be equipped with tools for critical thinking so that they can interact relatively
safely with Al chatbots. Clinicians will need to find out what their patients can do
by themselves, what their patients cannot do, and how they can best support their
patients. One problem is that clinicians must be aware of what happens outside
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their clinics in situations beyond their direct observation. Manchaiah et al. (2023)
surveyed hearing healthcare professionals about their views on over-the-counter
hearing aids. A significant majority of professionals (73%) expressed concern that
users would struggle to insert their hearing aids, while Coco et al. (in preparation)
recently showed that the majority of first-time hearing aid users are capable of
inserting their devices properly without any external help. All professionals in
the field will continuously need to update their beliefs about what patients and
clinicians can do and ensure that they inform each other.

As explained in Chapter 2, Al expert systems and teleaudiology require
standardized protocols in their application to prevent overwhelming end-users
and developers with a plethora of user interfaces. In short, standardization helps
to achieve interoperability between products and can facilitate the exchange of
audiological data among clinics (Vercammen & Buhl, 2024). Such protocols and
best practices are also crucial for ensuring the quality and consistency of care. The
guidelines for teleaudiology practices proposed by Bennett et al. (2024) address
several of these aspects and provide a start. Standardized data formats and tools
for data collection may lead to the development of an “AudioHealthNet” database.
Such a database could facilitate data exchange and collaboration among clinicians,
researchers, and professionals from the industry. By adopting standardized data
formats while sharing, for instance, synthetic data versions (or updated priors using

federated machine learning) that safeguard privacy, we can create larger datasets
for training algorithms, which may propel the field of audiology forward, much as
the ImageNet Challenge did for computer vision (Russakovsky et al., 2015; Saak et
al., 2022; K. Taylor & Sheikh, 2022).

Integrating Al and remote technologies in audiology offers tremendous potential.
However, audiology is built upon and aims for human interaction. Digital
communication cannot capture the full spectrum of human interactions, and thus,
relying solely on Al-assisted teleaudiology is fundamentally limited. As Einstein
famously stated, “Not everything that counts can be counted.” Just as not all aspects
of music can be fully conveyed through sheet music alone, not all subtleties of
patient care and empathy can be captured in algorithms.

The genie is out of the bottle. Given all the potential benefits, we should continue
using Al in audiology to increase inclusivity instead of deepening our divides.
Working together, we can strive to adapt its use to better meet the needs of both
patients and clinicians.
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SUMMARY

Toward Al-Assisted Teleaudiology

This thesis explored teleaudiology and artificial intelligence (Al)-based methods
that can support people with hearing loss and, in the future, could be used to
address the growing need for hearing healthcare. Worldwide, 1.5 billion people
experience some degree of hearing loss, and according to the World Health
Organization, a large portion of them lack access to hearing healthcare or hearing
assistive technologies. Due to the global aging population, the capacity challenge
in hearing healthcare will further increase. Therefore, innovations are needed.

This thesis focuses on studying new technologies designed to overcome barriers
in hearing care. These barriers include limited access to diagnostic tools, the
high cost of hearing devices, and challenges in fitting and evaluating those
devices. The primary focus of this thesis is on chronic cochlear implant (Cl) care.
A Clis a device for people with severe hearing loss who do not benefit sufficiently
from hearing aids. This thesis does not address other factors that hamper
access to hearing healthcare, such as stigma or lack of motivation to seek help.
Chapters 1, 2, and 3 examine the potential global impact of Al on hearing
healthcare. The subsequent chapters address relatively affordable practical projects
and solutions, including automated speech recognition apps for individuals with
hearing loss, self-administered hearing tests, and the use of teleaudiology in
Cl aftercare.

Chapter 1 further explains the capacity challenge in hearing healthcare and
proposes solutions based on teleaudiology and Al. Teleaudiology refers to hearing
care provided online or from home, for example, via a smartphone. Teleaudiology
can lower the threshold for seeking care, especially in areas where hearing care
is scarce or absent, and it can free up capacity within the healthcare system. For
instance, individuals with hearing loss can test themselves without a professional's
assistance or with Al support. Al is an umbrella term for machines and software that
mimic human intelligence and can now be used for performing complex tasks. In
this thesis, the term "computational audiology" is used for Al-driven applications in
hearing healthcare.

Chapter 2 looks at the digital transformation that enables computational audiology
and outlines the requirements to improve hearing healthcare. It provides examples
of Al applications in hearing diagnosis, hearing rehabilitation, and scientific
research from recent literature. Besides practical advice for policymakers and
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clinicians, the ethical implications of Al are examined. Issues such as liability and
the potential dangers of Al in hearing healthcare, including privacy risks and the
risk of incorrect conclusions based on biased data or algorithms, are discussed. The
chapter concludes with a call for standards to improve interoperability between
audiological equipment, facilitate data exchange between organizations so that it
no longer matters where care is provided, and train staff to use Al responsibly in
hearing healthcare.

The possibilities of Al chatbots in hearing healthcare are outlined in Chapter 3,
based on simulated conversations with an Al chatbot and recent literature. Al
chatbots offer opportunities to provide personalized patient care, improve hearing
healthcare accessibility, and support researchers. However, there are limitations due
to the questionable reliability of Al chatbots' information and the limited accuracy
in citing sources. Potential benefits of Al chatbots include their 24/7 availability
and their ability to rewrite complex information to meet the specific needs of
patients or clinicians. The chapter emphasizes the need to establish guidelines for a
responsible and safe implementation.

The effectiveness of automated speech recognition apps for converting speech
to text for people with hearing loss was investigated in the study described in
Chapter 4. Four apps were tested (Ava, Earfy, Live Transcribe, and Speechy), which
all have a free version available in Dutch and run on a smartphone. The apps were
tested using standard speech recognition tests in a sound booth. The smartphone
was positioned where normally a person with hearing loss is tested. The word

error rates in the transcript were determined. Automated speech recognition
apps generally need loud speech material, preferably an intensity of 80 dB SPL or
higher, to reach sufficient scores, similar to those with a moderate hearing loss.
However, performance deteriorated when speech was presented in background
noise. Word error rates in the transcript were insufficient to determine the practical
usability of the automated speech recognition apps, which also depends on factors
such as the readability of the text by the user. Therefore, it was suggested that
future evaluations should include criteria related to usage conditions and user-
friendliness, in addition to word error rates.

Chapter 5 reviews the accuracy, reliability, and test duration of self-administered
hearing tests described in scientific literature. The literature review was conducted
according to guidelines for a scoping review and was a follow-up to a 2012 literature
study. The review focused on self-administered pure-tone audiometry. In pure-tone
audiometry hearing thresholds are determined for frequencies that are important



158 | Summaries

for speech reception. Fifty-six publications from 2012 to June 2021 were found,
and overlapping publications were clustered, resulting in 27 unique approaches
that were assessed on clinically relevant criteria. Six approaches had accuracy
comparable to standard air-conduction audiometry performed in audiological
centers. New techniques to enhance the reliability of self-administered hearing
tests were identified, such as measuring background noise levels during testing and
automatically flagging invalid measurements. Thirteen approaches had a similar
test duration to clinical audiometry, and three reported shorter test durations using
more effective algorithms to determine hearing thresholds. Identified gaps in the
literature include the limited number of self-administered tests that measure bone
conduction and tests designed for children.

The stability and reliability of self-administered tests performed at-home in 50
Cl users are described in Chapter 6. Participants determined their aided hearing
thresholds and speech reception threshold for digits-in-noise with their Cl at ten
different sessions. The test outcomes were used to assess auditory functioning in
relation to time-of-day, fatigue, motivation, and self-reported chronotype (morning
or evening person). The outcomes showed that the time-of-day, fatigue, motivation,
or chronotype did not affect test outcomes, implying that tests performed at-home
are reliable and can be performed at any time. However, speech recognition with Cl
must be sufficient to perform the digits-in-noise test. Participants needed to score
at least 65% on the Dutch CNC-test at conversational speech intensity (65 dB SPL).
Based on the results, there are opportunities to organize chronic Cl care from home,
providing digitally proficient Cl users more control over their follow-up care, such
as insight into their auditory capabilities, and this could, if implemented effectively,
reduce clinic workload by establishing criteria for in-clinic appointments.

Chapter 7 presents a feasibility study of a Cl fitting procedure based on phoneme
confusions measured in experienced Cl users using self-administered tests.
Phonemes are the sounds that make up spoken words. Self-administered tests were
used to assess for each participant which phonemes were not identified correctly
and with which phonemes they were confused. Participants who received a more
targeted fitting intervention based on specific phoneme errors showed a decrease
in errors compared to those who received a more generic intervention. Although
this procedure shows potential, confirmatory studies are needed to provide
stronger evidence and distinguish the effects of the conventional clinical Cl fitting
procedure from the phoneme-confusion-based fitting procedure.
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Chapter 8 summarizes the findings of this thesis and describes the potential of
Al-assisted teleaudiology to improve access to and affordability of hearing care
worldwide. Self-administered tests performed at-home provide reliable and stable
outcomes in Cl users. Outcomes of self-administered tests can be used to adjust
Cl fittings. A literature review found six self-administered approaches that meet
clinical standards for determining hearing status. Additionally, automated speech
recognition apps for people with hearing loss provide adequate transcription
in quiet listening situations. With the further development of teleaudiology and
Al chatbots, people with hearing loss can increasingly manage their hearing
healthcare at the time and place of their choosing. However, we will need to
involve people with hearing loss more in developing these technical solutions to
align those solutions with their needs and capabilities. There is still much work
to be done before people feel as comfortable in a digital environment as they
do in the physical world. It will require interdisciplinary collaboration, as well as
standardization of protocols and data collection to integrate these technologies
into clinical practice. In this way, computational audiology can be optimally utilized
as one of the solutions to the growing capacity challenge in hearing healthcare.
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NEDERLANDSE SAMENVATTING

Op Weg Naar Al Ondersteunde Tele-audiologie

In dit proefschrift zijn methoden onderzocht die gebaseerd zijn op tele-
audiologie en/of kunstmatige intelligentie (Al) die slechthorenden kunnen
ondersteunen en waarmee op termijn het toenemende capaciteitsprobleem
in de hoorzorg aangepakt kan worden. Er zijn wereldwijd 1,5 miljard mensen
met enige mate van gehoorverlies en een groot deel daarvan heeft volgens de
Wereldgezondheidsorganisatie geen toegang tot hoorzorg of hoorhulpmiddelen.
Door vergrijzing van de wereldbevolking zal het capaciteitsprobleem in de
hoorzorg nog verder toenemen en daarom zijn innovaties nodig.

Er zijn in dit proefschrift nieuwe technologieén bestudeerd om de toegang tot
hoorzorg te verbeteren. De huidige beperkingen worden mede veroorzaakt
door onvoldoende beschikbaarheid van gehoordiagnostiek, de kosten van
hoorhulpmiddelen en de complexiteit van het instellen van deze hoorhulp-
middelen. De primaire focus ligt op langdurige cochleaire implantaat (Cl) zorg. Een
Cl is een hulpmiddel voor mensen met een zeer ernstig gehoorverlies waarvoor
hoortoestellen onvoldoende baat bieden. Andere factoren die toegang tot hoorzorg
in de weg staan zoals stigma of gebrek aan motivatie om hulp te zoeken, worden
in dit proefschrift niet behandeld. Nadat in hoofdstuk 1, 2 en 3 in de volle breedte
is gekeken naar de mogelijke impact van Al op de hoorzorg wereldwijd, richten
de hoofdstukken daarna zich op relatief betaalbare oplossingen en projecten
zoals automatische spraakherkenningapps voor slechthorenden, zelfuitgevoerde
hoortesten, en het gebruik van tele-audiologie in Cl-nazorg.

In hoofdstuk 1 wordt het capaciteitsprobleem in de hoorzorg toegelicht en worden
oplossingen voorgesteld gebaseerd op tele-audiologie en Al. Tele-audiologie is het
online of vanuit thuis aanbieden van hoorzorg via bijvoorbeeld een smartphone. Tele-
audiologie kan de drempel verlagen tot het verkrijgen van hoorzorg, met name op
plekken waar hoorzorg schaars is of ontbreekt, en kan capaciteit in de zorg vrijspelen.
Bijvoorbeeld omdat de slechthorende zichzelf kan testen zonder hulp van een
professional of juist met ondersteuning van Al. Al is een verzamelterm voor machines
en software die menselijke intelligentie nabootsen en kan tegenwoordig gebruikt

worden voor het uitvoeren van complexe taken. De term “computational audiology
wordt in dit proefschrift gebruikt voor Al-gedreven toepassingen in de hoorzorg.

In hoofdstuk 2 wordt nader ingegaan op de digitale transformatie die computational
audiology mogelijk maakt en de benodigde randvoorwaarden om hiermee hoorzorg
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te verbeteren. Er worden voorbeelden gegeven uit de literatuur van Al-toepassingen
op het gebied van gehoordiagnostiek, gehoorrevalidatie en wetenschappelijk
onderzoek. Naast praktische adviezen voor beleidsmakers en clinici wordt ook
gekeken naar de ethische implicaties van het gebruik van Al. Vraagstukken zoals
aansprakelijkheid en de mogelijke gevaren van Al in de hoorzorg komen aan bod.
Denk hierbij aan de risico's rondom privacy, of verkeerde conclusies die getrokken
worden op basis van vertekende data of bevooroordeelde algoritmen. Het
hoofdstuk eindigt met een pleidooi voor standaarden om audiologische apparatuur
beter onderling te laten samenwerken (interoperabel), gegevensuitwisseling tussen
organisaties beter mogelijk te maken zodat het niet meer uitmaakt waar deze zorg
geboden wordt, en om medewerkers te trainen om tot een verantwoord gebruik
van Al in de hoorzorg te komen.

De mogelijkheden van Al-chatbots in de hoorzorg worden naar aanleiding
van gesimuleerde gesprekken met een Al-chatbot geschetst in hoofdstuk 3 op
basis van recente literatuur. Al-chatbots bieden kansen om gepersonaliseerde
patiéntenzorg te bieden, de toegankelijkheid van gezondheidszorg te verbeteren,
en onderzoekers te ondersteunen. Vooralsnog zijn er beperkingen wegens de
wisselende betrouwbaarheid van de informatie die Al-chatbots leveren en het
ontbreken van accurate bronverwijzingen. Potentiéle voordelen van Al-chatbots
zijn dat ze 24 uur per dag inzetbaar zijn en dat ze complexe informatie specifiek
kunnen herschrijven zodat dit beter past bij de behoefte van de patiént of juist die
van de clinicus. In het hoofdstuk wordt de noodzaak benadrukt om richtlijnen op te
stellen om tot een verantwoorde en veilige implementatie te komen.

Hoe goed spraakherkenningsapps voor slechthorenden spraak omzetten in tekst
is onderzocht in de studie beschreven in hoofdstuk 4. We hebben hiertoe vier apps
getest (Ava, Earfy, Live Transcribe en Speechy) waarvan een gratis versie in het
Nederlands beschikbaar was. Het zijn apps met automatische spraakherkenning
die te gebruiken zijn op een smartphone. De apps werden getest met behulp van
standaard spraakverstaantesten in de kliniek door de smartphone te plaatsen op de
plek van de slechthorende en de fouten in het transcript op woordniveau te tellen.
De spraakherkenningsapps hadden een luid spraaksignaal nodig, liefst 80 dB SPL
of meer, om een voldoende resultaat te bereiken, dit is vergelijkbaar met mensen
met een matig gehoorverlies. Echter, wanneer spraak in achtergrondlawaai werd
aangeboden vielen de prestaties van de spraakherkenningsapps tegen. De fouten
in het transcript op woordniveau zeggen onvoldoende over de bruikbaarheid
van de spraakherkenningsapps in de praktijk, wat onder andere afhangt van
de leesbaarheid van de tekst door de gebruiker. Om toekomstige evaluatie van



162 | Summaries

spraakherkenningsapps representatiever te maken voor de bruikbaarheid in de
praktijk wordt daarom de aanbeveling gedaan om naast fouten op woordniveau
ook criteria op het gebied van gebruiksomstandigheden en gebruiksgemak mee
te nemen.

In hoofdstuk 5 zijn de in de wetenschappelijke literatuur beschreven meetmethoden
voor zelfuitgevoerde hoortesten beoordeeld op nauwkeurigheid, betrouwbaarheid
en testduur. De literatuurstudie werd uitgevoerd volgens de richtlijnen voor een
scoping review en was een vervolg op een literatuurstudie uit 2012. Er werd
specifiek gekeken naar zelfuitgevoerde toonaudiometrie. Bij toonaudiometrie
worden de gehoordrempels bepaald voor frequenties die belangrijk zijn voor het
horen van spraak. Er werden 56 publicaties gevonden uit de periode van 2012
tot juni 2021. Overlappende publicaties werden samengevoegd. Dit leidde tot
27 unieke meetmethoden die werden beoordeeld op klinisch relevante criteria.
De studie vond dat de nauwkeurigheid van zes meetmethoden vergelijkbaar was
met standaard luchtgeleidingsaudiometrie zoals dat op een audiologisch centrum
wordt verricht. Er werden nieuwe technieken gevonden om de betrouwbaarheid
van zelfuitgevoerde hoortesten te verhogen zoals het meten van achtergrondgeluid
tijdens de meting en het automatisch markeren van ongeldige metingen. Qua
tijdsduur waren er dertien meetmethoden die een vergelijkbare testduur hadden
als klinische audiometrie. Er werden drie meetmethoden gevonden die een kortere
testduur rapporteerden door gebruik te maken van effectievere zoekalgoritmen om
de gehoordrempel te bepalen. Verder werden er in de literatuur lacunes gevonden
zoals het geringe aantal zelfuitgevoerde hoortesten waarmee beengeleiding kan
worden gemeten of hoortesten die aantrekkelijk gemaakt zijn voor kinderen.

De stabiliteit en betrouwbaarheid van zelfuitgevoerde thuistesten bij 50 Cl-
gebruikers wordt beschreven in hoofdstuk 6. De deelnemers bepaalden op tien
testmomenten hun geholpen gehoordrempels en verstaan van cijfers in ruis met Cl.
De testuitslagen werden gebruikt om het auditief functioneren van Cl-gebruikers te
bepalen als functie van testmoment, vermoeidheid, motivatie en zelfgerapporteerd
chronotype, dat wil zeggen of ze zich als ochtend- of avondmens typeerden. De
resultaten toonden dat het moment van uitvoer van de thuistest, de vermoeidheid,
motivatie of chronotype geen invloed had op de testuitslagen. Dit impliceert
dat thuistesten stabiele resultaten opleveren en op elk moment uitvoerbaar
zijn. Wel dient het spraakverstaan met Cl voldoende te zijn om het verstaan van
de cijfers in ruis goed te kunnen uitvoeren. Deelnemers moesten bij standaard
spraakaudiometrie ten minste 65% spraakverstaan scoren op conversatiesterkte
(65 dB SPL). Op basis van de studieresultaten wordt gesuggereerd dat er mogelijk-
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heden zijn om chronische Cl-zorg vanuit thuis te organiseren. Dit biedt ClI-
gebruikers die digitaal vaardig zijn meer regie over hun nazorg, zoals inzicht in hun
auditieve mogelijkheden, en kan, mits doelmatig geimplementeerd, de werkdruk
voor de kliniek te verminderen door middel van criteria voor controles in de kliniek.

In hoofdstuk 7 wordt een haalbaarheidsstudie beschreven van een Cl-
afregelprocedure gebaseerd op foneemverwisselingen bij ervaren Cl-gebruikers
met behulp van zelfuitgevoerde testen. Fonemen zijn de klanken waaruit
gesproken woorden zijn opgebouwd. Met behulp van zelfuitgevoerde testen
werd per Cl-gebruiker bepaald welke fonemen niet goed onderscheiden werden
en voor welk foneem ze werden verwisseld. Het foutenpercentage van specifiek
behandelde foneemverwisselingen nam af bij deelnemers die een specifiek op
die foneemverwisselingen-gebaseerde afregelinterventie kregen, in vergelijking
met degenen die een meer generieke afregelinterventie kregen. Hoewel deze
op foneemverwisselingen-gebaseerde afregelprocedure potentie heeft, zijn
vervolgstudies nodig om een sterkere onderbouwing te leveren en de effecten
van de gangbare klinische Cl-afregelprocedure te onderscheiden van de op
foneemverwisselingen-gebaseerde procedure.

Hoofdstuk 8 vat de bevindingen van dit proefschrift samen en beschrijft
welke mogelijkheden Al-gedreven tele-audiologie biedt om toegang tot en
betaalbaarheid van de gehoorzorg wereldwijd te verbeteren. Zelftesten vanuit
thuis bieden betrouwbare en stabiele resultaten bij Cl-gebruikers op elk moment
van de dag. Resultaten uit zelftesten kunnen worden gebruikt om de CI-

instellingen aan te passen. In de literatuur werden zelftestmethoden gevonden
voor het bepalen van de gehoorstatus die aan klinische eisen voldoen. Verder
geven automatische spraakherkenningsapps voor slechthorenden, met name
in rustige situaties, gesprekken goed weer. Met de doorontwikkeling van tele-
audiologie en Al-chatbots, zullen mensen met gehoorverlies steeds meer zelf hun
hoorzorg vorm kunnen geven, op het moment en vanuit de plek waar zij dat willen.
Echter, we zullen mensen met gehoorverlies dan nog meer moeten betrekken bij
de ontwikkeling van deze technische oplossingen om deze zo goed mogelijk te
laten aansluiten op hun wensen en mogelijkheden. Er is nog veel werk te verzetten
voordat mensen zich in een digitale omgeving net zo op hun gemak voelen als in de
fysieke wereld. Dit zal interdisciplinaire samenwerking vergen, en standaardisatie
van protocollen en gegevensverzameling zal nodig zijn om de nieuwe technieken
in de klinische praktijk te kunnen inpassen. Op deze wijze kan computational
audiology optimaal worden ingezet als één van de oplossingen voor het groeiende
capaciteitsprobleem in de hoorzorg.
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RESEARCH DATA MANAGEMENT

Ethics and privacy

The study in Chapter 6 was set up following a single-center repeated measures
cohort study design. A statement that the study in Chapter 6 was not subject to
the Dutch Medical Research Involving Human Subjects Act (WMO), was obtained
from the institutional ethical review committee CMO Radboudumc, Nijmegen, the
Netherlands (Filenumber: 2020-7203). The study adhered to good clinical practice.
Informed consent was obtained from participants to collect and process their data
for this study.

This feasibility study detailed in Chapter 7 was conducted using a single-center
pre-post interventional design performed at the Radboud university medical
center’s outpatient clinic. The institutional ethical review committee CMO
Radboudumc, Nijmegen, the Netherlands, has given approval to conduct this
study (CMO Radboudumc dossier number: 2022-13495). The study was part
of the Auditory Diagnostics and Error-based Treatment (AuDiET) trial, which
is pre-registered. Additional information on the AuDiIET trial can be found
at https://clinicaltrials.gov/study/NCT05307952.

To protect participant privacy:

- The privacy of the participants in these studies in Chapter 6 and 7 was
warranted by the use of pseudonymization. The pseudonymization key was
stored on a secured network drive that was only accessible to members of the
project who needed access to it because of their role within the project. The
pseudonymization key was for both studies stored separately from the research
data. Participant data of Chapter 6 and 7 contains sensitive and personally
identifiable data. Only the performance data are shared to safequard the privacy
of the participants

Funding

Cochlear Ltd funded the study presented in Chapter 6 and provided the loaner Cl
processors used for the study presented in Chapter 7. The study in Chapter 7 was
part of the MOSAICS project. It was made possible by a European Industrial Doctorate
project funded by the European Union's Horizon 2020 framework program for
research and innovation under the Marie Sklodowska-Curie Grant Agreement
No. 860718.
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Data collection and storage

The raw Data from Chapter 4, 5, 6 and 7 were stored and analyzed on the
department server, with access restricted to project members working at
Radboudumc. The data for the metareview from Chapter 5 was retrieved from
the electronic databases of PubMed, IEEE, and Web of Science was conducted to
identify relevant reports from the peer-reviewed literature. The complete set of
terms and the applied search strategy are provided in Multimedia Appendix 1 in
the published paper. The Chronotype, CIS, and MM questionnaires from Chapter
6 were filled out online by the participants using Castor EDC for secured online
questionnaires. Data from the online questionnaires were stored in Castor EDC.
The Remote Check data from Chapter 6 were securely stored within the Cochlear
clinician’s portal. Paper (hardcopy) data containing questionnaires from Chapter 7
are stored in cabinets on the department. The analyzed auditory performance data
from Chapter 6 and 7 are stored in secure repositories that comply with GDPR and
other relevant privacy laws.

Data sharing according to the FAIR principles

Findable and Accessible

The auditory performance data from Chapter 6 and 7 are published in Data Sharing
Collections (DSC’s) in the Radboud Data Repository, with access regulated under
the RUMC-RA-DUA-1.0 Data Use Agreement. Requests for access will be checked
by the Pl against the conditions for sharing the data as described in the signed
Informed Consent. The data not suitable for reuse will be archived for 15 years after
termination of the study.

Reusability and Interoperability
To promote data reusability and interoperability, the following measures have
been implemented:

- File Formats: The raw data are stored in XYZ in their original form. Where
relevant, data has also been stored pseudonymized in tidy data format in.xlsx
and.csv files, ensuring that data remains usable in the future.

- Reproducibility: Detailed specifications of the experimental setups and analysis
scripts are provided. The R code used in Chapters 7 is available in the repository.
R code used in Chapter 6 and the Python code employed in Chapter 7, may be
made available upon reasonable request. Version numbers for all software used
are documented within the provided scripts.
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The table below details where the data and research documentation for Chapter 6
and 7 can be found. All data archived as a Data Sharing Collection remain available
for at least 15 years after termination of the studies.

Chapter Repository Data Sharing Collection (DSC) DSC License

6 Radboud Data Repository ~ DOI: https://doi.org/10.34973/3ykx-5932  RUMC-RA-DUA-1.0
7 Radboud Data Repository  DOI: https://doi.org/10.34973/qr4j-y723 ~ RUMC-RA-DUA-1.0
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education. Others continue in a wide range of positions, such as policy advisors,
project managers, consultants, data scientists, web- or software developers,
business owners, regulatory affairs specialists, engineers, managers, or IT architects.
As such, the career paths of Donders PhD graduates span a broad range of sectors
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upcoming defences please visit:
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